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Personal data are increasingly needed to improve scientific research and decision making
in several contexts. However, when collecting or processing data refers to individual
respondents, privacy-preserving techniques must be implemented to sanitise or protect
the data and guarantee the fundamental right to privacy of data subjects. The grow-
ing demand for consistent and comprehensive protection of personal data leads to the
adoption of the new General Data Protection Regulation (GDPR).

In this thesis, we investigate privacy risk and data sharing solutions under the GDPR,
providing data controllers with some data protection techniques to comply with the
GDPR. We first explore the implications of a fundamental terminology - personal data,
highlighted in the GDPR by interpreting three types of related data: pseudonymised
data, Art.11 data and anonymised data, aiming to help data controllers identify what
kind of data they are holding. We deploy a risk-based approach to determine how the
existing data anonymisation techniques can be assessed in harmony with the new data
types in the GDPR.

In light of the promotion of risk assessment methods in the GDPR and our proposed risk-
based approach, we further develop a privacy risk mining framework based on machine
learning, which consists of a two-phase clustering algorithm and a privacy risk tree
model to detect record linkage risk of publishing a new sanitised dataset. This empowers
data controllers to envisage the re-identification vulnerabilities and apply more reliable
measures for data publishing.

Finally, being aware of the risk and the insufficiency of existing data protection tech-
niques, firstly we propose a privacy management framework for data controllers to im-
prove the utility and security of differentially private data sharing with blockchain tech-
nology. Secondly, another framework which combines the blockchain and homomorphic
encryption is proposed to outsource centralised anonymisation service and help data
owners share data with multiple data controllers.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:rs.hu@soton.ac.uk




Contents

Acknowledgements xiii

Declaration of Authorship xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Our Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Analysing the Risk 11

2 Data Anonymisation Under the GDPR 13
2.1 Personal Data in the GDPR . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Changes of the Regulation . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 The Relationship between Pseudonymisation and Personal Data . 14
2.1.3 Importance of Evaluating Anonymisation Techniques under the

GDPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Three Types of Data in GDPR . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The GDPR Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Direct and Indirect Identifiers . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Data Sanitisation Techniques . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Contextual Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 A Risk-based Analysis of the Three Types of Data . . . . . . . . . . . . . 20
2.3.1 Re-Identification Risks . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Local, Global and Domain Linkability . . . . . . . . . . . . . . . . 22
2.3.3 Privacy Risks Regarding Three Types of Data . . . . . . . . . . . 23

2.3.3.1 Anonymised Data . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3.2 Pseudonymised Data . . . . . . . . . . . . . . . . . . . . 23
2.3.3.3 Art.11 Data . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The GDPR in Practice: Sanitisation Techniques and Contextual Controls 27
2.4.1 Effectiveness of Data Sanitisation Techniques . . . . . . . . . . . . 27
2.4.2 Improving Data Utility with Contextual Controls . . . . . . . . . . 30
2.4.3 Improving Data Utility with Dynamic Sanitisation Techniques and

Contextual Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



vi CONTENTS

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Mining Privacy Risk for Data Anonymisation 39
3.1 Background of Privacy Risk Assessment . . . . . . . . . . . . . . . . . . . 39

3.1.1 Privacy Risk Mining in Dynamic Data Publishing . . . . . . . . . 39
3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Linkability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Global and Local Linkability . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Measuring Global Linkability . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Measuring Local Linkability . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Privacy Risk Tree Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Experiments and Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Parameter Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II Proposing the Solution 51

4 Differential Private Data Sharing with Blockchain 53
4.1 Privacy Management of Data Controller . . . . . . . . . . . . . . . . . . . 54

4.1.1 Traditional Privacy Management System . . . . . . . . . . . . . . 54
4.1.2 Privacy Degradation in A Motivating Example . . . . . . . . . . . 55
4.1.3 Blockchain-based Privacy Management . . . . . . . . . . . . . . . . 57

4.2 Differential Privacy Meets Blockchain . . . . . . . . . . . . . . . . . . . . 58
4.2.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Blockchain and Smart-Contracts . . . . . . . . . . . . . . . . . . . 59

4.3 Blockchain-based Data Sharing . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Main Components and Phases . . . . . . . . . . . . . . . . . . . . 61

4.3.1.1 Query Matching . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1.2 Utility-based Approximation . . . . . . . . . . . . . . . . 62
4.3.1.3 Budget Verification . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Data Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Blockchain Practicality . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Outsourcing Differential Privacy Sanitisation using Blockchain and En-
cryption 71
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 Technical Approach and Objectives . . . . . . . . . . . . . . . . . . 73

5.2 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Mitigating Privacy Management Issues in Direct-Sharing Systems . 76
5.2.2 Managing Identities of Data Controllers using Membership Service 78



CONTENTS vii

5.2.3 Private Data Collection Mechanism for Data Transferring . . . . . 80
5.2.4 Differential Privacy with Homomorphic Encryption . . . . . . . . . 82

5.3 Protocol and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Trust Relation and Threat Model . . . . . . . . . . . . . . . . . . . 85
5.3.2 World States Design . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Smart Contracts and Workflow . . . . . . . . . . . . . . . . . . . . 86

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Encryption Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Communicational Overhead . . . . . . . . . . . . . . . . . . . . . . 93
5.4.3 Blockchain Practicality . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusion and Future Work 99
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103





List of Figures

3.1 Privacy risk tree of de-anonymisating dynamically published datasets . . . 47
3.2 Parameter selection of first-stage k-means clustering . . . . . . . . . . . . 49
3.3 Matching accuracy of second-stage k-members clustering . . . . . . . . . . 50

4.1 Obfuscated query results with different privacy requirements . . . . . . . 56
4.2 Overview of the runtime mechanismMi (diamond boxes relies on smart

contracts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Blockchain data sharing System among Data Controllers (AI stands for

Anonymisation interface, while ANM stands for Anonymisation service) . 64
4.4 Budget consumption as the number of queries increases, where “2 query

types” means that just max and average queries are allowed, while “4
query types” also includes min and sum queries. . . . . . . . . . . . . . . 66

4.5 Generated noise over 20 queries in baseline approach and our approach. . 67
4.6 Smart-contracts performance regarding different number of stored queries

and requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 An example of vertically partitioned data with two data controllers . . . . 73
5.2 Centralised sanitisation model in direct-sharing system . . . . . . . . . . . 76
5.3 A decoupled framework with privacy management layer and data trans-

ferring layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Computational overhead of outsourcing differential privacy sanitization . . 92
5.5 Communicational overhead in data uploading phase . . . . . . . . . . . . 94
5.6 Communicational overhead in data downloading phase . . . . . . . . . . . 94
5.7 Read throughput with different numbers of keys . . . . . . . . . . . . . . 95
5.8 Read throughput with different numbers of values . . . . . . . . . . . . . 96
5.9 Write throughput with different numbers of values . . . . . . . . . . . . . 96

ix





List of Tables

2.1 An example of Pseudonymised data using k-anonymity (k=4) . . . . . . . 24
2.2 An example of 4-anonymous patient data from hospital H1 . . . . . . . . 26
2.3 An example of 6-anonymous patient data from hospital H2 . . . . . . . . 26
2.4 Risk-based interpretation for three types of data in the GDPR . . . . . . 27
2.5 Robustness of data sanitisation techniques against privacy risks . . . . . . 27
2.6 The results of data sanitisation techniques regarding three types of data . 29
2.7 Inter-party (obligation) and Internal (policies) controls . . . . . . . . . . . 31
2.8 Sanitisation options when data are in the hands of data collectors . . . . . 32
2.9 Sanitisation options when data are in the hands of data recipients . . . . 33

3.1 Privacy weakness and feared events of dynamic data publishing . . . . . . 47
3.2 Ten UCI datasets for privacy risk mining . . . . . . . . . . . . . . . . . . 48

4.1 A motivating example of sensitive data - employee dataset . . . . . . . . . 56

5.1 Symbols used in data transferring phase . . . . . . . . . . . . . . . . . . . 93

xi





Acknowledgements

I would like to express my sincere appreciation to Professor Vladimiro Sassone, for his
continuous support and guidance through the four years.

I would like to extend my gratitude to the researchers in Cyber Security group and my
friends at the University. It is nice to work with them and enjoy my Ph.D. life.

Finally, I would also like to thank my parents for their support and encouragement
throughout my study.

xiii





Declaration of Authorship

I, Runshan Hu , declare that the thesis entitled and the work presented in the thesis are
both my own, and have been generated by me as the result of my own original research.
I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: Runshan et al., 2017, Mu Yang et al.,
2018

Signed:.......................................................................................................................

Date:..........................................................................................................................

xv

mailto:rs.hu@soton.ac.uk




Chapter 1

Introduction

Information related to individuals has become a very valuable commodity. The increas-
ing digitisation of personal information in the form of medical records, administrative
and financial records, social networks, location trajectories, and so on, creates new av-
enues for data analytics research. Sharing and mining of this large scale personal data
help improve the quality of people’s life. However, sharing and analysing the data, or
even deriving aggregates over the data raise concerns over the confidentiality of individ-
ual participants in the dataset. Therefore, there is a real need to establish appropriate
technical solutions in which personal data may be used and exploited whilst guaranteeing
basic human right, that is, the right to privacy.

At the same time, the debate about personal data protection has intensified as a re-
sult of increasing demand for consistent and comprehensive protection of personal data
leading to the adoption of the new law. The new General Data Protection Regulation
(the GDPR) (2018) came into effect since May 2018, which is specifically applicable to
all the European Union Member States and intended to benefit the EU-based data sub-
jects. According to the Information Commissioner, the GDPR represents an “evolution”
regulation (Pantlin, Wiseman, and Everett, 2018). The GDPR has brought some key
concepts of data privacy into focus, such as the difference between anonymisation and
pseudonymisation, the concept of additional information, and especially the definition of
personal data. In addition, the GDPR honours rights of the data subject more seriously
than ever before, for example, the right to consent, the right to rectification, the right
to be forgotten, and the right to restriction of processing etc. All these rights provide
significant protection to data subjects’ privacy and meanwhile put a stricter restriction
on what data controllers should do and must do. The GDPR has introduced some key
changes that are giving rise to closer scrutiny of the personal data use in place for data
controllers and, in turn, a shift will be seen in the approach adopted by data controllers
in negotiating and implementing data processing arrangements.

1



2 Chapter 1 Introduction

Nearly every organisation processes personal data, whether by digital or by manual
means. Almost without exception, organisations in the public and private sectors, char-
ities, unincorporated associations, sole traders and individual persons engaged in pro-
cessing personal data will be affected by the GDPR, in some cases, quite seriously (Bain-
bridge and Pearce, 1998). These bodies and persons are data controllers under the
GDPR. As indicated by the name, the data controller manages the overall purpose and
means of using the data. There may also be situations where a data controller has to
use the service of an external entity to process the data. Using external data processing
service does not mean that the data controller outsources the control of personal data
to that entity (2018). Such entities are called data processors (Art. 28, General Data
Protection Regulation, 2018), who process the data only according to the purpose and
instructions given by the data controller. Therefore, in this thesis, we will mainly focus
on the responsibilities of data controllers and propose solutions for them.

Data controllers are required to show “sufficient guarantees” to comply with the GDPR
by implementing appropriate technical and organisational measures. As such, many or-
ganisations will have to modify their processing activities significantly to comply with
the new law and, furthermore, more obligations are placed upon them as compared with
the former data protection Acts. However, legislators deliberately avoided the idea of
recommending specific technical frameworks or privacy-preserving methods for imple-
menting the legal requirements introduced by the GDPR (Politou et al., 2018). Instead,
they followed a technology-agnostic approach by specifying the functional requirements
in a highly abstracted level, as far as their underlying implementation is concerned as
such they did not bind the provisions of the law with the current trends and state-of-
the-art technologies in computer science.

There is a knowledge gap between the legal requirements and the privacy-enhancing
technologies that must be bridged in order to understand the capability of current data
protection approaches and propose better solutions. Therefore, the work in this thesis
will contain two main parts in a progressive way. We will help data controllers un-
derstand the category and privacy risks of the data they are holding according to the
GDPR. Then, we will provide one solution for the controllers to better utilise the data
they collected, and to process data in a transparent and tamper-proof way. We will
propose another solution for both the data controllers and data owners to alleviate the
overhead and privacy risk of performing the anonymisation by utilising encryption tech-
nology to protect the privacy of the data and blockchain to manage the outsourcing
process.
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1.1 Motivation

According to the definition of the term data sharing in the data sharing code of practice,
data sharing indicates the disclosure of data from one organisation to a third party
organisation or organisations (ICO, 2018). This definition shows that data can be shared
from one party to another, or from one party to multiple parties. These two different data
disseminations are also reflected in different scenarios of data sharing. In general, there
are three different kinds of scenarios involving the data owner and the data controller.

• data publishing phase, when data controllers believe the data has been sanitised
to a re-identification risk-free level and want to share the data with the public,

• data sharing phase, when data are leaving the hands of data owners to data con-
trollers,

• data processing phase, when data are further being processed and analysed by
data controllers.

Releasing data to the public poses a threat to the privacy of individuals in the datasets.
As the data are completely exposed to the public, an attacker can use any background
knowledge within his/her capability to re-identify the data subjects in the dataset.
Therefore, a privacy risk assessment is necessary for sanitised data publishing. Besides,
the importance of privacy risk assessment is emphasised in the GDPR. The assessment
is especially critical for privacy-preserving data publishing due to the fact that the pub-
lished data will no longer be protected under any confidential measures offered by the
data controllers.

However, the privacy risk assessment of privacy-preserving data publishing has proved
to be challenging for multiple datasets publishing (Byun, T. Li, et al., 2009). Although
each published dataset poses a small privacy risk to individuals, recent studies showed
that the risk increases when different organisations have some common records pertain-
ing to the same individuals and these organisations publish their datasets independently.
If these records are linked together, it is possible to re-identify specific individuals and
hence comprise their privacy. This type of privacy breach is called linkage attack (Dwork,
Roth, et al., 2014). A few studies have been done to mitigate this attack (N. Li, T. Li,
and Venkatasubramanian, 2007; Machanavajjhala et al., 2007; Sweeney, 2002). How-
ever, none of them has discussed the associated risks of linkage attack against multiple
heterogeneous datasets. Therefore, it is vital to develop a privacy risk analysis frame-
work for data controllers to understand the potential risk during the privacy-preserving
data publishing phase.

Besides releasing sanitised data records in a raw manner, differential privacy offers
strict protection when sharing the statistical information of the data. Differential pri-
vacy (Dwork, McSherry, et al., 2006) was first proposed over a decade ago and has now
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become the de-facto standard for privacy protection due to its provable guarantee and
nice composition properties. Informally, a randomised algorithm ensures differential
privacy if its output distributions are approximately the same when executed on two
input databases that only differ in a single individual record. This requirement prevents
an attacker with access to the output of differential private algorithms from learning
anything substantial about the presence or absence of any single individual.

The basic idea of differential privacy is to introduce noise to the output. The privacy
level under differential privacy is represented by a parameter ε, which is usually called
the privacy budget, with smaller values corresponding to stronger privacy guarantees.
To protect sanitised data from degradation of differential privacy protection, recent
approaches (McSherry, 2009) proposed to verify privacy budget which determines the
amount of noise produced in the obfuscation process, and stop data sharing as soon as
the budget is used up. However, due to the fact that anonymisation services themselves
cannot offer adequate guarantee for controlling and tracing privacy budget, it is not
trustworthy that data controller will use the privacy budget properly and honestly stop
sharing data after the privacy budget being exhausted. The consequence of privacy
budget misuse could end up making the de-anonymisation attack of differential privacy
possible.

Therefore, achieving trustworthy decentralised management of the privacy budgets for
the data controllers is then of paramount importance to ensure privacy protection of
sensitive datasets, and, most of all, to help data controller enhance assurance on the
anonymisation services and avoid single-point failure of privacy protection due to any
untrusted or incapable data controller.

Blockchain is a novel technology that recently came to prominence when used as a
public ledger for the Bitcoin cryptocurrency (Nakamoto, 2008). The blockchain network
consists of distributed nodes to form a peer-to-peer network. These nodes or so-called
peers are responsible for replicating and storing blocks into a consecutive and chained
order. Each block is created in a decentralised manner under the agreement of the peers.
The agreement is achieved using a consensus algorithm. For example, Bitcoin uses an
expensive proof-of-work algorithm to reach the consensus, while Hyperledger Fabric
instead employs Byzantine consensus algorithm to avoid heavy computation. Thanks
to the consensus algorithms and tamper-resistant transaction, blockchain enjoys some
data integrity related properties, for example, transparent and decentralised control of
the data, non-repudiation and persistency of the public ledger (Ferdous et al., 2017).

In light of the transparency and decentralisation of the blockchain technology, we will de-
velop a blockchain-based data sharing approach to allow data owners to control anonymi-
sation processes, and to guarantee chosen privacy levels when using data controllers’
anonymisation services especially to protect against attacks to differential privacy.
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Another following research question in the data sharing lifecycle is where and how the
sanitisation process is implemented. When the sanitisation process is performed on
the data controller side, data privacy cannot be strictly guaranteed. After gaining
the permission to access the data, the data controller is required to sanitise the data
according to the agreement with the data owner. Meanwhile, data owners lose control
over their data. The data may not be anonymised according to the privacy requirement
agreed between data controllers and data owners. Specifically, what kind of sanitisation
technique will be deployed by the controller or what privacy parameters will be used
in the sanitisation techniques, for example, parameter k in the k-anonymity model or
privacy budget in differential privacy, actually depends on the will of the data controller
who now has control over the data. Even worse, malicious data controller may share
the data to another entity without sanitising the data first or even use the data for
unintended purposes not agreed by data owners. Although regulatory measures may
impose some legal constraints on the behaviour of the data controller. Still, technical
method that can guarantee those constraints and allow data owners to administer and
monitor the intended sanitisation process is under research (Zhang et al., 2018). The
aims of such technical methods are to enable data owners with the capability to manage
which data controller can manage their data and ensure that the sanitisation process is
implemented exactly according to their preference.

On the other hand, when anonymisation is carried out on the data owner side, there are
other problems. For example, not every data owner has the ability to provide sufficient
anonymisation protection for data. One of the more complicated issues is that when the
data owner needs to share data with multiple data controllers, and each data controller
has different requirements for data utility, the data owner needs to generate multiple
anonymous versions of the original data to meet the data utility requirements for each
data controller. This places a lot of pressure on the data owner’s resource on computing
and storage.

In order to resolve this dilemma between the data controller and data owner, we will
propose an anonymisation outsourcing framework to enable data controller or data owner
to outsource the anonymisation process to a decentralised community formed by data
owners via blockchain technology.

1.2 Research Aims and Objectives

The purpose of this thesis is to fill the research gap between legal regulations and tech-
nical approaches, aiming to help data controllers process and use personal data in a
GDPR-compliant way and ensure that the rights of the data subjects are guaranteed
during the data processing lifecycle. To achieve the presented aim and satisfy the listed
requirements, we propose solutions with the following objectives.
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• Examining the implications of the new law from the perspective of the data con-
troller, especially in term of interpreting the types of personal data held by the
controller.

• Developing a privacy risk assessment framework for data controllers to detect pri-
vacy risk in the data publishing phase.

• Proposing a technical solution for the data controller to better use and exploit
personal data based on the multidisciplinary interpretation.

• Proposing a technical approach to outsource anonymisation service from the data
controller to decentralised service providers in order to grant data subjects the
ability to control who can have what access to his/her data and be informed that
the data is used for the intended purposes.

1.3 Our Solution

In the first piece of our work (Chapter 2), we interpret three types of personal data
or non-personal data and develop a risk-based approach to analyse the robustness of
existing data anonymisation techniques against three re-identification risks. This work
is vital for the data controllers as they are required by the GDPR to know what kind of
personal data they are holding and whether the existing anonymisation technique will
render the data within the scope of personal data or not. We discover that none of the
existing anonymisation techniques can satisfy the strict new requirement of “anonymised
data” in the GDPR except using the-state-of-the-art anonymisation technique - differ-
ential privacy (Dwork, 2006) for publishing statistic summaries of the data. This result
further motivates our second part of work on privacy risk mining of sanitised data from
a technical perspective.

The second piece of our work (Chapter 3) in this thesis focuses on helping data con-
trollers assess the privacy risk of publishing sanitised data. To this end, we propose a
two-stage risk mining framework for the data controller to estimate the risk of linkage
attack in different heterogeneous datasets held by the controller. Using this framework,
a data controller can predict the risk of linkage attack in the datasets prior to publica-
tion. We also perform empirical analyses to determine the efficacy of our framework to
demonstrate that the predicted risk will show us the real risk. After helping data con-
trollers better understanding the types of personal data they are holding and providing
them with a framework of analysing the privacy risk in the dataset, we further move
into developing novel solutions for the controllers to better utilise the collected data
for the intended purpose and outsource the anonymisation service to a decentralised
community formed by the data subjects in the third (Chapter 4) and fourth (Chap-
ter 5) pieces of our work, respectively. Realising that differential privacy is the most
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suitable GDPR-compliant anonymisation technique, our third piece of work (Chapter 4)
focuses on improving the data utility of differential private data sharing and providing a
transparency-by-design, privacy-budget-evident data processing mechanism for the data
controller via the combination of blockchain technology and differential privacy.

To this aim, we introduce in Chapter 4, a new solution based on blockchain, an in-
novative technology that among other fascinating properties on data integrity ensures
full decentralised control on data and code execution. Our approach utilises blockchain
smart contracts to store, verify and adaptively allocate privacy budget consumptions
depending on data owner’s privacy and data utility requirements. Secure management
of privacy budget is indeed the key to ensure privacy in the process. At the same time,
we also modify the privacy budget allocation algorithm of differential privacy to support
the reuse of the previously released results to answer new queries. In this way, we help
the data controller get more utility out of the data. This part of our work not only
improves the utility of differential private data sharing but also uses a blockchain-based
approach to ensure that the controllers allocate the privacy budget correctly and hon-
estly. The budget usage from the data controller is tracked and monitored by the data
owners so as to avoid the controllers from violating differential privacy by sharing too
much information.

In the fourth piece of our work (Chapter 5), we propose a framework that can help
the data controller outsource anonymisation service to a decentralised community es-
tablished by data owners. The traditional anonymisation process is performed either at
the data owner side or at the data controller. In our approach, the data controller and
data owner do not need to execute anonymisation service locally, which are now done
through the nodes on the blockchain. Under the premise of ensuring sanitisation relia-
bility, the transparency of the entire process is improved. The issue of trust between the
data controller and the data owner is resolved. This framework also offers a solution to
multiple data controllers to access data owners’ data without putting too much overhead
on the owners.

Technically, this framework combines blockchain and homomorphic encryption to enable
new privacy protection capabilities, that is, outsourcing the anonymisation process and
data sharing with multiple data controllers. The advantage of utilising homomorphic en-
cryption is to protect the privacy of the data, meanwhile performing differential privacy
mechanism on the encrypted data. This property ensures that data can be anonymised
even when the original data and noise parameters are shared separately. At the same
time, by encoding differential privacy data sharing policy and usage as smart contracts,
the framework can allow data owners to control who can access to their data, and be able
to maintain a trustworthy record of their data usage. When a data controller requests
the use of the data, the data owner generates the noise parameter and transfer the en-
crypted noise to the anonymisation service provider in the blockchain. In this way, data
owners do not need to implement the anonymisation by themselves. Still, they enjoy
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the freedom of control the privacy to the degree they prefer, which also guarantee that
the data is sanitised and used for the intended purposes approved by the data owner.

1.4 Key Contributions

The contributions of this thesis are summarised as below.

1. A Risk-based Approach for Interpreting Three Types of Data in the
GDPR: We interpret three types of data states, which are related to data
anonymisation in the GDPR, for data controllers to understand better what kind
of data they are holding. We propose a granular risk-based approach to assess the
robustness of existing data anonymisation techniques.

2. Mining Privacy Risk for Data Anonymisation: We further develop a two-
stage clustering algorithm to identify potential linked records among heterogenous
anonymised datasets, and utilise a privacy risk tree to quantify the risk of pub-
lishing new anonymised datasets from a technical perspective.

3. Differential Private Data Sharing with Blockchain: Realising that differ-
ential privacy is the most secure anonymisation technique for data publishing at
the moment, we combine it with the blockchain technology to provide more utility
for sharing and support transparent and immutable tracking of the privacy budget
allocation. This work equips data controllers with a possible GDPR-compliant
data anonymisation technique.

4. Outsourcing Anonymisation with Blockchain and Homomorphic En-
cryption: We build a data sharing scheme to outsource the differential privacy
mechanism to a decentralised blockchain to eliminate the trust dilemma between
data owners and data controllers, and enhance the privacy of the anonymisation
process. This scheme also alleviates data owners’ overhead of sharing data with
multiple data controllers.

1.5 Thesis Structure

The rest of this thesis is organised as follows. We first provide a detailed interpretation
of data anonymisation and the three types of data corresponding to different levels of
anonymisation under the GDPR context in Chapter 2. In Chapter 3, we introduce our
two-stage privacy risk mining framework. We then present two solutions for data con-
troller: differential private data sharing with blockchain in Chapter 4, and outsourcing
anonymisation with blockchain and homomorphic encryption in Chapter 5, respectively.
In Chapter 6, we conclude this thesis and present future work.



Part I

Analysing the Risk
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Chapter 2

Data Anonymisation Under the
GDPR

In this chapter, we aim to figure out how different types of personal data or non-personal
data introduced in the General Data Protection Regulation (GDPR) could be read in
harmony with lots of existing anonymisation techniques. We offer a granular analysis
of the three types of risks to be taken into account in order to assess the robustness of
sanitisation techniques. The risks include singling out, linkability and inference, with
linkability being split into local, global and domain linkability. We propose a classifi-
cation of data sanitisation techniques and contextual controls in relation to the three
categories of data found in the GDPR. This work is vital for data controllers as it servers
as a cornerstone for them to gain a clearer understanding of the data they are holding
so that the controllers can further decide more suitable actions to protect the data.

2.1 Personal Data in the GDPR

In recent years, the debate about personal data protection has intensified as a result of
increasing demand for consistent and comprehensive protection of personal data leading
to the adoption of new laws.

2.1.1 Changes of the Regulation

The current EU data protection legislation, Data Protection Directive 95/46/EC (DPD) (Di-
rective, 1995), has been replaced by the General Data Protection Regulation (GDPR)
from 25 May 2018, which, being a self-executing norm, is directly applicable in all the
Member States in the European Union. This legislative reform has generated repeated
discussions about its potential impact on business processes and procedures as the GDPR

11
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contains a number of new provisions intended to benefit EU data subjects and comprises
a strengthened arsenal of sanctions, including administrative fines of up to 4% of the
total worldwide annual turnover of the preceding financial year, for non-compliant data
controllers and processors.

One key question is to what extent the GDPR offers better tools than the DPD to frame
or confine data analytics as well as data sharing practice. Addressing this issue requires,
first of all, delineating the scope of data protection law. Second, it necessitates exam-
ining key compliance techniques, such as pseudonymisation, of which the reason is to
enable data controllers to strike an appropriate balance between two distinct regulatory
objectives: personal data protection and data utility maximisation.

2.1.2 The Relationship between Pseudonymisation and Personal Data

Within the new regulation, Articles 2 (2018) and 4 (2018) are starting points in order to
demarcate the material scope of EU data protection law. Under Article 4(1), personal
data means:

any information relating to an identified or identifiable natural person (‘data
subject’); an identifiable natural person is one who can be identified, directly
or indirectly, in particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or to one or more
factors specific to the physical, physiological, genetic, mental, economic, cul-
tural or social identity of that natural person;

Recital 26 (2018) further expands upon the notion of identifiability and appears to draw
a distinction between personal data and anonymous information, with anonymous being
excluded from the scope of the GDPR. Not to be misleading, this key distinction was
already present in the DPD. Nonetheless, the GDPR goes further than the DPD in
that it indirectly introduces a new category of data as a result of Article 4, i.e. data
that has undergone pseudonymisation, which we will name pseudonymised data (Stalla-
Bourdillon and Knight, 2016), to use a shorter expression, although the former is more
descriptive than the latter for it implies that the state of the data is not the only
qualification trigger. Under Article 4(5) pseudonymisation means:

the processing of personal data in such a manner that the personal data
can no longer be attributed to a specific data subject without the use of
additional information, provided that such additional information is kept
separately and is subject to technical and organisational measures to ensure
that the personal data are not attributed to an identified or identifiable
person;
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While the final text of the GDPR does not seem at first glance to create an ad hoc
regime with fewer obligations for data controllers when they deal with psedonymisaed
data, Recital 29 (2018) specifies:

In order to create incentives to apply pseudonymisation when processing
personal data, measures of pseudonymisation should, whilst allowing gen-
eral analysis, be possible within the same controller when that controller has
taken technical and organisational measures necessary to ensure, for the pro-
cessing concerned, that this Regulation is implemented, and that additional
information for attributing the personal data to a specific data subject is
kept separately.

A number of legal scholars have been investigating the contours of personal data under
EU law, and have proposed refined categories, creating on occasion a spectrum of per-
sonal data, more or less complex (El Emam et al., 2013). The classifications take into
account the intactness of personal data (including direct and indirect identifiers (Dale-
nius, 1986)) and legal controls to categorise data. For instance, with masked direct
identifiers and intact indirect identifiers, data is said to become‘protected pseudony-
mous data’ when legal controls are put in place (El Emam et al., 2013). We argue in our
study that these approaches still rely upon a pre-GDPR understanding of ‘pseudonymi-
sation’ which should not be confused with GDPR Article 4 definition and thereby have
not fully derived the implications of the new legal definitions emerging from the GDPR.

Furthermore, Article 11 (2018) of the GDPR is worth mentioning as it seems to treat with
favours a third category of data, which we name Art.11 data for the sake of argument.
Art.11 data under Article 11 of the GDPR, is data so that “the [data] controller is able
to demonstrate that it is not in a position to identify the data subject”. Examining
the GDPR a couple of questions therefore emerges: whether and when pseudonymised
data can become anonymised data and whether and when pseudonymised data can be
deemed to be Art.11 data as well.

2.1.3 Importance of Evaluating Anonymisation Techniques under the
GDPR

Article 29 Data Protection Working Party (Art.29 WP) did provide a comprehen-
sive analysis of data anonymisation techniques in the light of the prescriptions of the
DPD (Article 29 Data Protection Working Party, 2014). For this purpose, Art.29 WP
identified three common risks and tested the robustness of data anonymisation tech-
niques against these risks. However, as this work was done in 2014 against the back-
ground of the DPD and the relationship between these techniques and the data categories
defined in the GDPR has not been analysed yet.
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Therefore, the objective of this chapter is to fill the gap by expressly deriving the im-
plications of the new legal definitions to be found more or less explicitly in the GDPR
in order to enable data controllers and regulators to access the robustness of techniques
and practices used to strike a compromise between personal data protection and data
utility maximisation, as well as to inform the work of researchers, practitioners and data
scientists. Consequently, the main contributions of the work are the followings:

• We offer a granular analysis of the three types of risks to be taken into account
in order to assess the robustness of sanitisation techniques. The risks include
singling out, linkability and inference, with linkability being split into local, global
and domain linkability.

• We propose a classification of data sanitisation techniques and contextual controls
in relation to the three categories of data found in the GDPR.

• We derive criteria for selecting sanitisation techniques and contextual controls,
which data controllers could use to ensure legal compliance as well as regulators
to assess legal compliance.

Structure of the chapter In Section 2, we give a brief overview of the new EU data
protection legal framework, i.e. the GDPR, and of three risks identified by Art. 29
WP. In Section 3, we unfold our risk-based approach for interpreting the three types of
data emerging from the GDPR. The classification of data sanitisation techniques and
contextual controls is undertaken in Section 4, followed by our conclusions in Section 5.

2.2 The Three Types of Data in GDPR

As aforementioned, three types of data seem to emerge from the analysis of the GDPR.
We introduce them in this section and interpret the underlying meanings of them.

2.2.1 The GDPR Definitions

The definitions presented in this section are derived from the GDPR, including Recital
26 for Anonymised data, Article 4 for pseudonymised data, and Article 11 for Art.11
data.

• Anonymised data means data that “does not relate to an identified or identifiable
natural person or to personal data rendered anonymous in such a manner that the
data subject is not or no longer identifiable.”



Chapter 2 Data Anonymisation Under the GDPR 15

• Pseudonymised data means personal data that have processed “in such a man-
ner that the personal data can no longer be attributed to a specific data subject
without the use of additional information, provided that such additional informa-
tion is kept separately and is subject to technical and organisational measures to
ensure that the personal data are not attributed to an identified or identifiable
natural person.”

• Art.11 data means data so that the data controller is “not in a position to identify
the data subject” given such data.

The notions of ‘identified’ and ‘identifiable’ thus appear of paramount importance
to distinguish the different types of data and determine whether a category should be
considered personal data. An individual is usually considered identified if the data can
be linked to a unique real-world identity. The term ‘identifiable’ refers to the capability
to identify an individual, who is not yet identified, but is described in the data in
such a way that if research is conducted using additional information or background
knowledge she can then be identified. This explains why pseudonymised data is still
(at least potentially) considered to be personal data. Recital 26 specifies that “personal
data which have undergone pseudonymisation, which could be attributed to a natural
person by the use of additional information should be considered to be information on
an identifiable natural person.”

While the two concepts of pseudonymised data and Art.11 data overlap, in order to test
the extent to which they actually overlap, it is necessary to start by conceiving them
differently. Besides, that Art.11 does not expressly refer to pseudonymisation.

We therefore suggest that in order to characterise data as pseudonymised data, one has to
determine whether individuals are identifiable once the additional information has been
isolated and separated from the dataset. Furthermore, to determine whether individuals
are identifiable once the additional information has been isolated and separated from
the dataset, only the dataset at stake should be considered. This is why, as it will be
explained below, the concept of pseudonymised data is intimately linked to that of local
linkability (Stalla-Bourdillon and Knight, 2016).

On the other hand, in order to characterise data as Art.11 data, one has to determine
whether a data controller is in a position to identify individuals, i.e. whether individuals
are identifiable given the data controller’s capabilities, which require considering all
the datasets in possession of the data controller; but the data controller’s capabilities
only (therefore to the exclusion of third parties’ capabilities). This is the reason why we
suggest that the concept of Art.11 data is intimately linked to that of domain linkability.

Consequently, following this logic, we argue that to characterise data as pseudonymised
data or Art.11 data, it is not enough to point to the fact that the individuals are not
directly identified within the dataset at stake. As a result, data controllers should not
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be entitled not to comply with Articles 15 to 20 (2018) simply based on the fact that
they have decided not to collect direct identifiers for the creation of the dataset at stake.

2.2.2 Additional Information

As hinted above, the concept of ‘additional information’ is closely related to that of
pseudonymised data. Indeed, it can make data subjects identified or identifiable if com-
bined with pseudonymised data. The GDPR requires it to be kept separately and be
subject to technical and organisational measures. A typical example of additional infor-
mation is the encryption key used for encrypting and decrypting data such as attributes:
the encrypted data thus becomes pseudonymised data when the key is separated and
subject to technical and organisational measures such as access restriction measures.

Two other important concepts related to additional information are that of ‘back-
ground knowledge’ and ‘personal knowledge (Graham, 2012). In order to analyse re-
identification risk properly, it is crucial to draw a distinction between additional infor-
mation, background knowledge and personal knowledge.

As per GDPR Article 4, Additional information, is the information that can be kept
separately from the dataset by technical and organisational measures, such as encryption
key, hash function etc.

We distinguish additional information from background knowledge and personal knowl-
edge. Background knowledge is understood as different in kind from additional infor-
mation as it corresponds to knowledge that is publicly accessible to an average individ-
ual who is deemed reasonably competent to access it, therefore most likely including
the data controller himself. It comprises information accessible through the Web such
as news websites or information found in public profiles of individuals or traditional
newspapers. While this kind of knowledge can potentially have a high impact on re-
identification risks, it cannot be physically separated from a dataset. Therefore, we
exclude it from additional information. However, and this is important, we take it into
account when we analyse the three types of data by acknowledging that the potential
existence of background knowledge makes it necessary to include singling out as a rele-
vant risk for pseudonymised data within the meaning of the GDPR because as a result
of a pseudonymisation process, the data shall not be attributable to an identifiable data
subject as well. The same is true for Art. 11 data.

Personal knowledge is assessed through the means of a subjective test (as opposed to
background knowledge, which is assessed through the means of an objective test) and
varies from one person to another (Graham, 2012). It comprises information that is
not publicly accessible to an average individual who is deemed reasonably competent
to access it, but only to certain individuals because of their special characteristics. For
example, a motivated intruder A has the knowledge that B is currently in hospital, as she
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is B’s neighbour, and she saw that B was picked up by an ambulance. When combined
with anonymised data, this kind of subjective personal knowledge could obviously result
in re-identification. However, for the purposes of this work we assume that the likelihood
that a motivated intruder has relevant personal knowledge is negligible, which partly
depends upon his/her willingness to acquire this relevant personal knowledge and his/her
estimation of the value of the data at stake and thereby the degree of data sensitivity.
We recognise, however, that further sophistication would be needed for scenarios in
which the likelihood that a motivated intruder has relevant personal knowledge is high.
In particular, this would mean considering with care the equivalence of sanitisation
techniques and contextual controls. With this said, we note that Art. 29 WP wrote in
2007 that “ a mere hypothetical possibility to single out the individual is not enough to
consider the person as “identifiable” (Article 29 Data Protection Working Party, 2007).

2.2.3 Direct and Indirect Identifiers

As described in the ISO/TS document, direct identifier is “data that can be used to
identify a person without additional information or with cross-linking through other in-
formation that is in the public domain” (International Organization for Standardization,
2008). Direct identifiers contain explicitly identifying information, such as names and
social security numbers that are uniquely linked to a data subject. In contrast, sets of
attributes which can be combined together to uniquely identify a data subject, are called
indirect identifiers. They include age, gender, zip code, date of birth and other basic
demographic information. No single indirect identifier can identify an individual by
its own; however, the re-identification risks appear when combining indirect identifiers
together, as well as, as aforementioned, when combining records with additional infor-
mation or with background knowledge. Notably, the list of direct and indirect identifiers
can only be derived contextually.

2.2.4 Data Sanitisation Techniques

Data sanitisation techniques process data in a form that aims to prevent re-identification
of data subjects. Randomisation and generalisation are considered as two main families
of sanitisation techniques (Article 29 Data Protection Working Party, 2014). There is
a wide range of techniques including masking techniques, noise addition, permutation,
k-anonymity, l-diversity and differential privacy, etc. Noise addition refers to general
techniques that make data less accurate by adding noise usually bounded by a range,
e.g., [-10, 10]. We differentiate it from differential privacy as the latter offers a more
rigorous guarantee.
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Masking or removal techniques are applied to direct identifiers to make sure the data
subjects are not identified anymore and then additional techniques (including mask-
ing techniques) are then used to further process indirect identifiers. It is true that
k-anonymity, l-diversity, and differential privacy are more commonly described as pri-
vacy models rather than techniques as such. However, as we built upon the Opinion on
Anonymisation Techniques (2014) we use similar terminology to simplify the arguments.

2.2.5 Contextual Controls

Contextual controls comprise three sets of controls. First, legal and organisational con-
trols such as obligations between parties and/or internal policies adopted within one
single entity (one party) aimed at directly reducing re-identification risks, e.g. obli-
gation not to re-identify or not to link. Second, security measures (including legal,
organisational and technical controls) such as data access monitoring and restriction
measures, auditing requirements as well as additional security measures, such as the
monitoring of queries, all of them aimed at ensuring the de facto enforcement of the
first set of controls. Third, legal, organisational and technical controls relating to the
sharing of datasets aimed at ensuring that the first set of legal controls are transferred to
recipients of datasets. They include obligations to share the datasets with the same set
of obligations or an obligation not to share the datasets, as well as technical measures
such as encryption to make sure confidentiality of the data is maintained during the
transfer of the datasets.

These measures are used to balance the strength of data sanitisation techniques with
the degree of data utility. In this sense, they are complementary to data sanitisation
techniques. On the one hand, they reduce residual risks, which remain after implement-
ing data sanitisation techniques; on the other hand, they make it possible to preserve
data utility while protecting the personal data of data subjects.

In practice, the selection of contextual controls depends on specific data sharing scenar-
ios.

2.3 A Risk-based Analysis of the Three Types of Data

In this section, we conceptualise the three types of risks identified by Art.29 WP (2014) to
assess data anonymisation and masking techniques. We refine the concept of linkability
and further specify the definitions of the three categories of data emerging from the
GDPR using a risk-based approach.
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2.3.1 Re-Identification Risks

The re-identification risks relate to ways attackers can identify data subjects within
datasets. Art.29 WP’s Opinion on Anonymisation Technique (Article 29 Data Protection
Working Party, 2014) describes three common risks and, examines the robustness of
data sanitization techniques against those risks. Underlying this risk classification is the
premise that the means test is a tool to “assess whether the anonymisation process is
sufficiently robust” (2014).

• Singling out, which is the “possibility to isolate some or all records which identify
an individual in the dataset.”

• Linkability, which is the “ability to link at least two records concerning the same
data subject or a group of data subjects (either in the same database or in two
different databases).”

• Inference, which is the “possibility to deduce, with significant probability, the
value of an attribute from the values of other attributes.”

In cases in which there is background knowledge, singling out makes an individual
identifiable. The connection between identifiability and linkability or inference is less
straightforward. Adopting a restrictive approach one could try to argue that if back-
ground knowledge exists so that it is known that an individual belongs to a grouping in
a dataset, the inferred attribute(s) combined with background knowledge could lead to
identification or at the very least disclosure of (potentially sensitive) information relating
to an individual.

Art.29 WP categorised data sanitisation techniques into “randomisation”, “generali-
sation” and “masking direct identifiers” (Article 29 Data Protection Working Party,
2014), where randomisation and generalisation are viewed as methods of anonymisation
but masking direct identifiers or pseudonymisation (to use the words of Art.29 WP)
as a security measure. From now on it should be clear that the GDPR definition of
pseudonymisation is more restrictive than merely masking direct identifiers. Masking
direct identifiers is conceived as a security measure by Art.29 WP because it does not
mitigate the three risks aforementioned; or rather, it simply removes/masks the direct
identifiers of data subjects.

“Noise addition”, “permutation” and “differential privacy” are included within the ran-
domisation group as they alter the veracity of data. More specifically, noise addition
and permutation are considered robust against the linkability and inference risks, but
fail to prevent the singling out risk. Differential privacy is able to prevent all the
risks but queries must be monitored and tracked when multiple queries are allowed
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on a single dataset. As regards the generalisation category, “aggregation” and “k-
anonymity” (Sweeney, 2002) are considered robust against singling out, but linkability
and inference risks are still in presence. “l-diversity” (Machanavajjhala et al., 2007)
is stronger than aggregation and k-anonymity as it prevents both the singling out and
inference risks.

Although Art.29 WP has provided important insights for the selection of appropriate
data sanitisation techniques, which are relevant in the context of personal data sharing,
these techniques ought to be examined in the light of the GDPR. To be clear, the purpose
of this work is not to question the conceptualisation of re-identification risks undertaken
by Art.29 WP, but to deduce its implications when interpreting the GDPR in context.

2.3.2 Local, Global and Domain Linkability

Analysing in a more granular fashion the linkability risk defined by Art.29 WP, it is pos-
sible to draw a distinction between three scenarios. The first scenario focuses on a single
dataset, which contains multiple records about the same data subject. An attacker iden-
tifies the data subject by linking these records using some additional information. In the
second scenario, the records of a data subject are included in more than one datasets,
but these datasets are held within one entity. An attacker links the records of a data
subject if she can access all the datasets inside the entity, e.g. insider threat (Theohari-
dou et al., 2005). The third scenario also involves more than one datasets, but these
datasets are not necessarily held within one entity. Based on these three scenarios, we
distinguish between three types of linkability risks:

• Local Linkability, which is the ability to link records that correspond to the same
data subject within the same dataset.

• Domain Linkability, which is the ability to link records that correspond to the
same data subject in two or more datasets which are in the possession of the data
controller.

• Global Linkability, which is the ability to link records that correspond to the
same data subject in any two or more datasets.

Based on this granular analysis of the linkability risk and assuming the concept of
identifiability is used consistently across the GDPR, we suggest one way to derive the
main characteristics of anonymised, pseudonymised and Art. 11 data within the meaning
of the GDPR in the next section.
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2.3.3 Privacy Risks Regarding Three Types of Data

2.3.3.1 Anonymised Data

Anonymised data, according to the GDPR definition, is a state of data for which data
subjects are not identified nor identifiable anymore, taking into account all the means
reasonably likely to be used by the data controller as well as third parties. While strictly
speaking the legal test to be found in Recital 26 of the GDPR does not mention all of
the three risks aforementioned (i.e. singling out, linkability and inference), we assume
for the purposes of this work that for anonymised data to be characterised, singling
out, local linkability, domain linkability, global linkability and inference should be taken
into account. As aforementioned, whether the three reidentification risks should be re-
conceptualised is a moot point at this stage. Suffice it note that not all singling out,
linkability and inference practices lead to identifiability and identification. A case-by-
case approach is therefore needed.

2.3.3.2 Pseudonymised Data

Pseudonymised data, being the outcome of the pseudonymisation process defined by the
GDPR in its Article 4, is a state of data for which data subjects can no longer be identi-
fied or identifiable when examining the dataset at stake (and only the dataset at stake).
Nevertheless, the foregoing holds true on the condition that data controllers isolate the
additional information and put in place “technical and organisational measures to ensure
that the personal data are not attributed to an identified or identifiable natural person.”

As a result, it appears that pseudonymisation within the meaning of the GDPR is not
tantamount to masking direct identifiers. In addition, although a number of studies
stress the importance of legal controls (El Emam et al., 2013), there are different routes
to pseudonymised data depending upon the robustness of the sanitisation technique
implemented, as it is explained below.

One important element of the GDPR definition of pseudonymisation is the concept of
additional information, which can identify data subjects if combined with the dataset.
The definition specifies that such additional information is kept separately and safe-
guarded, so that the risks relating to the additional information can be excluded. This
seems to suggest that in this context, the notion of identifiability should only relate to
the dataset at stake. Based on this analysis, we define pseudonymised data as a data
state for which the risks of singling out, local linkability and inference should be mit-
igated. At this stage, the domain and global linkability risks are not relevant and the
data controller could for example be in possession of other types of datasets.

In order to mitigate the singling out, local linkability and inference risks at the same
time, data sanitisation techniques must be selected and implemented on the dataset. As
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aforementioned, Art. 29 WP has examined several sanitisation techniques in relation to
re-identification risks (Article 29 Data Protection Working Party, 2014). We build on
the upshot of the Opinion on Anonymisation Techniques, and find that K-anonymity,
L-diversity and other stronger techniques can prevent these risks, but masking direct
identifiers, noise addition, permutation alone is insufficient to reasonably mitigate the
singling out, local linkability and inference risks.

The example below illustrates the mitigation of these three risks using k-anonymity.

Example. Table 2.1 shows a sanitised dataset with k-anonymity guarantee (k=4) re-
leased by hospital A in May. Suppose an attacker obtains relevant background knowledge
from a news website that a famous actor Bob was recently sent to hospital A and that by
checking the time it can be deduced that Bob is in the dataset at stake. Suppose as well
that the attacker has no access to additional information (e.g. the raw dataset). Since
each group of this dataset has at least four records sharing the same non-sensitive at-
tribute values, the attacker cannot distinguish his target Bob from other records. This
prevents the risks of singling out and local linkability. Moreover, the attacker is not
able to infer the sensitive attribute of Bob because she is not sure to which group Bob
belongs. Therefore, this dataset is pseudonymised within the meaning of the GDPR.

Table 2.1: An example of Pseudonymised data using k-anonymity (k=4)
Non-Sensitive Sensitive
Zip code Age Nationality Diagnosis

1 250** <30 * Cancer
2 250** <30 * Viral Infection
3 250** <30 * AIDS
4 250** <30 * Viral Infection
5 250** 3* * Cancer
6 250** 3* * Flu
7 250** 3* * Cancer
8 250** 3* * Flu

2.3.3.3 Art.11 Data

Art.11 data, by definition, focuses on the ability of a data controller to identify data
subjects to the exclusion of third parties. More specifically, the data controller should be
able to demonstrate that she is “not in a position to identify the data subject” (Art. 11,
General Data Protection Regulation, 2018). First, this implies that direct identifiers (e.g.
names, social security number, etc.) have been removed or have never been collected.
In other words, Art.11 data is either de-identified by a certain process or originally non-
identifying. Second, “not being in a position to identify the data subject” should also
imply that the combination of indirect identifiers with relevant background knowledge
accessible to the data controller does not lead to identification. There exist also situations
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where data controller only collects indirect identifiers but a very rich of list of indirect
identifiers for which arguably, and this is crucial, no accessible relevant background
knowledge exists and the data controller is not in possession of other datasets which
could be linked to the first one, e.g. dynamic IP addresses, browsed websites and search
terms, transactions, etc. in order to create profiles and ultimately make decisions about
individuals. We suggest that while an approach purely based on a re-identification
risk approach would lead to exempting data controller from Article 15 to 20 in these
situations, this would not necessarily be consistent with the spirit of the GDPR, which
aims to strengthen the protection of data subjects in cases of profiling. As a result, in
order to determine whether data is personal data and the full data protection regime
applies two scenarios must be taken into account: 1) whether re-identification risks have
been appropriately mitigated and 2) whether profiling and decisions about individuals
are made.

Importantly, Art.11 definition requires that to determine whether the data is Art.11
data, all the means of the data controller should be considered to the exclusion of
third parties’ means. As a result, Art.11 data can be interpreted as a state of data for
which there are no risks of singling out, domain linkability and inference. The protection
applied to Art.11 data is therefore stronger than the protection applied to pseudonymised
data because the former requires mitigating the domain linkability rather than local
linkability risk. This does not mean that pseudonymised data cannot be transformed
into Art.11 data. The example below illustrates the difference between Art. 11 and
pseudonymised data.

Example. Suppose two hospitals H1 and H2 located in the same city publish patient
data frequently, e.g., weekly. Table 2.2 is the dataset sanitised and published by H1

using k-anonymity (k = 4). The dataset achieves the state of pseudonymised data as
no record in the table can be attributed to a particular data subject without the use
of additional information. Furthermore, H1 claims that it is not able to identify any
data subject using any other information within the domain/access of H1. This other
information could be the datasets previously published by H1 and H2. One week later,
H2 publishes its own patient dataset. It sanitises the data using k-anonymity (k = 6)
and achieves the state of pseudonymised data, as shown in Table 2.3. Now H2 wants
to determine whether the dataset (Table 2.3 is also Art. 11 data. H2 is in possession
of other information (different from the concept of additional information) comprising
Table 2.2, and background knowledge deriving from a news website (which has been read
by many people in the city) saying that a 28-year-old celebrity living in zip code 25013
has been sent to both H1 and H2 to seek a cure for his illness. H2 thus goes through the
medical records of each patient. With the other information, H2 knows that the celebrity
must be one of the four records in Table 2.2 and one of the six records in Table 2.3. H2

is therefore able to identify the celebrity by combining Table 2.2 and Table 2.3, because
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only one patient was diagnosed with the disease that appears in both tables, i.e., cancer.
As a result, H2 can be sure that the celebrity matches the first record of both tables,
and the celebrity has cancer. Therefore, Table 2.3 comprises pseudonymised data but
not necessarily Art. 11 data.

Table 2.2: An example of 4-anonymous patient data from hospital H1

Non-Sensitive Sensitive
Zip code Age B_city Diagnosis

1 250** ≤ 30 * Cancer
2 250** ≤ 30 * Viral Infection
3 250** ≤ 30 * AIDS
4 250** ≤ 30 * Viral Infection
5 250** 3* * AIDS
6 250** 3* * Heart Disease
7 250** 3* * Heart Disease
8 250** 3* * Viral Infection
9 250** ≥ 40 * Cancer
10 250** ≥ 40 * Cancer
11 250** ≥ 40 * Flu
12 250** ≥ 40 * Flu

Table 2.3: An example of 6-anonymous patient data from hospital H2

Non-Sensitive Sensitive
Zip code Age B_city Diagnosis

1 250** ≤ 35 * Cancer
2 250** ≤ 35 * Tuberculosis
3 250** ≤ 35 * Heart Disease
4 250** ≤ 35 * Heart Disease
5 250** ≤ 35 * Flu
6 250** ≤ 35 * Flu
7 250** ≥ 35 * Heart Disease
8 250** ≥ 35 * Viral Infection
9 250** ≥ 35 * Flu
10 250** ≥ 35 * Flu
11 250** ≥ 35 * Flu
12 250** ≥ 35 * Flu

We summarise the three types of data based on the risks aforementioned in Table 2.4.
Domain and global linkability are not applicable for pseudonymised data, which are
denoted as “N/A”. The inapplicability is due to the definition of pseudonymised data.
When considering the risks of pseudonymised data, only the dataset at stake is consid-
ered. The definition specifies that additional information is kept separately and safe-
guarded. So the risks relating to the additional datasets in the controller’s domain or
globally available datasets can be excluded. Therefore, the domain and global linkability
risks are not relevant to pseudonymised data.



Chapter 2 Data Anonymisation Under the GDPR 25

Similarly, global linkability is not applicable for Art.11 data. The definition of Art.11
data specifies that the scope of the datasets needed to be considered is the datasets that
are in possession of the data controller (which is what the ”domain” means), excluding
those globally available datasets. Therefore, global linkability is not relevant to Art.11
data.

Table 2.4: Risk-based interpretation for three types of data in the GDPR
Singling
out

Local
linkability

Domain
linkability

Global
linkability Inference

Anonymised data 7 7 7 7 7

Art.11 data 7 7 7 N/A 7

Pseudonymised data 7 7 N/A N/A 7

2.4 The GDPR in Practice: Sanitisation Techniques and
Contextual Controls

We now examine the robustness of practical data sanitisation techniques against the five
types of re-identification risks. Taking into account data sharing contexts, we presents a
hybrid assessment comprising both contextual controls and data sanitisation techniques.

2.4.1 Effectiveness of Data Sanitisation Techniques

We build upon the table of data sanitisation techniques presented by Art. 29 WP (2014)
by splitting the linkability risk into local and global linkability. At this stage, domain
linkability is not explicitly shown in the table as it is included in the global linkability.
The table below summarises the results.

Table 2.5: Robustness of data sanitisation techniques against privacy risks
Is singling out
still a risk?

Is local linkability
still a risk?

Is domain/global
linkability still a risk

Is inference
still a risk

Masking direct
identifiers Yes Yes Yes Yes

Noise Addition Yes Yes Yes Yes
Permutation Yes Yes Yes Yes
Masking indirect
identifiers Yes Yes Yes Yes

Aggregation or
K-anonymity No No Yes Yes

L-diversity No No Yes No
Differential privacy May not May not May not May not

Note that domain linkability is in the same column as global linkability, because for
both situations external datasets need to be taken into account and the listed data
sanitisation techniques are not able to distinguish between different types of domains.
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While one should revert to explanations provided by Art. 29 WP (2014) for the analysis
of the singling out and inference risks, we then discuss the robustness of sanitisation
techniques in relation to local, domain and global linkability risks.

Masking direct identifiers. Applying the techniques, such as encryption, hashing
and tokenisation on direct identifiers, can reduce linkability between a record and the
original identity of a data subject (e.g., name). However, it is still possible to single out
data subjects’ records with the pseudonymised attributes. If the same pseudonymised
attribute is used for the same data subject, then records in one or more datasets can be
linked together. If different pseudonymised attributes are used for the same data subject
and there is at least one common attribute between records, it is still possible to link
records using other attributes. Therefore, the local, domain and global linkability risks
exist in both situations.

Noise Addition. This technique adds noise to attributes, making the values of such
attributes inaccurate or less precise. However, this technique cannot mitigate local,
domain and global linkability risks. Indeed, this technique only reduces the reliability of
linking records to data subjects as the values of attributes are more ambiguous. Records
may still be linked using inaccurate attribute values and linking those records together
will further cause the sensitive attributes of the record being inferred.

Permutation. Permutation is a technique that consists in shuffling values of attributes
within a dataset. More specifically, it swaps values of attributes among different records.
It can be considered as a special type of noise addition though it retains the range and
distribution of the values (2014). Therefore, it is still vulnerable to the local, domain and
global linkability risks based on the shuffled values of attributes, although such linking
may be inaccurate as an attribute value may be attached to a different subject.

Aggregation or K-anonymity. As the main technique of the generalisation family,
aggregation and K-anonymity are applied to prevent singling out. They group a data
subject with at least k − 1 other individuals who share a same set of attribute val-
ues (Sweeney, 2002). These techniques are able to prevent local linkability, because the
probability of linking two records to the same data subject is no more than 1/k. How-
ever, they are not able to mitigate the domain and global linkability risks. As shown in
our example of the two hospitals, records relating to the celebrity can be linked together
via an intersection attack (Ganta, Kasiviswanathan, and Smith, 2008).

L-diversity. Compared with K-anonymity, the significant improvement of L-diversity
is that it ensures the sensitive attribute in each equivalence class (i.e., the k group)
has at least L different values (2007). Thus, it prevents the risk of inference to the
probability of no more than 1/L. However, like K-anonymity, it cannot prevent domain
and global linkability because it is still possible to link records together if they have the
same sensitive attribute values.
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Differential privacy. Differential privacy is one of the randomisation techniques that
can ensure protection in a mathematical way by adding a certain amount of random
noise to the outcome of queries (Dwork, 2008). Differential privacy means that it is
not possible to determine whether a data subject is included in a dataset given the
query outcome. In the situation where multiple queries on one or more datasets are
allowed, the queries must however be tracked and the noise should be tuned accordingly
to ensure attackers cannot infer more information based on the outcomes of multiple
queries. Therefore, “May not” is assigned for the risks depending on whether queries
are tracked.

Masking indirect identifiers. As described before, encryption, hashing and tokenisa-
tion are the techniques for masking direct identifiers. They can also be implemented on
indirect identifiers. We observe that these techniques are not able to mitigate the risks
of local, domain and global linkability. Taking a dataset with three quasi-identifiers -
gender, address and date of birth, for example, a hash function encrypts the combina-
tion of the three quasi-identifiers. If there are two records in the dataset (or different
datasets) corresponding to a same data subject, then they will have the same hashed
values for these three attributes.

We now combine our risk-based interpretation of three types of data in Table 2.4 with
the foregoing analysis of the robustness of data sanitisation techniques in Table 2.5, in
order to classify the output of different techniques into three types of data shown in
Table 2.6.

Table 2.6: The results of data sanitisation techniques regarding three types of data

Techniques Pseudonymised
data Art.11 data Anonymised

data
Masking direct
identifiers Not Not Not

Noise Addition Not Not Not
Permutation Not Not Not
Masking indirect
identifiers Not Not Not

Aggregation or
K-anonymity Not Not Not

L-diversity Yes Not Not
Differential privacy Maybe Maybe Maybe

As the first four techniques are not able to mitigate the risk of singling out, the outcome
of these four techniques cannot be pseudonymised data, Art. 11 data, or anonymised
data. For k-anonymity, it cannot produce any of these three data types because it only
mitigates singling out and local linkability to the exclusion of inference when additional
information is isolated and safeguarded. Notably, background knowledge is taken into
account. Data after implementing l-diversity is pseudonymised data because it can
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mitigate singling out, local linkability, and inference, but not domain linkability or
global linkability. As for Art. 11 data, l-diversity does not mitigate against the fact
that data controllers have within their domain other datasets, which can be used to link
records together. Hence, “Not” is assigned. “Maybe” is assigned to differential privacy
as it can guarantee Art. 11 data, pseudonymised data or anonymised data if a single
query on one dataset is allowed or multiple queries are tracked. The uncertainty depends
on whether the technique is appropriately implemented with control over the privacy
budget consumption.

So far, we have classified data sanitisation techniques with respect to the three types
of data. It is worth mentioning that data sanitisation techniques are often combined in
practice. Table 2.6 derives the sanitisation outcome in situations where two or more
techniques are implemented. For example, (k, l) - anonymity (Byun, T. Li, et al., 2009)
combining k-anonymity and l-diversity, ensures that each equivalent class has at least k
records, and their sensitive attributes have at least l different values. (k, l) - anonymity
guarantees that there are no risks of singling out, local linkability and inference.

2.4.2 Improving Data Utility with Contextual Controls

Maintaining an appropriate balance between data utility and data protection is not an
easy task for data controllers in practice. As discussed in Section 2.4.1, K-anonymity,
L-diversity and differential privacy are the sole potential techniques that can render data
pseudonymised, Art.11 or anonymised. However, these techniques could introduce unde-
sired distortion on data, making data less useful for data analysis. Contextual controls
are thus crucial to complement data sanitisation techniques and reduce risks (Leibniz
Institute for Educational Trajectories (LIfBi), 2009). Obviously, the strength of the
contextual control to add should depend upon the type of data sharing scenarios at
hand.

In order to take into account the variety of data sharing scenarios, we distinguish between
two types of contextual legal controls: “inter-party” and “internal controls”. The former
category comprises obligations between parties (i.e. data controller/data releaser and
data recipient), and the latter comprises internal policies adopted within one entity, i.e.
one party. As shown in Table 2.7, the top rows of controls are meant to directly address
the re-identification risks. The middle rows list the controls used to ensure that the first
set of controls are actually implemented. More specially, security measures are measures
that relate to location of storage, access to data, training of staff and enforcement of
internal policies. Additional security measures are associated with differential privacy
only and are required to guarantee differential privacy mitigates all the risks. The third
set of controls is essential when data are shared in order to make sure recipients of
datasets put in place the necessary controls to maintain the dataset within the dataset
within its initial category: depending upon the sensitivity of the data they take the form
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of obligations/policies not to share the data or an obligation to share the data alike, i.e.
with the same control. Technical measures, such as encryption, can complement these
obligations to make sure confidentiality of the data is maintained during the transfer of
the dataset to the recipient.

Table 2.7: Inter-party (obligation) and Internal (policies) controls

1. Mitigating risks
directly

Singling out risk
àObligation/Policy to isolate info to de-mask directly identifiers
with security measures in relation to location of storage,
access to formula, training of staff and enforcement of rules

àObligation/Policy not to identify from indirect identifiers
Local linkability risk
àObligation/Policy not to link records in the same dataset
Domain linkability risk
àObligation/Policy not to link with other datasets within
the same domain
Global linkability risk
àObligation/Policy not to link with other datasets
Inference risk
àObligation/Policy not to infer attributes from existing attributes

2. Enforcing
the
mitigation

Security measures
àObligation/Policy to implement security measures in relation
to location of storage, access to dataset, training of staff and
enforcement of internal policy rules
Additional security measures
àObligation/Policy to monitor queries and query outcome after
applying differential privacy

3. Transferring
controls

àObligation/Policy not to re-share or to re-share with the same set
of obligations

àObligation to share data in an encrypted state, e.g. through an
encrypted communication channel

It is now time to combine data sanitisation techniques and contextual controls to de-
termine when and how it is possible to maintain data utility. This is the objective
of Tables 2.8 and 2.9. Two types of actors are distinguished to take into account the
implications of data sharing scenarios: data collectors, who collect original data and
transform the data in certain data types before sharing the data; and data recipients,
who receive processed data and may have to implement controls in order to ensure the
data remain within the desired data category. Table 2.8 only concerns data collectors.
This is why no inter-party controls are considered.

In the first row of the table, data fall into the category of pseudonymised data when
the singling out, local linkability and inference risks have been mitigated. When imple-
menting a weak sanitisation technique only, i.e. masking direct identifiers, those risks
still persist as explained above and contextual controls are therefore needed. Stronger
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Table 2.8: Sanitisation options when data are in the hands of data collectors
Desired data
type Sanitisation options

Pseudonymised
data

àMasking direct identifiers + Policies on singling out, local linkability and
inference risks + Security measures

àK-anonymity + Policy on inference risk + Security measures

àL-diversity + Security measures

Art. 11 data

àMasking direct identifiers/Collecting only indirect identifiers + Policies
on singling out, domain linkability risks + Security measures

àK-anonymity + Policies on inference and domain linkability risks + Security
measures

àL-diversity + Policy on domain linkability risk + Security measures

Anonymised
data

àMasking direct identifiers + Policies on singling out, local, global linkability and
inference risks + Security measures

àK-anonymity + Policies on inference and global linkability risks + Security
measures

àL-diversity + Policies on global linkability risk + Security measures

àDifferential privacy + Security measures + Additional security measures

data sanitisation techniques, such as K-anonymity and L-diversity, mitigate more risks,
which explains why fewer and/or weaker contextual controls are needed. For instance,
when L-diversity is implemented, only security measures are required for achieving
pseudonymised data. In the end the selection of data sanitisation techniques and con-
textual controls should depend on the type of data sharing scenario pursued (closed or
open) given both the sensitivity and the utility of the data. Data in the second category,
i.e. Art. 11 data, implies that the data controller is able to demonstrate that she is
not in a position to identify data subjects. The listed options ensure that there are
no singling out, domain linkability and inference risks. Data in the final category is
anonymised data, which require the strongest protection, i.e. that no singling out, local
and global linkability and inference risks exist. Differential privacy is one of the options,
and only security measures are required when differential privacy is implemented.

Table 2.9 concerns data recipients. As for data recipients who receive processed data,
they should take into account (i) the data sanitisation techniques that have been imple-
mented on the received data, and (ii) the obligations imposed by data releasers.
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Table 2.9: Sanitisation options when data are in the hands of data recipients

Desired data type

Sanitisation
techniques
implemented
on received
data

Obligations imposed
upon data recipients

Sanitisation options

Pseudonymised
data

Masking direct
identifiers

Obligations on singling
out, local linkability
and inference risks +
obligation on
implementing security
measures

àPolicies on singling out,
local linkability and
inference risks + Security
measures

àK-anonymity + Policy on
inference risk + Security
measures

àL-diversity + Security
measures

K-anonymity

Obligation on inference
risk + obligation on
implementing security
measures

àSecurity measures

àL-diversity + Security
measures

L-diversity
Obligation on
implementing security
measures

àSecurity measures

Art. 11 data

Masking direct
identifiers

Obligations on singling
out, inference, local and
domain linkability risks
+ obligation on
implementing security
measures

àPolicies on singling out,
inference, local and
domain linkability risks +
Security measures

àK-anonymity + Policies
on inference, domain
linkability risks +
Security measures

àL-diversity + Policy on
domain linkability risk +
Security measures
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K-anonymity

Obligations on
inference and domain
linkability risks +
obligation on
implementing security
measures

àPolicies on inference and
domain linkability risks +
Security measures

àL-diversity + Policy on
domain linkability risk +
Security measures

L-diversity

Obligation on domain
linkability risk +
obligation on
implementing security
measures

àPolicy on domain
linkability risk + Security
measures

Anonymised data

Masking direct
identifiers

Obligations on singling
out, local, global
linkability and
inference risks +
obligation on
implementing security
measures

àolicies on singling out,
local, global linkability
and inference risks +
Security measures

àK-anonymity + Policies
on inference and global
linkability risks +
Security measures

àL-diversity + Policy on
global linkability risk +
Security measures

àDifferential privacy +
Security measures +
Additional security
measures
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K-anonymity

Obligations on
inference and global
linkability risks +
obligation on
implementing security
measures

àPolicies on global
linkability and inference
risks + Security measures

àL-diversity + Policy on
global linkability risk +
Security measures

àDifferential privacy +
Security measures +
Additional security
measures

L-diversity

Obligation on global
linkability risk +
obligation on
implementing security
measures

àPolicy on global
linkability risk + Security
measures

àDifferential privacy +
Security measures +
Additional security
measures

Differential
privacy

Obligation on
implementing security
measures

àSecurity measures +
Additional security
measures

Table 2.9 provides a number of sanitisation options that data recipients can select to
meet their data protection and utility requirements. We take pseudonymised data as an
example. Suppose a data recipient receives data that were processed with k-anonymity
techniques and she aims to keep the data in a pseudonymised state. The data recipient
has thus two options. Either she does not change the data and simply adopt policies and
security measures; or she further processes the data with l-diversity, and adopt different
types of policies as well as security measures. Another consideration is worth mentioning.
If the data collector keeps the original raw dataset, the original raw dataset should be
conceived as falling within the category of additional information for the purposes of
characterising personal data and within the category of the data controller’s domain for
the purposes of characterising Art. 11 data. As regards anonymised data, Art. 29 WP
seems to suggest that as long as the raw dataset is not destroyed the sanitised dataset
cannot be characterised as anonymised data (2014). Applying a risk-based approach of
the type developed in this paper would lead to the opposite result. This said, and this
is essential, this would not mean that the data controller transforming and releasing
the raw dataset into anonymised data would not be subject to any duty anymore. It
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would actually make sense to impose upon the data controller a duty to make sure
recipients of the dataset put in place the necessary contextual controls. This duty could
be performed by imposing upon recipients an obligation not to share the dataset or to
share the dataset alike, depending upon data sensitiveness and data utility requirements.
Ultimately, the data controller would also be responsible for choosing the appropriate
mix of sanitisation techniques and contextual controls as the anonymisation process as
such is still a processing activity governed by the GDPR. Data controllers could thus be
required to monitor best practices in the field even after the release of the anonymised
data.

Finally it should be added that the foregoing analysis implies a relativist approach to
data protection law, which would require determining the status of a dataset on a case-
by-case basis and thereby for each specific data sharing scenario.

2.4.3 Improving Data Utility with Dynamic Sanitisation Techniques
and Contextual Controls

Re-identification risks are not static and evolve over time. This should mean that data
controllers should regularly assess these risks and take appropriate measures when their
increase is significant.

Notably, adapting sanitisation techniques and contextual controls over time can help
reduce re-identification risks. At least one dynamic sanitisation technique is worth men-
tioning here: changing pseudonyms over time for each use or each type of use as a way
to mitigate linkability (Hintze and LaFever, 2017). Besides, techniques like k-anonymity
and l-diversity can also be conceived as dynamic techniques as deploying k or l on the
same dataset for new recipients can provide stronger protection when the data controller
observes that re-identification risks increase.

At the same time, data recipients should be aware of the limits imposed upon the
use of the data, even if the data is characterised as anonymised. This is a logical
counterpart to any risk-based approach and necessarily implies that data controllers
and data recipients are in continuous direct contact, at least when differential privacy is
not opted for. Indeed, contextual controls put in place for mitigating risks directly (in
order to preserve data utility) could be coupled with confidentiality obligations and/or
confidentiality policy, be it relative (i.e. formulated as an obligation to share alike) or
absolute (i.e. formulated as a prohibition to share). Importantly, taking confidentiality
obligations seriously would then make it possible to then assess the likelihood of the
singling out, linkability and inference risks leading to re-identification and could make
certain types of singling out, linking and inferring practices possible, as long as the
purpose of the processing is not to reidentify data subjects and there is not a reasonable
likelihood that the processing will lead to reidentification. It is true, nevertheless that
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the choice of confidentiality obligations coupled with weak sanitisation techniques can
prove problematic if datasets are shared with multiple parties, even if each receiving
party agrees to be bound by confidentiality obligations and adopt internal policies for
this purpose. Obviously, access restrictions techniques and policies are a crucial means
to make sure confidentiality obligations and policies are performed and/or implemented
in practice.

Notably, while in the Breyer case of 2016 the CJEU interpreting the notion of “additional
data which is necessary in order to identify the user of a website” considered the informa-
tion held by the user’s internet access provider, the CJEU recognised the importance of
legal means in order to characterise personal data (2016). We suggest contractual obli-
gations should be taken seriously into consideration in particular when they are backed
up by technical measures such as measures to restrict access and dynamic measures to
mitigate linkability.

2.5 Conclusion

The purpose of this study was to test the possibility of interpreting the GDPR and
Art. 29 WP’s Opinion on Anonymisation Techniques together, assuming the concept of
identifiability has two legs (identified and identifiable), the three risks of singling out,
linkability and inference are relevant for determining whether an individual is identifi-
able and the concept of identifiability is used consistently across the GDPR. On the basis
of an interdisciplinary methodology, this study therefore builds a common terminology
to describe different data states and derive the meaning of key concepts emerging from
the GDPR: anonymised data, pseudonymised data and Art. 11 data. It then unfolds a
risk-based approach, which is suggested to be compatible with the GDPR, by combining
data sanitisation techniques and contextual controls in an attempt to effectively balance
data utility and data protection requirements. The proposed approach relies upon a
granular analysis of re-identification risks expanding upon the threefold distinction sug-
gested by Art. 29 WP in its Opinion on Anonymisation Techniques. It thus starts from
the three common reidentification risks listed as relevant by Art. 29 WP, i.e. singling
out, linkability and inference and further distinguishes between local, domain and global
linkability to capture the key concepts of additional information and pseudonymisation
introduced in the GDPR and comprehend the domain of Article 11 as well as the im-
plications of Recital 26. Consequently, the study aims to make it clear that even if a
restrictive approach to re-identification is assumed, the GDPR makes the deployment
of a risk-based approach possible: such an approach implies the combination of both
contextual controls and sanitisation techniques and thereby the adoption of a relativist
approach to data protection law. Among contextual controls, confidentiality obligations
are crucial in order to reasonably mitigate re-identification risks. In Table 2.8 and 2.9,
we claim that differential privacy combined with additional security measures can be
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used to sanitise data to an “anonymised” level, where additional security measures are
required to guarantee differential privacy mitigates all the risks. The requirements are
obligations for data controllers from a legal perspective. In Chapter 4 and 5, we propose
technical solutions to explain what kinds of additional security measures can be deployed
and prove that the combination does work. 1

1The full version of this paper can be accessed at https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3034261

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3034261
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3034261


Chapter 3

Mining Privacy Risk for Data
Anonymisation

In this Chapter, we expand the work in Chapter 2 and focus on solving the problem of
mining privacy risk from a technical perspective aiming to help data controllers better as-
sess the risk of data publishing. We consider the dynamic context in which heterogenous
and homogenous datasets containing overlapping individuals are released continuously,
and thus present possibilities for linking those data subjects. We develop a two-stage
clustering framework. The first stage is to identify the global linkability among datasets
through their common attributes; the second is to capture the local linkability among
anonymised records via overlapped attribute values. The two types of linkability are
used to estimate the privacy risk through a privacy risk tree. Our experiments on ten
UCI datasets demonstrate the accuracy and efficiency of the proposed framework in
detecting record linkage. The main target audience of this framework would be data
controllers with sensitive datasets to release on a regular basis in the data publishing
phase.

3.1 Background of Privacy Risk Assessment

3.1.1 Privacy Risk Mining in Dynamic Data Publishing

Privacy preserving data publishing has been broadly studied in recent years. Although
a considerable number of techniques, such as k-anonymity (Samarati, 2001; Sweeney,
2002), l-diversity (Machanavajjhala et al., 2007) and t-closeness (N. Li, T. Li, and
Venkatasubramanian, 2007) have provided valuable solutions that render data secure
to publish, these models are limited to single data release (i.e. anonymisation is imple-
mented on one dataset at stake). While this may be acceptable in an isolated sharing
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environment, it remains a critical concern in the current big data era, when heteroge-
neous datasets (i.e. datasets about different topics, such as criminal data and patient
data which may contain some overlapping individuals) or homogenous but time variant
datasets (Byun, T. Li, et al., 2009) (i.e. a new dataset is generated by augmenting
new records to previous datasets) are released regularly. Such dynamic data publishing
context calls into question the security of current static anonymisation techniques, es-
pecially the concern of linking records corresponding to the same data subjects in these
datasets to re-identify the person.

Privacy risk assessment has been increasingly promoted by researchers as well as regula-
tions, such as the EU General Data Protection Regulation (GDPR) (Commission, 2016)
due to the growing public sensitivity to privacy protection. Although risk assessment
methodologies are helpful in identifying system vulnerabilities and suggesting best prac-
tice to mitigate risks, there is a lack of technical solutions for detecting re-identification
risks, especially in dynamic data publishing contexts. This work advocates a more fo-
cused approach based on estimating the linkability between records and taking into
account heterogeneous and homogenous datasets published previously. We suggest that
using a ‘distance’ between datasets and records, we can capture such linkability and
thus characterise the potential relation between data.

In this chapter, we propose a two-stage privacy risk mining framework. We harness the
power of machine learning to formalise the re-identification analysis as an unsupervised
clustering problem. More specifically, our approach clusters potentially linked datasets
and records in corresponding groups: a k-means algorithm is chosen to model the topics
of datasets and classify datasets by topics; a k-members algorithm is deployed to analyse
the similarities between different records within each topic-based cluster. To evaluate
the effectiveness of the framework, our experiments with 10 UCI datasets explore the
selection of parameters, and how they affect the accuracy of identifying linked datasets
and records.

The rest of the chapter discusses the notions of global and local linkability, and their
calculation through machine learning algorithms. It subsequently illustrates how these
two types of linkability are integrated to estimate the privacy risks using a privacy risk
tree, and presents the experimental results. Finally, we conclude the work and discuss
the potential improvements for privacy risk assessment in dynamic data publishing.

3.1.2 Related Work

Record linkage analysis (Christen, 2012) is the most relevant to the present work. It
looks at how to recognise and match records that are associated with the same real-world
individuals or objects from different datasets. However, most record linkage techniques



Chapter 3 Mining Privacy Risk for Data Anonymisation 39

work on the detection of linkage from original datasets, which are not processed by any
anonymisation techniques.

The study by Byun et al. (Byun, T. Li, et al., 2009) investigates the record linkage in
the context of incremental data dissemination where the same data may be anonymised
and released several times. Unlike our problem, these homogenous records have the same
data structure and can be directly compared to discover the linkage between records.
Abril et al. (Abril, Navarro-Arribas, and Torra, 2012) propose to use record linkage for
estimating the disclosure risk of anonymised data. However, this proposal considers the
worst case scenario where records matching only happens between the original data and
its anonymised version. This assumption overlooks the re-identification risks caused by
heterogenous datasets containing linked records; Besides, the linking status is assumed
known beforehand, thus it focuses on calculating how close are the links between records.
Our study does not assume that such information is available, which is more challenging.

3.2 Linkability Analysis

3.2.1 Global and Local Linkability

The main idea of the proposed privacy risk mining framework is to estimate the linka-
bility between records from anonymised heterogeneous datasets, so as to discover if any
two or more records belong to the same individuals. A possible solution to characterise
such linkage is to calculate the distance between records’ values. However, as heteroge-
neous datasets usually have different attributes, comparing records from these datasets
by computing a distance between them is not feasible. In the light of this, we propose a
novel framework that mines records linkability from heterogeneous datasets by splitting
linkability into global and local linkability, as introduced in our paper (Runshan et al.,
2017). The definitions of these two types of linkability are described as follows.

• Global linkability represents the possibility of linking datasets that contain
records corresponding to the same data subjects.

• Local linkability represents the possibility of linkage appears on records level
between two records corresponding to the same data subject.

Relying on this, our framework mines records’ linkability in two stages: the first stage is
to cluster datasets into different groups so that possible matching records are clustered
together, while the second captures the local linkability at record level within the same
group of datasets.
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3.2.2 Measuring Global Linkability

In order to measure the global linkability, anonymised datasets need to be clustered into
different groups, each of which contains datasets that may include records belonging to
the same data subjects. The column attributes of each dataset contain the information
which can be used to summarise the topic of a dataset. We assume here that the
data scheme is not maliciously misleading. We believe this assumption is safe, as the
data curator will ensure the correctness in order to detect linked records. We use the
attributes to describe a dataset and form the clusters. Let n be the total number of
datasets. The l-th (1 ≤ l ≤ n) dataset Dl is denoted by an attribute vector

(al1, al2, . . . , alnl
;Dl),

where nl is the number of attributes for dataset Dl. Each alj(1 ≤ j ≤ nl) represents the
j-th attribute of dataset Dl and has a text value.

We choose the k-means algorithm for three main reasons. Firstly, the k-means algorithm
is intuitive and straightforward. It geometrically partitions data points into clusters, and
each of these clusters has a well-defined centroid. The clustering process visually shows
how data points are grouped. Secondly, the k-means algorithm is efficient and easy to
implement. The technique works by assigning a data point to its closest cluster and then
adjusting clusters’ centroids until all the data points reach convergence and no longer
change their groups. This algorithm flow is easy to implement. Thirdly, the k-means
algorithm has no particular requirements for the distribution or density of the data. In
our scenario, the data points have no significant distribution or density characteristics,
so the centroid-based approach is more suitable than the distribution-based and density-
based clustering methods. Besides, in our two-stage clustering framework, the k-means
technique is utilised to pre-cluster the data space into disjoint smaller sub-spaces where
the second clustering algorithm that is k-members clustering algorithm can be applied.
A constraint of the algorithm is that it works on numerical data, as it uses a Euclidean
distance as a similarity measure (X. Chen et al., 2009). Since the column attributes of
datasets are categorical rather than numeric, it is necessary to convert them to numerical
values. Let m be the total number of semantically different attributes in n datasets,
with m ≤

∑n
l=1 nl. This is because the identical or semantically similar attributes from

different datasets can be generalised. For instance, if there are three census datasets:

(age, sex, education,work-class;D1),

(birthdate, gender,marital-status, occupation, salary;D2),

(relationship, sex,wage-perhour;D3).
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After generalising semantically similar and identical attributes, the attribute vector for
all the three datasets can be extracted as

(age, gender, education,marital-status, occupation, salary).

More specifically, age in D1 and birthdate in D2, sex in D1 and gender in D2 and sex
in D3, work-class in D1 and occupation in D2, marital-status in D2 and relationship in
D3, salary in D2 and wage-per-hour in D3 are generalised into a single attribute value
respecitively. We thus describe datasets D1, D2, and D3 by 6-dimensional vectors:

x1 = {1, 1, 1, 0, 1, 0},

x2 = {1, 1, 0, 1, 1, 1},

x3 = {0, 1, 0, 1, 0, 1},

where 1 indicates that the dataset has the corresponding attribute, while 0 represents the
attribute is not shown in the dataset. Consequently, every dataset can be represented
by a binary numeric vector. We use xlj to denote the j-th element in the attribute vector
for the l-th dataset.

Weights towards attributes. A limitation of k-means algorithm is that it treats all
attributes equally, and does not respect different importance of the attributes. Indeed,
the Euclidean distance involved in k-means algorithm does not consider the importance
of each attribute in terms of re-identification risk. For example, the attribute DNA
information is more capable of identifying a data subject than the postcode attribute
as the former is more unique to capture a data subject’s characteristics. Therefore,
DNA information should be given higher importance or so-called weight. Let W =

[w1, w2, · · · , wm] denote the weight vector, and wp denote the weight of the p-th (p ∈
[1,m]) attribute which is defined beforehand with domain knowledge. We have wp ≥ 0

and
∑m

p=1wp = 1.

Algorithm for datasets clustering. The input of the proposed clustering algorithm
is a set of data points,

D = {x1, x2, · · · , xn}

where each vector xl is a m-dimensional binary vector representing the attribute infor-
mation of each dataset l. The output is a set of k clusters, denoted by

O = {O1, O2, · · · , Ok},

and these clusters are depicted by k corresponding centroids

c = {o1, o2, · · · , ok}.
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The algorithm starts by choosing k random points as the initial cluster centroids. Then
each data point is assigned to the cluster whose centroid is the closest to the data point.
Formally, data point xi is assigned to cluster Ol if and only if:

∀t ∈ [1..k], t 6= l,
m∑
j=1

wj · (xij − olj)
2 ≤

m∑
j=1

wj · (xij − otj)
2 .

After allocating data points, the clusters’ centroids are updated by:

∀t ∈ [1..k] ∀j ∈ [1..m],

otj ←
∑

xl∈Ot xlj
|Ot|

.

The algorithm operates iteratively by classifying data points into clusters and updating
the centroids, until it reaches convergence. Finally, we use the normalised within-cluster
sum of squares to denote the global linkability for each cluster:

GL(Ol) =
1

|Ol|
∑
xi∈Ol

‖xi − ol‖2 .

Intuitively, smaller global linkability indicates closer relation between datasets, thus it
presents greater risk of having two or more records belonging to the same data subject
within the cluster. We will discuss the selection of an effective parameter k in Section
3.4.

3.2.3 Measuring Local Linkability

Differently from global linkability which identifies content-similar datasets, local linka-
bility focuses on the analysis of record level linkage in order to detect the records which
are potentially associated with the same data subjects.

Record linkage analysis (Christen, 2012) is the most relevant to the measuring of lo-
cal linkability. It is defined as a process of identifying records that corresponds to
the same real-world entities across several datasets. It is widely used in data inte-
gration, data deduplication, etc. However, record linkage approaches (Abril, Navarro-
Arribas, and Torra, 2012) have not been applied to data privacy scenario for analysing
heterogeneous anonymised datasets which are anonymised by techniques, such as k-
anonymity (Sweeney, 2002). We find that a small distance between records does not
necessary indicates a high risk of de-anonymisation. This is because the anonymised
datasets may have generalised records to guarantee that a data subject cannot be dis-
tinguished from other data subjects. Close records may be associated with more than
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one data subject. Two examples illustrating the relationships between records distance
and de-anonymisation risk are presented here.

• Small distance, low risk. Consider two records from two k-anonymised datasets
where the parameter k is set as 3 and 5 respectively. If the distance between them
is small, the risk can be still low because both records have 2 and 4 other records
respectively sharing the same values that may belong to other data subjects. We
denote this character as group generality;

• Big distance, high risk. Although two records may not share many common at-
tribute values (i.e. low similarity on common attributes), if they have one identical
attribute that is person-unique (such as DNA information, credit card number,
etc.), the risk can be high. This character is denoted as person uniqueness.

We formalise the record linkage problem as an unsupervised clustering problem where
records corresponding to the same entity form a cluster. The number of clusters can
be very large if datasets contain a great number of data subjects. Moreover, each
cluster can be generally very small, containing only few records if most records belong
to different individuals. Therefore, instead of using k-means clustering, we deploy a
k-members algorithm (Byun, Kamra, et al., 2007) to group the most likely linked k

records together. Unlike the k-means algorithm, k-members requires that each cluster
contains at least k records rather than specifying the number of clusters at the start of
a clustering process.

As the datasets being grouped into a cluster after the first stage of clustering may
still have different attributes, only overlapping attributes (i.e. identical or semantically
similar attributes) are considered at the second stage of clustering. The rationale is that
for the linkage analysis of heterogeneous records, the overlapped attributes are the main
sources to connect records. We use the Euclidean distance to measure the similarity of
two numeric attribute values:

dN (v1, v2) = |v1 − v2|/|vmax − vmin|,

where v1 and v2 are two values in the numeric domain, vmax and vmin are the maximum
and minimum in this domain respectively. For categorical values, we use the distance
measure from (Byun, Kamra, et al., 2007):

dC(v1, v2) = H(Λ(v1, v2))/H(TD),

where v1 and v2 are two categorical values in the categorical domain D, TD is the
hierarchy defined for D. Λ(x, y) is the lowest common hierarchy level of x and y, and
H(T ) represents the height of the hierarchy level T .
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weighted k-members. We modify the greedy algorithm proposed in (Byun, Kamra, et
al., 2007) for k-members by changing the clustering criteria and introducing weights for
variables. Given a set of overlapped attributes, suppose πNi(i = 1, · · · , p) is the index of
an attribute with a numeric domain, πCj (j = 1, · · · , q) is the index of an attribute with
a categorical domain, and a weight vector W = [w1, w2, · · · , wp+q] for the overlapping
attributes. Consider N1 records from dataset D1, N2 records from dataset D2. At the
begining, a record ri is randomly picked up from D1 to form a cluster o1. Then a record
rj from D2 is selected to join o1 by minimising

∑
ri∈o1 dist(ri, rj), where

dist(r1, r2) =
∑

i=1,··· ,p
wπNi

· dN (r1[πNi ], r2[πNi ])

+
∑

j=1,··· ,q
wπCj

· dC(r1[πCj ], r2[πCj ])

This process continues by selecting records from D1 and D2, until |o1| reaches k. When
the process completes, another initial record which is the furthest from ri is chosen to
build another cluster in the same way. This clustering process is repeated until there are
less than k records left. Finally, each remaining record will be examined and inserted
into a cluster ensuring of which the distance sum is minimal. The choice of k will
be discussed in Section 3.4. With respect to the group generality, we define the local
linkability for two records ri and rj in the same cluster O as:

ri ∈ D1, rj ∈ D2,

LL(ri, rj) =
m1 ·m2 · dist(ri, rj)

|O|2

Note that m1 and m2 are the number of equivalent records which share the same at-
tribute values with ri and rj in the cluster. |O| is the size of the cluster. Intuitively, two
records are more likely to be linked to the same data subject if the distance is smaller.
However, this risk of re-identification is diluted through group generality by enlarging
the distance using m1 and m2.

3.3 Privacy Risk Tree Model

To perform the privacy risk analysis, it is necessary to identify and define relevant
elements, including risk source, privacy weaknesses, feared events and privacy harms, as
well as to establish connections between them (De and Le Métayer, 2016). To conduct
the risk analysis on publishing newly anonymised datasets, we formulate the risk sources
as the previously published datasets, the privacy harm as the de-anonymisation of any
data subject and illustrate privacy weakness and feared events in Table 3.1.
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Table 3.1: Privacy weakness and feared events of dynamic data publishing
Types Code Description

Privacy
weakness

V.1 overlapped attributes link datasets
V.2 overlapped attributes are highly identifiable
V.3 identical attribute values link records
V.4 overlapped attribute values are person-unique

Feared
events

FE.1 global linkability indicates a linkage between datasets
FE.2 local linkability indicates a linkage between records

With these defined elements, we construct a risk tree as shown in Figure 3.1, which
captures the de-anonymisation risk by considering both global and local linkability. We
give a straightforward example to explain how the ‘OR’ and ‘AND’ rules are used in a risk
tree. For example, if two datasets have a set of overlapped attributes birthdate, gender,
marital-status, occupation, salary, the-last-four-digits-of-credit-card, this overlapping is
considered as a privacy weakness (V.1) that results in the linkage of the two datasets.
According to the ‘OR’ rule, the feared event FE.1 is triggered by V.1. Furthermore, if
two record in the two datasets have an identical attribute value, for example, the same
the-last-four-digits-of-credit-card, which is a V.3 and triggers the second feared event
FE.2. At last, according to the ‘AND’ rule in the tree, since both FE.1 and FE.2 are
presented, we can infer that the two records are most likely corresponding to the same
individual.

De-anonymisation

AND
FE.1 FE.2

OR

V.1 V.2

OR

V.3 V.4

Figure 3.1: Privacy risk tree of de-anonymisating dynamically published datasets

We first convert the global and local linkability into the range of [0, 1] as a likelihood
metric. Formally,

pGL =
1

1 +GL(Ol)
,

pLL =
1

1 + LL(ri, rj)
.

Then, the AND rule (De and Le Métayer, 2016) is applied to compute the de-anonymisation
risk level, that is, the global and local linkability are integrated for the calculation. For-
mally, we have

prisk = pGL × pLL.
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3.4 Experiments and Insights

3.4.1 Dataset Description

Our preliminary experiments with 10 datasets downloaded from the UCI machine learn-
ing repository (Dheeru and Karra Taniskidou, 2017) aim to evaluate the effectiveness
of the proposed framework. The datasets include Student Performance Dataset (SUP),
Open University Learning Analytics Dataset (OULA), Student Loan Relational Dataset
(SLR), Adult Dataset (AUT), KDD Census-Income Dataset (CSI), Wholesale Customers
Dataset (WSC), Online Retail Dataset (ORT), Haberman’s Survival Dataset (HBS),
Parkinson Disease Dataset (PKS), and Breast Cancer Wisconsin Diagnostic Dataset
(WDBC). The reasons behind using the ten datasets for the experiments are two-fold.
Firstly, these datasets are in the format of microdata, for example, healthcare data or
census data. Such data is represented as a table where each row corresponds to one
record of an individual. Each record has several attributes, which can be categorised
as quasi-identifiers and sensitive attributes (e.g. salary and disease). Such dataset need
to be anonymised before releasing and are suitable to be sanitised using k-anonymity.
Secondly, these datasets have some common attributes and can show the pattern of
clustering datasets according to their overlapped column attributes. Table 3.2 shows
the number of column attributes and instances of each dataset.

Table 3.2: Ten UCI datasets for privacy risk mining
datasets SUP SLR OULA AUT CSI WSC ORT HBS PKS WDBC
#attributes 33 12 12 14 40 8 8 3 23 32
#instance 649 1000 30000 48842 299285 440 541909 306 197 569

3.4.2 Parameter Optimisation

We firstly extract 126 common attributes from these datasets, and represent each dataset
using a 126-dimension binary vector. For the first-stage clustering where the k-means
algorithm is used, the selection of an effective k is required before the start of the clus-
tering. We utilise Silhouette coefficient (Rousseeuw, 1987) and Calinski-Harabaz index
(Caliński and Harabasz, 1974) to determine whether a selected k is optimal. For both
criteria, a higher score indicates better clusters that have small within-cluster dispersion
and big between-clusters dispersion. In Figure 3.2, we utilise both Silhouette coefficient
and Calinski-Harabaz index to determine an optimal k in the k-means algorithm. The
value of k ranges from 2 to 9 as the number of datasets is 10. There is no point setting
the value of k to 1 or 10 as that means no clustering happens, or each dataset forms an
individual cluster. The Silhouette coefficient ranges from -1 to 1, where a higher value
indicates that the clustering parameter k is more appropriate. In our experiment, the
Silhouette coefficient gets its highest score when k is set to 4. The Calinski-Harabasz
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index is the ratio of the between- clusters dispersion and inter-cluster dispersion. A high
score means that clusters are dense and well separated. The Calinski-Harabasz index
also gets its highest score when k is set to 4, which validates that the best value of k in
our experiment is 4.
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Figure 3.2: Parameter selection of first-stage k-means clustering

For the second-stage clustering, a weighted k-members algorithm has been implemented
to analyse the record level linkability within a cluster. Note that as the algorithm works
on any two datasets within a cluster, supposing n datasets have been clustered into the
same group, the total time of executing k-members algorithm is O(n(n−1)

2 ). We take
the two datasets, SUP and SLR which are clustered into the same group for example.
First, SUP and SLR are sanitised using 3-anonymity and 5-anonymity respectively. As
there is no ground truth indicating if two records belong to the same individual or
not, we artificially insert 100 synthetic records respectively into these two datasets, and
evaluate the percentage of records clustered correctly into the same group with respect
to different k. Figure 3.3 demonstrates how to decide an optimal k in the k-members
clustering algorithm. As shown in the figure, the matching accuracy of records increases
first when k ranges from 2 to 8 and drops when k ranges from 8 to 12. There is a trend
that a value of k higher than 8 will cause the decline of the accuracy, so we stop at
k=12. Therefore, we conclude that k = 8 achieves the highest percentage, that 80.1% of
records are correctly clustered into the same groups. This is because if two datasets are
protected by k1- and k2- anonymity separately, a match of records implies the matching
of two equivalent classes. Indeed, the second-stage clustering locates the equivalent
classes in which two linked records reside, but not the exact two records because of the
implementation of k-anonymity. However, it is still helpful for data curators to pay more
attention to the matched equivalent classes and with the 80.1% accuracy of identifying
linked records, stronger protections can be applied to those equivalent classes in order
to mitigate re-identification risks.



48 Chapter 3 Mining Privacy Risk for Data Anonymisation

2 4 6 8 10 12
Number of members

0

20

40

60

80

100

Ac
cu
ra
cy
 (
%
)

(b) Matching accuracy for 
 different number of members

Figure 3.3: Matching accuracy of second-stage k-members clustering

The experimental analysis on ten datasets shows that the two-stage clustering framework
can depict the pattern of the risk and the framework can scale to microdata since there
are no specific requirements on the scheme of the dataset. Due to privacy concerns,
microdata such as original demographic or healthcare data, are not readily available
online. The ten datasets are the most suitable dataset in the UCI machine learning
repository that we could have. The framework can scale to more datasets in the future
when the data controller has more microdata to publish. The framework is practicable
as long as the data scheme is not maliciously misleading. We believe this is safe, as
the data curator will ensure the correctness to detect linked records. Also, the k-means
and k-members algorithms are effective and can be easily implemented, which makes
the framework easily deployed in reality.

3.5 Conclusion

This chapter presents a privacy risk mining framework to identify potential linked records
among heterogenous anonymised datasets, based on the proposed two-stage clustering
algorithm. As demonstrated by experiments, our framework is effective in locating
equivalent classes that contain the records associated with same individuals. This em-
powers data curators to envisage the re-identification vulnerabilities and apply stronger
measures. In future work, we plan to improve the matching accuracy by extracting more
representative information of datasets in the first-stage clustering and investigating al-
ternative machine learning algorithms. We also plan to conduct more comprehensive
privacy risk analysis by refining the risk tree model and improving the calculation rule
for risk likelihood level analysis.
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Chapter 4

Differential Private Data Sharing
with Blockchain

Through the analysis of various anonymisation techniques in Chapter 2, we realize that
differential privacy may be the most possible GDPR-compliant anonymisation technique
for data sharing between data controllers and data owners. Anonymisation services
that obfuscate sensitive datasets under differential privacy have been proved effective
to support secure data-sharing among the two parties (McSherry, 2009). By providing
an analysis result query interface to the data controller, the data owner can share the
statistical information contained in the data set to data controller. Sharing obfuscated
results guarantees the privacy of the dataset records.

Although differential privacy provides strict mathematical protection for privacy. The
existing differential privacy management has deficiencies. For example, when the so-
called privacy budget is used up, it simply stops data sharing. This is more compelling
in a multi-query scenario, because privacy budget will be consumed quickly, and how
to maintain privacy amounts to controlling the allocation of privacy budget is also a
question that needs careful consideration.

In this Chapter, we focus on improving privacy management to maximize the data utility
of differentially private data sharing and at the same time supporting a transparency-
by-design, privacy-budget-evident data sharing mechanism via blockchain technology.
The blockchain-based approach enables data owners to control the privacy preference
and enhances the security of the anonymisation services. More specifically, the smart
contract in the blockchain validates the usage of privacy budget of differential privacy and
adaptively changes budget allocation, depending on the privacy requirements provided
by data owners. The implementation with the Hyperledger permissioned blockchain
validates our approach with respect to privacy guarantee and practicality.
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4.1 Privacy Management of Data Controller

4.1.1 Traditional Privacy Management System

In a typical privacy preserving data sharing scenario, there are usually three kinds of
participants, data owner, data controller and data consumer. Usually the data controller
collects data from the data owners. These data may be a single individual record, or may
be a data set generated by the data owner. These data owners are also data subjects
under the GDPR context who enjoy various data privacy rights. The data controller
is an intermediate party that implements data anonymisation services and provides the
aggregated and anonymised data to the data consumer so that the data consumer can
get desired information from the data. This process allows data controllers to collect
data and provide a more accurate analytic result to data consumers based on a more
comprehensive data resources. It builds up interconnectivity and cooperation among
data owners, data controllers and data consumers, enabling them to achieve various
business goals, such as controlled sharing of data, and optimisation of resources usage.

However, such a model poses a risk to the privacy of the data owner. When anonymi-
sation is carried out on the data controller side, by outsourcing data protection to the
controller, data owners lose control over their data, raising significant privacy manage-
ment challenges, because the data owner cannot determine whether the data controller
has implemented the prescribed anonymisation techniques. This kind of centralized
anonymisation service centered on the data controller also faces the risk of single point
of failure. When the data controller’s anonymisation service has vulnerability, the pri-
vacy of all individuals included in the data set may be violated.

A second thought is whether the implementation of anonymisation service can be moved
to the data owner side. However, when anonymisation is performed on the data owner
side, not every data owner has the ability to provide sufficient anonymization protection
for the data or aggregate enough data to provide sufficient data utility.

When implementing anonymisation service, a common method is to use the differen-
tial privacy mechanism to obfuscate the result of statistical queries towards a sensitive
dataset, enabling its privacy-preserving sharing. We will describe the principle of dif-
ferential privacy shortly in Section 4.2.1. A prominent problem with this approach is
privacy management. Usually sharing will stop when the so-called privacy budget is
used up. This termination of sharing undoubtedly limits the utility of the shared data.
And this process requires monitor and allocate the privacy budget usage. This puts
forward higher requirements on the privacy protection ability of the data controller.

Offering the anonymisation service has benefits for the data controller — accessing to
multiple data sources and providing services to data consumers — but raises significant
challenges for privacy management: sensitive datasets from multiple data owners each of
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which has different privacy requirements, the anonymisation services may not be trusted
by data owners. Traditional solutions for privacy management have insufficiency as-is
in the hand of data controller when the controllers collect data from multiple data own-
ers. Firstly, typical management of privacy and data utility requirements (Fung et al.,
2010) must be extended to support multiple datasets and data owners. Data owners
may have different privacy and data utility requirements on their own datasets. Exist-
ing proposals do not allow data owners to define such requirements and are not able
to incorporate them and obfuscate data accordingly. Secondly, to protect anonymised
data from degradation of privacy protection (e.g. due to dataset repeatedly queried and
linking attacks), recent approaches (Kellaris et al., 2014; McSherry, 2009) proposed to
verify privacy budget which determines the amount of noise produced in the obfuscation
process, and control the amount of noise produced in the obfuscation process, stopping
data sharing as soon as the budget is used up. However, stopping sharing data must be
avoided as much as possible to not hamper the goal of making the most use of the data.
More importantly, multiple data owners are not able to customizing its privacy require-
ments corresponding to the data they provided to the data controller’s anonymisation
services. Due to the lack of trust among data owners and data controllers, anonymisation
services themselves should offer adequate guarantees for controlling and tracing privacy
budget, otherwise they will end up being single point of attack to make multi-query
de-anonymisation attacks possible (Dwork, 2006).

In the following, we introduce a motivating example to better illustrate the limitations
of existing approaches and the privacy degradation of a multiple-query scenario.

4.1.2 Privacy Degradation in A Motivating Example

Assume that a dataset containing employees’ absence information is collected from mul-
tiple data owners by the data controller for the sharing purpose. A data consumer sends
a statistical data request (e.g., a Mean query) and receives obfuscated query result by
the anonymisation services deployed by the data controller. While the controls on how
data from different owners are integrated and accessed are outside the scope of this
chapter, our focus here is on the privacy protection mechanism employed to anonymise
the dataset.

The dataset, shown in Table 4.1, contains privacy-sensitive information, such as salary
and number of absence, and the data owner wants to prevent the leakage of the sensitive
information. To this aim, state-of-the-art anonymisation service based on Differential
Privacy (Dwork, 2006) is used. Intuitively, it relies on an ε parameter setting the privacy
budget of a given dataset. Based on the ε, it generates randomised noise to the query
result.



54 Chapter 4 Differential Private Data Sharing with Blockchain

Table 4.1: A motivating example of sensitive data - employee dataset
Employee ID Date of Birth Absence Salary
1 08/11/1955 16 23112.30
2 22/07/1953 3 25388.43
3 01/01/1966 1 17303.11
· · · · · · · · · · · ·

Privacy requirements. Let us assume data consumers invoke data queries about the
mean of employees’ salary. The privacy budget ε can be set according to their privacy
requirements, e.g. 0.1 or 0.5 for, respectively, stronger and weaker privacy protection
that means different noise levels on obfuscated results. Figure 4.1 graphically shows the
noise of obfuscated results over 20 queries (results correspond to the critical points of
the lines in the figure). With ε set to 0.5 results (dotted line) are closer to the actual
ones (solid line), while with ε set to 0.1 results (dashed line) differ more offering stronger
protection, but less utility.
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Figure 4.1: Obfuscated query results with different privacy requirements

Privacy degradation. Differential privacy suffers from privacy degradation as the
number of queries increases. Sharing a single query result guarantees chosen privacy
level (e.g., 0.1 or 0.5 in this example), making difficult to determine what the actual
average salary is. However, if we combine multiple obfuscated results (i.e., each of the
lines in the figure), the privacy level degrades by cumulating ε over queries (Dwork,
2006). For instance, executing 20 queries indicates 20ε-differential privacy. This can be
visualised in Figure 4.1 as the sum distance between the points on the dotted line with
the actual one tends to equalise, hence revealing the actual value. Furthermore, if more
query types are allowed, that is, data consumers send not only Mean queries but also
Max, Min, 3rd Quatile, Sum queries, then the data consumers can easily learn much
more information about the dataset by sending queries continuously.

Recent proposals (Kellaris et al., 2014; McSherry, 2009) suggest to check the budget
request (i.e., ε) for each query and reject queries when the consumed budget exceeds a
threshold. However, in a setting with a high number of queries, this leads to stopping
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sharing data quite soon. In order to serve more data consumers, data controllers are
reluctant to halt the anonymisation service as stopping will prevent the realisation of
business goals. A malicious data controller may keep sharing the data although the
privacy budget is used up, which will result in the privacy breach. Additionally, as budget
may be consumed by multiple data consumers and the data themselves refer to multiple
data owner, the budget management cannot be entrusted to a single anonymisation
service itself. Instead, it requires adequate integrity and accountability guarantees such
that all involved parties can rely on it.

All in all, current privacy management solutions for differential privacy can be improved
to enhance the integrity and accountability of the anonymisation service implemented
by the data controller. Also, data owners should be given more freedom to choose their
privacy requirements.

4.1.3 Blockchain-based Privacy Management

The main reason behind using the blockchain technology is to support a transparency-
by-design, privacy-budget-evident differentially private data sharing mechanism. As the
differential private anonymisation service is offered by the data controller, data own-
ers cannot fully trust the anonymisation service, especially the management of privacy
budget. Indeed, budget management must provide integrity and accountability guar-
antees. These guarantees enhance assurance on the anonymisation services and tracing
of privacy degradation levels, i.e. budget consumptions. Due to the distribution and
lack of trust among data owners and data controllers, centralised budget management
does not offer adequate guarantees. Realising trustworthy decentralised management
of the privacy budget is then of paramount importance to ensure privacy protection of
sensitive datasets and, most of all, to enhance assurances on the anonymisation services.
To this aim, we introduce here a new solution based on blockchain, an innovative tech-
nology that ensures full decentralised control on data and code execution. Thanks to
the consensus algorithms and tamper-resistant transaction, blockchain enjoys some data
integrity-related properties, for example, transparent and decentralised control of the
data, non-repudiation and persistency of the public ledger.

In summary, the blockchain-based approach for privacy-preserving data sharing allows
data owners to control the anonymisation process, such as defining their own privacy
and data utility requirements, tracing the data-sharing activities, and enjoying a secure
services supported by the outsourced anonymisation services.

Specifically, the main contributions of this approach are the followings:

• A blockchain-based data sharing approach to store, verify and adaptively allocate
privacy budget consumptions via autonomous smart-contracts according to data
owner privacy and data utility requirements.
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• A high-level system architecture enabling the integration of any data anonymisa-
tion service with any smart-contract blockchain solution.

• Implementation and evaluation by means of the Hyperledger Fabric blockchain,
and discussion on privacy and data utility enhancements.

4.2 Differential Privacy Meets Blockchain

4.2.1 Differential Privacy

Differential Privacy (Dwork, 2006) is proposed as a privacy technique for protecting
individual records of statistical databases. It ensures that adding (or removing) a single
record to (or from) a database does not significantly change the outputs of statistical
queries. This is usually achieved by designing a mechanism that adds randomised noise
to the query output, so that an adversary is not able to determine whether a targeted
record is included in the database or not, no matter what side information the adversary
might have. To present our approach, we first present the key concept and implementa-
tion mechanism of differential privacy.

Definition 4.1. (ε-Differential Privacy (Dwork, 2006)). A randomised mechanism M
with domain N|D| is ε-differentially private if for every set of outputs S ⊆ Range(M)

and all databases D,D′ ∈ N|D| that differ in one record,

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] .

With any mechanism that generates differentially private query outputs, the probability
of S being the output is nearly the same for D and D′ such that an individual record
is protected by including it in D but not D′. A popular technique that satisfies Defini-
tion 4.1 is the Laplace mechanism (Dwork, 2006), which generates noise using Laplace
distribution. The Laplace distribution is centered at zero and has a scale parameter b

depending on the l1-norm sensitivity of queries. The l1-norm sensitivity of a query is
the maximum difference of the query results based on two databases which differ in one
record.

Definition 4.2. (l1-Norm Sensitivity (Dwork, 2006)). The l1-norm sensitivity Sq of a
query q : N|X | → Rk for all databases D and D′ which differ in one record is:

Sq = max
D,D′
||q(D)− q(D′)||1

where || · ||1 denotes l1 norm, and q represents a numeric query function, which maps
databases to k real numbers. Without loss of generality, we focus on k = 1 situations.
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With the scale parameter b computed as Sq/ε, the Laplace mechanism can be defined
as follows.

Definition 4.3. (Implementing ε-Differential Privacy: The Laplace Mechanism). Given
any query q, the Laplace mechanism is q(D) + y where y is a random variable drawn
from the Laplace distribution with scale parameter b = Sq/ε where Sq represents the
l1-norm sensitivity (Dwork, 2006) of the query q, and location parameter µ = 0.

f(y) =
1

2b
exp

(
−|y|

b

)
.

The variable y expresses how much noise should be added to the query outcome. The
smaller the ε or the greater Sq, the greater noise generated for achieving ε-differential
privacy. We use Lap(ε) to denote the randomised noise generated by the Laplace mech-
anism.

An important property of differential privacy is the composition property, which shows
how privacy degrades when the number of queries on the same database increases.

Lemma 4.4. (Composition (Dwork, 2006)). If M1 is ε1-differentially private, and M2

is ε2-differentially private, then let M be another mechanism that executes M1 and M2

independently on a database, M is (ε1 + ε2)-differentially private.

According to Lemma 4.4, the privacy level degrades linearly from ε to nε when executing
n queries on the same database if ε-differential privacy is guaranteed for each query. The
privacy level nε represents how much information is leaked after n queries. The total
allowed leakage is commonly viewed as privacy budget, and each query consumes part
of the budget (e.g., ε in this example).

Another important property is that differential privacy is immune to post-processing.

Lemma 4.5. (Post-Processing (Dwork, 2006)). If M is ε-differentially private, then
g ◦ M is also ε-differentially private for any g where g is an arbitrary randomised
mapping.

This property allows the noised outcome of a query being processed by data analysts,
and guarantees that the level of privacy will not degrade if the data analysts have no
additional knowledge about the private database.

4.2.2 Blockchain and Smart-Contracts

Blockchain is a novel technology that recently came to prominence when used as a
public ledger for the Bitcoin cryptocurrency. It consists of consecutive chained blocks,
replicated and stored by the nodes of a peer-to-peer network. Blocks are created in a
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decentralised fashion by means of a consensus algorithm, which can range from expensive
proof-of-work mechanism, e.g., Bitcoin’s, to lightweight Byzantine consensus algorithm,
e.g., Hyperledger’s (www.hyperledger.org). The use of consensus algorithms enables
several data integrity related properties in blockchain, such as distributed control of the
data on the chain, non-repudiation and persistency of transactions and data provenance.

Differently from Bitcoin, new types of blockchains have recently appeared featuring
smart-contracts, that is, programs deployed and autonomously executed on the blockchain.
Being part of blockchain makes contracts and their executions immutable and irre-
versible. The state-of-the-art smart-contract blockchains are Ethereum (www.ethereum.
org) and Hyperledger Fabric. Our implementation relies on the latter due to its per-
formance and flexible architecture. Hyperledger Fabric is a permissioned blockchain
that can jointly unite a consortium of recognised participants, that is data owners and
data consumers in our cases, each of whom does not necessarily trust the others. The
network is private, and each node must be approved to become a member of the con-
sortium. Unlike a public blockchain, such as Bitcoin, that allows anyone to join the
network anonymously, nodes in permissioned blockchain are not anonymous but with
identities approved by the membership service. Once entities in the blockchain network,
especially data controllers, take any malicious activities, the membership service can
take actions to prevent these malicious entities from participating in the blockchain.
A permissioned blockchain is necessary to eliminate the trust issues among data own-
ers and data controllers where both of them need to know the identities of each other.
A permissioned blockchain also guarantees that only approved entities can involve in
the data sharing scenario. We utilise Hyperledger Fabric to implement our framework
as it is a widely-used and actively-studied permissioned blockchain system which does
not require a native cryptocurrency to support the running of the system. Instead
of employing expensive consensus protocol such as proof-of-work, Fabric runs a fast
byzantine-fault-tolerant consensus algorithm to decide on the next chaining block.

4.3 Blockchain-based Data Sharing

The objectives of our blockchain-based data sharing approach are two-folds: allowing
data owners to control their own privacy requirement and helping data controllers scru-
tinize the anonymisation processes. In particular, the privacy levels can be customized
when using third-party anonymisation services especially to protect against multi-query
attacks. As discussed in the motivating example, secure management of privacy budget
is the key to ensure privacy. Our approach utilises blockchain smart-contracts to store,
verify and adaptively allocate privacy budget consumptions depending on data owner’s
privacy and data utility requirements. We consider the goal of adversary is to degrade
privacy, and the adversary has the capability of collecting all query outcomes.

www.hyperledger.org
www.ethereum.org
www.ethereum.org
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Figure 4.2: Overview of the runtime mechanismMi (diamond boxes relies on smart
contracts)

Our approach is based on two phases: Setup, setting up requirements for privacy and
specifications for data utility, and Runtime, to dynamically allocating privacy budgets
and tuning the data sharing process. Blockchain smart-contracts are used to store,
evaluate and keep track of historical queries and privacy budget.

In the following, we discuss first the high-level activities integrating blockchain and data
sharing, then outline the proposed system architecture.

4.3.1 Main Components and Phases

At the Setup phase, data owners specify their privacy and data utility requirements and
then store them in the smart-contract. The privacy requirement is represented by the
privacy budget ε0, which represents the maximum amount of budget allowed on sharing
data. According to data owner preferences, the budget can be associated to one or
many datasets, or even to single columns of a single dataset. Data utility requirement
is represented by a numerical variable, denoted by u ∈ R≥0, representing the maximum
amount of noise allowed on the actual query result, thus to maintain adequate data
utility.

At the Runtime phase, data queries are managed returning, when allowed by the privacy
budget and requirements, anonymised results. Indeed, our approach M consists of an
unbounded sequence of mechanisms M1,M2, · · · , where Mi operates when the i-th
query is received. Figure 4.2 illustrates the activities involved in each mechanism Mi.
Logically, it can be decomposed into three main test activities (i.e. the diamond boxes in
the figure): Query matching, Utility-based approximation and Budget verification. The
activity flow is reported in the figure and relies on data and computation offered by
smart-contract.
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4.3.1.1 Query Matching

This activity aims at determining whether a newly received query has been executed
before. Smart-contract checks the sharing history stored on the blockchain. Formally,
the sharing history amounts to the following tuple

(DsetId, εr, [(qry1, res1), · · · ])

where DsetId is a reference to a dataset (or a column of it), while εr is the remaining
associated privacy budget. The following list of tuples forms the sharing history. Each
tuple (qry1, res1) has as first element the function type of the query—e.g. sum, average,
max, min— and as second the corresponding previously released result. Thus, resi are
just the latest released results for each query type i, hence lightweight information whose
limited size makes them suitable for blockchain storage.

The query matching compares a newly received query qry on the dataset referred by
DsetId with the corresponding history. The query is denoted by the tuple (DsetId, qry, ε),
where the parameter ε denotes the requested budget for executing the query. The value
of ε can be provided by data consumer, or pre-defined as a fixed value by anonymisation
services. Without loss of generality, we assume function types fixed and comparable by
names; additional comparison parameters can be set as well. Namely, given a DsetId,
the test is passed when qry is equal to a qryi part of the history. Notably, to keep queries
private to all the members part of the blockchain, the history data can be stored hashed.
The comparison will be then on hash texts.

4.3.1.2 Utility-based Approximation

This test aims at checking whether a previous released result can approximate the re-
sult to return for the current query. The test pseudocode is reported in Algorithm 1.
Intuitively, it checks if dataset changes—e.g. new or deleted records— affect the utility
of previous results. Indeed, it decides if the actual query result res can be approxi-
mated with the previously released resold, given matching data utility requirements u,
and enough remaining privacy budget ε to compute the approximation test at the cost
σ.

Firstly, it checks whether the remaining budget is enough for executing the test (Line
1), If yes, it produces an obfuscated version of the old result resold using a very small
amount σ of the privacy budget (Line 2). Otherwise, it returns false (Line 11) stat-
ing the approximation test failed. The computed obfuscated result is compared by a
smart-contract with the actual one with respect to the threshold u (Line 3). If the
approximation test passes, the new obfuscated result is set as the last returned result of
such query (Line 4), the budget is updated accordingly (Line 5) and the approximated
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Algorithm 1 Utility-based approximation Pseudocode
Input: res, resold: actual and previous query results
u: data utility requirement; εr: remaining budget
σ: a small budget for performing approximation test.
Output: res′ if passes; boolean value false otherwise.

1: if εr ≥ σ then . Checking budget for the test.
2: res′ = resold + Lap(σ); . Obfuscating old result.
3: if |res′ − res| ≤ u then
4: resold = res′ . Updating history in blockchain.
5: εr = εr − σ . Updating budget in blockchain.
6: return res′.
7: else
8: εr = εr − σ . Updating budget in blockchain.
9: return false.

10: end if
11: else
12: return false.
13: end if

result is returned (Line 6). Otherwise, only the budget is updated (Line 7, 8) to keep
tracking that σ was consumed by the approximation test.

When this approximation test succeeds and resold is used, the consumed budget σ is
significantly less than that (i.e., requested budget ε) used for returning the actual res.
The obfuscation added to resold aims at adding randomness to the utility test. This
permits dealing with the fact that adversaries may know how the test works and attempt
to gain knowledge about the actual result res from the test result.

4.3.1.3 Budget Verification

The budget verification test is triggered if there has been no same query executed (i.e.,
the query matching test failed), or the query result cannot be approximated (i.e., the
approximation test failed). Thus, a new result has to be computed, as long as the
remaining privacy budget is enough.

This test is carried out on a smart-contract that, given a query tuple (DsetId, qry, ε), com-
pares the remaining budget εr of the dataset DsetId with the requested budget ε. If the
test succeeds, the anonymisation service generates randomised noise under differential
privacy to add to the actual query result consuming the requested budget. Otherwise,
the query is rejected because it would violate the defined data privacy requirement.

According to Lemma 4.4, the ensured privacy level degrades as the number of queries
increases if the noise is generated independently over queries. The activity of budget
verification ensures the satisfaction of pre-defined privacy requirement ε0 as it makes
sure the consumed budget does not exceed ε0. Formally, we have the following result
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Theorem 4.6. Our approach M satisfies ε0-differential privacy.

The mechanism updates the remaining budget, query function type (if the received query
has not been stored before), as well as the generated new result in the blockchain.

4.3.2 System Architecture

To implement the proposed approach, we propose a generic system architecture for
blockchain-based data sharing. Specifically, an Anonymisation Interface (AI) is realised
to integrate pluggable differential privacy component with blockchain smart-contracts.

As illustrated in Figure 4.3, federated datasets and anonymisation services (denoted by
ANM) are integrated via AIs, which act as mediator with blockchain smart-contracts
realising the control flow in Figure 4.2 previously described. Data consumers interact
with any AI to query datasets. Then blockchain smart-contracts execute the test ac-
tivities, i.e., Query matching, Utility-based approximation and Budget verification, to
ensure privacy protection.

Data owners federating their sensitive datasets to a data controller can then trust third-
party anonymisation services due to the principled exploitation of blockchain smart-
contracts. They store and evaluate sharing history, while enforcing utility and data
privacy requirements. Non-repudiable evidences of privacy budget consumption and
released query results enhance the security guarantees on privacy-preserving data sharing
processes. In particular, blockchain smart-contracts carry out the secure management
of privacy budget and carry out the test activities. The third-party anonymisation
services only execute when there is no previously released result that can be used. This
prevents attacks of altering, deleting budget consumptions, and improves the availability
of anonymisation services.

Data ControllerData Controller

Data AI

Data Controller

Data Controller

AIANM

Smart-contract 
Blockchain

DataAI

AI ANM

Data Consumer

Figure 4.3: Blockchain data sharing System among Data Controllers (AI stands for
Anonymisation interface, while ANM stands for Anonymisation service)
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4.4 Experimental Evaluation

We prototyped our blockchain-based data sharing approach by the Hyperledger Fabric
smart-contract blockchain and a traditional implementation of differential privacy using
Laplace mechanism. A real-world dataset from the Italian Ministry of Economy and
Finance is used, which contains employees’ salary information as exemplified in Table 4.1.

Our implementation is in Hyperledger Fabric V0.6 on a 2.6 GHz 4 core Intel Xeon laptop
running Ubuntu 14.04.5. The dataset identifiers are set on single columns, for which
data owners specify privacy and utility requirements.

The experiments aim at evaluating, on the one hand, privacy and data-utility guarantee
and, on the other hand, blockchain practicality. Specifically, the query function types
are four—i.e. sum, average, max and min. The total privacy budget ε0 is set to 10, and
the requested budget ε for each query is fixed at 0.5. In reality, data owners can set ε

according to their privacy requirements, e.g. 0.1 or 0.5 for, respectively, stronger and
weaker privacy protection that means different noise levels on obfuscated results. For
simplicity and without losing generality, we fixed ε to 0.5 for a better data utility. Note
that, this setting does not violate any differential privacy protection, but only affect the
total number of queries that can be requested by data consumers. The total privacy
budget ε0 is set to 10, which is a typical value used to support multiple queries and
achieve a balance on privacy protection and data utility. The data utility requirement
u is set to 1500. The value depends on the utility preference of data consumers for the
scenario of salary query. Queries are simulated continuously and randomly by uniformly
choosing a query type from those four. The compared baseline approach is the standard
differential privacy mechanism that generates randomised noise independently for each
query.

4.4.1 Privacy

In this chapter, the privacy of the data, that is the confidentiality of the data, is protected
during data sharing process. However, the privacy of the user, that is the anonymity
of the user is not considered and beyond the scope of this chapter. As proved in
Theroem 4.6, our approach always provides ε0-differential privacy. That is, the consumed
privacy budget does not exceed ε0 that the pre-defined privacy requirement is satisfied.
In this experiment, we focus on how the budget is consumed over queries. Figure 4.4
shows the budget consumption when our and the baseline approach are implemented.
It is clear that the remaining budget decreases linearly in the baseline approach, so
that the budget is used up after 20 queries. The remaining budget in our approach
decreases slower than in the baseline approach. Specifically, for the first query, it drops
the same in both approaches as there has been no sharing history and no result can be
approximated. From the second query, the decrease slows down as historical sharing
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results become available for approximation at some queries. More specifically, after
receiving 6 queries, the historical sharing tuple stored in the blockchain becomes

(DsetId = EmployeeDset, εr = 7.93,

[(qry1 = max, res1 = 28643.57),

(qry2 = average, res2 = 23147.29)])

(qry3 = min, res3 = 16127.25)])

(qry4 = sum, res4 = 578106.25)])

where all four query types have been received and stored for future approximation.

We now change the number of query types from four to two (i.e., max and average)
representing the situation where two query types are allowed. The consumption of
privacy budget is plotted together with the situation of four query types. Indeed, the
fewer query types, the less the budget is consumed: it is more likely that historical
sharing results can be used to approximate new results. Therefore, our approach is able
to allow more queries executed and is more effective when there are fewer query types.
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Figure 4.4: Budget consumption as the number of queries increases, where “2 query
types” means that just max and average queries are allowed, while “4 query types” also

includes min and sum queries.

4.4.2 Data Utility

We plot the noise generated at each query in Figure 4.5. Our approach introduces
less noise compared with the baseline approach after receiving more queries, as the
approximation test takes into account the utility requirement, guaranteeing the amount
of generated noise is bounded by u = 1500. We compute the mean of the absolute noise
over 20 queries, and have 43331.823 for the baseline approach, 3864.97 and 3806.47

for our approach with respectively four and two query types. Therefore, our approach
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provides slightly better data utility, and the number of query types does not affect the
data utility.
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Figure 4.5: Generated noise over 20 queries in baseline approach and our approach.

4.4.3 Blockchain Practicality

Storage capacity. As the data sharing history stored on the blockchain records only the
latest released result for each query type, rather than a full list of release results, the
size of the tuple that gathers such sharing history is suitably small and can be optimised
grouping by query types. Tuples can be illustrated, e.g., as (DsetId, εr, [(qry1, res1), (qry2, res2)])
if two query types are allowed. Therefore, the design of history tuple is light and suitable
for blockchain storage as testified by the extensive tests.

Blockchain performance. The performance of smart-contract computation is shown in
Figure 4.6a when the number of stored query types changes from 2 to 4 and 8. The
computation on Hyperledger Fabric is very efficient as the maximum time is 0.09 second.
There is a slightly increase in time when the size of the sharing history tuple increases. As
the number of peers deployed in the Hyperledger blockcahin increases, the computation
time increases. This is because it takes more time to allow all peers to confirm the
computation result (i.e., adding a new block). We now simulate more query requests
at a single timestamp, particularly from 20 to 200 and 2000 requests. As shown in
Figure 4.6b, the time increases and the maximum time becomes 90 seconds when there
are 2000 requests received at the same time. Therefore, implementing our approach
in Hyperledger Fabric offers good performance, and is able to handle great number of
requests.

Permissioned blockchain. Our prototype implementation relies on Hyperledger Fabric,
which enables us to deploy a private blockchain with control on operating users. Data
owners are the default users who are allowed to access the blockchain but only man-
age the anonymissation process of their own datasets. Additional access rules can be
negotiated with data owners supported by the function of smart-contract.
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Figure 4.6: Smart-contracts performance regarding different number of stored queries
and requests.

4.5 Related Work

A considerable body of research has been devoted to address the data privacy issues in
the hand of the data controller. Because of the openness and not fully trusted char-
acteristic of data controllers in the data sharing process, traditional privacy-preserving
approaches, such as anonymisation techniques (M. Yang, Sassone, and O’Hara, 2012) by
their own cannot ensure the protection of personal data. Cryptographic approaches (Es-
posito, Castiglione, and Choo, 2016; Wang et al., 2010) have been proposed to encrypt
data before sharing to the data controller, and data can only be decrypted by autho-
rised data consumers. These approaches rely on novel access control models to support
various access request from data consumers (D. Chen and Zhao, 2012).

In order to equip data owners with more control and accountability over data protection,
blockchain-based proposals (Ekblaw et al., 2016; Zyskind et al., 2015) utilise blockchain
to store data and control data sharing as a data management platform. More specifi-
cally, Enigma (Zyskind et al., 2015), a peer-to-peer network supports different parties
to jointly store and run computations on data while guaranteeing the privacy of data.
This proposal combines blockchain with multi-party computation techniques and exam-
ines a mobile application data sharing scenario. The other proposals, such as (Ekblaw
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et al., 2016) aim to protect patients health records, and ensures the immutable, quick
access, confidential properties of such data storage and access. While these approaches
focus on storing sensitive data directly on blockchain, our solution stores the process
of anonymisation services which provides stronger data privacy guarantee and requires
only light configuration for implementing our solution.

4.6 Conclusion

Our blockchain-based data sharing approach allows data owners to control the privacy
protection of their datasets while enjoying the anonymisation services provided by the
data controller. Future work includes examining practical deployment issues of the data
controller, integrating with security components (e.g., access control) and developing an
effective user interface to support the control of the anonymisation services.





Chapter 5

Outsourcing Differential Privacy
Sanitisation using Blockchain and
Encryption

In the previous chapter, we provide a differential privacy management system which
enables data owners to control their privacy preferences by themselves. The system
focuses on outsourcing the privacy budget allocation service of differential privacy to
the data owners’ nodes in the blockchain. A group formed by data owners manages
the privacy management of the differential privacy mechanism. Therefore, the risk
of privacy management breach due to single-point-of-failure is eliminated. Besides, the
built-in differentially private data sharing mechanism is optimised for better data utility.

However, in the previous system, the sanitisation service needs to be performed off-chain
by the data controller as blockchain transactions are public. The input data of smart
contracts are visible to all the nodes in the blockchain, the private data to be anonymised
has to be processed locally. The anonymisation process is centralised in the previous
system. In this chapter, we try to resolve this problem by outsourcing the anonymisa-
tion process to the blockchain, which is a challenging task as the privacy requirement of
private data processing and the transparency of blockchain transactions are contradic-
tory by nature. To solve the conflict, we apply a two-layer model using blockchain and
homomorphic encryption. Intuitively, the blockchain infrastructure and smart contract
residing on it form the privacy management layer. Meanwhile, homomorphic encryption
supports a secure data transferring and computing layer among three kinds of entities:
data owners, anonymisation service providers and data controllers.

In this chapter, we employ differential privacy as our primary data anonymisation tech-
nique. Other Privacy Enhancing Techniques, for example, k-anonymity, l-diversity, are
not considered. The terms “anonymisation” and “sanitisation” are used interchangeably
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in this chapter. We adopt UCI Adult dataset and sample different numbers of records
from the dataset for designed experiments.

Chapter Organisation The rest of this chapter is organised as follows. Some pre-
liminary knowledge and a framework overview are given in Section 5.1 and Section 5.2
respectively. In Section 5.3, the detailed protocol and implementation are discussed.
Then, the evaluation of the experiments are presented in Section 5.4. Finally, we con-
clude our work in Section 5.6.

5.1 Preliminaries

5.1.1 Motivating Scenario

Nowadays most online service require interactions between two entities, namely service
providers and client users or as refer to in the GDPR context as data controller and
data subject, respectively. Data controllers are organisations or companies with more
powerful computation capabilities. Data owners (DOs) are willing to share their data
with these controllers hoping to get more utility by leveraging the computation advantage
or delicate algorithms offered by these controllers. Specially, we consider the multiple-
data-owner and multiple-data-controller scenario as a data controller usually collects
data from a large group of data subjects. Meanwhile, data owner’s data can be requested
by multiple data controllers for different purposes. In some cases, data controllers request
different parts of the data. That is why it is necessary to introduce the concept of
vertically partitioned data to better illustrate the scenario when different parts of the
dataset, or so called different attributes of the dataset are used by data controllers for
various purposes. Therefore, we present the concept of vertically partitioned data to
describe the data sharing scenario.

Vertically Partitioned Data. Data are said to be vertically partitioned when different
attributes of information for the same set of entities are split by the data owner and
shared with several data controllers (Vaidya, 2009). Thus, vertical partitioning of data
can be formally defined as follows: First, consider a data owner who has a dataset D

in terms of the entities from whom the data are collected and the information that is
collected for each entity. Let D = (E, I) be the tuple representing the dataset, where
E is the entity set for whom information is collected and I is the feature set that
is collected. Assume that there are k different data controllers, C1, ..., Ck requesting
different parts of the dataset D1 = (E1, I1), ..., Dk = (Ek, Ik) respectively. Therefore,
data is said to be vertically partitioned if E = ∪iEi = E1 ∪ ... ∪ Ek, and I = ∪iIi =
I1 ∪ ...∪ Ik (Vaidya, 2009). In general, data can be distributed to data controllers in an
arbitrary fashion. This means that different data controllers may own partial information
about different sets of entities. While such arbitrary partitioning is possible, in practice,
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it rarely happens. Data is said to be vertically partitioned when different controllers
collect different features of data for the same set of entities. Integrating controllers’
local datasets gives the global dataset. Vertically partitioned data occurs naturally in
multiple-data-controller situation, and protecting the privacy of individuals in it requests
more consideration.

Figure 5.1 demonstrates an example of multiple data controllers requesting vertical par-
titioning of data from data owners. There are two data controllers - a hypothetical
hospital and an insurance company who want to request different attributes of the
dataset from the data owners. The hospital collects medical records such as the type
of brain tumor and diabetes. On the other hand, the insurance company collects other
information such as age, sex, and occupation etc.

Adult Dataset

Age
   30

   52

Sex
 Male

Female

Job
Doctor

Farmer

Tumor
No

Brain

Diabetic
No

No

DC2: HospitalDC1: Insurance
Company

Figure 5.1: An example of vertically partitioned data with two data controllers

When the data owner shares the dataset with multiple data controllers, s/he has to add
different types of noise to the original dataset and send those noisy data to corresponding
data controllers separately. The noise addition and transferring of the noisy data causes
a large amount of computational and communicational overhead for the data owner
when the number of requests from data controllers is large. This problem motivates us
to employ the solution of combining of homomorphic encryption and differential privacy,
which avoids the transferring of whole-size noisy data to data controllers each time but
only transferring a small-size of noise. This improvement helps to save a considerable
amount of communicational bandwidth for the data owner.

5.1.2 Technical Approach and Objectives

We introduce a two-layer framework to separate the privacy management and secure
data transferring. Similar to the framework in Chapter 4.6, the blockchain infrastructure
and smart contracts are in charge of privacy management, which means that the smart
contracts are responsible for verifying and recording the privacy budget of the differential
privacy mechanism. Meanwhile, all the actions performed on the data are written down
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as key-value transactions in the blockchain ledger, which enables data owners to be aware
that their data will be shared and processed according to their own preferences. The
smart contract residing on the blockchain is utilised as an interface to handle different
utility requirements from multiple data controllers in a transparent manner and manage
the privacy budget in a trustworthy and tamper-proof way.

Along with these features, the blockchain network is different from the one introduced in
Chapter 4.6. This network contains three kinds of nodes, that is, data owners, anonymi-
sation service providers and data controllers. The Anonymisation Service Provider
(ASP) is newly introduced into the blockchain as a new kind of role for carrying out the
anonymisation service.

Thanks to anonymisation service providers, data owners only need to transfer the en-
crypted data to the provider once and reduce further computation on noise addition.
This outsourcing reduces the computation and communication overhead of the data
owner. The anonymisation service provider can be seen as honest-but-curious. There
are two reasons for this. Firstly, the provider has to obey the smart contract honestly
otherwise s/he will not be trusted by other nodes thanks to the blockchain’s consensus
algorithm. The chaining technique solves the trust problem among these three kinds of
nodes. Secondly, since the private data is transferred between the data owner and the
ASP in the data transferring layer, an encryption scheme with additive homomorphic
property is deployed to compute noise for differential privacy mechanism, which enables
the ASP to perform noise addition without seeing the data in clear. Therefore, the con-
fidentiality of the data is preserved even though the ASP is curious about the sensitive
information in the data s/he received. Considering the identity of the anonymisation
service providers, they can be data broker companies, for example, those who aim at
providing a middleware solution for data owners and data controllers. They can also
be some machines/nodes set up by the data owners on some popular cloud computing
platforms, e.g. AWS, Azure, instead of data owners’ local machine.

Next we present our proposed framework, including architecture design and protocol
description. We also evaluate the proposed scheme in a multiple-data-controller scenario
using different parts of the UCI dataset to prove the feasibility and effectiveness of our
system.

The benefits of the framework introduced in this chapter are two-fold.

• Firstly, it transfers data owners’ overhead of anonymisation computation. As pre-
sented in Section 5.3.3, the data owner only needs to encrypt the original data
s/he wants to share with the data controller and transfer the encrypted data to
the anonymisation servicer provider once. When the data owner agrees on specific
preferences to share the data with the data controller, s/he uploads the privacy
parameters, for example, Laplace noise in differential privacy mechanism (Dwork,
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Roth, et al., 2014), to the anonymisation service provider in the encrypted form.
The anonymisation service provider will then add the received privacy parame-
ters to the original data using additive homomorphic encryption. In this way, the
anonymisation service provider cannot observe either the original data or the noise
but only performs the anonymisation computation, which protects the anonymi-
sation service provider from snooping into user’s privacy even when the anonymi-
sation service providers are honest-but-curious. As such, the data owner does not
need to implement the anonymisation process but focus on defining their privacy
preferences s/he wants to enforce based on the data controller’s request. Note
that, all the processing related to the data will be recorded and monitored on the
blockchain, including data controllers’ request of a specific portion of the data, the
privacy budget consumption and the data owners’ consent to share the data. The
design of the world-state of the blockchain and smart contract will be presented
in Section 5.3.2.

• Secondly, the benefit of outsourcing anonymisation service is even more signif-
icant under a scenario of data sharing among multiple data controllers. When
the anonymisation service are managed by data owners themselves, in order to
adapt to various applications and utility preferences of multiple data controllers,
data owners need to add different kinds of noise to different parts of the data, as
formalised as Vertically Partitioned Data. This inevitably incurs enormous com-
putation and communication burden for data owners. If data owners want to keep
the sanitised data for future auditing purpose, a lot of storage space needs to be
consumed as well (J. Li et al., 2018). Data owners cannot entrust data controllers
for anonymising the data as there are no guarantees from technical aspect that
the data controllers will perform sufficient sanitisation honestly. Therefore, it is
helpful for data owners to have a reliable anonymisation service which implements
the sanitisation and does not collude with the data controllers. Our framework is
able to achieve this goal as both the privacy management and the sanitisation pro-
cess are outsourced and decentralised to the blockchain network. Also, under the
GPDR, existing techniques needs to be reconsidered for multiple data controllers
scenario. Our framework is a good practice showing how a practical privacy pre-
serving technique, i.e. differential privacy, can be well-customised for data sharing
with multiple data controllers.

5.2 Framework Overview

In this section, we justify the use of encryption and a permissioned blockchain for data
sanitisation outsourcing. We give a high-level overview of the framework’s design and
advantages (implementation details followed in Section 5.3).
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5.2.1 Mitigating Privacy Management Issues in Direct-Sharing Sys-
tems

First, assume a straightforward architecture for private data sharing, in which the data
owners, directly release their data to one or more data controllers. Figure 5.2 illustrates
such an architecture along with the interactions between the participating entities, with
solid arrows representing requests made to the data owners and dotted arrows repre-
senting the data owners’ responses.

Data
Store

Anonymisation
Interface

Privacy
Management

System (PMS)

Send data requests

Return sanitised
or denied results

Access
data

Data controller
(Centralised)

Data consumers

Query

Deny the query or
return sanitised

results
Return
data

Figure 5.2: Centralised sanitisation model in direct-sharing system

In this design, data owners rely on themselves to manage and implement the sanitisation
cautiously and correctly before sharing data with data controllers. As a result, the
following shortcomings exist:

Q(1) Data owners must have their own privacy management system to keep track of
their sharing history and to allow sharing only to authorised data controllers.

Q(2) There is no membership service managing the identities of data controllers.

Q(3) Data owners need to generate various versions of sanitised data in order to satisfy
the requirements from different data controllers, meanwhile ensure these sanitised
data will not breach the privacy guarantee when these data are released together.

Q(4) The volume of computation and the difficulty of privacy management increase
dramatically when the number of data controllers increases.

Q(5) Data controllers’ purpose and usage of the data cannot be monitored.

As described in Chapter 4, we observed that blockchain can mitigate the privacy man-
agement issues, i.e. Q(1) and Q(5). In order to deal with the other two shortcomings,
i.e. Q(3) and Q(4), we introduce a new functionality into our framework, which is an
outsourced anonymisation service that performs anonymisation tasks for data owners.
In order to enable this service, a new role - anonymisation service provider (ASP) is
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introduced into the blockchain. When introducing anonymisation service provider into
the design, we assume the provider is curious-but-honest, which means that s/he follows
the protocol honestly but is curious about data owners’ private data. We explain why
the engagement of the anonymisation service provider can solve those two issues by first
describing the interactions between the entities.

Data owners (DOs) possess the data and want to share datasets with data controllers
to get valuable knowledge from the data. Data controllers provide data analysis service
to the data owners but are not trusted by the DOs. Therefore, the DOs outsource the
sanitisation process to the ASP instead of directly sharing the data to data controllers.
To protect the privacy of the data, the data will be encrypted before sending to the
ASP. An anonymisation service provider (ASP) receives the encrypted data from DOs,
performs anonymisation service on these data and then sends the noisy datasets to DCs.

The use of encryption protects the data from being observed by the ASP, however it
also prevents ASP to sanitise the data. Notice that the typical differential privacy
mechanism, i.e. Laplace mechanism, only requires addition operation, so we utilise the
additive homomorphic encryption to perform the noise addition on the encrypted data
with acceptable computation overhead (J. Li et al., 2018). Before noise generation,
data controllers publish the functions they want to perform on a specific dataset. The
corresponding data owner calculates the global sensitivity of those function and send
the noise generation parameter to the ASP. The noise addition procedure is performed
by the ASP using additive homomorphic encryption (Paillier, 1999). After that, ASP
sends the noisy dataset to the DCs. Our scheme allows DCs to decrypt the encrypted
noisy data, which means that data are encrypted by DC’s public key. Since the only
data sent to the DC is encrypted noisy data, although they can be decrypted for further
analysis, the privacy of these data are still guaranteed by differential privacy. Our design
uses homomorphic encryption to encrypt the transferred data meanwhile supporting
computations on the ciphertext.

Similar to the design in previous chapter, we deploy a private blockchain network in-
cluding three kinds of entities. These entities participate as three kinds of nodes in the
blockchain, namely, the data owners nodes (DOs), the anonymisation service provider
ndoes (ASP), and the data controllers nodes (DCs). Besides, we choose a permissioned
blockchain in order to manage the memebership (i.e. to identify data owners, anonymi-
sation service providers and data controllers).

At a high level, a blockchain is a distributed, immutable and tamper-proof transaction
log maintained by a network of nodes. We introduce blockchain network into the design
to monitor the behaviour of data controllers, at the same time providing a sharing history
logging system for data owners. To do so, data owners, anonymisation service providers
and data controllers all become nodes of the blockchain system to maintain a copy of the
log, and a consensus protocol is used to agree on the state of the log. Introducing the
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blockchain network also solves the trust issue among these three entities by integrating
them into an autonomous system.

Also, the communication between the DO and the ASP will utilise Fabric’s private
data collection, which indicates only the hash of the encrypted data is recorded in the
distributed ledger. The actual data are only visible to the ASP and the DO. Therefore,
though data controllers are in the same blockchain channel as DOs and ASP, they can
only see the transaction that a dataset has been transferred but not any actual data.

A critical new feature in this design is the decoupling of privacy management and data
transferring, similar to decoupling the control plane from the data plane in computer
network (Agarwal et al., 2019). Figure 5.3 shows the design in this decoupled envi-
ronment. We define the privacy management layer, which provides the guarantee of
privacy and include functionalities such as allocating privacy budget and recording data
usage. In contrast, the data transferring layer includes transferring encrypted data. As
shown in the figure, privacy management is now jointly managed by all parties with
a blockchain back end, without having to be handled by a single data owner or to be
entrusted to a third party. Data controllers can submit transactions to request access to
a data resource for a specific purpose. Data owners can decide whether or not to share
the data with data controllers according to their privacy preferences.

Privacy
Management

Layer

Data
Transferring

Layer

ASP DCDO

Smart Contract

Blockchain Network

...

Requests data
usage

Grants/Revokes
consent of data

use
Records data

sharing process

Secure data
transferring

Secure data
transferring

Figure 5.3: A decoupled framework with privacy management layer and data trans-
ferring layer

5.2.2 Managing Identities of Data Controllers using Membership Ser-
vice

One main difference of using blockchain in this design compared with that in the previous
chapter is the focus of Membership Service (Cachin, 2016). In order to illustrate how the
Membership Service is used in a blockchain network. We first introduce the difference
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between permissionless blockchain and permissioned blockchain, and why a permissioned
blockchain is needed in our framework.

Permissionless blockchain and permissioned blockchain In a permissionless
blockchain system such as Bitcoin, the network is public and anyone can join anony-
mously, making consensus difficult. Expensive methods such as Proof of Work are used
to decide on the next block of transactions, which are then validated (e.g., to ensure
there is no double-spending) by all the participating nodes. In proof of work, each node
may independently validate incoming transactions and place them into an ordered block.
Nodes then compete to solve a cryptographic puzzle that requires substantial computing
resources. These competing nodes are referred to as miners. The first miner that solves
the puzzle wins the right to append its proposed next block to the chain, as well as a
reward in bitcoin. The winner sends a copy of its block to the other nodes, which again
validate the transactions, and sequentially execute and commit them to update their
copy of the blockchain.

On the other hand, permissioned blockchain systems are usually jointly owned by a
consortium of know participants who may not necessarily trust each other. Here, nodes
are not anonymous, and each node must be approved to join the network by a member-
ship service run by the consortium. Thus, if any actor is found to engage in malicious
activities, the membership service can take appropriate action. Instead of using proof
of work, permissioned systems delegate consensus to a subset (or to all) of the partici-
pating nodes that run byzantine or crash fault tolerant consensus protocol to decide on
the next block of transactions. Permissioned systems have been used in a wide range of
applications requiring a tamper-proof transaction log, and are usually not backed by a
native cryptocurrency.

Permissioned and permissionless systems ensure immutability and tamper resistance via
full replication and hash pointers to the previous block stored in the next block (any
attempted changes to the blockchain after a new block has been committed invalidate
the pointers).

We utilise Hyperledger Fabric to implement the framework. Fabric introduces a modu-
lar and extensible architecture to provide a resilient, flexible, scalable and confidential
permissioned blockchain for general purpose. The implementation of Fabric deploys an
execute-order-validate model to execute distributed smart contracts in a trust-less envi-
ronment. The model contains modular components to proceed with the transaction in
three stages. Firstly, the smart contract execution component manages the execution of
the smart contract within the isolated container, then checks the correctness of the gen-
erated transaction and thereby endorse it; Secondly, orderers broadcast the state updates
to all the peers and provide an ordering service to establish an agreement on the order of
transactions among peers via a consensus protocol; Thirdly, transactions are validated
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against the endorsement policy specified by the application before they are committed
to the ledger. Besides the execute-order-validate model, Fabric also implements a scal-
able dissemination component to disseminate the output blocks of the ordering service
to all peers using a gossip protocol. Each peer in Fabric locally maintains a ledger in
the form of the append-only chaining blocks and stores the state updates in a key-value
database.

Membership Service As mentioned in Section 5.2.1, one shortcoming of a direct-
sharing system is the lack of membership service managing the identities of data con-
trollers. One advantage of permissioned blockchain is that it inherently has a mem-
bership service, which manages identities of the participants in the network. In our
framework, the blockchain network consists of three kinds of entities: data owner,
anonymisation service provider and data controller. The main benefit of introducing
the membership service is to manage the identity of data controllers. The data owner
can know who requests their data and makes the decision whether or not to share certain
data according to the data controller’s identity and credibility.

Since Hyperledger Fabric is used in our framework, we herewith illustrate how the Mem-
bership Service in Fabric is deployed to achieve our goal. First of all, for an identity
to be verifiable, it must come from a trusted authority. This authority is called mem-
bership service provider (MSP) in Fabric. An MSP provides all nodes in the blockchain
network with identities as well as credentials for the purposes of authentication and au-
thorisation. We first configure Fabric to use the default MSP implementation and adopt
a standard Public Key Infrastructure (PKI) hierarchical model (Perlman, 1999). Then
we set up the built-in certification authoritie (CA), called Fabric-CA, to generate and
distribute X.509 certificates (2016) to nodes for authentication purpose. Note that, this
process is configured off-line before the blockchain network runs.

5.2.3 Private Data Collection Mechanism for Data Transferring

Another important feature deployed in our framework is the privacy data collection
mechanism in permissioned blockchain (2016). In Fabric’s design, a channel is a private
subnet for communication between two or more organisation members. After each peer
joins a channel, it will have its own identity, which is provided by the membership services
provider (MSP) and used to authenticate itself to other peers and services in the channel.
Each transaction is executed on a channel, and each party must be authenticated and
authorised to execute transactions on the channel. Although a peer can join multiple
channels and maintain multiple ledgers, ledger data cannot be transferred from one
channel to another. This separation between ledgers implemented through channels
is achieved through chaincode configuration, the membership service and the gossip
data dissemination protocol (2016). This separation of peers and ledger data through
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channels allows private and confidential transactions between members. If a group
of organisations on a channel needs to keep data private from other organisations on
the channel, using the channel mechanism, they can choose to create a new channel
that contains only the organisations that need to access the data. However, each time
this situation is encountered, creating a separate channel adds additional management
overhead (maintaining chaincode versions, policies, MSPs, etc.). This method can not
support all channel participants to see all transaction records while ensuring that part
of the data is private (Hyperledger Fabric, 2016).

This is why we use the private data collection mechanism provided by Fabric, which
enables the defined subset of organisations on the channel to endorse, commit, or query
private data without creating a separate channel (2016). In our scenario, this means
that the data owner can send encrypted data to anonymisation service provider under
the same channel without letting the data controller observe the transmitted data, while
recording the transaction about the fact of data transmission in the channel where all
three are present.

A private data collection mainly contains two elements (Hyperledger Fabric, 2016):

• The actual private data, sent peer-to-peer via gossip protocol (Barger et al.,
2017) to only the organisations(s) authorised to see it. This data is stored in a
private state database on the peers of authorised organisations (sometimes called
a “side” database, or “SideDB”), which can be accessed from chaincode on these
authorised peers.

• A hash of that data, which is endorsed, ordered, and written to the ledgers of
every peer on the channel. The hash serves as evidence of the transaction and is
used for state validation and can be used for audit purposes.

While unauthorised peers will not have the private database synced and will only be
able to see the hash on the ledger. Since hashes are irreversible, these peers will not be
able to see the actual data. Using the private data collection of Hyperledger Fabric, the
encrypted data transferred between data owner and anonymisation service provider are
not visible to the data controller, therefore maintain the confidentiality of the original
data.

In general, blockchain provides a decentralised platform to integrate three kinds of par-
ties together and mitigates the trust issues among them. Data owner nodes collaborate
together to provide an anonymisation service for themselves without relying on any sin-
gle party. As such, privacy budget consumption are recorded and verified by data owners
together, which enhance the security of data sharing with multiple data controllers by
eliminating single-point-of-failure. Data controllers publish the functions they want to
perform on the data in the blockchain ledger as well. Data owners can observe what
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kinds of operation will be implemented on their data and decide the privacy budget for
each function with data controllers. This enables data owners have more control of the
usage of their data. Last but not least, since every data use will be recorded as a trans-
action in the blockchain, the shared ledger will provide an evidence for data controller
to show to regulatory organisations that the use of the data are GDPR-compliant.

5.2.4 Differential Privacy with Homomorphic Encryption

In this section, we are not going to repeat the definition of differential privacy, but
focus on how differential privacy can be combined with homomorphic encryption and
is customised for outsourcing sanitisation process between entities. The combination
of homomorphic encryption and differential privacy supports a secure outsourcing of
the anonymisation process to the ASP. More importantly, the solution saves data own-
ers’ computation and communication overhead of anonymising a dataset multiple times
when the dataset are shared with various data controllers with different data utility re-
quirements. Traditional differential privacy solutions for data sharing with multiple data
controllers require the data owner to add different types of noise to the original dataset
and send those noisy data to those data controllers separately. The transfer causes a
large amount of communicational overhead for the data owner when the number of data
controllers is large. With the combination of homomorphic encryption, the data owner
now can send the encrypted original data to the ASP only once and then send different
types of encrypted noise according to data controllers’ request. This combination saves
communicational bandwidth for the data owner as the original dataset do not need to be
transferred multiple times, and only the small-size noise are transferred multiple time.

Additive Homomorphic Encryption An encryption scheme is said to be additive
homomorphic if it conforms to the following properties (J. Li et al., 2018):

Definition 5.1. (Additive homomorphic encryption)

Let m1 and m2 be two plaintexts, let A be an encryption algorithm that outputs the
corresponding ciphertexts ‖m1‖ and ‖m2‖, and let B be an operation performed on the
two ciphertexts. For any two ciphertexts, additive homomorphic encryption has the
following property:

B(A(m1),A(m2)) = B(‖m1‖ , ‖m2‖) = ‖m1 +m2‖

On the one hand, the homomorphic encryption properties allow us to run computations
on encrypted data. Specifically, additive homomorphic encryption enables us to compute
an encrypted sum of a set of encrypted values without decrypting them first, and hence
nothing about the individual values is disclosed. On the other hand, differential privacy
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has steadily become the de-facto standard for achieving strong privacy guarantees in data
analysis. Laplace mechanism is one of the most-widely used differential privacy mech-
anism. The primary step of the Laplace mechanism is the addition of Laplacian noise
to original data. We therefore apply additive homomorphic encryption to the Laplace
mechanism. After the combination, the addition can be performed on the encrypted
noise and original data. Therefore, the process can be outsourced to the ASP without
disclosing the original data nor the added noise. We deploy Pallier cryptosystem Paillier,
1999 in our implementation as Pallier scheme is a public-key encryption scheme with
additive homomorphic properties. We denote it as (Setup,KeyGen,Enc,Dec,Add),
which consists of the following steps (J. Li et al., 2018).

• Setup(1l): A membership service provider (MSP) uses a security parameter l to
generate the public parameters (pp) and the main secret key (msk).

• KeyGen(msk, pp, uid): The MSP uses a user’s identity uid as input to generate
a pair of keys (pk, sk) for that user.

• Enc(pk,m): The user uses his public key pk to encrypt a plaintext record m,
generating the ciphertext ‖m‖ as output.

• Dec(sk, ‖m‖): The user uses his secret key sk to decrypt a ciphertext record ‖m‖
into the corresponding plaintext m.

• Add(‖m1‖ , ‖m2‖): Two ciphertext ‖m1‖ and ‖m2‖ are inputs, and the result
‖m1 +m2‖ is output.

Recall that, to share data that satisfy ε-DP when a query function f is applied, the
principal approach is to perturb the data by adding random noise based on ∆f and
the privacy budget ε. For example, for the Laplace mechanism, let Lap(λ) denote the
Laplace probability distribution with mean zero and scale λ. The Laplace mechanism
achieves DP by adding Laplace noise to an original dataset M . In concrete, we describe
the Global Sensitivity calculated by data owners and Encrypted Laplace Mechanism used
by anonymisation service provider as follows.

Definition 5.2. (Global sensitivity)

Let f be a function that maps a database to a database to a fixed-size vector of real
numbers. For all neighboring databases D1 and D2, the global sensitivity of f is defined
as

∆(f) = maxD1,D2 ||f(D1)− f(D2)||

where || · || denotes the L1 norm.
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As data owners have the original dataset and the function from data controllers since
data controllers make the request and have it recorded on the blockchain, data owners
will calculate the global sensitivity, encrypted it and sent it the anonymisation service
provider in the following steps. Thereafter, the ASP uses the encrypted Laplace mech-
anism to perform the anonymisation.

Definition 5.3. (Encrypted Laplace mechanism)

Let m be a record in database M (m ∈ M), let η be a random variable such that
η ∼ Lap(∆f/ε), and let A be an encryption algorithm with additive homomorphic
property. The encrypted Laplace mechanism is defined as follows:

A(m′) = A(m) +A(η)

Note that, the data record m and Laplace noise η are encrypted with the encryption
algorithm A by the data owner. Then the encrypted data are sent to the ASP for further
processing, i.e. addition. The main rationale behind the outsourcing is to preserve
more utility of the data. If the data are anonymised by the data owner before sending
them to the data controller, data utility is limited and cannot be customised by the
data controller for multiple purposes. An advantage of uploading the encrypted data
and noise to the ASP separately is that different kinds of noise can be added to the
original data for various utility. First, the data controller can publish the set of functions
F = {f1, f2, ..., fn} s/he wants to compute on the data on the blockchain. If the data
owner is interested in the data analysis and willing to share the data (i.e. functions in
F the data controller proposed), s/he can decide the privacy budget ε = {ε1, ε2, ..., εn}
for each function in F and calculate the corresponding differential privacy noise ∆fi

εi
(i =

1, 2, ..., n). Then the data owner will encrypt the original data and the noise, then upload
them to the ASP. The ASP will use the additive homomorphic encryption to calculate
the sum of the noise and the original data. Finally, the ASP will send the noisy data to
the DC.

5.3 Protocol and Implementation

In this section, we discuss the implementation of our framework using the Hyperledger
Fabric and homomorphic encryption. We first analyse the threat model and security
requirement of the system. Then we illustrate the transaction and world states design
in the blockchain system. Since the framework is split into two layers, we give a detailed
illustration on the interaction and protocols between the two layers.
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5.3.1 Trust Relation and Threat Model

We first analyse the trust relation among these three kinds of entities. Firstly, the
anonymisation service provider (ASP) is honest-but-curious, which means the provider
will follow the protocol honestly but is curious about the sensitive information in the
data. Therefore, the data owner will use encryption to encrypt the data before sending
them to the ASP. The ASP is not able to see the clear data. Secondly, the ASP do
not collude with the data controller. Since the encrypted data is encrypted using the
data controller’s public key, the ASP cannot send the original encrypted data to the
data controller, but only send the noisy encrypted data to the data controller. Also,
data controllers will not give his secret key to ASP, otherwise ASP can decrypt the
encrypted dataset to get the original data. This requirement is satisfiable in reality.
For example, the ASP can be Google and the data controller can be Facebook. They
have a competitive business relationship so will not collude with each other (J. Li et
al., 2018). Last but not least, the data owner does not trust the data controller. The
data owner hopes to use data controller’s service, mainly the data analytics algorithms
and computation resource. Rather than sending clear data to data controllers, the data
owner would only like to delegates the anonymisation service to ASP and only allow
ASP to send noisy data.

5.3.2 World States Design

There are two important components in a blockchain system: the world state and the
smart contract. The former is a key-value store to maintain some application-defined
state information. In our system, the privacy management deals with data owners (iden-
tified by data_owner_ID) and their data resources (identified by data_set_ID and
data_attribute_ID), data controllers (identified by data_controller_ID) and their
request (identified by request_function and budget_request). To allow vertically par-
titioned data sharing, data sets are divided based on the attributes set identified by
data_attribute_id.

The key-value world state is a critical data structure maintained by Fabric to process
transactions. In simple financial applications, the world state is straightforward: the key
is an account ID and the value is the current balance in that account. Smart contracts
that move funds from one account to another must verify that there is enough money
in the sender’s account, subtract funds from the sender’s account, and add funds to
the recipient’s account (Agarwal et al., 2019). This can be done by reading from and
writing to the world state, followed by appending the corresponding transaction to the
blockchain; it is not necessary to scan the blockchain (which may be very long) in order
to commit a transaction.
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In the design of our framework, the privacy management challenge of data anonymi-
saiton outsourcing is to transform the requests from data controllers and the responses
from data owners into a key-value world state. We want to ensure high transaction
throughput to scale to very large deployments: many data owners, many datasets ver-
tically partitioned into many attributes sets, many data controllers and various data
requests, etc.

To explore the space of world state designs, we observe that the three main entities in
anonymisation outsourcing management are data owners, data, data controllers. This
suggests three designs, explained below and illustrated in key-value format in Listing 16.

• Data-Controller-Oriented world state (DC-WS) groups data controllers that
request the same data resource together. A key is a concatenation of data owner
ID, data set ID, data attribute ID, the request function and privacy budget, and
a value is a list of data controllers that were given access to the data specified in
the key.

• Data-Owner-Oriented world state (DO-WS) A key is a concatenation of data
controller ID, data set ID, data attribute ID, the request function and privacy
budget, and a value is the corresponding data owner ID.

• Data-Resource-Oriented world state (DR-WS) A key is a concatenation of
data owner ID, data controller ID, the request function and privacy budget, and
a value is a concatenation of data set ID and data attribute ID.

1 DC-WS
2 {do_id | dset_id | dattr_id | req_func | bud_req :
3 [dc_id_1 , dc_id_2 , ..., dc_id_n]
4 }
5
6 DO-WS
7 {dc_id | dset_id | dattr_id | req_func | bud_req :
8 [do_id]
9 }

10
11 DR-WS
12 {dset_id | dattr_id | do_id | dc_id:
13 [ req_func | bud_req]
14
15 }

Listing 5.1: Three kinds of world state designs in key:value format

5.3.3 Smart Contracts and Workflow

As discussed in the previous section, there are three kinds of world state that are used
by three different smart contracts. In the pseudocode, we use the following functions to
interact with the key-value world state.
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GET(k): returns the value corresponding to key k
PUT(k,v): write value v to key k and increase the version number (or creates a new
key with version number 1 if the key does not exist)

Data Controller Request Data Usage: Algorithm 2 shows the pseudocode for the
smart contract invoked by data controllers to request data usage on a specific data
resource. Remember that the Data-Resource-Oriented-World State is used in this smart
contract. It first assembles keys by concatenating the data owner ID, data controller
ID, data set ID and data attribute ID (Line 2). It then fetches a list of request history
for the key (Line 3). If the requested privacy budget is smaller than the remaining
budget and request history list is empty, it creates an entry for this key and store the
requested functions and corresponding budgets (Line 4-6). If an entry already exists and
also the requested budget does not exceed the remaining budget, it updates the request
history list by concatenating the new functions and budgets (Line 7-9). Finally, the
world state is updated with the new value (Line 10). The smart contract always checks
if the remaining budget has been used up before updating the request list, in order to
make sure the guarantee of differential privacy has not been violated.

Algorithm 2 The Data Controller Requests Data Usage
Input: do_id, dc_id, req_func, bud_req, dset_id, dattr_id, bud_remaining
1: procedure Data Controller Request Data Usage
2: key ← do_id | dc_id | dset_id | dattr_id
3: req_list ← GET(key)
4: if bud_req <= bud_remaining then
5: if req_list == ∅ then
6: req_list ← [req_func | bud_req]
7: else
8: req_list ← req_list ∪ [req_func | bud_req]
9: end if

10: PUT(key, req_list)
11: end if
12: end procedure

Data Owner Grants/Revokes Consent of Data Use: Algorithm 3 shows the
pseudocode for the smart contract which allows consent modification for a data resource
assigned to data controllers. Remember that the Data-Controller-Oriented-World-State
is used in this smart contract. It first assembles keys by concatenating the data owner ID,
data set ID, data attribute ID, and the parameters for differential privacy mechanism,
i.e. requested functions and corresponding privacy budgets (Line 2). It then fetches a
list of consenting data controllers for the key (Line 3). If the list is empty and the action
is Grant, it creates an entry for this key and store the data controller ID (Line 4-6). If
an entry already exists and if the action is Revoke, it updates the value by deleting the
data controller id from the list (Line 7-10). If the action is Grant and the data controller
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id does not exist in the value, the id is added (Line 11-13). Finally, the world state is
updated with the new value (Line 15).

Algorithm 3 The Data Owner Grants/Revokes Consent of Data Use
Input: do_id, dset_id, dattr_id, req_func, bud_req, dc_id, action
1: procedure Data Owner Grants/Revokes Consent of Data Use
2: key ← do_id | dset_id | dattr_id | req_func | bud_req
3: dc_id_list ← GET(key)
4: if dc_id_list == ∅ and action == ‘Grant’ then
5: dc_id_list ← [dc_id]
6: end if
7: if dc_id_list 6= ∅ then
8: if dc_id ∈ dc_id_list and action == ‘Revoke’ then
9: dc_id_list ← dc_id_list \ dc_id

10: end if
11: if dc_id /∈ dc_id_list and action == ‘Grant’ then
12: dc_id_list ← dc_id_list ∪ dc_id
13: end if
14: end if
15: PUT(key, dc_id_list)
16: end procedure

Anonymisation Service Provider Records Data Sharing Process: Algorithm 4
shows the pseudocode for the smart contract invoked by the ASP when the data sharing
process has been completed. Remember that the Data-Owner-Oriented-World State is
used in this smart contract as this helps data owners to audit the integrity of the data
sharing process. The contract performs the actions if and only if the data sharing is
successful. It assembles keys by concatenating the data controller ID, data set ID, data
attribute ID, the requested functions from data controllers and privacy budgets used
(Line 3). The value for the key is the data owner ID of the data resource (Line 3). If
the data sharing process succeeds, this key-value pair will be written to the world state
(Line 5), otherwise the smart contract will not do anything.

Algorithm 4 Anonymisation Service Provider Records Data Sharing Process
Input: dc_id, dset_id, dattr_id, req_func, bud_req, do_id, action
1: procedure Anonymisation Service Provider Records Data Sharing
2: if action == ‘Success’ then
3: key ← dc_id | dset_id | dattr_id | req_func | bud_req
4: value ← do_id
5: PUT(key, value)
6: end if
7: end procedure

Based on these smart contracts, we are now able to describe the overall process of
outsourced differential private data sharing as follows:
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Step 1 - Blockchain Network Setup. In the blockchain network, three parties
will participate in the same Hyperledger Fabric network within one channel. Also, the
data owner and the anonymisation service provider set up a private data collection
communication for encrypted data transfer. The membership service provider manages
the membership for each party and generates public-private key pair for data controllers.
For example, let (pk, sk) be a key pair for the data controller, where pk is the public
key and sk is the secret key.

Step 2 - Data Controller Requests Data Usage. In this step, the data controller
invokes the smart contract 2 to request a data usage. The request will be published
on the blockchain so that the data owner knows how their data will be used. In the
request, the parameter req_func represents the possible set of functions, denoted as F =

(f1, f2, · · · , fm), that will be used in the data analysis tasks by the data controller. For
example, these functions can be max,min, sum, average for a statistical analysis task.
The parameter bud_req denotes the corresponding privacy budget for each function in
the Laplace mechanism which determines the amount of noise to be added to the original
data. As shown in the smart contract, this set of functions and budgets is invoked as
a transaction and written to the world state on the blockchain so that the other two
entities - the data owner and the anonymisation service provider knows how strong the
protection has been implemented on the data.

Step 3 - Data uploading. If the data owner is willing to share the data with the data
controller according to his data usage request, firstly the data owner will invoke the smart
contract 3 to give his/her consent. Then, the data owner fetches the data controller’s
public key pk from the blockchain, encrypt his dataset M = (m1,m2, · · · ,mn) using the
Enc(pk,M) algorithm, and uploads the resulting ciphertexts
C = (||m1||, ||m2||, · · · , ||mn||) to the anonymisation service provider through the private
data collection. Besides encrypted data uploading, the data owner needs to upload the
corresponding noise parameter as well. As the data controller has already published the
functions fi(i = 1, 2, · · · ,m) and privacy budget εi(i = 1, 2, · · · ,m) in Step 2, firstly the
data owner is able to calculate the function sensitivities ∆F = (∆f1,∆f2, · · · ,∆fm),
and furthermore the parameter vector b for noise generation (e.g. for the Laplace
mechanism), which depends on b = (b1, b2, · · · , bm) = ∆F

ε = (∆f1
ε1

, ∆f2
ε2

, · · · , ∆fm
εm

)).
Then the data owner encrypts the parameter vector b with the same encryption scheme
Enc(pk,M) and transferred the encrypted vector to the ASP via the private channel.
Note that, there is a maximum value limitation of total privacy budget ε =

∑m
i=1 εi to

protect the privacy, for example, ε = 20 is often used in practice, which is defined by
the data owner relative to his/her privacy preferences.

Step 4 - Noise addition. After receiving the parameter vector b from the data owner,
the anonymisation server provider generates the actual noise η in the Laplace mechanism
where bi =

∆fi
εi

is used as the parameter to define the Laplace distributions from which
to randomly draw noise, and encrypts the noise using Enc(pk, η) = ||η||. Then, the
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anonymisation service provider uses the homomorphic addition Add(||M ||, ||η||) to add
the generated noise to the data owner’s encrypted data and only sends the resulting noisy
data to the data controller. The success of performing these steps by the anonymisation
service provider means that s/he has the consent from the data owner and sanitises the
data according to the data owner’s privacy requirement. The ASP then invoke the smart
contract 4 to record the evidence.

Step 5 - Data analysis. The data controller first decrypts the received ciphertexts
using Dec(sk, ||M + η||) to obtain all of the noisy data. Based on these data, the data
controller can perform other algorithm in order to derive more information from the
data. The details of the sharing process are shown in Algorithm 5

Algorithm 5 Outsourced Differential Private Data Sharing Using Blockchain and En-
cryption

1: DC: invokes smart contract 2 to request data usage
2: if data owner grants consent of data use then
3: DO: invokes smart contract 3 with action = Grant
4: DO: calculates the function sensitivities ∆F = (∆f1,∆f2, · · · ,∆fm)
5: DO: fetches privacy budget ε from the blockchain
6: DO: calculates the parameter vector b = ∆F

ε
7: DO: ||M ||pk = Enc(M,pk), ||b||pk = Enc(b, pk), encrypts original data and the

parameter vector
8: DO: transfer {||M ||, ||b||} to the anonymisation service provider
9: ASP: generates encrypted noise ||η|| obeying Laplace distribution ||η|| ∼

Lap(||b||)
10: ASP: ||M + η||pk = Add(||M ||, ||η||), calculate the noisy dataset
11: ASP: sends ||M + η|| to DC;
12: DC: M + η = Dec(||M + η||, sk), decrypts the ciphertexts
13: end if

5.4 Evaluation

In this part, we evaluate the performance of our solution with regards to encryption
overhead, transmission overhead, and blockchain efficiency, focusing on testing whether
our solution has good scalability in the context of multiple data owners and multiple
data controllers. The experiments are carried out on a computer running MacOS with a
2.3 GHz 8-core Intel-i9 CPU and 32GB of memory. We use Golang as the development
language for the chaincode in Hyperledger Fabric, and choose the Laplace mechanism
as the main mechanism to provide differential privacy protection.
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5.4.1 Encryption Overhead

One of the key goals in the experiment is to explore the impact of the introduction of
encryption algorithms on the efficiency of data sharing, that is, to analyse the compu-
tational overhead of encryption algorithms during data sharing. Note that in the data
sharing scheme, there are mainly three types of encryption computation, namely encryp-
tion on the data owner side, decryption on the data controller side, and homomorphic
addition on the anonymisation service provider side. We explored the time spent in each
of these three computations in the experiment and analyzed the relationship between
them.

We use the UCI Adult data (UCI Adult Data 1996) as the experimental data set, and
the Paillier scheme (Paillier, 1999) which is a commonly used homomorphic encryption
library in our implementation. The UCI Adult data set contains 45222 records and
6 numeric attributes, which are used as data to be shared. We divide the data into
vertically partitioned data sets by attributes. These attributes are age, education-num,
capital-gain, capital-loss, hours-per-week, final-weight. The data controller can then re-
quest different partitioned data sets based on their interest in these attributes. Without
loss of generality, in our experiments, these attributes are randomly selected by the data
controller.

In order to simulate the data sharing scenario with multiple data controllers, we set the
number of data controllers to 10. Besides, we let the number of requests from each data
controller vary by 20, 60, 180, 540, 1620 and 4860, so that the total number of requests,
in other words, the number of data sharing, vary by 100, 300, 900, 2700, 8100, and 24300.
This range is rational to explore the impact of the increase in the number of data requests
on sharing efficiency, which is the main focus of the experiment. We assume that the
function requested by the data controller is max in the differential privacy mechanism.
Here we do not consider other functions, because different functions will only lead to
differences in shared value, and will not affect the encryption process. On the other
hand, we set the number of data owners to 5 to simulate multiple data owners. Since
the focus is to test the scalability of data sharing with multiple data controller, there is
no need to vary the number of the data owner. We set the number of data records owned
by each data owner to 100 as we suppose the data records held by the data owner are not
changing dynamically. With these parameters, we perform homomorphic encryption and
calculations on the data shared each time. Then we compare the influence of encryption,
decryption and homomorphic addition on the efficiency of data sharing.

As shown in Figure 5.4, the overall computing cost increases almost linearly with the
increase in the number of data sharing in logarithmic scale. Among them, the computa-
tion time of homomorphic encryption and decryption is in the same order of magnitude,
but the time needed for homomorphic addition is three orders of magnitude lower than
the former two. For example, for 8100 times of data sharing, the encryption operation
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requires 645.21 seconds, the decryption operation requires 183.01 seconds, and the ho-
momorphic addition operation requires only 0.37 seconds. This means that the data
owners need to spend more time on encryption than data controllers and anonymisation
service providers. However, in differentially private data sharing, the data owner only
needs to encrypt and upload the original data once. In subsequent sharing to different
data controllers, if the noise parameters are the same, the data owner does not need to
regenerate the noise and re-encrypted them, which can save a lot of computation time.
In this experiment, we assume that the data owner generates a new noise every time, so
the encryption time required will be longer than in the actual situation. Besides, since
the original data does not change frequently, data owners can use their spare time to
encrypt the data in advance and upload it to anonymisation service provider to achieve
better utilisation of their resources.

It is worth noting that, since the time required for homomorphic addition is short, it is
helpful for anonymisation service provider to use the Laplace mechanism to quickly gen-
erate anonymised data, which means that homomorphic addition has little effect on data
sharing efficiency. This advantage is more obvious when there are many data controllers
or many requests. The data controller usually has more computing resources than the
data owner, so the decryption operation does not cost much to it. Moreover, after the
ciphertext is transmitted from the anonymisation service provider to the data controller,
it will not affect the subsequent data sharing process, so the data controller can also
use the idle time for decryption. In summary, the computational overhead introduced
by homomorphic encryption has little effect on the entire data sharing process, and it
introduces more protection without significantly reducing the sharing efficiency.

Figure 5.4: Computational overhead of outsourcing differential privacy sanitization
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5.4.2 Communicational Overhead

After the introduction of ASP, the straightforward two-party data transfer between the
data owner and the data controller changes to the data transfer among the three parties.
Among them, there are two main phases that will incur communication costs, including
data uploading from DO to ASP and data downloading from ASP to DC.

In order to theoretically analyse the differences between the data transmission in the
new scheme and the straightforward direct transmission between the data owner and
the data controller, we first introduce the symbols in Table 5.1 to represent the various
variables in the transmission process. In the data uploading phase, the size of the
message sent in our scheme is ndc + k′x bytes, where ndc represents the size of the
encrypted dataset that needs to be transmitted only once, and k′x represents the size of
the noise transmitted x times. In contrast, the message size in the direct transmission
is nd(p + k)x bytes. In this scheme, not only the noise but also the data need to be
transmitted each time the sharing happens. As shown in the formula, with the increase
in the number of data sharing, in the direct transmission scheme, the communication
cost increases linearly. Meanwhile, in the new scheme, when sampling 45 records, the
original data size is 1445 bytes, while the encrypted data size increases to 2881 bytes,
indicating that encryption results in a nearly double increase of the size. As shown in
Figure 5.5, once the number of data sharing is more than twice, our scheme will ensure
lower communication costs. In the data downloading phase, compared with the ndpx

in the direct scheme, the total size of the message sent by the ASP to the DC is ndc′x,
where c′ is the size of the encrypted noisy data. In general, the size of the data sent from
the ASP to the DC in the downloading phase in our scheme is about twice the size of the
data in the direct sharing scheme. However, when the amount of data sharing becomes
larger, the communication cost saved in the data uploading phase of our scheme is more
significant than the additional cost in the data downloading phase.

Table 5.1: Symbols used in data transferring phase
Symbols Meanings

n the size of the dataset
d the number of attributes
c the size of each ciphertext record
p the size of each plaintext record
k’ the size of each encrypted noise
k the size of each plaintext noise
x the number of data sharing
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Figure 5.5: Communicational over-
head in data uploading phase

Figure 5.6: Communicational over-
head in data downloading phase

5.4.3 Blockchain Practicality

Blockchain Storage Capacity The data sharing history stored on each block is only
the metadata about the released results, and it is the latest one, not the complete
list of released results. Meanwhile, neither the original dataset nor encrypted dataset
will be stored on the blockchain. The world state stored on the blockchain is three
kinds of key-value pairs introduced in Sec. 5.3.2, designed for three different smart
contract functionalities. The design of these history tuples is lightweight and suitable
for blockchain storage and query.

Blockchain Performance - Benchmarking of World State The key to test the
performance of using Blockchain platform in our framework is to measure the throughput
when reading and writing to the world state. Since the world state is in the form of
key-value pairs, we explore the effect of both the key and the value on throughput by
increasing the size of them respectively. The other purpose of this experiment is because
the design of the three kinds of world states in the framework cause different changes
in the key and value size. First, when a data resource is requested by multiple data
controllers, the dc_id field of the value in the data-controller oriented world state (DC-
WS) will continue to increase. Second, when the resource is requested by many data
controllers or when the requested functions and budgets vary, the data-owner-oriented
world state (DO-WS) design will produce a event where many different keys have the
same value do_id. Third, when a data resource is requested multiple times and each
request consumes a different privacy budget, the value corresponding to the key in the
data-resource oriented world state (DR-WS) design will be frequently added with new
requests. In response to the these three different situations induced by three kinds of
world state designs, we designed three different sets of experiments.

First, we gradually increase the number of data controllers involved in the value of the
DC-WS design from 20k to 1000k, which means that the size of the value corresponding
to the key will also increase. At the same time keep the size of each key unchanged. In
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this experiment, we only perform world state reading (i.e. GET requests). Figure 5.7
shows the transaction throughput in this case.

Next, we consider the DO-WS design. In the experiment corresponding to Figure 5.8,
we fixed the value space as one data owner, and then increased the key space, that is, the
number of data controllers corresponding to that data owner and the different number
of data requests, from 1 to 10k. Similarly, we only perform GET requests.

Finally, Figure 5.9 shows, in the DR-WS design, the impact of different number of
requests in the value on the write throughput of the world state (i.e., PUT requests).
We keep the size of the key unchanged and change the number of [req_func | bud_req]
item in the value corresponding to the key.

As shown from Figures 5.7 to 5.9, increasing the number of keys or increasing the number
of items contained in the value field does not reduce the throughput of blockchain read
and write. Instead the throughput only fluctuates up and down. We deduce that this is
the normal blockchain read and write throughput fluctuation. Therefore, we conclude
that the design of the three kinds of world states is effective for sharing scenarios with
multiple data owners and multiple data controllers, and the read and write throughput
of the blockchain are neither affected by the number of keys nor the number of items in
each value.

Figure 5.7: Read throughput with different numbers of keys

5.5 Related Work

Data anonymisation model Traditional data anonymisation models, for example,
k-anonymity, l-diversity, and DP, contribute a lot to data privacy community. However,
these techniques are originally proposed for single dataset anonymisation. They can be
improved or combined with other techniques, for instance, homomorphic encryption, to
entail better privacy guarantees or to be suitable for data sharing with multiple parties.
This is increasingly important as there is a trend that personal data are shared with
more and more data controllers under the complicated big data era.
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Figure 5.8: Read throughput with different numbers of values

Figure 5.9: Write throughput with different numbers of values

Differential Privacy with Blockchain Mu Yang et al. (2018) proposed a blockchain-
based technique that has proved to be feasible and efficient in providing a secure layer
of privacy budget management for differential privacy thanks to the main blockchain’s
features, namely decentralisation, transparency and tamper-proof. Yang’s work focuses
on answering interactive queries with differential privacy in a cloud federation environ-
ment, where a centralised anonymisation service is still needed besides the blockchain.
In our scheme, the idea of using blockchain for privacy management is inspired by
Yang’s work. However, our scheme deals with a different data sharing scenario, i.e.
non-interactive data publication with multiple data controllers. Also, the anonymisa-
tion service provider in our scheme is part of the blockchain network, which means that
anonymisation procedures are under the audit of data owners and data controllers as
well.

Encryption with Blockchain Our work is also inspired by Li’s work (J. Li et
al., 2018). Li’s proposal outsource the differential privacy procedure to a cloud service
provider (CSP) and also use additive homomorphic encryption for noise addition. How-
ever, Li’s work greatly relies on the CSP’s honesty of implement the sanitisation service.
If the CSP is compromised or collude with the data receiver, the privacy of the whole
scheme is broken. Our work use the blockchain to provide a decentralised anonymisation
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and privacy budget management service, which is more reliable, trustworthy and not
vulnerable to single-point-of-failure. The combination of blockchain with encryption has
also proved to provide privacy guarantees in decentralised systems according to previ-
ous work (L. Chen et al., 2019; Manzoor et al., 2019; Rahulamathavan et al., 2017;
Zyskind et al., 2015). Zyskind et al. (2015) design a decentralised personal data man-
agement system to allow user possessing and controlling their data. The method utilises
a symmetric encryption scheme to protect the confidentiality of the data transferred on
the network. Manzoor et al. (2019) propose a secure IoT data sharing system, which
combines a proxy re-encryption scheme and smart contracts residing on the blockchain
to allow that the data sharing is only visible between the owner and the intended per-
son. Rahulamathavan et al. (2017) instead combine attribute-based encryption with
blockchain to provide a decentralised data sharing system with both confidentiality and
access control. L. Chen et al. (2019) develop a blockchain-based sharing system for
electronic health record with searchable encryption to support complex query on the
data. In our work, homomorphic encryption is integrated with blockchain to provide
data confidentiality, meanwhile supporting the computation on encrypted data.

5.6 Conclusion

In this chapter, we proposed a novel privacy-preserving data sharing scheme with dif-
ferential privacy, blockchain and encryption. Our contributions can be summarised as
follows.

• A blockchain-based data publication approach to manage privacy budget con-
sumption as well as data controllers’ analytic functions through autonomous smart
contracts according to data owner privacy and data-utility requirements.

• A decentralised anonymisation service provider performing anonymisation service
for data owners with additive homomorphic encryption to guarantee the confiden-
tiality of data.

• Implementation and evaluation by means of the Hyperledger Fabric blockchain, as
well as discussion on data privacy and utility trade-off.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a roadmap for data controllers to process data in accordance
with the new data protection regulation GDPR. We first presented a risk-based approach
to investigate personal data types in a data anonymisation scenario from a combination
of both legal and technical perspectives. Subsequently, a privacy-risk mining framework
based on machine learning is further proposed to identify the potential risk of linkage
attack among heterogenous sanitised datasets. Following the risk analysis, we introduced
a key mechanism of differential private data publishing with blockchain technology,
i.e. using blockchain for tamper-proof privacy budget allocation. Then we presented
another solution that combines blockchain and homomorphic encryption to outsource the
differential private sanitisation process from centralised data controller to a decentralised
network organised by data owners, which enable data owners to have full control of the
sanitisation process.

We built a common terminology to describe three types of data states for anonymisation
under the GDPR. More specifically, we investigate the key meanings of three types
of data in the GDPR, i.e. pseudonymised data, anonymised data and Art.11 Data.
Then we proposed a risk-based approach to translate the legal language into technical
analysis. The proposed approach relies upon a granular analysis of three common re-
identification risks, i.e. singling out, linkability and inference and further distinguishes
between local, domain and global linkability to capture the key concepts of additional
information and pseudonymisation introduced in the GDPR. Consequently, the study
examined the robustness of practical data anonymisation techniques against these types
of re-identification risk, and then classified the output of different techniques into the
three types of data. To effectively balance data utility and data privacy requirements,
we combined the most reliable data anonymisation technique, i.e. differential privacy
with transparent privacy budget allocation scheme and a monitoring system.
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We further refined our risk-based approach by exploiting the power of machine learning,
proposing a two-stage clustering framework for mining privacy risk under dynamic data
publishing context. More specifically, the first stage is to identify the global linkability
among datasets through their common attributes; the second is to capture the local
linkability among anonymised records via overlapped attribute values. The two types of
linkability are used to estimate the privacy risk through a privacy risk tree. This privacy
risk mining framework is useful for data controllers to uncover the risk of publishing
new sanitised datasets. As such, data controllers are capable of taking the appropriate
measures toward data privacy in accordance with the GDPR.

In addition, we also considered a data sharing scenario when a data owner outsource
their data to data controller and could potentially lose control over the shared data.
We introduced a key mechanism that integrates differential privacy and blockchain to
improve the utility of data sharing for benefiting the controllers, meanwhile supporting
transparency-by-design, privacy-budget-evident tracking and monitoring of the sharing
procedure. Our approach relies on blockchain to validate the usage of privacy budget
and adaptively change its allocation via smart contracts, depending on the privacy
preferences provided by data owners. The transparency provided by the blockchain
enables the data owners to control the anonymisation process and hence enhance the
overall security of the system.

In order to resolve the trust issue between the data controller and the data owner, we
proposed an anonymisation outsourcing framework to empower data owners with full
privacy control of the anonymisation process. This framework offers a solution to the
data controller to outsource the differential privacy anonymisation process to a decen-
tralised blockchain network. In particular, this framework combines blockchain and
homomorphic encryption technologies to enable new privacy protection capabilities, i.e
decentralised anonymisation service and secure anonymisation on encrypted data. This
work also provide a solution for secure data-sharing among multiple data controllers,
where data owners customise the sanitisation of the data amounts to the utility require-
ments from multiple parties. To validate our proposed approach, we implemented a
prototype using the permissioned blockchain Hyperledger Fabric. This prototype was
further evaluated with respect to computational and communicational overheads.

In summary, the work in this thesis involved two main parts in a progressive way. We
first supported data controllers understand the essence and privacy risks of the data
they are holding. Then, we provided one solution for the controllers to better utilise the
data they collected, and to process data in a transparent and tamper-proof way. We
proposed another solution for the data controllers to outsource the anonymisation service
to a blockchain network in order to further decentralise the anonymisation process and
enable data owners to have full privacy control of their data.
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6.2 Future work

In this thesis, we focus on the different definitions of personal data and the anonymisa-
tion terminologies in the GDPR. We interpret three types of data newly emerged in the
GDPR with regard to existing anonymisation techniques. The GDPR also highlights
many other rights of data subject, for example, the right to consent, right to forgotten,
right to rectification, and right to restriction of processing etc. A very important consid-
eration is the ability to guarantee the rights of data subject from a technical perspective
rather than only rely on the legal requirements. Therefore, it is an important avenue
for future research and development to interpret these rights using technical languages
and build solutions based on the combination of legal and technical understanding.

Privacy risk assessment is important for data controllers to understand the potential
risk of privacy leakage in the data they hold and the loss caused to corresponding
individuals because of the leakage. This work focuses on the risk of personal data
leakage when publishing heterogeneous datasets. The risk of leakage occurs when there
are connections between multiple datasets that are released dynamically. Although each
dataset has been anonymised separately, when these datasets are analysed together, it
is still possible to locate overlapping individuals from them. Therefore, we try to find
out possible connections between anonymised datasets through machine learning. In
addition of focusing on the possibility of leakage amongst published datasets, a future
research direction may focus on the loss caused by linkage attacks. Because each linkage
may cause different degrees of damage to user’s privacy. It is essential to establish a
reasonable model to explain the different levels of loss to both the data controller and
data subject when the linkage occurs.

In order to equip data controllers with technical solutions to request and exploit the data
from data owners, we proposed two solutions. The first solution utilises the blockchain
technology to build a decentralised system that manages the privacy budget allocation
of differential privacy mechanism. Then the second solution is proposed to outsource
the differential privacy sanitisation to a decentralised network by adopting blockchain
and homomorphic encryption. An important direction we like to further investigate is
to further develop sophisticated protocols that can support more complex data analysis
tasks based on these two frameworks.
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