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1. Introduction

In recent numerical studies [5–7,20,26], the authors examined the e7ect of a constant
source of heat placed at the centre of a reactive solid X. Reactions with and with-
out oxygen, in all class-A geometries (slab, concentric cyclinders, concentric spheres)
were considered. The background and the motivation for these numerical studies was
the thermal decomposition of combustible solids such a bulk powders and coal dust,
occurring for example in many operations in the process control industry. Equipment
such as blenders, mills and screw feeders can develop into localized sources of heat
from mechanical impact or failure of a bearing. This source of heat, or ‘hot-spot’, can
be su<cient to cause slow local combustion of the surrounding material, or even ini-
tiate a self-propagating combustion wave. Clearly an understanding of the conditions
under which thermal decomposition occurs and the extent of the decomposition are
crucial for hazard prevention. In this work we study the existence and nonexistence
of steady states to the model in [5], generalized to include the combustion of gases
and non class-A shapes. That is, we imagine a gas or a solid containing a source of
heat placed arbitrarily in its interior—independent of the heat produced by chemical
reaction (see Fig. 1).
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Fig. 1. A sketch of the conFguration, showing the outer boundary �1 (or �′
1) and the inner boundary �2

(or �′
2), which coincides with the surface of the heating source (“hot-spot”). The latter is represented by

the shaded region.

Similar numerical studies [5–7,20], have been carried out in, for example, [15,27],
where the authors focus on predicting the critical initial conditions for the safe storage
of potentially exothermic materials; a study of spontaneous ignition. On the other hand,
the character and properties of a fully developed combustion wave have been addressed
in, amongst others, [14,22,23]. Analytical progress in describing the ignition event using
the equations in [5] goes back to LiñKan and Williams [19], and Kapila [16], in which
the authors develop an asymptotic theory for the ignition of a solid slab subjected to
a constant heat Mux. The former work neglects reactant consumption and in the latter
the author only addresses the gaseous problem with equidi7usion (of heat and mass).
The purpose of the present study lies in the relationship between the steady-state

solutions and the critical behaviour of the original system. This is most easily demon-
strated by considering a single equation with Dirichlet data, describing the evolution
of temperature and which can be considered as an eigenvalue problem. If one uses
the Frank–Kamenetskii approximation (reaction rate ˙ eu, where u is temperature),
it is well known that the spectrum of the steady-state problem is bounded above.
Furthermore, for a reaction-rate coe<cient smaller than the upper bound, i.e. when a
steady-state exists, the solution relaxes to one of the steady states, provided the initial
condition is small enough. For values greater than the upper bound the solution can
become inFnite in Fnite time; a situation referred to as blow-up. Moreover, a study
regarding reactant-dependent equations has been performed in [9–11], yielding results
of a similar nature. For further details see [9] and references therein. These ideas will
be made more precise in the context of our problem in a future publication, in which
we examine the behaviour (including probable multiplicity) of steady-state solutions
as various parameters are varied. Here we concentrate solely on the question of the
existence of at least one steady state.
In this work we use a reaction-rate of the type e−1=u, corresponding to the nondimen-

sionalization used in [5,6] and to the full ignition problem for both gases and solids.
We show that steady-state solutions exist for all DamkPohler numbers—a measure of
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the rapidity of the reaction (see [8] for details). The Frank–Kamenetskii approxima-
tion [12] in this model of the burning corresponds to a perturbation problem about a
reference temperature and concentration, and is derived under certain asymptotic-limit
assumptions and by assuming that the power of the heat source is asymptotically small.
This situation is entirely realistic for bulk materials such as compost, moist wood chips,
lead azide and ammonium nitrate, where the reactant consumption is very small. We
are able to demonstrate that steady-state solutions to the perturbation problem do not
exist for all Fnite DamkPohler numbers and are able to Fnd an upper limit of DamkPohler
number (above which no solution exists).
In the next section we provide some deFnitions necessary for the work that follows.

The mathematical problem is stated in Section 3 and in Section 4 we lay the foundation
for the analysis. Based on maximum and comparison principles, in Section 5 we prove
that steady-state solutions of the full problem lie in an invariant set, with respect to
boundary conditions. The proof of existence for the full problem then appears in Section
6. The remaining part of the paper is devoted to the perturbation problem in which the
Frank–Kamenetskii approximation is used.

2. Preliminaries and notation

C�(�) as the space of HPolder continuous functions in � ⊂ Rn, with exponent
06 �6 1. A norm on these spaces is deFned by

|f|C�(�) = |f|�� := sup
�

|f|+ [f]�� ;

where [f]�� := supx;y∈�|f(x)−f(y)|=|x−y|�. We shall include the space of continuous
functions C(�) among the C�(�) as those corresponding to � = 0. C�;k(�) consists
of functions whose partial derivatives up to and including order k have a Fnite | · |��
norm, so a norm on these spaces is given by

|f|C�; k (�) = |f|�k;� :=
k∑

j=0

sup
|�|=j

sup
�

|D�f|+ sup
|�|=k

[D�u]��

for multi-index �. An equivalent and more convenient norm which we will use for
estimates up to the boundary is given by

|f|�∗k;� :=
k∑

j=0

dj sup
|�|=j

sup
�

|D�f|+ dk+� sup
|�|=k

[D�u]�� ;

where d = diam(�). In the case of vector valued functions F :� → Rm, we deFne a
norm on the space C�;k(�)m :=

∏m
i=1 C�;k(�) by |F |C�; k (�)m :=

∏m
i=1 |Fi|C�; k (�), and we

can similarly deFne | · |∗ norms.
The space Lp(�) is the Banach space of pth Lebesgue integrable equivalence-classes

of functions endowed with the norm ‖f‖Lp(�) =‖f‖�p := {∫� |f|p}1=p for 16p6∞.
In the case p = 2 we shall omit the subscript on the norm and the associated inner
product. L∞(�) is the space of functions with the norm ‖f‖∞ = ess supx∈� f(x).



424 A.A. Shah, G.C. Wake /Nonlinear Analysis: Real World Applications 5 (2004) 421–439

Wk;p(�), k; p∈N, is the Sobolev space of functions with norm ‖f‖Wk;p(�)=‖f‖�k;p :=
{∫� ∑

|j|6k |Djf|p}1=p, where the derivatives Dkf are understood to exist in the weak
sense and j is a multi-index. In this and the previous norm deFnition, we shall omit
the superscript � if it is clear from the context to which region or manifold we refer.
In the case of vector valued functions F :� → Rm, we deFne a norm on the space
Wk;p(�)m :=

∏m
i=1 Wk;p(�) by ‖F‖Wk;p(�)m :=

∏m
i=1 ‖Fi‖Wk;p(�). When p = 2 and

k ¿ 0 is a noninteger, we write k =K + l, where K ∈N and 0¡l¡ 1, and deFne the
Sobolev–Slobodeckii inner product

(f; g)Wk; 2(�) := (f; g)WK; 2(�) +
∑
|j|=K

∫
�×�

(Djf(x)−Djf(y)) (Djg(x)−Djg(y))
|x − y|n+2� ;

which is used to deFne a norm ‖f‖Wk; 2(�) := (f;f)1=2Wk; 2(�) on these spaces. A more
precise deFnition and details can be found in [28]. For more details concerning HPolder
continuity see [13]. The notation X →

comp
Y will be used for the compact imbedding of a

space X in a space Y and Cm(�) is the space of scalar-valued functions on a bounded
domain �, whose derivatives up to and including order m are bounded-continuous
functions.
The symbol I is used for a zero vector.
Finally, we deFne the following partial orderings for members of Rn: Let a; b∈Rn;

we write a ≺ b if ai ¡bi, ∀i = 1; : : : ; n. Similarly we deFne a 
 b, a 4 b and a¡ b.

3. Mathematical model

For simplicity, and as in [5], we assume that the fully burnt material occupies the
same volume and has the same characteristics as the unburnt material and undergoes
reaction according to the Arrhenius law. The former assumption is quite valid for
reactions that do not involve a change of phase, and the latter assumption is common
in combustion modelling. A general form of the equations representing temperature T
and reactant mass fraction X in a combustion process is as follows:

#Cp
@T
@t′

− &∇′2T = Q′AX e−Ea=RT

#
(
@X
@t′

− DX∇′2X
)
=−AX e−Ea=RT


 on �′ (1)

in which Ea is the activation energy, # is the density of the reactant, Cp is its speciFc
heat capacity, DX its di7usivity, & is its thermal conductivity, A is the pre-exponential
constant and R is the universal gas constant. Q is the heat-release of the reaction and
the reactant occupies the bounded region �′ ⊂ R, n∈{2; 3}, between the surface of
the heat source �′

2 and the outer edge of the reactive material �′
1 (see Fig. 1). In

the case of a gaseous reactant the gas-dynamic equations are decoupled from these
equations by assuming that the reactant is a small fraction of a mostly inert mixture,
with density, speciFc heat capacity and thermal conductivity equal to #, Cp and &
respectively. The latter are constant to a good approximation when one assumes that
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the chemical heat-release is small compared to the internal energy of the mixture—the
so-called weak heat-release approximation.
On �′

1 the reactant remains unreacted at the ambient temperature T0 and at the
inner boundary �′

2 a heat Mux P̃ emanates from the hot-spot. The boundary and initial
conditions that accompany Eqs. (1) are therefore

T (x′; 0) = T̂ 0(x′); X (x′; 0) = X̂ 0(x′); T = T0(x′); X = X0(x′) on �′
1;

&
@T
@n′

= P̃(x′);
@X
@n′

+ �′(x′)X = 0 on �′
2; (2)

where n denotes the normal pointing outward from @�′=�′
1 ∪�′

2. We assume that T̂ 0
and T0, and X̂ 0 and X0 satisfy the compatibility conditions

T̂ 0 = T0; X̂ 0 = X0 on �′
1:

It is also assumed that T̂ 0 is everywhere below the temperature required for instanta-
neous combustion and X̂ 0¿ 0. It is far more convenient to work with dimensionless
variables and so we rescale as follows:

x =
x′

|x′| ; t =
&t′

#Cp|x′1|2
; u=

RT
Ea

; v=
X

|X̂ 0|C(�)
; -=

#CpDX |x′1|2
&

;

Q =
Q′R
CpEa

; �=
P̃R|x′1|
&Ea

; D=
A#Cp|x′1|2

&
; u0 =

RT0
Ea

; v0 =
X0

|X̂ 0|C(�)
;

û 0 =
RT̂ 0
Ea

; v̂0 =
X̂ 0

|X̂ 0|C(�)
; �(x) =

|X̂ 0|C(�)
|x′1|

�′(x|x′1|);

�′ �→ �; �′
1 �→ �1; �′

2 �→ �2; (3)

where |x′1|= diam(�)=2. Substituting (3) into Eqs. (1) and (2) now yields
@u
@t

−∇2u =QDve−1=u

@v
@t

− -∇2v =−Dve−1=u


 on � (4)

and

u(x; 0) = û 0(x); v(x; 0) = v̂0(x); u= u0(x); v= v0(x) on �1;

@u
@n
= �(x);

@v
@n
+ �(x)v= 0 on �2: (5)

In equation (3), D is the DamkPohler number, which is a measure of the rapidity of
the reaction, and -¿ 0 is the Lewis number, measuring the rate of transport of heat
relative to the rate of transport of the material. For gases - ≈ 1, whereas the solid limit
is - → ∞.
At this point we replace De−1=u by a more general function !(u). The reason for

this is that it will allow an easier comparison with previous works of this nature (see
for example [4]). In addition, the perturbation problem we consider in Section 7 has
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an entirely di7erent reaction rate, and so we draw the distinction now. The following
are the main assumptions on the boundary, the reaction rates !(u) and the coe<cients:
(BA) � is doubly-connected with an outer boundary �1 and inner boundary �2

satisfying @�=�1∪�2, �1∩�2 =∅, and where both enclose simply-connected regions
in Rn (see Fig. 1). We shall assume that � satisFes at least the uniform cone (and
therefore segment) property, by the choices �1; �2 ∈C2;1.
(RA) ! is either:

• Type I: HPolder continuous in u with exponent b, and is bounded both above
and below:

!(u)∈Cb(R+); 06!(u)6!u ∀u∈R+;

lim inf
s→∞

!(s)
s
= 0 uniformly: (6)

The latter condition demands sublinear growth as s → ∞. These assumptions are
consistent with a function of the type e−1=u, which corresponds to the full ignition
problem for temperature and mass fraction.

• Type II: !∈C1(R) and satisFes

!(s)¿ 0 ∀s∈R+; lim inf
s→∞

!(s)
s

¿ 0 uniformly (7)

and there exist nonnegative constants k1 and k2 such that

!(u)¿ k1 + k2u: (8)

The function eu satisFes these conditions and corresponds to a problem in which
u is a temperature perturbation, of the order of the inverse of the activation energy,
about its ambient value, and � is of the same order of magnitude. In this case the
equation for the corresponding perturbation in mass fraction is decoupled from the
temperature equation at leading order. The relevance of this problem was outlined
in the introduction and will be reiterated in Section 7.
(CA) The boundary terms satisfy u0; v0¿ 0 and

u0; v0 ∈C2; b(�1) ∩W
3
2 ;2(�1); �∈C1; b(�2) ∩W

1
2 ;2(�2);

�∈W 1;∞(�2) ∩ C1; b(�2)

with �; �¿ 0.
The steady states (using the same symbols) are found by neglecting the time varia-

tions in Eqs. (4) and (5) (after replacing e−1=u with !(u)):

∇2u+ Qv!(u) = 0

−-∇2v+ v!(u) = 0

}
on �; (9)

together with the boundary conditions

u= u0(x); v= v0(x) on �1

@u
@n
= �(x);

@v
@n
+ �(x)v= 0 on �2: (10)
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4. Fixed points of the abstract problem

The existence proofs are based on locating Fxed points of a completely continuous
(relatively compact and continuous) map using Leray–Schauder degree deg(a; b; c), an
integer measuring in a continuous fashion the number of zeros of the map. Suppose that
we seek the Leray–Schauder degree of the equality f(x)=y, where f :E ⊃ 1 → E and
y is a point in the range of f. Then a; b and c in the symbol above would respectively
represent the map f, its domain 1 and the point y. The results from degree theory
that will be relevant to our existence proofs are given in the following lemma.

Lemma 4.1 (Homotopy invariance). Let f� = I − F(x; �), where I is the identity
map and F : T1 × [0; 1]→ E is completely continuous with F(x; 0) =I. Suppose that
I �∈ @1 for all �∈ [0; 1]. Then deg(f�; 1;I) is de<ned, is independent of � and
deg(f0; 1;I) = 1.

For a proof see [25, Theorem 5.3].
We now relate BVP (9)–(10) to an abstract problem in an appropriate function space

S (selected later) which will allow us to associate it to a suitable homotopy. This in
turn will allow us to employ Lemma 4.1 to locate a Fxed point of the abstract problem,
which by design will also be a solution to BVP (9)–(10). In what follows we shall
assume that n= 3. The extension of the results to n¡ 3 is trivial. Let

u∼ := (u; v)
T ∈S×S and û∼= (û; v̂)

T ∈S×S

supposing the latter is known, and consider the system

Eu∼(x) = Rû∼=I on �

Bu∼= G2 on �1; I2u∼= G1 on �2; (11)

where the 2× 2 matrix operators E and B are given by

Eij =




∇2; i = j = 1;

−-∇2; i = j = 2;

0; i �= j;

Bij =




@
@n

; i = j = 1;

@
@n
+ �; i = j = 2;

0; i �= j:

(12)

G1 = (u0; v0), G2 = (�; 0) and I2 is the 2× 2 identity matrix. R :S×S → S×S is
the Nemystkii operator

R(û∼)(x) := v̂!(û) (Q;−1)T:
Now deFne the mapping K :S × S → S × S by Kû∼= u∼, i.e. Kû∼∈S × S is a

solution to the linear and uncoupled system (11). Thus, we have reduced our original
problem to that of Fnding a Fxed point in S × S (or a subset of S × S) of the
operator I − K , where I :S × S → S × S is the identity mapping. Similar to the
proofs in [4,9] we now construct a homotopy between I and I − K which will satisfy
enough constraints to render Lemma 4.1 applicable. Let the solution operator K of
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the linear problem be completely continuous. Further, let K be such that: u∼ = �Ku∼,
�∈ [0; 1], if and only if it is a solution of the problem

∇2u+ Q�v!(u) = 0

−-∇2v+ �v!(u) = 0

}
on �; (13)

together with the boundary conditions

u= �u0(x); v= �v0(x) on �1;

@u
@n
= ��(x);

@v
@n
+ �v= 0 on �2: (14)

Then our homotopy H :S×S → S×S is deFned by

H (u∼; �) := (I − �K)u∼; �∈ [0; 1]: (15)

Now consider the linear problem (11) for û∼∈Ca( T�) × Ca( T�). Since ! is HPolder
continuous (exponent b), R :Ca( T�) × Ca( T�) → Cab( T�) × Cab( T�) is bounded for each
a∈ [0; 1] and continuous for a=0. The existence of solutions of (11) and their regularity
follow from standard linear theory and these solutions satisfy the bounds

|u∼|∗C2; ab( T�)2 4 C
(
|Rû∼|Cab( T�)2 + |G1|C2; ab(�1)2 + |G2|C1; ab(�2)2

)
(16)

for a∈ (0; 1]. Thus we can deFne an operator K :Ca( T�)×Ca( T�)→ C2; ab( T�)×C2; ab( T�)
by

Kû∼= u∼ (17)

and it satisFes the bound

|Kû∼|∗C2; ab( T�)2 4 C
(
|û∼|Ca( T�)2 + |G1|C2; b(�1)2 + |G2|C1; b(�2)2

)
: (18)

We shall later appeal to a variational approach to show that K has an extension
(also labelled K) which is completely continuous. Ultimately, we need an extension
K :C( T�)× C( T�)→ C( T�)× C( T�), which will deFne the K in (15).

Remark 4.1. Estimate (16) is a result of standard theory but is rarely stated explicitly
in the literature. For the sake of completeness we present a sketch of the proof in the
Appendix. See [17,18], particularly the introduction, for a discussion of related BVPs.

5. A priori estimates

We shall need estimates for the classical solutions of problem (13) and (14) to ensure
that the Leray–Schauder degree is deFned—in the sense that I �∈ @1� for �∈ [0; 1].
For this we require the following result:
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Theorem 5.1. Let u; v∈C2(�) ∩ C( T�) be a solution of (9)–(10). Then

06 v6 Tv and u6 u6 Tu; (19)

where Tv= supx∈�1 v0(x), u= inf x∈�1 u0(x) and Tu is a solution of the problem

∇2 Tu=−Q!u Tv¡∞ on �;
@ Tu
@n
= �¿ 0 on �2; Tu= u0 on �1: (20)

Theorem 5.1 is a consequence of classical maximum principles and Lemma 5.1
below, which relates to the mixed boundary value problem

(∇2 + h(x))z = f(x) on �; z = z0(x) on �1;
@z
@n
+ �z = g on �2: (21)

A lower (upper) solution zl(zu) of problem (21) is deFned as

(∇2 + h)zl¿f on �; zl6 z0(x) on �1;
@zl
@n
+ �zl6 g on �2;

(∇2 + h)zu6f on �; zu¿ z0(x) on �1;
@zu
@n
+ �zu¿ g on �2: (22)

We then have

Lemma 5.1. Suppose there exists a function w¿ 0 on � ∪ @� (@� = �1 ∪ �2)
such that

(∇2 + h)w6 0 on �;
@w
@n
+ �w¿ 0 on �2: (23)

Then, for any lower solution zl of (21) the inequality zl6 z holds. The converse is
also true for upper solutions, i.e. z6 zu for any upper solution. If h6 0 and �¿ 0
then w ≡ 1 is su?cient.

For a proof see [24, Chapter 2, Section 6], and the following remark:

Remark 5.1. The proof of Lemma 5.1 is based on showing the nonpositivity, respec-
tively the nonnegativity, of the functions (z − Vu)=w and (Vl − z)=w where Vu and Vl

are upper and lower solutions deFned by (22). The result remains true for problems
having �=0 and h=0, provided �2 �= ∅. Lower and upper solutions are deFned with
these equalities in (22). Also, in the present problem w ≡ 1 will su<ce since �¿ 0
(� = 0 for the temperature equation) and !¿ 0. Therefore we can always guarantee
the existence of a function w in Lemma 5.1. The relationship between problem (21)
and the system of Eqs. (13) and (14) will become clear in the proof of Theorem 5.1,
which now follows.

Proof of Theorem 5.1. The assumption that �, namely satisFes the interior sphere con-
dition ensures that the classical maximum principles (see [24] or [13]) are applicable.
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For any solution (u; v)∈C2(�) ∩ C( T�) × C2(�) ∩ C( T�), !(u)¿ 0 and we write the
second of Eqs. (9) as(

∇2 − !
-

)
v= 0 on �;

(
@v
@n
+ �v

)
= 0 on �2; v= v0¿ 0 on �1: (24)

By Remark 5.1 we choose w ≡ 1, i.e. w satisFes (∇2 +!=-)w6 0 on � and @w=@n+
�w¿ 0 on �1. Clearly vl=0 is a lower solution satisfying (22) and vu=supx∈�1 v0(x)
is an upper solution, so that by the comparison Lemma 5.1, a classical solution v
satisFes 06 v6 Tv where Tv= sup v0. Having shown that v¿ 0 we now know that

∇2u=−Q!v6 0 on �;
@u
@n
= �¿ 0 on �2; u= u0 on �1: (25)

The weak maximum principle then asserts that the minimum is achieved on the bound-
ary @�. By the boundary point (Hopf’s) lemma and the fact that @u=@n|�2 ¿ 0, the
minimum cannot be attained on �2. Thus, u¿ u := inf x∈�2 u0. From assumption (6)
that !6!u and from the previous result that v6 Tv, we see that the solution of
the problem

∇2uu =−Q!u Tv¡∞ on �;
@uu

@n
= �¿ 0 on �2; uu = u0 on �1: (26)

is an upper solution of (25) in the sense of Remark 5.1. We label the solution of
problem (26) Tu, and obtain from Lemma 5.1 that u6 Tu. This completes the proof.

6. Existence for Type I—full reactant consumption

We now demonstrate the existence of solutions to problem (9)–(10). Throughout,
let the assumptions (BA) regarding � and @� hold. It will be necessary to extend
the solution operator K , deFned by (17), to one which is completely continuous. (In
all that follows any extensions of K will also be labelled K). We construct such an
extension by generalising K to a Sobolev space and employing imbedding properties.
Consider the linear problem

−∇2h= f on �; h= g1 on �1;
@h
@n
+ �h= g2 on �2; (27)

with f∈L2(�), g1 ∈W 3=2;2(�1), g2 ∈W 1=2;2(�2) and �∈L∞(�2). Because �i, i=1; 2,
are Lipschitz, the trace operator ;0 :Wl;2(�) → Wl−(1=2);2(�) := Wl−(1=2);2(�1) ×
Wl−(1=2);2(�2) is continuous and has a continuous right inverse - :Wl−(1=2);2(�) →
Wl;2(�), i.e. ;0(-<) = <. DeFne

g̃1 =

{
g1; x∈�1;

0; x∈�2;

then g̃1 ∈W 3=2;2(�) and we can extend it to the whole of � by Eg̃1 ∈W 2;2(�). We
now form the variational problem associated with BVP (27). Thus, we seek

w := h− Eg̃1 ∈V := { ∈W 1;2(�) : ;0 |�1 = 0}
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such that for all <∈V

A(w; <) :=
∫
�
∇< · ∇w +

∫
�2

�(;0w) (;0<) = F(<);

F(<) := − (<;f −∇2Eg̃1) +
∫
�2

g2(;0<): (28)

Note that V is a closed subspace of W 1;2(�), in fact W 1;2
0 (�) ⊂ V ⊂ W 1;2(�).

Denoting the dual space of V by V ′ we form the Gelfand triple

V ,→ L2(�) ,→ V ′; (29)

where the second imbedding is compact. Since L2(�) ⊂ V ′, f∈V ′—remember that
by the deFnition and properties of a Gelfand triple, the image of the second imbedding
is dense in V ′ (with respect to the functional norm ‖ · ‖V ′), and therefore it is possible
to approximate each functional in V ′ by the means of the L2(�)-inner product. It is
easy to show that the bilinear form A(·; ·) :V ×V → R is V -elliptic (this follows from
the V -ellipticity of its principal part) and that it is bounded below:

|A(u; u)|¿ ‖u‖21;2 and |A(u; <)|6 ‖u‖1;2 ‖<‖1;2; ∀u; <∈V;

respectively. The functional F in (28) is bounded for all <∈V and satisFes

‖F‖V ′ 6C
(
‖f‖+ ‖g1‖�13=2;2 + ‖g2‖�21=2;2

)
;

Thus, from the theory of strongly elliptic equations, we can conclude the following
about problem (28):

Lemma 6.1. Let the assumptions made above hold. In addition, assume that the sur-
face measure of �1 on @� is nonzero. Then

• Problem (27) possesses a unique solution h = g + w, where w∈V for f∈L2(�)
(Lax–Milgram).

• For some C ¿ 0 the unique solution satis<es the estimate

‖h‖�1;26C
(
‖f‖� + ‖g1‖�13=2;2 + ‖g2‖�21=2;2

)
: (30)

• The solution is in the class W 2;2(�) and satis<es

‖h‖�2;26C
(
‖u‖�1;2 + ‖f‖� + ‖g1‖�13=2;2 + ‖g2‖�21=2;2

)
: (31)

We provide a sketch of the proof of Lemma 6.1 in the Appendix (Lemma A.1).
Following the remarks at the beginning of this section we now prove the following,

based on the results above:

Theorem 6.1. The operator K :Ca( T�)×Ca( T�)→ C2; ab( T�)×C2; ab( T�) de<ned by (17)
can be extended to an operator K :C( T�)×C( T�)→ C?( T�)×C?( T�), 06 ?¡ 1

2 , which
is continuous and compact.
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Proof. Since the system of Eqs. (11) is uncoupled, from Lemma 6.1 we have that, for
û∼∈C( T�)× C( T�)

‖u∼‖W 2; 2(�)2 4 C
(‖Rû∼‖L2(�)2 + ‖G1‖W 3=2; 2(�1)2 + ‖G2‖W 1=2; 2(�2)2

)
: (32)

Thus, the operator K can be extended to K :C( T�) × C( T�) → W 2;2(�) × W 2;2(�)
and satisFes

‖Kû∼‖W 2; 2(�)2 4 C|�‖Rû∼|C( T�)2 + c(G1; G2) (33)

for positive constants C and c. Let us demonstrate that this extension K is continuous.
Let u∼1 ∈C( T�) × C( T�) and u∼2 ∈C( T�) × C( T�) be such that |u∼1 − u∼2|C( T�)2 ≺ 1. We
have, from (11), that

E(Ku∼1 − Ku∼2) = Ru∼2 − Ru∼1 on �;

B(Ku∼1 − Ku∼2) =I on �2; I2(Ku∼1 − Ku∼2) =I on �2; (34)

so that by (33), Ku∼1 − Ku∼2 satisFes

‖Ku∼1 − Ku∼2‖W 2; 2(�)2 4 C|Fu∼1 − Fu∼2|C( T�)2 ; (35)

which by the continuity of F :C( T�)×C( T�)→ C( T�)×C( T�) means that K is continuous.
Now, by the relations

W 2;2(�)→
comp

C?( T�)→
comp

C( T�); (36)

where ?¡ 1
2 , we have the complete continuity of the extension of K to K :C( T�) ×

( T�)→ C?( T�)× C?( T�).

Lemma 6.2. Let K :C( T�) × ( T�) → C( T�) × C( T�) be the completely continuous op-
erator constructed in the previous theorem. For any u∼∈C( T�)× C( T�) and �∈ [0; 1],
u∼=�Ku∼ if and only if (u; v) is a solution of (13)–(14) in the class C2; b?( T�)×C2; b?( T�),
where ?∈ [0; 12 ).

Proof. Suppose that u∼∈C( T�)×C( T�), �∈ [0; 1] and u∼=�Ku∼. Because u∼∈C( T�)×C( T�),
by the extension constructed in Theorem 6.1, �Ku∼∈C?( T�) × C?( T�) for ?∈ [0; 12 )
and therefore u∼∈C?( T�) × C?( T�) for ? = [0; 12 ). Now by (17) and (18) we Fnd
that �Ku∼∈C2; b?( T�) × C2; b?( T�) for ?∈ [0; 12 ) and therefore u∼∈C2; b?( T�) × C2; b?( T�)
for n∈ [0; 12 ).
On the other hand, suppose that (u; v)∈C2; b?( T�) × C2; b?( T�). Then the converse

follows trivially from deFnition (17) of K .

We now come to the main result concerning the full ignition problem

Theorem 6.2. Let the assumptions (BA) regarding the boundary be satis<ed.
Let g1 ∈C2; b(�1)∩W 3=2;2(�1), g2 ∈C1; b(�2)∩W 1=2;2(�2), f∈Cb( T�)∩W 1;2(�) and �∈
W 1;∞(�2) ∩ C1; b(�2). Then there exists at least one solution to the steady state of
system (4)–(5) in C2; b?( T�)× C2; b?( T�), ?∈ [0; 12 ).
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Proof. Let K :C( T�) × C( T�) → C( T�) × C( T�) be the completely continuous operator
constructed above and substitute it into (15) with S = C( T�). We have constructed a
homotopy of Fxed points of the map u∼= �Kû∼, �∈ [0; 1], where for each �, the Fxed
point is a solution of system (13) and (14) in C2; b?( T�)×C2; b?( T�), ?∈ [0; 12 ), by virtue
of the preceding lemma. Now let

Tu∼ := ( Tu; Tv)
T;

1 := {u∼∈C( T�)× C( T�) : |u∼|C( T�)2 ≺ Tu∼+ @; u∼ �= I};

where R × R � @ 
 I and Tv; u and Tu are deFned in Theorem 5.1. From Theorem
5.1 the set of solutions u∼� of u∼ = �Ku∼ have the property that {u∼�} ⊂ int1, with
strict inclusion, and since K is completely continuous, so is H (·; �) = I − �K for each
�∈ [0; 1]. It follows therefore that deg(H (·; �); 1;I) is deFned, i.e. I �∈ H (·; �) (@1)
for each �∈ [0; 1]. To sec this, suppose Frst that � = 0. Then u∼= I �∈ @1. If � �= 0
then u∼=�Ku∼ is a solution of (13)–(14) and u∼∈ int1. Thus H (·; �) �= I for all u∼∈ @1.
By Homotopy Invariance, Lemma 4.1

deg(H (·; �); 1;I) = deg(H (·; 0); 1;I) = 1; ∀�∈ (0; 1]:

Therefore, since the degree is nonzero for �= 1, the equation u∼=Ku∼ has at least one
solution u∼∈1, which satisFes the bound (18).

Notice that a-priori boundedness of all classical steady-states is a su<cient require-
ment for existence. From Section 5 we know that such solutions are always bounded.
This follows directly from the (strongly) sublinear behaviour of !(s) as s → ∞.

7. Existence and nonexistence for Type II—small reactant consumption and weak
power-sources

For many bulk materials such as moist wood chips, wool, compost, ammonium
nitrate and lead azide, the approximation of no-reactant-consumption is a valid one
since these systems vary little from their initial state. In such cases, we can go even
further and introduce the so-called large activation energy limit Ea → ∞, which leads
naturally to a Frank–Kamenetskii type problem [12] (what we have called type II) for
the temperature perturbation due to self heating. An interesting limit in the context of
induced burning is then that of a small power source, and since we are employing the
large activation energy limit, it would be natural to consider � to be O(1=Ea).
For the systems described above it is realistic to take T̂ 0 and X̂ 0 as uniform. We

can nondimensionalize essentially as before but with T = uT̂ 0 deFning the temperature
u. Let @= RT̂ 0=Ea, and note that @ is a small parameter in the large activation-energy
limit. Expanding u, v and � as

u ∼ 1 + @B; v ∼ 1− @ ; �= O(@)
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we obtain the following leading-order problem for the temperature perturbation B

Bt −∇2B= QCeB on �;
@B
@n
= � on �2; B= 0 on �1: (37)

C is a reduced DamkPohler number that depends at most algebraically on @. Notice that
the mass-fraction and temperature equations, as already mentioned, are decoupled at
this order.
We now set about studying the existence of steady-state solutions to this problem

after generalizing eB by a function !(B) that satisFes properties (7) and (8).
The matter of existence of steady-state solutions to (37) reduces to Fnding upper

and lower solutions, as has already been demonstrated in the preceding analysis. The
Leray–Schauder degree approach remains essentially unchanged. That is

Lemma 7.1. If solutions B∈C( T�) ∩ C2(�) of

∇2B=−C!(B) on �; B= 0 on �1;
@B
@n
= � on �2; (38)

satisfy B6 B6 TB, there exists at least one B∈C2; a(�), a∈ [0; 12 ), satisfying (38).

Proof. Suppose B̂� is a known function. Consider the family of linear problems of
Fnding B�; �∈ [0; 1], such that

∇2B� + Q�C!(B̂�) = 0 on �; B� = 0 on �1;
@B�

@n
= ��(x) on �2: (39)

We can deFne an operator K :Ca( T�) → C2; a( T�), B �→ B̂�, a∈ (0; 1], using the
procedure in Section 6 and the Appendix. Furthermore, by Theorem 6.1 K can be
extended to K :C( T�) → Ca( T�), where a∈ [0; 12 ), and is completely continuous. Thus
the proof of Lemma 6.2 remains valid. The only remaining requirement therefore, is
that classical solutions are bounded. For then we can apply Theorem 6.2 to conclude
the existence of at least one solution.

However, now we can show that in some cases steady-state solutions of the pertur-
bation problem do not exist. The Frst result in this direction is as follows

Lemma 7.2. Let ! satisfy (8). BVP (37) has no nonnegative steady-state solutions
for C¿C0, where k2C0 is the principal eigenvalue of

∇2?=−Ck2? on �; ?= 0 on �1;
@?
@n
= 0 on �2: (40)

Proof. For C¿C0 consider the BVP

∇2<=−C(k1 + k2<) on �; <= 0 on �1;
@<
@n
= 0 on �2: (41)

A lower solution < of this problem is deFned by

∇2<¿− C(k1 + k2<) on �; <6 0 on �1;
@<

@n
6 0 on �2: (42)
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An upper solution T< is deFned by reversing these inequalities and lower (upper) so-
lutions satisfy <6<( T<¿<). The proof of this comparison result is the same as the
proof of Lemma 5.1, with the function w∈C∞(�̃) given by a solution of the Helmholtz
problem

∇2w =−C∗w on �̃; w = 0 on �̃1;
@w
@n
= 0 on �̃2 (43)

where C∗ ¿C and �̃ ⊃⊃ � is a C∞ region with boundary �̃1∪ �̃2. The function w is
positive on � and for �̃∈Cm, w∈Wm;2(�̃). The existence of such a w follows from
Section 3.6 of [3]. The eigenfunctions wj of (43) form a complete orthonormal system
and the corresponding sequence of eigenvalues {�j}∞j=1, �j¿ 0, satisFes limj→∞ �j=∞.
Thus, we can always Fnd a C∗ ¿C and a nonnegative (on �̃) eigenfunction wj to
satisfy (43).
Clearly < ≡ 0 is a lower solution of (41), and by the relations

∇2BC =−C!(BC)6− C(k1 + k2BC) on �;

BC = 0¿ 0 on �1;
@BC

@n
= �¿ 0 on �2; (44)

we conclude that BC, a steady-state solution of (37) for C¿C0, is an upper solu-
tion of (41). Thus, 06<6 BC and by Lemma 7.1 there exists at least one solution
<∈C2; a(�), a∈ [0; 12 ). The solutions < are positive on � since ∇2<¡ 0 and therefore,
by the maximum principle, the minimum is achieved on the boundary. The boundary
point lemma prevents a minimum being attained on �2; thus < is nonnegative on T�
and is positive on �.
Let ?0 be a nonnegative eigenfunction of (40) corresponding to �0. Integrating the

identity (<∇2?0 − ?0∇2<) over � yields

0 =
∫
�
(<∇2?0 − ?0∇2<)

=
∫
�
(C?0(k1 + k2<− C0k2?0<)

= k2(C− C0)
∫
�

?0<+ Ck1

∫
�

?0: (45)

This, along with the positivity of < and ?0 on � implies that

k2(C0 − C)
∫
�

?0<= Ck1

∫
�

?0¿ 0; (46)

which in turn implies that C0¿C, a contradiction.

Finally we can show the following:

Corollary 7.1. There exists a Cu ∈ (0;∞) such that BVP (38) has a nonnegative
solution for 0¡C¡Cu and no solution for C¿Cu.
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Proof. First, we note that by the maximum and boundary-point principles solutions B
are nonnegative, provided C¿ 0. Now we deFne an upper solution TB of BVP (38) by

∇2 TB+ C!( TB)6 0 on �; TB¿ 0 on �1;
@ TB
@n

− �¿ 0 on �2 (47)

and assert that TB¿ B on TW. To see this, set E := TB−B and use (38) and (47) to obtain

∇2E+ CkE6 0 on �; E¿ 0 on �1;
@E
@n
¿ 0 on �2; (48)

where we have used the continuity of !(s) (with constant k). Note that E ≡ 0 satisFes
(48) with equality replacing the inequalities. Therefore, in the sense of lower and
upper solutions deFned by Eq. (42) (and the inequalities reversed), the function E
is nonnegative, i.e. E = TB − B¿ 0 and the assertion is proved. We shall deFne the
spectrum F of BVP (38) as the set of all C such that (38) has a nonnegative solution.
To proceed with the proof, we shall need the following:

Lemma 7.3. If C∗ ∈F ∩ (0;∞), then [0; C∗] ⊂ F.

Proof. Let B∗ be a nonnegative solution of (42) corresponding to C∗. Then

∇2B∗ =−C∗!(B∗)6− C!(B∗) on �; ∀C∈ [0; C∗): (49)

Thus, B∗ is an upper solution of (38) for any C∈ [0; C∗) with B∗¿ BC, where BC is
a solution of (38) corresponding to C. Consequently, 06 BC6 B∗ ¡∞ and therefore
by Lemma 7.1, BVP (38) has a nonnegative solution for each C6C∗.

We now demonstrate that F �= ∅. Let TB be a solution of

∇2 TB=−1 on �; TB= 0 on �1;
@ TB
@n
= � on �2: (50)

Select C1 su<ciently small that ∇2 TB6−C1!( TB). Then TB is an upper solution of (38)
with C=C1. By Lemma 7.1 a nonnegative solution of (38) exists and therefore F �= ∅.
Furthermore, by Lemma 7.3, [0; C1] ⊆ F.
Now deFne Cu = supC∈F C. To complete the proof we need to show that Cu ¡∞.

Because of the growth condition !(s)¿k1+k2s, we can apply Lemma 7.2 to conclude
that nonnegative solution to (38) exists for each C¿C0, where C0 is as deFned in
Lemma 7.2. Thus, as required, Cu6C0¡∞.

8. Concluding remarks

For any DamkPohler number, we have demonstrated the existence of steady-state
solutions to a system representing the heating of a combustible material by an internal
source. In contrast, steady-state solutions of the associated perturbation problem, arising
from a high activation-energy asymptotics approach, exist only for DamkPohler numbers
below a critical value that is characterized by the principal eigenvalue of a Helmholtz
problem.
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In forthcoming work we will advance this study by characterizing the steady states
corresponding to spherically symmetric geometries. In particular, we will present critical
values of boundary data, heat Mux and heat release at which the steady-state solutions
cease to behave as smooth functions of these parameters. This involves numerical
computations using a variant of the AUTO package [1,2]. Finally, we are exploring
the conditions for the existence and the blow-up of the full time-dependent problem
(4) and (5).
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Appendix A.

Here we shall sketch a proof of estimate (16). We let assumptions (BA) regarding
�1 and �2 be valid and consider the BVP

∇2h+ f = 0 on �; h= g1 on �1;
@h
@n
+ �h= g2 on �2; (A.1)

where f∈C�( T�) ∩W 1;2(�) and �∈W 1;∞(�2) ∩ C1; �(�2). We have

Theorem A.1. If g1 ∈C2; �(�1)∩W 3=2;2(�1) and g2 ∈C1; �(�2)∩W 1=2;2(�2), then prob-
lem (A.1) possess a unique solution h∈C2; �( T�) satisfying the estimate

|h|�∗
2; �6C

(
|f|�� + |g1|�12; � + |g2|�21; �

)
: (A.2)

In order to prove Theorem A.1 we need the following:

Lemma A.1. A solution h of problem (A.1) exists, is in the class W 2;2(�)∩W 4;2
loc (�)

and, for some C ¿ 0, it satis<es

‖h‖�2;26C
(
‖h‖�1;2 + ‖f‖� + ‖g1‖�13=2;2 + ‖g2‖�21=2;2

)
: (A.3)

Proof. Existence of a weak solution in the class W 1;2(�) is assured by Lemma 6.1.
By the smoothness properties of the boundary components and the properties of g1 and
g1 it is possible to show that h∈W 2;2(�) ∩ W 4;2

loc (�). For given that h∈W 1;2(�), in
any �′ ⊂⊂ � we can use a di7erence–quotient argument to show that the solution is
in W 1;2(�) ∩W 2;2

loc (�) and by iteration, that h∈W 1;2(�) ∩W 4;2
loc (�) with

‖h‖�′
4;26C

(‖h‖�1;2 + ‖f‖�1;2
)
: (A.4)
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For details see [13, Theorems 8.9 and 8.10]. By a change of coordinates, neighbour-
hoods G1 of the boundary �1 can be mapped to a half-space as follows: G1 ∩ � →
Gy ⊂ {y: yn ¡ 0} and G1 ∩ �1 → �y ⊂ {y: yn ¡ 0}, where yi; i = 1; n are the new
coordinates. Then by a cut-o7 function argument (see [21, Theorem 4.18]).

‖h‖�∩G′
1

2;2 6C
(
‖h‖�∩G1

1;2 + ‖f‖�∩G1 + ‖g1‖�1∩G1
3=2;2

)
(A.5)

for any G′
1 ⊂⊂ G1. A similar, but not identical, argument (again see [21]) for neigh-

bourhoods G2 of �2 leads to

‖h‖�∩G′
2

2;2 6C
(
‖h‖�∩G2

1;2 + ‖f‖�∩G2 + ‖g2‖�2∩G2
1=2;2

)
(A.6)

for any G′
2 ⊂⊂ G2. Estimates (A.4)–(A.6) and the compactness of the boundary imply

that h∈W 2;2(�) ∩W 4;2
loc (�), and combining them gives (A.3).

Proof of Theorem A.1. The existence of a solution in the class C2(�)∩C( T�) is assured
by the previous lemma and the Sobolev Imbedding Theorem:

Wk;2(�)→
comp

Cm( T�); 06m¡k − n=2:

The proof of Theorem A.1 requires a Green’s representation of the solution:

h(y) =
∫
�

C(x − y)∇2h+
∫
�1∪�2

(
h
@C
@n
(x − y)− C(x − y)

@h
@n

)
; (A.7)

where C is a fundamental solution of Laplace’s equation. Since h∈C2(�) ∩ C( T�)
and C is su<ciently smooth, the integrals in this deFnition make sense. Based on,
amongst other things, Kellogg’s Theorem in a ball ([13, Corollary 6.9]), it possible to
show that h∈C2; �(B) for any ball B ⊂⊂ � (sec [13, Lemma 6.16]). This provides the
necessary interior regularity. The boundary regularity follows from the smoothness of
the boundary components and the boundary data. One can show that on any part G of
�1 ∈C2; �, the solution is in C2; �(�∪G) (see [13, Lemma 6.18]). Finally, regularly on
the boundary component �2 follows from Theorem 6.31 in [13].

Remark A.1. In the case of a pure Neumann condition on �2 (� = 0) these results
remain valid with little or no modiFcation.
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