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The aeroacoustic source mechanism of a deep rectangular cavity with an aspect ratio
of D/L = 2.632 subjected to a turbulent boundary layer of θ/L = 0.0345 at a Mach
number of 0.2 is investigated by using a high-order accurate large-eddy simulation.
The primary aim of this study is to provide an improved understanding of the fluid-
acoustic coupling mechanism that triggers a self-sustained acoustic resonance in a deep
cavity. Various analysis methods, including Doak’s momentum potential theory that
allows for separating hydrodynamic and acoustic components, are used to provide highly
detailed investigations and findings. One of the main investigations is given to the vortex
dynamics near the cavity opening region as the primary source of noise generation.
In addition, the noise generation mechanism is quantitatively explained by the onset
of the separation region near the downstream corner ensued from the synchronised
shear layer-wall interaction. The current work extensively focuses on the fluid-acoustic
coupling mechanism, and it is found that the acoustic resonance favourably modulates
the hydrodynamic fluctuation near the upstream corner of the cavity. Furthermore, the
current study also suggests that nonlinear interactions between fundamental acoustic
resonance and higher harmonics are plausible. Based on the discussions provided in this
paper, a semi-empirical model to predict the critical freestream velocity at which a strong
fluid-acoustic coupling occurs as a function of cavity geometry and inflow boundary-layer
property is proposed.

1. Introduction

Deep cavity oscillations are often found in many engineering applications such as
safety valves (Coffman & Bernstein 1980; Galbally et al. 2015), closed side-branches in
gas transport system (Bruggeman et al. 1989; Ziada 2010), turbo-machineries (Ziada
et al. 2002; Aleksentsev et al. 2016) and in riverine environments (Perrot-Minot et al.
2020). Under certain flow conditions, the presence of airflow over a deep cavity can
excite self-sustained oscillation which couples with an acoustic mode to generate intense
aerodynamic noises. Therefore, the necessity of minimising such acoustical problems
arising from deep cavity oscillations deserves special attention.

The aerodynamic noise radiation by cavities due to the presence of the incoming
grazing flow has been studied by numerous researchers in the past. Early experimental
evidence provided by Karamcheti (1955); Heller et al. (1971); Bilanin & Covert (1973);
Tracy (1997); Ashcroft & Zhang (2005); Thangamani et al. (2012); Wagner et al. (2017)
have indicated that shallow cavities in high-speed grazing flow emit intense acoustic
radiation which composed of distinct evenly spaced frequencies. The common cavity
oscillation involves the self-sustained oscillation ensued from the feedback mechanism
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of Rossiter (1964): where Kelvin-Helmholtz disturbances are amplified in the free shear
layer, and the impingement of disturbances on the downstream corner produces acoustic
waves which propagate upstream to excite further instabilities in the shear layer to close
the feedback loop. However, for deeper cavities with larger aspect ratios (e.g. D/L� 1),
the feedback process involves the mutual interaction of the shear layer oscillation and
a depthwise acoustic mode of the cavity (Elder 1978; Ziada & Bühlmann 1992), which
generates aerodynamic noise of minimum damping (Tam 1976; Koch 2005). Consequently,
the acoustic reinforcement near the upstream corner amplifies the flow instabilities into
coherent vortices. The interaction of the latter with the downstream corner of the cavity
translates into unsteady structural loadings and undesirable aerodynamic noises.

Plumblee et al. (1962) are one of the first authors who investigated acoustic radiation
by deep cavities. They observed the maximum acoustic responses of deep cavities occurred
at frequencies close to the depthwise acoustic modes as confirmed by East (1966) and
Koch (2005). In general, cavity oscillations that involve the interplay between the shear
layer oscillation and acoustic resonance are referred to as fluid-resonant oscillations
according to Rockwell & Naudascher (1978). In this oscillation regime, the flow behaviour
and the speculated mechanism that enables the self-sustained oscillation differ from the
conventional Rossiter’s feedback model. It is suggested that the resonant acoustic mode
is the primary component that provides the upstream feedback which strongly reinforced
the shear layer oscillation (Tam & Block 1978; Tonon et al. 2011; Ziada & Lafon 2014).

According to Bruggeman (1987), the acoustic response from a flow-induced oscillation
in closed side-branches depends strongly on the ratio of the acoustic particle velocity asso-
ciated with the depthwise standing-wave to the mean flow velocity and can be separated
into three main categories: low; moderate; and high acoustic pulsation with each level
describes an increase in the influence of the acoustic resonance on the receptivity of the
separated shear layer near the upstream corner. The level of pulsation is expressed by
the ratio of |ua|/Ub, where |ua| is the amplitude of the acoustic particle velocity at the
cavity opening and Ub is the centerline velocity in the main channel. At low pulsation
levels (e.g. |ua|/Ub 6 O(10−3)), the acoustic perturbation is insufficient to trigger the
formation of coherent vortices from the separated shear layer near the upstream corner.
Consequently, the streamwise growth of the hydrodynamic perturbation in the shear layer
is described by the linearised theory of an inviscid quasi-parallel free shear layer (Michalke
1972). At higher pulsation levels (e.g. |ua|/Ub > O(10−3)), the shear layer roll-up into
discrete vortices and the amplitude of oscillations is determined by the nonlinearities
(Peters 1993). Accordingly, Bruggeman et al. (1989) suggested an alternative feedback
mechanism for the fluid-resonant oscillation based on Vortex Sound Theory (Howe 2003).
This mechanism can be expressed by the following process: acoustic forcing from the
resonance on the shear layer at the upstream corner; formation of coherent vortices by
the instabilities in the separated shear layer; transfer of energy from the local flow to
the acoustic field by the interaction of convective vorticity and the acoustic resonance;
the net energy transfer to acoustic field determines the amplitude and the phase of the
feedback at the upstream corner. Based on this concept, the acoustic resonance in the
deep cavity plays an important role in destabilising the shear layer and reinforcing the
vortex coalescences. Therefore, this alternative feedback mechanism based on the energy
transfer between the vortical (hydrodynamic) and potential (acoustic) fields offers an
attractive explanation for the “lock-on” effect as observed in deep cavity experiments
(East 1966; Yang et al. 2009).

The present paper aims to provide an extended understanding of the feedback
mechanism that reinforces the self-sustained oscillation in a deep cavity, with a particular
interest in the modulation process of the shear layer oscillation and the vortex dynamics
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in the presence of acoustic resonance. Therefore, a central hypothesis of the present
paper is that the Rossiter modes provide the primary sound source, which can be further
amplified by the spatially coherent acoustic field from the acoustic resonance (Tam &
Block 1978; Gutmark & Ho 1983). Accordingly, a high-fidelity numerical simulation is
performed, from which the time history of the hydrodynamic and acoustic fields are
accurately captured around the deep cavity to facilitate the investigations.

This paper is structured and written in the following order. Section 2 introduces the
computational set-up and methods used in this study. In Section 3, the acoustic and
hydrodynamic fields around the cavity region are investigated in detail. Section 4 moves
the focus to the proposition of a modified Rossiter formula to consider the fluid-acoustic
coupling mechanism of the deep cavity in acoustic resonance. Finally, concluding remarks
are provided in Section 5.

2. Description of problem and the computational set-up

A cavity section with a length of L/h = 0.608 and depth of D/h = 1.6 enclosed in
a channel with a height of 2h is considered in the present study. The Reynolds number
based on the cavity opening length, L= 0.038 m is set toRe∞ = 174, 594 and a freestream
Mach number of M∞ = 0.2 based on the ambient speed of sound (for air) of a∞ = 340.2
m/s and the reference temperature of T∞ = 288 K are considered in this work. The
current numerical investigation employs a high-resolution implicit large-eddy simulation
(ILES) method based on a wavenumber-optimised discrete filter (Kim 2010). The filter is
applied directly to the solution (conservative variables) at every time step. It acts as an
implicit sub-grid scale (SGS) model that enforces dissipation of scales smaller than the
filter cut-off wavelength. Garmann et al. (2012) performed an extensive analysis of the
ILES technique compared to the traditional implementation of an explicit SGS model
and concluded that, ILES simulations are capable of correctly capturing the flow physics
when the grid is subjected to an appropriate resolution.

2.1. Governing equations and numerical methods

In this work, the full 3-D compressible Navier-Stokes equations (with a source term
for sponge layers included) are used, which can be expressed in a conservative form,
transformed onto a generalised coordinate system as

∂
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where the indices i = 1, 2, 3 and j = 1, 2, 3 denote the three dimensions. The vectors of
the conservative variables, inviscid and viscous fluxes are given by

Q = [ρ, ρu, ρv, ρw, ρet]
T ,

Ej = [ρuj , (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj ]
T ,
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T ,

 (2.2)

with the stress tensor and heat flux vector written as
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where ξi = {ξ, η, ζ} are the generalised coordinates, xj = {x, y, z} are the Cartesian
coordinates, δij is the Kronecker delta, uj = {u, v, w}, et = p/[(γ − 1)ρ] + ujuj/2
and γ = 1.4 for air. The local dynamic viscosity µ is calculated by using Sutherland’s
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law (White 1991). In the current set-up, ξ, η and ζ are aligned in the streamwise,
vertical and spanwise directions, respectively. The Jacobian determinant of the coordinate
transformation (from Cartesian to the generalised) is given by J−1 = |∂(x, y, z)/∂(ξ, η, ζ)|
(Kim & Morris 2002). The extra source term S on the right-hand side of (2.1) is
non-zero within the sponge layer only, which is described in Kim et al. (2010a,b). In
this paper, the freestream Mach and Reynolds numbers are defined as M∞ = U∞/a∞
and Re∞ = ρ∞U∞L/µ∞ where a∞ =

√
γp∞/ρ∞ is the ambient speed of sound and

U∞ =
√
u2∞ + v2∞ + w2

∞ is the speed of the freestream mean flow. The governing
equations are non-dimensionalised based on the streamwise cavity opening length L = 38
mm for length scales, the ambient speed of sound a∞ for velocities, L/a∞ for time scales
and ρ∞a

2
∞ for pressure, unless otherwise notified. Temperature, density and dynamic

viscosity are normalised by their respective ambient values: T∞, ρ∞ and µ∞.
The governing equations given above are solved using high-order accurate numerical

methods specifically developed for aeroacoustic simulation on structured grids. The flux
derivatives in space are calculated based on fourth-order pentadiagonal compact finite
difference schemes with seven-point stencils Kim (2007). Explicit time advancing of the
numerical solution is carried out using the classical fourth-order Runge-Kutta scheme
with the CFL number of 0.95. Numerical stability is maintained by implementing sixth-
order pentadiagonal compact filters for which the cutoff wavenumber (normalised by
the grid spacing) is set to 0.85π. In addition to the sponge layers used, characteristics-
based non-reflecting boundary conditions based on Kim & Lee (2000) are applied at
the inflow and outflow boundaries to prevent any outgoing waves from returning to the
computational domain. Periodic conditions are used across the spanwise boundary planes
unless otherwise stated. Slip (no penetration) and no-slip wall boundary conditions based
on Kim & Lee (2004) are applied at the top and bottom channel walls, respectively.

The computation is parallelised via domain decomposition and message passing
interface (MPI) approaches. The compact finite difference schemes and filters used are
implicit in space due to the inversion of pentadiagonal matrices involved, which requires
a precise and efficient technique for the parallelisation to avoid numerical artefacts that
may appear at the subdomain boundaries. A recent parallelisation approach based on
quasi-disjoint matrix systems (Kim 2013) offering super-linear scalability is used in the
present paper.

2.2. Simulation set-up and discretisation of the problem

The cavity geometry and the computational domain used in this work are shown in
figure 1. The domain of investigation comprises of x/L ∈ [−1.64, 4.93] in the streamwise
direction, y/L ∈ [−2.63, 3.29] in the vertical direction and z/L ∈ [0, 0.822] in the spanwise
direction. The entire computational domain; the inner region (physical domain) where
meaningful simulation data are obtained; and, the sponge layer zone are defined as

D∞ = {x |x/L ∈ [−1.644, 4.934], y/L ∈ [−2.632, 3.289], z/L ∈ [0, 0.822]},
Dphysical = {x |x/L ∈ [−1.644, 3.289], y/L ∈ [−2.632, 3.289], z/L ∈ [0, 0.822]},

Dsponge = D∞ −Dphysical.

 (2.4)

The physical domain, D∞ consists of a deep cavity with an aspect ratio of D/L = 2.632
enclosed in a straight rectangular channel with a channel half-height of h/L = 1.644. The
channel region is discretised by a total of 720× 270× 180 grid points in the streamwise,
vertical and spanwise directions, respectively. A total of 180 × 180 × 180 grid points
are used in the streamwise, vertical and spanwise directions, respectively, in the cavity
region. The mesh in wall-normal direction is refined close to the viscous wall y+ ≈ 1 to



A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance 5

Freestream region Sponge
region

Cavity

x/L

y/
L

-1 0 1 2 3 4

-2

-1

0

1

2

3

99 /L

(b)

Figure 1. Visualisations of the current computational domain of the deep cavity configuration
enclosed in a channel. Plotted here are: (a) the instantaneous non-dimensional Q-criterion
iso-surfaces (Q = 0.15) coloured by the non-dimensional vorticity magnitude (|ωi|), showing
the three-dimensional vortices in the turbulent boundary layer; and, (b) a spanwise view of the
computational domain used in the current numerical investigation.

ensure a sufficiently high level of near-wall grid resolution is maintained throughout the
viscous wall surfaces.

The inlet is located at x/L = −1.664 upstream of the cavity where the turbulent
inflow data is injected. The outflow boundary is placed at a relatively remote location
downstream from the cavity, allowing a sufficient distance for the vortices to dissipate.
In the current study, a precursor simulation is employed to generate the prerequisite
turbulent inflow data for the cavity simulation. The precursor simulation domain size
(Lx × Ly × Lz) was set to 4δ99 × 1δ99 × 2δ99 with 360 × 120 × 180 grid points in the
streamwise, vertical and spanwise directions, respectively. The initial boundary layer
thickness, δ99 is determined analytically based on Na & Lu (1973), and the channel
flow is initialised with the turbulent mean flow profile according to Spalding (1961).
Periodic boundary conditions are applied in streamwise and spanwise direction and
an implicit pressure gradient to maintain the desired mass flow rate is applied. The
precursor simulation is completed when the mean flow profile is converged and the
obtained instantaneous flow solutions are injected into the cavity simulation through
the inlet plane. Figure 2 shows a close agreement of the time-averaged turbulent velocity
profile and the Reynolds stresses between the current half-channel LES and a full-channel
DNS results from Lee & Moser (2015), conducted at Reτ ≈ 2600 and 2000, respectively.
The frequency spectra of the incoming turbulence are shown in figure 3 and the inflow
boundary layer information for the current simulation is listed in Table 1.

Re∞ M∞ δ99/L δ∗/L θ/L H

174,594 0.2 0.429 0.0431 0.0345 1.25

Table 1. Boundary layer parameters used as the inflow condition of the current cavity
simulation.
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Figure 2. (a) Time-averaged turbulent boundary layer profile; and, (b, c, d) Reynolds stresses
obtained from the current precursor half-channel LES (Reτ ≈ 2600) compared to the full-channel
DNS (Reτ ≈ 2000) by Lee & Moser (2015).
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Figure 3. The PSD of the streamwise velocity fluctuation, u′ ( ); vertical velocity fluctuation,
v′ ( ); and, spanwise velocity fluctuation, w′ ( ), of the precursor simulation measured on
the outlet plane in the log-law region (e.g. y+ = 500), superimposed with the tonal frequencies
( ) observed from figure 5(b).
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2.3. Definition of variables for statistical analysis

Data processing and analysis are carried out upon the completion of the simulation.
The main property required in this study is the power spectral density (PSD) function
of the pressure fluctuation around the cavity. To facilitate the following discussions, the
pressure fluctuation is defined here as:

p′(x, t) = p(x, t)− p(x), (2.5)

where p(x) is the time-averaged pressure field. Following the definitions used in Goldstein
(1976), the PSD functions of the pressure fluctuations (based on frequency and one-sided)
are then calculated by:

Spp(x, f) = lim
T→∞

P (x, f, T )P ∗(x, f, T )

T
, (2.6)

where P is an approximate Fourier transform of p, respectively, based on the following
definition:

P (x, f, T ) =

∫ T

−T
p′(x, t)e−2πift dt, (2.7)

and, ‘∗’ denotes a complex conjugate. Similarly, the magnitude and the respective phase
of the single-sided Fourier transform pressure field are calculated by

|P (x, f, T )| = 2
»
P (x, f, T )P ∗(x, f, T ), (2.8)

Φp(x, f, T ) = arctan

ß
Im[P (x, f, T )]

Re[P (x, f, T )]

™
. (2.9)

In the above equations, T represents the half-length of the time signals used for the
approximate Fourier transform. The same procedures are also performed on the velocity
field later in this paper.

3. Results and discussion

The self-sustained oscillation in deep cavities is often described as a fluid-resonant
oscillation in which the shear layer oscillation couples with a depthwise acoustic mode of
the cavity. When this happens, a distinct large-scale vortical structure will be reinforced
by the acoustic resonance, and its interaction with the downstream corner promotes a
maximum conversion of local flow energy into acoustic energy. This process is captured in
the current computational results. The iso-contour of the pressure fluctuation illustrated
in figure 4(a) shows a low-pressure region caused by the concentrated vorticity (not
shown) near the cavity opening, and the wall-pressure contours indicate the predominance
of compressive acoustic waves inside the cavity before the vortex impingement. Besides,
a noticeable low-pressure region near the top surface of the downstream wall ensued from
the separated flow is observed and will be scrutinised later in Section 3.2. Subsequently,
figure 4(b) shows the instant when the vortical structure induces sufficient downwash
velocity to reattach the flow downstream. The reattachment of the flow causes the
separation region to disappear. A rapid alteration of pressure fluctuation in the cavity is
followed afterwards to signify subsequent rarefaction wave emissions.

3.1. Pressure fluctuations and oscillation frequencies

In this section, the focus is placed on the acoustic waves which manifest as the
pressure fluctuations in the cavity. To realise this, the simulation is performed for 608,000
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Figure 4. A large-scale vortical structure identified using iso-contour of instantaneous pressure
fluctuation. Note that the flow is from left to right. The convection of the large-scale vortical
structure and the associated change in wall-pressure fluctuation; (a) prior to the impingement;
and, (b) after the impingement on the downstream corner, illustrate the aerodynamic noise
emissions.

time steps to attain 100 non-dimensional time for the wall-pressure at the cavity base
to reach a steady-periodic state. Figure 5(a) shows the time signals of the wall-pressure
fluctuation measured on the cavity base at three different streamwise positions and are
converged to a similar solution after approximately ta∞/L = 100. Subsequently, Fourier
transform is carried out on an additional non-dimensional time of approximately 540
samples (every 0.325 time unit) of the computational data over a total duration of non-
dimensional time of 175, corresponding to approximately 13 periods of the fundamental
frequency. The resulting time signals are approximately periodic in time, and any steady
component is removed prior to the Fourier transform. Different windowing functions has
been attempted and the results show the comparable spectrum composition. Figure 5(b)
shows the respective PSD of the wall-pressure signals where a fundamental frequency
peak is observed at fL/a∞ = 0.077 and the rest are superseded by higher harmonics.
The invariance of the spanwise averaged wall-pressure fluctuation with respect to different
streamwise locations on the cavity base can be understood by the fact that the wavelength
of the acoustic field is much longer than the streamwise characteristic length of the cavity
(i.e. λa >> L). Therefore, the cavity is assumed to be acoustically compact, and the
acoustic waves in the cavity can be modelled by a one-dimensional standing-wave. This
is a reasonable approximation in deep cavity configurations as the depth is usually longer
than that of in the streamwise direction.

The pressure fluctuations around the cavity can be characterised into two main
regions: local hydrodynamic fluctuation near the cavity opening; and acoustic fluctuation
around the cavity. Therefore, it is essential to decompose these pressure fields into the
hydrodynamic and acoustic components to facilitate the investigations. To achieve this,
we employ the momentum potential theory (MPT) developed by Doak (1989). Specifically
in Doak’s MPT, the momentum-density, ρu is separated into rotational and irrotational
components through a Helmholtz decomposition. The Helmholtz decomposition of ρu
may be written as:

ρu = B −∇ψ, ∇ ·B = 0, (3.1)

where B and ∇ψ are the solenoidal and irrotational components of ρu, respectively. Sub-
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Figure 5. (a) Spanwise averaged of wall-pressure fluctuation time signals; and, (b) the
corresponding PSD obtained at three different streamwise locations on the cavity base surface at
x/L = 0 ( ), x/L = 0.5 ( ); and, x/L = 1.0 ( ). The fundamental frequency is denoted
by f1, and the higher harmonics are represented by f2 = 2f1 and f3 = 3f1, respectively.

stituting (3.1) into the continuity equation yields a Poisson equation for the irrotational
component, with a source term dependent on density fluctuations,

∇2ψ =
∂ρ

∂t
. (3.2)

For a single phase continuum fluid, ψ is separated into acoustic component (irrotational
and isentropic, denoted ψA) and entropic component (irrotational and isobaric, ψE)
components, governed by the exact equations:

ψ = ψA + ψE , ∇2ψA =
1

c2
∂ρ

∂t
, ∇2ψE =

∂ρ

∂E

∂E

∂t
. (3.3)

Considering the low Mach number in this study, the entropy (thermal) contribution is
assumed to be relatively small compared to the acoustic contribution, and therefore ψE
is not included in the subsequent calculation. Then, the momentum equation in terms
of the hydrodynamic and acoustic components is obtained by substituting (3.1) into the
momentum equation, expressed as:

∂

∂t
(B −∇ψ) +∇ ·

ï
(B −∇ψ)(B −∇ψ)

ρ
− τij

ò
+∇p = 0. (3.4)

By taking the divergence of (3.4), the Poisson equation for the hydrodynamic pressure
fluctuation, p′H :

∇2p′H = SH + S̃H , (3.5)

and the Poisson equation for the acoustic pressure fluctuation, p′A:

∇2p′A = SA + S̃A, (3.6)

are derived. Accordingly, the hydrodynamic and acoustic pressure fluctuations are ob-
tained by solving the Poisson equations in (3.5) and (3.6), respectively. The numerical
implementation is described extensively in Unnikrishnan & Gaitonde (2016) and the
evaluations of the linear (SH and SA) and the non-linear source terms (S̃H and S̃A) are
detailed in Unnikrishnan & Gaitonde (2020), which are not repeated here for brevity.

Accordingly, the MPT is performed to decompose the pressure fields around the
cavity into the hydrodynamic and acoustic components. Figure 6 shows snapshots of the
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spanwise averaged instantaneous pressure fluctuation around the cavity region captured
at four points in time separated by T/4 between two adjacent points, where T = 1/f1
is the period of the oscillation at the fundamental frequency. Some discussions on the
results shown in figure 6 can be made in relation to the acoustic pressure averaged over
the bottom surface of the cavity:

χ(t) =
1

Ab

∫
Ab

p′A(xb, t)dA, (3.7)

where yb = −2.632L and Ab = LzL are the vertical coordinate and surface area of
the cavity base, respectively. Figure 6(a) shows the beginning of the oscillation cycle of
χ, where the large-scale vortex (represented by the low-pressure region) is located near
the downstream corner as shown in figure 6(e). At this instant, a complete destructive
interference between the reflected compressive and the incident rarefaction acoustic waves
resulted in a pressure equilibrium (e.g. χ = 0) in the cavity. Subsequently, downward
deflection of the shear layer and the formation of discrete low-pressure spots near the
upstream corner are observed. The former event marks the beginning of the constructive
interference of rarefaction acoustic waves in the cavity and the latter event signifies the
formation of small-scale vortices near the upstream corner.

The interaction of the prior large-scale vortex with the downstream corner intensified
as the distinct low-pressure region is located closer to the downstream wall. This generates
additional rarefaction waves which constructively interfere with that of reflected from
the cavity base. Consequently, the wall-pressure fluctuation reduces until a minimum χ is
exerted on the cavity base as shown in figure 6(b). Concurrently, the coalescence of newly
formed vortices into organised structures synchronised with the continual downward
deflection of the shear layer near the upstream corner is observed in figure 6(f ). This
is followed by the emergence of a local high-pressure region near the downstream wall
caused by the impeded shear layer that signifies the inception of stagnated flows.

As the flow field is severely retarded by the downstream corner, a highly stagnated
region is established and this is accompanying by an increase in pressure fluctuation near
the downstream wall as shown in figure 6(g). Similarly, the shear layer-wall interaction
also amplifies the low-pressure region at the top surface of the downstream wall owning to
flow separation. At this moment, a complete destructive interference between the incident
compressive acoustic waves and the rarefaction waves reflected from the cavity base is
observed in figure 6(c). Subsequently, this is followed by the successive constructive
interference in the cavity accompanied by an increase in the wall-pressure fluctuation.
The newly formed vortices near the upstream corner undergo series of amalgamations
into a large-scale vortex as represented by the distinct low-pressure region in figure 6(g).

Figure 6(d) shows the instant when the averaged acoustic wall-pressure, χ acting
on the cavity base is maximum owning to the complete constructive interference of
compressive acoustic waves. At this time, the shear layer slowly detaches from the
downstream corner which alleviates the high-pressure region from the flow stagnation.
Simultaneously, the arrival of the newly-formed large-scale vortex induces sufficient
downwash velocity to reattach the flow near the downstream corner, causing the low-
pressure region stemmed from the separation bubble to disappear as shown in figure
6(h). Accordingly, a complete destructive interference occurs when the large-scale vortex
impinges onto the downstream corner to complete a single oscillation cycle of χ.

Subsequently, the Fourier transform is performed to investigate the pressure fields
associated with the hydrodynamic and acoustic components around the cavity at the
tonal frequencies. The spatial distribution of the Fourier transformed acoustic pressure
fluctuation is shown in figure 7. Notably, the acoustic wall-pressure fluctuation, pA along
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Figure 6. Snapshots of the spanwise averaged instantaneous pressure fluctuations around the
cavity with superimposed streamlines to signify the shear layer undulations across the cavity
opening with a time interval of T/4 between two successive plots from (a) to (d) for the acoustic
component, p′A; and, from (e) to (h) for the hydrodynamic component, p′H , where T is the period
of the oscillation cycle of χ.

the upstream wall shows that the amplitude increases along with the cavity depth, and
the mode shape bears a close resemblance of a one-quarter acoustic standing-wave at the
fundamental frequency. In addition, a curve-fitted cosine function reveals the wavelength
of the standing-wave is in close agreement with the depth of the cavity. Thus, this
result confirmed that the fundamental frequency peak is the consequence of the first
depthwise acoustic resonance in the current cavity configuration. Besides, the transition
to higher acoustic mode is also apparent at higher harmonics, despite the magnitudes
being significantly weaker as revealed in figure 7(d, e). This may be attributed to the fact
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that smaller vortices arise from the pairing process at the increased passage frequency as
shown in figure 8(b, c), are generally weaker than that of a single large-scale vortex (Ziada
1994; Bravo et al. 2005). In addition, highly damped oscillations outside of the cavity
resonant frequency range may weaken the overall fluid-acoustic coupling mechanism
(Koch 2005).

In short, these spectral results reveal the current cavity configuration facilitates
an efficient conversion of the hydrodynamic energy to acoustic energy at the resonant
frequency. Therefore the possibility of a fluid-acoustic coupling between the shear layer
and the standing-wave remains an interesting point to study. Before investigating this
in more detail, it may be helpful first to discuss the hydrodynamic field near the cavity
opening in Section 3.2, followed by the subsequent interaction with the acoustic resonance
later in Section 3.3.

3.2. Hydrodynamic field and the associated noise generation mechanism

In this section, the hydrodynamic field across the cavity opening will be discussed
in detail. The previous discussion has indicated that the location of the large-scale
vortex plays a primary role in the acoustic wave emission process. Therefore, an accurate
assessment of the position and the actual path travelled by the vortical structure, which
are functions of time is important in this investigation. Generally, the location of the
vortical structure can be extracted by using the pressure minima technique. Figure 8
shows the real part of the Fourier transformed hydrodynamic pressure fluctuation around
the cavity opening region at the tonal frequencies, and the number of vortices (e.g. low-
pressure region) increases following the passage frequencies. Furthermore, the streamwise
amplification of the hydrodynamic pressure due to the coherent vortex formation at the
tonal frequencies are observed in figure 9. However, an accurate quantification of the
hydrodynamic mode based on the number of discrete low-pressure spots is difficult to
justify due to the possible influence from the separation region near the downstream
corner. To overcome this, the location of the vortical structure is identified by the
equivalent Q-criterion. According to Bradshaw (1981), is given by,

Q = εijεji −
1

2
ω2
i ≈ −∇2pH/ρ∞ = Q̃, (3.8)

where εij = 1
2 (∂ui/∂xj + ∂uj/∂xi) is the rate of strain, ωi is the vorticity of the velocity

field and∇2pH is the Laplacian of the hydrodynamic pressure field. The advantage of this
formulation has two folds, firstly (3.8) provides a link between the velocity gradient field
and the hydrodynamic pressure field to better locate position of the vortex. Secondly,
the strain-rate and vorticity fields provide physical interpretations of the velocity field,
which are useful in qualifying the following noise generation mechanism.

Figure 10 shows an oscillation cycle of χ similar to that of figure 6, with a particular
attention given to the vortex dynamics near the cavity opening region. Plotted is the
Q-criterion, Q calculated from (3.8), and superimposed with streamlines to signify the
shear layer oscillation near the cavity opening. The instant when the large-scale vortex
impinges on the downstream corner is shown in figure 10(a). Note that the large-scale
vortex core location prior to the impingement is slightly below the cavity opening
line (e.g. y/L < 0). Consequently, the interaction of the vorticity field with the front
surface of the downstream wall necessitates an imaginary mirror image of an opposite
vorticity field to satisfy the non-slip boundary condition at the wall. The presence of
near-wall vorticity translates into a low hydrodynamic pressure field since ∇2pH > 0.
This induces rarefaction acoustic waves that destructively interfere with the reflected
compressive acoustic waves in the cavity. Simultaneously, the separated shear layer
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Figure 7. Contour plots of spatial variation of the acoustic pressure fluctuation calculated by
|PA| cos(ΦpA(x, f) − Φχ(x, f)), and the distribution of the acoustic wall-pressure fluctuation
( ), curve-fitted cosine function ( ) and the total wall-pressure fluctuation ( ) in the
depthwise direction along the upstream wall (e.g. x/L = 0) at (a, b) f = f1; (c, d) f = f2; and,
(e, f ) f = f3. Note that Φχ(x, f) represents the phase of the Fourier transform of χ defined in
(3.7).
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Figure 8. Spatial variation of the hydrodynamic pressure fluctuation near the cavity opening
region, calculated by |PH | cos(ΦpH (x, f)−ΦpH (x0, f)) at (a) f = f1; (b) f = f2; and, (c) f = f3,
where ΦpH (x0, f) refers to the phase information at the upstream corner.
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Figure 9. Streamwise variation of the magnitude of Fourier transformed hydrodynamic pressure
fluctuation, |PH(x, f)| along the cavity opening (e.g. y/L = 0) at (a) f = f1, (b) f = f2 and
(c) f = f3.



A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance 15

Figure 10. The vortex dynamics near the cavity opening region. Plotted is the contour of
the Q-criterion, Q calculated from (3.8) and the superimposed streamlines to signify the gross
deflection of the shear layer. For the corresponding pressure fields, see figure 6.

emanated from the upstream corner develops small-scale vortices caused by the Kelvin-
Helmholtz instabilities before the coalescence into coherent vortices under the influence
of acoustic forcing.

As the large-scale vortex fully impinges on the front surface of the downstream wall,
the vorticity field acting on the wall is amplified and this necessitated an imaginary
mirror image of a stronger opposite vorticity field to counteract the imposed vorticity
field. As a result, additional rarefaction acoustic waves are generated, which interfere
constructively with the acoustic waves reflected from the cavity base. This is followed
by a downward deflection of the shear layer near the downstream corner, leading to the
formation of a secondary vortex as the large-scale vortex is stretched and swept down into
the cavity as shown in figure 10(b). The formation of the separated boundary layer induces
a compressive pressure field (e.g. ∇2pH < 0) on the front surface of the downstream wall,
similar to the vortex-ring/wall interaction reported by Naguib & Koochesfahani (2004).
Also, the shear layer-wall interaction formed a region of a high strain-rate field, (e.g.
Q > 0) on the downstream wall due to stagnated flow, and a high vorticity field, (e.g.
Q < 0) on the top surface of the downstream wall ensued from the flow separation. These
concurrent events mark the beginning of the overall compressive acoustic waves emission.
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As the shear layer is further displaced downward near the downstream corner as
shown in figure 10(c), the strain-rate intensified in response to a higher degree of
flow stagnation, which corresponds to further emissions of compressive acoustic waves.
Similarly, a large amplitude low-pressure region is formed near the edge of the top surface
of the downstream corner due to excessive flow separation. At the same time, the newly
formed vortices near the upstream corner begin to form a large-scale vortical structure
(represented by Q < 0) through additional vortex pairings, which is visually similar to
the “collective interaction” according to Ho & Nosseir (1981).

As the shear layer slowly detaches from the downstream corner, the high strain-
rate region by the stagnated flow gradually alleviates and the high vorticity region
reduces as the flow reattaches. Further development of vortical structure stemming
from the additional vortex pairings is observed in Figure 10(d). This is followed by
the impingement of the newly formed large-scale vortex on the downstream wall’s
front surface as shown in 10(a). As a result, a low-pressure region is exerted onto the
downstream wall and the separation region disappeared completely when the flow is fully
reattached. This type of vortex-corner interaction where the vortical structure impinges
directly onto the downstream wall is known to produce intense pressure fluctuation
similar to a dipole source (Tang & Rockwell 1983).

In the current investigation, the separation bubble formation is synchronised with
the acoustic pressure fluctuation in the cavity and dependent upon the shear layer’s
vertical displacement near the downstream corner. To illustrate this, a few representative
parameters are first introduced. The separation bubble’s upper and lower surfaces are
defined by the iso-lines of zero streamwise velocity (e.g. u = 0). Then, the area of the
separation bubble region (ASB) is defined by integrating the wall-normal distance along
these iso-lines in the streamwise direction. Accordingly, the similarity in time variation
of ASB and the averaged wall-pressure fluctuation, χ is shown in figure 11. From figure
12, the periodic pulsation of the separation bubble around the downstream corner of
the cavity indicates there is a significant change in flow momentum (both vertically and
horizontally), resulting in a strong periodic wall-pressure fluctuation which translates
into sound emissions. Therefore, it is speculated that the onset of the separation bubble
as a consequence of the shear layer undulation could be used as an indication of the
acoustic emission process.

From the discussion above, it is clear that the interaction of the large-scale vortex
(vorticity field) with the downstream corner mainly contributes to the rarefaction (low-
pressure) acoustic waves inside the cavity. In contrast, the stagnation (strain-rate field)
and separation flow caused by the undulation of the shear layer near the downstream
corner are jointly responsible for compressive (high-pressure) acoustic waves emission
inside the cavity. Therefore, it may be possible to describe the aerodynamic noise
generation owning to the unsteady loading near the downstream corner in term of a
surface source according to Curle (1955). Another possible explanation of the noise
generation mechanism can be attributed to the shear layer deflection across the cavity
opening (Elder 1980). Specifically, Dai et al. (2015) suggested that the shear layer
oscillation couples with the cavity acoustic mode through an explicit force-balance
relationship between the two sides (i.e. cavity opening and the cavity base). Accordingly,
figure 13(a, b) shows the space-time contour plots of the rate of change of decomposed
vertical momentum-density across the cavity opening (e.g. y/L = 0), where the solenoidal
component, By induced by the large-scale vortex is highly localised in space compared
to the uniformly distributed irrotational component, ∇ψA. By integrating the vertical
momentum-density rate, d(ρv)/dt across the cavity opening in the streamwise direction,
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Figure 11. Time variation of the separation bubble area, ASB (shown by the histogram) caused
by flow separation/reattachment near the top surface of the downstream corner. Plotted also
is the averaged acoustic wall-pressure fluctuation exerted on the cavity base, χ ( ) to signify
the following flow events: the minimum point (a) indicates the beginning of the downward
deflection of the shear layer, leading to the formation of low-pressure region ensued from the
flow separation at the top surface of the downstream corner. The equilibrium point (g) indicates
the disappearance of separation region due to the reattached flow by the arrival of the large-scale
vortex near the downstream corner.

the total mass flow rate, ṁ is separated into the solenoidal and irrotational components
by:

dṁA

dt
(t) = − 1

dt

∫ L

0

∇ψA(x, y = 0) dx, (3.9a)

dṁH

dt
(t) =

1

dt

∫ L

0

By(x, y = 0) dx. (3.9b)

From figure 13(c), it is apparent that the rate of change of the acoustical mass flow
rate across the cavity opening is proportional to the acoustic force exerted on the cavity
base, that is:

dṁA

dt
(t) ∝ χ(t). (3.10)

A similar relationship was inferred for shallow cavity flows by Rowley et al. (2002).
Furthermore, the present result shows that the force exerted across the cavity opening is
predominantly associated with the acoustic component, which may be useful in explaining
the synchronised oscillation of the shear layer with the acoustic field in the cavity.

3.3. Fluid-acoustic coupling mechanism

In Section 3.1, it is evident that the fundamental resonant frequency with a mode
shape similar to a one-quarter wave is presented in the cavity. Therefore, it bears the
question of whether an effective coupling mechanism exists between the shear layer and
the acoustic resonance to facilitate this formation. As mentioned, past investigations have
indicated the acoustic resonance has a deterministic role on shear layer oscillation, par-
ticularly near the receptivity of the shear layer (e.g. upstream corner). Therefore, a better
understanding of the phase relationship between the region of maximum receptivity of
the shear layer and the acoustic resonance is crucial in this investigation. One plausible
way to achieve this is to invoke the one-dimensional plane wave approximation, whereby
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Figure 12. Distribution of spanwise averaged instantaneous streamwise velocity in and around
the separation bubble near the top surface of the downstream wall at the indicated time instants
in figure 11. The contours (left) are superimposed with streamlines to visualise the deflection of
the shear layer; and (right) are superimposed with instantaneous velocity vectors and the dashed
lines are used to indicate the surfaces of separation bubble by iso-lines at which the streamwise
velocity is zero (e.g. u = 0).

the standing-wave induces acoustic particle velocity primarily in the vertical direction.
This approximation is justified for the current cavity configuration based on our previous
observation in Section 3.1, that the acoustic pressure field bears a close resemblance to
a one-quarter vertical standing-wave. Accordingly, Fourier transform is performed on
the space-time vertical velocity fluctuation across the cavity opening and the respective
magnitude, |V (x, f)| and phase, Φv(x, f) at the tonal frequencies are plotted in figure
14.
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Figure 13. Space-time contour plots of (a) the solenoidal (hydrodynamic) component; (b) the
irrotational (acoustic) component of the rate of change of vertical momentum-density, ∂(ρv)/∂t
across the cavity opening (e.g. y/L = 0); and, (c) the force-balance relationship between the
averaged acoustic wall-pressure fluctuation at the cavity base, χ(t) ( ), rate of change of
acoustical mass flow rate, dṁA(t)/dt ( ) and hydrodynamic mass flow rate, dṁH(t)/dt ( )
across the cavity opening.

At the resonant frequency, the streamwise amplification follows almost a linear
fashion reaching up to x/L ≈ 0.55 before reduces to a local minimum and rises to
a concentrated peak near the downstream corner as shown in figure 14(a). The for-
mer reduction is caused by the nonlinear saturation mechanism, which prevents the
unbounded growth of vortex strength. The latter is caused by the intensified strain-rate
field generated by the shear layer-wall interaction discussed in Section 3.2. In addition, the
cosine of the phase difference, cos[Φv(x, f1)−Φχ(x, f1)] as shown in figure 14(a) reveals a
region of frequency modulation where the velocity fluctuation near the upstream corner
remains highly synchronised with the averaged acoustic wall-pressure fluctuation at the
cavity base, χ. This demonstrates the important point that the vertical velocity oscillation
in the separated shear layer is highly controlled by the depthwise acoustic resonance.
Subsequently, the modulated shear layer oscillation and the subsequent amalgamation of
vortices at the resonance state are manifested through the linear amplification regime.

At the first harmonic frequency, an exponential streamwise amplification of the
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Figure 14. Streamwise variation of magnitude and phase of the Fourier transformed vertical
velocity fluctuation, V (x, f) across the cavity opening (e.g. y/L = 0) at (a, b) f = f1; (c, d)
f = f2; and, (e, f ) f = f3 . In plots (a, c, e), the magnitude |V (x, f)| is represented by ( )
and the regression lines ( ) are used to indicate the amplification rate(s). In plots (b, d, f ),
the cosine of the phase difference, cos[Φv(x, f)−Φχ(x, f1)] is shown by ( ), while the dashed
line ( ) is used to denote cos[Φv(x, f)−Φχ(x, f2)] in (d) and cos[Φv(x, f)−Φχ(x, f3)] in (f ),
respectively.

vertical velocity fluctuation is observed near the upstream region (e.g. x/L < 0.15).
It is then followed by the transition to a linear amplification rate up to approximately
x/L ≈ 0.6 before the onset of nonlinear saturation as shown in figure 14(c). The former
exponential amplification rate can be explained by the lack of acoustic reinforcement due



A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance 21

to the out-of-phase relationship (e.g. cos[Φv(x, f2) − Φχ(x, f2)] < 0) near the upstream
region (e.g. x/L < 0.15) as shown in figure 14(d). Therefore, the formation of coherent
vortices is retarded and resulting in a free shear layer oscillation that may be described
by the linear theory (Michalke 1972). The transition to a linear amplification begins
when the vertical velocity fluctuation is in-phase (e.g. cos[Φv(x, f2) − Φχ(x, f2)] > 0)
near x/L ≈ 0.15. In this linear amplification regime, the hydrodynamic instabilities are
amplified and evolved into coherent vortex structures in response to the synchronised
acoustic forcing. Subsequently, this is followed by an onset of the nonlinear saturation
before rises to a concentrated velocity peak near the downstream corner caused by the
intensified strain-rate field.

At second harmonic frequency, the exponential streamwise amplification near the
upstream region is replaced by a primary linear amplification as shown in figure 14(e),
thus implies the acoustic reinforcement based on the evidence provided above. This is
apparent in figure 14(f ) that the vertical velocity fluctuation near the upstream region
is highly in-phase with χ at both resonant frequency (e.g. cos[Φv(x, f3)−Φχ(x, f1)] > 0)
and second harmonic frequency (e.g. cos[Φv(x, f3) − Φχ(x, f3)] > 0). Similarly, it is
also noticeable that the transition to a secondary linear amplification occurs when the
vertical velocity fluctuation begins to oscillate in synchrony with the acoustic field near
x/L ≈ 0.25. As a result, this additional reinforcement translates into a larger linear
amplification. Accordingly, the vertical velocity fluctuation amplifies further before being
suppressed by the nonlinear saturation followed by a concentrated velocity peak caused
by the intensified strain-rate field.

Also, it is worth investigating how the acoustic forcing magnitude in terms of the
acoustic particle velocity varies at each tonal frequency. Based on the mode shapes of the
standing-waves observed in figure 7, the induced acoustic particle velocity at the cavity
opening can be approximated by the isentropic Euler equations according to Rienstra
(2015) and is given by:

dvA
dt

= −∇pA
ρ

, (3.11)

where vA represents the induced acoustic particle velocity and pA is the decomposed
acoustic pressure field. By considering a sinusoidal fluctuation of the acoustic pressure
and incompressibility result in:

vA =
∇pA
2πf

, (3.12)

an estimated acoustic particle velocity magnitude of approximately |vA|/U∞ ≈ 3.7×10−2,
|vA|/U∞ ≈ 7.8×10−4 and |vA|/U∞ ≈ 3.7×10−4 for the tonal frequencies respectively. At
the resonant frequency, the acoustic particle velocity magnitude corresponds to a “mod-
erate pulsation level” category, in which the nonlinear effects reinforce a concentration
of the vorticity shed at the upstream corner into a large-scale vortex (Bruggeman et al.
1991), aligned with figure 10. Coincidentally, the Strouhal number based on momentum
thickness, Stθ = f1θ/U∞ = 0.0148 is close to the subharmonic of the most-amplified
frequency of a turbulent free shear layer Stθ = fθ/U∞ = 0.024 (Ho & Huerre 1984). This
may allows an enhanced vortex merging in the forced shear layer through the “collective
interaction mechanism” according to Ho & Huang (1982). At higher harmonics, the
values of the acoustic particle velocity magnitude correspond to “low pulsation levels”,
in which the linear theory is applicable to explain the exponential amplification of the free
shear layer perturbation at the first harmonic frequency observed in figure 14(c), with the
exception to second harmonic frequency showed in figure 14(e). Therefore, it is postulated
that the transition from a free shear layer oscillation (e.g. exponential amplification) to
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Figure 15. (a) Contour plot of the space-frequency variation the Fourier transformed
Q-criterion magnitude, |Q(x, f)| across the cavity opening (e.g. y/L = 0), and the respective
spatial variation of |Q(x, f)| at (a) f = f1; (b) f = f2; and, (c) f = f3.

the formation of coherent vortices (e.g. linear amplification) necessitates the condition of
a favourable phase relationship between the hydrodynamic and acoustic particle velocity
fluctuations (e.g. cos[Φv(x, f)− Φχ(x, f)] > 0).

3.4. Convection speed of coherent vortical structures

As discussed earlier, the streamwise phase variation of the hydrodynamic pressure
fluctuation is not a reliable measurement of the hydrodynamic mode since the influence
from the separation region near the downstream corner may be significant. Therefore,
inspired by the reasoning in Section 3.2, the Q-criterion, Q calculated from (3.8) is used.
Accordingly, Fourier transform is performed and the respective magnitudes, |Q(x, f)|
are plotted in figure 15. The frequency-space contour in figure 15(a) shows the small
concentrations of Q-criterion near the upstream corner are mostly energetic near the
fundamental frequency, and much weaker at higher harmonics. In addition, the propa-
gation pathways of coherent vortical structures across the cavity opening at the tonal
frequencies are depicted in figure 15(b, c, d), in which the elevations are slightly below the
cavity opening line. To account for this variation, the phase measurement is performed
along a line in the streamwise direction at which the elevation is determined by the
maximum magnitude location. Accordingly, plotted in figure 16(a) are the streamwise
phase variation of ΦQ(x, f1) and the respective ΦQ̃(x, f1) across the cavity opening. It
is evident that the Q remains highly in-phase with χ near the upstream corner before
completing an approximate single oscillation cycle. Hence, this result reconfirmed two
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Figure 16. Streamwise phase variation of the Q-criterion, ΦQ(x, f) ( ) and the respective
Laplacian of hydrodynamic pressure field, ΦQ̃(x, f) ( ) at (a) f = f1; (b) f = f2; and, (c)

f = f3. Note here that the phase, ΦQ(x, f) and ΦQ̃(x, f) are both calculated based on the phase

reference of Φχ(x, f).

important points: that is the formation of small-scale vortices is highly in-phase with
the acoustic forcing near the upstream region (e.g. cos[ΦQ(x, f1) − Φχ(x, f1)] = 1),
thus suggests a strong evidence of an frequency modulation by the acoustic resonance
in cavity; and the phase criterion, that is ∆ΦQ(x, f1) = 2π, has to be satisfied for a
self-sustained oscillation of the first hydrodynamic mode (Rockwell & Naudascher 1979;
Knisely & Rockwell 1982; Rockwell 1983; Tuna & Rockwell 2014). Similar descriptions
are also applicable for the higher harmonics as shown in figure 16(b, c). Based on the
linear dispersion relation, the phase variation translates in an average vortex convection
speed ratio of k = Uc/U∞ = 0.386 at each tonal frequency, which is close to the value
suggested for deep cavities such as k = 0.3 by Graf & Durgin (1993), k = 0.38 by Ma
et al. (2009) and k = 0.4 by (Nelson et al. 1983; Bruggeman 1987; Bruggeman et al.
1991), respectively.

4. Prediction of the critical freestream velocity

The primary aim of this investigation is to devise a semi-empirical model to predict
the critical freestream velocity at which the incoming turbulent boundary layer couples
with a depthwise acoustic resonance in deep cavities. The motivation is driven by the
fact that the physical mechanism involves the depthwise resonance of deeper cavities with
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high aspect ratios (D/L� 1) is still relatively under-examined. Therefore, in this section,
a brief review of past attempts on the development of prediction models for cavity flows
will be discussed. Based on the observations outlined in this paper, a prediction model
of the critical freestream velocity that incorporates the cavity depth is proposed.

The physical mechanism that describes the self-sustained oscillation was first in-
troduced by the feedback mechanism, according to Rossiter (1964). Rossiter observed
shallow cavities (with L/D ranging between 1 to 4) tend to generate aerodynamic tonal
noises, then he proposed an empirical formula to explain the feedback process. In term
of Helmholtz number, it is given by:

fnL

a∞
=

n− α
a∞
Uc

+ 1
, (4.1)

where n is the hydrodynamic mode. The empirical constant, α is proposed to account for
an additional emission delay and the ratio κ = Uc/U∞ is proposed to simplify the model
by assuming a constant vortex convection velocity across the cavity opening. Thus, the
physical interpretation of the Rossiter’s feedback mechanism contained in (4.1) can be
described as the summation of time duration for the downstream propagation of vortex
at the constant convection velocity, and the subsequent upstream propagation of acoustic
wave at the speed of sound.

However, it is worth noting that the constants in Rossiter’s formula (4.1) were deter-
mined empirically and justified heuristically. Firstly, according to the authors’ knowledge,
the empirical constant, α is introduced without a strong justification. Secondly, the
assumption that vortices propagate at a universal averaged speed ratio of κ = 0.58
should deserve further scrutiny. In fact, as shown in Section 3.4, the averaged vortex
convection velocity is estimated to be κ = 0.386, which is an underestimation of the
value suggested by Rossiter (1964) and the use of α = 0 seems to improve the prediction
as demonstrated by several deep cavity investigations (Forestier et al. 2003; Larchevêque
et al. 2003; El Hassan et al. 2007; Ma et al. 2009). Therefore, it is speculated that
the necessity of reducing α is likely to be caused by the overestimation of the vortex
convection velocity. As such, the idea of the empirical constant, α and the universal
convection velocity ratio, κ that are dependent upon neither geometric property nor
the incoming flow characteristic, may be inadequate to explain the feedback mechanism
associated with deep cavity flows.

In contrast to shallow cavities, however, the depthwise dimension of deeper cavities
dictates the acoustic resonant frequency. East (1966) realised this with his experiments
and proposed an empirical formula to predict the depthwise resonant frequency of deep
cavities. By considering the depthwise characteristic length of the deep cavities, the
formula is given by,

f1D

a∞
=

a

[1 + b (D/L)
c
]
, (4.2)

where a = 0.25, b = 0.65 and c = 0.75 were determined empirically from his experiments.
East highlighted that the fundamental frequency of deep cavities is highly sensitive to the
aspect ratio of the cavity, which is not considered by Rossiter’s formula. On the ground
of this, the results from past investigations on deep rectangular cavities were gathered
for comparison with the current numerical result to reconfirm this observation.

Accordingly, figure 17(a) shows the majority of the resonant frequencies of deep
cavities reside in the region close to the frequencies predicted by the classical one-quarter
wave theory, with an acoustic pressure node at the cavity base and a pressure antinode
near the cavity opening. This indicates that the deep cavities’ resonant frequency is
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Figure 17. (a) Relationship between the period of fundamental resonant frequency and the
aspect ratio of the cavities; and, (b) the relationship of Strouhal number with the momentum
thickness of the approaching boundary layer. The symbols indicate the results from: ( ) Ahuja
& Mendoza (1995); ( ) Block (1976); ( ) L. Cattafesta et al. (1997); ( ) Erickson & Durgin
(1987); ( ) Forestier et al. (2003); ( ) Current LES; ( ) El Hassan et al. (2007); ( ) McGrath
& Olinger (1996); ( ) Yang et al. (2009). Note that some of the results were excluded in (b) due
to the lack of boundary layer information.

primarily determined by the depth and less influenced by the streamwise characteristic
length. Therefore, by a linear fit of the experiment and the current numerical results, the
depthwise fundamental frequency, f1, of deep cavities is found to be,

f1L

a∞
=

1

D/L+ ε1
, (4.3)

where ε1 = 0.68, accounts for an end correction as obtained in figure 17(a). Subsequently,
figure 17(b) shows the decrement of Strouhal number with the increased non-dimensional
momentum thickness, which can be attributed to a reduced vortex convection speed due
to the thickened boundary layer thickness according to Yamouni et al. (2013). By a
linear fit of the experiment and the current numerical results, the relationship between
the Strouhal number of the first hydrodynamic mode, f1L/U∞ and the non-dimensional
momentum thickness, θ/L can be related by,

f1L

U∞
= a1 + b1θ/L. (4.4)

where a1 = 0.39 and b1 = −0.18 are obtained from figure 17(b). Accordingly, the conver-
sion of the hydrodynamic energy to the acoustic counterpart will be maximum when the
Rossiter’s feedback mechanism is in-phase with the depthwise acoustic resonance (East
1966; Yang et al. 2009; Yamouni et al. 2013). Therefore, this criterion is met when the
first hydrodynamic mode matches with a depthwise acoustic mode of the cavity. In other
words, a maximum oscillation will be produced when the (hydrodynamic) frequency
predicted in (4.4) coincides with (acoustic) frequency predicted in (4.3). Consequently,
the critical turbulent freestream velocity at which the first hydrodynamic mode occurs
concurrently with the first depthwise acoustic mode is obtained in non-dimensional form
by dividing (4.3) with (4.4):

M∞,cr =
1

(4D/L+ ε1)(a1 + b1θ/L)
, (4.5)

with the aspect ratio, D/L and the upstream turbulent momentum thickness, θ/L
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correspond to a single value of critical freestream Mach number. Previous investigations
on deep cavity configuration have suggested that the first hydrodynamic mode often
provides the most intense noise source (Erickson et al. 1986; Ziada & Bühlmann 1992;
Kriesels et al. 1995; Arthurs & Ziada 2009). Appropriately, in situations where θ/L 6 0.2
is satisfied and the fundamental acoustic resonance is of interest, the prediction from
(4.5) is of practical importance due to the simplicity of the formula to predict the
critical turbulent freestream velocity. This is particularly useful in minimising the future
occurrence of flow-induced resonance in the early development stage.

5. Concluding remarks

A detailed understanding of the physical mechanism of the aerodynamic noise gener-
ation of deep cavity in acoustic resonance with an aspect ratio of D/L = 2.632 at Re∞ =
174, 594 subjected to an incoming turbulent boundary layer at a freestream velocity of
M∞ = 0.2 has been achieved by using a high-order accurate large-eddy simulation. The
first part of the investigation concerns pressure fluctuations around the cavity and are
separated into the hydrodynamic and the acoustic components using Doak’s momentum
potential theory (MPT). Accordingly, the decomposed acoustic pressure fluctuation
contour at each time interval illustrates the instant alteration of acoustic pressure
fluctuation inside the cavity with the synchronised shear layer oscillation across the cavity
opening. Subsequently, the Fourier transform is performed on the pressure fluctuation,
and the respective magnitude shows the presence of three dominant tonal frequencies. The
peak frequency that corresponds to the first acoustic mode bears a close resemblance to
a one-quarter wave inside the cavity, thus implying the fundamental acoustic resonance.
The transition to higher acoustic mode is apparent at higher harmonics, despite the
magnitudes being significantly weaker than the fundamental frequency. Besides, the
decomposed hydrodynamic pressure field’s contours highlight the formation of a large-
scale low-pressure region from the small-scale low-pressure spots near the upstream
corner. The impingement of the former exerts a low hydrodynamic pressure fluctuation
onto the downstream corner. Subsequently, the stagnated and separated flows ensued
from the shear layer-wall interaction is revealed by the high and low hydrodynamic
pressure fluctuation near the downstream wall, respectively.

The second part of the study analyses the hydrodynamic flow field near the cavity
opening region in detail. The Fourier transformed hydrodynamic pressure fluctuation
near the cavity opening indicates the number of vortices (e.g. hydrodynamic mode)
increases following the passage frequencies, and the respective streamwise amplification
at each tonal frequency across the cavity opening through the coherent vortex formation
is visualised. The emergence of small-scale vortices near the upstream corner and the
subsequent vortex coalescence into a large-scale vortex are captured by the time evolution
of the Q-criterion. The development of the large-scale vortex and the shear layer’s
undulation, accompanied by the alteration of the vorticity and strain-rate fields near
the downstream corner is essential in the aerodynamic noise generation. Furthermore,
the formation of the separation region caused by the flow reversal and the mass exchange
rate across the cavity opening could also help describe the aerodynamic noise generation.

The current work extensively studied the fluid-acoustic coupling mechanism between
the separated shear layer oscillation near the upstream corner and the acoustic resonance
in the cavity. It is found that the vertical velocity fluctuation is mostly in-phase with
the acoustic forcing near the upstream corner at the fundamental and second harmonic
frequencies. In both cases, linear amplification of vertical velocity fluctuation is observed
under the acoustic reinforcement. In contrast, the out-of-phase relationship observed
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in the first harmonic case can be used to explain the exponential amplification of
hydrodynamic disturbance in the free shear layer oscillation. It is observed that the
nonlinear interactions between the vertical velocity fluctuation at higher harmonics with
the fundamental acoustic resonance are plausible. Thus, this may indicate the birth of
higher harmonics may result from the “modulated instability wave” by the strong acoustic
forcing at the fundamental frequency as suggested by Kaykayoglu & Rockwell (1986).

The last part of the study is dedicated to the estimation of the averaged convec-
tion speed of the coherent vortices across the cavity opening, which is determined by
calculating the phase variation of the Q-criterion from upstream to the downstream
corner of the cavity. The phase variations at the tonal frequencies satisfied the criteria
for the onset of self-sustained oscillations at first, second and third hydrodynamic modes
respectively. By utilising the linear dispersion relationship, this gives an average speed
ratio of k = Uc/U∞ = 0.386, which is reasonably close to the values published in
previous investigations concerning deep cavities. Finally, a semi-empirical model to
predict the critical freestream velocity at which a strong fluid-acoustic coupling occurs
as a function of cavity geometry and inflow boundary-layer property is proposed. This is
particularly useful in minimising the future occurrence of flow-induced resonance in the
early development stage.
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Ziada, S & Bühlmann, ET 1992 Self-excited resonances of two side-branches in close proximity.
Journal of Fluids and Structures 6 (5), 583–601.

Ziada, Samir & Lafon, Philippe 2014 Flow-excited acoustic resonance excitation mechanism,
design guidelines, and counter measures. Applied Mechanics Reviews 66 (1).



A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance 31
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