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We present data from direct numerical simulations (DNS) of flow through channels con-11

taining large, longitudinal, surface-mounted, rectangular ribs at various spanwise spac-12

ings, which lead to secondary flows. It is shown that appropriate modifications to the13

classical log-law, predicated on a greater wetted surface area than in a plane channel,14

lead to a log-law-like region in the spanwise-averaged axial mean velocity profiles, even15

though local profiles may be very different. The secondary flows resulting from the pres-16

ence of the ribs are examined and their effects discussed. Comparing our results with the17

literature we conclude that the sense of the secondary flows is largely independent of the18

particular rib spacing whether normalised by channel depth or rib width. The strength19

of the secondary flows, however, is shown to depend on the ratio of rib spacing to rib20

width and on Reynolds number. Topological features of the secondary flow structure are21

illustrated via a critical point analysis and shown to be characterised in all cases by a free22

stagnation point above the centre of the rib. Finally, we show that if the domain size is23

chosen as a ‘minimal channel’ size, rather than a size which allows adequate development24

of the usual outer layer flow structures, the secondary flows can be affected and this leads25

inevitably to differences in the near-rib flows so that for ribbed channels, unlike plain26

channels, it is unwise to use minimal domains to identify details of the near-wall flow.27

1. Introduction28

There have been a number of recent papers exploring the nature of the flow in either29

a boundary layer or a channel when the wall surface contains longitudinal ribs whose30

height h is not a very small fraction of the boundary layer thickness, δ (or, in the case of31

a channel, the half-height, H). Typical examples include Vanderwel & Ganapathisubra-32

mani (2015); Hwang & Lee (2018); Vanderwel et al. (2019) and, most recently, Zampiron33

et al. (2020) for an open channel flow. The ribs are much larger (usually O(0.1H), say)34

and more widely spaced than the ‘riblets’ classically studied in the context of seeking to35

reduce wall drag and they generate secondary flows which may stretch through a signif-36

icant portion of the boundary layer height. The secondary flows are driven by spanwise37

Reynolds-stress gradients and are thus secondary flows of Prandtl’s second kind (Brad-38

shaw 1987; Anderson et al. 2015). An example of the kind of flow produced is shown in39

figure 1(a), which is from Hwang & Lee (2018), who used Direct Numerical Simulation40

(DNS) to compute a developing boundary layer flow over longitudinal roughness. Note,41

incidentally, that in some ways ‘roughness’ is a misnomer for this kind of surface spanwise42

heterogeneity: all surfaces are smooth and the ribs continue for the entire fetch so there43
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SECONDARY FLOWS IN TURBULENT BOUNDARY LAYERS …

B. Spatial development of a secondary flow

Before analyzing the characteristics of secondary flows in TBLs over rough walls, the spatial
development of a secondary flow in a TBL flow over a longitudinal surface roughness for P12S3
is examined in Fig. 7 using isosurfaces of the phase-averaged mean-signed swirling strength

FIG. 7. (a) Isosurfaces of the phase-averaged mean-signed swirling strength (⟨Λci⟩θin/U∞) for P12S3,
showing the formation of a secondary flow throughout the entire turbulent boundary layer with a longitudinal
roughness element. Red and blue represent positive and negative values, respectively, and the contour levels are
10% of the maximum and minimum values at x/θin = 250. The aspect ratio in each direction is (4:1:1). In (b–e),
subplots of ⟨Λci⟩δ/U∞ in (a) are drawn on the yz planes with vectors constructed using the phased-averaged
mean wall-normal (⟨v⟩/U∞) and spanwise velocities (⟨w⟩/U∞): (b) x/θin = 16, (c) 50, (d) 100 and (e) 300.
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Figure 1. (a): Contours of the swirling strength superimposed on flow vectors in the spanwise
plane, at a downstream location (x = 300θin) where the boundary layer height extends approx-
imately to the upper edge of the domain shown. θin is the inlet boundary layer momentum
thickness and θin/h ≈ 1.5, with h the rib height. From Hwang & Lee (2018). (b): sketch of the
computational channel domain. The rib height h is unity and, in the case shown, W = 2, S = 8
and the spanwise domain width Ly is 16.

is no form drag generated by pressure differences. The latter is what the usual kinds of44

surface roughness produce and a fully rough surface is normally defined as one for which45

this (pressure drag) component of surface stress completely swamps any contribution46

there may be from viscous stresses. For smooth longitudinal ribs on a smooth base, in47

contrast, the surface stress is entirely a result of viscous forces. This is an important48

caveat whenever such ribs are referred to as ‘longitudinal roughness’.49

Note that the particular rib height in figure 1(a) is about 0.08δ with centre-to-centre50

spacing of S/W = 4 (with W the rib width) and S/δ ≈ 0.8. This leads to downflow at51

the centre of the span and up-flow above the centre of each rib, a pattern also noted52

by Vanderwel et al. (2019). On the other hand, Stroh et al. (2016) used changes in the53

flat-surface boundary condition, rather than ribs, and found secondary flows whose cir-54

culations could lead to vertical flows (e.g. over the centre of the ‘quasi-ribs’) of either55

sign depended on the value of H/S (for S/W = 2). It has been suggested that differ-56

ent geometrical arrangements can lead to rather different flow structures (e.g. Yang &57

Anderson 2018; Medjnoun et al. 2018; Stroh et al. 2020). For flows with longitudinal58

ribs, apart from the boundary layer DNS of Hwang & Lee (2018) and the channel Large59

Eddy Simulation (LES) of Yang & Anderson (2018) there appears to be only the study60

containing data from (channel) DNS and a laboratory boundary layer (Vanderwel et al.61

2019) and, even more recently, wind tunnel boundary layer studies by Medjnoun et al.62

(2020) and a similar set of experiments, but in a water flume, by Zampiron et al. (2020).63

By presenting numerical studies of nominally two-dimensional smooth-wall channel64

flow with smooth-wall longitudinal ribs this paper seeks mainly to complement these65

earlier works, including comparisons where appropriate and exploring inter alia the66

effect of the rib spacing with respect to rib width, S/W , and domain (or boundary layer)67

height, H/S (see figure 1b), and also Reynolds number. In particular, we consider the68

secondary flows by examining the critical points in the cross-stream flow, guided by the69

necessary topological constraints. We also make limited comparisons with some of the70

studies available in the literature which consider, by contrast, inhomogeneous flat surfaces71

(i.e. having no physical ribs).72

A feature of all the previously published computational or laboratory studies is that73

almost none show spanwise-averaged mean velocity profiles. The exceptions are the recent74
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works of Medjnoun et al. (2018) and Zampiron et al. (2020). In all cases, including the75

present, it turns out that the profiles lie significantly below the usual log-law line expected76

in regular smooth-wall channels and, not unnaturally, have a ‘kink’ at the rib height (i.e.77

at z = h). This will also be explored here but it is worth noting immediately that the78

profiles obtained at specific spanwise locations in laboratory experiments also lie below79

the regular log law, as shown by Medjnoun et al. (2020) and Zampiron et al. (2020). It is80

much more difficult to obtain spanwise-averaged profiles below z = h in such experiments81

and that was not attempted in these latter works. Medjnoun et al. (2018, 2020) denote82

the profile offset by ∆U+ in viscous units, in common with genuine rough-wall boundary83

layers; they call this the ‘roughness function’ but we will avoid this terminology, given84

that the boundary layer is not a genuinely rough-wall flow as noted above. The present85

paper also discusses the spanwise-averaged turbulence stresses.86

The next section outlines the three quite different DNS codes used and is followed, in87

§3.1 and §3.2, by presentation of the basic flow statistics - the mean axial flow and the88

corresponding turbulence field. The influences and the nature of the secondary flows are89

discussed next, in §3.3 & §3.4, respectively, with topological considerations in §3.5 and90

final discussion and conclusions in §4.91

2. Methodologies92

The first set of computations were undertaken using a modern version of the in-house93

direct numerical simulation (DNS) code CGLES, originally written and described by94

Thomas & Williams (1997). This is a finite-difference, parallel, multi-block Navier-Stokes95

(NS) solver written so that its efficiency generally increases with mesh count. Cartesian,96

uniform meshes were used and second-order central differencing was applied to all spatial97

derivatives, with a second-order Adams-Bashforth scheme employed for time advance-98

ment using the pressure projection method. Continuity at the next time step was enforced99

implicitly by solving a Poisson equation for pressure using a parallel multi-grid method.100

The initial mesh had 192 × 512 × 320 nodes in the x, y, z directions respectively (see101

figure 1(b) for the coordinate system), with a mesh size of h/32. The domain size was102

thus 6h× 16h× 10h (i.e. 0.6H × 1.6H × 1.0H) and it contained two ribs symmetrically103

placed with S/W = 4. It should be emphasised that the domain was both too short and104

too narrow, with respect to its height (H/h = 10), to allow capture of the larger-scale105

motions common in the outer layer of channel flows. This was expected to lead, in the106

outer layer, to a rise in the mean velocity profile above the log-law, as has been frequently107

shown in the context of ‘minimal flow channel’ explorations (e.g. Jiménez & Moin 1991;108

Lozano-Durán & Jiménez 2014; MacDonald et al. 2017). It was nonetheless sufficient to109

allow generation of the secondary motions, since these are driven by processes near the110

bottom wall. The non-negligible impact on outer layer profiles and the secondary flows111

themselves will be discussed in due course. Using the same mesh size (h/32), a further112

computation was undertaken using a much larger domain size, 24h × 32h × 10h (i.e.113

2.4H × 3.2H × 1.0H), in order to reduce domain size effects and clarify the effects of114

a limited domain on the near-wall flow. No-slip conditions were applied at the bottom115

surface and on the ribs, which were captured naturally by the body-conforming cartesian116

mesh. Periodic conditions were applied in the axial and spanwise directions and the top117

of the domain was free slip.118

The flow for the above computations was driven by an applied pressure gradient,119

chosen to yield a spatially-averaged surface stress equivalent to a friction velocity of120

about uτ = 0.92 ms−1 in the converged flow. With the specified viscosity, this led to121

a channel Kármán number, Reτ = Huτ/ν, of around 850, with a normalised mesh size122



4 Ian P. Castro1, J.W. Kim2, A. Stroh3 & H.C. Lim4

of ∆+ ≈ 2.7 (in all directions, since the mesh was uniform), sufficiently low to ensure123

that the flow was adequately resolved by the DNS whilst high enough to ensure full124

turbulence. This was confirmed by estimating the smallest Kolmogorov length scale, η,125

in the flow. Assuming that energy production roughly balances dissipation, one can write126

for the latter: ε = −u′w′dU/dz, where −u′w′ is the Reynolds shear stress. Around z = 2h127

(where the stress was a maximum) this was about 0.7u2τ so that ε ≈ 1.3u3τ/h. With the128

Reynolds number huτ/ν of 85 this leads to η ≈ 0.0056h = 0.18∆, or ∆ ≈ 0.6η. Near the129

surface, where the shear stress was close to its maximum value at z = 2h and one again130

expects production to roughly balance dissipation, a similar calculation yields ∆ ≈ 1.0η.131

Moin & Mahesh (1998) pointed out that the smallest length scale that must be resolved132

can be typically significantly larger than the Kolmogorov scale (O(10η), say) so we are133

confident that the present simulations capture practically all of the dissipation spectrum.134

We identify the two computations with Reτ = 850 as LC4ml and LC4ms, for the large135

and small domain cases, respectively. Another case (on the small domain) having a lower136

Reynolds number, Reτ = 500, was also computed; this will be termed LC4ls (see table137

1).138

A second set of computations was undertaken using the same numerical method as that139

described in Vanderwel et al. (2019). Only the salient details will thus be summarised140

here. The NS solver is based on a spectral method for the velocity-vorticity equations.141

Convective and viscous terms are discretised using the 3rd order Runge-Kutta and Crank-142

Nicholson methods, respectively. An immersed boundary-type method was used to en-143

force the bottom surface morphology. Four cases were simulated, having S/W = 2, 4,144

7 and 14, all with h/H = 0.082 and on a fixed domain of size 8H × 4H × H. In these145

cases, therefore, the domain was more than adequate for capturing the outer layer flow146

structures. A mesh size of 768 × 384 × 301 nodes in the x, y, z directions, respectively,147

was employed yielding a grid size of ∆+
x = ∆+

y = 5.2 and, in the vertical (for which148

a Chebyshev polynomial grid distribution was used), a minimum ∆+
z of about 0.014.149

Again, a constant axial pressure gradient was applied, designed in these cases to yield150

a channel Kármán number of about 500. We identify the four cases as VS2, VS4, VS7151

and VS14. VS7, having S/W = 7 and four ribs within the domain span, is similar to152

the case presented by Vanderwel et al. (2019); in that paper, however, the ribs used153

were Lego blocks (to match the experiments) so had small pimples on the top surface.154

Again, no-slip conditions were applied on the bottom surfaces, axial and spanwise peri-155

odic conditions were applied at the domain ends and sides, respectively, but in these cases156

symmetry (rather than free slip) was applied at the upper boundary. In view of some157

of the results shown later, it should be mentioned that the ribs were introduced using158

an immersed boundary method (IBM), based on the technique proposed by Goldstein159

et al. (1993). This method can make the precise boundary location difficult to determine,160

so the boundary is in some sense rather ‘fuzzy’, especially around the rib corners. The161

implications will become evident in due course.162

A final computation was undertaken using a very different DNS code – CANARD163

(Compressible Aerodynamics & Aeroacoustics Research coDe) developed at the Univer-164

sity of Southampton. As indicated by the name, CANARD is a compressible flow solver165

for which the Mach number should be specified. For the present work, this was set to 0.25166

in order to keep the compressibility effects minimal and not to cause excessive computa-167

tional cost. The solver is based on a fourth-order pentadiagonal compact finite-difference168

scheme on a 7-point stencil that has been optimised for the maximum wavenumber reso-169

lution attainable (Kim 2007). Fourth-order Runge-Kutta time stepping was carried out170

with a CFL number of 1.0. Numerical stability was maintained by implementing sixth-171

order pentadiagonal compact filters for which the cut-off wavenumber (normalised by the172
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Authors Acronym Method S/W H/S W/h H/h Reτ = Huτ/ν

Stroh (present) VS2 DNS (channel) 2 3.45 1.67 11.7 486
Stroh (present) VS4 DNS (channel) 4 1.75 1.67 11.7 490

Vanderwel et al. (2019) VS4lego Lab. (boundary layer) 5.94 1.14 1.7 9.47 4000
Stroh (present) VS7 DNS (channel) 7 1.00 1.67 11.7 494
Stroh (present) VS14 DNS (channel) 14 0.50 1.67 11.7 499
Kim (present) KC4a DNS (channel) 4 1.25 2.0 10.0 550
Kim (present) KC4b DNS (channel) 4 1.6 2.0 12.5 550
Kim (present) KC4c DNS (channel) 4 1.75 1.71 12.0 550
Lim (present) LC4ml DNS (channel) 4 1.25 2.0 10.0 850
Lim (present) LC4ms DNS (channel) 4 1.25 2.0 10.0 850
Lim (present) LC4ls DNS (channel) 4 1.25 2.0 10.0 500

Hwang & Lee (2018) HL4 DNS (boundary layer) 4 1.25 2.0 10.0 292

Table 1. Details of the various data sets used. The Stroh (VS), Kim (KC) & Lim (LC) cases are
the present computations (previously unpublished apart from VS4lego) with the three method-
ologies described above. The HL4 is a case from Hwang & Lee (2018) chosen at a specific distance
downstream to give the approximate parameter values shown.

grid spacing) was set to 0.89π (Kim 2010). Characteristics-based wall boundary condi-173

tions (Kim & Lee 2004) were applied. Data for cases of S/W = 4 with H/S = 1.25, 1.6 &174

1.75 were obtained. The cases are denoted by KC4a,b,c, respectively, in table 1. A domain175

size of 8H × 4H ×H was used and the number of grid cells was 510×1,000×240 where176

each of the four ribs was resolved by 50 and 40 cells in the spanwise and vertical direc-177

tions, respectively. The first wall-normal grid spacing was maintained at ∆+
y = ∆+

z ≈ 1.1.178

Boundary conditions identical to those used in the first set of computations described179

above were applied (i.e. a slip wall at the domain top). Parallel computing based on the180

message passing interface (MPI) was implemented, for which a precise and efficient tech-181

nique specially designed for the compact finite-difference schemes and filters was used182

(Kim 2013).183

For all methodologies, a long integration time was used to reach statistical stationarity184

and all the results shown herein were then obtained using a sufficiently extensive aver-185

aging time to ensure convergence. Table 1 lists all the various cases considered here and186

includes the salient parameter values for each. The formalism used for spatial averaging187

is well-known (Raupach & Shaw 1982; Finnigan 2000) and follows from decomposing188

prognostic variables, like ui, into three components. Thus, ui = Ui + u′i + ũi, where189

Ui = 〈ui〉 is the time and space averaged velocity (the mean velocity), ũi = ui−Ui is the190

spatial variation of the time mean flow and u′i = ui−Ui− ũi is the turbulent fluctuation;191

the overbar denotes a time average and angle brackets denote a spatial average. Apply-192

ing time and spatial averaging to the momentum equations then leads to an additional193

dispersive stress term (〈ũiũj〉) in addition to the usual Reynolds stress (u′iu
′
j).194

3. Results195

3.1. Basic statistics - the axial mean flow field196

Before considering the secondary flows, it is of interest to explore some of the mean and197

turbulence statistics. In all cases except where indicated, for the region below the rib198

height extrinsic averaging is used – i.e. spatial averages taken over the axial direction199

and the entire span (including both fluid and solid regions). In every computation, the200

domain span covers an integral number of rib wavelengths. To set the scene, we show201
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Figure 2. (a) Spatially-averaged mean velocity profile for KC4a (S/W = 4, Reτ = 550), solid
green line. The green dashed line is the same profile but with intrinsic averaging below z = h.
Both lines use d = 0. The black solid line is the profile with d = 0.34h. The solid and dotted
red lines are modified log laws (see text) and the black dashed line is the classical log-law. (b)
Mean velocity profiles for S/W = 4 and various Reτ . Boundary layer cases are labelled VS4lego
(the laboratory flow of Vanderwel et al. 2019) and HL4 (the DNS of Hwang & Lee 2018). All
other data are from DNS of channel flows. Reτ values are given in the legend.

first, in figure 2(a), the time- and spatially-averaged profile of mean velocity for the KC4a202

computation, having S/W = 4, H/S = 1.25 and Reτ = 550. A number of points should203

be noted. First, the (green) profile displays a reasonable region of log-law behaviour (and204

has a mild wake region, as expected for a channel flow) but it lies well below the normal205

smooth-wall log-law, U+ = 1
κ ln(z+) + A, with κ = 0.384, A = 4.65. These values of the206

constants fit the Hoyas & Jiménez (2008) smooth channel data (at Reτ = 550) but differ207

somewhat from those at higher Reynolds numbers, as in the more recent evaluations of208

(e.g. Marusic et al. 2010). Although, interestingly, none of the published (computational)209

works on flows with spanwise surface heterogeneities actually show U+ profiles, it turns210

out that all of them yield significant profile offsets from the regular log-law; some of them211

are shown in figure 2(b) (discussed below).212

Apart from this offset the most obvious feature of the U+ profile is the kink that occurs213

at a z+ around the top of the ribs (z+ = h+ = 55). The velocity on the rib’s top surface214

is zero, leading to the relatively rapid fall in velocity as z approaches h from above.215

This kink is inevitable and would only disappear as W/S → 0 or W/S → 1. It becomes216

even more obvious if, below z = d, the spanwise averaging is done over the fluid region217

only, which is usually termed intrinsic averaging; this gives the dashed green line in the218

figure. Profiles at a specific location either between or above the ribs naturally do not219

show such kinks and we consider these later. It is of interest to compare the U+ data in220

figure 2(a) (KC4a) with those obtained for the other computations including those from221

other workers (although, as noted above, these are not presented in their own papers).222

Figure 2(b) shows U+ profiles obtained for the S/W = 4 case for different Reτ . DNS223

boundary layer data from Hwang & Lee (2018) are included (HL4), along with the224

laboratory boundary layer data of Vanderwel et al. (2019) (VS4lego, but note that these225

do not extend below about z = 1.5h). Naturally, as Reτ decreases the kink in the profile,226

which is at z+ = h+ = h
HReτ , moves to the left. More interestingly, the log-law offset227

also seems to vary from case to case. For the channel computations the offset increases228

monotonically with Reτ . It is tempting to label this offset by ∆U+, as classically done for229

genuine rough-wall surfaces. Fitting the data to a shifted log-law yields ∆U+ values of230

around 1.9, 2.0, 2.3, & 2.7, for the cases havingReτ=490, 500, 550 & 850, respectively. But231
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as argued in §1, these flows are not rough-wall flows – there is no pressure contribution to232

the surface drag – and the fits (not shown) are at best rather mediocre, not least because233

the log-linear slopes are not close to 1/κ. Note that the small domain LC4 profiles (LC4ms234

and LC4ls) show U+ eventually rising above the log-law; this is entirely a result of the235

limited extent of the domain and the locations where the profile peels off from the log-law236

are largely consistent with the findings of, for example, Lozano-Durán & Jiménez (2014)237

and Abe et al. (2018). In contrast, the LC4ml, VS4 and KC4 simulations all have much238

larger domains, which (if the channel surface were flat) should be sufficient to maintain239

the log law virtually all the way to the upper boundary. The computation of Hwang &240

Lee (2018) also used a sufficiently large domain but is of a boundary layer so the U+
241

profile exhibits an outer layer wake region.242

Close inspection of the mean flow profiles in figure 2 shows that, in each case, the243

straight-line region is not closely parallel to the regular log law (so a value for ∆U+ is244

anyway somewhat arbitrary). This can be explained at least partly by the way the ribs245

influence the effective height of the surface. Vanderwel et al. (2019) suggested an effective246

zero plane displacement height equal to the geometric average of the surface height across247

the span. For S/W = 4 this is h/4. However, it is arguably more appropriate to use the248

height at which the surface drag appears to act - as explained by Jackson (1981). An249

exact value of d/h on this basis requires a computation of the moment generated by the250

surface frictional forces on the rib’s horizontal and vertical surfaces and the Appendix251

shows how this is done. For the particular cases in figure 2 (all having S/W = 4) the252

result is d/h = 0.34, significantly above the geometric average. The U+ profile for KC4a253

is plotted against (z − d)+ with this value of d in figure 2a and it clearly increases the254

extent of the straight-line region which, nonetheless, remains non-parallel to the regular255

log law. No physically reasonable value of d/h (i.e. between zero and unity) would improve256

things. This, together with the large offset from the regular log law, leads one to consider257

whether uτ is in fact an appropriate normalising friction velocity for log laws in ribbed258

channels. The following analysis suggests that it is not because, crucially, the wetted area259

on the bottom surface of the channel is larger, and the cross-sectional area is smaller,260

than if it were a regular channel (i.e. with h = 0).261

For an axially straight ribbed channel, the axial force balance is written as:

−∆pAx = τw,ribAw,

where τw,rib = ρu2τ,rib is the effective wall stress, Ax is the cross-sectional area of the
channel in the axial direction and Aw is the wetted surface area of the wall at the
bottom. These areas are given by:

Ax = HS − hW, Aw = (S + 2h)∆x, (3.1)

where ∆x is the axial length of the channel and ∆p the pressure difference across that
length. Substituting these into the balance equation and rearranging gives

u2τ,rib = −1

ρ

dp

dx
H

[
1− (h/H)(W/S)

1 + 2h/S

]
. (3.2)

For a plain channel (h = 0), the above equation is, as usual,

u2τ = −1

ρ

dp

dx
H. (3.3)

So the friction velocity of a plain channel that yields the same pressure gradient to that
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of a ribbed channel is

uτ,rib = βuτ with β2 =
1− (h/H)(W/S)

1 + 2h/S
. (3.4)

The classical log-law for the plane channel is:

U

uτ
= U+ =

1

κ
ln
uτz

ν
+A.

If we assume that the same log-law can also be applied to a ribbed channel when nor-
malised by uτ,rib, i.e.

U

uτ,rib
=

1

κ
ln
uτ,ribz

ν
+A,

the following rearrangement can be made in order to compare it directly with the plain262

channel case:263

U+ =
1

κ

uτ,rib
uτ

ln z+ +
uτ,rib
uτ

(
1

κ
ln
uτ,rib
uτ

+A

)
.

This gives an equivalent log-law for a ribbed channel:

U+ =
1

κrib
ln z+ +Arib, (3.5)

where

κrib = κ/β and Arib = β

(
1

κ
lnβ +A

)
. (3.6)

264

Note that β is always below unity, so the results indicate that the appropriate log-law265

line for a ribbed channel will always have both a lower slope and a significant offset when266

compared to the plain channel log law. The analysis must clearly fail as S/W approaches267

unity, for the side-wall contribution to the surface wetted area, the Aw in equation (3.1),268

is still included.269

For the specific case shown in figure 2(a), for which h/H = 1/10, W/S = 1/4 and
h/S = 1/8, the above expressions give uτ,rib = 0.883uτ , κrib = 0.435 and Arib = 3.821.
The modified log law is shown as the dotted red line in the figure. The fit with the data
remains imprecise, but it is significantly improved if account is taken of the zero plane
displacement. Assuming that the flow beneath z = d can be ignored for the purpose of
defining the flow’s effective cross-sectional and surface-wetted areas, it is straightforward
to repeat the analysis, which leads to a modified value of β, given by

β2
d =

(1− h
H
W
S )− d

H (1− W
S )

1 + 2 hS − 2 dS
. (3.7)

With d/h = 0.34 this changes the values of the parameters to uτ,rib = 0.903uτ , κrib =270

0.425 and Arib = 3.958. These are minor adjustments but lead to a noticeably improved271

fit to the data, as shown by the solid red line in figure 2(a).272

A more extensive test of this modification is provided by the four VS cases, which each273

had a different value of S/W ranging from two to 14 (see Table 1). Figure 3 shows that274

provided S/W is large enough, the data collapse well to the modified log law. As noted275

above, one might anticipate that for small S/W the analysis would be less satisfactory,276

as is demonstrated by figure 3(d) (S/W = 2). Even quite large adjustments to the d/h277

used in this case do not improve the fit.278

The boundary layer data of Hwang & Lee (2018) are included in figure 2(b) and the
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Figure 3. (a-d): mean profiles vs. (z − d)+ for the four VS cases. The dashed black line is the
classical log law, the solid red line is the modified log law, equation (3.5), and the solid black
line is the profile data. (a) VS14 (S/W = 14, d/h = 0); (b) VS7 (S/W = 7, d/h = 0.1); VS4
(S/W = 4, d/h = 0.34); VS2 (S/W = 2, d/h = 0.6). (e): Hwang & Lee (2018)’s case P12S3 –
S/W = 4, as in figure 2(b).

profile has an even larger offset then the channel flow cases (as does the boundary layer
data of Vanderwel et al. 2019). In any case, the analysis clearly needs adjustment for
zero-pressure-gradient boundary layers. Consider the momentum integral equation for a
two-dimensional boundary layer, which can be written

u2τ = U2
∞
dθ

dx
− 1

ρ

dp

dx
(2θ + δ∗) (3.8)

in the usual notation. If, at a specific axial location in a zero-pressure gradient flow,
a ‘virtual’ pressure gradient can be considered to model the growth of the momentum
thickness and yield the same wall stress, we can apply the following equation locally:

u2τ = U2
∞
dθ

dx
= −1

ρ

dp

dx

∣∣∣∣
virtual

(2θ + δ∗) (3.9)
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Comparing this with equation (3.3), a channel analogy can thus be achieved by replacing279

H in the latter by (2θ+ δ∗). Using the values of momentum and displacement thickness280

given in Hwang & Lee (2018)’s paper, for this particular flow (at x/θin = 300 for their281

P12S3 case - i.e. S/W=4 in our notation) we find that 2θ+δ∗

h = 5.4. Taking the same282

value of d/h (0.34) as in the corresponding channel case and using κ = 0.41 and A = 5 as283

appropriate for this boundary layer having Reτ = 292, and noting also that Avasarkivos284

et al. (2014) found that A did not vary within the range 125 < Reτ < 550, we obtain285

β = uτ,rib/uτ = 0.775, κrib = 0.495 and Arib = 3.393. The resulting modified log law is286

shown along with the data in figure 3(e). Given the uncertainty in the precise value of287

d/h and the possible implications of a non-zero d for the momentum and displacement288

thicknesses derived by Hwang & Lee (2018), the fit to the data is acceptable - not least289

in confirming that the offset is greater for this boundary layer than for the channel case290

at the same S/W .291

We conclude that in a ribbed channel, or indeed in a similarly ribbed boundary layer,292

a reasonable fit of the velocity profile to a log law can be obtained provided one modifies293

the normalising friction velocity to account for the fact that the wetted area is larger and294

the cross-sectional area is smaller than for the corresponding plane channel. Accounting295

for the zero plane displacement further improves the fit. Nonetheless, we point out that296

there is no really convincing reason why such log-laws should appear in spanwise-averaged297

profiles when there are significant secondary flows, especially if the strength of these is298

large. This is discussed further in §3.3, when profiles at specific spanwise locations are299

presented.300

3.2. Basic statistics - the turbulence field301

Stress profiles (normalised by u2τ ) are shown in figures 4 and 5. Recall that extrinsic302

averaging (i.e. with solid regions included) is used below z = h. This is the only kind303

of averaging that ensures continuity in the momentum fluxes across z = h, as fully304

explained by Xie & Fuka (2018), who explored the whole issue in some detail, recognising305

the different possible kinds of averaging (Raupach & Shaw 1982, for example). Note first306

that, in figure 4(a) showing shear stress data for KC4a, the dispersive shear stress (caused307

by the spanwise inhomogeneity in the mean flow, generated by the secondary motions)308

remains non-zero all the way to z/H ≈ 0.6 (z/h = 6). There is thus a noticeable deviation309

up to around this height between the Reynolds stress profile and the usual straight-line310

total stress for a regular channel (shown by the dashed line). In common with the U+
311

profile there are also rapid variations in the stress gradients around the top of the ribs312

(z/H = 0.1), with the viscous stress in particular only being significant in this region and313

near z = 0, as expected. Below z = h the total stress profile includes the contribution314

to the stress at height z from the viscous side wall stresses (integrated downwards from315

the top of the rib and including the viscous stress on top of the rib). If the ratio of316

the rib volume to the computational domain volume were zero, the total extrinsic stress317

would continue along the expected straight line all the way to z = 0 (Xie & Fuka 2018).318

However, because the forcing term applied at every cell in the computation is applied also319

within the solid volume of the rib, one expects the total stress at a z below z = h to differ320

from the expected straight line by a factor equal to the ratio of the fluid volume (above321

z) to the total volume of the domain (above z). At height z the factor is
(

1− W (h−z)
S(H−z)

)
322

which, in this case, is 0.975 at z = 0, increasing to 1.0 at z = h, so the data are close to323

those expected. Small differences, especially around the top of the rib and the bottom324

surface, are probably the result of errors arising in the estimation of the friction at the325

walls.326
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Figure 4. Normalised stress profiles for case KC4a (S/W = 4). (a) Reynolds (−u′w′) and
dispersive (−〈ũw̃〉) shear stresses, along with the viscous stress (green line) and the side-wall
viscous stress (yellow line). (b) Axial normal stress (blue line) and the corresponding dispersive
stress (red line) for KC4a. Other profiles as in legend. The green dashed line (HJ in the legend)
is from the smooth-wall channel simulation of Hoyas & Jiménez (2008) at Reτ = 550.
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Figure 5. Normalised spanwise (a) and vertical (b) stress profiles for S/W = 4 cases, with the
dispersive stresses for case KC4a. The green dashed lines (HJ in the legends) are the smooth-wall
channel simulations of Hoyas & Jiménez (2008) at Reτ = 550.

Figure 4(b) shows the corresponding axial normal stress component and its dispersive327

counterpart for KC4a, along with data from the other S/W = 4 simulations. The large328

spike (especially in the dispersive contribution) centered around z = 0.1H arises because329

there is a step change in axial velocity across the horizontal plane where the velocity330

is very small just above the rib (and zero inside it). The major point to note is that,331

despite the significantly non-zero dispersive stress up to around z/H = 0.6, the LC4ml,332

VS4 and KC4a data are, above the rib, similar to the smooth-wall channel data of Hoyas333

& Jiménez (2008). Data from the small domain computation, LC4ms, are not. Similar334

behaviour is evident in the profiles of the other two normal stress components, shown in335

figure 5. For these stresses the LC4ms simulations (not shown) yield values lower than336

those from LC4ml, VS4 and KC4a (and also the smooth channel), rather than higher as337

in the axial stress case (figure 4b). As anticipated, the limited domain size has a major338

influence on the stress components as well as the structure of the secondary motions339

(see later). Indeed, the changes in the stress profiles caused by using a minimal domain340

closely follow the findings of Abe et al. (2018), who demonstrated that the spanwise and341

vertical stresses were lower than for a full domain whereas the axial stress was higher342

(as in figure 4b). This strengthens the earlier, not unexpected, conclusion that minimal343

flow channel domains cannot be relied on for flows of this kind, for if the stress profiles344
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Figure 6. Dispersive stresses for the four VS cases, which have S/W values ranging from two
to 14. (a): shear stress, with the dotted black line showing the usual total shear stress – see
figure 4(a); (b): vertical normal stress. The legends show the values of S/W for each line.

above the ribs are incorrect (as they are) then the spanwise stress gradients which are345

the essential cause of the secondary motions will be incorrect. It is also of interest that346

the dispersive components of the vertical and spanwise stresses (the lower red lines in347

figure 5) are very small; they provide a much smaller contribution to the total stress than348

is the case for the axial normal stress and the shear stress (figure 4).349

3.3. The influence of the secondary flows350

We turn now to consider the influence of the secondary flows. These will obviously affect351

the dispersive stresses. Figure 6(a) shows the dispersive shear stress and figure 6(b) the352

vertical component of the normal dispersive stress, for the four VS cases. Very similar353

plots arise if these stresses are normalised by their corresponding Reynolds stresses and354

note that above the rib height (z/H = 0.1) 〈w̃w̃〉+ never exceeds 6% of w′2
+

. As S/W355

rises the dispersive stresses become relatively larger in the outer region, although the356

strength of the secondary flows is much weaker in this region than nearer the ribs (see357

later). That their strength depends on the geometrical parameter S/W is at least sug-358

gested by figures 3(a-d), which show that the mean velocity profiles for the four (VS)359

data sets having closely constant Reτ ≈ 500 sink below the standard log law by an360

amount which increases with increasing W/S. The trend must eventually reverse, since361

when W/S = 1 there are no ribs and the regular smooth-wall log law must be recovered,362

as it must also for W/S = 0.363

A quantitative measure of the strength of the secondary motion is found by computing364

the total of (the modulus of) the swirl strength (defined in §3.4) within the region below365

z/H = 0.2, i.e. up to about twice the rib height and chosen to encapsulate the most366

energetic regions of the secondary flows generated by the ribs. Figure 7(a) shows how367

this varies with W/S for the VS cases. The data are plotted against W/S because one368

expects very small values to emerge near the two limits W/S = 0 & 1. The line in the plot369

is pure guesswork, enforcing zero values at W/S = 0 & 1. It would seem probable that the370

maximum swirl strength occurs somewhat below W/S = 0.4. These results are consistent371

with the findings of Vanderwel & Ganapathisubramani (2015). The figure includes the372

values of the dispersive stress shown in figure 6(b) at z/H = 0.15, well within the region373

used for the total swirl strength data. The variation with W/S is similar to that shown by374

the latter. Care should be exercised in interpreting the data in figure 6(a), however, since375

in these VS4-14 calculations, H/S changes significantly for the different cases (see table376

1) because the domain span is fixed, W/h is fixed, and S/W is varied by changing the377
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Figure 7. (a): Solid black circles: total modulus of swirl strength across the whole span in the
region below z/H = 0.2, for cases VS2, 4, 7 & 14, Reτ ≈ 500. Values are normalised using H
and the mean axial velocity at z = H. Smooth line added to indicate possible behaviour. The
solid red triangles are values of the vertical normal dispersive stress at z/H = 0.15, from the
data shown in figure 6(b). (b): The parameter βd, for the modified log-law, as a function of W/S.
Symbols are the four VS cases (having h/H = 0.085), dashed line through them is derived from
equation (3.7). The solid red line is from the same equation but with h/H = 0.04.

number of ribs within the span. The S/W=4 case has H/S = 1.75 and the case on the378

other side of the (speculated) location of the peak has H/S = 3.45, W/S = 0.5. Different379

values of H/S for fixed S/W , particularly if it is below H/S = 1, might be expected to380

change the secondary flow strength somewhat, as well as changing the proportion of the381

channel height over which the secondary flows are particularly noticeable. This will be382

the topic of a future study. We show in §3.5 that the secondary flows are essentially the383

same for H/S between 1.25 and 1.75 (with S/W = 4). It is worth emphasising, therefore,384

that S/W is clearly more significant than H/S, at least for the current range of the latter.385

Yang & Anderson (2018) and Medjnoun et al. (2018) both suggest that the maximum386

swirl strength occurs for H/S = O(1) as H/S varies and there is nothing in the present387

data which would contradict that; we have not studied cases for which H/S < 0.5. A388

direct measure of the size of the log-law shift could conveniently be taken as the value389

of βd, the factor by which the friction velocity is reduced in the modified log law and390

deduced using equation (3.7) as discussed earlier. This is plotted (as 1 − βd) in figure391

7(b). We have made the assumption that d/h varies smoothly through the values used392

for the four modified plots in figure 3 and with values of zero and unity at W/S = 0 &393

1, respectively. As noted earlier, we cannot expect the model to be appropriate close to,394

and certainly at, W/S = 1, for then the situation reverts to a simple plain-walled channel395

but of lower depth (H − h, in fact), even though the expression for the wetted surface396

area, Aw still contains the 2h contribution (see §3.1). βd depends critically on the ratio397

of rib and channel heights, h/H. Smaller values of the latter than that used for the VS398

computations (h/H = 0.085) will clearly lead to smaller 1− βd and this is illustrated in399

figure 7(b) by the solid red line, for which h/H = 0.04. Very similar plots are obtained400

if one uses (A−Arib) rather than (1− βd) as a measure of the change from the classical401

log law.402

One might anticipate that the strength of the secondary motions will affect the size of403

the variations in the mean axial surface friction across the span. Figure 8(a) shows this404

variation for S/W = 4 cases as an example, with wall stress values generally estimated405

by taking the local surface stress to be ν ∂U∂z calculated at the first grid point above406

the surface and normalised so that, in each case, the spanwise average (not including407

contributions from the rib’s side-walls) is unity. In all cases the frictional stress on the408
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Figure 8. (a) Surface axial wall stress across the span for S/W = 4. Reτ : VS4, 490; KC4a, 550;
LC4ml, 850. Note that in all cases, averaged data over the ‘rib period’ are shown (there were
seven periods in the spanwise domain in VS4 and KC4a, and four in the LC4ml case. Profiles
are in each case normalised by the average value over the span. The grey rectangle shows the
location of the rib. (b) Axial velocity profiles at various spanwise locations for KC4a, with both
U+ and z+ scaled using the spanwise-averaged uτ . The legend gives the y/S locations (with
bracketed numbers); these are indicated in (a) by vertical lines, appropriately coloured and
numbered to match the various profiles in (b-d). The short-dashed and dotted black lines are
the viscous law and the modified log law (see §3.1), respectively, and the long-dashed line is the
spanwise-averaged velocity profile shown in fig.2(a), intrinsically averaged below z = h. (c) As
for (b), except that scaling uses the local uτ . (d) As for (c), except that z-scaling with α = 0.5,
see eq.(3.10), is used for uτ . In (b), (c) and (d) no attempt is made to identify separately the
closely clustered profiles.

top of the rib is higher than the average and generally not dissimilar to values near409

the edges of the span (i.e. at the centre of the gaps between ribs). This could perhaps410

suggest that the vertical flow is downwards towards the ribs (and upwards just outboard411

of the rib), which is opposite to what was apparently found by, for example, Vanderwel &412

Ganapathisubramani (2015) and Vanderwel et al. (2019), whose visualisations suggested413

upward flow all the way from the centre of the rib to the top of the domain (but see later)414

with, presumably, consequent spanwise flows near the top surface directed towards the415

rib centre from its corners. However, it is not really possible to deduce the direction of416

near-surface spanwise flow from the relative strength of the axial flow there and we return417

to this issue in §3.5. Note that the computation at Reτ = 850 yields a rather higher axial418

friction above the rib than in the other two cases (figure 8a) with correspondingly smaller419

friction outboard. This might suggest a Reynolds number effect and we return to this420

in §3.4, where a possible reason for the differences in axial friction seen in the VS4 and421

KC4a cases is also suggested.422

The secondary motions lead naturally to differences across the span in the vertical423
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profiles of mean velocity. Before looking more closely at the secondary motions it is of424

interest to inspect the degree of collapse, or otherwise, in the axial mean velocity profiles425

at different locations, using a wall-scaling based on the local wall stress, rather than the426

spanwise-averaged one (used for the span-averaged velocity profiles in figures 2 & 3).427

Figure 8(b) shows that using the latter for local profiles does not yield much collapse428

(except at the top of the domain), as would be expected. Note that for profiles above429

the rib (labelled (5) and (6) in the legends of figures 8(b-d), z is measured from the top430

surface so that profiles in the viscous sublayer can be expected to collapse. Note too431

that intrinsic averaging (below z = h) is used for the spanwise-averaged profile in figure432

8(b), since only this would be expected to lead to the usual viscous law collapse close433

to the wall. The two most obvious outliers are for y/S=0.3 and 0.35, which (as seen434

in figure 8(a) are locations close to the rib where the local uτ is much lower than the435

spanwise average. Very near the bottom wall one would expect classic viscous scaling to436

yield collapse if the local uτ were used and this is confirmed in figure 8(c); below about437

z+ = 3 the profiles do indeed collapse onto the viscous wall law. It might be tempting to438

try other forms of scaling, e.g. using a local uτ satisfying439

uτ = uτ (y) + [〈uτ 〉 − uτ (y)](z/H)α, (3.10)

440

where uτ (y) is the local friction velocity varying with spanwise location and 〈uτ 〉 is441

the spanwise average normally represented herein by uτ . This expression is chosen so442

that near z = 0 the local uτ dominates whereas with α > 0 the spanwise-averaged443

uτ dominates, at least in the upper region, to an extent depending on the value of α.444

However, figure 8(d) shows that although one can choose a value for α which leads to445

reasonable collapse over all z for most of the profiles (α = 0.5 is about the best), this446

approach is unlikely ever to work for the more extreme outliers (e.g. at y/S = 0.35)447

where the wall stress is far from the spanwise average. There seems, in any case, no448

physical reason to expect an exact overall collapse; it has been known for a long time that449

secondary motions within a boundary layer lead to distortion of the mean velocity profile450

(e.g. Mehta & Bradshaw 1988) and one could argue that even if a spanwise-averaged451

velocity profile appears to yield a reasonable (although modified) log-law region, as in452

fact was shown in §3.1, this must be somewhat fortuitous. It seems obvious that for any453

flow like these, local velocity profiles – at least those within the gap between ribs but close454

to them – cannot have the usual log-law form, so there is no expectation that a spanwise-455

averaged profile could display such a log-law. Furthermore, since Mehta & Bradshaw456

(1988) actually studied a smooth-wall case in which the secondary motions were generated457

by upstream vortex generators, we suspect that this conclusion is independent of the458

nature of the surface. But, of course, as the secondary motions become weaker and459

weaker one expects the classical log-law to re-emerge.460

3.4. The nature of the secondary flows461

Examples of the secondary flows are shown in figure 9, which presents contours of swirling462

strengths overlaid on velocity vectors in the spanwise plane, for the two cases KC4c and463

VS4, both having S/W = 4, H/S = 1.75 and approximately the same Reh. Swirling464

strength is here defined in the usual way as λCiωx/|ωx|, Zhou et al. (1999), as this is465

generally recognised to be a more satisfactory way of identifying swirling motions. The466

vorticity itself, ωx, is less appropriate as it cannot distinguish between genuine vortex467

motions and regions of strong shear. The sign of the vertical velocity just above the468

centre of the rib seems to be positive (upwards) for VS4 but negative (downwards) for469
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Figure 10: Contour maps of the mean signed swirling strength with secondary flows over the roughness
elements.
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Figure 9. Swirling strength contours with velocity vectors in the spanwise plan, for S/W = 4,
H/S = 1.75. (a): KC4c, Reh = 55; (b): VS4, Reh = 41.

(a)

Lim’s S/W=4 (H/S=1.25, Re=850)

Swirling strengths plus vectors
1. Kim’s S/W=4 (H/S=1.25, Re=550)

(b)

Figure 10. Swirling strength contours with velocity vectors in the spanwise plane; S/W = 4,
H/S = 1.25. (a): KC4a, Reh=55; (b): LC4ml, Reh=85. The red circles surround the location of
the saddle point above the rib centre and the green-bounded white squares indicate approximate
locations of nodes. Only those above the rib height are shown.

KC4c, which was confirmed by close inspection of the velocity field. A closer look at470

the secondary velocity fields reveals further features of the flow structure above the rib.471

Figure 10 shows two S/W = 4 cases at identical H/S and rather different Reh, but (in472

their plotting) more highly resolved around the rib region than the plots in figure 9 (or473

figure 1a). The crucial point is that there is an elevated critical point (a saddle) above474

the centre of the rib. Its vertical location seems to depend on the Reynolds number. In475
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Figure 11. Swirling strength contours with velocity vectors in the spanwise plane for LC4, at
Red = 85. Approximate locations of saddle points above the rib centre are indicated by red
circles. (a): On large domain, LC4ml; (b): on small domain, LC4ms.

figure 10(a) it lies around z/S = 0.23 whereas in figure 10(b) it is significantly above that476

point. Beneath the saddle, the flow is downwards towards the rib centre and outwards477

on the surface either side of there, but the strength of that flow depends (at least partly)478

on where the saddle is. Above the saddle, the flow is always upwards, all the way to the479

top of the domain. This elevated saddle point seems not to have been clearly identified480

previously (but see §3.5). Beneath it there are two sets of nodes, whose approximate481

centres are shown on the figure. These nodes are in somewhat different positions in the482

KC4a case (figure 10(a), Reh = 55) and clearly rather weaker than those seen in figure483

10(b) (Reh = 85) – one might expect the secondary flows to become rather ‘tighter’ at484

higher Reynolds numbers. Likewise, the outboard recirculating regions are more diffuse485

and extend higher in the lower Reynolds number case (fig.10a).486

Recall now that the VS4 flow of figure 9(b) seems not to contain the elevated saddle487

point. This is almost certainly because the immersed boundary method used to model488

the rib in the VS4 case gives a rather fuzzy rib boundary, particularly at the rib corners,489

allowing the cross-flow to move smoothly over the corners rather than having to separate.490

For that case, therefore, the flow on the top surface of the rib is inward towards the491

centre from the corners, leading to a half-saddle of separation at the centre and flow492

upwards from there to the top of the domain. In fact, a further (VS) computation using493

a more refined IBM which reduces the fuzziness of the rib corners, did yield genuine494

separation at those corners so that the overall flow is more like that shown in figure 9(a).495

Incidentally, this rather fuzzy boundary probably explains the small differences in axial496

surface friction on the rib seen in figure 8(a) between the KC4a and VS4 cases; it is not497

so easy to determine wall friction when precise boundary locations are uncertain. It is498

worth emphasising, incidentally, that the main features of the secondary flows seen in499

figure 10 are not changed by the increasing Reh. This was the finding of Vanderwel et al.500

(2019). In fact, in their paper, despite the lack of resolution in the flow near the ribs,501

one can just detect a rise in the critical point location above the rib centre as Reh rises502

(compare their figures 2c and 2d).503

We comment finally on the effect of using a minimal domain on these secondary flows.504
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Figure 12. (a) Contours of log10(V 2 +W 2) for the KC4a case; the colour scale ranges from -6
(black) to -9 (white), so that critical points (i.e. where V = W = 0) show up as nearly white.
(b) Sketch of the (approximate) critical point locations. Note that in both figures the vertical
scale has been compressed and that in (b) the domain shown is a little off-centre, to clarify the
critical points on the vertical line on y = 0, the centre of the gap.

Figure 11 shows two computations having the same Reynolds number, S/W andH/S, one505

obtained using a small domain size (LC4ms) and the other using a much larger domain506

(LC4ml). The differences are clear. Although the general topology of the recirculation507

pattern is the same, the small domain significantly constrains the secondary flows, making508

those just above the rib rather more intense, thus forcing the saddle point to move higher509

above the centre of the rib and weakening the recirculating velocities further aloft. This510

can be seen by comparing the vector lengths at, say, z/S = 0.8 – vertical velocities511

are noticeably larger when a large domain is used. Even the flow near the rib is thus512

influenced if too small a domain is used, so it cannot be argued that a minimal channel513

can be used to obtain adequate near-wall flows - unlike the case for plane channels.514

3.5. Topological considerations515

Next, we consider the topological constraints on the nature and number of critical points516

in the spanwise plane. This is a great help in interpreting the cross-plane visualisations517

and reduces the likelihood of incorrect conclusions. Denoting saddle points by S and518

nodes by N , with half-saddles and nodes (on boundaries) as S′ and N ′, it is known (e.g.519

Hunt et al. 1978) that for a singly-connected domain like this520

(
∑

N +
1

2

∑
N ′)− (

∑
S +

1

2

∑
S′) = 0. (3.11)

521

A good way of clarifying the presence and location of critical points is to inspect the522

cross-plane velocity field - in particular to consider (V 2 +W 2). This quantity will ideally523
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Figure 13. Contours of log10(V 2 +W 2) for the three KC4 cases – S/W = 4, Reh = 55. The
colour scale ranges from -6 (black) to -9 (white), so that critical points show up as white.

be zero at all critical points. Figure 12(a) shows a contour plot of γ = log10(V 2 + W 2)524

from the KC4a computation at Reh = 55. Critical points show up as concentrated regions525

of white or near-white, where γ → −∞. As noted earlier, there is a surface half-saddle526

at the centre of the top of the rib, below the saddle just above, and a pair of half-saddles527

on each of the two side surfaces of the rib (including ones at the rib corners). The critical528

point structure is sketched in figure 12(b). Note that on the central y = 0 line there are529

matching half-saddles at the top and the bottom of the domain, with downward flow530

beneath them. A half-saddle also exists at the top of the domain (z = H) on y/S = 0.5,531

matching the saddle below. Features close to the bottom surface in the gap between532

ribs are rather less easy to identify, but close inspection of the vector field (not shown533

here) indicated that there are half-saddles near y/S = 0.17 and 0.83, with two nodes534

between these and the two rib side-walls. In total, there are six nodes, one saddle and ten535

half-saddles, satisfying the topological requirement given above. From the visualisations536

shown in the various published papers on this topic it is difficult, if not impossible, to537

identify all these various critical points, although there has been one previous attempt538

(Stroh et al. 2016) for a related flow (having no ribs but spanwise changes in surface539

conditions). Indeed, often the resolution in the published plots shown is insufficient to540

clarify, for example, the structure near the rib’s top surface or along the bottom surface541

between the ribs. This is sometimes because (in a laboratory study) the PIV field is not542

sufficiently resolved and (in a numerical study) the vector density shown is insufficient543

- even though the computational mesh resolution may be quite sufficient to delineate544

the flow structure accurately. Incidentally, at higher Reynolds numbers one expects the545

eventual appearance of further critical points near the bottom corners of the rib; these546

are not really visible in figure 10(b) (Reh = 85), for example, but would become more so547

at higher Reynolds number. Any attempt to construct the overall critical point structure548

in such cases would need to satisfy the topological constraint.549

Figure 13 shows the topological structure for the three KC4 cases, having H/S = 1.25,550
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Figure 14. Swirling strength contours with velocity vectors for the three KC4 cases.

1.6 and 1.75. It is clear that the secondary flow below z/S ≈ 0.8 is essentially independent551

of H/S. Increasing H/S does lead, however, to a just perceptible rise in the location of552

the saddle point above centre of the rib. The corresponding swirling strengths for these553

three cases are shown in figure 14 and indicate, similarly, that H/S is not an influential554

parameter. Indeed, an average of the (modulus of) the swirling strength across the span555

and from z = 0 to z = 2h differs by no more than about ±2% across these three cases.556

Above z/S ≈ 0.8 the figures emphasise the extremely small values of the cross-stream557

velocities. Although figure 14 might suggest that the flow is practically homogeneous558

across the span in the upper region, it is not exactly so, as is obvious from figure 13.559

Nonetheless, the variations in axial velocity are sufficiently small that the dispersive560

stresses are, as discussed in §3.2 and seen in figures 4 & 5, very close to zero above561

z/S ≈ 0.6 (i.e., z/H ≈ 0.5 for H/S = 1.25).562

4. Discussion and Concluding Remarks563

4.1. The mean velocity profiles564

The present work has shown that there are regions across the span (particularly those565

close to rib walls) where the vertical profile of axial velocity (U+) is far from having566

any classical shape and there is no obvious scaling which allows local profiles at different567

points across the span to be closely collapsed. This is not very surprising. Nonetheless,568

what is somewhat more surprising is that the spanwise-averaged profile does contain a569

reasonable log-linear region. However, this lies below the classical log-law by an amount570

which depends on W/S – or, more strictly, on the difference between W/S and either zero571

or unity. This region also has a different slope, which is not consistent with the classical572

Kármán constant. These differences from the usual log-law are probably greatest when573

W/S ≈ 0.4 (figure 7b), which is when the strength of the secondary flows is at its greatest574

(figure 7a). A major conclusion of our work is that if, using an appropriate analysis (§3.1),575

account is taken of the increase in wetted surface area and reduction in cross-sectional576
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area (because of the ribs), and also of an appropriate zero-plane displacement, d, then577

a modified log-law can be predicted. This has different values of κ and A, the constants578

in the classical log-law relation, and it fits the data quite well provided S/W is not too579

small. d can be directly calculated using the computed frictional forces on all the rib walls580

(see the Appendix). The analysis can be extended to zero-pressure-gradient boundary581

layers and this again leads to a modified log law which fits the data reasonably well. The582

analysis inevitably fails as W/S → 1.583

The fit to any kind of log law is perhaps surprising because, as argued earlier, even on584

a flat surface secondary flows distort the U+ profile (e.g. Mehta & Bradshaw 1988). But585

in the present case the secondary flows, although very distinctive are, compared with the586

strength of the axial flow, very weak indeed. They represent a negligible contribution to587

the total energy in the flow – the point-wise maximum of W 2/U2, for example, nowhere588

exceeds about 1.2 × 10−3, so it seems reasonable that these secondary motions are not589

large enough significantly to negate the usual assumptions on which the appearance of a590

log law is based.591

The use of a minimal domain size leads, as is well known, to artificial behaviour in592

both the mean velocity and turbulence stresses in the outer region of the flow. However,593

in these cases, where secondary flows are significant, we have shown that it also leads,594

perhaps not surprisingly, to modification of the secondary flow structures near the ribs,595

so adequate determination of the latter requires appropriately large domains, just as596

required for proper characterisation of the outer flow in plane channels.597

4.2. The secondary flows598

Overall, in terms of the secondary flows and, in particular, the direction of the large-599

scale swirling motions above and outboard of the rib, the present results are similar to600

those of other investigators who have considered elevated ribs rather than changes in601

surface condition. The boundary layer DNS of Hwang & Lee (2018), for example, with602

S/W = 4, shows up-flow over the ribs and down-flow between them at the downstream603

location where H/S ≈ 1.25, exactly as seen in our H/S=1.25 (figures 9b and 14a) and604

1.6 & 1.75 (figures 14b,c) cases. Likewise, the channel LES of Yang & Anderson (2018)605

showed that for an H/S = 1.56, S/W = 8.5 case there was up-flow over the ribs and606

down-flow in the spaces between them. Furthermore, the H/S = 1.1, S/W = 5.9 case607

studied by Vanderwel et al. (2019) has a large-scale up-flow above the ribs but with a608

(just) discernible critical point just above the ribs with down-flow below it. Taken with the609

present cases (S/W = 4), these results suggest that S/W is not significant in setting the610

direction of the large-scale secondary flows. On the other hand, Yang & Anderson (2018)611

also considered an H/S = 1, S/W = 13.2 case; the visualisation (of vorticity and cross-612

flow velocities) tends to suggest a large-scale down-flow over the ribs and up-flow between613

them, which led the authors to propose a switch in orientation when H/S is somewhere614

between their two cases of H/S = 1 & 1.56. It should be noted, however, that the ribs615

used by Yang & Anderson (2018) were small ‘house-shaped’ obstacles, having sloping616

roof sides up to a narrow top, which reduces the likelyhood of separations. In addition,617

since the obstacles were three-dimensional, pressure forces would have contributed to the618

surface drag and this could perhaps significantly change the topography’s generation of619

secondary flows. Compared with the present scenario of smooth 2D rectangular obstacles,620

their study may well therefore represent an isolated case.621

Zampiron et al. (2020), who studied flow over ribs in a water flume, found large-scale622

up-flow over the ribs for all their cases, certainly down to H/S = 0.64. Furthermore, no623

switch was apparent in Vanderwel et al. (2019)’s cases either. They used sharp-topped624

triangular-shaped ribs not too dissimilar to the ribs of Yang & Anderson (2018) (except625



22 Ian P. Castro1, J.W. Kim2, A. Stroh3 & H.C. Lim4

that they were 2D) and these encouraged the large-scale rotating flow near each side of626

the ribs to sweep up, meeting at the top of the rib and continuing upwards. This cannot627

happen for flat-topped ribs with sharp corners, even if the large-scale secondary flow still628

leads to up-flow above the ribs. In such cases there will always be a smaller scale region629

near the top of the rib, encompassing separations at the corners with the concomitant630

down-flow at the rib centre and thus a critical point aloft, as shown in figure 12(b). This is631

exactly the situation in the H/S = 1.25 case of Hwang & Lee (2018), the H/S = 1.1 case632

of Vanderwel et al. (2019), and the H/S ≈ 0.8 cases of Medjnoun et al. (2020). It should633

also be noted that one of the cases studied by Hwang & Lee (2018) had H/S as low as634

about 0.4 and the present VS14 case had H/S = 0.5; in both cases the secondary flows635

were in the same direction as for the larger H/S cases. We conclude that a directional636

switch never occurs for 2D ribs (of any shape) as H/S changes. Nonetheless, in most of637

the visualisations of those authors mentioned above (who used rectangular-shaped ribs)638

it is possible to discern, with more or less difficulty, the critical points just above the rib639

centres, with very local down-flow below and the larger scale up-flow above. Although640

the authors did not discuss these smaller-scale features, they are very clear in all the641

present cases (0.5 6 H/S 6 3.45).642

It would seem that in cases when the large-scale recirculations lead to upflow above the643

rib (i.e. for all 2D rib cases), whether or not there is an elevated critical point with local644

down-flow below will depend crucially on the shape of the rib. Indeed, Medjnoun et al.645

(2020) have shown that the rib shape can be important in setting what happens to the646

flow in its vicinity. In all their cases, H/S was in the range 0.8–0.87 and they only detected647

a down-flow over the rib centre when it was of rectangular shape and unusually wide,648

having S/W of only 1.79. However, their PIV data did not always extend downwards649

enough (i.e. closer to the ribs) to detect the small-scale recirculating regions which must650

have existed for the larger S/W cases with rectangular ribs (i.e. cases with narrower651

ribs). These regions were inevitably of significantly smaller scale because of the more652

limited spanwise extent between a rib’s two corners. The data are not inconsistent with653

the presence of a critical point above the rib centre, albeit too near the rib to be visible.654

It seems that the recirculating regions associated with corner separations and of opposite655

sign to the larger-scale motions aloft are relatively small for large enough S/W , and the656

larger scale contrary circulations above and outboard become more dominant, whereas at657

smaller S/W there may be insufficient room between the ribs to allow full development658

of the latter. This is essentially the argument of Hwang & Lee (2018), who suggested that659

it is S−W (i.e. the valley width) that determines the sizes and strength of the secondary660

flows; strictly, it should presumably be a normalised parameter (e.g (S −W )/H) which661

is the relevant quantity.662

Whether or not W/S is an important parameter controlling the flow just above the663

rib must clearly depend on rib shape; in extreme cases, like the triangular rib cases of664

Zampiron et al. (2020) and (some of) the ribs of Medjnoun et al. (2020), W is essentially665

zero at the top of the rib, so small-scale separation-driven recirculations cannot occur.666

The latter must always be a feature of rectangular ribs and, as Medjnoun et al. (2020)667

show, S/W can then be important. Our results (figure 7a) show that the peak strength668

of the larger scale secondary flows occurs somewhere in the range 2.7 6 S/W 6 3.3 and,669

by comparison with the related literature, these flows always correspond to up-flow over670

the ribs (the high momentum pathways, HMP, commonly mentioned in the literature)671

and down-flow between them (the low momentum pathways, LMP) for H/S > 0.6 at672

least. We emphasise that in the present KC4 cases (S/W = 4, 1.25 6 H/S 6 1.75) the673

details of the secondary flow are essentially independent of H/S (figures 13 & 14). As674
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mentioned in §3.5, the swirling strength in the lower half of the flow varies very little.675

For H/S lower than O(1) the situation remains uncertain.676

As noted in §1, some authors have shown that changes in surface condition without any677

change in surface height also leads to significant secondary flows. Anderson et al. (2015),678

for example, used Large Eddy Simulation to study channel flow containing longitudinal679

strips of roughness (width W ) having a higher zo (roughness length) than in the regions680

between them. They had H/S = 0.32, S/W = 5.2 and varied the ratio of the high681

to low roughness. In all cases, there was down-flow over the high roughness regions (in682

the HMP regions) and up-flow between them (in the LMP regions). Willingham et al.683

(2014) studied similar cases with H/S = 0.32 and in terms of the orientation of the684

secondary flows the results are essentially the same, for cases with 3.1 6 S/W 6 15.7.685

These findings are therefore contrary to those found in the present work and in all others686

using physical ribs, which all show up-flow above the ribs and down-flow between them,687

quite independently of H/S or W/S, albeit with the dominance of each matching pair688

of vortices varying significantly with W/S. Vanderwel & Ganapathisubramani (2015)689

argued that this difference in secondary flow direction arises because of the different way690

the spanwise inhomogeneity is imposed. This could well be the case, although the issue691

merits further study.692

4.3. Topology and a final comment693

A significant feature of the present work has been the use of topological constraints694

to guide the interpretation of flow visualisations. In particular, these have helped to695

ensure that the critical points in the cross-stream flow are identified properly and are696

consistent with a kinematically valid flow field. It is suggested that this should always be697

considered for these (and no doubt other) kinds of flows, just as recommended by Hunt698

et al. (1978), whether visualisations are from laboratory experiments (typically now PIV)699

or from computational studies (DNS or LES).700

Finally, it is worth emphasising again that (i) the results shown in this paper only701

relate to the mean flow field and (ii) the cross-plane mean velocities (i.e. V and W ) are702

at every point very small compared with the mean axial velocity (U) at the same point.703

Taking this latter point (ii) first, the ratios V/U and W/U nowhere exceed about 3.5%704

and are usually much smaller, particularly nearer the top of the domain. The local mean705

flow energy ratio, (V 2 +W 2)/U2, is thus extremely small everywhere. Note also that it706

is possible that because the cross-flow velocities are relatively so low, corner separations707

at the ribs might disappear at low enough Reynolds numbers. We have not explored708

this; recall that the apparent lack of separation seen in figure 9(b) has been found to709

be a result of the ‘fuzzy’ immersed boundary method used, rather than any Reynolds710

number effect. Regarding the first point above (i), we emphasise that in common with711

all turbulent flows the mean flow never actually exists. Figure 15 illustrates just how712

different the instantaneous flow is compared with the mean. Readers may be interested713

to see a video from which this snapshot was taken and which follows the flow in time;714

this is available at https://soton.ac.uk/engineering/about/staff/jwk.page. The dynamics715

of these kinds of flows compared with those in regular channels have begun to be studied716

(e.g. Zampiron et al. 2020; Wangsawijaya et al. 2020) and this is clearly a topic that717

merits further work.718
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APPENDIX730

Calculating the zero-plane displacement731

Jackson (1981) argued that for turbulent flow over a rough surface, the zero-plane732

displacement, d, required in the usual log law (u+ = 1
κ ln( (z−d)

zo
) is essentially the height733

at which the surface drag appears to act. In the present case of a smooth channel with734

longitudinal smooth ribs, the surface drag is generated by the axial frictional forces on the735

surfaces which, in total, must balance the applied axial pressure gradient. This differs736

from the usual types of rough surface for which, in the fully rough case, the pressure737

forces dominate any produced by surface friction (see Leonardi & Castro 2010, for a738

full discussion). We outline below a method to deduce d in the present case, recognising739

that appropriate integrations of the axial friction forces and their moments need to be740

undertaken.741

We consider one half of the span (S) of a repeating unit of the surface, as shown in
figure A1. (The other half will be identical, by symmetry.) There are axial, non-uniform
frictional stresses on each of the three planar surfaces shown: τo(y) on the bottom channel
surface (in the gaps between consecutive ribs), τh(y) on the top surface of the rib and
τs(z) on the side wall of the rib. This latter wall is split into the region above and below
the zero-plane displacement height, z = d. To determine this height, we need to consider
the force moments about that line as an axis, produced by the surface stresses, ensuring
a balance between the two integrated force moments below z = d and the two above that
line. The moments provided by the forces from the bottom surface stress and that on
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Figure A1. Spanwise cross-section of the rib geometry. S is the width of the repeating span
containing one rib and the gap between ribs; one half of this span is shown. W is the width of
the rib and h is its height. The horizontal dotted line marks the zero plane displacement height,
d. x = 0 marks the centre of the full span and x = S/2 the half-way point of the span, coinciding
with the centre-line of the rib.

top of the rib are given by

d

∫ (S−W )/2

0

τodx = dI1 and (h− d)

∫ S/2

(S−W )/2

τhdx = (h− d)I2,

respectively. These act in opposite directions about z = d. (Note that the relationships
define I1 and I2 as the two integrals). Assuming that there is no stress on the side wall (i.e.
τs = 0) and the stress on the horizontal surfaces is everywhere the same, then equating
these two expressions leads simply to d

h = W
S which is in fact just the average height of

the horizontal surfaces; for S/W = 2, for example, d/h = 0.5, as expected. The above
assumptions are in general untrue, of course, so one has to consider both the variation
of stress along the horizontal surfaces and the moments generated by the stress on side
walls. The latter are given by∫ d

0

(d− z)τsdz and

∫ h

d

(z − d)τsdz,

for the moment of the forces below and above z = d respectively and, again, these act742

in opposite directions. The appropriate balance required to ensure that z = d is the line743

about which there is no resultant moment (and is thus the height at which the total drag744

force acts) then becomes745

dI1 +

∫ d

0

(d− z)τsdz =

∫ h

d

(z − d)τsdz + (h− d)I2. ( 1)

Defining I3 and I4 by

I3 =

∫ h

0

τsdz and I4 =

∫ h

0

z

h
τsdz,

respectively, and with some re-arrangement of the two integrals over the side wall – the746

second and third terms in (1) – we obtain eventually747

d

h
=

I2 + I4
I1 + I2 + I3

. ( 2)

748
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Figure A2. (a): Axial surface stress (in arbitrary units) along one span of the repeating unit
within the channel. The side-wall variation at y = (S−W )/2, between z = 0 and z = h is shown
between the two red vertical dashed lines and the sections corresponding to the four integrals
I1−4 are labelled appropriately. The horizontal dashed line shows the value of the average stress.
(b): axial velocity profile (intrinsically averaged below z = h). The black and red lines have
d/h = 0 and 0.34, respectively, and the dashed line is the modified log law (as in fig.2a)

Given the distribution of frictional stress along all the walls from the DNS data (i.e.749

τo(y), τh(y) and τs(z)) for any given case, it is straightforward to determine the values750

of the four integrals and thus d/h from (2).751

In the more general case of a surface containing three-dimensional obstacles (at any752

orientation), there will be additional terms to include in (1), expressing the moments753

(above and below z = d) generated by, firstly, the axial frictional components on, say,754

any additional obstacle side walls parallel to the flow direction and, secondly, the axial755

components of all the pressure forces acting on the surfaces of the obstacles. As noted756

above, in such cases these latter terms will normally dominate, as shown in detail for757

arrays of cubes by Leonardi & Castro (2010), who used exactly this method to determine758

d.759

As an example, we take the S/W = 4, H/S = 1.25 case KC4a in the present paper. Fig-760

ure A2(a) shows the variation of axial friction along the span, which has been expanded761

in order to show the two side wall stress variations at y = (S −W )/2 and (S + W )/2.762

Computation of the four integrals in (1) yield I1 = 2.28, I2 = 0.875, I3 = 0.602 and763

I4 = 0.39. Equation (2) then gives d/h = 0.34, which is somewhat above the geometrical764

average surface height of 0.25 (for this S/W=4 case). This is an expected result; it is765

common for d to lie somewhere above the geometrical average surface height (Leonardi766

& Castro 2010) and, for cases like the present one, the difference tends to increase with767

decreasing S/W . The resulting velocity profiles with and without the inclusion of a zero-768

plane displacement are shown in figure A2(b), where it is clear that using (z − d) with769

d/h = 0.34 yields a much better fit to the modified log law – better than if d/h = 0.25770

were used (not shown).771
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