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REPETITIVE CONTROL AND ELECTRODE ARRAY PATTERN SELECTION

FOR FES-BASED DROP-FOOT ASSISTANCE

by Aaron Peter Page

Drop-foot is a problem resulting from a range of neurological conditions. It is currently

diagnosed in over 3 million people worldwide. Current technologies addressing Drop-

foot have significant limitations, with 30% of people rejecting the established mechanical

solutions due to; muscle wastage, size, noise and damage to dignity. Alternatively,

Functional Electrical Stimulation (FES) is a technology, which addresses the condition

by directly recruiting the user’s muscles. This overcomes significant issues such as muscle

wastage or restriction of freedom. However, it has limitations which include increased

rate of fatigue in users, dependence on pad positions, and limited battery life. Further to

this, the control of FES commercially is very crude, often leading to jerky or unnatural

motion. More advanced controllers exist in the academic domain, but they assume

that gait can be modelled as a resetting motion, require large amounts of data, or are

unsuitable for clinical application due to problems in demonstrating stability.

This thesis focuses on overcoming the limitation of current FES technology for drop-

foot. It develops, simulates and applies a new form of closed-loop controller for FES that

addresses the limitations of previous systems. In particular, this controller is a form of

Repetitive Control (RC), which learns over the periodic nature of gait, does not assume

resetting, reduces the data needed between periods, and has clear stability conditions.

Simulations show that the ‘point-to-point’ generalisation of RC improves the convergence

speed and robustness while only slightly decreasing the tracking accuracy of the entire

reference. Experimental validation confirms that tracking accuracy is improved between

52% − 140% compared to existing drop-foot controllers, with a reduction in data used

of 94%, compared to traditional RC. To address the challenge of pad placement, a

framework to identify an optimal pad ‘pattern’ from thousands of pad combinations has

been developed. Iterative learning control is then applied to tune the simulation levels for

a static gesture. This was achieved with an error of 2.2◦±1.23◦. Applying commercially

inspired constraints restricted the pool of patterns and enabled an investigation into

hardware and software simplifications for a commercial device.
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Nomenclature

P Discrete plant

A/A State-space dynamics: state matrix (unlifted/lifted)

B/B State-space dynamics: input matrix (unlifted/lifted)

C/C State-space dynamics: output matrix (unlifted/lifted)

D/D State-space dynamics: feed-through matrix (unlifted/lifted)

m Number of inputs

ϑ Number of outputs

np Number of states (of the plant)

xp State vectour (of the plant)
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u/u Input (stimulation) (unlifted/lifted)

y/y Output (ankle angle) (unlifted/lifted)

r/r Reference (gait cycle) (unlifted/lifted)

k Cycle number

q One sample advance operator

Q/Q Robustness filter (unlifted/lifted)

L/L Learning filter (unlifted/lifted)

e/e Error (unlifted/lifted)

I Identity matrix

M Number of extracted and tracked point-to-point indices

Φ Point-to-point projection operator

s Any lifted signal

β Learning rate

a, b, c Variables

F Filter to generalise minimum control effort

H Minimum control effort weighting

λ Lagrangian multiplier

nf Number of states (of the filter)

p Number of joints

n Number of pads in a pattern
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Chapter 1

Introduction

Drop-foot is a muscular weakness or paralysis that makes it difficult to raise the foot.

However, it is a sign of an underlying problem rather than a condition itself. Drop-foot

can be caused by; muscular damage, nerve damage, or the result of a brain or spinal

injury (Graham, 2010; Westhout et al., 2007). Over 100,000 people (King, 2015) in

the UK suffer from first-time strokes each year, with 20% of these developing drop-foot

(Barrett and Taylor, 2010). It causes instability around the ankle and limits the ability

to raise the foot while walking. This leads to a slow, tiring, abnormal gait with an

increased probability of falls (Peterson, 2007). There are various commercially available

technologies to assist with drop-foot. The simplest devices are canes, walking frames

and passive mechanical orthoses which lock the foot in position. Although falls due to

drop-foot are reduced, mechanical orthoses have high rejection rates as they promote

muscle wastage leading to further ankle instability. The most prevalent assistive devices

employ Functional Electrical Stimulation (FES) which is delivered via an implanted or

surface electrode causing artificial muscle contraction. Systematic reviews and meta-

analyses have concluded FES has a positive effect on activity, specifically increasing

walking speed post-stroke (Howlett et al., 2015; Miller et al., 2017).

1.1 Research Motivation

Although prevalent, commercially available FES devices use simple ramping signals, ini-

tialised by a heel switch, to raise the foot. However, these do not produce movements

that correspond to healthy, natural gait, and often use higher levels of stimulation than

necessary. Iterative Learning Control (ILC) is an approach which has been able to pro-

duce more natural movements by combining a model of the underlying muscle dynamics

with learning from experience (Longman, 2000; Pipeleers and Moore, 2014; Wang et al.,

2009). ILC was applied to drop-foot in Seel et al. (2016) and out-performed existing

methodologies. However, ILC assumes that the reference (gait) signal resets to a fixed

1
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value after every task (step). It also requires large amounts of sensory data to be stored

between trials. This motivates the need for a control framework that does not require

resetting between tasks, while still utilising an underlying muscle model and learning

from experience. This thesis addresses the need by applying a framework termed Repet-

itive Control (RC), to the problem of drop-foot, for the first time. It also undertakes

a substantial expansion to the approach by extracting and tracking only a subset of

points in the reference. This not only reduces the number of data points used but also

the amount of data stored and shared between cycles. A substantial generalisation was

then performed to allow the minimum control effort to be altered, i.e. allow the solu-

tion to converge to the minimum velocity, jerk or acceleration norms. By choosing to

minimise effort, in the same way as the human body does naturally, the replication of

a natural gait pattern is improved. A method to apply weightings to individual points

within the gait pattern is then explored, offering the designer greater control over the

convergence of the input and output signals.

Another problem is that commercial FES systems for drop-foot commonly use a small

number of surface electrodes which are challenging and time-consuming to place (Taylor

et al., 1999; Heller et al., 2013a). These also provide poor muscle selectivity, reducing

fine movement control and leading to increased rates of fatigue (Li-Wei and Binder-

Macleod, 2007). Multiple surface electrodes have been used by several research groups

to form arrays able to address the problem. Here arrays allow for arbitrary placement

and automation of the trial and error approach to select a suitable stimulation site.

However, existing pad identification methods (e.g. Schill et al. (2009); O’Dwyer et al.

(2006); Micera et al. (2010); Popović-Bijeli et al. (2005)) use a simplistic approach. The

approach activates each pad within the array in turn. The pad with the best movement

characteristics (e.g. greatest dorsiflexion, least roll) is selected. Although minor varia-

tions exist, they are all slow and imprecise. They also do not consider more complex

patterns (e.g. a greater number of pads with different stimulation levels). This thesis

develops an automatic test procedure to identify more general ‘patterns’ comprising of

multiple electrodes with different stimulation levels that minimise a cost. By fusing the

same idea of learning from experience, with an underlying model, a large number of pad

patterns are evaluated, without the need for direct application (Illingworth, 1991). Here,

ILC is fused with a set of constraints specially designed to restrict the search space in

ways that correspond with potential hardware and manufacturing simplifications. These

hardware simplifications have also been found to improve user comfort, set-up time and

fine joint control.
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1.2 Research Contribution and Structure of Thesis

This work has generated a number of key contributions, several of which have been

published in conference and journal papers:

• The generalisation of repetitive control to extract and track only a subset of points

within a reference, select the minimum control effort and prioritise individual

points through weightings.

– A. P. Page, C. T. Freeman and B. Chu, “Point-to-Point Repetitive Control

with Application to Drop-Foot,” IEEE, European Control Conference (ECC),

Limassol, 2018, pp. 2399-2404.

– A. P. Page, C. T. Freeman and B. Chu, “Weighted Point-to-Point Repetitive

Control for Drop-Foot Assistance,” UKACC 12th International Conference

on Control (CONTROL), Sheffield, 2018, pp. 468-473.

• The first application of repetitive control to functional electrical stimulation for

drop-foot. Experimental results directly evaluating the performance of point-to-

point RC (error 2.99◦±0.99◦) with traditional RC formulation (error 2.56◦±0.76◦)

and indirectly with various control strategies.

– A. P. Page and C. T. Freeman, “Point-to-Point Repetitive Control of Func-

tional Electrical Stimulation for Drop-Foot,” Control Engineering Practice,

2020, 96, 104280. doi:10.1016/j.conengprac.2019.104280 (Impact Factor: 3.232)

• The first time an electrode array has been embedded into a wearable sock sleeve.

• A model-based iterative learning control for pad pattern selection with a set of

commercially inspired constraints achieving an improvement of 628% compared

to a traditional 1-element pattern and an average model error of 6.23◦ ± 3.6◦ for

2-degrees of freedom across all 20 constraints.

– A. P. Page and C. T. Freeman, “ILC for Electrode Array Pattern Selection,”

21st IFAC World Congress, Berlin, 2020, Accepted.

The thesis structure is as follows; Chapter 2 briefly compares healthy gait with drop-foot

gait, before critically reviewing current technologies and establishing limitations. It is

shown that the approach that has had the most success in assisting drop-foot is FES.

Chapter 3 provides a detailed background about natural and artificially invoked motor

function. Controllable inputs for FES are introduced, followed by a comprehensive

review of available control approaches.
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Chapter 4 introduces repetitive control and derives a substantial generalisation of the

repetitive control update. Allowing; a subset of points to be extracted and tracked, the

minimum energy properties of the controller to be altered, and a weighted extension to

priorities points.

Chapter 5 performs the first validation of the control framework through multiple sim-

ulations focusing on convergence speed, robustness and tracking accuracy.

Chapter 6 first develops the model identification procedure required to produce a model

of the system for the repetitive controller. The controller is then applied experimentally

to control FES for drop-foot. The study includes five healthy participants. The abil-

ity to track and maintain the desired reference despite time-varying non-linearities is

demonstrated. The repeatability, convergence speed, robustness and tracking error are

also quantified and compared.

Chapter 7 explores pad pattern identification. It does this by developing commercially

inspired constraints that restrict the shape, size and stimulation relationship between

pads, leading to simplifications in hardware and software. A model-based iterative

learning control, utilising superposition, selects multiple pads to produce a pattern.

Experimental results investigate the model error and the effect of constraints on joint

positions and their corresponding stimulation levels.

Chapter 8 outlines the remaining challenges and future considerations within the field,

with a specific focus on how the contributions made here can be utilised. Additionally,

the new research pathways available to explore because of this research are also discussed.

The appendices include the additional work relating to outreach with the general public,

which includes contributing to the ‘Right Trousers Project’, presenting at a press con-

ference for the 2018 Britsh Science Festival in Hull and exhibiting at the ‘Trouser Fest’

festival at the Bristol Robotic Labs. Additional information regarding the gait cycle and

figures not presented in the main body are also included.



Chapter 2

Drop-foot Technologies

This chapter provides an overview of drop-foot, particularly focusing on its effect on

normal gait and its impact on the quality of life. Current technologies available to

support people with the condition are discussed, and their effectiveness is then critically

reviewed.

2.1 Introduction to Drop-Foot

Figure 2.1: Lower leg anatomy.

Stroke, Multiple Sclerosis (MS), Cerebral Palsy

(CP) and Charcot-Marie-Tooth disease are all

neurological conditions that affect the central and

peripheral nervous systems. Neurological condi-

tions often lead to difficulty in lifting the foot.

This is called drop-foot. Drop-foot affects ap-

proximately 20% of people who have experienced

strokes (Barrett and Taylor, 2010). This results

in over 122, 000 people in the US, and 11, 400

people in the UK, developing the condition each

year. This equates to approximately 3 million peo-

ple worldwide currently living with the condition.

Drop-foot prevents normal leg swing during gait,

leading to abnormal, inefficient motion and an in-

creased risk of falling. Studies show that 63% of

people with MS fear falling, 83% thus avoid activ-

ity (Peterson, 2007) and 51% of people with stroke

fell at least once within the last 12 months (Hyndman et al., 2002).

Full recovery from drop-foot, if due to damage to the neurological pathways that con-

trol the common peroneal nerve, may not be possible. The peroneal nerve supplies the

5
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Figure 2.2: Illustrative picture of
Drop-foot

Figure 2.3: Diagram showing de-
grees of freedom around the ankle

front (anterior) and sides (lateral) of the leg. It is responsible for producing dorsiflexion

(lifting the foot around the y-axis) which is controlled by the tibialis anterior, extensor

hallucis longus and extensor digitorum longus muscles. It also produces inversion/ev-

ersion (rotation around the x-axis) which is controlled by the hallucis and digitorum

muscles. Figure 2.3 shows the degrees of freedom around the ankle, while Figure 2.2

shows that damage to the peroneal nerve reduces dorsiflexion. To better describe the

damage drop-foot causes to gait an overview of healthy gait is now given.

2.2 Human Gait

Although the walking mechanism may appear automatic and easy to most, it is a com-

plex and high-level motor function, requiring hundreds of muscles across the upper and

lower body working in synchronous harmony. Human gait is characterised by an in-

verted pendulum movement, in which the centre of gravity moves over a contracted leg

with each step.

2.2.1 Healthy Gait

Gait is a dynamic, periodic, cyclic, time-varying and continuous motion. The dynamic

and continuous nature of gait means that the gait cycle is often normalised and expressed

as a percentage, between 0% and 100%. Gait is commonly split into a stance (first 60% of

motion) and swing (the remaining 40 % of motion). This can then be further partitioned

into eight distinct sections (Zhang et al., 2012). By amalgamating experimental results

from Postans and Granat (2005) and Neptune and Sasaki (2005), a full human gait cycle

for the ankle is shown in Figure 2.4. Although gait periods vary, an average of 2 seconds

is commonly assumed. Further details about each event within the cycle are contained

in Appendix B.
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Figure 2.4: Standardised gait cycle, with gait events/phases labelled.

2.2.2 Abnormal Gait due to Drop-Foot

Drop-foot affects gait in several ways. Figure 2.5 and the subfigures therein illustrate the

changes to the gait cycle: (A) shows the ‘heel off’ at the start of the cycle. Weakness

in the anterior tibialis means force cannot be applied through the leg and into the

floor during ‘toe-off’, causing the individual to shift weight to the other foot to provide

clearance, commonly resulting in lateral movement of their centre of weight. This is

often accomplished by the upper body shifting to the healthy side, as seen in (B). As

the angle of the foot is no longer controllable, the foot hangs down due to gravity. This

forces an extended lift around the knee joint and a high knee movement, as shown in

(C). This increase in knee flexion causes a stair-like-climbing movement. The typical

‘heel strike’ that ends the swing phase is replaced with either a slapping motion against

the ground or the entire foot being planted on the ground, as seen in (D). In severe

cases, the subject may not have the ability to support their weight due to the weakness

in the affected foot. A walker or cane will often be used to assist in this respect.
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Figure 2.5: Drop-foot walking cycle. Source FootCare (2018).

2.3 Current Technologies for Drop-Foot

The range of current Assistive Technologies (ATs) to alleviate drop-foot can be broken

down and categorised as: mechanical/electromechanical, functional electrical stimula-

tion (FES), hybrids and soft robotics. The most often cited quantitative measurements

to evaluate the effectiveness of assistive devices include; increased speed, reduction of

effort and decreased feelings of anxiety and depression.

2.3.1 Electro-Mechanical

The most commonly prescribed interventions comprise mechanical ankle orthoses. These

passive mechanical AT systems span a wide range of devices to limit the impact of drop-

foot. Systems include splints, Ankle Foot Orthoses (AFO), knee and leg braces or even,

most basically, walking frames and sticks. AFOs comprise a rigid or semi-rigid splint

that fixes the ankle. These can rapidly and cheaply increase an individual’s mobil-

ity. A substantial number of studies have evaluated the effect of AFOs on a range

of medical conditions, including sub-acute or chronic stroke and MS (Pourhosseingholi

et al., 2019; Moltedo et al., 2018; Momosaki et al., 2015; Tyson et al., 2013; Ever-

aert et al., 2013). The prevalent assessment metrics are walking speed and energy

efficiency. While there is little published evidence to support long term effectiveness,

there is a strong consensus that they improve energy efficiency and gait during use

(Khurana et al., 2013). However, these typically restrict motion and can discourage

recovery, leading to increased spasticity and soft tissue shortening (Forghany et al.,

2010). These flaws mean gait remains abnormal and may lead to a negative impact on

dignity. These limitations are exacerbated by 60% of AFO users being fitted with inad-

equate orthoses (Kluding et al., 2013). For these reasons, clinicians are often unwilling

to prescribe AFO devices, as reflected by studies in which 47% of people have never
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used them (Esnouf et al., 2010). Even when used, rejection rates of 30% are typical,

with an adverse effect upon dignity cited as a primary limitation (Esnouf et al., 2010).

Figure 2.6: The quasi passive knee
system from Shamaei et al. (2014)

Advanced passive systems, conceived around su-

perelastic elements, have focused on further re-

ducing energy exertion via stiffness control and

absorbing and re-releasing energy during the gait

cycle (Mataee and Andani, 2014). Two concepts

have been proposed to allow the stiffness to be

set, (1) multi-axis elements, rotational and linear,

loading conditions, and (2) an element designed

as a hinge, with acting length varied by linear

displacement. Both concepts show, via numeri-

cal simulations, good correlation with desired an-

kle stiffness for different walking speeds: (1) slow

78%, normal 85%, fast 87%, (2) slow 62%, normal

88%, fast 82%. By utilising pseudoelasticity, en-

ergy stored in the superelastic element is hypoth-

esised to allow control of dorsiflexion. However,

these concepts are yet to be built, implemented

or tested clinically. Actively controlled mechanical systems have been developed and

employ pneumatics, hydraulics and motor systems. Examples include fluid brake intel-

ligent AFOs (Kikuchi et al., 2010), linear motor active AFOs (Hwang et al., 2006) and

exoskeletons (Dollar and Herr, 2008). Exoskeletons have been shown to reduce torque on

the hip by 62%. The most advanced research uses Quasi-Passive approaches within the

exoskeleton, (Shamaei et al., 2014), pictured in Figure 2.6. Here a spring of desired stiff-

ness is placed in parallel with the knee joint, engaging via an electromechanical clutch

only during the weight acceptance phase (0 − 12%). Experiments involving humans

were conducted, and preliminary findings found the knee joint produces significant mo-

tor adaptation to retain reasonably invariant kinematic and kinetic movements. It was

also found that the system provided substantial assistance to knee movements, by re-

ducing stress on weak muscles/assisting stability and offering power assistance through

some of the motion. However, like all active systems in the field, general limitations

include their large invasive size, cost and considerable power requirements.

2.3.2 Functional Electrical Stimulation

When 290 healthcare professionals and 120 patients and carers were asked what assistive

devices they most commonly used 34% and 47% respectively quoted Functional Elec-

trical Stimulation, making it the most frequently used device within the study (Hughes

et al., 2014). FES operates by applying electrical pulses to the nerves supplying the

user’s muscles to generate useful movement that would otherwise be unavailable due
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to nerve damage. FES was first proposed for drop-foot by Liberson in 1961 (Liberson

et al., 1961) and is now recommended by the National Institute for Health and Clinical

Excellence (NICE) (NICE, 2009). FES systems for drop-foot typically have a single pair

of surface electrodes, an example being the Bioness L300, which is shown in Figure 2.7.

Multi-channel systems are also available, such as the Odstock 4-channel and 2-channel

stimulators. Here, further channels commonly stimulate hamstrings or gluteal muscles

to address knee flexion, or hip stability, respectively. Implanted systems have been com-

monly available since 2006 with the introduction of the STIMuSTEP, a 2 channel device,

and more recently, partially implanted systems such as Ottobock ActiGait. In all cases,

preset stimulation profiles are triggered either via a pressure sensor in the shoe or via a

tilt sensor mounted on the device.

Figure 2.7: L300 FES stimulator by Bioness.

Clinical evidence demonstrates that FES has significant advantages compared to passive

orthoses (Prenton et al., 2017; Veerbeek et al., 2014). These advantages include pro-

moting more natural walking, having a smaller size and reducing the number of falls by

72% (Esnouf et al., 2010; Barrett and Taylor, 2010; Mann et al., 2005). Meta-analyses

of thirty studies from 1990 to 2008 showed an increase in walking speed by 16%, a re-

duction in effort of 29%, as well as reduced spasticity, anxiety and depression (Roche

et al., 2009; Barrett and Taylor, 2010). Further meta-analyses, including nineteen stud-

ies recruiting 490 people with MS, revealed a significant initial orthotic effect, with a

mean increase in gait speed of 0.05m/s (Miller et al., 2017). Additional studies show

electrical stimulation provides long term recovery benefits (Rushton, 2003), assisting sit

to stand due to having no restriction and greater clearance due to improved knee/hip

flexion.

Despite positive effects, several limitations of FES are also present. Perhaps foremost is

the time it takes to setup (Micera et al., 2010). Typically systems take between 10 and 15

minutes to don, even after training (Taylor et al., 1999; Dutta et al., 2012). Additionally,

battery limitations and fatigue limit the length of a session (Micera et al., 2010; Stirling

et al., 2011). Unfortunately, FES is unsuitable for lower motor neurone conditions, or in

cases of severe muscle deterioration. Some users feel burning/prickly sensations which

vary in intensity depending upon the quality of contact (Dutta et al., 2012). Electrode
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pads also need replacing over time (Karu et al., 1995). Although a less prevalent system,

implanted devices remove the need to position electrodes, regularly replace electrodes,

and significantly reduce or eliminate sensations associated with external stimulation

(Buentjen et al., 2019). However, they require surgery to implant.

2.3.3 Electrode Arrays for FES

An alternative solution to using large pads or implants is to use multiple electrodes

arranged tightly to form an array. Electrode arrays embed several electrode pads in a

predefined layout, that can be individually activated. There are two types of layout:

the first has pads which are shaped to correspond to muscle positions, e.g. HandNMES

(Snoek et al., 2000) and H200 Bioness. However, a mismatch between the muscle and

pads can limit effectiveness (Crema et al., 2018) or require a bespoke system for every

user. The second employs a grid layout which allows a broader application to different

limbs and users, e.g. INTFES (Velik et al., 2011) and ShefStim (Kenney et al., 2016).

However, an identification method is required to locate an appropriate electrode pad.

Existing pad identification methods (e.g. Schill et al. (2009); O’Dwyer et al. (2006);

Micera et al. (2010); Popović-Bijeli et al. (2005)) share a common approach which

replicates manual trial and error pad placement. Each pad is activated in turn, and

the resulting movement is recorded. The pad which produces the best movement (e.g.

greatest dorsiflexion, least roll) is selected. Minor variations exist, including activating

pairs or groups of pads, in turn, (Schill et al., 2009) and exchanging cathode and an-

ode positions (O’Dwyer et al., 2006). The most clinically studied approach is ShefStim.

ShefStim employes 64 electrode pads and uses multiple active pads to form a “virtual

electrode” (Prenton et al., 2014; Kenney et al., 2016). A “virtual electrode”, comprises

of 4 electrodes, in a 2x2 configuration. The input position is identified by shifting the

virtual electrode along the array in the same way the single electrode system operated.

A participant perception survey, involving 10 individuals, ranging from 26 to 79 years

old, used ShefStim unsupervised for 2 weeks following initial consultations (Prenton

et al., 2014). This found that the setup time took over 14 minutes on average, longer

than their own FES devices. When participants were asked to score their own 2 channel

FES devices against ShefStim, even with the easier pad placement, the long setup time

resulted in the two systems receiving the same score on average.

Most arrays, like ShefStim, use conventional polycarbonate electrode pads (Neuman,

2000) which are not breathable or comfortable and have to be regularly replaced. Un-

fortunately, very few fabrication techniques have been developed that can fully realise a

wearable electrode array. This is due to a lack of breathability, flexibility and issues with

washability. Embroidery has been investigated by Keller (2007) to manufacture fabric

electrode arrays, but this required high-quality, expensive custom made silver sputter

yarns. These could only be produced with plasma vapour sputtering since degradation
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Figure 2.8: ShefStim system (medial view of leg during automated setup). The
parts are; a) ShefStim stimulator; b) modified knee sleeve; c) flexible printed
circuit board array of 64 electrodes (cathode electrodes); d) conventional an-
ode; e) foot sensor and remote control device housed in a bespoke foot-pod;
f) conventional footswitch; g) electrical connector for the array; h) footswitch
connector. Image from Prenton et al. (2014).

of the conductive properties occurs around the surface during the embroidery process

(Marc, 2009). Similarly, weaving and knitting have been used to fabricate a wide range of

wearable electronic applications including sensors, displays, health monitors and power

generation. However, these approaches are not suitable for producing a wearable FES

array, since they impose constraints on the layout of conductive paths. Additionally,

there is a lack of homogeneity in the resistance through the fabric due to imprecise

gaps between the conductive yarns, which is an inherent limitation of the fabrication

approach.

To address the above limitations, Yang et al. (2014a) screen printed conductive pastes

directly onto everyday fabrics to form dry electrodes. Results confirmed user tolerance,

as well as increased repeatability of joint movement compared to the commercial stan-

dard which uses a traditional “wet” hydrogel interface. This technology is inexpensive

to produce due to the wide availability of pastes and fabric. The full system consists of

four printed functional layers and allows much more breathability than other methods

due to the use of a cotton or polyester textile. The system has had clinical success
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after it was able to produce clinically relevant reference postures in the upper body and

electrotherapy pain relief (Freeman et al., 2016; Yang et al., 2014a, 2019a,b).

2.3.4 Hybrid Approaches

FES has been shown to overcome the primary limitation of electromechanical approaches

(size, cost, and restricted movement). Yet it has its own significant drawbacks including;

fatigue, skin irritation, long setup times and is unable to provide effective support to

people with severe muscle wastage. These differing limitations are in proportion with the

level of support provided by each method and hence might be alleviated by suitably com-

bining FES and mechanical approaches. This is the philosophy behind hybrid strategies.

The combination of FES and passive or active mechanical devices was first demonstrated

in 1989 when FES was combined with self-fitting modular orthoses (SFMO) using mo-

tors and cables (Popovic et al., 1989). The principal benefits of this hybrid approach

were reduced energy exertion of the patient compared to separate systems, a greater

range of achievable positions and stances, and less muscle fatigue (though this was still

present).

Despite this initial work, few further hybrid devices have been developed, and fewer

still clinically evaluated. In Lane (2015) FES and elastomeric splinting were combined

into a hybrid device, to alleviate difficulties with electrode positioning, specifically to

aid children and young people. Results took during 3 concurrently timed 10m walks,

using 1 subject with left-hemiplegia, indicated a hybrid combination provided the best

solution. These results demonstrate the hybrid system had the longest stride (no in-

tervention - 115cm, splint alone - 118cm, hybrid - 123cm), least cadence steps per min

(no intervention - 124.47 steps/min, splint alone - 120.38 steps/min, hybrid - 118.59

steps/min), lowest physiological cost index (no intervention - 0.49, splint alone - 0.35,

hybrid - 0.30) and a marginally higher walking speed (no intervention - 1.2 m/s, splint

alone - 1.18 m/s, hybrid - 1.21 m/s).

Although research is sparse in the area of hybrid approaches for drop-foot, there have

been demonstrations in similar fields linked to the lower limb. A treadmill based gait

rehabilitation system in China combined FES and pneumatic actuation (Tu et al., 2016).

The system produced full gait motion without any voluntary human motion by using

pairs of pneumatic muscle actuators positioned either side of the hip and knee joints,

providing flexion and elongation alongside an off-the-shelf multi-channel FES stimulator,

Rehastim2. FES has also been combined with a Joint-Coupled Orthosis (JCO) (Farris

et al., 2009). The aim was to restore gait to individuals with spinal cord injuries. The

motion was achieved with a 2-channel FES stimulator which was subsequently controlled

and limited by controllable friction brakes located at the knee and hips. Results indicate

that, after 15 minutes, muscle output stabilised at 85% of its initial output, suggesting
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continuous walking is possible without significantly degrading performance. However,

both systems are large and must be worn over clothing, which limits user uptake.

The above hybrid approaches have mitigated the limitations of individual approaches. In

particular, they have resulted in less irritation/fatigue, reduced FES power, improved

energy efficiency and have formed systems suitable for more people (as hybrids can

also assist balance). This suggests there is potential for further research into combined

systems. However, mechanical components of the devices are inherently limited by being

either fixed (no degrees of freedom) or large, heavy and difficult to don/doff (due to

actuators about each degree of freedom). These hard constraints can only be overcome

by seeking a new approach. Therefore, the next section expands the review to cover

the potential for soft robotic technologies. This field has only been applied to address

drop-foot in a small number of instances.

2.3.5 Soft Robotic Technology for Medical Application

The soft robotic field covers a range of technologies including stacked dielectric elastomer

actuators, electro-thermal actuation and soft pneumatic actuators. Their fluidity and

compliance mean that soft robotics can potentially address the inherent limitations of

existing electromechanical systems. In principle, they can replace large, cumbersome

devices with a wearable technology that looks and feels like regular clothing.

The use of shape memory alloy (SMA) wires was investigated in (Stirling et al., 2011),

where they exploited their contractual response to applied heat. The SMA wires were

placed around the ankle to control motion. Those at the front control dorsiflexion,

those at the back plantarflexion, and those at the sides lateral movement. The heat

was generated electrically via control of electrical current across a known resistance.

Although the overall size of the actuation system was small, the device was complex

to put on and wear. Additionally, the actuation cycle time was too long to support

a natural walking speed. To address this issue, the addition of a cooling system to

shorten the cycle time would be required but was not investigated. Due to high power

requirements, the device was unable to provide support throughout the day (battery

life - 39 minutes, while the average time spent shopping is 41 minutes, excluding travel

(Goodman, 2016)).

Four pneumatic artificial muscles were employed in a device which assisted ankle motion

in Park et al. (2014). Artificial muscles contract, or elongate depending on air pressure,

which was exploited to control ankle movement. An artificial muscle was responsible

for each direction of motion, mimicking biological architecture. The device was very

complicated, as can be seen in Figure 2.9, and took up more space than the SMA device,

thereby limiting the clothing that could be worn. Furthermore, the device operated at

5.7 Bar, giving rise to safety concerns in the event of failure.
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Figure 2.9: Pneumatic artifical muscle ankle assistance technology from Park
et al. (2014)

While no other examples have been reported for drop-foot, other soft robotic approaches

have been applied to the assistive technology domain. Dielectric elastomer actuators

were developed in (Huaming et al., 2015). They achieved snake-like locomotion that

behaved similarly to pneumatic muscles including, a rotation of 70-degrees and linear

elongation of 8mm. However, current systems are bulky, limiting their wearability. Vari-

able stiffness fibres (Chenal et al., 2014) have been developed to produce a prototype

finger brace, only allowing motion when required by controlling the stiffness through

heat. This enabled the implementation of a simple hold/release control scheme. How-

ever, the system effectiveness was limited by the time required to heat and cool the

variable stiffness fibres.

2.4 Summary

A range of assistive technologies approaches have been considered, including mechani-

cal structures, functional electrical stimulation devices and soft robotic systems. This

review has highlighted the potential of soft robotic approaches but also the significant

limitations and safety concerns.

On the other hand, FES is a prevalent assistive and has a positive effect on activity

post-stroke, promoting muscle use and reducing the probability of falls. However, FES

devices have several limitations: they do not mimic natural gait movement, electrode

pads are challenging/time-consuming to put on, and fatigue can shorten the period of

use.

Although there is potential in combining FES with mechanical or soft robotic systems,

the primary research need is to address the limitations of FES. This is not only needed

to improve the experience of FES users, but to also ensure FES can provide the primary

source of actuation in any future hybrid assistive devices. To examine the limitations of
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FES in more detail, the next chapter provides additional information about FES, motor

function and existing FES controllers.



Chapter 3

Physiology and FES

Characteristics

The previous chapter established the potential of FES to address drop-foot, but it also

showed limitations in current technology. To explore this in more detail, the chapter

begins by defining the physiological principles governing muscle contraction. Specifically,

the differences between natural and artificially-evoked muscle activation are detailed.

This chapter also sheds light on the challenge of developing a suitable FES control

strategy by critically evaluating current FES control strategies for drop-foot.

The physiological principles described during this chapter appear in many medical text-

books. The sources used here include, but are not limited to, Kelso (1982); Wederich

et al. (2000); Bullock and Wang (2001); Levine (2012) and Knotkova (2019).

3.1 Physiology - Motor Control and the Lower Limb

Human movement is performed in a complex hierarchical structure containing distinct

layers. The Central Nervous System (CNS) consists of the brain and spinal cord and

is responsible for the integration, processing and response to sensory information. The

rest of the nervous system is known as the Peripheral Nervous System (PSN), of which

the peripheral nerve is the main component. Electrical signals, which control voluntary

motion, are transmitted through nerves using electrochemical impulses called action

potentials.

17
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3.1.1 Action Potentials

Nerves are formed by groups of connected neurons, as shown in Figure 3.1. Each neuron

has a long segmented cell body, ‘axon’, allowing electrical signals (action potentials)

to propagate. Action potentials are the control input for muscular tissue. They are

generated in the initial segment of the neuron when a stimulus (electrical or chemical)

alters the state of the local ion channels. There are two main events, the resting period

and the action potential.

Figure 3.1: Labelled diagram of a typical neuron. Source HumanBodyforEdu-
cation (2018).

Chemical gradients across the axon membrane result in a negative resting potential (-70

mV). This is because the membrane permeability for the potassium ions is much higher,

allowing the ions to diffuse out of the cell down its electrochemical gradient. Because

of this enhanced permeability, the potassium is close to an electrochemical equilibrium.

The membrane potential is, therefore, close to the equilibrium potential of -90 mV. The

resting potential varies from this because the of the presence of sodium ions, however,

they are not at electrochemical equilibrium (due to the lack of active leak channels) thus

have a small effect on the resting potential. The slight negative resting-state means the

segment is able to quickly become positive under excitation, specifically the low levels of

sodium during rest allows for a large amount of sodium to rush in through the activated

leak channels which propagate the ATP.

An action potential is propagated along the axon by voltage-activated channels located

in the axon membrane. A sodium channel activates at a stimulus of -55mV allowing a

large amount of sodium to rush into the axon segment, causing depolarisation (a spike

in positive potential charge). This charge spreads, depolarising the next segment of the

axon. At 30mV potassium channels activate, re-polarising the segment. Another action

potential is only possible after the resting potential is re-established; this is called the

refractory period. The action potential continues along the axon, transmitting between

neurons by terminal branches (synapses) until it reaches its destination. A specialised

synapse connects neurons to muscle tissue.
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3.1.2 Muscular Tissue

Three types of muscles have been officially identified in humans with quite different traits.

Of these, the skeletal muscles are responsible for controlling the movement of human

skeletons. Skeletal muscles are attached to bones by tendons and consist predominantly

of active contractile tissue which shortens when stimulated.

Skeletal Muscles are split into 2 different types. Slow-twitch fibres, Type I, use aerobic

cellular respiration for Adenosine Triphosphate (ATP) production providing better re-

sistance to fatigue compared to the other skeletal types. The second is fast-twitch fibres

(Type II). These use anaerobic glycolysis for ATP production. However, this approach

cannot be maintained for long periods, resulting in a faster rate of fatigue in exchange

for stronger contractions.

Voluntary muscle contraction recruits the smaller, more fatigue-resistant Type I muscles

fibres first, and Type II when a greater force is required. Muscle recruitment is achieved

by exciting motor neurons asynchronously between 20 - 25 Hz. At these frequencies, each

impulse within the neuron can expire before the stimulus for the next action potential is

applied. The result of an action potential is a brief contraction, “twitch”, of the motor

units it is connected too. Repeated excitation before a twitch fully relaxes (i.e. within

200 ms), leads to the summation of the contractile forces such that a smooth, tetanic,

step like muscle contraction is produced. However, it is important to note that there

are dynamic delays of approximately 0.2s between activating an action potential and

achieving a contraction.

3.2 Functional Electrical Stimulation of Excitable Tissue

FES also utilises action potentials to generate movement but has several key differences

in how they are activated. FES produces a disturbance to the electrical field surrounding

nerve cells, inducing action potentials. This is done using two electrodes, one anode ‘+’

and the other a cathode ‘-’. When current passes between the poles, positive ions (potas-

sium) are repelled from the tissue close to the anode and are driven by Lorentz force

(the electromagnetic force on a point charge) towards the cathode. When the potential

difference between the two sides of the nerve reaches the critical threshold for excitation,

an action potential will be elicited in the same way as previously discussed. However,

action potentials produced by FES have impulses which propagate in both directions.

Towards the muscles and the CNS. The impulse towards the muscles causes contractions

while the pulse up to the CNS is credited with improving the brain’s ability to relearn

movement, an effect called the Hebbian theory phenomenon. The Hebbian theory pro-

poses an explanation to how neurons adapt (“synaptic plasticity”) in the brain during

learning: If point ‘A’ is attempting to stimulate point ‘B’, artificial stimulation applied
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to ‘B’ can help rebuild neurological connections between the two points (Young, 2015).

This theory forms an important part of the motivation for using precisely controlled

FES to assist movement during rehabilitation.

The level of motor neuron excitation is directly influenced by several parameters that can

fluctuate from day to day and from person to person. The impedance of surrounding

tissue affects the path of the electrical current, as current follows the path of least

impedance. Although only a small electrical disturbance is needed to produce an action

potential, the high impedance of skin and fat means that a high voltage is required.

Typically the stimulation is current-controlled, in which case the size of the electrode

pad constituting each pole needs to be considered as it has an inverse relationship with

current density (Keller and Kuhn, 2008; Forrester and Petrofsky, 2004). This results in

smaller pads being better able to stimulate deeper neurones. Additionally, the closer the

anode and cathode electrodes are together; the more current will pass through surface

tissue, resulting in less excitation in deeper tissue.

3.2.1 Stimulation Characteristics

FES artificially produces the pulses required to generate action potentials. Typically,

muscles are activated using a Pulse Width Modulated (PWM) signal with fixed parame-

ters (commonly amplitude and frequency). This is because the frequency and amplitude

of pulses can be easily found to achieve a smooth, comfortable contraction for each par-

ticipant. However, because Type II muscle fibres lie closer to the surface of the skin and

are often larger in diameter, they are recruited first when FES is applied. These fibres

have a lower resistance to fatigue. Furthermore, FES recruits the nerves in a continuous

synchronous fashion, rather than asynchronously and typically at a higher frequency

than natural recruitment. This further compounds the fatiguing effect of FES. There-

fore it is crucial to use the lowest levels of stimulation possible. Also, because of this,

directly varying amplitude levels increases rates of fatigue (Kesar et al., 2008) as some

fibres are over-excited.

There are two types of PWM signals used clinically for the excitation of nerves: monopha-

sic and biphasic. Monophasic waveforms consist of a repeating unidirectional pulse. This

only allows the flow of ions in one direction. Alternatively, biphasic waveforms have a

second negative pulse which allows ions to flow back. This produces a zero net current

flow, reducing electrochemical irritation from any electrically induced Ph imbalances.

Both stimulation pulse types have the same three parameters: pulse frequency, ampli-

tude and duration, as illustrated in Figure 3.2.

Pulse frequency is the number of pulses per second. If the frequency is too low, the

response will be a set of noticeable twitches. Commercial stimulators use a frequency

between 25 − 50Hz (Wederich et al., 2000). Increasing the frequency can produce a
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Figure 3.2: The three main parameters of FES PWM signals.

stronger contraction. However, this also increases the rate of fatigue. Due to this,

frequency is not normally used for control. Instead, FES devices tend to adjust the

strength of muscle contraction by altering the pulse duration.

Low amplitude stimulation is unable to generate muscle force because the threshold

excitation needs to be exceeded (dead-zone). By increasing the amplitude or duration

of stimulation, nerves will have the stimulus required to produce action potentials. This

increases the muscle contraction strength (active region) until all nerves are activated,

and the saturation region is entered. The non-linear isometric recruitment response to

stimulation is pictured in Figure 3.3.A. Typically, the max current used is 30mA. Figure

3.3.B shows the typical operational band for current amplitude and pulse duration.

Usually, commercial devices vary the pulse duration between 200−400µs. This provides

relatively comfortable experiences for patients and gives a suitable range to control

muscle contractions (Wederich et al., 2000).

Figure 3.3: Left, muscle force against current amplitude. Right, relationship be-
tween pulse duration, current amplitue and stimulation responce. Both graphs
are normalised for this manuscript to gain generic conclusions on general muscle
relationships with FES. Source - Wederich et al. (2000)
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3.3 Control of FES

A variety of commercial FES systems for drop-foot exist, but all employ open-loop con-

trol which is usually triggered by a pressure sensor mounted in the heel. This generates

effective, but crude, dorsiflexion around the ankle. In the research domain, a range of

both open and closed-loop systems have been developed. The first approach to open-

loop FES control required manual user input to initiate stimulation pulses (Kostov et al.,

1994). Here manual user commands were compared with “hand-crafted” rules. The lat-

ter was found to improve walking speed by 7% and reduce the stimulation duration by

38%.

Ferrarin et al. (2001) designed a model-based closed-loop proportional-integral-differential

controller (PID) to control the angle of the knee and compared it to a model-based open-

loop control and a PID feedback controller. The model was validated by stimulating

the quadriceps with a triangular pulse. A comparison between the predicted and exper-

imental results show 14% error for subject 1 and 17% error for subject 2. The study

found the PID demonstrated better tracking properties than the open-loop model-based

control (angular Root Mean Squared Error (RMSE) open = 8.2◦ ± 2.3◦, feedback =

4.6◦ ± 0.7◦), but this led to a considerable increase in time lag (Time-lag RMSE open

0.13 ± 0.05s, PID 0.24 ± 0.08s). Finally combining the two approaches, reduced the

RMSE and time lag, but not below open-loop control (angular RMSE 3.4◦±0.3◦, Time-

lag RMSE 0.21 ± 0.02s). However, no evidence was provided regarding the controller’s

robustness to fatigue.

Fuzzy logic and PID controllers have been combined with neural networks in (Chen

et al., 2004). Three hemiplegic participants lay on a bed with their ankle elevated. The

controller then attempted to track a reference stretched over 13 seconds, consisting of

500 points. The neural network achieved an angular RMSE of 8.11◦, 7.81◦ and 5.59◦.

The neural network combined with PID performed better, achieving an angular RMSE

of 5.57◦, 4.83◦ and 5.05◦, but a neural network combined with fuzzy logic performed best

with 4.07◦, 3.75◦ and 4.19◦. However, the stretched reference/high sampling rate limits

the experimental validation.

An adaptive approach based on sliding mode control and non-linear compensation con-

trolled the agonist-antagonist muscles to generate ankle movement (Kobravi and Erfa-

nian, 2009). The study included experimental validation on 3 healthy and 3 paraplegic

subjects. The experiment was conducted on a bench, with a hip angle of 90◦, knee angle

0◦, and the ankle free to move. The references tracked, however, were not natural gait.

Instead, a biphasic trapezoidal (20s), biphasic raised-cosine (12s) and sinewave (20s)

were used limiting the experimental validation. The mean RMSE for healthy patients

was 3.2◦ ± 1.2◦ and for paraplegic subjects was 3.4◦ ± 0.2◦.
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Li et al. (2011) put forward a threshold control approach, which assumes the voluntary

movements are produced by shifting the length of appropriate muscles. A clear advan-

tage of this approach is that there is no need to compute the muscle torques required to

move the limb across a trajectory. Instead, joint angular acceleration was introduced to

calculate the necessary muscle lengths. The satisfactory robustness and error tracking

were confirmed in simulations. However, this approach is significantly limited, as time-

varying non-linear muscle dynamics have not been considered, and no experimental data

has been provided.

For multiple degrees of freedom, centralised control approaches can quickly become very

complex. Decentralised modular control can help reduce complexity. A decentralised,

modular control framework utilising fuzzy terminal sliding control and fuzzy logic control

in each module is reported in (Nekoukar and Erfanian, 2012). The module control

adjusts the pulse-amplitude and pulse-width of the applied stimulation. Three paraplegic

subjects (T7, T12, T8-T9) took part in experimental tests, looking at the tracking error

of the ankle, knee and hip. The experiments were repeated seven times. The average

RMSE for the knee tracking task was 2.7◦, 2.6◦ and 3.1◦ degrees. However, because of

the limited data from the small study, the complexity of crafting suitable “if... then...”

rules for the fuzzy logic and a large amount of sensory data required, the deploy-ability

of the controller is limited.

Extremum-seeking was found to alleviate the need for initial system parameter iden-

tification by tuning the PID controller parameters during operation (Oliveira et al.,

2016). However, only a simple high-low (trapezoidal) reference with a 35-second cycle

was used. It is unclear how such an approach would deal with much shorter and more

complex references, such as gait, which are much more heavily affected by time-varying

non-linearities.

The most advanced approaches reported for drop-foot used iterative learning control

(ILC) (Negrd, 2009; Seel et al., 2016). ILC uses the idea of learning over repeated

attempts at the same task (here each step of the gait cycle). It uses error data from

previous attempts to correct the stimulation input and assumes the system properties

reset between trials. Seel et al. (2016) employed 6 inertial sensors to provide the ankle

angle. The controller activated as the heel was lifted, in a similar way to commercial

systems. A study with 6 post-stroke patients validated the approach. Although no data

values were explicitly reported, graphs indicate RMSE values in the range 2◦ to 6◦ were

achieved within 2 cycles and maintained. However, the first cycle was a model-based

approximation of the required input. Although effective, the piecewise application of

ILC (which explicitly considers each attempt to be entirely separate from all others)

introduces discontinuities in the input signals and the resulting motion, which dam-

ages performance. Additionally, the use of ILC requires significant sensor data and an

accurate system model.
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3.4 Summary

This chapter has introduced the natural mechanisms used by the human body, and

FES, to recruit muscle fibres. A review of control approaches illustrated the importance

of closed-loop control combined with a system model to address drop-foot. Learning

has been found to improve performance further, taking advantage of the inherent cyclic

nature of gait. Additionally, the use of a model has been found to be effective at reducing

time-lag. However, the ILC method utilising these requires a large amount of data to

be stored between tasks. Additionally, it considers each step as a distinct, separate task

rather than a continually repeating process. These have degraded the controller’s overall

performance for this application.



Chapter 4

Repetitive Control Framework

The control review highlighted how model-based controllers are required to address gait

successfully. This is due to open-loop and simple structure feedback controllers be-

ing unable to compensate for the stimulation dynamics, which are characterised by a

significant time delay. The most recent advancements in FES drop-foot control used

iterative learning control (Seel et al., 2016) since it takes advantage of learning over re-

peated attempts (termed ‘trials’). However, its performance was limited by the resetting

characteristics between trials and the need for large amounts of data.

This chapter introduces a different framework which also employs the idea of learning

but crucially does not assume resetting and learns over continuous cycles rather than

trials. The framework is called Repetitive Control (RC). RC has not previously been

used for drop-foot, although it was previously employed for FES tremor suppression

by Copur et al. (2017). Despite a similar use of learning, there is a clear separation

between ILC and RC in both theoretical underpinning and application areas, although

duality properties do connect the two control approaches (Pipeleers and Moore, 2014).

First, the traditional RC framework is introduced, then a substantial generalisation is

developed that reduces the data requirement and improves robustness.

4.1 Traditional Repetitive Control Formulation

First put forward by Inoue et al. (1981), repetitive control was designed to enable perfect

tracking of periodic signals. RC is based on the internal model principle. The internal

model principle states that a model of the reference or external disturbance must be

included in the controller to ensure either perfect reference tracking or complete dis-

turbance rejection of the stable feedback system (Francis and Wonham, 1976b,a). For

example, to track a unit step with zero steady-state error, the controller must include

a model of the unit step function. This explains why a proportional-integral-derivative

25
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(PID) controller requires an integral term to perfectly track a unit step. Despite the

popularity of RC in controlling industrial machinery and various other research appli-

cations (Ratcliffe et al., 2007; Kurniawan, 2013) in the biomedical domain, it has only

previously been used for tremor-related FES rehabilitation (Copur et al., 2017). To

describe the traditional RC set-up, the starting point is the plant description, described

by operator P

The discrete plant, P , has state-space dynamics (AP , BP , CP , DP ) defined by

P : u 7→ y

{
xP (i+ 1) = APxP (i) +BPu(i)

y(i) = CPxP (i) +DPu(i)
(4.1)

where the state matrix AP ∈ RnP×nP , the input matrix BP ∈ RnP×m, the output matrix

CP ∈ Rϑ×nP , the feed-through matrix DP ∈ Rϑ×m, m is the number of inputs, ϑ is the

number of outputs, np is the number of states (order), xP is the state vector, u(i) is

the input and y(i) is the output at sample i ∈ N . The initial state is xP (0) = x0.

Here, without loss of generality, AP , BP , CP and DP are assumed minimal (i.e. they

capture the system dynamics with the minimum number of states (Tangirala, 2018)).

This means the plant is controllable and observable. In the present application the plant

corresponds to the stimulated ankle, with u the stimulation level and y the ankle angle.

The gait profile is captured by a reference r. In RC, the discrete signal r is defined as

being N periodic, that is r(i) = r(i + N) for a given N ∈ N and all i. The traditional

repetitive control tracking problem is to ensure that the plant output asymptotically

converges to the reference, that is

lim
k→∞

y(kN + i) = r(i), i = 0, · · · , N − 1 (4.2)

while the control input converges to a signal û, i.e.

lim
k→∞

u(kN + i) = û(i), i = 0, · · · , N − 1 (4.3)

Here the period number is, k ∈ N.

Discrete control system design is usually undertaken with the familiar z operator. How-

ever, using the one-sample advance operator ‘q’ enables a more transparent derivation of

signal relationships as it can be used without transforming the underlying signal space.

The q operator is defined by q(v(k)) = v(k + 1) for any discrete signal v. The most

common form of RC update algorithm is

u(i+N) = Q(q)(u(i) + L(q)e(i)), u(−i) = 0 ∀ i ∈ N. (4.4)

where Q(q), L(q) are filters and e(i) is the tracking error defined by e(i) = r(i) − y(i).

Applying the q operator to the plant dynamics (4.1) gives the expression y(i) = P (q)u(i)

with P (q) = CP (Iq − AP )−1BP + DP . Combining this with the common RC update
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(4.4) results in the control system shown in Figure 4.1. There are a large number of RC

design approaches for the filters Q and L, see Longman (2000) and Longman (2010) for

details.

Figure 4.1: Traditional RC block diagram.

By combining all the blocks of the RC control loop shown in Figure 4.1, the closed-loop

control dynamics can be written as

qN (u(i)) = u(i+N) = Q(q)(1− L(q)P (q))u(i) +Q(q)L(q)r(i) (4.5)

and grouping the input term gives

u(i)(qN −Q(q)(1− L(q)P (q))) = Q(q)L(q)r(i). (4.6)

By the internal model principle, the closed loop dynamics must be stable. A necessary

and sufficient condition for stability is that the roots of the input-output control action

relation
u(i)

r(i)
= q−NQ(q)L(q)

(
1− q−NQ(q)(1− P (q)L(q)

)−1
(4.7)

are all inside the unit circle. This has the characteristic equation

1− q−NQ(q)(1− P (q)L(q)) = 0. (4.8)

It follows that a sufficient condition for stability is given by

‖Q(q)(1− P (q)L(q))‖∞ < 1, (4.9)

or equivalently, in the frequency domain by

sup
ω∈[0,π]

|Q(ejw)(1− P (ejw)L(ejw))| < 1. (4.10)

Note, that although Q(q) and L(q) can be non-causal, the overall controller must be

causal. This constrains the degree to which Q(q) and L(q) may be non-causal. Addi-

tionally, for an arbitrary reference r, the internal model principle requires Q(q) = I in

order to converge to zero norm error.
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4.2 Lifted Repetitive Control Formulation

Selecting a suitable L(q) to satisfy the sufficient stability conditions, (4.9) or (4.10),

will solve the RC tracking objective, but requires access to all error data, as seen in

update (4.4). To reduce the data required by RC, an approach will be adopted that has

met with considerable success in the ILC field for rehabilitation. The idea is to apply

‘point-to-point’ tracking to repetitive control, which generalises the framework so that

it tracks only a subset (M < N) of reference samples. By tracking a subset of isolated

points in the reference, the RC design is no longer continuous (i.e. it is not possible

to describe the system using transfer-functions). Therefore, the plant dynamics need

to be represented in a way that means the repeating isolated points can be considered

continuous. To achieve this, it is necessary to adopt the so-called ‘lifted’ framework,

which was first defined rigorously in Pipeleers and Moore (2014); Bristow et al. (2006).

Each sample of the ‘lifted’ system represents a whole period of the original unlifted

system. At each sample of the lifted system, the inputs and outputs take the form of

super-vectors. From these super-vectors, it is then easy to extract the subset of key

points. For example, suppose we are interested in tracking only points i = {i1, i2...iM}
in each period, with corresponding gait positions r(i) = {r(i1), r(i2)...r(iM )}. Then the

traditional RC reference can be replaced by a vector containing only those points, as

shown in Figure 4.2.

Figure 4.2: A single cycle comparing point-to-point and traditional repetitive
control tracking. The x-axis shows the sample number within the cycle.

To extract the desired points, first, the input and output signals need to be redefined as

super-vectors. These are respectively

u(k) = [u(kN)>, u(kN + 1)>, · · ·u((k + 1)N − 1)>]> ∈ RmN , (4.11)

y(k) = [y(kN)>, y(kN + 1)>, · · · y((k + 1)N − 1)>]> ∈ RϑN , (4.12)
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where k ∈ N denotes the cycle number, similarly the reference and error are defined as

r(k) = r = [r(0), r(1), · · · r(N − 1)]> ∈ RϑN , (4.13)

e(k) = r − y(k) ∈ RoN . (4.14)

The original tracking requirement (4.2) can then be written equivalently as

lim
k→∞

y(k) = r (4.15)

Using these signals, the RC update (4.4) can be written equivalently in its lifted form

as

u(k + 1) = Q(q)
(
u(k) + L(q)e(k)

)
(4.16)

where Q and L are lifted representations of the robustness and learning filters respec-

tively.

The plant dynamics must also be expressed in lifted form. This is done by repeated

application of the plant dynamics operator P (equation (4.1)). The state equation then

becomes

xP (i) = AiPx0 +

i−1∑
j=0

Ak−j−1
P BPu(j), (4.17)

and output signal update (4.1)

y(i) = CpA
i
Px0 +

(
Cp
( i−1∑
j=0

Ak−j−1
P BP

)
+DP

)
u(j). (4.18)

To redefine the state equation (4.18) and the output signal (4.17) as super-vectors, all

cycles need to be stacked in the same way as the previous super-vectors (i.e. equation

(4.12)). This gives the following lifted plant dynamics

P :



xP ((k + 1)N)︸ ︷︷ ︸
xP (k+1)

= ANP︸︷︷︸
AP

xP (kN)︸ ︷︷ ︸
xP (k)

+ [AN−1
P BP , A

N−2
P BP , · · ·BP ]︸ ︷︷ ︸
BP

u(k)

y(k) =


CP

CPAP
...

CPA
N−1
P


︸ ︷︷ ︸

CP

xP (kN)︸ ︷︷ ︸
xP (k)

+


DP 0 · · · 0

CPBP DP

. . .
...

...
. . .

. . . 0

CPA
N−2
P BP · · · CPBP DP


︸ ︷︷ ︸

DP

u(k)
, (4.19)

where the lifted discrete plant state-space dynamics now have the dimensions AP ∈
RnP×nP , BP ∈ RnP×mN , CP ∈ RϑN×nP and DP ∈ RϑN×mN .
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We can also define lifted forms of the filters Q(q) and L(q) as

Q :

{
xQ(k + 1) = AQxQ(k) + BQ(v + u)(k)

u(k + 1) = CQxQ(k) + DQ(v + u)(k)
, (4.20)

where AQ ∈ RnQ×nQ , BQ ∈ RnQ×mN , CQ ∈ RmN×nQ and DQ ∈ RmN×mN , and

L :

{
xL(k + 1) = ALxL(k) + BLe(k)

v(k) = CLxL(k) + DLe(k)
, (4.21)

where AL ∈ RnL×nL , BL ∈ RnL×ϑN , CL ∈ RmN×nL and DL ∈ RmN×ϑN . More

structured forms of (4.20) and (4.21) can be given if Q(q) and L(q) have explicit unlifted

state-space forms. For example, when the unlifted filters Q and L take the typical form

of a low pass filter, the lifted filters Q and L will have the same structure as the plant

dynamics depicted in (4.19), as long as the filters are causal. The full lifted RC block

diagram is given by Figure 4.3.

+

+

e u
q-1L q(  ) Q q(  ) P q(  )

r

+
-

v y
I

N

Figure 4.3: RC system lifted description.

Convergence condition (4.9) expressed for the lifted system corresponds to

‖Q(q)(I − P (q)L(q))‖∞ < 1, (4.22)

and it can be shown that the sufficient stability conditions (4.9) and (4.10) directly imply

the lifted stability condition (4.22).

This is proven by applying the same derivation as in the unlifted case to ensure the

closed-loop dynamics are stable, as seen in (4.9) and exploiting the dimensional freedom

available in the lifted convergence analysis. See Pipeleers and Moore (2014).

In summary the lifted plant (4.19), controller (4.16), filters (4.21), (4.20) and condi-

tion (4.22) are simply their unlifted equivalents expressed as a high dimensional system

where every sample of the lifted system (super-vector) is a whole period of the unlifted

system. Similarly, the unlifted (time-domain) and lifted (cycle-domain) plant models are

equivalent in the sense that they describe the same identical dynamics (yet in different

domains) and feature the same system properties, see Pipeleers and Moore (2014) for

further details.
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4.3 Point-to-Point Repetitive Control

Having introduced the lifted framework, the following section generalises it to extract

and track a reduced number of points. The starting point is to recall that the purpose of

the point-to-point control is to extract and track a subset of M < N points of reference

r. This will be achieved by defining the indices

i = i1, i2, · · · , iM . (4.23)

To express the task in the lifted framework, the indices need to be extracted from the

supervector r by introducing a projection operator Φ : LmN → LmM . For any lifted

signal s ∈ LmN , this operator is defined by

Φ : LmN → LmM : s 7→ sΦ : sΦ(i) =


s(iN + i1)

s(iN + i2)
...

s(iN + iM ))

 = Φj,is(i), (4.24)

where the m×N matrix

Φ̄j,i =

{
I, if i = ij

0, otherwise
. (4.25)

The projection operator Φ is therefore suitably defined to extract the values from the

signal which correspond to the indices within i. The values of ij that are not defined in i

are rejected. In this case, the set of desired point-to-point output positions are extracted

from the reference vector by

Φr = rΦ =


r(i1)

r(i2)
...

r(iM )

 . (4.26)

We use this to replace r by Φr = rΦ and e by Φe = eΦ in the previous lifted framework.

This means that Q(q) and L(q) must later be redesigned to be compatible for this lower

dimensioned system.

The tracking objective (4.15) is replaced by

lim
k→∞

yΦ(k) = rΦ, (4.27)

and the lifted form of the control input (4.3) must converge to a lifted signal, i.e.

lim
k→∞

u(k) = û. (4.28)
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Substituting the redefined reference and error back into the RC update structure leads

to the system shown in Figure 4.4.

+

+

e u
q-1L q(  ) Q q(  ) P q(  )

r

+
-

v y
I

N

F
F

FF

Figure 4.4: Point-to-point RC system lifted description.

A new form of the RC update and corresponding condition to solve the point-to-point

problem can now be introduced.

Theorem 4.1. The general lifted RC update

u(k + 1) = Q(q)(u(k) + L(q)eΦ(k)) (4.29)

where eΦ(k) = rΦ −Φy(k), and L(q) : LmM → LmN is selected to satisfy

‖Q(q)(I −ΦP (q)L(q))‖∞ < 1 (4.30)

solves the point-to-point RC problem (4.27) and (4.28).

Proof. The lifted closed loop control dynamics are given by

u(i) = Q(q)L(q)(I − q−1Q(q)(I −ΦP (q)L(q))−1r(i) (4.31)

and from the internal model principle, the convergence of the lifted tracking objective

(4.27), and lifted control input (4.28) holds true if the poles of the lifted closed-loop

control dynamics are all inside the unit circle. A sufficient condition for this is (4.30).

The new point-to-point RC update (4.29) is similar to the traditional form (4.16), how-

ever now only the point-to-point error is needed and the operator L(q) must be com-

pletely redesigned. The selection of a suitable L(q) can be achieved by starting with an

RC operator that satisfies the traditional unlifted problem as shown in the next theorem.

Theorem 4.2. Let unlifted operator L̄(q) satisfy the traditional RC convergence crite-

rion

‖I − P (q)L̄(q)‖∞ < 1 (4.32)

or equivalently

sup
ω∈[0,π]

|I − P (ejw)L̄(ejw)| < 1 (4.33)
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then the lifted operator

L(q) = L̄(q)Φ∗ (4.34)

satisfies condition (4.30) where (·)∗ denotes the adjoint operator.

Proof. Inserting the lifted solution to the traditional RC problem (4.34) into the lifted

RC update (4.30) gives

‖I −ΦP (q)L̄(q)Φ∗‖∞ = ‖Φ
(
I − P (q)L̄(q)

)
Φ∗‖∞ (4.35)

and since the unlifted (4.9) and lifted (4.33) stability conditions imply

‖I − P (q)L̄(q)‖∞ < 1 (4.36)

we have the required relation

‖I −ΦP (q)L̄(q)Φ∗‖∞ ≤ ‖I − P (q)L(q)‖∞ < 1. (4.37)

This result means that any L(q) operator used for traditional RC can be used to gen-

erate a suitable operator for a lifted point-to-point RC algorithm, L(q). An example

of an RC update that can be used in Theorem 4.2 is the so-called gradient RC update,

proposed in Hätönen et al. (2006, 2004). The gradient algorithm has a track record of

experimental effectiveness, attractive robustness properties, and ease of implementation.

These characteristics were illustrated in Copur et al. (2017) where gradient RC was used

to control FES tremor suppression. It can be summarised as follows:

Lemma 4.3. The gradient algorithm is defined by the unlifted RC operator

L̄(q) = βP ∗(q) (4.38)

where β is a scalar chosen such that

0 < β <
2

supω∈[0,π] |P (ejω)|2
. (4.39)

The gradient algorithm satisfies the traditional RC convergence condition (4.32). Note

that, to apply the controller experimentally, it is necessary that the plant satisfies the

condition

CPA
i
PBP = 0 ∀ i ≥ N. (4.40)

This ensures that the overal update ((4.4) with L(q) replaced by L̄(q)) is causal.
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Proof. First, from the unlifted plant dynamics (4.19) the plant Finite Impulse Response

(FIR) can be written as

h(i) =

 h(0) = Dp

h(i) = CpA
i−1

pBp
, i ≥ 1. (4.41)

The plant dynamics therefore has discrete time FIR filter form

P (q) : v 7→W, w(s) =
(( N∑

i=0

h(i)v(s− i)
)

+ h(0)v(0)
)
, (4.42)

which can be seen to be causal. The plant adjoint operator is given in the state-space

form by

(
P (q)

)∗
: w 7→ v

{
x∗P (s) = APx

∗
P (s+ 1) + CPw(s+ 1)

v(s+ 1) = BPx
∗
P (s+ 1) +DPw(s+ 1)

k ∈ N. (4.43)

By repeated application of the plant adjoint (4.43), and substitution of the finite impulse

response (4.41), the noncausal discrete-time FIR form of P (q)∗ is given by

(P (q))∗ : w 7→ v, v(i) =
(( ∞∑

i=0

h(i)w(i+ 1)
)

+ h(0)w(0)
)
. (4.44)

When i ≥ N , knowledge of the next period is required, which is not available. To ensure

this does not occur, the impulse response needs to be constrained by the condition

(4.40).

The point-to-point RC update comes from applying Table 4.1.

Point-to-Point RC Formulation

1: choose a β that staisfies Lemma 4.3
2: ensure the convergence condition, (4.30) is met
3: use Theorem 4.2 to give the required lifted filter L(q) (4.34)
4: then apply to Theorem 4.1, (4.29), to give the overall point-to-point RC update,

which has the form 4.45

Table 4.1: Formulation of point-to-point RC.

The point-to-point RC has the form,

u(k + 1) = u(k) + βP ∗(q)Φ∗eΦ(k)

= u(k) + β
(
ΦP (q)

)∗
eΦ(k). (4.45)

However, implementation requires conversion of (4.45) back to its unlifted form. This

is because the experimental implementation is in the time domain, which results in the
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lifted controller becoming non-casual because data from the entire current full cycle,

which does not exsist, would be required. However, by converting back to the unlifted

form, only data prior to the sample being applied is required.

Note: All physical systems are proper (i.e. have more poles than zeros) and so Dp = 0.

This will be assumed in the following derivations.

Proposition 4.4. The lifted point-to-point update (4.45) has, for a single sample i, the

following equivalent unlifted form

u((k + 1)N + i) =u(kN + i) + β
( ī∑
j=1

CpA
N−i+ij
p Bpe((k + 1)N + ij)

+
M∑

j=ī+1

CpA
ij−i
p Bpe(kN + ij)

) (4.46)

where ī = maxj ij ≤ i is the most recent point-to-point sample index.

Proof. Consider the required structure of v =
(
ΦP (q)

)∗
w in (4.45), i.e.

(
ΦP (q)

)∗
:


x∗P (k) = A>Px

∗
P (k + 1) + C>P Φ̄>w(k + 1)

= A>Px
∗
P (k + 1) + (Φ̄CP )>w(k + 1)

v(k + 1) = B>P x
∗
P (k + 1) + D>P Φ̄>w(k + 1)

= B>P x
∗
P (k + 1) + (Φ̄DP )>w(k + 1)

k ∈ N (4.47)

Within this we have the lifted point-to-point structures

(Φ̄CP )> =


CPA

i1
P

CPA
i2
P

...

CPA
iM
P


>

, and (4.48)

(Φ̄DP )> =


CPA

i1
PBP · · · CPBP 0 · · · · · · 0
... · · · . . .

. . .
...

CPA
iM
P BP · · · · · · · · · CPBP 0 · · · 0︸ ︷︷ ︸

N−iM−1


>

. (4.49)
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By repeated application of the lifted plant adjoint (4.47) and subsituting w = e(k),

v =
(
ΦP (q)

)∗
e(k) is given by

v(k) = (Φ̄DP )>Φ̄e(k) + B>P

( ∞∑
i=1

(
A>P
)i−1

(Φ̄CP )>Φ̄e(k + i)
)

= (Φ̄DP )>Φ̄e(k) + B>P

( ∞∑
i=1

(
A>P
)i−1

C>P Φ̄>Φ̄e(k + i)
)

= (Φ̄DP )>Φ̄e(k) +
∞∑
i=1

{(
CP

(
AP

)i−1
BP

)>
Φ̄>Φ̄e(k + i)

}
. (4.50)

The sufficient stability condition (4.40) to ensure the unlifted update is causal still holds,

and it follows that for the lifted system, this requires

CPA
i
PBP = 0 ∀ i ≥ 1 (4.51)

The same proof for (4.40), which used the finite impulse responses of the unlifted system

plant adjoint to show non-causal behaviour above a boundary condition, can be applied

to prove this. Note, the constraint change on i is due to the transformation between

the unlifted (time-domain) and the lifted (trial-domain) form. This constrains v =(
ΦP (q)

)∗
e(k) (4.50) to give

v(k) = (Φ̄DP )>Φ̄e(k) + B>P (Φ̄CP )>Φ̄e(k + 1). (4.52)

The unlifted state-space dynamics are given by

CPBP =


CPA

N−1
P BP CPA

N−2
P BP · · · CPBP

...
. . .

...

...
. . .

...

CPA
2N−2
P BP CPA

2N−3
P BP · · · CPA

N−1
P BP

 ,

and by applying the necessary stability condition for causality (4.40), (CPA
i
PBP =

0 ∀ i ≥ 1) the unlifted form has an upper triangular form

CPBP =



CPA
N−1
P BP CPA

N−2
P BP · · · · · · CPBP

0
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...

0 · · · · · · 0 CPA
N−1
P BP


. (4.53)
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It follows directly that

(Φ̄CPBP )> =


i1︷ ︸︸ ︷

0 · · · 0 CPA
N−1
P BP · · · · · · CPA

i1
PBP

. . .
. . .

...

0 · · · · · · 0︸ ︷︷ ︸
iM

CPA
N−1
P BP · · · CPA

iM
P BP



>

. (4.54)

Substituting the unlifted forms of the lifted state-space plant dynamics (4.48) and (4.54)
into the point-to-point RC update (4.45) gives the unlifted point-to-point RC update

u(k + 1) =u(k) + β ×





CPA
i1
P
BP · · · CPBP 0 · · · · · · 0

.

.

. · · ·
.
.
.

.
.
.

.

.

.

CPA
iM
P

BP · · · · · · · · · CPBP 0 · · · 0︸ ︷︷ ︸
N−iM−1



>


i1︷ ︸︸ ︷
0 · · · 0 CPA

N−1
P

BP · · · · · · CPA
i1
P
BP

.
.
.

.
.
.

.

.

.

0 · · · · · · 0︸ ︷︷ ︸
iM

CPA
N−1
P

BP · · · CPA
iM
P

BP



>

×




e(kN + i1)

e(kN + i2)

.

.

.

e(kN + iM )


︸ ︷︷ ︸

Φ̄e(k)
e((k + 1)N + i1)

e((k + 1)N + i2)

.

.

.

e((k + 2)N + iM )


︸ ︷︷ ︸

Φ̄e(k+1)


, (4.55)

which simplifies to give the final matrix form

u(k + 1) = u(k) + β



CPA
i1
P
BP · · · CPA

iM
P

BP

.

.

.

.

.

.

CPBP

.
.
.

.

.

.

0
.
.
.

.

.

.

.

.

. CPBP

0

.

.

.

.

.

.

0 0

0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

CPA
N−1
P

BP 0

.

.

.
.
.
. 0

.

.

. CPA
N−1
P

BP

.

.

.

.

.

.

CPA
N−i
P

BP CPA
N−i
P

BP





e(kN + i1)

e(kN + i2)

.

.

.

e(kN + iM )

e((k + 1)N + i1)

e((k + 1)N + i2)

.

.

.

e((k + 1)N + iM )


(4.56)

This is causal and is the lifted form of the unlifted point-to-point update (4.46).

The form of the lifted point-to-point update (4.56) may appear complex, but can be

transparently interpreted as follows. First, note that the two sum terms within the single

sample unlifted point-to-point RC update (4.46) correspond to the left and right halves

of the non-zero diagonal band matrix (tridiagonal form) within the stacked unlifted

point-to-point update (4.56). The first summation term corresponds to the right half

of the matrix and represents the points within the (k + 1)th cycle that intersects with

the moving convolution. Similarly, the second sum, and equivalently the left side of the

matrix, represent the points in the kth cycle that intersect with the moving convolution.
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As the sample position moves forward, new points are added to the convolution in the

(k + 1)th cycle. However, because the cycle length is N and the impulse response has

length ≤ N the same point in the previous cycle (kth) is no longer included in the

convolution. Eventually, all the points will be within the (k + 1)th cycle, then when

the sample enters the next cycle, the points will again effectively all be in the kth cycle,

leading the process to then repeat. The tridiagonal form is, therefore, purely a result of

indexing. Note, that the size of the upper and lower triangular of the tridiagonal matrix

are not dependent upon the number of extracted points (the size of M), but instead

directly result from stacking iterations that are shifting with the sample position.

This can also be expressed graphically: Figure 4.5 shows 3 cycles, including the error,

extracted points and impulse response, N samples behind the current sample position.

Only points that intersect with the impulse (marked in green) are part of the convolution

and effect the update at the active sample i (marked in green). The equivalent position

in the previous cycles are also shown (marked in red).

Figure 4.5: Graphical depiction of update (4.46) and its equivalent unlifted form
(4.56).
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Figure 4.5 provides additional detail by showing points with positional importance as

larger dots. These dots are labelled as follows: labels in black are static; for example,

the first point i1 and last point iM in the cycle. Labels in blue are dependent upon the

sample position which means they change with time, such as the point previous to the

current sample, īi, and point following the current sample, īi+1. The difference between

the upper and lower image of Figure 4.5 demonstrates i moving forward a number of

samples. The impulse response follows the active sample position, resulting in new

points entering the convolution (within the (k + 1)th cycle). Consequently, the same

points within the previous kth cycle are no longer part of the convolution. This is due

to the conditions on the length of the impulse response, which ensures causality. This

produces the tridiagonal non-zero form discussed above.

Theorem 4.1 showed that the lifted point-to-point RC update, given by (4.45), and the

unlifted form in (4.46), converges to a fixed signal û. The next result takes this further

by showing that û is the minimum control effort solution.

Theorem 4.5. The converged control signal (4.28) resulting from applying the point-

to-point update (4.45) is the minimum control effort signal satisfying

û := min
û
‖u‖2 such that rΦ = ΦP û (4.57)

Proof. From the repeated application of the state-space plant dynamics (4.19) we have

y(k + 1) = DPu(k + 1) + CPBPu(k) + CPAPBPu(k − 1) · · · (4.58)

where convergence implies u(k) = û ∀k. Hence from applying the causality condition

(4.40),

y(k) =
(
DP + CPBP

)
û ∀k, (4.59)

and

Φ̄y(k) = Φ̄
(
DP + CPBP

)
û ∀k. (4.60)

As convergence also implies Φy(k) = rΦ ∀k, applying the pseudo-inverse of the plant

gives the solution to the optimisation (4.57), resulting in

û =
(
Φ̄
(
DP + CPBP

))†
rΦ (4.61)

where the matrix pseudo-inverse is defined by A† := A>
(
AA>

)−1
.

This can be confirmed by finding the limiting solution to the repeated application of

the lifted point-to-point gradient implementation (4.56) (infinite series solution). This

is given by

u(k + 1) =u(k) + β(Φ̄DP )>Φ̄e(k) + β(Φ̄CPBP )>Φ̄e(k + 1). (4.62)



40 Chapter 4 Repetitive Control Framework

By substituting Φ̄e(k) = rΦ− Φ̄y(k) and y(k) =
(
DP +CPBP

)
û into (4.62), the error

terms are removed, giving the infinite series for point-to-point RC implementation in

terms of u, r and the plant dynamics. This gives

u(k + 1) =u(k) + β
(
Φ̄
(
DP + CPBP

))>
rΦ − β

(
(Φ̄DP )>Φ̄DP + (Φ̄CPBP )>Φ̄CPBP

)
u(k)

− β(Φ̄DP )>Φ̄CPBPu(k − 1)− β(Φ̄CPBP )>Φ̄DPu(k + 1).

and by gathering terms

u(k + 1) =
[
I + β(Φ̄CPBP )>Φ̄DP

]−1{
β
(
Φ̄
(
DP + CPBP

))>
rΦ

− β(Φ̄DP )>Φ̄CPBPu(k − 1)

+
[
I − β

(
(Φ̄DP )>Φ̄DP + (Φ̄CPBP )>Φ̄CPBP

)]
u(k)

}
(4.63)

the infinite series can now be considered. The general form is,

u(k + 1) =au(k) + bu(k − 1) + c. (4.64)

Through the repeated application of the general input update (4.64), the underlying

matrix equation can be given in block matrix form[
u(k + 1)

u(k + 2)

]
=

[
b a

ab a2 + b

]
︸ ︷︷ ︸

Ξ

[
u(k − 1)

u(k)

]
+

[
c

ac+ c

]
︸ ︷︷ ︸

Θ

.

Assuming ρ(Ξ) < 1 (the series converges), then block matrix inverse relations, see, e.g.

Lu and Shiou (2002), can be used to find the converged solution u(∞). The general
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series form is given by[
u(∞)

u(∞)

]
=
∞∑
i=1

ΞiΘ = (I − Ξ)−1Θ

=

[
I − b −a
−ab I − a2 − b

]−1 [
c

ac+ c

]

=

[[ (
(I − b)− a(I − a2 − b)−1ab

)−1
,
(
(I − b)− a(I − a2 − b)−1ab

)−1
a(I − a2 − b)−1(

(I − a2 − b)− ab(I − b)−1a
)−1

ab(I − b)−1,
(
(I − a2 − b)− ab(I − b)−1a

)−1

]

×

[
c

(a+ I)c

]]

=

[ (
(I − b)− a(I − a2 − b)−1ab

)−1(
I + a(I − a2 − b)−1(a+ I)

)
c(

(I − a2 − b)− a(I − b)−1a+ a2
)−1

(a+ I − b)(I − b)−1c

]

=

[ ((
I + a((I − b)− a2)−1(a+ I)

)
((I − b)− a)

)−1(
I + a(I − a2 − b)−1(a+ I)

)
c(

(a+ (I − b))(I − b)−1(I − b− a)−1
)−1

(a+ I − b)(I − b)−1c

]

=

[
(I − b− a)−1c

(I − b− a)−1c

]
(4.65)

Now, comparing the state-space series (4.63) and the general form of the solution (4.64),

the solution to the infinite series can be found. First,

(I − a− b) =
[
I + β(Φ̄CPBP )>Φ̄DP

]−1
β
{

(Φ̄DP )>Φ̄DP + (Φ̄CPBP )>Φ̄CPBP

+ (Φ̄DP )>Φ̄CPBP + (Φ̄CPBP )>Φ̄DP

}
now, consider the state-space form equivalent to (I − a− b)−1c, which is the solution of

u(k) as k tends to infinity. This is found by applying matrix pseudo-inverse relations

which, with simplification follows{
(Φ̄DP )>Φ̄DP + (Φ̄CPBP )>Φ̄CPBP

+ (Φ̄DP )>Φ̄CPBP + (Φ̄CPBP )>Φ̄DP

}−1(
Φ̄
(
DP + CPBP

))>
rΦ

=
{(

Φ̄
(
DP + CPBP

))>
Φ̄
(
DP + CPBP

)}−1(
Φ̄
(
DP + CPBP

))>
rΦ

=
(
Φ̄
(
DP + CPBP

))†
rΦ (4.66)

as required.

Theorem 4.5 shows the lifted point-to-point RC update (4.45) and equivalent unlifted

point-to-point RC update (4.46) converge to the minimum effort solution (i.e. smallest

amount of FES that solves the tracking problem). However, research has established

human movement is a minimum jerk movement rather than simply a minimum energy

one (Morasso, 1981; Krebs et al., 1998; Flash and Hogan, 1985). This was illustrated
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by Tack et al. (2007) where it was found that the walking speed at a minimum jerk

cost function coincidences with the preferred walking speed for an individual. Therefore

the update is now generalised such that an operator can be designed to converge to any

minimum norm solution, such as the minimisation of velocity, acceleration, energy and

jerk norms.
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4.4 Generalizing the Minimum Control Effort

The aim is now to generalise Theorem 4.5 by altering the gradient algorithm to include a

filter F . This will be seen to change the control signal input solution to solve a different

minimisation problem.

Theorem 4.6. Let the lifted point-to-point gradient RC update (4.45) be modified to

assume the form

u(k + 1) = u(k) + βFF ∗
(
ΦP (q)

)∗
eΦ(k) (4.67)

where F is an operator with unlifted state-space matrices {AF , BF , CF , DF } satisfying

CFA
i
FBF = 0 ∀ i ≥ nF , (4.68)

with nF ≤ N , and β is a scalar satisfying the unlifted condition

0 < β <
2

supω∈[0,π] |P (ejω)|2|F (ejω)|2
. (4.69)

Then the converged control signal (4.28) satisfies the weighted minimum control effort

condition

û := min
û
‖Hu‖2 such that rΦ = ΦPu (4.70)

where operator H has a steady-state equal to the inverse of that of F .

Proof. As before, the steady-state solution satisfies u(k) = û ∀k, because Theorem 4.1

is satisfied. Therefore the operators can now be replaced by

P =
(
DP + CPBP

)
. (4.71)

Similarly for the minimum control effort weighting H, with lifted state-space matrices

{AH ,BH ,CH ,DH} analogous to (4.19), we have

H =
(
DH + CHBH

)
. (4.72)

The method of Lagrangian multipliers, λ, is then applied to find the minimum solution,

û, with respect to constraints (4.70). The Lagrangian expression is defined by

argmin{J(u)}, J(u) =
1

2

(
Hu

)>
Hu + λ>

(
ΦPu− rΦ

)
(4.73)

Therefore, since the dynamics of the inverse filter (4.72) are full rank (i.e. all columns

and rows and linearly independent) the solution satisfies
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(H)>(H)û + (ΦP )>λ = 0

⇒ û = −
(
(H)>(H)

)−1(
Φ(P )

)>
λ

⇒ Φ(P )û = −Φ(P )
(
(H)>(H)

)−1(
Φ(P )

)>
λ

(4.74)

and since M ≤ N , by post-multiplying (4.73) by (P ) and substituting Φ(P )u∗ = rΦ

and (4.73) back in to remove the Lagrangian multiplier, λ, the minimum energy solution

in state space form is given

λ =−
(
Φ(P )

(
(H)>(H)

)−1(
Φ(P )

)>)−1

rΦ

⇒ û =
(
Φ(P )

(
(H)>(H)

)−1(
Φ(P )

)>)−1

rΦ ×
(
(H)>(H)

)−1(
Φ(P )

)> (4.75)

To write the solution û in a form similar to the minimum control effort given by (4.61),

the weighted pseudo-inverse form A† := XA>
(
AXA>

)−1
is required where X =

(
(DH+

CHBH)>(DH + CHBH)
)−1

. By now focusing on the input control solution to the

filtered update minimisation problem (4.67), it can be shown to have an equivilant

value to the state-space minimum energy solution (4.75). By partitioning (4.67) consider

v(k + 1) = (ΦPF )u(k + 1);

v(k + 1) = ΦDPDFu(k + 1) +Φ
(
DPCFBF +CPBPDF

)
u(k) +ΦCPBPCFBF︸ ︷︷ ︸

=0

u(k − 1)
(4.76)

where the constraint nF + nP ≤ N is applied to the impulse response length of F and

P to ensure CPBPCFBF = 0. Therefore the adjoint, v = (Φ(PF )∗u is given by

v(k) =
(
ΦDPDF

)>
u(k) +

(
ΦDPCFBF +ΦCPBPDF

)>
u(k + 1)

and then

v(k) = F (ΦPF )∗Φe(k)

= DF

(
ΦDPDF

)>
Φe(k) +DF

(
ΦDPCFBF +ΦCPBPDF

)>
e(k + 1)

+CFBF

(
ΦDPDF

)>
e(k − 1) +CFBF

(
ΦDPCFBF +ΦCPBPDF

)>
e(k)

= DF

(
ΦDPCFBF +ΦCPBPDF

)>︸ ︷︷ ︸
α2

e(k + 1) +CFBF

(
ΦDPDF

)>︸ ︷︷ ︸
α3

e(k − 1)

+
(
DF

(
ΦDPDF

)>
+CFBF

(
ΦDPCFBF +ΦCPBPDF

)>)︸ ︷︷ ︸
α1

e(k)

so that, following additional simplifications, this leads to

v(k) =(α1 + α2 + α3)r −ΦDPα1u(k)−ΦDPα2u(k + 1)−ΦDPα3u(k − 1)

−ΦCPBPα1u(k − 1)−ΦCPBPα2u(k)−ΦCPBPα3︸ ︷︷ ︸
=0

u(k − 2).
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By subsituting (4.77) into the filtered lifted point-to-point RC update (4.67), we obtain

u(k + 1) =u(k) + βv(k)

=
(
I + βΦDPα2

)−1{
(α1 + α2 + α3)r +

(
I − βΦDPα1 − βΦCPBPα2

)
u(k)

− β
(
ΦDPα3 + ΦCPBPα1

)
u(k − 1)

}
(4.77)

and a solution is provided by comparing (4.64) and (4.65) with (4.77) to give

u∞ =
[
I −

(
I + βΦDPα2

)−1(
I −ΦβDPα1 − βΦCPBPα2

)
−
(
I + βΦDPα2

)−1
β
(
ΦDPα3 + ΦCPBPα1

)]−1

×
(
I + βΦDPα2

)−1
(α1 + α2 + α3)r.

from which simplifying gives

u∞ =
[(
I + βΦDPα2

)−1
β
(
ΦDPα2 + ΦDPα1 + ΦCPBPα2 + ΦDPα3 + ΦCPBPα1

)]−1

×
(
I + βΦDPα2

)−1
(α1 + α2 + α3)r.

(4.78)

Expanding the elements within the square brackets of (4.78) gives

ΦDPα1 + ΦCPBPα2 =
(
ΦDPCFBF + ΦCPBPDF

)(
ΦDPCFBF + ΦCPBPDF

)>
+ ΦDPDF

(
ΦDPDF

)>
(4.79)

ΦDPα3 + ΦCPBPα1 =
(
ΦDPCFBF + ΦCPBPDF

)(
ΦDPDF

)>
Φ (4.80)

ΦDPα2 = ΦDPDF

(
ΦDPCFBF + ΦCPBPDF

)>
(4.81)

and substituting them back into (4.78) gives

(
ΦDPDF +

(
ΦDPCFBF + ΦCPBPDF

))(
ΦDPDF +

(
ΦDPCFBF + ΦCPBPDF

))>
= Φ

(
DP + CPBP

)(
DF + CFBF

)(
Φ
(
DP + CPBP

)(
DF + CFBF

))>
= Φ

(
DP + CPBP

)(
DF + CFBF

)(
DF + CFBF

)>(
Φ(DP + CPBP )

)>
(4.82)

Similarly, by expanding and gathering terms, α1 + α2 + α3 are equal to

α1 + α2 + α3 =
(
DF + CFBF

)(
DF + CFBF

)>(
Φ(DP + CPBP )

)>
. (4.83)



46 Chapter 4 Repetitive Control Framework

Substituting the previous expansions (4.82) and (4.83) into the infinite series input

solution (4.78) gives

u∞ =
[
Φ
(
DP + CPBP

)(
DF + CFBF

)(
DF + CFBF

)>(
Φ(DP + CPBP )

)>]−1

×
(
DF + CFBF

)(
DF + CFBF

)>(
Φ(DP + CPBP )

)>
rΦ (4.84)

Now note that for any full rank square matrix A, (A>A)−1 = A−1(A−1)>. Also note

that
(
DF + CFBF

)
=
(
DH + CHBH

)−1
to give

u∞ =
[
Φ
(
DP + CPBP

)((
DH + CHBH

)>(
DH + CHBH

))−1(
Φ(DP + CPBP )

)>]−1

×
((
DH + CHBH

)>(
DH + CHBH

))−1(
Φ(DP + CPBP )

)>
rΦ (4.85)

which matches the solution to the Lagrangian expression (4.75) as required.

To implement the new filtered lifted point-to-point RC update (4.67) in practice again

requires conversion to an unlifted form, as was done previously in Proposition 4.4. This

is derived next.

Proposition 4.7. The filtered lifted point-to-point RC update (4.67) has equivalent un-

lifted form

u((K + 1)N + i) =u(kN + i) + β
( M∑
j=if

ψ(nf − i+ ij −N)e((k − 1)N + ij)

+
M∑
j=īf

ψ(nf + ij − i)e(kN + ij)

+
ī∑

j=1

ψ(nf +N + ij − i)e((k + 1)N + ij)
)

(4.86)

where ī = maxj≥0{ij |ij ≤ i, i0 = 0}, is the most recent point-to-point index, īf =

minj≥1{ij |ij ≥ i − nF } defines the first point appearing within the (k − 1)th cycle,

that is in the convolution window and if = minj≥1{ij |ij ≥ i − nF + N, im+1 = 2N}
describes the first point within the k cycle that is in the convolution window. Function

ψ(i) :=
∑nF

a=−nF
∑nF

j=0 f(j)f(a + j)p(i + a) where f(i) = CFA
i
FBF , p(i) = CPA

i
PBP ,

are the impulse responses of F (q) and P (q) respectively.

Proof. Note we require impulse response lengths nf , np of F (q) and P (q) respectively

to satisfy nf + np ≤ N for the system to be causal. First, writing F (q) in the causal

FIR form v(q) = F (q)w(q), gives

v(i) =

nf∑
j=0

f(j)w(i− j). (4.87)
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and by definition, its adjoint F (q)∗ has FIR form w(q) = F (q)∗x(q), i.e.

w(i) =

nf∑
j=0

f(j)x(i+ j), (4.88)

then v = FF>x corresponds to the unlifted update

v(i) =

nf∑
j=0

f(j)

nf∑
p=0

f(p)x(i− j + p)

=

nf∑
j=0

nf−j∑
a=−j

f(j)f(a+ j)x(i− a)

=

nf∑
a=−nf


nf∑

j=−nf

f(j)f(a+ j)

︸ ︷︷ ︸
h(a)

x(i− a)

(4.89)

where by definition h(a) is defined over a ∈ [−nf , nf ]. Next, recall the lifted operator

x =
(
ΦP (q)

)∗
eΦ(k) from equation (4.50) given by

x(k) = (Φ̄DP )>Φ̄e(k) +

∞∑
i=1

{(
CP

(
AP

)i−1
BP

)>
Φ̄>Φ̄e(k + i)

}
, (4.90)

and since the unlifted causality condition (4.40) for the update implies the unlifted

causality condition for the filter (4.68), the lifted operator (4.90) simplifies to

x(k) = (Φ̄DP )>Φ̄e(k) + B>P (Φ̄CP )>Φ̄e(k + 1) (4.91)

which has the unlifted form

x(kN + i) =

ī−nf∑
j=1

p(N + ij − i)e((k + 1)N + ij)

+

M∑
j=ī+1

p(ij − i)e(kN + ij),

(4.92)

where ī = maxj ij ≤ i is the most recent point-to-point index. Substituting the un-

lifted state-space form of x =
(
ΦP (q)

)∗
eΦ(k) given by (4.92) into the unlifted up-

date (4.89) and then into the minimum control effort update (4.67) (i.e. u(k + 1) =
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u(k) + βFF ∗
(
ΦP (q)

)∗
eΦ(k)) yields the unlifted filtered point-to-point RC update

u((k + 1)N + i) = u(kN + i)

+ β
( ī−nf∑
j=1

nf∑
a=−nf

h(a)p(N + i− ij + a)e((k + 1)N + ij)

+
M∑

j=ī+1

nf∑
a=−nf

h(a)p(ij − i+ a)e(kN + ij)
)
,

(4.93)

where, p(i) = CPA
i
PBP is the impulse response of the unlifted plant P (q), h(a) =∑nf

j=−nf f(j)f(i+ j) in which f(i) is the impulse response of F (q). Partitioning the sum

into separate cycles, k−1, k and k+1, yields the form (4.86). This is achieved by noticing

that if, i < nf (i−nf < 0), then points in the previous cycle exist in the convolution. To

include the overflow from e(kN + ij), an additional term, e((k− 1)N + ij), emerges.

Remark 4.8. The new point-to-point RC update (4.86), or (4.67), requires a suitable filter

f(q) = 1
h(q) to be chosen. Perhaps the most important set of examples for assistance of

human motor function is: h(q) = 1
qn , n ≥ 1 (i.e. minimisation of velocity, acceleration,

jerk norms etc.). These correspond to f(q) = qn where n ≥ 1. However, their impulse

responses are infinite and hence clearly cannot satisfy the requirement nf + np ≤ N . It

is, therefore, necessary to replace them with suitable approximations, or to cut off the

update when it becomes non-causal.

Remark 4.9. Selecting F = I in Proposition 4.7 reduces the filtered unlifted update form

(4.86) to the unlifted update (4.46).

A graphical description can also be given to interpret the generalised filtered point-to-

point RC (4.86). Figure 4.6 shows the full update in operation. Previously, the point-

to-point update was shown in Figure 4.5 to have a tridiagonal form; the filtered point-

to-point RC update also has a tridiagonal form. However, due to the filter envelope,

the total size of the convolution has increased (with an additional tail of length nf ) to

include points before the previous sample i. Because of this, additional points in both

the kth and (k − 1)th cycle are now included in the convolution.

An additional term not previously required in the point-to-point update is now required

for points in the (k− 1)th cycle. It is important to note that terms in the (k− 1)th cycle

may only exist in the convolution when i− nf < 0, as this is the only time the impulse

envelope enters the (k − 1)th cycle. If this condition is not met the first summation

term (within update (4.86)) returns zero. Additional points from the kth cycle are also

now included, assuming they exist and coincide within the envelope tail. The dependent

ī variable accounts for this, by changing the number of terms in the summation. It

is important to note that, unlike previously, as points are no longer included in the

convolution they are not replaced by the equivalent point in the kth or (k + 1)th cycles.

Additionally, as points enter the (k + 1)th convolution, their corresponding point in
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Figure 4.6: Graphical depiction of the filtered point-to-point RC update (4.86)

the kth cycle is not removed due to the filter envelope tail, meaning they leave the

convolution nf samples later.

Figure 4.6 can be broken down into several segments, corresponding to how each part

of the filtered point-to-point update (4.86) is calculated. Figure 4.7 shows this partition

and how each segment relates to the terms within (4.86). The first segment convolves the

error of any extracted points (e((k− 1)N + ij)) within the reference for the points after

i in the (k − 1)th cycle, with the corresponding value of the impulse response envelope

(ψ(nf − N − i + ij)). Similarly, the second segment convolves the error of the points

(e((k)N + ij)) in the kth cycle before i with the impulse response (ψ(nf − i+ ij)). The

number of points included in the first and second segments depends upon the length

of the filter nf . For example, in the case where F = I (no filter), the first and second

segments do not include any points and so do not exist at all. The third segment

convolves the errors (e((k)N + ij)) and impulse (ψ(nf − i+ ij)) for the points in the kth

cycle after i. Finally, the fourth segment convolves the errors (e((k + 1)N + ij)) of the

extracted points that coincide with the impulse (ψ(nf + N − i + ij)) for the points in

the (k + 1)th cycle before i.
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Figure 4.7: A segmented graphical depiction of the filtered point-to-point RC
update
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4.5 Weighted Point-to-Point Repetitive Control

A comprehensive framework has been derived in the previous sections to allow key

points of a reference to be extracted and tracked, reducing the amount of data passed

between cycles. Additionally, an operator has been designed to enable the control signal

to converge to any minimum energy norm solution. A further simple modification to

the framework can allow a greater control of robustness, convergence evolution and

speed. This is achieved by influencing the learning rate of individual points. To alter

the convergence of specific points, the learning filter L(q) can be modified to include

a weighting operator for each point in the subset M . For this, a weighting matrix is

defined as

W = diag
{
W1, W2, · · · WM

}>
. (4.94)

To embed the weighting, the lifted operator L(q) (4.34) can be simply modified to,

L(q) = L̄(q)WΦ∗. (4.95)

Applying the modified filter to the point-to-point RC update of (4.45), gives the weighted

point-to-point RC update

u(k + 1) = u(k) + β
(
ΦP (q)

)∗
WeΦ(k). (4.96)

A sufficient convergence condition is obtained for each point by replacing the unlifted

learning rate condition (4.39) by

0 < βj <
1

supω∈[0,π](|P (ejω)|2) maxj (W 2
j )
. (4.97)

As with the previous updates, implementation requires the weighted point-to-point RC

update (4.96) to be expressed in the equivalent unlifted form. This is simply

u((K + 1)N + i) =u(kN + i)+

β
( ī∑
j=1

CPA
i−ij
P BPWje((k + 1)N + ij)+

M∑
j=ī+1

CPA
N+ij−i
P BPWje(kN + ij)

)
.

(4.98)

With only a minor alteration to the point-to-point RC update (4.45), the learning rate of

each point is now easily modified by the weighting operator, W . This allows a designer to

prioritise the convergence speed of specific points while decreasing the convergence speed

of others to improve the local robustness. This could prove highly useful in dealing with

disturbances that intermittently reoccur in some regions of a reference, such as during
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the swing phase of gait. Additionally, although each weighting is depicted as a static

value, they could be replaced by a dynamic function resulting in the weightings changing

depending upon other parameters, e.g. error.

4.6 Summary

This chapter has presented the concept of point-to-point RC, as well as deriving im-

plementable updates. To do this, derivations began with traditional RC, before ‘lifted’

systems were introduced. Section 3.3 highlighted the limitations of current control strate-

gies for lower limb FES. Because of this, point-to-point RC has been designed to reduce

the data being passed between cycles, improve accuracy by using an underlying model

of the system (internal model principle) and utilise learning over each cycle to deal with

time-varying disturbances (such as fatigue). It was also proven that all of the currently

available learning algorithms used for traditional RC could be used with point-to-point

RC, with minimal modification. This chapter has also presented two generalisations

to the derived point-to-point repetitive controller. Filtered point-to-point RC substan-

tially generalises the update to allow the designer to converge to any minimum norm

solution (minimum velocity, acceleration, energy, jerk etc. norms) by adding a filter.

Additionally, a simple modification to the learning filter resulted in weighted point-to-

point RC. This enables a designer to have greater control over the convergence speed

and robustness of individual points.



Chapter 5

Simulation

To validate the control framework of Chapter 4, it is now applied in simulation to the con-

trol of functional electrical stimulation for drop-foot. First, the electrically-stimulated

dynamics need to be identified. The most recent model-based control approach (Seel

et al., 2016) identified the dynamics as a third-order linear discrete transfer function via

black box least-squares fitting. However, to produce a more general, transparent, model

structure applicable to a broader range of users, a parametrised model is now developed

to enable model-based design and simulation.

5.1 Model Parameters

The ankle has a complex structure, and a wide range of models have been proposed

to capture underlying kinematic and kinetic properties. Depending on the application,

complexity is reduced by grouping or omitting ligaments, and assuming isotropic, ho-

mogenous properties to muscle and cartilage (Ramlee et al., 2013). Similarly, tendons

are typically modelled as tension-only elastic strings, bones are treated as rigid bodies,

and effects caused by soft tissues are ignored (Fenfang et al., 2014). Accordingly, here we

assume rigid body dorsiflexion/plantarflexion dynamics (L. Q. Zhang, 2000) with stiff-

ness, damping and twitch response parameters extracted from data gathered through

experimental motion and Electromyography (EMG) in Munih et al. (2000); Mesin et al.

(2010); Ficanha et al. (2017); Rouse et al. (2013) using linear regression. This is com-

bined with a Hill-type model of muscle dynamics (Sun et al., 2015), which has been

shown to characterise both voluntary and artificial muscle activation accurately. The

input is cascaded with the corresponding isometric recruitment curve (IRC) mapping

the stimulation input to a static angular position, the linear activation dynamic (LAD),

embedding the muscle delay response, and finally a function representing the rigid body

dynamics (RBD) of the ankle. (Assalone et al., 2015) (Hammerstein structure). The
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full model is shown in Figure 5.1. The dynamics of the resulting muscle model have

been validated in Le et al. (2008).

Figure 5.1: Model of artificially stimulated ankle dynamics.

5.2 Results

Although walking speed varies due to age, health and leg length, the average comfortable

gait cycle is assumed to be 2 seconds. This is therefore used as the gait cycle period. The

controller sampling and update time are set at 100 Hz as this is over 10 times the system

bandwidth. The traditional repetitive control update of (4.4) is first simulated for the

case of the gradient algorithm (4.38). For this set-up, it is necessary that the reference

r is set to the full gait profile. Figure 5.2 shows the full gait cycle. The traditional

Figure 5.2: Standardised gait cycle, with gait events/phases labelled. The red
dots correspond to the point-to-point tracking positions.

repetitive update is applied using M = N = 200, i1 = 1, i2 = 2, · · · , iM = 200. A range

of β values are applied to establish maximum convergence, as can be seen in Figure

5.3. Whilst using the most successful gain value (β = 7), the error norm ||e|| is slow,

requiring 52 cycles (steps, 104 seconds of walking) to reduce the error norm convergence

below 1% of its initial value. Faster convergence is not possible since divergence occurs

with larger β, as illustrated with β = 8.
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Figure 5.3: Traditional RC. Top: output evolution, middle: error norm conver-
gence, bottom: solution converged to in 60 cycles.

Next the point-to-point RC (update (4.46) using the gradient algorithm (4.38)) is applied

using M = 4. The set of point-to-point indices {ij} are defined using critical gait events,

(sample i , angle r(ij)) as: flat foot (9, 0◦), heel off (44, 12◦), toe off (127,−14.5◦) and

start of mid-swing (156, 1.629◦). See Figure 5.2 for a graphical illustration of the selected

point-to-point sample locations. Using the optimum β value (β = 200), which was found

using the sufficient stability condition (4.39), the error norm ||Φe|| falls below 1% of its

initial value after 6 cycles. Increasing β further slows down convergence until divergence

occurs, which can be observed in Figure 5.4. Additionally, the output behaviour between

points is smooth, as expected by the minimum control effort property of Theorem 4.5.

Figure 5.4: Point-to-point RC. Top: output evolution, bottom: error norm
convergence.
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Unlike the traditional repetitive control, point-to-point repetitive control will likely have

a discrepancy between the reference and the points not extracted as part of the point-

to-point reference. Figure 5.5.A) shows both the reference and the point-to-point RC

output solution after 6 cycles. Figure 5.5.B.1) shows the difference in degrees and Figure

5.5.B.2) shows it as a percentage. When the reference tends to zero, the percentage error

increases dramatically, resulting in the difference being a better way to establish the

controller’s performance. Figure 5.5.B.1) shows that the difference is reasonable across

the entire signal, with a specific note of the small difference between sample 120 and

200, which corresponds to the swing phase of the reference. Figure 5.5.C.1-2) zooms

onto the swing phase. Through the entire swing phase, there is only a difference of ±2

degrees, resulting in a +20% − 40% error. This is acceptable as the level of accuracy

for a joint sensor across its operational range is typically ±2 degrees. The similarity

between output y and the full natural gait reference r also reflects that natural motion

can be posed as a minimum control effort problem. This indicates that point-to-point

RC can naturally assist motion.

Figure 5.5: Point-to-point RC compared to the full reference signal.
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Figure 5.6 shows what happens when the number of points is increased. Point-to-point

RC is implemented with M = 9, sample indices i = {9, 34, 60, 83, 101, 127, 148, 172, 191}
and β = 160. The error norm ||Φe|| falls below 1% within 33 cycles. The difference

between the converged signal and the full reference is also shown to lie within ±2 degrees

for the entire signal, and almost always within ±1 degree. Therefore, by increasing the

number of tracked points (M), the output signal is better able to represent the entire

reference. However, doing so will decrease the convergence speed and robustness.

Figure 5.6: Point-to-point M = 9 implementation.

Table 5.1 summarises the key performance criteria between traditional and point-to-

point repetitive control when applied to a gait reference. Point-to-point RC can con-

verge faster and achieve perfect tracking for key gait positions. In contrast, traditional

repetitive control takes longer to converge and is unable to achieve zero error norm for

all the points it tracks. This is likely to be due to a discrepancy in the non-linear cancel-

lation, resulting in oscillation being forced by the adjacent points. When comparing the

point-to-point signal output to the full reference, point-to-point is less accurate when

tracking small subsets (M), but can be improved by adding more points to the subset

of the reference, using a different algorithm or applying a filter. It is also noted that for

the swing phase, the output signal matches the reference well (point-to-point error norm

7.48, traditional error norm 4.34) for the minimum number of points (M = 4) needed

to describe the reference.
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Table 5.1: Error measures for traditional and point-to-point RC.

Convergence (1%)
Difference Norm
Across Full Gait

Difference Norm
Across Swing Phase

Traditional
Repetitive Control

52 6.06 4.3476

Point-to-Point (M=4)
Repetitive Control

6 39.7837 7.4788

Point-to-Point (M=9)
Repetitive Control

33 6.3349 5.1599

Having compared the controller’s convergence speed and the accuracy of the output

signals, the robustness of the control approaches are now considered. To aid comparison,

a performance index (PI) is used, as first proposed by Ratcliffe et al. (2006). This is

defined as

PI =
J∑
k=1

‖eΦ(k)‖ (5.1)

with J = 100. The size of the performance index represents the total error accumulated

during convergence. The smaller the value of PI, the quicker the convergence. To

improve transparency in the comparison between traditional and point-to-point RC,

only the error of the M points are used for error calculation in both, as extracted by

the projection operator Φ.

The controllers have been designed based on the true model. To inspect robustness a

percentage uncertainty has been applied to the orginal stiffness and damping coefficients

used by the model. This ranges from 0% to 250% of those typical values. The values

are based off the ones identified in Munih et al. (2000); Mesin et al. (2010); Ficanha

et al. (2017); Rouse et al. (2013). The learning rates, β, are reduced to 80% of their

original values. Results are shown in Figure 5.7. The results highlight that point-to-

point has a smaller PI value for larger damping/lower stiffness values and a larger value

for lower damping/higher stiffness values. This also results in a smaller PI value around

the designed operating parameters (denoted by the pink dot on the 100% stiffness and

damping value intersection) showing improved robustness characteristics. Additionally,

the average PI across the ±50% region (pink box) is found, traditional PI = 415.4794

and point-to-point PI = 97.8757, indicating point-to-point also converges faster across

the entire region. By adding more tracked points, the robustness of the controller can

be seen to reduce. For M = 9 the controller is less robust compared to M = 4, see

Figure 5.7. Although the colour plot is slightly misleading, the robustness for M = 9 is

still better than traditional RC as the ±50% region has a value of PI = 262.8966.
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Figure 5.7: Robustness: traditional, point-to-point (M = 4), point-to-point
(M = 9).

5.2.1 Minimum Energy Filter

To change the converged input solution, a filter F is next applied using the framework

in Section 4.4 and RC update form (4.86). A 6th order low pass butter-worth filter was

designed with a 15 Hz frequency cut-off and a filter length of nf = 40 to satisfy the

causality condition (4.68) and the filtered minimum control effort condition (4.70).

To confirm that the minimum control energy solution u∗ has been achieved, the filtered

update can be compared to the minimum Euclidean norm solution (given by (4.75)). By

applying the designed filter, the minimum control energy solution to the problem can

be observed to have been achieved (Figure 5.8).

Although the output converges to the minimum jerk solution, the minimum energy and

minimum jerk solutions are very similar. This is due to the large space between points.

To better observe the effect of the filter, a more constrained reference is required. By

increasing the tracked subset to M = 8 (using the same positions as the previous M = 9

without i3) the filter (nf ) can be applied again, but now needs to be redesigned for the

new system. A 2nd order low pass butter-worth filter is designed with a 40hz frequency

cut off, filter length of nf = 10, producing Figure 5.9. In this case, the filtered signal

difference norms improve when compared to point-to-point RC, specifically between
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sample 40 and 90. Although the filtered point-to-point RC produces a better error

norm for the full reference (no filter, 9.9531 filter, 8.9244), the error norm increases

slightly for the swing phase of the gait cycle (sample 120 - 200, no filter, 5.4450 filter,

6.2904). This limits the usefulness of the filter as this is the key region of operation.

Figure 5.8: Minimum jerk filter, input, output signal.

Figure 5.9: Effect of filter. Top: full signal, bottom: samples 40 to 90.
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5.2.2 Weighted Point-to-Point Repetitive Control

Next, the weighting approach described in Section 4.5 is implemented. This modification

to the point-to-point control framework allows the designer to allocate different levels of

priority to each point effectively. This is achieved by altering the learning rate, β, with

a weighting, W for each point within the extracted point-to-point reference.

Figure 5.10 shows that altering the weight given to a single point can allow a divergent

system to converge. However, the further the point is away from the unstable point, the

less effect it has. This is shown in Figure 5.10.A.2), A.3) and A.4), and the corresponding

convergence of all the points is shown in B.1).

Figure 5.10: Weighted point-to-point; effect of relaxing priority on convergence.

This enables the designer to specify the error evolution of each point from cycle to cycle.

Because the norm of a signal considers all points, its convergence is limited by the slowest

converging point. By suitable design, the error evolution of each point can be modified

such that they all converge at the same time. Observing Figure 5.10.A.5), point 3 takes

much longer to converge than the other points, and point 1 converges much quicker. By

altering the weightings, all points can be made to converge based on the slowest points

convergence speed, see Figure 5.10.A.6). Figure 5.10.B.2) and B.3) show that even with

the lower weightings, W = {0.5, 0.8, 0.8, 1}, they both achieve the 1% error norm within
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6 cycles. Therefore, convergence speed has been reduced on specific points to increase

robustness with negligible effect to the overall convergence.

By applying the PI factor, the robustness of point-to-point to a weighted point-to-point

can be compared. Figure 5.11 shows a larger robust region for the weighted framework.

The ±50% PI region average is slightly larger (at PI = 115) for weighted point-to-point

RC. This is because of the increased robustness results in slower convergence around the

ideal model. In this case, relaxing the weightings is not needed, as it already has a large

stability region. However, it may be required for cases in which the stability region was

small or an increase in robustness at the expense of convergence speed is desirable.

Figure 5.11: Robustness: point-to-point vs weighted point-to-point.

This can be extended further by considering dynamic weights. This can be easily

achieved through a range of different algorithms. Here a dynamic weighting is based on

the error of each point and then normalised with the maximum error and constrained

by a minimum value,

Wi = ‖(e(i) + 0.2× e(i)/max(e(i))‖, (5.2)

if (Wi > 1) then Wi = 1, (5.3)

if (Wi < 0.3) then Wi = 0.3.

where Wi is the weighting being applied to the ith point.

Figure 5.12.A.1) shows the convergence of point-to-point (unity weight) and 5.12.A.2)

shows the dynamic weighted point-to-point, which achieved a very similar convergence,

again 1% error norm with 6 cycles. However, the main reason for making the weighting

dynamic would be to help deal with disturbances that occur. A step disturbance of

10 degrees is applied across all points during the 15th cycle. The 15th cycle has been

selected to first allow steady-state conditions to occur. Comparing Figure 5.12.B.1
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(point-to-point) and Figure 5.12.B.2) (dynamic weighted point-to-point), the dynamic

solution is shown to limit the max error and reduce the error norm quicker than the

un-weighted approach.

Figure 5.13 shows the effect of a dynamic weighting on robustness. Specifically, the

dynamic weighted point-to-point is found to be less robust to model uncertainty overall

due to the occurrence of divergent clusters. An investigation into other dynamic weights

could resolve this issue.

Figure 5.12: Comparing point-to-point RC to dynamic weighted point-to-point
RC, convergence and response to disturbance.

Figure 5.13: Robustness, weighted vs dynamic weighting.
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5.3 Summary

Comparing simulations of the point-to-point and traditional RC updates show that

point-to-point RC achieves faster convergence (point-to-point 6 cycles, traditional 52

cycles) and an improved robustness region (point-to-point PI = 97.88, traditional PI =

415.48). This was achieved while only tracking the swing phase slightly worse than

traditional RC (point-to-point error norm 7.48, traditional error norm 4.35). However,

point-to-point RC achieved all the above with only 1
50 of the data points traditional

RC used, stored and passed between cycles. Further simulations have explored the

minimum control effort generalisation and weighting modification. The generalisation of

the minimum control effort has shown that the minimum jerk solution can be converged

to rather than the minimum energy solution. In this particular application, the minimum

energy and minimum jerk are very similar, and so this had a limited effect. Additionally,

the simple modification to allow each point to have a weighting gave the designer greater

control, specifically allowing them to increase robustness for a specific model without

reducing convergence speed.
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Table 5.2: Simulation comparison table showing the performance of tradtional
and point-to-point RC

Convergence
(1%)

*only key points

Robustness
Region Value

(50%) [Average]
*after 75 trials

Difference
Norm

Full Gait
*at 1% norm

Difference
Norm

Swing Phase
*at 1% Norm

Traditional
RC

52
2.6175× 104

[415.4794]
6.06 4.3476

Point-to-Point
RC (M = 4)

6
6.1662× 103

[97.8757]
39.7837 7.4788

Point-to-Point
RC (M = 9)

33
1.6825× 104

[262.8966]
6.3349 5.1599

Filtered
Point-to-Point
RC (M = 4)

6
6.402× 103

[101.6324]
39.1043 9.3987

Point-to-Point
RC (M = 8)

30
1.6154× 104

[252.4080]
9.9531 5.4450

Filtered
Point-to-Point
RC (M = 8)

48
2.0751× 104

[324.2353]
8.9244 6.2904

Weighted
Point-to- Point

RC (M = 4)
6

7.3065× 103

[115]
39.7837 7.4788

Dynamic
Weighted

Point-to-Point
RC (M = 4)

6
8.7136× 106

[1.3831× 105]
*six divergent cells

38.5806 6.7853





Chapter 6

Experimental Evaluation

The performance of the traditional and point-to-point RC updates derived in Chapter

4 are now investigated in human feasibility trials to evaluate their effectiveness. This

builds upon the initial simulation validations performed in Chapter 5 by including the

full complexity of stimulated muscle dynamics, model uncertainty and the presence of

involuntary motion. The chapter begins by motivating the type of electrode technology

used and its associated hardware. It then considers the identification procedure required

to generate a suitable model before presenting the experimental findings.

6.1 System Structure

Figure 6.1: Example of transcuta-
neous pad placement.

Subsection 2.3.2 found that the majority of cur-

rent FES systems employ non-invasive transcuta-

neous electrode pads. This resulted in the prin-

cipal reason for patients discontinuing FES being

due to challenging pad placement (Taylor et al.,

1999). It also concluded that commercial FES

systems commonly use a small number of large

surface pads. These reduce selectivity and fine

movement control and lead to increased rates of

fatigue (Li-Wei and Binder-Macleod, 2007). Sub-

section 2.3.3 found that the emergence of surface

electrode array technology enabled a higher degree

of muscle selectivity (Lyons et al., 2004) and also

helped to address the pad placement problem.

Electrode arrays embed a number of electrode pads in a predefined layout. Each elec-

trode pad can be individually activated to find the best stimulation location without

67
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removing and re-applying pads. There are two types of designs: the first has pads which

are shaped to correspond to muscle positions, e.g. HandNMES (Snoek et al., 2000)

and H200 Bioness. However, a mismatch between the muscle and pads can limit their

effectiveness (Crema et al., 2018) or require a bespoke layout for every user. The second

type employs a grid layout which allows a broader application to different limbs and

users, e.g. INTFES (Velik et al., 2011) and ShefStim (Kenney et al., 2016).

The above summary motivates using an electrode array with pads arranged in a grid

layout for experimental controller testing. This requires a corresponding plant model.

Previously Figure 5.1 provided a block model diagram of the ankle system stimulated

with a single pad. It is now necessary to expand the model to match the use of an array.

This is done schematically in Figure 6.2, which now includes the various pads within

an electrode array. Now, the stimulation input u(k) can be switched between numerous

electrode pads and so activate different muscles. The input is again cascaded with the

corresponding isometric recruitment curve (IRC), linear activation dynamic (LAD) of

the activated muscles, and the rigid body dynamics (RBD) of the ankle.

Figure 6.2: Model block structure of array-based FES using a single stimulation
site.

The experimental hardware needed for the first human application of RC to drop-foot

is now introduced.

6.1.1 Hardware

Figure 6.3 shows the hardware block diagram for the stimulator, including connections

and the flow of information. The stimulator has been designed to support the chosen

24 pad array, as 24 pads have been shown by Yang et al. (2014b) and Yang et al.

(2018) to be sufficient in covering a region so that input pads which support accurate

limb gestures can be found. To implement the control scheme, a myRIO (Model 1900,

National Instruments, USA) microprocessor is selected because of its field-programmable

gate array (FPGA) capabilities. The FPGA allows for 24 input/output pins to be

configured as PWM outputs. This allows the intensity of each stimulation channel to be

independently controllable in real-time while having sufficient resolution to enable precise
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movements to be achieved. Although a single channel could supply all 24 pads, later in

Chapter 7 multiple pads with varying levels will be required for multi-pad patterns. The

PWM takes the form of a general monophasic waveform to simplify the hardware system.

The pulse rate (frequency) is fixed to the commonly used rate of 40Hz (Wederich et al.,

2000). The PWM is amplified by a DC-to-DC converter, which has a current limit of

140mA. The converter increases the voltage from 5 volts to between 50V and 120V volts

to excite muscle contraction. The exact level depends on user comfort. The circuitry

has been designed based on the work reported in Ilic et al. (1994). Each PWM signal

supplies a single electrode pad.

Figure 6.3: Experimental hardware configuration displayed as a block diagram.

To keep the electrode-tissue interface within a safe electrochemical region and thereby en-

sure user comfort, the stimulator implements a constant current output for each electrode

of approximately 20mA (Kesar et al., 2008). For safe use during experiments, additional

protection has been added to the stimulator. In particular: (1) the power supplies are

electrically isolated from the remaining circuity, preventing any unwanted return path

from the array elements, (2) minimum, and maximum constraints (0 ≤ u ≤ 300) are

imposed on the duty cycle within the software and (3) the researcher and participant

both have emergency switches to turn off the stimulator power supplies instantly, for

any reason.

As described, an array with a grid-based layout will be used. However, most such arrays

like ShefStim, use conventional polycarbonate electrode pads which are not breathable or

comfortable (Neuman, 2000). To negate these issues, a 24 channel fabric-based printed

electrode array, validated in (Yang et al., 2014a, 2018), was selected for this research.

The electrode array was placed freely on the shank so that the peroneal nerve was

covered. The aforementioned electrode array uses dry electrodes rather than the usual

wet hydrogel electrode. This makes it ideal for integrating into clothing as the electrode

does not stick during donning and doffing. A goniometer (Biometrics Ltd.) was used to

measure the angular rotation (roll and pitch) around the ankle joint. Both the electrode

array and goniometer are embedded into a sports sock, pictured in Figure 6.4, ensuring

contact and flexibility around the joint. The output signal from the goniometer is

interpreted by a goniometer interface box (GIB). The GIB then produces two-variable
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voltages (one for each degree of freedom) which can be read by the analogue read pins

of the myRIO. The controller then uses the dorsiflexion value to update the next cycle.

The goniometer has an accuracy of ±2◦ and repeatability of 1◦; both are validated across

a range of 90◦.

Figure 6.4: Images of hardware, A) full system, B) FES sock being worn, C)
FES sock inside out, revealing the electrode array.

To select a suitable pad, the same general approach, to those reviewed in Section 2.3.3

will be adopted. This involves selecting a single stimulation site at the beginning of the

experiment and using it throughout the experiments. The chosen procedure is described

in the next section.

6.2 Model Identification

The conventional approach to electrode array pad selection first introduced in Section

2.3.3 is undertaken (e.g. (Schill et al., 2009; O’Dwyer et al., 2006; Micera et al., 2010;

Popović-Bijeli et al., 2005; Prenton et al., 2014)). This conventional approach searches

for a single stimulation pad by stimulating each pad within the electrode array indi-

vidually with a predefined stimulation signal u(k). The pad which provides the most

desirable response is then chosen. A more detailed review of the criteria used to select a

pad location will be undertaken in Chapter 7 when multiple pad patterns are considered.

Here, the active pad is controlled by the switching action of the array channel, as depicted

in Figure 6.2. The angular responses y(k) are recorded. The pad with the most desirable

output, maximising dorsiflexion and minimising roll, is selected as the input using the

same cost function as in Prenton et al. (2014).

Once an input pad is located, the corresponding dynamics for that input needs to be iden-

tified. For example, if channel i is selected the model is y(k) = HRBD(q)HLADi(q)hIRCi(u(k)).

There are a variety of approaches to identify this Hammerstein form. However, few are
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suitable for use with patients. The approach with the most success at identifying the

IRC is termed the ramp deconvolution method. It has been shown to have high accuracy

with relatively short computation time when compared to other identification methods

(Durfee and MacLean, 1989; Durfee and Palmer, 1994). This approach depends on the

assumption that the linear activation dynamic can be approximated by a pure time

delay, allowing the non-linear and linear dynamics to be deconvolved easily by time-

shifting. This is done by applying a slowly ascending and descending input signal, as

described in Le et al. (2010). An example of the slow triangular input, u(k), is shown in

Figure 6.5.A). The slow input approximates steady-state dynamics, so as to not excite

the LAD and RBD components. Next, the input and output peaks are lined up by

cross-correlating.

Figure 6.5: Representative IRC identification graphs.

The value of the time shift is found by considering the turning points, dydt = 0, of the input

and output signals. By plotting the output against the input, the shape of the isometric

recruitment curve is obtained. Since the input signal is triangular, when the output is

plotted against the input, two similar plots corresponding to the lifting and dropping

of the foot emerge, forming a loop. These will overlap perfectly for a pure time delay.

An example using experimental data is shown in Figure 6.5.B) for several triangular

inputs. These are averaged to give a single plot describing muscle recruitment (raw

IRC). Finally, to ensure a suitable IRC, a parameterised form is used. This is done by

fitting the parameters to the raw data, giving a suitable approximation of the isometric

recruitment curve, hIRC . Figure 6.5.C) shows the raw and parameterised (monotonic)

IRC signals. The isometric recruitment curve previously used in Freeman et al. (2009)
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has been chosen and has the form

hIRC(u) = α1
eα2u − 1

eα2u + α3
, u0 ≤ u ≤ umax (6.1)

with unknown parameters α1, α2 and α3. The lower and upper limits (u0 and umax,

respectively) on the pulse-width input, u, are used to prevent over-stimulation and ensure

comfortable usage. The values selected in this research are u0 = 0 and umax = 300. The

parameterised form is also monotonic. This allows it to be inverted and used to cancel

the non-linearity, as shown in Figure 6.6. This, therefore, makes the system linear and

also means the linear dynamics can be better approximated. This is described next.

Figure 6.6: Model block diagram of linearised dynamics .

Now the non-linear form hIRC has been identified, the pure delay assumption for the

linear dynamics can be revised. For FES systems, the linear activation dynamics, hLAD,

are generally assumed to take the form of a critically-damped second-order system (Dur-

fee and MacLean, 1989). However, because the angle is the controlled parameter, this

form does not include rigid body dynamics, hRBD. Instead, a 4th order black-box iden-

tification approach is used. A suitably exciting reference, ū, has been shown to be a

set of steady-state angular step inputs (degrees) (Le et al., 2009, 2010). This is trans-

formed into a stimulation signal, u, using the inversed isometric recruitment curve, i.e.

ū = h−1
IRC(u), cancelling the non-linearity. Black-box identification then fits a model of

the dynamics between the input, ū, and output, y. The linear dynamics are estimated

using the Matlab ‘SSEST’ function, which uses prediction error minimisation algorithms

and expresses the resultant model with state-space parameters.

Figure 6.7.A) shows a representative input ū, output y(k) and the model-based predicted

output, which achieved a model fit of 69.5%. Here, the same data used for the model

was used for fitting. Figure 6.7.B) and C) show the model’s step and impulse responses,

respectively. In this representative example, the step response has a rise time of 1.03

seconds, while the impulse response has a settling time of 1.69 seconds. Both values

are within the gait cycle time (2 seconds), and consequently, the internal model of the

system captures the full dynamic response to an applied stimulus within the convolution

window. This also means the causality condition given by equation (4.40) does not result

in a loss of model accuracy as the model has settled. To maximise model accuracy, the

model is identified at the beginning of each new experiment session.
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Figure 6.7: A) input/output data and model-predicted response, B) model step
response, C) model impulse response.

6.3 Experimental Validation and Evaluation

Before the experimental results are presented, the tracked reference is re-introduced.

6.3.1 Gait Cycle

Section 2.2 first introduced the gait cycle. It was shown that the gait cycle is commonly

split into stance (0% - 60% of motion) and swing (60% - 100% of motion) and can then

be further partitioned into 8 distinct sections (Zhang et al., 2012). By amalgamating

experimental results from Postans and Granat (2005) and Neptune and Sasaki (2005),

a full human gait cycle was produced and used as the reference, r, for the simulations

in Section 5.2. The same full reference is used here. A gait cycle is assumed to last

2 seconds, a sampling rate of 40Hz, results in N = 80 points. Section 5.2 focused on

the point-to-point RC implementation using M = 4. The following experiments add an

additional point (M = 5). The additional point was added close to heel rise, as the real

system was found to droop. The M = 5 tracked points are shown in Figure 6.8 and are

i1 = 5%N, i2 = 25%N, i3 = 45%N, i4 = 63%N, i5 = 84%N. (6.2)



74 Chapter 6 Experimental Evaluation

Figure 6.8: Gait cycle, with gait events/phases labelled. The red dots corre-
spond to the point-to-point tracking positions.

6.3.2 Methodology

Experimental trials with healthy individuals were undertaken to evaluate the effective-

ness of the designed RC schemes. Following ethical approval (ERGO/FPSE/47517),

five unimpaired participants were recruited for this study. Participants 1 and 5 had

experienced/partaken in FES studies before, while participants 2, 3 and 4 had not. The

participants were asked to sit on an elevated stool, thus leaving the leg able to swing

freely.

At the beginning of each experiment, the voltage was tuned to be within the participant’s

comfort region. This was done by slowly increasing the voltage level of the PWM (with

the maximum pulse width length applied) until a sufficient range of motion is achieved

or when the participant finds the sensation uncomfortable.

To reduce the time spent in the muscle recruitment deadzone, the first cycle of the

control update was set to the initial twitch value of the participant, and the pulse width

was constrained within the commonly used region, 0 ≤ u ≤ 300, ensuring comfortable

use (Wederich et al., 2000). Then the identification procedure discussed in Section 6.2

was performed. This produces the plant model P (q), pictured in Figure 6.6.
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To limit the effects of fatigue, there was a 20-minute break between each experiment,

allowing the muscles to recover (Graham and Popovic, 2005). To limit the impact of

model uncertainty, all experiments for a given participant were conducted in a single

session, using the same initial model and pad position.
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6.4 Results

The simulations performed in Subsection 5.2 found that point-to-point RC increased

convergence speed and robustness compared to traditional RC. As in Subsection 5.2, the

convergence speed experiments will be repeated in the initial human experiments for both

traditional RC and point-to-point RC. However, instead of the robustness experiments

performed in simulations, repeatability experiments are performed to investigate how

the controllers deal with the time-varying muscle characteristics, involuntary twitch

responses and harmonic oscillations. Previously, the value of the control effort was not

focused upon. Now the control effort for each cycle will be measured as it relates to the

rate of muscle fatigue and stabilisation of muscle strength.

For all data, unless stated otherwise, the error norm is calculated using the subset of

M points for both controllers to ensure the results are comparable (||Φe||2). Note that

different starting values are observed due to small variations in starting angle of the

resting foot.

6.4.1 Representative Results

Traditional and point-to-point RC were implemented using update (4.86). The latter

tracked the indices given by (6.2), and the former tracked all points (i.e. M = N ,

i1 = 1, · · · , iN = N). The minimum energy filter is not altered (F = I). This was chosen

because the minimum jerk filter provided little benefit in the validation simulations (see

Section 5.2.1), whilst shortening the plant model length, thereby reducing the model’s

accuracy. This simplifies the traditional and point-to-point updates to (4.4) and (4.46)

respectively.

Figure 6.9 shows the results from representative trials for participant 1 and 2, who had

the best and worst tracking performance, respectively. The point-to-point RC tracking

is observed to converge faster for both participants, despite the presence of noise, ex-

ogenous disturbance and fatigue. This confirms that the gradient algorithm solves the

RC update (as shown in Theorem 4.1) and the sufficient convergence criteria (as given

by Theorem 4.2). For completeness, Figure 6.10 shows the corresponding stimulation u

which produced Figure 6.9. Traditional RC is seen to use more stimulation as it tries to

achieve perfect tracking of the full reference. Due to the non-linear relationship between

control effort and angular output, the resulting input signals can appear very different.

The convergence speed and control effort are now investigated for each controller. For

both cases, results for one participant are focused on in repeatability experiments and

then results from all participants are considered to ensure the results are robust to

human variation. In all cases, the controller is applied for 30 cycles (60 seconds).
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Figure 6.9: Representative outputs, for participant 1 and 2, for traditional and
point-to-point RC control schemes.

Figure 6.10: Representative inputs, for participant 1 and 2, required to produce
the representative outputs.

6.4.1.1 Convergence

First, a repeatability experiment was performed on participant 1. Each control scheme

was repeated 3 times with the same learning rate (β) of 80%. The percentage denotes

how the selected value differs from the best β value (i.e. producing fastest convergence),

which is based on the nominal plant model (Lemma 4.3), i.e. the nominal value

2

supω∈[0,π] |P (ejω)|2
. (6.3)

The points of subset M are used to compute the error norm. Figure 6.11 shows that

point-to-point controller converges faster (3 cycles until 10% error norm) than tradi-

tional repetitive control (7 cycles until 10% error norm). The point-to-point controller

also demonstrated desirable repeatable characteristics (point-to-point RC standard de-

viation 0.04, traditional RC standard deviation 7.44), despite involuntary twitch and

fatigue. It was noted that point-to-point had little to no oscillation visible in the error

norm, suggesting improved robustness to model uncertainty compared to the traditional

controller that was unable to stabilise to a consistent value.
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Figure 6.11: Participant 1: repeatability experiment - convergence.

6.4.1.2 Control Effort

The amount of control effort is of interest as it directly correlates with fatigue and

possible discomfort. Figure 6.12 shows the control effort norm for each cycle (||u||2)

to achieve the tracking motion. The total control effort is consistently lower for the

point-to-point controller as well as being highly repeatable. This confirms the minimum

energy principle (Theorem 4.5) and suggests the 20 minute recovery time is enough

to reduce fatigue between experiments to a suitable level. Point-to-point RC is likely

able to achieve lower energy levels as the traditional RC tries to achieve every point.

This means the norm stimulation required is more easily overestimated, potentially in

areas entering the saturation region of the isometric recruitment curve. Thus, although

the same output could be achieved with less stimulation, levels are not reduced as the

tracking level has been achieved. The stimulation is also seen to increase with time as it

acts against the effect of fatigue until fatigue plateaus. Although this enables tracking

to be maintained, this does compound the fatiguing effect and is an inherent limitation

of all FES assistive technology. This can also be seen in Figures 6.9 and 6.10. After 25

cycles, the control effort begins to levels off to a fixed value as the initial effect of fatigue

is fully realised.

6.4.1.3 Discussion

The key parameters from the repeatability experiments, including the root mean square

(RMS) and standard deviation (SD) of the results, are given in Table 6.1. The repeata-

bility of the point-to-point controller is greater compared to traditional RC due to the
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Figure 6.12: Participant 1: repeatability experiment - control effort.

lower standard deviations across all conditions. The point-to-point RC shows better

tracking of the M key points, as well as better tracking of the entire signal, reinforcing

robustness to non-voluntary twitches or muscle spasms. The control effort is consistently

lower for point-to-point RC. The average error for tracking the whole cycle is shown to

be within the 4 degrees variation of natural gait (Seel et al., 2016) for both controllers.

The convergence for both controllers is repeatable at the 10% error norm level. However,

only point-to-point is achievable/reproducible at the 5% error norm level.

Experiment
Average Norm

(
1

6

∑30
n=25 ||Φen||2)

Control Effort

(
∑30

n=0 ||un||2)

Full Cycle Error Norm
[Average Degree Error]

(
1

6

∑30
n=25 ||en||2)

Cycles to
10% [5%] Error
Norm (||Φe||2)

Value RMS ± SD Value RMS ± SD Value RMS ± SD Value

Standard RC
1 37.17

41.27 ± 4.48
47019

50021 ± 4119
31.89 [3.2]

36.85 ± 7.44
[3.6 ± 0.64]

7 [7]
2 40.15 48079 32.23 [3.2] 7 [11]
3 45.99 54625 44.94 [4.3] 8 [N/A]

P-to-P RC
1 30.26

29.02 ± 1.16
44614

44510 ± 309
26.57 [2.4]

26.89 ± 0.04
[2.52 ± 0.11]

3 [4]
2 27.99 44162 26.69 [2.54] 3 [4]
3 28.76 44752 27.39 [2.6] 3 [3]

Table 6.1: Key performance parameters of the repeatability experiments.

However, to better confirm the initial findings, further investigation is required. This is

achieved by expanding the sample size of the study. Increasing the number of partic-

ipants introduces different physiologies, voluntary/non-voluntary muscle responses and

levels of model uncertainty.
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6.4.2 Cohort Study

To provide further transparency, Figure 6.13 graphically displays representative results,

specifically cycle 27 to 29, for all participants. It highlights variation caused by distur-

bances and the update action of the controller between each of the trials.

Figure 6.13: Representative outputs for all participants, cycle 27 to 30

Table 6.2 contains data gathered from all participants using a gain value corresponding

to 80% of the sufficient learning rate condition equation (6.3). It compares key param-

eters for both the traditional RC and point-to-point RC. The point-to-point RC and

traditional RC controllers achieve similar tracking for the subset of M points. The total

control effort for the point-to-point scheme is lower or very similar in the majority of

cases, supporting the minimum energy property of Theorem 4.6. Comparing the entire

signals (N points) shows both controllers achieve excellent tracking, despite the point-

to-point controller having only 1
16 of the points to track. This justifies the use of the

gradient algorithm in Lemma 4.3 and the minimum energy condition from Theorem 4.6.

The point-to-point RC can also be seen to converge below the 10% and 5% error norm

levels faster.

Table 6.3 contains the Root Mean Square Error (RMSE) in degrees of the last 5 cycles

of the recorded data for all 5 participants. The mean and standard deviation of the

full cycle error norms for traditional RC is 2.69 ± 0.72 and for point-to-point RC is

3.64 ± 1.4667. Omitting participant 2 (because of a potentially undiagnosed condition

of involuntary twitch) leads to traditional RC having 2.56± 0.76 and point-to-point RC
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P
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Average Norm (M)

(
1

5

∑30
n=26 ||Φen||2)

Control Effort

(
∑30

n=0 ||un||2)

Average Norm
of Full Cycle (N)

(
1

5

∑30
n=26 ||en||2)

[Average Degree Error]

Cycles to
10% [5%] Error
Norm (||Φe||2)

RC P-to-P RC RC P-to-P RC RC P-to-P RC RC P-to-P RC

1 45.13 40.16 57519 43598 43.72 [1.8 °] 41.1 [1.6 °] 9 [20] 6 [12]
2 89.8 85.8 51895 48322 63.1 [2.6 °] 110.39 [4.2 °] 16 [N/A] 12 [N/A]
3 75.9 77 49745 46416 56.2 [1.93 °] 78.3 [2.6 °] 10 [15] 7 [10]
4 34.88 39.28 34691 50948 13.1 [1.28 °] 17.67 [1.49 °] 4 [8] 4 [7]
5 47.1 48.8 43779 44501 66.65 [2.33 °] 70.2 [2.48 °] 7 [10] 5 [10]

Table 6.2: Key performance parameters for all participants, β = 80%

Participant
RMSE (

√
e2

5Ts
)

RC P-to-P RC

1 2.19 ° 2.06 °
2 3.15 ° 5.52 °
3 2.81 ° 3.91 °
4 1.57 ° 1.97 °
5 3.32 ° 3.51 °

Table 6.3: Root mean square degree error for both controls (cycle 25-30)

giving 2.99± 0.99. In all cases, the RMSE falls within the natural variance of gait (Seel

et al., 2016). Additionally, the difference between the RMSE for traditional and point-

to-point RC for participant 1 and 5 are the lowest. This confirms observations from

other studies, where participants who have not used FES before may exhibit increased

involuntary response (Freeman et al., 2015).

It is important to note that, in all cases, both repetitive controller schemes led to a

stimulation input that is highly individual to each person, and potentially changes from

day to day, without any changes to the FES parametrisation and reference trajectory

used.

6.4.2.1 Discussion

Traditional RC and point-to-point RC have been compared in detail. Traditional RC

achieved an RMSE of 2.56 ± 0.76 and point-to-point RC achieved 2.99 ± 0.99 across 4

participants. Repetitive control can now be compared more widely to the approaches

discussed in Section 3.3. Both controllers performed better than neural networks (RMSE

of 8.11, 7.81 and 5.59), neural network + PID (RMSE of 5.57, 4.83 and 5.05), neural

networks + fuzzy logic (RMSE of 4.07, 3.75 and 4.19) Chen et al. (2004). They also

performed better than model-based open-loop control (RMSE of 8.2 ± 2.3, 15.1 ± 1.9),

feedback control (RMSE of 4.6±0.7, 7.3±2.4) and feed-forward feedback hybrid control
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(RMSE of 3.4 ± 0.3, 5.7 ± 2.6) (Ferrarin et al., 2001). They achieved similar results to

adaptive control (healthy participants 3.2 ± 1.2, stroke participants 3.4 ± 0.2). Note,

that simple references, that did not resemble gait, were used (Kobravi and Erfanian,

2009). The RC controllers also achieved this without the time-lag issues that affected

the feedback based controllers. They also handled time-varying issues such as fatigue

which caused issues for rule-based control approaches. Additionally, the point-to-point

repetitive controller has been able to achieve similar or better performance whilst using

a fraction of the measurement data compared to traditional RC and significantly less

data than what is required to train a neural network. The traditional RC algorithm

is noted to generally have slightly better tracking abilities across the entire reference

compared to point-to-point RC.

An inherent limitation of point-to-point RC, not investigated here is that it cannot

correct for an external disturbance occurring between the tracked points. This, however,

may be argued to be unlikely, and in many cases, it can even be considered an advantage

to reject aperiodic disturbances. Further to this, stroke participants would be expected

to vary from the current participants in terms of age, muscular stiffness and strength.

These differences would be expected to be accounted for by the identification method

and hence be embedded into the model and controller.

To further improve the results, an initial ‘guess’ at the required stimulation input needed

to achieve the reference could be found by multiplying the inverse model by the reference.

Then, instead of starting and converging from the twitch response level as used here for

RC, the controller converges from an approximate solution. This was used successfully

with the ILC controller in Seel et al. (2016).

6.5 Summary

Repetitive control has been applied experimentally in both its traditional form and point-

to-point form. Point-to-point RC has been shown to be more repeatable, as well as more

robust to uncertainties and non-linearities. The increased freedom in the signal evolution

has allowed for faster convergence while using/storing far less data. Additionally, they

were able to successfully maintain tracking despite fatigue by increasing the control effort

with time. The controllers put forward have also been compared to other controllers

within the literature and found to have better performance and characteristics for FES

controlled drop-foot. These characteristics included: not having the time-lag issues that

affected feedback controllers, requiring significantly fewer data points to train the model

compared to neural networks, passing significantly less data between cycles compared

to controllers in the literature and not requiring an initial guess to quickly converge to

a solution.
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Pad Pattern Selection

The previous chapter used a fabric-based electrode array to evaluate the controller. This

allowed automatisation of pad placement while improving wearability and breathability

compared to polycarbonate arrays. To select a specific single pad from the array, a simple

search algorithm was used before the proposed repetitive controllers were applied. This

chapter proposes a more sophisticated approach that involves selecting a group of array

elements. The focus will be on attaining a desired static posture through the application

of stimulation to these elements. However, the group of array elements could also be

used to apply the stimulation input for the previous repetitive controller.

7.1 Electrode Array Pad Selection

As introduced in Section 2.3.3, electrode arrays embed a number of electrode pads in

a predefined ‘layout’ (the physical position of pads). There are two types of ‘layout’:

the first has pads which are shaped to correspond to muscle positions, e.g. HandNMES

(Snoek et al., 2000) and H200 Bioness. However, a mismatch between the muscle and

pads can limit effectiveness (Crema et al., 2018) or require a bespoke system for every

user. The second employs a grid layout which allows a broader application to different

limbs and users, e.g. INTFES (Velik et al., 2011) and ShefStim (Kenney et al., 2016).

However, an identification method is required to locate an appropriate electrode pad.

As first reviewed in Section 2.3.3 and further highlighted in Section 6.2, existing pad

identification methods (e.g. Schill et al. (2009); O’Dwyer et al. (2006); Micera et al.

(2010); Popović-Bijeli et al. (2005)) share a common approach which replicates manual

trial and error pad placement. Each pad is activated in turn, and the resulting movement

is recorded. The pad which produces the best movement (e.g. greatest dorsiflexion, least

roll) is selected. Minor variations exist, including activating pairs or groups of pads, in

turn, (Schill et al., 2009) and exchanging cathode and anode positions (O’Dwyer et al.,

83
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2006). The most clinically studied approach is ShefStim system. ShefStim employs 64

electrode pads and combines multiple active pads to form a “virtual electrode” (Prenton

et al., 2014; Kenney et al., 2016). A “virtual electrode” comprises 4 electrodes in a 2x2

configuration. The optimal position is identified by sequentially shifting the virtual

electrode across and down the array. A participant perception survey, involving 10

individuals ranging from 26 to 79 years old, used ShefStim unsupervised for 2 weeks

following initial consultations (Prenton et al., 2014). However, the setup time was found

to be over 14 minutes on average, which is longer than setting up their own FES devices.

Although ShefStim found the optimal pad position for the wearer, when participants

were asked to score their own 2 channel FES devices against ShefStim, the long setup

time resulted in the two systems receiving the same score on average.

This chapter investigates more advanced methods to select multiple electrodes to achieve

the desired movement. The approach will be to treat the pad selection problem as a

model-based optimisation using (linearised) dynamic models to capture the response

of each electrode. Rather than solving the optimisation using only prediction, it will

be performed iteratively using experimental data. This approach is termed ‘Iterative

learning’. The next section introduces the model and control approach. This is then

experimentally validated in Section 7.4.

7.2 System Description

The approach selected for pad selection utilises an underlying model and the principle

of superposition. Superposition states that for linear systems, the net response caused

by two or more stimuli is the sum of the responses that would have been caused by each

stimulus individually. Superposition has been shown to predict the response to multi-

pad stimulation accurately (Popović and Popović, 2009). In this chapter, superposition

is fused with learning through repeated attempts in the form of iterative learning control

(ILC). A key novelty will be to embed constraints in the selection problem (e.g. selection

of adjacent pads) that correspond to simplifications that could then be made to the

electronics and/or array manufacture.

The approach requires that the block model structure of the single pad array-based FES

(Figure 6.2) needs to be further generalised. The single input to the channel array switch

is replaced with a dedicated input for every electrode pad, allowing different stimulation

levels to be applied to each pad. A static mapping then translates the stimulation

applied to the pads to the stimulation received by the z underlying muscles. Each of

these muscles has its own isometric recruitment curve and linear activation dynamics.

The resulting force generated by each muscle is combined within a tendon network to

produce a net force which is then cascaded with the rigid body dynamics. The overall

system model is given in Figure 7.1.
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Figure 7.1: Block diagram of multiple-pad FES stimulation dynamics.

The multiple-pad FES stimulation block model is now expressed mathematically. The

overall dynamic model links the musculoskeletal response, y, of the p joint angles to the

stimulation, u, applied to the m-pads in the array. A general non-linear discrete-time

form of the system in Figure 7.1 is given by

x(t+ 1) = f(x(t), u(t)), x(0) = x0

y(t) = h(x(t)), t = 0, 1, ..., N
(7.1)

with state vector x(t) ∈ Rl. Here f(·) and h(·) are continuously differentiable with

respect to their arguments. The stimulation applied to the ith pad is denoted ui(t),

with yj(t) the angle of the jth joint. The number of active pads defines the stimula-

tion ‘pattern’. Without constraints, u, corresponds to a full array with all elements

independently controlled.

The model runs over N samples so that the input and output vectors can be arranged

more concisely as the super-vectors

u = [u(0)T , u(1)T , ...u(N − 1)T ]T ∈ RmN

y = [y(1)T , y(2)T , ...y(N)T ]T ∈ RpN
(7.2)

This enables system (7.1) to be equivalently represented by the vector function relation-

ship y = g(u) where g(u) = [g1(u)T , g2(u)T , ...gN (u)T ]T ∈ RpN with components

gi(x(0), u(0), ..., u(i− 1)) = h(x(i)), (7.3)

:= h(f(x(i− 1)), u(i− 1))),

:= h(f(f(x(i− 2), u(i− 2), u(i− 1))),

:=
...

:= h(f(f(· · · f(x(0), u(0), · · · , u(i− 2)), u(i− 1))),

where i = 1, ..., N . This system is now used to define the array pattern selection problem.

The previous cost functions within Kenney et al. (2016); Schill et al. (2009); O’Dwyer

et al. (2006); Popović and Popović (2009) all involve minimising the difference between

joint angle, y, and the desired target movement, r, when stimulation u is applied. If
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stimulation is applied to only one pad, then the problems of O’Dwyer et al. (2006);

Micera et al. (2010); Popović-Bijeli et al. (2005) are described. Let Ψ be the set of all

possible stimulation inputs with one non-zero element, that is

Ψ :

{
u ∈ Rm| ui

{
= 0, i 6= v

6= 0, i = v
, v ∈ {1, ...,m}

}
. (7.4)

The previous array selection problem is then defined as follows:

Definition 7.1. Array Selection Problem: Find a stimulation pattern that solves

argmin J(u), J(u) = ‖r − g(u)‖2Q
subject to 0 6 u 6 umax, u(t) ∈ Ψ, r ∈ RpN .

(7.5)

Here, Q ∈ RN×N is a symmetric, positive-definitive weighted matrix, which allows

the designer to allocate emphasis on minimising specific time points within the target

movement.

To extend this objective, the constraint set Ψ is now generalised to enable a lower cost

J(u) to be attained within the minimisation problem. The constraint sets will be chosen

to 1) simplify hardware manufacture and electronics, and 2) find distinct muscle groups.

7.2.1 Fixed Pad Pattern Size

Figure 7.2: Example solution of
array selection problem with con-
straint (7.6) and n = 5

The most general choice of constraint expands the

pattern to include a greater number (1 6 n 6 m)

of active pads, such that disconnected multi-pad

patterns can occur. Additionally, each pad in the

pattern is allowed to have different levels. This

generalises the objective in Popović and Popović

(2009) to allow an arbitrary number, n, of pads to

be within a pattern. The set is modified to

Ψ :=

{
u ∈ Rm| ui

{
6= 0, i ∈ S
= 0, i /∈ S

, S ∈ In

}
. (7.6)

Here, ui again denotes the ith element of u, and

In is the set of all n-tuplets that are subsets of

the set of all array indices {1, 2, ...,m}, i.e. each

element S ∈ In has form S = {i1, ...in}. Figure 7.2

provides an example solution to Array Selection

Problem (7.5) with Ψ and n = 5.
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7.2.2 Same Amplitude, and Fixed Pad Pattern Size

Figure 7.3: Example solution of
array selection problem with con-
straint (7.7) and n = 4

The next constraint forces all n pads in the pattern

to have the same stimulation amplitude. This en-

ables the number of stimulation channels to be de-

creased (i.e. one input can supply multiple pads),

resulting in possible reductions to the number of

channels in the electronics. The constraint still

allows disconnected multi-pad patterns to occur.

This is of particular interest as the same stimu-

lation level across multiple pads has been shown

to improve user comfort (Kuhn et al., 2010). Fig-

ure 7.3 shows an example solution to the Array

Selection Problem (7.5) with n = 4 and Ψ equal

to

Ψ :=

{
u ∈ Rm| ui

{
= ū, i ∈ S
= 0, i /∈ S

, S ∈ In

}
. (7.7)

7.2.3 Fixed Pad Pattern Size and Adjacent Element

Figure 7.4: Example solution of
array selection problem with con-
straint (7.8) and n = 4

The next constraint forces each pad to be con-

nected, i.e. each selected element must neighbour

another selected element. This is motivated by

restricting the pattern to correspond to distinct

muscle groups. Data from this constraint can be

used to design personalised muscle electrode array

layouts while reducing manufacturing costs (the

number of required pads can be reduced to only

cover the corresponding muscle group). Figure 7.4

shows a possible solution to the Array Selection

Problem (7.5) with n = 4 and Ψ equal to

Ψ :=


u ∈ Rm| ui

{
6= 0, i ∈ Si
= 0, i /∈ Si

, S ∈ In,

∀i ∈ S, such that ∃j ∈ S,
with |ri − rj | 6 1, |ci − cj | 6 1

 , (7.8)

where, ri, ci and rj , cj are the row and column

position of the ith and jth element respectively.
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7.2.4 Same Amplitude, Fixed Pad Pattern Size and Adjacent Element

Figure 7.5: Example solution of
array selection problem with con-
straint (7.9) and n = 5

Finally, combining the constraints in Section 7.2.2

and Section 7.2.3 enforces a connected pattern

where all members have the same stimulation.

This is the spatial generalisation of the rectangular

virtual electrode approach used by Shefstim (Ken-

ney et al., 2016). This has the most desirable com-

mercial characteristics, as it simplifies hardware

(it only needs one stimulation channel), focuses

on muscle alignment (stimulates the main muscles,

improving angular control) and reduces manufac-

turing costs as adjacent pads could be combined in

personalised electrode arrays. Figure 7.5 gives an

example solution to the Array Selection Problem

(7.5) with n = 5 and Ψ equal to

Ψ :=


u ∈ Rm| ui

{
= ū, i ∈ Si
= 0, i /∈ Si

, S ∈ In,

∀i ∈ S, such that ∃j ∈ S,
with |ri − rj | 6 1, |ci − cj | 6 1

 (7.9)

7.3 Array Selection Solution using ILC

The Array Selection Problem of Definition 7.1 can be solved computationally by a range

of constrained optimisation approaches, such as interior-point methods. However, to

achieve the best results, a model-based approach which embeds learning from experi-

mental data is desirable. Accordingly, iterative learning control (ILC) will be employed

due to its track record in FES-based rehabilitation (Freeman, 2014). It has not previ-

ously handled non-linear systems with constraints of the form (7.5), so it will be extended

in the next section.

7.3.1 Newton Method

An ILC algorithm that has been extensively applied to non-linear systems as well as being

able to guarantee local convergence is Newton method-based ILC, which was formulated

in Lin et al. (2006). The Newton Raphson method is a root-finding algorithm which

produces successively better approximations through repeated iterations. To apply it to

problem (7.5), first consider the unconstrained solution (i.e. Ψ = Rm). Applying the

Newton minimisation method to the pattern selection problem defined by (7.5) produces



Chapter 7 Pad Pattern Selection 89

the iterative update

uk+1 = uk + α

∆uk︷ ︸︸ ︷
g′(uk)

−1
(
r − g(uk)︸ ︷︷ ︸

ek

)
, (7.10)

where ek, uk are the error and stimulation respectively on the kth iteration and the

positive scalar α is the learning rate. As shown in Lin et al. (2006) the change in the

input update, ∆uk, can be computed as the solution to

‖ek − g′(uk)∆uk‖2 = 0. (7.11)

Update uk+1 is applied experimentally to the system (yk+1 = g(uk+1)), but solving

(7.11) requires a linearised model of the system (g′(uk)) on iteration k. This is used to

combine the linear responses of pads and predict ∆u. The constraints on Ψ, (7.6)-(7.9),

can be embedded into the Newton method-based ILC update by modifying (7.11) to

become

argmin J(∆uk), J(∆uk) = ‖ek − g′(uk)∆uk‖2, (7.12)

subject to, uk(t) + ∆uk(t) ∈ Ψ,

− uk 6 ∆uk 6 umax − uk.

This form arises by applying the constraints uk+1 ∈ Ψ and 0 6 uk+1 6 umax to the

generalised form of problem (7.10), while noting uk+1 = uk + ∆u.

7.3.2 Identification Problem

The linearised system dynamics required in the ILC computation (7.11) have the stan-

dard form

g′(uk) =


∂g1

∂u1(0)

∣∣∣∣
u=uk

· · · ∂g1

∂u1(N − 1)

∣∣∣∣
u=uk

...
. . .

...
∂gN
∂u1(0)

∣∣∣∣
u=uk

· · · ∂gN
∂uhv(N − 1)

∣∣∣∣
u=uk

 ∈ RpN×mN . (7.13)

These components require a large amount of data to identify. By selecting N = 1, and

a large sampling time, steady-state dynamics occur. This corresponds to applying a

constant stimulation input uk, and denoting the resulting steady-state angle output as

yk = g(uk). The corresponding linearised system for this case then becomes the much

simpler static mapping

g′(uk) =
∂g1

∂u1(0)

∣∣∣∣
u=uk

∈ Rp×m. (7.14)
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Its identification is addressed in the next section.

7.3.3 Model Identification

The problem of identifying the matrix g′(uk) can be stated as

g′(uk) := argmin
X

J(X), J(X) = ‖ỹ −Xũ‖2 ∈ Rp×m (7.15)

where ũ is a sufficently exciting input signal applied to the system about uk and ỹ is

the resulting output recorded about yk = g(uk). The identification problem (7.15) can

be solved efficiently by performing i = {1, ...,m} tests. On the ith test uk is applied

to all elements and an extra signal ũik is added to element i. The resulting output is

measured. From it, yk,j is subtracted from the j output element to produce ỹik,j . The

solution to (7.15) is then

Xi,j =

 ∂g1

∂u1(0)

∣∣∣∣∣
u=uk


i,j

= (ũik)
†ỹik,j . (7.16)

This solution then corresponds to the ‘line of best fit’ when ũik is plotted against ỹik,j .

Hence the approach corresponds to approximating the response of the jth output to

the single varying ith input u, by a straight line, thus reducing the effect of noise in a

transparent, controlled manner. The approach can be seen clearly when ũik is chosen to

consist of straight-line segments of width ui,width, as shown by Figure 7.6. This provides

a smooth input for the user while covering the necessarily exciting ui,width.

Figure 7.6: Linearised system: jth output plotted against ith input

This section has been summarised to give a procedure (Procedure 1) for the model

identification in Algorithm 1.
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Algorithm 1: Model identification procedure

Input : stimulation change ũik, operating point uk
Output: angular change ỹij,k and linearised model g′(uk)

1 set i = 1
2 apply FES stimulation uk to all pads, and record yk,j
3 apply additional signal ũik to electrode pad i
4 record steady-state angular position and subtract yk,j to give ỹik,j for each joint j

5 increment i
6 if (i > m) compute (7.16) to give g′(uk) for all pads end, else go to step 2

7.3.4 Selecting an Optimal Pattern

To find the optimal pattern of size n for a chosen constraint set Ψ, Newton method-

based ILC (Section 7.3.1) is applied using the identified linearised model, g′(uk), which

is found using the procedure in Algorithm 1. The optimal pattern selection procedure

is given by Algorithm 2. Note, the target error, ε, is selected by the designer; however,

for some patterns, it may be unachievable. To ensure an infinite loop does not occur, a

maximum number of iterations is also selected.

Algorithm 2: General ILC procedure to solve the Array Selection Problem

Input : constraint Ψ, reference r, error target ε, max number of iterations kmax
Output: angular response y, error e and stimulation pattern u

1 set k = 0 and uk = 0
2 identify linearised model g′(uk) using Procedure 1 given by Table 1
3 solve (7.12) to get ∆uk
4 compute uk+1 = uk + α∆uk
5 apply uk+1 experimentally and record yk+1 and ek+1

6 if (‖ek+1‖ ≤ ε) then, end,
else if (k ≥ kmax) then, end,
else iterate k and go to step 2

By applying the Algorithm 2, the optimal pattern (min(e)) can be found for a given

constraint Ψ. However, applying the Algorithm in its current form would take a sub-

stantial amount of time due to re-identifying the m pads between each trial. To reduce

the model identification time, the model identification procedure, given by Algorithm 1,

is modified to speed up the procedure. This is done by applying the same constraints

previously used to constrain the possible patterns.

7.3.5 Modifying the Model Identification Procedure

The model identification procedure performs m tests, one for each pad in the electrode

array. However, when g′(uk) is used in problem (7.12) the solution is constrained by

Ψ. Here, Ψ means many of the elements in the model will not be used, so there was no
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reason for them to be identified. Therefore, the model identification can be simplified

by applying the same constraints to the identification problem (7.15), i.e.

g′(uk) := argmin
X

J(X), J(X) = ‖ỹ −Xũ‖2, uk + û ∈ Ψ (7.17)

Applying the Fixed Pad Pattern Size constraint (7.6) to the model identification proce-

dure, Table 1, causes the number of pads that need to be identified to reduce to only

the n pads in the pattern. The model identification procedure, then is only run for the

elements of indices i = {i1, ..., in}. The linearised model is then Rp×n. Figure 7.7 shows

the stimulation identification signals, ũk,i, for the Fixed Pad Pattern Size constraint

pattern containing 3 pads. For larger patterns, the identification algorithm can still be

time-consuming, requiring n tests. To further simplify the model identification algo-

rithm, the Same Amplitude and Fixed Pad Pattern Size constraint (7.7) can be applied

as explained next.

Figure 7.7: Identifying the model with the Fixed Pad Pattern Size constraint
(n = 3)

The Same Amplitude and Fixed Pad Pattern Size constraint (7.7) again means only the

n pads in the pattern need to be identified. However, it also forces all pads in the pattern

to have the same stimulation level. This means that the pattern is now considered as a

single (virtual) electrode. This means that all models can be identified simultaneously

when attempting to identify the model of any single pad. Therefore, only one test is

required to identify the model, irrespective of the number of pads, n, in the pattern. The

linearised model is then Rp×1. This simplifies the model identification solution (7.16) to

Xj =

 ∂g1

∂u1(0)

∣∣∣∣∣
u=uk


j

= (ũk)
†ỹk,j , (7.18)

consequently, this removes the need for step 5 and alters step 3 and 6 of the model iden-

tification algorithm. This also means that step 3 in the general ILC update (Algorithm

2), calculating ∆u, is less reliant on the superposition principle since it does not combine

separately identified dynamics, but still relies on a linear model of prediction.
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Figure 7.8 gives the model identification algorithms with the constraints applied.

Algorithm 3: Fixed Pad Pattern
Size constraint
Input : stimulation ũi

k
Output: angular responce y, error e, stimulation pattern u

1 set i = 1
2 apply FES stimulation uk to all pads, and record yk,j

3 apply additional signal ũi
k to electrode pad i

4 record steady-state angular position and subtract yk,j to

give ỹi
k,j for each joint j

5 increment i

6 if (i > n), compute (7.16) to give g′(uk) end,
else go to step 2

Algorithm 4: Same Amplitude and
Fixed Pad Pattern Size constraint
Input : stimulation ũi

k
Output: angular responce y, error e, stimulation pattern u

1 set i = 1
2 apply FES stimulation uk to all pads, and record yk,j

3 apply additional signal ũi
k to the all pads simultaneously

4 record steady-state angular position and subtract yk,j to

give ỹi
k,j for each joint j

5 Not applicable

6 compute (7.18) to give g′(uk)
end

Figure 7.8: Application of constraints to model identification algorithm

7.4 Application to Drop-Foot

The approach described in this chapter is now validated by applying it to the pad

placement problem for drop-foot using the same experimental hardware setup, reported

in Section 6.1.1.

Following ethical approval (ERGO/FPSE/47517), three healthy participants were re-

cruited. Participant 1 and 3 had experience/partaken in FES studies before. The

participants were asked to sit on an elevated stool, leaving the leg able to swing freely,

and to relax the muscles in their leg.

To make each test comparable, the effects of fatigue were limited by including a 20-

minute break between each test set, allowing the muscles to recover (Graham and

Popovic, 2005). As before, the stimulation input on each trial is bounded to ensure

comfort, 0 ≤ uk ≤ 300.

7.5 Results

Although the modified model identification algorithms, given in Figure 7.8, are sub-

stantially faster to perform, it would still take a substantial amount of time to repeat

Algorithm 2 for all possible patterns Ψ. Therefore, to reduce the time it takes to identify

a pattern, several simplifications need to be made to Algorithm 2. These are (1) the

model is fixed at g′(u0) and not re-identified and (2) instead of applying the input u

experimentally in step 5 the model is used to predict the response, yk = g′(u0). Note,

that Algorithm 2 solves the array selection problem for a given Ψ. But the more general

problem is to find Ψ that minimises the cost. This means that Algorithm 2 needs to be

repeated for all Ψ to find the constraint with the lowest cost.

Although the constrained forms of the model identification will considerably speed up

the selection of a pattern, not re-identifying the model at the beginning of each trial



94 Chapter 7 Pad Pattern Selection

around the new operating point increases the discrepancies between the model and

the real system. To overcome this, the general form of Algorithm 2, is applied to the

selected pad pattern with the modified model identification procedures to fine-tune the

stimulation pattern.

The following focuses on results from participant 1. The results for participant 2 and 3

are included in Appendix E, and are referred to throughout this section.

7.5.1 Array Gradients

Drop-foot involves dorsiflexion and roll, thus p = 2 (degrees of freedom) is chosen in

the dynamic model (Figure 7.1). Step 2 of Procedure 2 is to identify the first linearised

model g′(u0). The model describes the local relationship between the input stimulation

for each pad and resulting ankle joint movement. The linearised model is found by

following the model identification procedure defined by Algorithm 1. Specifically, the

model is identified by first applying u0 = 0 to all pads. The initial joint positions yk

are recorded (Algorithm 1, step 2) and then an additional signal, ũik is applied to the

ith pad (step 3). This is given as a slow ramping (5 seconds) signal, which ensures

steady-state characteristics, followed by a flat period (2 seconds). The additional input

signal covers the full stimulation region, 0 ≤ u ≤ 300. The resulting change in angle is

recorded (Algorithm 1, step 4). Then the additional stimulation is applied to the next

pad (Algorithm 1, step 5), resulting in m tests. Once the input has been applied to all

the pads, the linearised model g′(u0) is calculated (Algorithm 1, step 6). The elements

in the model g′(u0) are shown in Figure 7.9 for participant 1. A strong inverse coupled

relation can be noticed between the dorsiflexion and the roll movements. The same is

observed for participant 2 and 3.

Figure 7.9: 1) dorsiflexsion component, 2) eversion component (θ/µs), 3) twitch
threshold (µs) values, for each pad. 1) and 2) form the 2-degrees of freedom
model g′(uk) around the joint.
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7.5.2 Identified Pad Patterns

The linearised model g′(u0) (found in the previous section) is now used to find patterns

that solve (7.12) and consequently the pad placement problem given by definition 7.1.

To do this, the general ILC procedure for optimal pad pattern selection (Algorithm

2) given by Algorithm 2 is followed with the model identification (Algorithm 1) found

in Algorithm 1, and the brute force search method is used to solve (7.12) every trial.

To speed up the optimal pattern selection the algorithm is simplified by (1) the model

is fixed after the first identification at g′(u0) and is not re-identified (2) instead of

applying experimentally in step 5 the input is applied to the model to predict the

response, yk = g′(u0). The procedure was run using the model g′(u0), constraints Ψ,

learning rate α = 0.8, max iterations = 5, static reference r = [20, 7] (which corresponds

to the maximum dorsiflexion and eversion required during gait) and number of pads

n = 1, 2, 3, 4 and 5.

The unique pad patterns and stimulation levels for participant 1 are illustrated in Figure

7.10. When n = 4 a strong similarity is observed between each constraint (Fixed Pad

Pattern Size (7.6), Same Amplitude and Fixed Pad Pattern Size (7.7), Fixed Pad Pat-

tern Size and Adjacent Element (7.8) and Same Amplitude and Pad Pattern Size and

Adjacent Element (7.9)) is observed. Specifically, all constraints share at least 2 com-

mon pads for n = 4 and 5. The Adjacent Element constraints (7.8), (7.9) for n = 4 and

5 are identical. Similarly, the Fixed amd Same Amplitude Pad Pattern Size constraints

(7.6), (7.7) for n = 5 share 4 out of 5 pads. It is also observed that the minimum and

maximum stimulation levels in each pattern decreases as the number of pads increases.

7.5.3 Simulation Results

The corresponding predicted error and mean stimulation levels of the pad patterns seen

in Figure 7.10 are presented in Figure 7.11. In all cases, including participants 2 and 3,

adding additional pads produced a better result which matches the underlying theory.

The only exception is the Same Amplitude Fixed Pad Pattern Size and Shape constraint

(n = 5) for participant 1. The fixed pad pattern size constraint allows patterns with

n > 1 to achieve near-perfect results. The Same Stimulation constraint can be seen

to reduce the accuracy of the result, especially for the Same Amplitude and Fixed Pad

Patterns Size constraint, such that the two pad pattern is expected to have the best

result.

Two of the constraints allow for each pad in a pattern to have different stimulation

levels. The variation between pads can suggest the importance of fine-tuning the stim-

ulation level to achieve gestures accurately. The stimulation levels for participant 1,

Fixed Pad Pattern Size (7.6) and Fixed Pad Pattern Size and Adjacent Element (7.8)

constraints, had an average percentage variation of 6.3% and 10.7% respectively across
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Figure 7.10: Optimal pad patterns for each constraint, with stimulation levels
(µs) in grouped columns.

Figure 7.11: Simulation results for participant 1.

each pattern. Participant 2, however, had a stimulation variation of 28.5% and 31.2%

respectively, while participant 3 had 0% and 0.75% respectively. This suggests that the

importance of fine-tuning the stimulation patterns depends upon the muscle dynamics

of each participant.
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7.5.4 Experimental Results

Next, the selected pad patterns and corresponding stimulation levels, which were the

outputs found by applying a simplified form of Algorithm 2 are now applied experimen-

tally. Note, the pad patterns and stimulation levels, which are shown in Figure 7.10,

are applied with no further updating or alteration. This allows the model error to be

investigated. This is done by performing 1 iteration of Algorithm 2 but now without

the simplifications applied previously and skipping to step 5, as the previous steps (cal-

culating the pad pattern stimulation levels) have already been performed. The resulting

change in the angular position of the ankle is recorded. The experimental results are

the average of 3 tests with the standard deviation of the results given. The error is

calculated using equation (7.5). Table 7.1 contains the results for participant 1.

Participant 1’s results generally show that by increasing the number of pads, the error

in achieving the results and the modelling error both reduce. This is most likely because

adding more pads smoothes the non-linear dynamics of the system, which allows the

linear model to represent the dynamics better further away from the operating point.

Similarly, the experimental results of participant 2 tended to improve until 3 pads were

used. Then the accuracy consistently decreases. The results of participant 3 did not

have a clear trend. For all participants, the experimental results were consistently worse

than what the model expected. Because only 1 model has been used to generate all the

results for each participant, an in-depth study can now be performed into the accuracy

of the linear model at representing the non-linear dynamics.

Table 7.1: Simulation and experimental data for participant 1

Constraint Number of Pads
Simulation Experimental

Stimulation Error Dorsiflexsion Roll Error

Fixed Pad Pattern Size

1 299 2.24 27.4± 0.17 1.77± 0.09 12.63± 0.26
2 234± 5.5 0.04 22.85± 0.36 3.33± 0.02 6.52± 0.38
3 192± 1.89 0.04 25.36± 0.47 2.2± 0.08 10.16± 0.55
4 176± 25.9 0.04 22.6± 1.66 3.93± 0.83 5.67± 2.49
5 160± 11.45 0.04 20.96± 1.15 4.3± 0.26 3.66± 1.41

Same Amplitude,
Fixed Pad Pattern Size

1 299 2.24 27.38± 0.62 2.42± 0.33 11.96± 0.96
2 230 0.12 25.71± 0.52 2.75± 0.21 9.96± 0.73
3 198 0.04 23.4± 0.67 3.46± 0.33 6.94± 1.00
4 177 0.17 22.25± 0.92 3.54± 0.29 5.71± 1.21
5 158 0.79 19.15± 0.38 4.87± 0.11 2.98± 0.49

Fixed Pad Pattern Size,
and Adjacent Element

1 299 2.24 26.67± 0.51 3.21± 0.48 10.46± 1.00
2 238± 10.5 0.04 14.67± 1.89 3.21± 0.48 9.12± 2.33
3 193± 27.35 0.04 21.28± 1.78 6.27± 0.44 2.01± 2.14
4 175± 16.19 0.04 23.02± 0.54 3.62± 0.19 6.4± 0.73
5 158± 23.7 0.04 23.63± 4.42 4.49± 0.2 6.14± 4.62

Same Amplitude,
Fixed Pad Pattern Size
and Adjacent Element

1 299 2.24 27.51± 0.14 2.33± 0.13 12.18± 0.27
2 234 0.52 27.08± 0.58 2.22± 0.4 11.86± 0.98
3 185 1.82 21.58± 0.8 4.35± 0.22 4.23± 1.02
4 170 1.56 20.46± 0.59 4.63± 0.17 2.83± 0.76
5 152 2.81 19.44± 0.67 5.3± 0.59 2.26± 1.26
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7.5.5 Model Accuracy

A range of different constraints has been applied experimentally in the last section.

There are two main ways of grouping the results to consider the model accuracy, (1)

grouping in terms of the constraint Ψ or (2) grouping by the number of pads, n, in

a pattern. Table 7.2 gives the average error and the standard deviation of the error

for each participant and constraint. For each participant, the model uncertainty can

be seen to be similar across each constraint, with the standard deviation remaining

relatively consistent per participant. Table 7.3 portrays the model mismatch in terms

of the number of pads. Again it shows a low model mismatch. This suggests that

the model inaccuracy is not strongly related to the number of pads in a pattern or the

constraint being used. Therefore suggesting that to improve the model accuracy further,

the model needs to represent the non-linearity more accurately or more ILC trials need

to be performed. The model inaccuracy for 2-degrees of freedom for each participant is

7.18◦±3.73◦, 13.18◦±5.42◦ and 8.95◦±2.27◦ for participant 1, 2 and 3 respectively and

a model error of 9.77◦ ± 4.78◦ for all results.

Table 7.2: Model mismatch for participant 1, 2 and 3, grouped by constraint.

Model Mismatch (degrees)

Participant 1 Participant 2 Participant 3 Group

Fixed Pad Pattern Size

1 12.63± 0.26

7.73± 3.40

9.89± 0.75

9.19± 2.66

4.33± 0.56

9.78± 3.38 8.90± 3.28
2 6.52± 0.38 6.86± 0.61 8.96± 0.3
3 10.16± 0.55 11.09± 0.65 11.95± 0.99
4 5.67± 2.49 5.37± 0.78 10.27± 1.94
5 3.66± 1.41 12.48± 1.48 13.40± 2.22

Same Amplitude,
Fixed Pad Pattern Size

1 11.96± 0.96

7.51± 3.24

9.09± 0.98

8.82± 1.85

8.11± 1.05

15.80± 4.27 10.71± 4.90
2 9.96± 0.73 9.36± 0.92 6.970± 5.57
3 6.94± 1.00 5.51± 1.20 18.57± 1.35
4 5.71± 1.21 9.71± 0.51 17.52± 0.4
5 2.98± 0.49 10.43± 0.45 15.03± 1.39

Fixed Pad Pattern Size,
and Adjacent Element

1 10.46± 1.00

6.83± 3.58

9.69± 0.18

8.80± 2.65

10.67± 1.27

13.48± 6.33 9.70± 5.27
2 9.12± 2.33 11.65± 0.50 18.03± 0.52
3 2.01± 2.14 4.38± 1.60 2.85± 1.49
4 6.4± 0.73 10.6± 1.38 15.24± 1.33
5 6.14± 4.62 7.44± 1.02 20.62± 1.27

Same Amplitude,
Fixed Pad Pattern Size
and Adjacent Element

1 12.18± 0.27

6.67± 4.47

7.29± 0.64

8.97± 1.71

11.39± 1.67

13.65± 5.39 9.76± 5.08
2 11.86± 0.98 7.30± 0.82 20.25± 0.46
3 4.23± 1.02 8.71± 1.16 18.60± 2.28
4 2.83± 0.76 10.36± 1.27 6.44± 1.17
5 2.26± 1.26 11.18± 0.84 11.56± 2.8

Table 7.3: Model mismatch for participant 1, 2 and 3, grouped by the number
of pads.

Number
of Pads

Model Mismatch (degrees)
Participant 1 Participant 2 Participant 3 Group

1 11.81± 1.00 8.99± 1.11 8.63± 2.99 9.54± 2.85
2 9.87± 2.50 8.73± 1.92 13.84± 5.39 11.32± 5.10
3 5.84± 3.23 7.49± 2.73 12.99± 6.60 8.53± 5.57
4 5.15± 1.82 9.08± 2.21 12.37± 4.46 8.63± 4.43
5 3.76± 2.52 10.38± 2.01 15.15± 3.91 9.50± 5.66
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7.5.6 Iterative Optimisation

To improve the angular output, the stimulation pattern is now fine-tuned. To do this, the

general form of Algorithm 2, is applied with the modified model identification procedures

given within Figure 7.8.

First, Algorithm 3, using the model identification procedure modified by the Fixed

Pad Pattern constraint (7.6) is applied. The constraint limits the re-identified pads to

just the n pads in the pattern and allows each pad in the pattern to have different

stimulation levels. The experiment uses the pattern and stimulation solution to the

Same Amplitude Fixed 3-Pad Pattern Size constraint as the input. For participant 1 the

starting conditions are; pad pattern formed up of pads 8, 12 and 6, starting stimulation

solution u0 = 210µs, α = 0.05, r = [20, 7] and the operating range ui,width = ±20µs.

Figure 7.12, contains the error values for each joint and stimulation levels of each pad

for 10 iterations. The dorsiflexion and roll error both reduce below 5 degrees error. The

average stimulation value can be seen to increase with time to maintain tracking due to

fatigue.

Figure 7.12: Experimental real-time ILC, using positive amplitude constraint.

Next, Algorithm 4 using the model identification procedure with the Same Amplitude

Fixed Pad Pattern Size constraint (7.7) is applied. This constraint forces all pads to

have the same stimulation level allowing all the pads to be identified at the same time.

The experiment is run with the same starting conditions. The results are illustrated in

Figure 7.13. Faster convergence is observed. This is likely to be due to a more accurate

model because the Same Amplitude constraint has less reliance on superposition. It also

requires fewer tests to identify the model, reducing the impact of fatigue.

The most accurate value from the Fixed Pad Pattern Size constraint is found on iteration

6, with the error dropping from 7.82◦ to 3.12◦. To achieve this, the stimulation input
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Figure 7.13: Experimental, real-time ILC, using Same Stimulation Amplitude
constraint.

only changed by 6.94%± 5.39 (163µS (∆ = 7µs), 129µs (∆ = 27µs) 161µS (∆ = 5µs)).

To investigate the repeatability, the stimulation levels were re-applied. Each pad was

ramped up to its maximum value, and the angular movements are recorded. This was

repeated 10 times and led to an angular position of 19.8◦ ± 0.87◦ for dorsiflexion and

4.99◦ ± 0.37◦ for roll resulting in an error of 2.2◦ ± 1.23◦, improving on the un-tuned

initial error of 7.82◦. This demonstrates the importance of re-identifying the model for

this participant, as small changes in stimulation produce large angular changes.

7.6 Summary

This chapter has developed a framework for identifying multiple electrode pad patterns

and considered the implications of constraints, which provide hardware simplifications

and cost reductions while improving accuracy and repeatability. The pad selection

approach has been justified by the low model mismatch between the predicted outputs

and experimental results across all the constraints (error 9.77◦ ± 4.78◦ for 2-degrees

of freedom). It was specifically found that increasing the number of pads decreases the

average stimulation needed across those pads. The patterns tended to converge to similar

shapes for larger values of n, suggesting a similar optimal pattern lies within all the

constrained systems. The majority of patterns did not, however, resemble rectangular

shapes which have been heavily used in virtual electrodes in previous work suggesting

the importance of considering the shape of active sites in future work. The importance of

online fine-tuning has also been demonstrated, with small stimulation changes required

for accurate tracking.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

The focus of this thesis was to address the limitations in the technology available to

people with drop-foot. It found that commercial FES stimulators have not been able to

achieve a natural gait pattern with FES due to simplistic controllers which were unable

to cope with the non-linear time-varying dynamics and voluntary ankle motion. In par-

ticular, all commercial systems use simple heel switches to activate the stimulation. This

motivated the need for closed-loop model-based control with learning over each cycle.

One of the few controllers in the literature able to address the limitations was based

on learning (Seel et al., 2016). However, this approach requires a large amount of data

to be passed between trials. Additionally, it assumes resetting between each gait cycle,

a simplification of the complex periodic nature of walking. The control approach pro-

posed in this thesis overcomes the resetting problem by using repetitive control, which

is specially designed to deal with non-resetting continuous signals. Chapter 4 undertook

this development, producing an RC implementation that had a set of theoretical prop-

erties that enabled the designer to vary the convergence, control effort and the number

of points tracked which significantly reduced the amount of data the update required,

stored and passed between cycles. The generalisation went on to allow the designer

to specify different minimum energy solutions and to apply priority to points by using

weightings.

The simulations, presented in Chapter 5, have illustrated that point-to-point RC con-

verges faster and is more robust to model uncertainty than traditional repetitive control.

Further to this, experimental results in Chapter 6 involving 5 participants, confirmed

the findings of Chapter 5, and established initial clinical feasibility. Specifically, Chapter

6 found point-to-point RC was able to converge faster with similar accuracy and greater

repeatability compared to traditional RC (variation 0.04 and 7.44 respectively), despite

the point-to-point controller only using 1
16 of the data traditional RC used. Across the
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study, point-to-point RC achieved an error norm of 2.99◦ ± 0.99◦ while traditional RC

achieved 2.56◦ ± 0.76◦. When compared to existing controllers in the literature, both

RC controllers were found to have similar or better tracking abilities.

Another limitation in current FES technology relates to the difficulty for users to set-

up the hardware, with challenging pad placement impeding user uptake (Dutta et al.,

2012). In recent years this has driven focus on electrode array technology to relax the

pad positioning problem (Kenney et al., 2016; Yang et al., 2014b), however, crude cost

function procedures have limited the effectiveness of selection approaches (Kenney et al.,

2016; Heller et al., 2013b). This motivated the second aim of this thesis, which was to

develop improved automatisation methods for array positioning. Chapter 7 developed

the framework and constraints needed to consider a large number of unique multi-pad

pattern combinations by only using data from the individual pads. This speeds up

the set-up process (approximate identification time is 3 mins for several thousand pad

patterns), which was a consistent limitation of array technology in the literature (Kenney

et al., 2016; Heller et al., 2013b), and had been key in preventing array electrodes from

being commercial implemented.

The approach in Chapter 7 provides a way of identifying common patterns to activate

the peroneal nerve, in either clustered or disjointed groups with the same or varying

stimulation levels across the pattern. Although results are initial, the pattern selection

model error for the 2-degrees of freedom, across all constraints and participants, was

only 9.77◦ ± 4.78◦, giving an accuracy band for all results (180 tests) of between 46.1%

and 81.5%. Note, this is without re-identifying the model to tune the stimulation level.

Once the pad pattern has been selected it is feasible for the model to be re-identifed

between iterations. This has been shown to improve results, achieving 2.26◦ ± 1.23◦

for the 2-degrees of freedom and an accuracy band of between 87.3% and 96.4%. This

shows substantial scope for further refinement as well as the potential for being used

to identify personalised drop-foot electrode layouts in the future or as the input to a

multiple-input multiple-output (MIMO) point-to-point RC system.

8.2 Future Work

The results presented in this thesis illustrate the feasibility of point-to-point repetitive

control for drop-foot as well as procedures identifying multi-pad pattern inputs for FES

devices. This motivates the potential of real world application and larger clinical studies,

as well as opening further routes of research.



Chapter 8 Conclusions and Future Work 103

8.2.1 Varying Trial Length - Multiple Model Control

The RC approach put forward in Chapter 4 has been shown able to track natural move-

ment within typical human gait variation. However, it currently uses a fixed gait cycle

with no means of effectively modulating the reference to account for changes in walk-

ing speed. This is important as a user’s walking speed will vary in responce to various

factors, including age, time pressure, leg length, tiredness, comfort and safety. To be

able to include varying trial lengths, the proposed framework could be combined with

multiple model adaptive control. This method updates the plant dynamics and refer-

ence between cycles based on how well the signals in the previous cycle matched. For

example, the sensor input is used to switch to a suitable model by matching the ankle’s

angular acceleration and foot velocity.

8.2.2 Gait Reference Tracking

An alternative approach to address potentially varying trial lengths would be to change

how the reference is propagated. Currently, the sample position within the reference

is propagated independently of the system through the use of time. As RC does not

reset between trials (it tracks both the swing and stance phases of gait), the sample

position could instead be propagated by tracking and comparing the angular position of

another limb to its know reference (Brend et al., 2015; Freeman, 2017; Freeman et al.,

2018). For example, the arm or opposing leg position could be tracked (angular position,

velocity and acceleration), and with this information, the position in the gait cycle can

be ascertained. This approach would inherently account for variations in walking speed

without the need for a large number of models.

8.2.3 Set of Optimal Pad Patterns

Commercially inspired array pad selection constraints were presented in Chapter 7. They

were found to produce accurate, repeatable multi-pad input patterns. However, they

were not yet able to help design personalised electrode array layouts as the constraints

do not consider multiple days of data or account for the variation in electrode array

placement. The next step would be to combine several models, each identified on a

different day with the same participant. Then by using the constraints, a set of patterns

could be found to solve the optimisation problem for all models with a minimum number

of patterns. By placing the electrode array with enough variance each time, the set of

selected patterns will be broad enough to solve the pad placement problem wherever

it is placed during day-to-day use. Therefore, the end result would be a small set of

patterns that can be quickly stimulated in turn during set-up rather than stimulating

all individual pads, dramatically improving the time it takes to setup.
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8.2.4 Combining FES with Soft Robotics

FES has been shown to work well, but fatigue is a limitation. Therefore, approaches

that would potentially reduce the amount of stimulation required to control the pitch

of the foot are desirable. For this reason, the expected next stage for assistive devices

will combine mechanical systems and FES. This would also allow for a larger range of

people to use assistive technology. However, mechanical systems have various limitations,

including size, weight and wearability. Unlike mechanical systems, soft robotics does not

limit the flexibility of wearable FES systems. However, soft robotic actuators are still in

the early stages of development, as found by Section 2.3.5, and are not able to provide

the force and support desired. Because of this, soft robotics should not be considered

as actuators in a combined system. Instead, the aim should be to alter the system with

soft robotics. Variable stiffness soft robotic fibres can provide extra stiffness around the

ankle during swing phase and remove it during stance. This will change the rigid body

dynamics slowing the drop of the foot and reducing the amount of stimulation that needs

to be applied.



Appendix A

Outreach

During this research, I have been involved with various outreach activities which have

helped me bring my work to the attention of the general public. This included pre-

senting my work at a press conference for the 2018 British Science Festival in Hull, and

representing the University of Southampton in a multi-university grant looking to com-

bine soft robotics and FES into a wearable pair of trousers. This was called ”The Right

Trousers” project. I also exhibited at ”The Trousers Fest” festival at the University of

Bristol Robotic Labs, where I demonstrated the advancements in FES technology to the

general public and had the opportunity to take on board user suggestions to develop the

general form of the sock sleeve.

Figure A.1: Collage of various outreach events linked to this research.
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Additional Physiology

This appendix contains additional detail about gait. This includes, further detail re-

garding the gait events, the muscles required for achieving the events and explanation of

the key metrics measured (with average human values given where available) to evaluate

human gait.

Figure B.1: Gait cycle organised as a clock. Emphasising the cyclic nature of
human gait. From Vaughan et al. (1999)
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Additional detail about the first 5 events that belong to the stance phase, and their

approximate percentage position in the gait cycle, though this will vary from person to

person, are given below.

Heel strike The instant the lower limb contacts the ground (0%). This represents

the point at which the bodies centre of gravity is at its lowest position.

Often referred to as initial contact because many abnormalities lead

to the heel not making first contact.

Flat foot The period that the entire plantar aspect of the foot is on the ground

(10%).

Midstance The point where the body weight passes directly over the supporting

lower extremity (30%). Resulting in the body’s centre of gravity being

at its highest position. This coincides with a vertically oriented lower

leg.

Heel-off The instant the heel leaves the ground (40%). This is initiated via the

triceps surae muscles, which plantar flex the ankle.

Toe-off The instant the toe leaves the ground (60%). Ending the stance phase.

Sometimes referred to as terminal contact.

Note, sometimes the term push off is used to describe the combined events of heel-off

and toe-off.

Additional detail about the 3 events that belong to the last 40% of gait - swing phase,

and approximate percentage position in the gait is now provided.

Acceleration Sometimes referred to as initial swing or early swing. The period from

toe off to mid swing (60% to 75%). It begins as soon as the foot

leaves the ground and the subject activates the hip flexor muscles to

accelerate the leg forward.

Mid Swing The period when the foot in swing passes next to the foot in stance

position (75% to 85%). This corresponds to the mid stance phase of

the opposite lower extremity.

Deceleration Also referred to as terminal swing. The period ranging from mid swing

until heel contact (85% to 100%). Muscles slow the leg and stabilize

the foot in preparation for the next heel strike.

Figure B.2 shows the muscles fired to achieve the different events in the gait cycle.
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Figure B.2: Grey scaled activation levels of different muscle groups in the lower
body during the gait cycle. From Vaughan et al. (1999)





Appendix C

Power Consumption

Due to circumstances (corona virus), I was unable to record the power usage of the

system. To provide some clarity the following deriviations look to shine some light on

the power consumption of the system. As previously mentioned a 5V battery supplies

the Myrio controller, where the control signal is produced. Another 12V supply is used

by the optically isolated DC-DC converter, increaseing the input pattern to a muscle

stimulating level (120V, at 140mA).

Due to the nature of the signal (PWM), power is only supplied during the active region

of the duty cycle. Note that the duty cycle is the controlled parameter, and is varied

during operation (0µ ≤ u ≤ 300µ), for simplisity an average value of 250µ is used. The

percentage value for which the signal is active can be calulcated as follows;

D =
Dactive

1/F
, (C.1)

D =
250× 10−6

1/40
= 0.01, (C.2)

where F is frequency, 1/F is the period of one cycle, and D is the percentage the signal

is active for.

The power consumed by the system is given by,

P = (I × V )×D, (C.3)

P = 140× 10−3 × 120× 0.01 = 0.168W. (C.4)

Note this doesnt include power loss within the circuit or during the voltage transforma-

tion.
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Additional Controller Data

Experimental trials with healthy individuals were undertaken to evaluate the effective-

ness of the designed RC schemes. Following ethical approval (ERGO/FPSE/47517), five

participants were recruited for this study. Participants ranged from 20 to 35 years old

and included male and females. Participant 1 and 5 had experienced/partaken in FES

studies before, while participants 2, 3 and 4 had not. The participants were asked to sit

on an elevated stool, thus leaving the leg able to swing freely.

To limit the effects of fatigue, there was a 20-minute break between each test, allowing

the muscles to recover (Graham and Popovic, 2005). To limit the impact of model

uncertainty, all tests for a given participant, were conducted in a single session, using

the same initial model and pad position.

The voltage is tuned to the participant’s comfort at the beginning of each experiment.

This is done by slowly increasing the voltage level of the PWM (with the maximum

pulse width length applied) until a sufficient range of motion is achieved or when the

participant finds the sensation uncomfortable. To reduce the time spent in the muscle

recruitment deadzone, the first cycle of the control update is set to the initial twitch

value of the participant, and pulse width is constrained within the commonly used region,

0 ≤ u ≤ 300, ensuring comfortable use (Wederich et al., 2000).

Chapter 6 discusses the procedures in detail, as well as exploring the experimental

findings.

Note, the experiment was drawn short for participant 5 as they reported high levels of

fatigue. This was attributed to the high levels of physical activity of the participant.
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D.1 Participant 1

Figure D.1: Participant 1. Top: dorsiflexion outputs, middle: stimulation in-
puts, bottom left: error norm bottom right: minimum energy, for traditional
and point-to-point RC.
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D.2 Participant 2

Figure D.2: Participant 2. Top: dorsiflexion outputs, middle: stimulation in-
puts, bottom left: error norm bottom right: minimum energy, for traditional
and point-to-point RC.
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D.3 Participant 3

Figure D.3: Participant 3. Top: dorsiflexion outputs, middle: stimulation in-
puts, bottom left: error norm bottom right: minimum energy, for traditional
and point-to-point RC.
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D.4 Participant 4

Figure D.4: Participant 4. Top: dorsiflexion outputs, middle: stimulation in-
puts, bottom left: error norm bottom right: minimum energy, for traditional
and point-to-point RC.
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D.5 Participant 5

Figure D.5: Participant 5. Top: dorsiflexion outputs, middle: stimulation in-
puts, bottom left: error norm bottom right: minimum energy, for traditional
and point-to-point RC.



Appendix E

Pad Pattern Data

Following ethical approval (ERGO/FPSE/47517), three unimpaired participants were

recruited for the multi-pad pattern experiments. Participant 1 and 3 had experienced/-

partaken in FES studies before, while participant 2 had not. The participants were

asked to sit on an elevated stool, thus leaving the leg able to swing freely.

First, the voltage was tuned to be within the range of the participant’s comfort. This was

done by slowly increasing the voltage level of the PWM (with the maximum pulse width

length applied) until a sufficient range of motion is achieved or when the participant finds

the sensation uncomfortable. The pulse width was constrained within the commonly

used region, 0 ≤ u ≤ 300, ensuring comfortable use (Wederich et al., 2000). To limit the

effects of fatigue, there was a 20-minute break between each test, allowing the muscles

to recover (Graham and Popovic, 2005).

Chapter 7 discusses the procedures in detail, as well as exploring the experimental

findings.
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E.1 Participant 1

Figure E.1: Participant 1: dorsiflexsion gradients, eversion gradients (θ/µs),
and twitch threshold (µs) values for each pad.

Figure E.2: Participant 1: optimal pad patterns for each constraint, with stim-
ulation levels (µs) in grouped columns.
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Figure E.3: Participant 1: simulation results.

Constraint Number of Pads
Simulation Experimental

Stimulation Error Dorsiflexsion Roll Error

Fixed Pad Pattern Size

1 299 2.24 27.4± 0.17 1.77± 0.09 12.63± 0.26
2 234± 5.5 0.04 22.85± 0.36 3.33± 0.02 6.52± 0.38
3 192± 1.89 0.04 25.36± 0.47 2.2± 0.08 10.16± 0.55
4 176± 25.9 0.04 22.6± 1.66 3.93± 0.83 5.67± 2.49
5 160± 11.45 0.04 20.96± 1.15 4.3± 0.26 3.66± 1.41

Same Amplitude,
Fixed Pad Pattern Size

1 299 2.24 27.38± 0.62 2.42± 0.33 11.96± 0.96
2 230 0.12 25.71± 0.52 2.75± 0.21 9.96± 0.73
3 198 0.04 23.4± 0.67 3.46± 0.33 6.94± 1.00
4 177 0.17 22.25± 0.92 3.54± 0.29 5.71± 1.21
5 158 0.79 19.15± 0.38 4.87± 0.11 2.98± 0.49

Fixed Pad Pattern Size,
and Adjacent Element

1 299 2.24 26.67± 0.51 3.21± 0.48 10.46± 1.00
2 238± 10.5 0.04 14.67± 1.89 3.21± 0.48 9.12± 2.33
3 193± 27.35 0.04 21.28± 1.78 6.27± 0.44 2.01± 2.14
4 175± 16.19 0.04 23.02± 0.54 3.62± 0.19 6.4± 0.73
5 158± 23.7 0.04 23.63± 4.42 4.49± 0.2 6.14± 4.62

Same Amplitude,
Fixed Pad Pattern Size
and Adjacent Element

1 299 2.24 27.51± 0.14 2.33± 0.13 12.18± 0.27
2 234 0.52 27.08± 0.58 2.22± 0.4 11.86± 0.98
3 185 1.82 21.58± 0.8 4.35± 0.22 4.23± 1.02
4 170 1.56 20.46± 0.59 4.63± 0.17 2.83± 0.76
5 152 2.81 19.44± 0.67 5.3± 0.59 2.26± 1.26

Table E.1: Participant 1: simulation and experimental data
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Figure E.4: Participant 1: experimental real-time ILC, using Fixed Pad Pattern
Size constraint.

Figure E.5: Participant 1: experimental, real-time ILC, using the Same Stimu-
lation Amplitude Fixed Pad Pattern Size constraint.
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E.2 Participant 2

Figure E.6: Participant 2: dorsiflexsion gradients, eversion gradients (θ/µs),
and twitch threshold (µs) values for each pad.

Figure E.7: Participant 2: optimal pad patterns for each constraint, with stim-
ulation levels (µs) in grouped columns.
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Figure E.8: Participant 2: simulation results.

Constraint Number of Pads
Simulation Experimental

Stimulation Error Dorsiflexsion Roll Error

Fixed Pad Pattern Size

1 224± 0 2.29 28.60± 0.32 5.71± 0.43 9.89± 0.75
2 149± 75 4.56 23.86± 0.49 4.00± 0.12 6.86± 0.61
3 121± 35 4.93 26.09± 0.45 1.99± 0.2 11.09± 0.65
4 110± 22 3.41 20.24± 0.45 1.87± 0.33 5.37± 0.78
5 102± 15 2.89 12.93± 0.76 1.59± 0.72 12.48± 1.48

Same Amplitude,
Fixed Pad Pattern Size

1 224 2.29 27.64± 0.66 5.55± 0.32 9.09± 0.98
2 149 2.34 23.42± 0.82 1.06± 0.1 9.36± 0.92
3 125 2.37 18.84± 0.21 3.01± 0.99 5.51± 1.20
4 114 2.40 13.12± 0.46 4.17± 0.05 9.71± 0.51
5 104 2.44 12.08± 0.29 4.49± 0.16 10.43± 0.45

Fixed Pad Pattern Size,
and Adjacent Element

1 224 2.29 29.16± 0.10 6.47± 0.08 9.69± 0.18
2 161± 90 2.56 30.70± 0.26 6.04± 0.24 11.65± 0.50
3 123± 39 2.60 20.90± 0.94 3.52± 0.66 4.38± 1.60
4 115± 24 2.52 15.84± 1.21 0.55± 0.17 10.6± 1.38
5 104± 17 2.43 14.98± 0.63 4.58± 0.17 7.44± 1.02

Same Amplitude,
Fixed Pad Pattern Size
and Adjacent Element

1 224 2.29 26.30± 0.17 7.99± 0.48 7.29± 0.64
2 149 2.34 16.99± 0.30 2.71± 0.52 7.30± 0.82
3 125 2.37 14.70± 0.47 3.59± 0.69 8.71± 1.16
4 114 2.39 12.03± 1.10 4.61± 0.18 10.36± 1.27
5 104 2.41 11.35± 0.78 4.47± 0.07 11.18± 0.84

Table E.2: Participant 2: simulation and experimental data



Appendix E Pad Pattern Data 125

Figure E.9: Participant 2: experimental real-time ILC, using Fixed Pad Pattern
Size constraint.

Figure E.10: Participant 2: experimental, real-time ILC, using Same Stimula-
tion Amplitude Fixed Pad Pattern Size constraint.



126 Appendix E Pad Pattern Data

E.3 Participant 3

Figure E.11: Participant 3: dorsiflexsion gradients, eversion gradients (θ/µs),
and twitch threshold (µs) values for each pad.

Figure E.12: Participant 3: optimal pad patterns for each constraint, with
stimulation levels (µs) in grouped columns.



Appendix E Pad Pattern Data 127

Figure E.13: Participant 3: simulation results.

Constraint Number of Pads
Simulation Experimental

Stimulation Error Dorsiflexsion Roll Error

Fixed Pad Pattern Size

1 212 0.05 22.92± 0.47 8.42± 0.09 4.33± 0.56
2 187 0.04 27.05± 0.23 8.91± 0.06 8.96± 0.3
3 165 0.04 28.16± 0.85 10.79± 0.15 11.95± 0.99
4 151 0.04 27.80± 0.76 9.47± 1.18 10.27± 1.94
5 145 0.04 28.69± 0.94 11.70± 1.28 13.40± 2.22

Same Amplitude,
Fixed Pad Pattern Size

1 212 0.05 25.64± 0.39 9.47± 1.18 8.11± 1.05
2 169 0.04 32.29± 0.84 11.01± 4.74 6.970± 5.57
3 173 0.03 32.14± 1.03 13.43± 0.32 18.57± 1.35
4 144 0.04 30.68± 0.05 13.84± 0.35 17.52± 0.4
5 140 0.04 30.01± 0.59 12.02± 0.79 15.03± 1.39

Fixed Pad Pattern Size,
and Adjacent Element

1 212 0.04 27.13± 1.07 10.54± 0.2 10.67± 1.27
2 209± 4 0.04 30.90± 0.17 14.13± 0.34 18.03± 0.52
3 173± 0.82 0.04 21.68± 1.03 5.82± 0.46 2.85± 1.49
4 139 0.04 31.10± 0.85 11.15± 0.48 15.24± 1.33
5 151± 0.98 0.04 32.78± 0.83 14.83± 0.44 20.62± 1.27

Same Amplitude,
Fixed Pad Pattern Size
and Adjacent Element

1 212 0.05 26.39± 0.65 12.00± 1.02 11.39± 1.67
2 169 0.04 31.75± 0.22 15.50± 0.24 20.25± 0.46
3 173 0.04 31.13± 0.98 14.46± 1.3 18.60± 2.28
4 147 0.04 23.90± 0.34 9.54± 0.83 6.44± 1.17
5 157 0.04 26.63± 1.46 11.93± 1.34 11.56± 2.8

Table E.3: Participant 3: simulation and experimental data
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Figure E.14: Participant 3: experimental real-time ILC, using Fixed Pad Pat-
tern Size constraint.

Figure E.15: Participant 3: experimental, real-time ILC, using Same Stimula-
tion Amplitude Fixed Pad Pattern Size constraint.
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Popović. Multi-field surface electrode for selective electrical stimulation. Artificial

Organs, 29(6):448–452, 2005.

N. Postans and M. Granat. Effect of functional electrical stimulation, applied during

walking, on gait in spastic cerebral palsy. Developmental Medicine and Child Neurol-

ogy, 47(1):46–52, 2005.

E. Pourhosseingholi, B. Farahmand, A. Bagheri, M. Kamali, and M. Saeb. Efficacy

of different techniques of AFO construction for hemiplegia patients: A systematic

review. Medical journal of the Islamic Republic of Iran, 33:50, 06 2019.

S. Prenton, L.P. Kenney, C. Stapleton, G. Cooper, M.L. Reeves, B.W. Heller,

M. Sobuh, A.T. Barker, J. Healey, T.R. Good, Sibylle B. Thies, and T. Howard,

D.and Williamson. Feasibility study of a take-home array-based functional electrical

stimulation system with automated setup for current functional electrical stimula-

tion users with foot-drop. Archives of Physical Medicine and Rehabilitation, 95(10):

1870–1877, 2014.



138 REFERENCES

S. Prenton, K. Hollands, L. Kenney, and P. Onmanee. Functional electrical stimulation

and ankle foot orthoses provide equivalent therapeutic effects on foot drop: A meta-

analysis providing direction for future research. Journal of Rehabilitation Medicine,

50:129–139, 2017.

M. H. Ramlee, M. R. A. Kadir, and H. Harun. Three-dimensional modeling and analysis

of a human ankle joint. In IEEE Student Conference on Research and Developement,

pages 74–78, 2013.

J. Ratcliffe, P. Lewin, E. Rogers, J. Hätönen, and D. Owens. Norm-Optimal Iterative

Learning Control Applied to Gantry Robots for Automation Applications. IEEE

Transactions on Robotics and Automation, 22(6):1303–1307, 2006.

J. Ratcliffe, J. Hätönenand P. Lewin, and E. Rogersand D. Owens. Repetitive control of

synchronized operations for process applications. International Journal of Adaptive

Control and Signal Processing, 21(4):300–325, 2007.

A. Roche, G. O. Laighin, and S. Coote. Surface-applied functional electrical stimulation

for orthotic and therapeutic treatment of drop-foot after stroke: a systematic review.

Physical Therapy Reviews, 14(2), 2009.

E. J. Rouse, R. D. Gregg, L. J. Hargrove, and J. W. Sensinger. The difference between

stiffness and quasi-stiffness in the context of biomechanical modeling. IEEE Trans.

Biomed. Eng., pages 562–568, 2013.

D. N. Rushton. Functional Electrical Stimulation and rehabilitation - an hypothesis.

Medical Engineering and Physics, 25(1):75–78, 2003. ISSN 1350-4533.

O. Schill, R. Rupp, C. Pylatiuk, S. Schulz, and M. Reischl. Automatic adaptation of

a self-adhesive multi-electrode array for active wrist joint stabilization in tetraplegic

SCI individuals. In Science and Technology for Humanity (TIC-STH), 2009 IEEE

Toronto International Conference, pages 708 –713, 2009.

T. Seel, C. Werner, J. Raisch, and T. Schauer. Iterative learning control of a drop

foot neuroprosthesis generating physiological foot motion in paretic gait by automatic

feedback control. Control Engineering Practice, 48(3):87–97, 2016.

K. Shamaei, M. Cenciarini, A. A. Adams, K. N. Gregorczyk, J. M. Schiffman, and A. M.

Dollar. Design and evaluation of a quasi-passive knee exoskeleton for investigation

of motor adaptation in lower extremity joints. IEEE Transactions on Biomedical

Engineering, 61(6):1809–1821, 2014.

G. J. Snoek, M. J. IJzerman, F. A. in ’t Groen, T. S. Stoffers, and G. Zilvold. Use of

the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in

ten patients. Spinal Cord, 38:244–249, 2000.



REFERENCES 139

L. Stirling, Chih-Han. Yu, J. Miller, E. Hawkes, R. Wood, E. Goldfield, and R. Nagpal.

Applicability of shape memory alloy wire for an active, soft orthotic. Journal of

Materials Engineering and Performance, 20(4):658–662, 2011.

L. Sun, Y. Sun, Z. Huang, J. Hou, and J. Wu. A hill-type submaximally-activated mus-

culotendon model and its simulation. In 14th International Symposium on Distributed

Computing and Applications for Business, Engineering and Science, pages 439–442,

2015.

G. Tack, J. S. Choi, J. H. Yi, and C. H. Kim. Relationship between Jerk Cost Function

and Energy Consumption during Walking. pages 2917–2918, 2007.

A. K. Tangirala. Principles of System Identification: Theory and Practice. CRC Press,

2018. ISBN 9781439896020.

P. Taylor, J. Burridge, A. Dunkerley, A. Lamb, D. Wood, J. Norton, and I. Swain.

Patients’ perceptions of the odstock dropped foot stimulator (odfs). Clinical Rehabil-

itation, 13(5):439–446, 1999.

X. Tu, J. Huang, and J. He. Leg hybrid rehabilitation based on hip-knee exoskeleton and

ankle motion induced by fes. In 2016 International Conference on Advanced Robotics

and Mechatronics (ICARM), pages 237–242, 2016.

S. F. Tyson, E. Sadeghi-Demneh, and C. J. Nester. A systematic review and meta-

analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin-

ical Rehabilitation, 27(10):879–891, 2013.

C. L. Vaughan, B. L. Davis, and J. C.Connor. Dynamics of Human Gait. Kiboho

Publishers, 1999.

J. M. Veerbeek, van E. Wegen, R. Peppen, P. J. van der Wees, E. Hendriks, M. Rietberg,

and G. Kwakkel. What is the evidence for physical therapy poststroke? A systematic

review and meta-analysis. PLoS ONE, 9(2):e87987, February 2014.

R. Velik, N. Malesevic, L. Maneski, U. Hoffmann, and T. Keller. A Multi-pad Electrode

System for Selective Transcutaneous Electrical Muscle Stimulation. In INTFES, 01

2011.

Y. Wang, F. Gao, and F. Doyle. Survey on iterative learning control, repetitive control,

and run-to-run control. Journal of Process Control, 19(10):1589 – 1600, 2009.

L. Bakerand L. Wederich, R. Mcneal, C. Newsam, and L. Waters. Neuromuscular elec-

trical stimulation: A practical guide. Los Amigos Research & Education Institute,

Inc, 2000.
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