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Abstract
The differences need to be understood between the leading order jump
conditions, often assumed at a flame sheet in combustion theory, and the
actual effect of a one step chemical reaction governed by Arrhenius kinetics.
These differences are higher order in terms of a large activation temperature
analysis and can be estimated using an asymptotic approach. This paper
derives one order of asymptotic correction to the leading order jump conditions
that are normally used for describing premixed laminar combustion, providing
additional contributions that are due to curvature, flow through the flame sheet
and the temperature gradient into the burnt gas. As well as offering more
accurate asymptotic results, these can be used to estimate the errors that are
inherent in adopting only the leading order version and they can point towards
major qualitative changes that can occur at finite activation temperatures in
some cases. Applied to steady non-adiabatic flame balls it is found that the
effect of a non-zero temperature gradient in the burnt gas provokes the most
serious deficiency in the asymptotic approach.

1. Introduction

When studying premixed flames modelled using a thermally sensitive, exothermic, one step
reaction of the form

νFF + νXX → µPP

a common practice in combustion theory is to assume that all chemistry takes place on an
infinitesimally thin free boundary or sheet of reaction, at a rate that depends sensitively only
on temperature. Leading order matched asymptotic studies of an ‘inner’ reaction region, for
large activation temperature, provide the main justification for this. Many illustrative examples
are available in the literature (see, e.g. [1–5]).
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110 J W Dold et al

The use of a reaction sheet and its appropriate assumptions lead to considerable
simplification in the model and its analysis, while remaining physically relevant; the restriction
of one step reactions to relatively thin regions in premixed flames and an associated thermal
sensitivity of the rate at which reactants are consumed and heat is released do seem to mimic
the most important practical features of the chemistry in many situations.

However, it is also important to ascertain what effects are being neglected when adopting
this form of model, even if only to confirm that the effects are small. This paper examines the
jump conditions that may be used across a flame sheet, as a systematic asymptotic reduction
from a one step Arrhenius description of the chemistry for large activation temperature. At
higher order, the jump conditions depend on curvature, speed of gas flow through the sheet
and the normal temperature gradient into the burnt gases at the sheet.

In cases where the activation temperature is large enough and the temperature at the
reaction sheet undergoes any form of change, either in time or as parameters change, these
higher order effects are likely to be relatively unimportant, qualitatively and quantitatively,
providing only minor corrections. However, in cases where there is very little change in
temperature at the reaction sheet, other influences may play a more significant role. It is
informative, anyway, to clarify the roles that curvature, propagation speed and conduction into
the burnt gas must play in modifying the jump conditions usually encountered at a reaction
sheet.

Stability analyses, leading for example to the Sivashinsky equation [6], or describing the
stability of flame balls [7–10], often involve a dispersion relation that covers two orders of
magnitude in a perturbation parameter. Both orders are generated by the leading order jump
conditions at a flame sheet, because of their extreme sensitivity to temperature changes at the
sheet. Stability boundaries, for Lewis numbers or other parameters, are then determined
asymptotically [6]. With one further order of correction to the jump conditions sharper
refinements, at least, are made possible in determining stability boundaries.

While the use of jump conditions at a reaction sheet is extremely useful in examining
analytically the structure, stability and behaviour of various forms of premixed flames,
their use is less practical in carrying out numerical simulations of flames with one step
chemistry. The numerical implementation of a moving free-boundary problem, at which
specific boundary conditions need to be satisfied, is much more problematic than the simulation
of a chemical process that is spatially distributed, even if it only happens on a relatively
small, but not infinitesimally small, spatial scale. The activation temperature used in any
one numerical simulation must also then be fixed and, necessarily, finite. Unexpectedly large
differences can then arise between leading order asymptotic predictions for large activation
temperature, based on using jump conditions, and numerical observations at finite activation
temperatures [10]. Higher order corrections to the jump conditions can be used to estimate these
differences.

In this paper, we derive one order of asymptotic correction to the jump conditions that
are normally used in describing laminar premixed combustion. As an illustration of their
utility, the improved jump conditions are applied to a model for steady, non-adiabatic flame
balls [7–10]. It is found that the higher order jump conditions successfully predict a qualitative
disagreement with the leading order results at moderate values of the Zeldovich number, as
has been observed numerically [10].

In fact, at reduced Zeldovich numbers, the numerical solutions deviate much more
strongly from the leading order results, although the higher order jump conditions successfully
predict the onset and basic nature of the disagreement. At the Zeldovich numbers for which
major changes occur, the higher order predictions are, of course, no longer accurate and
any continued overall similarity with the numerics may be simply fortuitous. However, the
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Jump conditions in premixed flames 111

leading order predictions are not even qualitatively correct at this stage and they offer no hint
about their own loss of validity. The higher order corrections do, at least, predict their own
downfall.

This finding helps to demonstrate some of the subtlety that is inherent in the one step
chemical model at large but finite Zeldovich numbers. Knowing some of the nuances of its
asymptotic expression, in the form of improved jump conditions, can help towards identifying
and understanding the ways in which solutions differ from their limiting form at infinite
Zeldovich number as well as, simply, providing more accurate asymptotic results.

2. Model

2.1. One step Arrhenius model

A dimensionless low Mach number model, that describes the one step decomposition reaction
F → P using an Arrhenius rate law, can be written as

Ft + v · ∇F = ∇2F

Le
− D ω

Tt + v · ∇T = ∇2T + QD ω − �

ω = F exp

(
θ

T∗
− θ

T

) (1)

in which Le is the Lewis number of the reactant F, the scaled mass-fraction of which is
represented by F(t, x); Q is a heat release parameter; � represents the rate of radiative heat
loss; T∗ is a suitably chosen dimensionless reference temperature, that is typically close to the
maximum value that can be estimated for the absolute temperature T (t, x); and the velocity
v(t, x) is a solution of the Navier–Stokes equations

ρt + v · ∇ρ + ρ∇ · v = 0
ρ(vt + v · ∇v) + ∇p = ρ Pr∇ ·

(∇v + (∇v)T
) − ρ 2

3 Pr∇(∇ · v) + g
(2)

in which Pr is the Prandtl number and g is a dimensionless gravitational vector. These equations
are linked to the combustion equations (1) via the dimensionless form of the isobaric ideal gas
law ρT = 1, since the density ρ(t, x) then changes as the temperature changes. Relatively
small variations in absolute pressure, of the order of the square of the Mach number, are
represented by the dimensionless hydrodynamic pressure p(t, x). Only if the ideal gas law
is replaced by a constant density model, ρ ≡ 1, is the velocity made to be independent of
any temperature changes [1–4]. Selecting values for T∗ and the Damköhler number D has the
effect of fixing the scalings of time t and space x.

2.2. Reaction sheet model

When the dimensionless activation temperature θ is large enough, the reaction rate term ω is
commonly considered only to act at an infinitesimally thin reaction sheet, or interface, Γ ⊂ R

3.
The effect of the chemistry is then entirely summarized by jump conditions applied to F and T ,
across the interface, which can be expressed most simply if we rewrite the Damköhler number
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112 J W Dold et al

as D = δ2θ2Q2/(2LeT 4
∗ ), fully parameterized by δ. The model then typically takes the form

Ft + v · ∇F = ∇2F

Le
Tt + v · ∇T = ∇2T − �


 for x /∈ Γ

[T ] = [F ] = F = 0
[Fn]

Le
= − [Tn]

Q
= �


 at x ∈ Γ

� = δ exp

(
1
2

(
θ

T∗
− θ

T

))
(3)

(sometimes known as the delta function model [1]) in which ∂n = n̂ ·∇ is the normal gradient,
or spatial derivative in the direction to which a normal unit vector n̂ points. The brackets [·]
denote the usual jump in value, across the sheet Γ, of the contents of the brackets, being the
value on the side of the interface to which n̂ points minus the value on the opposite side. It
is useful to think of n̂ as pointing in the direction of propagation of the interface or, more
generally, towards increasing values of F , and this convention will be adopted in this article,
although the leading order jump conditions stated in (3) remain the same for either of the two
possible directions in which n̂ can point.

The jump conditions in (3) state that T and F are continuous across the interface where
the reactant concentration F must also have the value zero. The jumps in Tn and Fn are linearly
related to each other and take a value that is determined by the nonlinear function �, which
depends only on the temperature at the interface to leading order as θ → ∞. Since θ is large,
they are also a highly sensitive function of temperature. On the one side of the flame sheet the
chemistry must be in equilibrium, ω = 0, which is ensured in equations (1) by having F ≡ 0.
On the other side, the temperature is typically far enough below T∗ for the value of ω to be
transcendentally small as θ → ∞ (i.e. ω is smaller than any negative power of θ , as θ → ∞).
Neglecting the reaction rate ω when x /∈ Γ is therefore reasonable when θ is large enough.

According to the model (3), premixed flames of various types (laminar flames or flame-
balls) are thus envisaged as having a structure in which all chemical reaction is concentrated
at a narrow sheet, the interface Γ, with reactant concentration and temperature determined by
inert advective, diffusive and radiative processes away from the sheet. The approximation has
been demonstrated to work well in examples that are far too numerous to cite in this article
(see [1–4]).

2.3. Jump in pressure

It is worth noting that the Navier–Stokes equations (2) are not valid if there is any jump in
the gradient of density across a flame sheet, as would be the case if, for example, the isobaric
ideal gas law ρT = 1 were to hold, as well as the reaction sheet model (3). In particular, if we
consider changes across the interface that occur on a very small scale, measured by ε, and if
density, velocity and length are rescaled such that

ρ = ρ̄ + ε
, v = v̄ + εv, x = Γ + εn̂η

then the Navier–Stokes equations (2) have the local form for order one values of η

(v̄ · n̂)
η + ρ̄vη · n̂ = O(ε), pη = ρ̄ 4
3 Prvηη · n̂ + O(ε).

These equations are easily integrated to provide the additional jump conditions across the
interface

[v] = [ρ] = 0, [p] = 4
3 Pr ρ[vn] · n̂ = − 4

3 Pr(v · n̂)[ρn] (4)
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Jump conditions in premixed flames 113

which need to be applied when solving the Navier–Stokes equations. In particular, pressure
and the normal derivative of velocity are both discontinuous if there is a jump in the gradient
of density at the interface.

3. Reaction sheet jump conditions

We will now use a singular perturbation approach, based on the limit θ → ∞, to obtain and to
generalize the jump conditions presented in (3), as a systematic asymptotic approximation to
the continuum model (1). We shall start with the effect of temperature alone, under conditions
in which the temperature gradient in the burnt gas is zero, and move on to examine weak effects
of curvature, flow, non-zero temperature gradient in the burnt gas and unsteady behaviour.

3.1. Temperature dependence of the jump conditions

A complete description of the temperature dependence in the jump conditions at the reaction
sheet can be arrived at by selecting a particular form for the model problem (1) in which only
reactive and diffusive effects are present.

For this, we can consider a completely stationary, one-dimensional problem, with no
radiative heat loss and no flow, in which F = F(x) and T = T (x), only. Taking F(−∞) = 0
and T (−∞) = T̄ , where the value of T̄ is within order θ−1 of T∗, equations (1) then reduce
to the model equations and boundary conditions for F and T

F ′′

Le
= −T ′′

Q
= DF exp

(
θ
T − T∗
T∗T

)
lim

x→−∞ F = 0, lim
x→−∞ T = T̄ . (5)

It can be noted that (F, T ) ≡ (0, T̄ ) provides an exact, constant solution, corresponding to
complete chemical equilibrium. Also, the reaction rate term becomes transcendentally small
as θ → ∞ when F > 0 and T < T̄ − O(θ−1 ln θ). The second derivatives are then negligibly
small so that F and T become linear in x to exponential orders of accuracy. The change in
slope between the constant and linear forms of behaviour (when F = 0 and when F > 0) is,
of course, determined by the reaction-rate term.

SinceF � 0 it follows thatF , and alsoT , monotonically approach their values atx = −∞.
Thus F ′(−∞) = T ′(−∞) = 0 and the first equality in (5) can be integrated exactly to give
T = T̄ − QF/Le. Writing f (x) = θQF(x)/(LeT̄ 2) it follows that

f ′′ = 1
2k2f exp

( −f

1 − f T̄ /θ

)
with k2 = 2LeD exp

(
θ(T̄ − T∗)

T∗T̄

)

so that, since f ′ is zero when f = 0, we can find that

f ′2

k2
=

∫ f

0
z exp

( −z

1 − zT̄ /θ

)
dz =

∫ f/(1−f T̄ /θ)

0

se −s

(1 + sT̄ /θ)3
ds

=
∫ f

0
ze −z

(
1 − z2 T̄

θ
− (

z3− 1
2z4

) T̄ 2

θ2
− (

z4−z5+ 1
6z6

) T̄ 3

θ3
+ O(θ−4)

)
dz

= 1 − (1+f )e −f − 6
(
1 − (

1 + f + 1
2 f 2 + 1

6 f 3
)

e −f
) T̄

θ
+ O(θ−2)

in which the second integral has an exact, but lengthy and uninformative, expression in terms
of exponential integral functions. When f is strictly of order θ , or F 	= o(1), as θ → ∞,
this exact solution for f ′2/k2 defines a constant value for f ′, to exponential orders of accuracy.
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114 J W Dold et al

Approximating this constant to algebraic orders (by expanding the exponential for large values
of θ , as indicated in the equations above, and finally letting f → ∞) gives

f ′2

k2
= 1 − 6

T̄

θ
+ 36

T̄ 2

θ2
− 240

T̄ 3

θ3
+ O(θ−4) =

(
1 + 6

T̄

θ

)−1

+ O(θ−3)

after continuing the procedure in a straightforward way to the order of θ−3.
The values of F ′ and T ′ when F > O(θ−1 ln θ) can therefore be estimated as

F ′

Le
= −T ′

Q
= T̄ 2

Qθ

√
2LeD exp

(
θ

2

T̄ − T∗
T∗T̄

)
1 + O(θ−3)√

1 + 6T̄ /θ

= δ exp

(
θ

2

T̄ − T∗
T∗T̄

)
T̄ 2/T 2

∗√
1 + 6T̄ /θ

+ O(θ−3) (6)

after setting D = δ2θ2Q2/(2LeT 4
∗ ), as before in equations (3). By noting that T∗ needs to

be chosen to be within order θ−1 of typical values of T̄ , for order one changes in gradient
to arise in the dimensionless scalings adopted in the model, it follows that the ratio T̄ 2/T 2

∗
must be asymptotically close to unity. Now extrapolating the resulting straight-line asymptotic
solutions for F and T , valid when F > O(θ−1 ln θ), back to a point where the solution for F

would extrapolate to zero, and that for T would extrapolate to T̄ , this point identifies a location
where the overall changes in F , T and their gradients should behave as if they satisfied the
jump conditions given in (3), in which the errors are asymptotically of the order of θ−1, as
θ → ∞. Using the final expression given in (6) would reduce the errors to the order of θ−3,
provided there were no other factors, apart from temperature, influencing the jump conditions.

3.2. Curvature, flow and unsteady effects at the flame sheet

It is informative now to examine some of the other factors that are being neglected in adopting
the flame sheet model (3). For this purpose, let us consider the slightly more simplified version
of the model (1)

Ft + v · ∇F = ∇2F

Le
− 1

2

β2ω

Le

Tt + v · ∇T = ∇2T + 1
2

β2ω

Le
− l

ω = F exp(β(T − 1))

(7)

arrived at: by setting D = θ2Q2/(2LeT 4
∗ ) = 1

2β2/Le, so that δ is set to unity; by rescaling
temperature such that T = T∗ + Q(T − 1), so that T = T∗ when T = 1 (note the change in
font); by defining l = �/Q; and by linearizing the exponent in the reaction rate term about the
rescaled temperature T = 1, such that

θ

T∗
− θ

T
= θQ(T − 1)

T 2∗ (1 + Q(T − 1)/T∗)
∼ β(T − 1) with β = θQ

T 2∗
.

This defines the Zeldovich number β, which is typically large because θ is large. For an
adiabatic premixed flame, the Zeldovich number can be written in terms of dimensional
quantities as

β = TA(Tf − T0)

T 2
f

(8)

where TA is the dimensional activation temperature of the one step reaction; Tf is the
dimensional flame temperature, equivalent to the dimensionless temperature T∗; and T0 is
the dimensional unburnt temperature.
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Jump conditions in premixed flames 115

The only real change from the model (1), is the linearization of the exponent in the reaction
rate term. Equation (6) can be used to show that this makes no significant difference, to leading
order, for changes in the flame temperature T̄ , from the value T∗, that are of the order of θ−1.
The jump conditions that arise using the full form of the Arrhenius exponent, in the absence of
effects due to curvature, propagation and temperature gradients in the burnt gas, have already
been found in equation (6) and will be brought back into account later on. However, the
linearization does, for now, simplify the analysis of the chemistry. This will prove very useful
since we are about to introduce greater complexity by considering a more general geometry
for the flame sheet in a more general flow field.

In particular, let us seek the asymptotic structure that a reaction region would have when
the flame sheet Γ is curved, when there is a non-uniform flow field and when temperatures
in the reaction region are close to the value T = 1. For simplicity, we can take the problem
to be two dimensional, generalizing the results to three dimensions later on, so that, at some
moment in time t , the sheet can be taken to lie at y = Y (t, x). By rotating coordinates and
shifting the origin, in time as well as in space, to any point of interest at any moment, we can
set both Y and Yx to be zero at x = t = 0. We can then focus on the reaction region around
x = y = t = 0, knowing that this could represent any point on the interface at any moment
in time.

By allowing the reference frame to move at a constant speed, the flow field can be described,
near x = y = t = 0, using

v = (σ0x + σ1y + a1t, σ2x − σ0y + a2t).

In particular, the reference frame is taken to move with the same velocity as the fluid at the
origin, at the moment when t = 0, so that v = 0 when x, y and t are all zero. If there is a
constant and uniform rate of strain, then σ0 represents a diverging strain rate in the x-direction,
converging in the y-direction, while σ1 and σ2 represent shear components of the rate of strain
tensor. The vector (a1, a2) is related to the acceleration of the flow field at x = y = t = 0.
More generally, σ0, σ1, σ2, a1 and a2 are of order one and may vary with space and time for
order one values of x, y and t , and may be generalized even further to include any effects of
thermal expansion that might be inherent in the model as well as variations in three spatial
dimensions.

If we now introduce a new variable r to measure distances in the y-direction ahead of the
sheet, such that

r = y − Y (t, x)

then the equations (7) for F and T can be transformed to the non-orthogonal reference frame
of (t, x, r), using

∂y �→ ∂r , ∂x �→ ∂x − Yx∂r

∂xx + ∂yy �→ (1 + Y 2
x )∂rr − Yxx∂r + ∂xx − 2Yx∂rx

∂t + (v · ∇) �→ ∂t − Yt∂r + v · (∂x, ∂r)

in which

v = (
σ0x + σ1(Y+r) + a1t, (σ2−σ0Yx)x − (σ0+σ1Yx)(Y+r) + (a2−a1Yx)t

)
.

This gives

(
∂t − V ∂r + v · (∂x, ∂r)

)
F = (

(1 + Y 2
x )∂rr − Yxx∂r + ∂xx − 2Yx∂rx

) F

Le
− 1

2

β2ω

Le

(
∂t − V ∂r + v · (∂x, ∂r)

)
T = (

(1 + Y 2
x )∂rr − Yxx∂r + ∂xx − 2Yx∂rx

)
T + 1

2

β2ω

Le
− l

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
4
:
0
2
 
2
6
 
M
a
y
 
2
0
1
0



116 J W Dold et al

in which we have written V = Yt to denote the vertical speed of movement of the interface
y = Y (t, x), at any fixed value of x. At the point x = 0 and time t = 0, at which Yx = 0 and
v = 0, it represents the normal propagation speed of the interface relative to the medium. By
eliminating ω, we obtain the equation for the enthalpy

(
∂t−V ∂r+v · (∂x, ∂r)

)
(T+F) = (

(1+Y 2
x )∂rr−Yxx∂r+∂xx−2Yx∂rx

) (
T+

F

Le

)
−l

which shows that non-equidiffusive effects, for which Le 	= 1, will tend to redistribute the
dimensionless enthalpy, h = T + F .

Broadly speaking, we can imagine that a thin region of reaction forms part of a flame
structure of some type, in which temperature and reactant concentration vary by order one over
length and time scales (measured by x, y and t) that are of order one. Thus the interface
y = Y (t, x) might have a curvature of order one and be moving at a speed V = Yt that is
of order one. Because of the sensitive temperature dependence that has been identified for
the jump in gradient across the reaction sheet, which in turn should not change abruptly, the
temperature at the sheet should not vary by more than the order of β−1. To be consistent with
this limitation, the temperature in the burnt gas (where values of F must be transcendentally
small) should also only vary by the order of β−1 over length and time scales that are of order
one; in turn, for this to be so, temperature gradients in the burnt gas cannot exceed the order
of β−1 and the value of the heat-loss term l must also be of order β−1, at most.

Thus, without delving any more deeply into the nature of the burnt gas, where reactivity is
transcendentally close to equilibrium (F = 0), we can simply assume the following asymptotic
nature of the burnt region near the flame sheet, when r is small and negative

T = T̄ + rT̄r + O(r2ε) and F = ō(ε)

with T̄(t, x) = 1 + O(ε) and T̄r (t, x) = O(ε)

as ε → 0, with ε 
 −r 
 1. For the sake of more efficient notation, we have defined
ε = β−1 and we use the symbol ō(·) to denote something that is transcendentally small. That
is, F = ō(ε) ⇐⇒ F = o(εν), as ε → 0, for any power ν ∈ R. Thus we ensure that
the temperature gradient is small in the burnt region, behind the reaction region, and that the
temperature at the reaction sheet deviates only slightly from the temperature T = 1. If we
now rescale to focus attention on the region where significant chemical activity takes place,
such that

F = εLef, T = 1 − εφ, r = εη

then, in order to match with the properties in the burnt region, the conditions that must be
satisfied in the reaction region as η → −∞ are

φ = φ̄ + εηφ̄r + O(ε2η2) and f = ō(ε)

with T̄ = 1 − εφ̄ and T̄r = −εφ̄r

(9)

as ε → 0, with 1 
 −η 
 ε−1. We can assume that φ̄(t, x) and φ̄r (t, x) are both of order
one as ε → 0.

The governing reactive–diffusive equations describing the region of chemical reaction
now become

(1 + Y 2
x )fηη − 1

2f e−φ + ε(LeV −Yxx)fη = 2εYxfηx + Le
(
ε2ft+v · (ε2fx, εfη)

) − ε2fxx

(1 + Y 2
x )φηη − 1

2f e −φ + ε(V − Yxx)φη = 2εYxφηx + ε2φt + v · (ε2φx, εφη) − ε2φxx − εl

with

v = (
σ0x + σ1(Y+εη) + a1t, (σ2−σ0Yx)x − (σ0+σ1Yx)(Y+εη) + (a2−a1Yx)t

)
.
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Jump conditions in premixed flames 117

The terms Leε2ft and ε2φt show that a very fast time scale, of the order of t = O(ε2), is present
in the problem. Any transient effects, that there may be, will asymptote quickly towards a
stable quasi-steady evolution, over this short time scale. On the longer time scale t = O(1),
over which curvature, velocity and other terms may vary by order one, these equations make
it clear that the quasi-steady behaviour is then only affected at the order of ε2, at most, by the
terms containing ft and φt .

If we therefore focus on solving for the quasi-steady forms for f and φ, we need only
consider the solution at the instant t = 0. No generality is lost in doing this since, as already
outlined, any point on the interface and any time can be mapped to x = y = t = 0. Moreover,
at t = 0, when coordinates have been chosen to set Yx(t, 0) = 0, we have

Y = 1
2x2Yxx(0, 0) + O(x3), Yx = xYxx(0, 0) + O(x2).

Thus, taking Yxx to be of order one, and only considering values of x that are of order ε (i.e.
considering only the region close to x = 0), we have that v = O(ε). The convective terms
containing v are then at most of order ε2. Since we also find that Yx is of order ε, all terms
containing Yx are then at most of order ε2 and, finally, because l is at most of order ε, the heat
loss term εl is also no greater than the order of ε2.

Ignoring terms that are of order ε2 or smaller now gives

fηη − 1
2f e −φ + ε(LeV +2κ)fη = O(ε2)

φηη − 1
2f e −φ + ε(V + 2κ)φη = O(ε2)

in which we have used the expression for the mean curvature of the interface in three
dimensions, κ = −Yxx/2, at x = 0, to write the equation in terms of the more generic
parameter κ rather than Yxx ; a flame that is concave when viewed from the unburnt gas is
taken to have negative curvature. Both V (t, x) and κ(t, x) can be taken to be locally constant,
changing very little on the small time and length scales that we are considering around the
point x = y = 0 at the time t = 0.

Eliminating 1
2f e −φ gives the enthalpy equation

φηη − fηη + εV (φη − Lefη) + 2εκ(φη − fη) = O(ε2)

which can be solved iteratively, along with the matching conditions (9), to obtain the expression
for φ in terms of f

φ = φ̄ + f + εηφ̄r + εV (Le − 1)

∫ η

η̄

f dη + O(ε2) (10)

where η = r/ε = η̄(ε) < 0 defines a position at which f and fη are at most of order ε2. As
will be seen later, we can find such positions with η̄ = −O(| ln ε|). The precise choice of η̄ is
not important, provided εη̄(ε) = o(1) as ε → 0.

Substituting for φ now gives

fηη = 1
2f e −φ̄−f + εV (1 − Le)fηη

∫ η

η̄

f dη − εφ̄r ηfηη − ε(2κ+LeV )fη + O(ε2)

after using the leading order result, fηη = 1
2f e −φ̄−f + O(ε), to eliminate some occurrences of

1
2f e −φ̄−f . Multiplying by 2fη, integrating, by parts where necessary, and using the matching
conditions (9), now leads to the expression for fη in terms of f

f 2
η = e −φ̄(1 − (1+f )e −f ) + εV (1 − Le)

(
f 2

η

∫ f

0

f

fη

df −
∫ f

0
ffη df

)

−εφ̄r

(
ηf 2

η −
∫ f

0
fη df

)
− 2ε(2κ+LeV )

∫ f

0
fη df + O(ε2). (11)
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118 J W Dold et al

The sign of fη must be positive, so that fη = e −φ̄/2
√

1 − (1+f )e −f + O(ε) to leading
order.

When f is small, it follows that fη ∼ f 2−1/2e −φ̄/2 and hence f ∼ f̄ exp(η 2−1/2e −φ̄/2)

for some suitable function f̄ (t, x). Solving for η, this demonstrates that f = O(ε2) where
η = −21/2e φ̄/2| ln ε2| + O(1), so that η̄ can be chosen such that −η̄ � 23/2e φ̄/2| ln ε| + O(1).

Also since fη ∼ e −φ̄/2
√

1 − (1+f )e −f , each of the integrals in the expression (11) can
be reformulated as follows∫ f

0
fη df = e −φ̄/2

∫ f

0

√
1 − (1+z)e −z dz + O(ε) ∼ e −φ̄/2 (f − �)∫ f

0
ffη df = e −φ̄/2

∫ f

0
z
√

1 − (1+z)e −z dz + O(ε) ∼ e −φ̄/2
(

1
2f 2 − �1

)
∫ f

0

f

fη

df = e φ̄/2
∫ f

0

z√
1 − (1+z)e −z

dz + O(ε) ∼ e φ̄/2
(

1
2f 2 + �2

)
.

(12)

Unfortunately, none of these integrals seem to have simple expressions in terms of elementary
functions, but they do each approach the asymptotic forms shown on the right exponentially
quickly as f becomes large. Noting that

�1 + �2 =
∫ ∞

0
z(1 −

√
1 − (1+z)e −z)dz +

∫ ∞

0

(
z√

1 − (1+z)e −z
− z

)
dz

= 2
∫ ∞

0
(1+z)

1
2ze −z

√
1 − (1+z)e −z

dz

= 2

[
(1+f )

√
1 − (1+f )e −f −

∫ f

0

√
1 − (1+z)e −z dz

]∞

0
= 2(1 + �)

the constants given in these formulae are seen to be related by 1+� = 1
2 (�1+�2).

Hence, although the formula (11) cannot be evaluated easily beyond its leading order, it
does approach the simple asymptotic behaviour for large values of f or η:

fη = e −φ̄/2 + εV (1 − Le)(1 + �) − 1
2εφ̄re −φ̄/2 η

+ ε
(

1
2 φ̄r − 2κ − LeV

)
(f − �) + O(ε2, e −f ).

Thus, while the formula (11) matches with properties expected in the burnt region for
large negative values of η, where f → 0, it is also linked with the region of ‘preheating’,
where f � 1, through this asymptotic result for large positive values of η and f . Moreover,
because the asymptote is approached exponentially quickly as f grows, it can be integrated,
iteratively, to provide the asymptotic behaviour of f at large η:

f = (
e −φ̄/2 + εV (1 − Le)(1 + �) − ε

(
1
2 φ̄r − 2κ − LeV

)
�

)
×(

η − ε(2κ + LeV ) 1
2η2

)
+ O(ε2, e −φ).

In arriving at this result, a function of integration has been chosen such that the solution has
the value zero at η = 0. This amounts to defining the location of the path y = Y (t, x), or
η = r = 0, such that the extrapolation of this asymptotic form for f at large values of η, back
to η = 0+, gives the value zero for f . This is equivalent to a ‘closure assumption’ in defining
the interface, as discussed in [5]. Equation (10) now takes on the asymptotic form for large
values of η

φ = φ̄ + f + εφ̄rη + εV (Le − 1)e −φ̄/2 1
2η2 + O(ε2, e −φ)

and these equations provide the necessary far-field asymptotic behaviour of the solution in the
reaction region for matching with a region of ‘preheating’ where F > 0 and f � 1.
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Jump conditions in premixed flames 119

The matching requirement that arises for F(t, x, r) and T(t, x, r), in this preheating region
as r → 0+, therefore takes on the form
F

Le
= T̄ − T + rT̄r + 1

2 r2(1−Le)V e (T̄−1)/(2ε) + O(ε2, r3)

= (
e (T̄−1)/(2ε) + ε(1+�−Le)V +

(
1
2 T̄r+2εκ

)
�

) (
r − 1

2 r2(LeV +2κ)
)

+ O(ε2, r3).

Alternatively, the requirement for matching of the derivatives Fr and Tr is
Fr

Le
= (

e (T̄−1)/(2ε) + ε(1+�−Le)V +
(

1
2 T̄r+2εκ

)
�

)
(1−r(LeV +2κ)) + O(ε2, r2)

T̄r − Tr = (
e (T̄−1)/(2ε) + ε(1+�−Le)V +

(
1
2 T̄r+2εκ

)
�

)
(1−r(V +2κ)) + O(ε2, r2).

When evaluated in the inner asymptotic limit, as r → 0+, these outer asymptotic solutions
provide jumps in the values of the gradients, experienced by the outer asymptotic variables F

and T, across an apparent flame sheet at r = 0, accurate to order ε, as ε → 0.
We have therefore shown that a more complete form of the gradient jump conditions, that

arises at a flame sheet for the model (7), is
[Fn]

Le
= −[Tn]

= e β(T−1)/2 +
(1 + � − Le)

β
V + �

(
1
2 T

−
n +

2κ

β

)
+ O

(
β−2, T

−
n

2
)

(13)

as β → ∞, where V is the normal propagation speed of the sheet relative to the medium, κ

is the mean curvature of the sheet and T
−
n is the normal gradient of temperature on the burnt

side, taken to be of the order of β−1, or at least small in value. Any strain rate and shear rate
in the flow, that change the fluid velocity by order one over lengths that are of the order of the
thickness of the preheating region, can only affect the jump conditions at the flame sheet by an
amount of the order of β−2. Unsteadiness, radiative heat loss and transverse diffusion along
the flame sheet also affect the jump conditions at or below this order of magnitude.

3.3. High order flame sheet model

More generally, we can now deduce the corresponding higher order jump conditions that
arise from the full one step Arrhenius model (1) in terms of the dimensionless absolute
temperature T of equations (1) or (3). To do this we must first invert the scaling that defined T
in section 3.2 by rescaling such that T = 1+(T −T∗)/Q. As before, we now set the Damköhler
number to D = δ2θ2Q2

/
(2LeT 4

∗ ) , or equivalently D = δ2 1
2β2/Le, which reintroduces its

parameterization by δ; this is equivalent to rescaling the time and space variables of the previous
section such that t = δ2t ′, x = δx′ and v = v′/δ. After dropping the primes and using the
result (6) to compensate for the linearization of the Arrhenius exponent in (7), we then arrive
at the higher order flame sheet representation of the original model (1)

Ft + v · ∇F = ∇2F

Le
Tt + v · ∇T = ∇2T − �


 for x /∈ Γ

[T ] = [F ] = F = 0
[Fn]

Le
= − [Tn]

Q
= �


 at x ∈ Γ

� = δ exp

(
θ

2

T − T∗
T∗T

)
T 2/T 2

∗√
1 + 6T/θ

+
1 + � − Le

Q
V

T 2

θ
+

�

Q

(
1
2T −

n +2κ
T 2

θ

)
+ O

(
θ−2, T

−
n

2
)

(14)
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120 J W Dold et al

in which the propagation speed of the sheet relative to the flow is V = (∂tΓ−v) · n̂, where n̂ is
a unit normal to Γ pointing towards increasing values of the reactant F . The mean curvature
can be defined as κ = 1

2∇ · n̂, being positive if Γ is convex when viewed from the unburnt gas.
The constant � is defined by an asymptotic relation in equations (12) for large f , having the
integral expression and numerical value

� =
∫ ∞

0
(1 −

√
1 − (1+z)e −z ) dz = 1.344 045 68 . . .

when calculated to nine significant figures.
The most significant generalization in this model from the model (3) is not the addition of

terms that depend weakly on temperature, since these are dominated by the sensitivity of the
chemistry to small changes in temperature at leading order, but the appearance of a relatively
weak dependence of the jump conditions on propagation speed V , mean curvature κ and weak
conduction into the burnt gas via T

−
n . Increasing the normal propagation speed V increases the

jump in gradients, for Lewis numbers Le < 1 + � ≈ 2.344; increasing the mean curvature
κ increases the jump in gradients. A weak conductive heat loss into the medium behind the
flame, for which T

−
n > 0, also causes a weak increase in the jump in gradients. These are all

weak effects, being of the order of θ−1 if T
−
n = O(θ−1). Increasing the temperature T at the

flame sheet has a considerably stronger effect. Temperature changes would typically have to
be very small, of the order of θ−2, in order for these additional dependences to have an effect
that is similar in magnitude to the effect of changing temperature.

In most practical situations therefore, when the activation temperature is large enough,
this extension of the flame sheet conditions to higher orders is unlikely to do more than add
minor corrections to the simpler leading order model. There may be circumstances, however,
in which temperature changes are genuinely very small and thus the higher order effects may
be important. At any rate, for large but finite activation temperatures, they offer asymptotic
estimates of the corrections to any leading order results.

4. Finite activation temperature in flame balls

In situations where the dimensionless activation temperature is finite in value, even though it
may be reasonably large, the expression for � in (14) provides a means of estimating the errors
that would arise through adopting only the leading order temperature dependence of the jump
conditions at a flame sheet. It is informative to examine these higher order effects in the
context of a model for non-adiabatic, spherically symmetric flame balls (as studied in [7–10],
for example).

In [10], numerical solutions found using an Arrhenius chemical model with linearized
exponent, of the type used in the model (7), were compared with asymptotic solutions based on
the corresponding leading order jump conditions. It was found that inordinately large Zeldovich
numbers, of the order of β = 100, were needed to obtain reasonably good comparisons. It
is generally thought that realistic values of the Zeldovich number are of the order of ten, or
at most twenty, and that these are adequate to justify the use of leading order asymptotics.
The numerical comparisons in [10] indicate that this assumption may be far from adequate for
non-adiabatic flame balls, modelled using one step chemistry with radiative heat losses from
the hot burnt gases. It would appear that higher order effects could play a major role in these
calculations at moderately large values of β.

In a steady adiabatic flame-ball [2], the increase in the temperature T above ambient is
Q/Le. Thus, if we adopt the scaling T = T∗ + Q(T − 1)/Le, set T∗ = Ta + Q/Le and select
δ = 1/Le, thereby fixing the scalings of the time and space variables, a suitable model [10]
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Jump conditions in premixed flames 121

takes the form

LeFt = Frr + 2r−1Fr

Tt = Trr + 2r−1Tr − β−1b H(R−r)

}
for r 	= R

[T ] = [F ] = F = 0, [Fr ] = −[Tr ] = � at r = R±

� = e β(T−1)/2 +
(1+� − Le)

β
Rt + 1

2� T
−
r + 2

�

βR
+ O(β−2, T

−
r

2)

|F | < ∞, |T | < ∞, lim
r→∞ F = 1, lim

r→∞ T = 0

(15)

in which the Zeldovich number is now defined as β = Qθ/(LeT 2
∗ ) � 1, still having the same

expression as (8) in terms of appropriate dimensional quantities. The variable r now represents
a radial coordinate in a spherically symmetric structure, taking F = F(t, r) and T = T(t, r),
with r � 0. A reaction sheet is taken to exist at the spherical surface, r = R(t), leading to
the jump conditions shown in (15), in which it is simplest, and sufficient to illustrate the role
played by higher order terms, to consider only the linearized Arrhenius exponent as obtained
in (13). This also corresponds to the problem studied numerically in [10]. For a sphere the
mean curvature is κ = 1/R.

The problem is non-adiabatic because the parameter b represents a constant rate of heat
loss, that is limited to the burnt gases where r < R by the Heaviside function H(R−r). Other
forms of heat loss are examined in [7–10]. Our purpose here is to illustrate the effect of
higher order jump conditions rather than to study flame-balls more comprehensively, so that
we shall examine only this simple model for heat loss. Taking F and T to be bounded ensures
that there is no source of reactant or heat at the origin, while the conditions at infinity fix the
nondimensionalization such that T (t, ∞) = Ta, with F scaled against the value found for the
reactant mass-fraction at very large distances from the flame ball.

Details of the model and its physical origins can be found in [7–10], where it is studied in the
asymptotic limit β → ∞ using only the leading order expression � = eβ(T−1)/2 to determine
the jumps in gradient at the flame sheet. The equivalent problem, in which an Arrhenius
rate law with linearized exponent is used to model the chemistry, instead of jump conditions,
is arrived at by adding 1

2β2ω to the right-hand side of the equation for temperature T and
subtracting 1

2β2ω from the equation for reactant F , taking ω = Fe β(T−1) as in equations (7).
Details of the numerical solution of the latter form of the problem as well as the solution

of the problem using leading order jump conditions are available in [10]. Suffice it to say that
numerical versions of the heat loss term and the flame-ball radius are taken to be

β−1b H(R−r) ≈ b/β

1 + (βFr)4
and R ≈

∫ ∞

0

dr

1 + (βFr)4
(16)

respectively. When β is large, the quotient in these expressions acts like a switch on passing
through the region of reaction, where βFr ≈ 1. It therefore approximates the Heaviside
function H(R−r), which it approaches as β → ∞, while also having the advantage,
for numerical purposes, of being continuously differentiable. To avoid the cold boundary
difficulty, the expression ω = Fe β(T −1) for the reaction rate is modified to set ω to zero in the
neighbourhood of T ≈ β−1, by redefining it as

ω = max
{
F

(
e β(T −1)/3 − e 1−β(2T+1)/3

)3
, 0

}
. (17)

This formula is also continuously differentiable, while giving ω ≡ 0 for T � β−1 and being
transcendentally close to Fe β(T −1) when T > O(β−1), for large values of β. The precise details
of the way in which the cold boundary difficulty is circumvented appear to have practically no
effect on the results that will be presented later, provided ω remains virtually unchanged for
T > O(β−1).
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122 J W Dold et al

The numerical problem was solved in two ways. As described in [10], one method used the
transformation r = β tan(x/β) so that only a finite domain 0 � x � π

2 β needed discretizing.
A standard finite difference approach, with Newton iteration and continuation was then found
to produce converged results, with 8000 evenly spaced grid points in x, even when taking
β = 100. The other method was based on using the standard software package COLSYS
[11] which is well suited to solving this type of boundary value problem. When using a
large enough domain in r , this package was found to produce solutions that were numerically
indistinguishable from the solutions obtained using the method already outlined and reported
in [10].

Steady flame balls, for which ∂t ≡ 0, are described by the solution of (15)

F =



1−R

r
: r � R

0 : r � R
T =




T̄R

r
: r � R

T̄ + b
(r2−R2)

6β
: r � R

(18)

which is accurate to order β−1. The condition [Fr ] = −[Tr ] then provides an expression for
the temperature at the flame sheet, T̄ = 1 − 1

3bR2/β + O(β−2), using which, the condition
[Fr ] = � provides an expression relating the steady radius R and the heat-loss parameter b,
which gives, when written to order β−1

Re −bR2/6 = 1 − �

β

(
2 + 1

6bR2
)

(19)

or R = (1 − �(2 + ν)/β) e ν with b = 6ν/R2 when parameterized in terms of ν = bR2/6.
The resulting curves relating R and b for various values of β are presented in figure 1.

Figure 1. Variation of the steady flame-ball radius R with heat loss b at various Zeldovich
numbers β, according to the higher order asymptotic formula (19). The dotted curve marks the
path on which bR2 = β.
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Jump conditions in premixed flames 123

If no account had been taken of the higher order terms, we would have found R = e bR2/6,

the same result as is given by (19) in the limit as β → ∞. As described by the curve marked
β−1 = 0 in figure 1, this provides a value of R = 1 when b = 0, with values of R increasing
with b until a turning point is reached at (b, R) = (3/e, e 1/2), after which R increases without
bound as b decreases towards zero.

For large but finite values of β, the deviation of the flame-ball radius R, from this behaviour
as β → ∞, becomes of order one when bR2 = O(β). The branch of solutions for which R

is large is therefore particularly strongly affected by the higher order terms. In fact, as seen
in figure 1, the formula (19) provides a second turning point, for large enough values of β,
after which values of b increase again and R, ultimately, decreases as b increases. For large
enough values of β, the solution therefore appears to predict three solutions over some interval
of values of the heat loss parameter b. For values of β below about seven, the two turning
points merge and there is then only one value of R for any value of b.

However, the asymptotic assumptions leading to equation (19) are not valid when
bR2 = O(β) and so, at this stage, the higher order behaviour seen in figure 1 cannot be
expected to be predicted reliably. The dotted line in the figure corresponds to the path where
bR2 = β and as bR2 increases towards this path, as well as for larger values of R and b,
significant differences are likely to arise between an accurate numerical simulation and the
higher order asymptotic prediction in (19). Relevant numerical solutions are shown in figure 2
for values of β between 20 and 36 and for β = 100. The numerical results at β = 36 can be

Figure 2. Variation with the heat loss parameter b of the numerically calculated steady flame-ball
radius R, using Arrhenius kinetics with a linearized temperature exponent to model the chemistry,
for Zeldovich numbers ranging from β = 20 to 36 and for β = 100. The dashed curves show the
variation predicted by the higher order asymptotic formula (19), for selected values of β, and the
dotted curve marks the path, on any asymptotic result, at which bR2 = β.
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seen to deviate fairly significantly from the higher order asymptotic result, particularly at larger
values of R, while the results for β = 20 deviate so much that the turning point is already lost
altogether.

These large differences all appear where bR2 = O(β) in the asymptotic solution (19);
values of T

−
r are then no longer very small making the higher order asymptotic predictions

unreliable. Nevertheless, the overall qualitative trend, albeit predicted by assuming that the
values of T

−
r are small, is certainly correct and the higher order terms successfully predict

their own ultimate downfall. The main physical reason for this seems to be because increased
values of T

−
r , brought about by increasing the heat-loss term b, actually strengthen the reaction

in the reaction sheet. The greater effect found in the numerical solutions arises because the
asymptotic solutions underpredict the effect of T

−
r when it is no longer very small. Both the

leading order and the higher order asymptotics are no longer reliable at this stage.
This example is most significant in showing that, for flame balls modelled using one step

chemistry, qualitatively and quantitatively important deviations from solutions based on the
usual leading order description of jump conditions at a flame sheet can arise, even for what
are generally considered to be relatively large values of the Zeldovich number. The numerical
results indicate that as β decreases below about twenty one, the intermediate branch of solutions
(part of which may be stable under some circumstances [7–10]) disappears altogether. Values
of about ten, which are often thought to be adequate because of the exponential sensitivity
of reaction-rates to changes in temperature, appear to be far too low for the leading order
asymptotic description to apply.

5. Conclusions

The higher order jump conditions (14) provide a generalization from the usual leading order
jump conditions (3) assumed at a reaction sheet in combustion theory. As well as allowing for
more accurate asymptotic predictions, they provide at least one means of testing the validity of
leading order solutions and of predicting where and when they are likely to change significantly.

In the case of flame balls with constant heat loss in the burnt gases [7–10], modelled
as in (16) and (17) for finite values of the Zeldovich number β, numerical calculations have
been seen to differ quite dramatically from the leading order asymptotic results at Zeldovich
numbers that are still moderately large. The higher order asymptotic results prove very useful
in examining the onset of and reasons for this deviation. They reveal that the main factor is
the role of heat conduction from the flame sheet into the burnt gases, as represented by the
temperature gradient immediately on the burnt side of the flame sheet. Increasing this gradient,
for example through increasing the rate of radiative heat loss from the burnt gas or through
increasing the size of the flame ball (which increases the volume from which heat is radiated),
also increases the overall strength of the reaction in the flame sheet, with numerical solutions
predicting a stronger effect than the asymptotic analysis when the temperature gradient into
the burnt gas is no longer very small.

This finding raises some interesting questions about the modelling of flame balls and
the current state of the art in describing flame balls and other types of laminar flame, using
one step chemistry. As well as providing an asymptotic extension, to higher order, that is
interesting in its own right, the formula (14) provides one tool for testing and addressing these
questions.

In the case of flame balls, modelled using one step chemistry, the most obvious question is:
‘how large can the Zeldovich number realistically be?’ It is often assumed that the exponential
in the Arrhenius rate law exaggerates the thermal sensitivity of the reaction rate so much that
the Zeldovich number does not need to be much greater than about ten to mimic the results
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of leading order activation temperature asymptotics, at least qualitatively. Fixed values of β

between about eight and sixteen are often adopted in numerical simulations of laminar flames.
One approach that can be used to estimate an appropriate value for the Zeldovich

number is to compare the rate at which the speed of a planar flame changes with adiabatic
flame temperature (obtained using calculations based on more detailed chemical models of
hydrocarbon flames) with the same rate as predicted by leading order asymptotics for one step
chemistry. This often leads to ‘effective’ one step Zeldovich numbers of about ten to fifteen,
except for flames in mixtures that are near the limit of flammability. In such mixtures, very
large effective Zeldovich numbers have been predicted (see, e.g. [12]).

Although the same approach cannot be applied directly to flame-balls, the experimental
evidence does suggest that stable flame balls require low Lewis numbers of a lean reactant at
concentrations that are below the flammability limit for planar laminar flames. This is at least
consistent with the idea that an equivalent (or effective) Zeldovich number could be unusually
large. Under such circumstances the predictions of leading order one step asymptotics do
seem to be reasonable, even if the requisite Zeldovich numbers might have to be significantly
greater than about twenty for the underlying Arrhenius kinetic model to offer qualitatively
similar predictions.

In fact recent studies offer more insight into the likely size of an effective one step Zeldovich
number for flame balls. It has been found [13] that the more general chain-branching and
recombination model for chemistry [2, 4]

F + Z → 2Z : kB = ABe −TB/T

Z + M → P + M : kC = AC
(20)

in which Z represents an energetic intermediate species, also provides a useful and qualitatively
accurate asymptotic description for stable flame balls, as the activation temperature of the
branching reaction TB tends to infinity. Moreover, it is also found [13, 14] that these asymptotic
results agree very well with numerical results, even when the corresponding Zeldovich number
of the branching reaction βB is as low as about five.

Furthermore, in cases where βB → ∞ and where the concentration of the
intermediate species Z is found to be significant only in a relatively narrow part of an overall
flame structure (i.e. for relatively large flame balls), an inner asymptotic analysis can be used
to eliminate the intermediate species from the problem [14]. The outer asymptotic model that
remains, for the dimensionless fuel concentration F and the absolute temperature T , is then
almost identical to the one step model in (14), with the sole difference that � (i.e. the value of
[Fn]/Le and −[Tn]/Q) is then given, very simply, by

� = µ(T − Tc) with T > Tc (21)

where µ is a constant related to the non-dimensionalization and Tc represents a form of
dimensionless ‘crossover temperature’ [4, 13, 14]. This formula for � can be compared and
contrasted with its leading order one step equivalent

� = δe β(T −T∗)/2.

In both cases, the temperature T is evaluated at the flame sheet.
For any flame structure to be the same (when calculated using both of these expressions

for �) and for the structure to have the same linear stability properties, all that is needed is
that, at the temperature found at the flame sheet, both of the relations

µ(T − Tc) = δe β(T −T∗)/2 and µ
d

dT
(T − Tc) = δ

d

dT
e β(T −T∗)/2

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
4
:
0
2
 
2
6
 
M
a
y
 
2
0
1
0



126 J W Dold et al

must be satisfied, which easily leads to the formula for an effective Zeldovich number of a one
step reaction

β = 2

T − Tc
with T > Tc (22)

where T is evaluated at the flame sheet. Thus, in cases where the flame sheet temperature is
arbitrarily close to the crossover temperature Tc, the chain branching and recombination kinetic
model (20) predicts an arbitrarily large effective one step Zeldovich number. This tends to
confirm the argument that one step asymptotic studies for flame balls, or any flames near the
limit of flammability, can indeed, quite realistically, assume very large values for β.

However, a little caution should be exercised because the effective Zeldovich number is
not then constant during any unsteady evolution in which the temperature at the flame sheet
changes, or from any one steady solution to another as, for example, changes in a heat loss
parameter or in the composition of the mixture alter the temperature. Also, some difference
in the details of the expression (22) for β can be anticipated at finite values of βB although
the general character of the formula should remain. Another limitation might be that the
formula (21) should, more strictly, be compared with the higher order formula for � given in
equations (14). Alternatively, as this article has helped to demonstrate, it would seem that the
effective value of β needs to be at least greater than about 25 to describe stable spherical flame
balls modelled with one step chemistry and heat loss from the burnt gas.

Finally, while demonstrating that arbitrarily large effective one step Zeldovich numbers
can arise, which helps to reinforce all of the flame ball literature that is based on one step
kinetics, the arguments that lead to (22) do not show that all stable flame balls sustained by
chain branching and recombination kinetics must have a large effective one step Zeldovich
number. On the contrary, it has been found that the model (20) can lead to stable asymptotic
solutions, as βB → ∞, for combinations of heat loss and the Lewis numbers of F and Z, in
which the conditions that give rise to the formula (21) are simply not satisfied [13]. Indeed,
even when they do seem to be satisfied, stable solutions for flame balls with branching kinetics
can be found in which an effective one step Zeldovich number would appear to be noticeably
below about twenty [13–15],

The one step kinetic model for the chemistry of laminar flames, along with the use of
leading order asymptotic analysis based on a large activation temperature, has a distinguished
record in the theory of combustion. However, there is always room for closer scrutiny of any
model. The higher order asymptotic formulae for the jump conditions at a reaction sheet,
that have been derived in this article, provide one means of examining flames, with one step
kinetics, beyond only leading order asymptotics. They should also prove valuable for studying
flames in many other contexts beside the particular example of a stationary spherical flame
ball, that has been examined here.
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