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Abstract
Spherical flame balls are studied using a model for the chemical kinetics
which involves a non-exothermic autocatalytic reaction, describing the chain-
branching generation of a chemical radical and an exothermic completion
reaction, the rate of which does not depend on temperature. When the chain-
branching reaction has a large activation temperature, an asymptotic structure
emerges in which the branching reaction generates radicals and consumes fuel at
a thin flame interface, although heat is produced and radicals are consumed on a
more distributed scale. Another model, based more simply, but less realistically,
on the generation of radicals by decomposition of the fuel, provides exactly the
same leading order matching conditions. These can be expressed in terms
of jump conditions across a reaction sheet that are linear in the dependent
variables and their normal gradients. Using these jump conditions, a reactive–
diffusive model with linear heat loss then leads to analytical solutions that are
multivalued for small enough levels of heat loss, having either a larger or a
smaller radius of the interface where fuel is consumed. The same properties
are found, numerically, to persist as the activation temperature of the branching
reaction is reduced to values that seem to be typical for hydrocarbon chemistry.
Part of the solution branch with larger radius is shown to become stable for low
enough values of the Lewis number of the fuel.

1. Introduction

A paradigm in combustion theory, that has dominated the modelling and study of flames
from a theoretical and analytical perspective, is the use of a one-step model to describe the
chemistry [1–13], such as

F + M → P + M + heat or F + O2 → 2P + heat (1)
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with an Arrhenius ‘rate constant’ k = Ae −TA/T . In these model reaction schemes, the fuel F
is considered to produce the product P (with the intervention of an oxidant O2 in the second
example) through a single elementary chemical step. The symbol M represents any molecule
that is needed to trigger the reaction step, but that is not changed by the reaction. As a result,
the rate of the first reaction is taken to be proportional to ρ2YFe −TA/T , and the rate of the second
reaction to ρ2YFYO2 e −TA/T , where ρ is the density and YF and YO2 are the mass fractions of
the fuel F and the oxidant O2, respectively.

The usefulness of this form of model lies partly in its inherent simplicity, but also partly in
the fact that the asymptotic limit in which the activation temperature TA approaches infinity
proves very useful for approximating solutions analytically—the resulting extreme sensitivity
of the reaction rate to changes in temperature leads to narrow regions of reaction that match
with outer regions of non-reactivity, in asymptotic structures that are amenable to further study.
In flames, realistic values of TA/T are often thought to be about ten to fifteen. Moreover, the
effect of changes in temperature on chemical reactivity is exaggerated by the exponential in
the rate constant, so that the assumption that TA/T is large does not seem unreasonable.

In fact, the one-step, large activation temperature asymptotic limit has led to many useful
and qualitatively correct predictions for, amongst other things, such phenomena as: ignition,
extinction and stability of diffusion flames; propagation and stability of premixed flames with
heat loss; flame balls with heat loss and their stability at low Lewis numbers; structure and
propagation of triple flames and other flame edges; and the initiation, structure and stability of
detonations. With only a few exceptions (as found in [14–19]), analytical solutions describing
laminar flames have been founded on the one-step model; flames have also been described using
a variety of reduced-kinetic models for the chemistry [20–22], the rates of which are combi-
nations of the rates of elementary hydrocarbon oxidation reactions, but these models are much
more problematic to analyse in any general way. References for all the achievements of the
one-step model are far too numerous to cite here; the reader can find many suitable citations in
texts and review articles on combustion theory and in recent articles on the subject, e.g. [1–13].

Most of these results have been obtained analytically in terms of matched asymptotic
descriptions in the limit as TA/T → ∞, providing an in-depth understanding of the behaviour
of many experimental observations of flames. Indeed, asymptotic and numerical predictions
of some phenomena, such as the negative propagation speed of the flame edges [23–26] and
the existence of stable flame balls [27–33], preceded and indeed motivated their observation
experimentally [26, 31–33]. There is now a growing theoretical literature of flame-ball studies
based on one-step chemistry [34–42], supplemented by numerical studies based on detailed
chemical, transport and radiative models [43–46].

Of course, real hydrocarbon flames do not arise as a result of one-step chemistry. There
are usually very many contributing reactions involving several more chemical compounds
than simply fuel, product and oxidant [47–50]. More complex models, even the relatively
simple model that includes autocatalytic chain branching [1, 2, 14] of an intermediate chemical
‘radical’ Z

F + Z → 2Z : kB = ABe −TB/T

Z + M → P + M : kC = AC
(2)

have received very little attention from an analytical perspective [6, pp 53–5]. Until now, for
example, the stability of flames involving even this relatively simple two-step mechanism has
not been known. There are, in fact, quite a few radicals and other intermediate chemical
species that serve mutually to catalyse their own production in the oxidation of hydrocarbons
[6, 48], so that the model radical Z can be thought of as representing the overall effect of many
energetic intermediate species in the form of a generic single ‘radical’ species.
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Flame balls with thermally sensitive kinetics 177

A similar model that deserves mention [1] involves the non-branching production of an
intermediate species

F + M → Z + M : kI = AIe −TI/T

Z + M → P + M : kC = AC
(3)

as an alternative for describing the kinetics of flames. This reaction scheme describes sequential
chemical changes of the type A → B → C as have been used to study the effects of exothermic
and endothermic stages in planar flames [2]. The first of the reactions in (3) is a simple fuel-
decomposition step that serves a similar purpose to the first reaction in (2). However, in full
hydrocarbon reaction schemes, individual elementary decomposition reactions tend to have
extremely high activation temperatures and to be very slow indeed, so that the model (2) is
likely to be a more realistic representative of the chemistry of most flames. Nevertheless, as
a simple model in which the intermediate species is created without any self-catalysis, the
scheme (3) is of interest and, as will be seen, it can be predicted to produce very similar forms
of solution to those produced by the branching scheme (2).

Both of these relatively simple models are in need of deeper investigation. The main
development beyond the one-step model is their thermally sensitive introduction of an
intermediate energetic reactive species which typically serves both to provide a reservoir of
chemical energy and to distribute the production of heat more widely than is possible with
one-step kinetics, when the activation temperature TA is large.

Of course, flames can also be modelled using detailed chemical schemes, and a great
deal of work has been directed towards determining suitable chemical and transport models
for hydrocarbon oxidation (see, e.g., [47–50]). Because of their enormous complexity these
models can only realistically be studied numerically, as outlined in [50]. Calculations of this
type are valuable in providing detailed information about the processes that operate inside
flames. However, much more work will be needed before such studies can approach the same
kind of understanding of the stability and dynamics of flames that has been possible through
studying flames with one-step chemistry.

Another disadvantage of highly detailed and technically ‘accurate’ models is their lack
of generality. By lumping processes together into more simple models, parameters such as
Damköhler numbers, Lewis numbers and Zeldovich numbers arise naturally to ‘approximate’
the overall effects of reactivities, diffusivities, and so on, for a wide variety of possible
combustible mixtures. For different choices of the parameters, these models can then be
used to represent many types of flames and fuels at different mixture fractions, supplying a
much more coherent overall picture.

Analytical solutions that depend on the parameters can then explain both relationships
and differences between the behaviour of different types of flame much more readily, in terms
of thresholds of bifurcation or instability that appear over readily identifiable ranges of the
parameters. Numerous asymptotic as well as numerical studies based on one-step models
of the type (1) have demonstrated this very clearly [1–13]. For example, the reason why
stable flame balls must be non-adiabatic with a lean fuel having a low Lewis number was
demonstrated in this way [29, 30]. In fact, until now, the stability of flame balls has not been
demonstrated using any other form of model.

In this paper, we examine the structure and stability of flame balls modelled using either
of the two-step reaction schemes (2) or (3), taking the chain-branching reaction F + Z → 2Z,
or the radical-producing, fuel-decomposition reaction F + M → Z + M, to produce no heat
and to have a rate that depends sensitively on temperature. We therefore assume that TB/T

or TI/T is large, where TB is the activation temperature of the branching reaction in (2) and
TI is the activation temperature of the fuel decomposition reaction in (3); realistically, TB/T is
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likely to take a value between about five and ten for the slowest, and therefore rate-controlling,
radical-branching reactions in hydrocarbon flames; although TI/T is likely to be very much
larger, reactant-decomposition reactions are simply too slow to play any significant role in real
hydrocarbon combustion.

The model (3) is studied here for the sake of completeness and because it is easily found to
generate almost the same kinds of flame structures as the model (2), demonstrating clearly that
thermal sensitivity of the rate of production of radicals is the main factor that determines the
structure and properties of the resulting flames. Finally, the completion reaction Z+M → P+M
is taken to be exothermic and not thermally sensitive, having an activation temperature of zero.

The limits TB/T → ∞ or TI/T → ∞ lead to narrow reaction layers within which the
fuel F is converted into the chemical radical Z. Jump conditions across this layer can be
obtained, having some very significant differences from the corresponding conditions found
for one-step chemistry. Both of the models (2) and (3) generate the same dimensionless jump
conditions to leading order which, most notably, are found to be linear in all of the dependent
variables and their gradients normal to the reaction sheet. These jump conditions can be used
to model any form of premixed flame [41].

When applied to flame balls with heat loss, we find that multiple branches of solution
arise; parts of the larger branch of solution are stable under some circumstances. Importantly,
when sustained by the branching kinetic model (2), we also find numerically that this branch
of solutions does not disappear as TB/T is reduced to realistic values. Using the models
studied here, the thermally sensitive production of an energetic intermediate reactive species
does, therefore, provide a fully consistent asymptotic and numerical description of stable flame
balls.

2. Model with chain branching kinetics

Taking the chain-branching reaction to release no heat in the reaction scheme (2), reactive–
diffusive conservation equations for the absolute temperature T (t, r), and the respective mass
fractions YF(t, r) and YZ(t, r) of fuel and radical, become

ρ∂tYF = ρDF∇2YF − WF ωB

ρ∂tYZ = ρDZ∇2YZ + WZ ωB − WZ ωC

ρCp ∂tT = λ∇2T + QωC − �

ωC = AC
ρYZ

WZ

ρ

W
, ωB = AB

ρYF

WF

ρYZ

WZ
e −TB/T

(4)

along with the boundary conditions

lim
|r|→∞

(YF, YZ, T ) = (YF0, 0, T0)

in which, for simplicity, the density ρ, specific heat Cp, thermal conductivity λ, diffusivity of
fuel DF, diffusivity of the radical DZ and the mean molecular weight W are all taken to be
constant. The term � represents the rate of heat loss to infinity through radiation. The molecular
weights of fuel and radical are WF and WZ, respectively, and Q is the specific heat-release of
the completion reaction. The pre-exponential factors in the rate expressions ωB and ωC for the
branching and completion reactions in (2) are AB and AC, respectively.

If we now rescale the dependent and independent variables such that

t = tst
′, r = rsr′, T = T0 + TsT

′, YF = YF0F, YZ = YZsZ
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with

r2
s = tsλ

ρCp
, ts = W

ρLeZAC
, LeF = λ

ρCpDF
, LeZ = λ

ρCpDZ

Q′ = QYF0

CpTsWZ
, �′ = �ts

ρCpTs
, YZs = LeZWZ

LeFWF
YF0

β2e TB/(T0+Ts) = ABW

ACWF
YF0, β = TBTs

(T0 + Ts)2
, q = Ts

T0 + Ts

(5)

then (after dropping the primes) a dimensionless version of the problem can be written as

LeFFt = ∇2F − β2FZk(T )

LeZZt = ∇2Z − Z + β2FZk(T )

Tt = ∇2T +
QZ

LeF
− �

k(T ) = exp

(
β

T − 1

1 + q(T − 1)

) (6)

with the boundary condition

lim
|r|→∞

(T , F, Z) = (0, 1, 0). (7)

The non-dimensionalization thus serves to define natural time and length scales for the
rates of heat production and heat conduction, while the diffusivities of fuel and radical are then
measured by the inverses of their respective Lewis numbers LeF and LeZ. The dimensionless
function F(t, r) measures the mass fraction of the fuel F, scaled against its value at infinity,
while the function Z(t, r) measures the mass fraction of the radical Z, scaled so as to balance
the rates of diffusion and either production or consumption of fuel and radical, respectively, due
to the chain-branching reaction. The dimensionless heat of reaction Q represents the chemical
enthalpy of the mixture at infinity and the term � represents the dimensionless rate of radiative
heat loss, both scaled against the change in thermal enthalpy that occurs if the dimensional
temperature changes by the scale factor Ts. The latter scale factor is used to define the new
dimensionless temperature scale T (t, r), the origin of which is chosen, naturally enough, to
be the temperature at infinity.

The choice of the scale factor Ts deserves more detailed discussion; it is clearly chosen
so that the dimensionless temperature T = 1 occurs at an absolute dimensional reference
temperature of T0 + Ts. It can be noted, in passing, that the Zeldovich number β, as defined
in (5), differs from the definition of the Zeldovich number that is relevant for flames that are
modelled using one-step chemistry; rather than being based on the adiabatic flame temperature
or, in the case of flame balls, the maximum adiabatic flame-ball temperature, it is based on the
reference temperature T0 + Ts. The exponent in the dimensionless rate constant k(T ) then
linearizes to β(T − 1) about the dimensionless temperature T = 1 or, equivalently, the
dimensional reference temperature T0 + Ts. Correspondingly, q measures the ratio of the
temperature change to the absolute temperature only up to T0 + Ts, rather than the adiabatic
maximum temperature.

It can also be noted in passing that, if YF is held fixed at YF0, then the dimensional
temperature T0 + Ts is the temperature at which ωB = β2ωC. This temperature is higher than
the temperature at which we would find ωB = ωC.

The absolute temperature Tc at which the rates of the branching and completion reactions
are the same, that is ωB = ωC, is known as the ‘crossover temperature’ ([6,22] and [7, p 27]).
At this temperature, in a spatially homogeneous system, the rate of chain-branching radical
production exactly balances its loss rate through the completion reaction, since there are
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no diffusive losses. At temperatures above Tc, for which ωB > ωC with YF = YF0, the
homogeneous form of the model (6) gives

LeZ
dZ

dt
= (

β2Fk(T ) − 1
)
Z

with the coefficient β2Fk(T ) − 1 being positive if F = 1. Given any small non-zero
initial radical concentration, it follows that an exponential chain-branching growth in the
radical concentration would occur until sufficient fuel is used up to reduce the coefficient to
zero; the radical concentration Z = 0 would thus represent an unstable equilibrium of the
homogeneous system. Conversely, at temperatures below the crossover temperature Tc, the
sign of β2Fk(T ) − 1 becomes negative and Z = 0 then represents a stable equilibrium of
the homogeneous system; any non-zero initial value for Z decreases exponentially with time.
Unlike the one-step kinetic model (1), the branching model scheme (2) does not therefore
suffer from the cold-boundary difficulty [1], provided the fresh-gas temperature is below the
crossover temperature.

The reference temperature T0 + Ts must be chosen to be higher than the crossover
temperature Tc so that, at this temperature, we would have ωB = β2ωC if YF is held fixed at
YF0. The extra factor of β2 that appears in the dimensionless chain-branching rate-expression
β2FZk(T ) in the model (6) reflects the fact that the chain-branching production of radicals,
at the dimensionless temperature T = 1, must now compete with the diffusive removal of
radicals which will be seen to be a significantly stronger effect than the removal of radicals
by the completion reaction. Also, the consumption of fuel by the branching reaction tends to
reduce considerably the value of F whenever temperatures reach the reference temperature,
as will be seen.

Reduced-chemistry studies of methane flames, such as [20–22], suggest that the reference
temperature T0 + Ts, at which the fuel concentration will be seen to decrease towards zero, has
a value of roughly 1300 K under atmospheric conditions (see [22]). Taking, for example, the
activation temperature of 8500 K, for the key chain-branching reaction H + O2 → OH + O, to
represent TB and taking T0 to be room temperature (about 300 K) then leads an estimate for
the Zeldovich number of β ≈ 5. Solving the equation β2k(T ) − 1 = 0, with q = 1000

1300 , then
leads to an estimate for the crossover temperature of Tc ≈ 900 K. The independent arguments
of Liñán and Williams [6, pp 53–5], Warnatz et al [50, pp 104–6] or Westbrook [48,49] seem
to indicate that a realistic crossover temperature should indeed be approximately 850–900 K,
suggesting that a typical value of β for hydrocarbons might indeed be about five. Even though
this is not particularly large, we shall use the limit β → ∞ to construct asymptotic solutions of
(6) and (7), using subsequent numerical calculations to examine how solutions might change
for finite values of β.

The overall relationship between T0, Ts, Tc, TB and β can be written in the form

(T0 + Ts)
2

TsTc
= T0 + Ts

Ts
+

ln β2

β
, β = TBTs

(T0 + Ts)2
(8)

which, if T0 and Tc are held fixed, can be used to solve for the scale factor Ts in terms of either
β or TB. In the case for which Tc is assigned the realistic value of Tc = 900 K, figure 1 shows
how the reference temperature T0 + Ts varies as a function of β at a number of different far-
field temperatures T0 < Tc. In all cases, the reference temperature approaches the crossover
temperature as β → ∞ (or, equivalently TB → ∞).

In the leading-order asymptotic description (that will be presented in section 4) it may
be best therefore to think of the dimensionless temperature T = 1 as being more-or-less the
same as the dimensional crossover temperature Tc. Dimensional temperatures must increase
above Tc if there is going to be any significant level of chemical activity at all. The higher
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Flame balls with thermally sensitive kinetics 181

Figure 1. The reference absolute temperature T0 + Ts as a function of the Zeldovich number β for
various far-field temperatures T0 at a fixed value of Tc = 900 K for the crossover temperature.

order asymptotic description (presented next, in section 2.1) shows that the activity becomes
stronger and leads to a narrow region of branching reaction if the temperature rises through
T0 + Ts. Nearly all branching activity takes place between the two temperatures Tc and T0 + Ts,
with fuel leakage occurring if temperature has a maximum value that is closer to Tc.

Finally, eliminating all of the reaction-rate terms in (6) yields another equation

∂t

(
LeFF + LeZZ +

T LeF

Q

)
= ∇2

(
F + Z +

T LeF

Q

)
− � LeF

Q

which could be used to replace any one of the other conservation equations in (6). The
time derivative term of this equation can be used to show that the adiabatic planar flame
temperature, at which F = Z = 0 with � ≡ 0, is T = Q, while the Laplacian term shows
that the temperature of steady adiabatic fully-reacted flame balls is T = Q/LeF. In studying
flame balls it is convenient therefore to define

Q̃ = Q

LeF

to replace Q/LeF in the dimensionless model (6).

2.1. Narrow region of chain-branching reaction

For β � 1, if T increases through unity, then the temperature-sensitive non-linear Arrhenius
factor k(T ) changes rapidly from small to large values, implying that a narrow reactive
boundary layer must exist around T = 1. There are two situations, with differing forms of
solution, which depend on whether or not there is a maximum value of temperature near T = 1.

Readers who are not particularly interested in the details of the asymptotic structure of
this narrow reaction region, or the details of the model (3) with fuel decomposition that will
be described in section 3, can skip to section 4 where the resulting overall leading order
flame-sheet model is presented and analysed.

2.1.1. Temperature increasing through unity. Supposing that there is an interface r =
R(r1, r2), parameterized by two scalar variables r1 and r2, which follows a thin region of
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reaction with unit normal n̂, then rescaling such that

T = 1 + β−1s, r = R + n̂ β−1η, Z = Z̄ + β−1ξ, F = β−1f (9)

gives rise to the leading order inner equations for f , ξ and s

fηη = Z̄f e s = −ξηη, sηη = 0. (10)

Thus, by choosing the value of Z̄ so that f + ξ = 0 when η = 0, we can deduce that

s = s0 + µη, f + ξ = νη

for constants µ, ν and s0.
Provided µ �= 0, so that the temperature T actually does change through unity, the problem

can be written as

µ2fss = Z̄f e s or ζ
d2f

dζ 2
+

df

dζ
− 4ζf = 0 with µ2ζ 2 = Z̄e s

leading to the solution (after imposing a physically necessary condition of chemical equilibrium
or f → 0, in the limit as s → ∞)

f = AK0(2ζ ) = AK0

(−2Z̄1/2e s/2

µ

)

= A ×




O

(
e −s/2 exp

(−2Z̄1/2e s/2

µ

))
as s → ∞

− 1
2 s − γ + ln

(
µ

Z̄1/2

)
+ O(se s) as s → −∞

for any constant A, where K0 is a modified Bessel’s function of order zero and γ is Euler’s
constant (γ ≈ 0.577 216).

To leading order, when |s| or |η| is large, this gives the asymptotic behaviour of the scaled
fuel concentration f , and the perturbation ξ in the radical concentration, as

f = νη − ξ = A ×



0 as µη → ∞
− 1

2 (s0 + µη) − γ + ln

(
µ

Z̄1/2

)
as µη → −∞.

By choosing the exact location of the interface R (the origin of η) such that these two asymptotic
forms of behaviour of f for large |η| extrapolate back to intersect at η = 0, we find that
s0 = ln(µ2/Z̄) − 2γ .

The conditions for matching the behaviour of these inner solutions, at large η, with outer
solutions, as r → R±, then becomes

[Fn] + [Zn] = [Tn] = [T ] = [F ] = [Z] = F = 0

T = 1 + β−1

(
ln

T 2
n

Z
− 2γ

)
(11)

at r = R±, provided Tn �= 0 at the interface. In addition, we must have F = 0 where T > 1
and if we were to have, for example, F = 0 for n < 0 and F > 0 for n > 0, then we must
also have that Tn < 0. The subscript n in these jump conditions denotes the partial derivative
or gradient in the direction normal to the interface and the square brackets [·] represent the
value of the contents of the brackets on the side to which n̂ points minus the value on the
opposite side.

This asymptotic result fails at some stage if |Tn| becomes too small. It is worth noting
that, for large values of β, either equation (8) or the relation β2k(T ) = 1 can be used to show
that the dimensionless value of the crossover temperature is given by T ∼ 1 − 2β−1 ln β.
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Flame balls with thermally sensitive kinetics 183

It follows that, if Tn decreases to the order of β−1 the temperature predicted in (11) is then
virtually the same as the crossover temperature. At such small values of Tn, the asymptotic
estimate in (11) for the value of T at the flame sheet is no longer valid. Instead, it is necesary to
focus attention on a local maximum of temperature that will be seen to be below the reference
temperature T = 1.

2.1.2. Maximum temperature near unity. If temperature has a maximum value, so that Tn

would then be small in the region where the branching reaction is active, we can note that the
value of ∇2T or Tnn should then be of order one and negative. In such a situation, a different
inner rescaling is appropriate. A suitable scaling for the inner problem is

T = 1 + β−1
(
s − 3

2 ln β
)
, r = R + n̂ β−1/2η

Z = Z̄ + β−1/2ξ, F = F̄ + β−1/2f.
(12)

It can be noted that order one values of the inner temperature gradient sη then correspond to
outer temperature gradients Tn that are of the order of β−1/2.

The scalings (12) lead to the leading order inner equations for f , ξ and s

fηη = F̄ Z̄e s = −ξηη, sηη = �̄ − Q̃Z̄

with �̄ being a constant approximation to � in the thin reaction zone. Since s must be taken
to have a local maximum, it can be noted that we must have �̄ < Q̃Z̄. Thus, the rate of
heat production must exceed the rate of heat loss near the maximum in temperature. (Similar
results would arise even if � varied significantly with η, as long as Q̃Z̄ −� is greater than some
positive quantity for all order one values of η. This ensures that s decreases without bound
both as η → ∞ and as η → −∞).

With R and F̄ + Z̄ being chosen suitably we then have

s = s0 − 1
2 (Q̃Z̄ − �̄)η2, f + ξ = νη

leading to

fηη = F̄ Z̄e s0 e −(Q̃Z̄−�̄ )η2/2

with the solution, for a suitable normalization of the value of F̄

f = ηf −
η + F̄ Z̄e s0

√
π/2

Q̃Z̄−�̄
η erfc

(
−η

√
1
2 (Q̃Z̄−�̄)

)
+

F̄ Z̄e s0

Q̃Z̄−�̄
e −(Q̃Z̄−�̄ )η2/2

where f ±
η is the limit of fη as η → ±∞. It can be seen that

[fη] = f +
η − f −

η = F̄ Z̄e s0

√
2π

Q̃Z̄−�̄
or s0 = ln

[fη]

F̄ Z̄
+ 1

2 ln
Q̃Z̄−�̄

2π
.

Matching conditions for the outer problem, at r = R±, that result from this solution,
are now

[Fn]+[Zn] = [T ] = [F ] = [Z] = Tn = 0

T = 1+β−1

(
ln

[Fn]

FZ
+ 1

2 ln
Q̃Z−�

2π
− 3

2 ln β

)
(13)

which fails at some stage if F becomes too small at the interface. The same kind of result
would be found even if � varied significantly with η, as long as the scaled temperature s has
a local maximum near η = 0. The value of � in (13), at r = R, may then need to be defined
differently, as a suitable average, but the overall effect would be much the same.
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184 J W Dold et al

It can be noted that if F becomes of the order of β−1, as it is in the scalings (9)
that are relevant for temperatures that increase through unity, then the temperature that the
conditions (13) predict at the interface increases to T ∼ 1 − 1

2β−1 ln β. Otherwise, the
temperature at the interface satisfies T ∼ 1 − 3

2β−1 ln β which is closer to, but still greater
than, the crossover temperature.

In general, if temperature has a local maximum at the reaction sheet then the reactant
concentration F need not be zero on either side of it. That is, reactant can survive through the
reaction sheet in a way that it cannot do if Tn �= 0 at the sheet.

3. Model with fuel decomposition

Taking the fuel decomposition reaction to release no heat in the reaction scheme (3),
dimensional reactive–diffusive conservation equations become

ρ∂tYF = ρDF∇2YF − WF ωI

ρ∂tYZ = ρDZ∇2YZ + WZωI − WZωC

ρCp ∂tT = λ∇2T + QωC − �

ωC = AC
ρYZ

WZ

ρ

W
, ωI = AI

ρYF

WF

ρ

W
e −TI/T

in which ωI is the rate expression for the fuel decomposition reaction in (3) with pre-exponential
factor AI. All other terms have the same meaning as in the model (4).

In fact, these equations are very similar to the equation (4) that describe a chain-branching
reaction process, and they can be made dimensionless in a very similar way; the only changes
that are needed from the reference scalings (5) are the new implicit definitions for β and Ts

β2e TI/(T0+Ts) = AIWZYF0

ACWFYZs
, β = TITs

(T0 + Ts)2

to produce the dimensionless version of the model

LeFFt = ∇2F − β2Fk(T )

LeZZt = ∇2Z − Z + β2Fk(T )

Tt = ∇2T + Q̃Z − �

k(T ) = exp

(
β

T − 1

1 + q(T − 1)

)
.

(14)

The only difference from the dimensionless model (6), with Q̃ replacing Q/LeF, is the
disappearance of a factor Z from the radical-producing reaction rate β2Fk(T ). The new
definition of β differs from the corresponding definition in (5) only because the activation
temperature TI of the fuel-decomposition reaction in (3) replaces TB.

Unlike the chain-branching model, an unreacted state with Z = 0 is not stable at any
low enough temperature. In fact, there is no crossover temperature for this model. However,
in direct analogy with the chain-branching model, the dimensional reference temperature
T0 + Ts is the temperature at which ωI = β2ωC with YF held fixed at YF0 and YZ held fixed
at YZs. The activation temperatures of both of the main fuel-decomposition reaction-steps,
CH4 + M → CH3 + H + M and H2 + M → 2H + M, for methane and hydrogen are about
53 000 K, suggesting that β might have a value of about 30 or more, if T0 + Ts is a temperature
found in any typical hydrocarbon flame, that is, a temperature that is less than about 2000 K.
One fuel and oxidant decomposition reaction CH4 + O2 → CH3 + HO2 has an activation
temperature of 28 200 K, suggesting that an effective Zeldovich number could be as low as
about β = 12.
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Flame balls with thermally sensitive kinetics 185

It must be remembered that decomposition reactions are, in reality, almost completely
insignificant in most hydrocarbon combustion, where chain-branching or chain-propagation
reactions are mainly responsible for the conversion of reactants to radicals [1,6]. On the other
hand, in other chemical systems the model may be more relevant [2] and, as mathematical
models, it will soon be seen that both of the reaction schemes (2) and (3) lead to the same
leading-order dimensionless solutions if β � 1. This fact serves to stress the general nature
of the resulting matched asymptotic picture.

3.1. Narrow region of chain-branching reaction

Because the dimensionless model (14) is very similar to the model (6), the structure of the
inner reaction region with β � 1, in which F is consumed when T is near unity, is also very
similar. Readers who are not interested in the details can skip to section 4.

3.1.1. Temperature increasing through unity. Exactly the same scalings (9) can be applied,
to arrive at the leading order inner equations for f , ξ and s

fηη = f e s = −ξηη, sηη = 0.

The only difference between these equations and (10) is the disappearance of the factor Z̄.
Exactly the same arguments can therefore be applied, with Z̄ replaced by unity, to arrive at the
conditions for matching with outer asymptotic solutions, at r = R±

[Fn] + [Zn] = [Tn] = [T ] = [F ] = [Z] = F = 0
T = 1 + β−1

(
ln T 2

n − 2γ
) (15)

provided Tn �= 0 at the interface.

3.1.2. Maximum temperature near unity. If the temperature has a maximum value near unity,
the scaling (12) can be used to arrive at the leading order inner equations for f , ξ and s

fηη = F̄e s = −ξηη, sηη = �̄ − Q̃Z̄

with the analysis following in exactly the same way to lead to the equation for f

fηη = F̄e s0 e −(Q̃Z̄−�̄)η2/2

in which the factor F̄ is not multiplied by Z̄. The solution again parallels the solution for
chain-branching chemistry, with F̄ Z̄ replaced by F̄ , to arrive at the matching conditions for
the outer problem, at r = R±

[Fn]+[Zn] = [T ] = [F ] = [Z] = Tn = 0

T = 1+β−1

(
ln

[Fn]

F
+ 1

2 ln
Q̃Z−�

2π
− 3

2 ln β

)
.

(16)

As before, the value of �, at r = R in these conditions, might have to be expressed as some
suitable average of � if it changes significantly through the reaction region.

4. Leading-order reaction-sheet model

Taking β to be infinitely large, all of these forms of jump condition can be combined into one
form that deals with all cases. A leading-order model that treats either the chain branching or
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the fuel decomposition reaction as occurring at an infinitesimally thin reaction sheet at r = R
is now, for r �= R

Tt = ∇2T + Q̃Z − �

LeFFt = ∇2F

LeZZt = ∇2Z − Z.

(17)

In addition, we must have F ≡ 0 where T > 1. The leading-order jump conditions to be
applied across the interface at r = R± become, simply

[Fn] + [Zn] = [Tn] = [T ] = [F ] = [Z] = T − 1 = FTn = 0 (18)

where, as usual, the subscript n represents the gradient of a quantity in the normal direction,
that is ∂n = n̂ · ∇, where n̂ is a unit normal to the interface. The notation [·] denotes the jump
in the value of a quantity across the interface, being equal to the value of the content of the
square brackets on the side to which n̂ points minus its value on the opposite side.

If the temperature T exceeds unity on one side of the reaction sheet, so that Tn �= 0, then
F must be set to zero at the reaction sheet. On the other hand, if the temperature has a local
maximum of unity at the reaction sheet, so that Tn = 0, then the value of F need not be set to
zero. Thus, this set of conditions deals with both types of inner problem examined above, for
each type of reaction scheme, at least to leading order as β → ∞. The jump conditions (11)
and (13) or (15) and (16) are in fact valid to higher order in β−1 so that it would be possible to
develop more precise descriptions, offering relatively minor corrections to the leading order
description when β is large.

Apart from the condition FTn = 0, a notable feature of the leading order jump
conditions (18), as β → ∞, is that they are entirely linear in F , Z, T and their normal
derivatives. The condition FTn = 0 is equivalent to having either F = 0 or Tn = 0 which,
taken separately, are also linear conditions to be applied at the interface. Only one of the jump
conditions is linear and inhomogeneous, namely T − 1 = 0.

The remaining conditions in (18) state that the temperature, the mass fractions of fuel
and radical and the temperature gradient must all be continuous across the reaction sheet,
where the temperature also has the value T = 1. Also, the jump in the normal gradient of
the dimensionless fuel mass fraction is exactly equal and opposite to the jump in the normal
gradient of the dimensionless mass fraction of the radical. This condition amounts to the
natural requirement that the flux of fuel molecules into the interface must exactly balance the
flux of radical molecules out of the interface.

4.1. Reaction-sheet model for a spherical flame ball with linear heat loss

With spherical symmetry, the reaction sheet can be taken to lie at a radius r = R(t) from
a centre of symmetry, at r = 0. If we also model the heat loss term such that � = a2T ,
representing heat losses that are linear in temperature, then the problem satisfies the equations
for r �= R(t)

Tt = (
∂rr + 2r−1∂r

)
T + Q̃Z − a2T

LeFFt = (
∂rr + 2r−1∂r

)
F

LeZZt = (
∂rr + 2r−1∂r

)
Z − Z

(19)

taking F ≡ 0 where T > 1, along with the jump conditions at r = R±

[Fr ] + [Zr ] = [Tr ] = [T ] = [F ] = [Z] = T − 1 = FTr = 0. (20)

In the far field, as r → ∞, the boundary conditions to be satisfied are

lim
r→∞(T , F, Z) = (0, 1, 0). (21)
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Flame balls with thermally sensitive kinetics 187

Several studies of flame balls using one-step kinetics have considered the relative
importance and differing effects of non-linear radiative heat losses and linear heat losses,
for example [30, 38] and [44–46]. In dimensional terms, Stefan’s law would give a rate of
heat loss that is proportional to T 4 − T 4

0 , which includes a linear component of 4(T − T0)T
3

0
while it also has a maximum value of the order of (T0 + Ts)

4. If Ts ≈ 1000 K and T0 ≈ 300 K,
this maximum value should therefore be roughly 30 times greater than the linear heat loss
component within the region where the absolute temperature is of the order of T0 + Ts. Non-
linear radiative terms might therefore seem to be overwhelmingly stronger than their linear
component.

However, the volume of the hottest region is approximately 4
3πR3 while, if overall heat

losses are weak so that T ≈ T0 + TsR/r [28], the volume of the region in which absolute
temperatures are about, say, 5

4T0 (where linear heat losses occur at a rate of about T 4
0 ) is very

much larger, at the order of 4
3π(4RTs/T0)

3. Linear heat losses are of course higher than T 4
0

at smaller values of r , but as a rough underestimate, the full volumetric effect of these linear
‘far field’ heat losses is therefore a factor of about five or more times greater than those of the
fully non-linear losses in the hottest region. Thus, even though temperatures are low in the far
field, the overall effect of the linear component of heat losses can significantly exceed that of
non-linear radiative losses. Moreover, these linear losses are still radiative in orgin.

A number of studies of flame balls with one-step chemistry have uncovered significant
effects that are mainly due to such linear volumetric heat losses, for example [30, 39]. Strain
and shear in the flow field around a flame ball serve to draw cold gases closer to the flame ball
and to advect hot gases away from it. In a sense therefore, non-uniform flows also serve to
induce effective heat losses, in a way that increases with the size of a flame ball, and these
too have been shown to provide a stabilizing effect [34, 36, 40]. Heat losses through a cold
boundary at a finite distance have the same overall effect [35]. The evidence provided by these
studies demonstrates that it is more the existence of heat losses and the way in which they vary
with the size of a flame ball, rather than the details of their cause, that stabilizes the flame ball.
Also, volumetric ‘far field’ losses, which are weak and effectively linear seem to be at least as
important as, and possibly much more important than, non-linear high-temperature losses.

As well as its being a significant and possibly dominating effect, adopting a linear heat-
loss law is also very useful in the model equations (19) because it preserves the linearity of the
problem. Indeed, with the exception of the condition FTn = 0, which of course is equivalent
to two alternative linear conditions, the entire problem (19)–(21) then represents a linear free
boundary problem.

We shall now examine this model to determine the structure and stability of spherically
symmetric flame balls involving the chain-branching chemical scheme (2) with heat losses that
are linear in temperature.

5. Structure and stability of steady flame balls

5.1. Steady solutions

Considering only steady cases, for which ∂t ≡ 0 and R ≡ R̄, the equations to be satisfied are

0 = (
∂rr + 2r−1∂r

)
T + Q̃Z − a2T

0 = (
∂rr + 2r−1∂r

)
F

0 = (
∂rr + 2r−1∂r

)
Z − Z

(22)

taking F ≡ 0 where T > 1, along with the jump conditions (20) and boundary conditions (21).
Solutions of these linear ordinary differential equations are not difficult to find. The solution,
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188 J W Dold et al

for a �= 1, already satisfying the boundary conditions (21) at infinity and most of the
conditions (20), can be written as

F = F0(r) =

 1 − (1−F̄ )R̄

r
for r > R̄

F̄ for r < R̄

Z = Z0(r) = (1 − F̄ )/r

1 + coth R̄




e R̄−r for r > R̄

sinh r

sinh R̄
for r < R̄

T = T0(r) = −Q̃Z0(r)

1 − a2
+

Q̃/a

1 − a2

(1 − F̄ )/r

1+ coth(aR̄)




e a(R̄−r) for r > R̄

sinh(ar)

sinh(aR̄)
for r < R̄.

(23)

If a = 1 then the solution for T is given by the non-singular limit as a → 1, namely

T = T0(r) = 1
2Q̃

(1 − F̄ )/r

1 + coth R̄




(1 − R̄ coth R̄ + r)e R̄−r for r > R̄

(1 + R̄) sinh r − r cosh r

sinh R̄
for r < R̄.

In this solution, all of the conditions [Fr ] + [Zr ] = [Tr ] = [T ] = [F ] = [Z] = 0 are satisfied
at r = R̄±, leaving only the conditions FTr = 0 and T − 1 = 0 to be imposed.

Since (d/dR̄)[(R̄ + 1)/(1 + coth R̄)] is positive and less than unity for all R̄ > 0, we can
note that the temperature gradient at r = R̄

T ′
0(R̄) = Q̃(1 − F̄ )

R̄2(1 − a2)a

(
a

R̄ + 1

1 + coth R̄
− aR̄ + 1

1 + coth(aR̄)

)
(24)

must be negative for all values of F̄ < 1, R̄ > 0 and a > 0, including its limit as a → 1. It
follows from the condition that FTr = 0, at r = R̄, that we must have

F̄ = 0.

The only remaining condition, that T = 1 at r = R̄, finally gives

T0(R̄) = Q̃

R̄(1 − a2)

(
1

a + a coth(aR̄)
− 1

1 + coth R̄

)
= 1.

Solutions are therefore determined by the implicit equation for a and R̄ at fixed values of Q̃

R̄ = Q̃

1 − a2

(
1

a + a coth(aR̄)
− 1

1 + coth R̄

)
. (25)

We can also note, for later use, that at r = R̄

[T ′
0] = [T ′′

0 ] = 0, F ′
0(R̄

+) = [F ′
0] = 1

R̄
= −[Z′

0], −[F ′′
0 ] = 2

R̄2
= [Z′′

0 ] (26)

and that, at any turning point, where da/dR̄ = 0, the relation

2a + 1/R̄

a + a coth(aR̄)
− 2 + 1/R̄

1 + coth R̄
= 0 (27)

must be satisfied.
For any fixed heat of reaction Q̃, the implicit equation (25) can be solved numerically to

provide the relationship between the heat-loss parameter a and the radius R̄ of the reaction
sheet within the flame ball. As can be seen in figure 2, there are no solutions for Q̃ � 1. For
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Flame balls with thermally sensitive kinetics 189

Figure 2. Relationship between the radius of the reaction sheet R̄, at which fuel is consumed in a
steady flame-ball solution, and the heat-loss parameter a, for constant values greater than unity of
the scaled heat of reaction Q̃. Solution profiles at the points marked by the small circles are shown
in figure 3.

larger values of Q̃, two branches of solution can be found. The lower branch, for any fixed
Q̃, begins at an adiabatic solution (a = 0) with a finite value of R̄. As a is increased, the
radius R̄ then increases gradually until a turning point is reached at a critical value a = ac(Q̃),
satisfying (27), with no solutions being possible at larger values of a. Above this turning point,
there is a branch of solutions having a larger radius R̄ that increases without bound as a is
decreased towards zero. If Q̃ is increased, the turning point then occurs at larger values of a

and, at any fixed value of a, R̄ increases on the upper branch of solutions while it decreases
on the lower branch.

The spatial variation of the fuel and radical concentrations and the temperature, at different
points along one of the solution curves, is illustrated in figure 3. In these asymptotic solutions,
the radical Z is produced at the spherical surface r = R̄, where temperature has the value
T = 1 and the fuel F is entirely consumed. Diffusion then spreads out the distribution of the
radical which is also gradually consumed as it reacts to produce heat. The effect of heat loss is,
of course, present in all of these solutions although it becomes more obvious at points that are
further up the upper branch of solution; the top-left profile in figure 3, with the largest value
of R̄, has a local minimum of temperature at the centre of the flame ball. Another feature to
note is that the maximum temperature is then not much above the critical temperature T = 1
at which the chain branching reaction is activated.

In fact, the maximum temperature is not very much greater than the critical temperature
T = 1 in any of the solutions, even though a completely adiabatic flame ball, in which
the scaled mass fractions of both F and Z might, hypothetically, be assumed to be zero at the
origin, would have a maximum temperature of T = Q̃. For flame balls of large radius, the
maximum temperature seems to be kept close to unity because of the effect of heat losses. For
smaller flame balls, and those with a small heat-loss coefficient a, the temperature does not
approach Q̃ because the radical concentration Z is not close to zero at the origin. Much of
the chemical enthalpy is retained in the high radical concentration and is not released through
being converted into the final products of the chemistry.
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190 J W Dold et al

Figure 3. Profiles of steady solutions for temperature T and the normalized mass fractions F and
Z of the fuel of the radical, respectively, at the points marked by the small circles in figure 2 on the
solution curve for which the heat of reaction is Q̃ = 3.

This restriction of the maximum temperature to the neighbourhood of a value that is
generally well away from the fully reacted value of T = Q̃, is a feature that differs very
significantly from flame balls modelled using one-step kinetics. In effect, the condition that
T = 1 at the reaction sheet serves to anchor the maximum temperature around the value T = 1
on any branch of solution for any value of Q̃ > 1; solutions automatically adjust themselves to
meet the condition on temperature either through incomplete chemical conversion or through
greater heat losses brought about by increasing the size of the flame ball. The numerical steady
flame ball calculations of [43], carried out using a detailed chemical model for the oxidation
of hydrogen, are entirely consistent with this observation; in [43] the maximum temperatures
on all branches of solution over a wide range of equivalence ratios were only found to vary
between about 900 and 1200 K. In this respect, the two-step model (2) produces results that
are much closer to technically accurate models for flame balls than any one-step model.

For increasing values of R̄, the tendency to limit the maximum temperature is made
clearer in the profiles for T , F and Z that are shown in figure 4. As R̄ is increased, the effect of
heat loss is more and more strongly felt, leading to a significant reduction in the temperature
inside the flame ball. At large values of R̄, the temperature barely rises above T = 1 and
the region in which the radical Z reacts to release heat occupies a relatively small portion of
the overall spatial domain; the actual values of the radical concentration Z are also then seen
to be relatively small.

As the equations (22) make clear, the radical concentration Z must decay over a range of
values of r that is of order one around r = R̄. The profiles in figure 4 are therefore reflecting
the fact that this order one range is a relatively narrow part of the overall flame ball when R̄

is large. Moreover, since the solution for F in (23) shows that Fr = 1/R̄, at r = R̄+, which
becomes small when R̄ is large, the condition [Fr ]+[Zr ] = 0 ensures that the values of Z must
also be small, as seen in the solutions. At this stage, the solution closely resembles a solution
that would arise if there was only a one-step chemical reaction F → P with F consumed and
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Flame balls with thermally sensitive kinetics 191

Figure 4. Profiles of steady solutions for temperature T and the normalized mass fractions F and
Z of fuel and radical, respectively, for increasingly large steady radii R̄ on the solution curve for
which the heat of reaction is Q̃ = 3.

heat released entirely within a single narrow region where T ≈ 1. This property has been
explored further in [41] and is discussed in [42].

5.2. Comparison with numerical solutions

The solutions just described are leading order asymptotic solutions that are, strictly speaking,
only accurate in the limit as β → ∞. Whether the main features of the solutions are maintained
for realistic values of β needs to be confirmed by solving the governing equations numerically.

Because the chain-branching kinetic model (2) is more realistic than the model (3) which
involves fuel decomposition, only the dimensionless equations (6) were solved numerically,
rather than the equations (14). However, one relatively minor change was introduced for
numerical convenience; the dimensionless rate constant k(T ) was altered to the smooth and
continuous function

k(T ) = max
{(

eβ(T −1)/3 − e 1−β(2T +1)/3
)3

, 0
}

(28)

which produces exactly the same asymptotic limit, as β → ∞, but which ensures that the
chain branching reaction is completely eliminated in the cold gases at infinity. For all practical
purposes, this definition of k(T ) behaves in very much the same way as does the definition
in (6), for the same values of β, as illustrated in figure 5. The effect of changing q, which must
lie between zero and one in value, is relatively minor wherever k(T ) is of order one. As a very
robust means of testing the effect of finite Zeldovich number on flame balls, the formula (28)
is therefore convenient.

In order to solve the equations (6) numerically on a finite grid, subject to the boundary
conditions (7) at infinity, the transformation r = β tan(x/β) was used so that only a finite
domain 0 � x � 1

2πβ needed to be discretized. Solutions were obtained using a standard finite
difference approach, based on evenly spaced grid points in x, with continuation implemented
using Newton iteration. A convenient way of calculating an effective steady radius R̄, in the
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q q

Figure 5. Different forms for k(T ): as defined using (6) with q = 0 or 1, shown by the solid curves;
and as defined in (28), shown dotted. For β � 10 the formula (28) is graphically indistinguishable
from (6) with q = 0. In all cases, with β � 5, it can be seen that ln k(T ) is approximately linear
in T , with slope β, near T = 1 where k(T ) is of order one.

Figure 6. Comparison between the asymptotic solution, as β → ∞ (- - - -), and numerical
solutions (——) with β = 5, 10, 20 and 50, for steady flame balls involving simple chain-branching
kinetics, in the case for which Q̃ = 3. Profiles of temperature and the normalized mass fractions
of fuel and radical, on the lower branch of solutions with a = 1

4 , are shown in figure 7, and on the
upper branch with R̄ ≈ 4, in figure 8.

spirit of [51], is to use the definition

R̄ =
∫ ∞

0 r2FZk(T ) dr∫ ∞
0 rFZk(T ) dr

which identifies the value of R̄ that has the same effect outside the region of reaction, for a
distributed reaction, as does a reaction that is concentrated on a thin sheet at r = R̄.

Comparisons between the effective steady radii R̄, calculated for some finite values of β,
and the results as β → ∞, are presented in figure 6, for a flame ball in which the heat of
reaction is set to the representative value of Q̃ = 3. It is interesting to note that, while the
calculated values of R̄ approach their asymptotic limit as β is increased, they do not do so
monotonically. In fact, at β = 5 the values of R̄ are closer to the asymptotic limit on the
upper branch than they are for β = 50. More importantly perhaps, from the point of view of
good modelling, the general qualitative character of the asymptotic solution is retained fully
at entirely realistic values of the Zeldovich number β. This suggests that the asymptotic form
of the model, as β → ∞, can be used with relative confidence, even knowing that realistic
values of β might not be much larger than about β ≈ 5.
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Flame balls with thermally sensitive kinetics 193

Figure 7. Profiles of steady solutions for temperature T and the normalized mass fractions of fuel
F and radical Z, calculated with Q̃ = 3 for different values of the Zeldovich number β on the
lower branch of solutions where a = 1

4 . Dotted lines show the asymptotic solution as β → ∞
and the dashed lines mark the effective radius R̄ of a concentrated region of chain-branching
reaction.

On the lower branch of solution, where the heat loss parameter has the value a = 1
4 ,

figure 7 demonstrates how the numerically calculated values of T , F and Z vary with r , for
each of the values of β used in plotting figure 6. These can be compared with the dotted
lines which show the asymptotic limit as β → ∞ (also seen in the lower-left diagram in
figure 3). The comparison is good at the larger values of β and it improves, as it should
do, as β increases. At the lower values of β the thickness of the region of chain-branching
reaction, which consumes the fuel F, increases, so that at β = 10 and 5, there are significant
concentrations of fuel at the origin. Nevertheless it can be noted that, in moving away from the
flame ball, the comparisons remain good in all cases at larger values of r . In spite of the chain-
branching reaction becoming more distributed, its overall effect therefore remains very much
the same.

In the case of the upper branch of solution, figure 8 presents numerically calculated
variations of T , F and Z, for the same four values of β. In each case, the value of a was
chosen so that R̄ ≈ 4. These solutions can be compared with the dotted lines which present the
asymptotic limit as β → ∞ (also seen in the upper-left diagram in figure 4). Once again the
comparison is good at the larger values of β, as it should be. At lower values of β the thickness
of the region of chain-branching reaction can be seen to increase but because the effective radius
R̄ is larger on the upper branch, fuel concentrations now tend to remain low at the origin. In
all cases, the comparisons remain good at larger values of r so that, once again, the overall
effect of the chain-branching reaction is largely unaltered by changing the value of β.

These numerical results show that the overall nature of the solutions at relatively low values
of β is captured very well by the asymptotic solutions found as β → ∞. The comparison is
better on the upper branch of solutions which, as we shall now demonstrate, is the branch on
which stable flame balls can arise. Numerical studies of the linear stability of these flame-ball
solutions were not carried out.
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194 J W Dold et al

Figure 8. Profiles of steady solutions for temperature T and the normalized mass fractions of fuel
F and radical Z, calculated with Q̃ = 3 for different values of the Zeldovich number β, on the
upper branch of solutions, with values of a chosen so that the effective radius of a concentrated
region of chain-branching reaction, marked by the dashed lines, lies at R̄ ≈ 4. Dotted lines give
the asymptotic solution as β → ∞.

5.3. Linear stability with spherical symmetry

If perturbations from the steady solutions are written in the form of normal modes with growth
rate λ

R = R̄ + e λt F = F0(r) + e λtF1(r)

Z = Z0(r) + e λtZ1(r) T = T0(r) + e λtT1(r)

the linearized equations to be satisfied by the eigenfunctions F1, Z1 and T1 are found to be

0 = T ′′
1 + 2r−1T ′

1 − (λ + a2)T1 + Q̃Z1

0 = F ′′
1 + 2r−1F ′

1 − λLeFF1

0 = Z′′
1 + 2r−1Z′

1 − (λLeZ + 1)Z1.

(29)

For r < R̄ there is no fuel at all, so that F1 ≡ 0. Applying the jump conditions at r = R̄ + e λt ,
to Taylor expansions of T , F and Z about the point r = R̄, shows that the conditions to be
satisfied at r = R̄± are

[F ′′
0 + F ′

1] + [Z′′
0 + Z′

1] = T ′
0 + T1 = 0

[T ′′
0 + T ′

1] = [T ′
0 + T1] = [F ′

0 + F1] = [Z′
0 + Z1] = F ′

0 + F1 = 0.

Making use of equation (24), with F̄ = 0, and the relations (26) these conditions become

[F ′
1] + [Z′

1] = [T ′
1] = [T1] = 0, F1(R̄

+) = [F1] = −[Z1] = − 1

R̄

T1(R̄) = Q̃

R̄2(a2 − 1)

(
R̄ + 1

1 + coth R̄
− R̄ + 1/a

1 + coth(aR̄)

)
.

The solution of equations (29) can be expressed most simply through defining

µ2 = a2 + λ, ν2 = λLeF, δ2 = 1 + λLeZ. (30)
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Flame balls with thermally sensitive kinetics 195

Solutions satisfying F1(R̄
+) = [F1] = −[Z1] = −1/R̄ and [F ′

1] + [Z′
1] = [T ′

1] = [T1] = 0
can then be written as

F1 = 1

r
×

{
−e ν(R̄−r) for r > R̄

0 for r < R̄

Z1 = 1

r
×




ν/δ + coth(δR̄)

1 + coth(δR̄)
e δ(R̄−r) for r > R̄

ν/δ − 1

1 + coth(δR̄)

sinh(δr)

sinh(δR̄)
for r < R̄

(µ2 − δ2)T1 = Q̃Z1 − Q̃

r
×




ν/µ + coth(µR̄)

1 + coth(µR̄)
e µ(R̄−r) for r > R̄

ν/µ − 1

1 + coth(µR̄)

sinh(µr)

sinh(µR̄)
for r < R̄.

The remaining condition, fixing the value of T1 at r = R̄, finally provides the dispersion
relation

1

1 − a2

(
R̄ + 1/a

1 + coth(aR̄)
− R̄ + 1

1 + coth R̄

)
= R̄

δ2 − µ2

(
ν/µ − 1

1 + coth(µR̄)
− ν/δ − 1

1 + coth(δR̄)

)
(31)

the solutions of which provide the spectrum of possible growth-rates. For stability, the real
part of all roots λ must be negative.

In the case for which λ = 0 (a neutrally stable real eigenvalue) the dispersion relation
reduces to the form

2a + 1/R̄

a + a coth(aR̄)
− 2 + 1/R̄

1 + coth R̄
= 0

a result that is independent of the Lewis numbers and that corresponds exactly to the turning
point or fold-bifurcation path (27) on which da/dR̄ = 0. This makes it clear that one root is
exactly zero at the turning point.

In order to understand the behaviour of other roots, at least qualitatively, it is useful to
firstly consider only roots that are small in magnitude. Noting from (30) that ν involves the
square root of λ, it is simplest to define λ = � 2 and to consider the limit in which |� | is small.
Expanding the dispersion relation (31) up to quadratic powers of � then leads to

A� 2 − B� + C = O(� 3) (32)

with the coefficients

C = Q̃

1 − a2

(
2a + 1/R̄

a + a coth(aR̄)
− 2 + 1/R̄

1 + coth R̄

)

B = Q̃Le1/2
F

1 − a2

(
1

a + a coth(aR̄)
− 1

1 + coth R̄

)
= Le1/2

F R̄

2A = LeZ−1

1 − a2
(1 + C) +

Q̃R̄

1 − a2

(
LeZ(1− coth R̄)

1+ coth R̄
− 1− coth(aR̄)

a+a coth(aR̄)

)
.

(33)

It can immediately be noted from (27) that C is zero at the turning point. Closer inspection
reveals that it is positive on the upper branch of solutions and negative on the lower branch.
Figure 9 also shows that the values of C remain bounded between about −1 and 1 over the
entire range of solutions for any fixed value of the heat of reaction Q̃. Both A and B are positive
quantities, at least near the turning point, with B depending on the Lewis number of fuel LeF
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196 J W Dold et al

Figure 9. Upper figure: the relationship between the heat-loss coefficient a and the parameter C at
a number of fixed values of the heat of reaction Q̃. Lower figure: corresponding solution paths in
the space of a and R̄ for the same fixed values of the heat of reaction. These figures demonstrate
that C remains fairly small over a significant portion of each solution around its turning point.

(since it is simply given by B = Le1/2
F R̄) and with A depending, in a more complicated way,

on the Lewis number of the radical LeZ.
If A is written in the form

A = 1
2A0 + 1

2A1LeZ

the coefficients A0 and A1, the expressions for which are contained in equations (33), are
independent of the Lewis numbers and figure 10 shows that A1 remains positive and order one
over a wide range of values of Q̃ at the turning point C = 0. The value of A0 grows without
bound as Q̃ decreases towards unity while it decreases steadily as Q̃ increases. Both A0 and
A1 are positive order one quantities at the turning point for order one values of Q̃ that are not
close to unity. It can be seen from figure 11 that negative values of A0 and A1 can arise at
non-zero values of C for large enough values of Q̃. In particular, A0 becomes negative over
a range of positive values of C when Q̃ is about five or larger and A1 becomes negative over
an increasingly large range of negative values of C as Q̃ increases above about two. For large
enough values of Q̃ and/or LeZ, the value of A can therefore become negative, although it is
always positive near C = 0. While B is always positive, its value can be made arbitrarily
small by decreasing the value of LeF.

Truncated at quadratic orders, the dispersion relation (32) has the roots

� ∼ B ± √
B2 − 4AC

2A
.
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Flame balls with thermally sensitive kinetics 197

Figure 10. Dependence of the quantities A0 and A1 on the heat of reaction Q̃, evaluated at the
turning point C = 0. The values of A0, A1 and C are instrumental in solving the dispersion relation
(31) for small growth rates λ.

Figure 11. Variations of A0 (upper diagram) and A1 (lower diagram) with C at fixed values of the
heat of reaction Q̃.

Stability requires that Re λ = Re � 2 < 0 or, equivalently, that |Im � | > |Re � |. The criterion
for stability, with |λ| small, is therefore

2AC > B2 or LeF < (A0 + A1LeZ)
C

R̄2
. (34)

This makes it clear that the flame ball is, in fact, unstable at the turning point, where C = 0;
although one eigenvalue is zero there is another unstable real eigenvalue. Moreover, provided
A0 +A1LeZ is positive, eigenvalues are found to be stable for small enough values of the Lewis
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198 J W Dold et al

Figure 12. Variations of A0C/R̄2 (upper diagram) and A1C/R̄2 (lower diagram) with C at fixed
values of the heat of reaction Q̃.

number LeF on the upper branch where C is positive. Also, if A0 + A1LeZ is negative and C is
negative, then stability can again arise for small enough values of LeF.

A convenient way of examining the dependence of stability on LeF and LeZ is provided
by examining the values of A0C/R̄2 and A1C/R̄2. According to (34) the value of LeF must
be less than the former plus LeZ times the latter. As seen in figure 12, the largest values of
LeF for stability are determined by a combination of trends, with the contribution from A0

decreasing and that from A1 increasing as Q̃ increases. At any negative value of C, it can be
seen that A0C/R̄2 is very much more negative than A1C/R̄2 is positive so that unrealistically
large values of LeZ would be required to bring about stability on the lower branch of solutions.

At the point where the flame ball becomes stable, λ has two purely imaginary roots,
indicating that the instability has an oscillatory character near the point of marginal stability.
The real roots found at C = 0 must therefore collide to form a complex conjugate pair, as C

changes, before the real part of λ becomes negative.
This analysis, based on equations (32) and (33), depends on assuming that all eigenvalues

λ are small. However it is, at least, consistent for them to be small if C is small, as it is near the
turning point, once small enough values of LeF are also chosen to ensure stability; under
these conditions, the values of λ are of the order of C/A. It can also be noted from figure 9 that
the values of C are reasonably small over a significant range of values of R̄ around the turning
point. The argument does therefore provide a consistent demonstration that stable flame balls
can exist if LeF is small enough. Particularly when A is large and positive, as it clearly is for
order one values of LeZ, if Q̃ is not larger than about three, formula (34) offers a reasonable
qualitative and quantitative explanation for the stability of the flame ball for small eigenvalues.
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If the radical Lewis number LeZ has a realistic order-one value, it then makes it clear that
stability only arises on part of the upper branch for small enough fuel Lewis numbers LeF.

The possibility of having large unstable values of λ can be examined using the asymptotic
relation

(
2� 3LeZ + (1 + aLeZ)�

) (
1

Q̃
+

C

1 − a2

)
+

2Le1/2
Z

1 + Le1/2
Z

= O(�−1)

which is valid, as |� | → ∞, provided � has a large real part, taken to be positive without
loss of generality, as it must be for instability. It is readily seen that the only large root is

� ∼ i

√
1
2

(
a +

1

LeZ

)

arising for LeZ � 1. However, being imaginary to leading order, this root represents stability.
Thus there are no large unstable eigenvalues.

In order to complete the picture, for order one and for small eigenvalues, the full dispersion
relation (31) can be studied numerically. This was done by searching for all eigenvalues with
positive or order one real part over a wide range of conditions. The typical pattern that is found
for stability is illustrated in figure 13 in the case for which LeZ = 1. For small enough values
of LeF a region of stability is found on the upper branch of the solution curves with a small
enough heat of reaction Q̃. As the fuel Lewis number LeF is decreased, the region of stability
increases. And, as the heat of reaction is increased, the region of stability decreases. This
picture is consistent with the findings of the more approximate analysis based on equations (32)
and (33).

It is worth noting that stability analyses for one-step chemistry [29,30,38] also show that
flame balls are stable to radially symmetric disturbances on their upper branch of solution, for

Figure 13. Stability of the flame-ball solutions. The solid curves are the paths at which steady radii
R̄ are found as a function of the heat-loss coefficient a. The dashed curves mark the boundaries
for marginal stability at three different Lewis numbers of the fuel LeF, with the Lewis number of
the radicals LeZ set to unity. Between these curves, on the upper branches of solution, stable flame
balls arise at low enough values of LeF.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
3
:
5
9
 
2
6
 
M
a
y
 
2
0
1
0



200 J W Dold et al

fuel Lewis numbers that are below unity. However, there are also significant differences that
arise for the model with chain-branching chemistry.

With one-step chemistry, part of the upper branch is always stable for any LeF < 1.
Moreover, for radially symmetric disturbances, this stability extends to all radii larger than a
threshold radius that approaches the turning point as LeF → 0. However, for a given heat-
release parameter Q̃ > 1, stability only arises for the chain-branching model at fuel Lewis
numbers that are below a threshold value that changes with Q̃ and LeZ. This range of stability
initially only occupies a finite range of the upper branch of solutions and does not generally
extend to all larger radii. As LeF decreases further, the lower end of the range of stability
approaches the turning point, as it does with one-step chemistry, and the upper end of the
range of stability increases. Especially at lower values of Q̃, the numerical and approximate
solutions of the dispersion relations (31) are not conclusive in establishing whether or not this
range extends to all radii greater than the lower threshold for small enough values of LeF.

6. Conclusions

The use of a simple kinetic model, that involves only one thermally-sensitive autocatalytic
chain-branching reaction that converts a fuel into radicals, which then release heat in a
thermally-insensitive completion reaction, provides a self-consistent description of flame
balls. Asymptotic solutions, based on allowing the activation temperature of the branching
reaction to approach infinity, have the same overall qualitative character as solutions calculated
numerically at finite and realistically low activation temperatures.

A slightly different model in which the fuel decomposes directly to produce the radical has
exactly the same form of asymptotic solution as is found with the chain-branching reaction.
Even though fuel decomposition reactions are actually negligible in hydrocarbon flames, this
finding is significant. It indicates that the details of the processes that generate radicals are not
as important as the simple fact that radicals are generated. Indeed, because numerical solutions
preserve the same overall character when the Zeldovich number of the branching reaction is as
low as five, the production of radicals only needs to occur in a moderately thermally-sensitive
way in order to have qualitatively the same overall effect—even the quantative differences are
found to remain relatively small.

Once produced, the role of the radicals is twofold. They act as a reservoir of chemical
enthalpy so that the removal of fuel from the system is not translated directly into heat, as it
is in any one-step chemical model. Also, because radicals are destroyed by the completion
reaction to form products and heat, more slowly than they are created in the branching reaction,
they have time to diffuse away from the relatively thin region within which they are created.
As a result, heat is generated in a broader region within any flame. Another feature of the
simple autocatalytic chain-branching model (2) for radical production, in which there is no
decomposition mechanism for producing radicals, is that the reactant F remains stable at
temperatures below the crossover temperature. There is therefore no cold boundary difficulty
if the unburnt conditions are below this temperature.

The role of chemical radicals has not been exploited much in the study of flames from
a mathematical and asymptotic perspective [6]. Using a one-step model for the chemistry,
asymptotic studies have made great strides in examining many kinds of combustion phenomena.
This article shows that relatively straightforward, and arguably more realistic, solutions can be
obtained using the two-step models (2) and (3). At infinite Zeldovich numbers these provide
a simple asymptotic reduction to a flame-sheet model at which the essentially linear jump
conditions (18) apply. Resulting solutions are algebraically more complicated than their one-
step counterparts, because radical concentrations have to be described in addition to fuel and
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Flame balls with thermally sensitive kinetics 201

temperature, but they are nevertheless accessible to mathematical investigation in studying
premixed flames.

In the case of flame balls, the overall bifurcation character and the appearance of stable
structures on the branch of solutions with larger radius are broadly similar in nature to the
analogous results found for one-step chemistry with infinite activation temperature [27–38],
with some notable differences. It is found that stable flame balls arise, as an oscillatory form
of instability becomes stable, if the Lewis number of the fuel species is made low enough.
However stability first appears at Lewis numbers of the fuel that are below a threshold value
which depends on the reactant concentration at infinity and the Lewis number of the radical,
rather than simply being less than unity. Also, at least near the threshold Lewis number, the
range of stability is finite on the branch of larger flame-ball solutions, increasing in size as the
Lewis number of fuel is decreased.

The solutions themselves are also found to involve maximum temperatures that remain
fairly close to the crossover temperature for hydrocarbon chemistry, rather than the adiabatic
flame-ball temperature. Technically accurate numerical calculations of hydrogen-oxygen
flame balls [43] also behave in this way, suggesting that the model with chain branching
offers a closer representation of the real problem. This feature of the solutions arises through
a combination of heat-loss effects and the fact that much of the chemical enthalpy can remain
absorbed within a non-zero concentration of radicals, rather than being converted directly from
fuel into heat, as the one-step model demands.

The model with chain branching can also be used to model planar premixed flames, as
was first demonstrated by Zeldovich [14] for adiabatic flames with unit Lewis numbers. In
more general situations, solutions are broadly analogous in their structure and dependence of
propagation speed on heat loss, to solutions modelled using one-step chemistry [41], although
there are some notable differences. There are still two propagation speeds for any small enough
heat loss, with the slower speed always being unstable, but solutions based on the chain-
branching model do not display the extreme sensitivity to maximum flame temperature that
one-step models automatically involve at large activation temperature. Interestingly, another
difference arises in that, while the leading order dimensional flame speed does depend on
the Lewis number of radicals LeZ, it is not found to depend on the Lewis number of the
fuel LeF [41].

Stability results for planar non-adiabatic premixed flames, based on the leading order
model (17) and (18), have also now been calculated [52]. These are found to generate a
cellular form of instability at fuel Lewis numbers that are sufficiently reduced below unity.
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[36] Joulin G, Kurdyumov V N and Liñán A 1999 Existence conditions and drift velocities of adiabatic flame-balls

in weak gravity fields Combust. Theory Modelling 3 281–96
[37] Gerlinger W, Schneider K and Bockhorn H 2000 Numerical simulation of three-dimensional instabilities of

spherical flame structures Proc. Combust. Inst. 28 793–9
[38] Shah A A, Thatcher R W and Dold J W 2000 Stability of a spherical flame ball in a porous medium Combust.

Theory Modelling 4 511–34
[39] Minaev S, Kagan L, Joulin G and Sivashinsky G I 2001 On self drifting flame balls Combust. Theory Modelling

5 609–22
[40] Joulin G, Cambray P and Jaouen N 2002 On the response of a flame ball to oscillating velocity gradients Combust.

Theory Modelling 6 53–78

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
3
:
5
9
 
2
6
 
M
a
y
 
2
0
1
0



Flame balls with thermally sensitive kinetics 203

[41] Dold J W, Thatcher R W, Omon-Arancibia A and Redman J 2003 From one-step to chain-branching premixed-
flame asymptotics Proc. Combust. Inst. 29 1519–26

[42] Dold J W, Thatcher R W and Shah A A 2003 High order effects in one-step reaction-sheet jump conditions for
premixed flames Combust. Theory Modelling 7 109–27

[43] Buckmaster J, Smooke M and Giovangigli V 1993 Analytical and numerical modeling of flame-balls in
hydrogen–air mixtures Combust. Flame 94 113–24

[44] Abid M, Wu M S, Liu J B, Ronney P D, Ueki M, Maruta K, Kobayashi H, Niioka T and Vanzand D M 1999
Experimental and numerical study of flame ball IR and UV emissions Combust. Flame 116 348–59

[45] Wu M S, Ronney P D, Colantonio R O and Vanzandt D M 1999 Detailed numerical simulation of flame ball
structure and dynamics Combust. Flame 116 387–97

[46] Tse S D, He L and Law C K 2000 A computational study of the transition from localized ignition to flame ball
in lean hydrogen/air mixtures Proc. Combust. Inst. 28 1917–24

[47] Glassman I 1987 Combustion (2nd edn) (London: Academic) (3rd edn 1996)
[48] Westbrook C K 2000 Chemical kinetics of hydrocarbon ignition in practical combustion systems Proc. Combust.

Inst. 28 1563–77
[49] Flynn P F, Hunter G L, Farrell L, Durrett R P, Akinyemi O, Zur Loye A O, Westbrook C K and Pitz W J 2000

The inevitability of engine-out NOx emissions from spark-ignited and diesel engines Proc. Combust. Inst.
28 1211–8

[50] Dibble R W, Warnatz J and Maas U 2001 Combustion: Physical and Chemical Fundamentals, Modeling and
Simulation, Experiments, Pollutant Formation (Berlin: Springer)

[51] Law C K, Chao B H and Umemura A 1992 On closure in activation energy asymptotics of premixed flames
Combust. Sci. Technol. 88 59–88

[52] Dold J W 2003 Premixed flames with thermally sensitive intermediate kinetics (submitted)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
3
:
5
9
 
2
6
 
M
a
y
 
2
0
1
0


