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Abstract. Gaseous flame balls and their stability to symmetric disturbances are studied
numerically and asymptotically, for large activation temperature, within a porous medium that
serves only to exchange heat with the gas. Heat losses to a distant ambient environment, affecting
only the gas, are taken to be radiative in nature and are represented using two alternative models.
One of these treats the heat loss as being constant in the burnt gases and linearizes the radiative
law in the unburnt gas (as has been studied elsewhere without the presence of a solid). The other
does not distinguish between burnt and unburnt gas and is a continuous dimensionless form of
Stefan’s law, having a linear part that dominates close to ambient temperatures and a fourth power
that dominates at higher temperatures.

Numerical results are found to require unusually large activation temperatures in order to
approach the asymptotic results. The latter involve two branches of solution, a smaller and a
larger flame ball, provided heat losses are not too high. The two radiative heat loss models give
completely analogous steady asymptotic solutions, to leading order, that are also unaffected by the
presence of the solid which therefore only influences their stability. For moderate values of the
dimensionless heat-transfer time between the solid and gas all flame balls are unstable for Lewis
numbers greater than unity. At Lewis numbers less than unity, part of the branch of larger flame
balls becomes stable, solutions with the continuous radiative law being stable over a narrower range
of parameters. In both cases, for moderate heat-transfer times, the stable region is increased by the
heat capacity of the solid in a way that amounts, simply, to decreasing an effective Lewis number
for determining stability, just as if the heat-transfer time was zero.

1. Introduction

Flame balls are stationary spherically symmetric solutions of the equations describing premixed
combustion [1]. Under adiabatic conditions they are unstable, but they are significant
nevertheless, since a flame structure slightly bigger than the flame ball will grow, leading
to propagating flame fronts, while a slightly smaller flame will collapse. They therefore have
implications concerning the energy required for ignition [2–4].

Experimental observations at zero gravity [5] have found that spherical flame balls, in
gases, can be produced as stable objects, if the Lewis number is low enough. It has also been
shown, theoretically, that suitable non-adiabatic conditions can account for this stabilization
[6, 7]. Flame balls can be stabilized by uniform and constant heat losses only in the burnt
gases [6] as well as by relatively weak linear heat losses that nevertheless are of leading-
order importance when temperatures are close to an ambient, far-field value [7]. Non-uniform
velocity fields can also stabilize flame balls [8], while non-uniform enthalpy and boundary
effects can induce some movement in a stable flame ball [9–12].

We extend these studies by introducing a model for gaseous flame balls within a porous,
inert solid. The idea is to determine whether such a solid is likely to stabilize or destabilize

1364-7830/00/040511+24$30.00 © 2000 IOP Publishing Ltd 511

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
4
:
0
1
 
2
6
 
M
a
y
 
2
0
1
0



512 A A Shah et al

a flame ball. The solid is treated, in this paper, as being immobile, non-conducting and non-
radiating. Its only role is therefore to exchange heat with the gas, providing a form of heat
reservoir for the gas at any point, representing a rather simple extension of existing models for
flame balls. Such a reservoir would tend to resist temporal changes in the temperature of the
gas and so it might be expected to offer a stabilizing influence which we wish to investigate.

Stable flame balls have been found to arise only when the Lewis number of a lean reactant is
less than unity [5–12]. In some sense, the presence of the non-conducting solid can be thought
of as adding to the heat capacity of the system, which in turn can be thought of as reducing an
effective Lewis number of the two-phase medium as a whole. The solid might therefore be able
to stabilize a gaseous flame ball which would not be stable without the presence of the solid.
Apart from making flame balls easier to observe experimentally, a medium of this nature would
be safer since it would inhibit the initiation of self-propagating flames. A localized ignition
source would tend to create a more benign, stable flame-ball instead.

As a further extension of existing work, we also examine a model for heat loss in the gas
that is kept closer to the spirit of Stefan’s radiative law. Black-body radiation predicts that the
rate of energy loss from any small-volume element increases with the fourth power of absolute
temperature. Stefan’s law adopts this overall dependence on temperature and also takes the
effectiveness of the radiation to be proportional to an emissivity coefficient of the medium,
which can change with changing chemical composition. Thus, the burnt gases inside a flame
ball might well contain species that are more efficient emitters of radiation than the unburnt
gases [15]. The latter circumstance tends to support the use of a model with constant heat loss
in the burnt gas and linear heat losses elsewhere.

Even with a uniform emissivity, it can be argued [6, 7] that the nonlinear effect of Stefan’s
law (after removing any component that is linearized about the ambient temperature) is only
important where the temperature is high. Since, the burnt gas temperature is almost uniform
and temperatures drop fairly quickly into the unburnt region, it follows that a simple and
reasonable model for radiative losses would still arise by simply taking them to be constant
and present only in the burnt gas, not even being influenced significantly by the small changes
in temperature that would be sufficient to bring about order-one changes in the solution when
the activation temperature is large. Nevertheless, Stefan’s law with uniform emissivity is still
highly pertinent, in particular through treating radiation as being nonlinear and distributed
continuously over the whole temperature range. We therefore study its effect on the structure
and stability of flame balls as well as the effect of its linearized cousin.

The linearized model for radiative losses is simple to analyse which is another significant
advantage. In the context of a simple flame-sheet description of the chemistry, with spherical
symmetry, exact steady solutions and exact eigenfunction solutions for linear stability can
be found. We base our analysis of the problem with linearized heat loss on these exact
solutions, not needing therefore to consider a matched asymptotic approach, as in [7], although
the interpretation of the dispersion relation for linear stability still requires an asymptotic
examination for large activation temperature. However, this is just an examination of algebraic
relations rather than the asymptotic solution of differential equations.

An exact approach is not possible for a nonlinear radiative law (Stefan’s law). This part
of the analysis is therefore more involved, requiring either an iterative or matched asymptotic
solution of the relevant differential equations describing the temperature and its eigenfunction.
Asymptotic results are obtained, which then provide a useful point for comparison and contrast
with the simpler linearized law for heat loss.

The asymptotic work is supplemented by a numerical study of the governing equations,
only for the linearized heat-loss model, cast into a finite-difference form. For the numerical
work, an Arrhenius law is used to describe the chemistry, since jump conditions at a flame-sheet
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Stability of a spherical flame ball in a porous medium 513

would be more difficult to implement. This provides a framework for comparison of the
leading-order asymptotic results (effectively at infinite activation temperature) with solutions
at finite activation temperature. The numerical code provides both steady solutions and
eigenvalues for spherically symmetric instability. Non-symmetric eigenfunctions [7, 16] are
not studied in this paper.

2. Spherically symmetric model

For a simple one-step reaction, F→ P, in which a gaseous reactant F is converted into a gaseous
product P within an unbounded medium that contains a small-volume fraction of porous solid,
a suitable dimensional reactive–diffusive model is

ρYt = ρD
(
Yrr +

2

r
Yr

)
−WF�

ρCPTt = λ
(
Trr +

2

r
Tr

)
+ (WFhF −WPhP)� + k(θ − T ) + L(T )

qθt = k(T − θ)
� = AρY

WF
exp

(−TA
/
T
)
H(T − Tc)

(1)

in which t is time and r is a radial coordinate about a suitable origin of spherical symmetry.
The mass fraction of the reactant is denoted by Y (t, r), the gas temperature by T (t, r) and the
solid temperature by θ(t, r).

The density ρ, specific heat CP and thermal conductivity λ of the gas, as well as the
diffusion coefficient D of the reactant F, are taken to be constant for simplicity of analysis;
the constant-density model is remarkably effective at providing simple but qualitatively
accurate predictions of combustion phenomena in which diffusive processes are of predominant
importance. The molecular weights of the reactant F and the product P are WF and WP,
respectively, with enthalpies of formation hF and hP. The Arrhenius pre-exponential factor is
A and the activation temperature of the reaction is TA. The Heaviside function H(·) ensures
that the reaction rate � is actually zero for any temperature below the cut-off temperature
Tc, guaranteeing chemical equilibrium under ambient conditions for any ambient temperature
Ta that is below Tc. The model (1) has no unbounded steady solution if the ambient state is
reacting, however slowly.

The porous solid is modelled as an inert, homogeneous, porous, non-conducting mesh, or
as a relatively non-mobile and uniformly distributed dust. Cases in which the solid phase also
conducts heat or, possibly, moves via thermophoresis, are not considered here. Attention is
therefore focused on a relatively simple situation in which the primary role of the solid is to
exchange heat with the gas, behaving as a kind of heat reservoir.

In this simple continuum model, the parameters k and q govern the exchange of heat
between solid and gas. These represent, respectively, the rate of heat transfer (per unit volume
of the medium per unit temperature difference) and the heat capacity of the solid (per unit
volume of the medium). In broad terms, k should be proportional to the surface area of the
solid per unit volume and to the thermal conductivity λ, with some dependence on the fine-scale
geometry or structure of the solid phase—the thermal conductivity of the solid is taken to be
high enough and the fine-scale thickness of any part of the solid to be small enough, for heat
to be considered to be uniformly distributed across any small element in the solid structure.
The volumetric heat capacity q is the mass of solid per unit volume of the medium multiplied
by its specific heat capacity. Thus, for a fixed volumetric heat capacity q, or mass of solid per
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514 A A Shah et al

unit volume, the rate of heat transfer k would increase as the fineness of the mesh containing
the solid is increased.

The representation of the system using a continuum of two distinct temperatures, θ and
T , assumes that the mesh is fine and interacting thermally with the gas at all points. Of
course, both temperatures represent a local average in their respective phases. For the highly
nonlinear temperature dependence of the chemistry to be determined by the locally averaged
gas temperature T , the actual gas temperature at any point should not deviate much from its
average value in any suitably small-volume element that is not as small as the fine scale of the
mesh. This, in turn, requires that the temperature difference |T − θ | should be relatively small
as, in fact, will be the case for the solutions examined in this paper.

If we also consider the mesh (or dust) to be optically thin, then the remaining term in the
model L(T ) can be taken to represent radiative heat losses. For the purposes of this paper we
consider all such losses to arise from radiation within the gas phase. Stefan’s law, for radiative
heat exchange with a uniform ambient state, predicts that

L(T ) = ε(T 4
a − T 4) (2)

where ε is the emissivity. We shall study two approximate forms of this law, one of which is
linearized differently for burnt and unburnt gases and is therefore more easily analysed. The
other, which will be discussed later, retains the nonlinear features of Stefan’s law and does not
distinguish between the burnt and unburnt media.

Stefan’s law (2) linearizes about ambient temperature and about any flame temperature Tf

such that

L(T ) ≈
{
−ε(T 4

f − T 4
a )− 4εT 3

f (T − Tf) for T ≈ Tf

−4εT 3
a (T − Ta) for T ≈ Ta.

(3)

In the context of a large activation temperature analysis, with the temperature in the burnt gas
typically close to Tf , the linear term for T ≈ Tf will be small compared with the constant term.
Thus we can model the linearized losses in the burnt gas as being predominantly constant. For
simplicity, in our first model for heat loss, we shall take all losses in the unburnt gas to arise
only from the linearization about the ambient state. Thus, a simple linearized model for heat
loss becomes

L(T ) ≈
{
−εb(T

4
f − T 4

a ) for T ≈ Tf

−4εT 3
a (T − Ta) for T �≈ Tf

(4)

where εb is the emissivity of the burnt gas; the different chemical constituents in this region
could alter the emissivity.

A flame-ball, satisfying these equations, will also need to satisfy boundary conditions as
r →∞ of the form

lim
r→∞

(
Y, T , θ

) = (Ya, Ta, Ta
)

(5)

implicitly requiring that the reaction rate�must be zero for large enough values of r (to avoid
the ‘cold boundary difficulty’ [17] and to ensure that the mixture is chemically stable under
ambient conditions). This can be guaranteed by choosing the cut-off temperature Tc to be
slightly above Ta.

In the absence of the solid phase, these equations are essentially the same as those already
studied for flame balls in gases [1–14]. The model (1)–(5) generalizes on this by including
the solid phase only as a reservoir of heat that can be exchanged with the gas. The aim of this
paper is to study the effect that the presence of this immobile and inert reservoir of heat can

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
4
:
0
1
 
2
6
 
M
a
y
 
2
0
1
0



Stability of a spherical flame ball in a porous medium 515

have on the structure and stability of flame balls. We shall also generalize on previous work
by examining heat losses given nonlinearly by Stefan’s law (2) as well as by the linearized
approximation (4).

2.1. Dimensionless model

A dimensionless form of the model arises if we redefine all variables, such that

T = Ta + (Tf − Ta)T
′ θ = Ta + (Tf − Ta)θ

′ Y = YaY
′

t = tst ′ r = lsr ′ L
(
Ta + (Tf − Ta)T

′) = Tf − Ta

l2s /λ
L′(T ′)

(6)

(subsequently dropping the primes). If we select the rescaling so as to define

Tf = Ta +
(WFhF −WPhP)

WFCP

Ya

Le
ts = ρCP

λ
l2s l2s =

1

2
β2D

A
eTA/Tf

Le = λ

ρCPD
µ = q

ρCP
β = TA(Tf − Ta)

T 2
f

γ = Tf − Ta

Tf
τ = q

kts

b = β εbl
2
s

λ

T 4
f − T 4

a

Tf − Ta
a2 = β2 4εT 3

a l
2
s

λ

(7)

then the governing equations, with the linearized model (4) for heat loss, take on the
dimensionless form

LeYt = Yrr +
2

r
Yr −�

Tt + µθt = Trr +
2

r
Tr +� + L

τθt = T − θ

� = 1

2
β2Y exp

(
β(T − 1)

1 + γ (T − 1)

)
H(T − Tc)

lim
r→∞(Y, T , θ) = (1, 0, 0) L = −

{
b/β for T ≈ 1

a2T/β2 for T �≈ 1.

(8)

The parameter Le is the Lewis number and β is the Zeldovich number. For a realistic model
of combustion β must be large, a useful key for asymptotic solution of many combustion
problems.

The parameter µ is the dimensionless heat capacity of the solid phase and τ is a
dimensionless time-scale for the transfer of heat between the gas and solid phases. The
parameters a and b (both taken to be positive, or possibly zero) represent linearized effects of
heat loss in the unburnt and burnt gases through radiation. It can be noted that the factors of
β−1 and β−2 in the expression for L ensure that these losses are relatively weak in both parts
of the combustion process for order-one values of a and b. Taking the radiative losses per unit
volume to be weaker by a factor of the order of β−1T in the unburnt gas is consistent with the
nonlinearly disproportionate reduction that occurs through the gases being colder there.

We shall proceed by assuming that µ, τ , a and b are all of order one, while β is large.
Takingµ to be of order-one implicitly assumes that the mass of solid per unit volume is similar
to that of the gas. There would therefore be relatively little solid present per unit volume,
requiring a volume fraction of the order of 10−3 under normal atmospheric conditions. The
corresponding solid matrix would therefore be relatively light, rather like a fine suspension of
dust particles that are also assumed, in this paper, to be relatively immobile.
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516 A A Shah et al

However, although the analysis proceeds by taking µ to be of order one, the results are
still valid whenµ is large. Thus the mass of the solid does not have to be particularly small per
unit volume of the medium. In practice, a rigid porous mesh would tend to be much heavier
than the gas within it, making the value of µ correspondingly large.

2.2. Exchange of heat with the solid phase

It is worth noting immediately that if T (t, r) is a solution for T , then the solid temperature θ
is determined by

θ(t, r) = e(t0−t)/τ θ0(r) +
∫ t

t0

e(ζ−t)/τ

τ
T (ζ, r) dζ

or

θ(t, r) =
∫ t

−∞

e(ζ−t)/τ

τ
T (ζ, r) dζ

(9)

where θ has the initial value θ = θ0(r) at the time t = t0. After a while, when t − t0 
 τ ,
the effect of the initial condition is effectively forgotten and the second result for θ is a more
appropriate solution. Since

∫ t
−∞

1
τ

e(ζ−t)/τ dζ = 1, the latter solution shows that the value
adopted by θ at any point is a weighted average of the earlier values of T at that point.

In the limiting case when τ → ∞ the solid temperature stays constant and does not
interact with the gas. The equations for the scaled mass fraction and gas temperature are then
the same as they would be with no solid present at all, namely

LeYt = Yrr +
2

r
Yr −� Tt = Trr +

2

r
Tr +� + L. (10)

Of course, the same equations hold in the limiting case when the solid has no heat capacity,
µ = 0, as they would do if it was simply not present. At the opposite extreme, in the limiting
case when τ → 0 the gas and solid temperatures are always equal, θ ≡ T . Rescaling time so
that t = (1 +µ)t, the equations for the scaled mass fraction Y and temperature T now become

Le

1 + µ
Yt = Yrr +

2

r
Yr −� Tt = Trr +

2

r
Tr +� + L (11)

which shows that the model is then equivalent to the model with no solid present, but with the
Lewis number replaced by Le/(1 +µ). This is because, when τ = 0, the specific heat capacity
CP is effectively increased by the factor 1 +µ. The heat capacity of the solid augments that of
the gas and, when µ is very large, the ‘effective’ Lewis number Le/(1 + µ) would tend to be
very small. To some extent therefore, even when τ �= 0, the presence of the solid should have
an effect similar to that of reducing the Lewis number of the gas, at least in some cases.

2.3. Flame-sheet model

Assuming that there is a reaction sheet around a location r = R(t), we can focus attention on
a suitable inner region by rescaling such that

r = R + β−1ξ Y = β−1ψ T = 1− β−1φ. (12)

The leading-order equations for ψ(t, ξ) and φ(t, ξ), as β →∞, become

ψξξ = φξξ = 1
2ψe−φ. (13)
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Stability of a spherical flame ball in a porous medium 517

In the burnt gases where r < R, the value of ψ should approach zero as β → ∞, while
gradients in temperature will be relatively small (also tending to zero as β → ∞). Suitable
boundary conditions are therefore

lim
ξ→−∞

(ψ, φξ ) = (0, 0) (14)

from which the partial solution

φ = φ̂ + ψ ψ2
ξ = e−φ̂

(
1− (1 + ψ)e−ψ

)
(15)

can be obtained, with φ̂ = φ̂(t). A further integration would determine the spatial structure
of ψ(t, ξ) and φ(t, ξ), modulo arbitrary translations in ξ , parametrized by the time-dependent
function φ̂(t).

In terms of the outer variables, Y and T , this solution has the form

Y + T = T̂ + O(β−2) Y 2
r = eβ(T̂−1)

(
1− (1 + βY)e−βY

)
+ O(β−1) (16)

which can only be asymptotically valid if r = R +β−1ξ tends to R as β →∞, thus providing
matching conditions for the solution of the outer problem if it is also assumed that 1� |ξ | � β.
By suitably selecting the value of R, this leads to the following jump conditions in the values
and gradients of Y and T across the location r = R±:

[T ] = [Y ] = Y = 0 [Yr ] = −[Tr ] = eβ(T−1)/2 (17)

evaluated at the flame sheet r = R. Higher-order effects have been neglected in writing out
these jump conditions. Away from the flame sheet, the reaction rate term is negligible so that
for r �= R the equations to be satisfied are

LeYt = Yrr +
2

r
Yr

Tt + µθt = Trr +
2

r
Tr −

{
b/β if r < R

a2T/β2 if r > R

τθt = T − θ
lim
r→∞

(
Y, T , θ

) = (1, 0, 0
)

(18)

at least in the case of the linearized model for heat loss. In this form of the model, the different
heat-loss terms are now explicitly distinguished between the burnt region (r < R) and the
unburnt region (r > R).

In principle, the jump conditions (17) can be extended to higher order, involving other
effects such as the nonlinear form of the exponent in (8), curvature, propagation speed dR

dt and
temperature gradient in the burnt gas [18]. However, these effects would normally make little
overall difference and so we shall proceed using the jump conditions as given in equations (17)
to represent the entire effect of the chemistry, taking them to be correct to all orders as β →∞.

2.4. Stefan’s law for heat loss

A dimensionless model for heat loss that keeps more closely to the spirit of Stefan’s radiative
law, applied uniformly throughout the medium, arises if the dimensional heat loss expression
(2) is written in dimensionless form as

L(T ) = − b

β

(
T 4 +

4Ta

γ Tf
T 3 +

6T 2
a

γ 2T 2
f

T 2

)
− a2

β2
T with b = β εl

2
s

λ
(Tf − Ta)

3. (19)
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518 A A Shah et al

Note that the font used here for the symbol b is distinct from that of the parameter b used
in the models (8) and (18). It can also be noted that this is the exact dimensionless form of
(2), with no further approximation, and that the definition of b is very similar to that of b in
(7). The two should therefore have similar magnitudes, given approximately by βεl2s T

3
f /λ

whenever T 4
f 
 T 4

a . When this is true, the nonlinear terms in the expression (19) for L(T )
are also dominated by the fourth power of T . If the other nonlinear terms are neglected, then
an alternative and relatively simple model equation for the gas temperature becomes

Tt + µθt = Trr +
2

r
Tr − bT 4/β − a2T/β2 (20)

which would be valid for any value of r �= R, the same equation applying in both burnt and
unburnt gases. In cases where the temperature change through the flame ball is not large, a
linear heat loss law would be suitable everywhere. This would correspond to having b = 0.

2.5. Numerical solutions

As well as the asymptotic studies that are outlined in section 3, equations (8) were solved
numerically. In order to do this on a finite grid, the transformation r = β tan(x/β) was used
so that only a finite domain 0 � x � π

2 β needed to be discretized. This was done using a
standard finite-difference approach, with continuation, for which Newton iteration was found
to produce converged results with 8000 evenly spaced grid points, even when taking β = 100.
Eigenvalues for the linear stability of steady solutions were calculated using a shifted inverse
power method. An additional modification, to allow the cold-boundary cut-off to be described
more smoothly than it would be using a Heaviside function, was made by defining

� = max
{

1
2β

2Y
(
eβ(T−1)/3 − e1−β(2T +1)/3

)3
, 0
}
. (21)

This is practically the same as the definition in (8), having exactly the same asymptotic
behaviour for large β with T > O(β−1), but it is continuously differentiable so that it is
more amenable to numerical solution using Newton iteration. The linearized heat loss model
in (8) was rewritten as

L(T ) = −b/β + a2Tβ2r4Y 4

1 + β4r4Y 4
(22)

which acts as an effective switch between the heat-loss definitions in the burnt and unburnt
gases, while also being continuously differentiable. Numerical solutions were only examined
for the linearized heat loss model of equations (8) and not for the continuous, nonlinear heat
loss law in (20). Finally, the radius R was estimated in any numerical solution using one or
both of the alternative formulae

RI =
∫ ∞

0

dr

1 + β4r4Y 4
and RF = r(1− Y ) for T � β−1 (23)

the latter being more suitable in completely steady solutions for any value of Y that is not too
close to zero or unity, say a value of around 1

2 .

3. Flame balls and their stability

We can now examine the effect on spherical flame balls of the presence of an inert solid that
contributes only through an exchange of heat with the reacting gas.
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Stability of a spherical flame ball in a porous medium 519

Figure 1. The range of values of the heat-loss parameters a and b within which solutions exist,
namely 0 � a � ac(b), with b � 0.

3.1. Linearized heat loss.

We shall firstly examine the model (17) and (18) in which the heat loss term L(T ) is linearized
and assigned the constant value b/β in the burnt gas. The steady solution is a natural starting
point for this.

3.1.1. Steady solutions. If there is no time dependence, then we can immediately note that
the solid and gas temperatures are the same, θ ≡ T . The model (18) is then precisely the same
as it would be if there were no solid phase present at all, namely, for r �= R, with ∂t ≡ 0

Yrr +
2

r
Yr = 0 Trr +

2

r
Tr =

{
b
/
β if r < R

a2T
/
β2 if r > R

(24)

along with the jump conditions at r = R and the conditions at infinity

[T ] = [Y ] = Y = 0 [Yr ] = −[Tr ] = eβ(T−1)/2 lim
r→∞

(
Y, T , θ

) = (1, 0, 0
)
. (25)

Steady solutions in which R(t) ≡ S have the form

Y = Y0(r) =
{

0 if r < S

1− S/r if r > S

θ = T = T0(r) =


T̂ +

b

β

r2 − S2

6
if r < S

T̂
S

r
ea(S−r)/β if r > S

(26)
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520 A A Shah et al

Figure 2. Variations with a of steady radius S (left) and temperature (right), shown as β(1− T̂ ),
at fixed values of b between 0 and 3/e. The small + symbols are numerical results calculated for
b = 0 and be = 1 with β = 100. The lower broken curve follows the critical path a = ac(b),
corresponding to G = 1 in figure 5 and the upper broken curve corresponds to G = 0. The lower
dotted curve corresponds to G = 1 in figure 7 and the upper dotted curve corresponds to G = 0.

satisfying the continuity conditions, [T ] = [Y ] = Y = 0, at r = S and the conditions at
infinity. The condition that [Yr ] = −[Tr ] leads to

T̂ = 1− 1
3bS

2/β

1 + aS/β
= 1− β−1

(
aS + 1

3bS
2
)

+ O(β−2). (27)

Since T = T̂ at r = S, the condition [Yr ] = eβ(T̂−1)/2 then leads to

S = exp
(

1
2aS + 1

6bS
2
)

+ O(β−1)

or
β
(
1− T̂ ) = ln S2 = aS + 1

3bS
2 + O(β−1).

(28)

Solutions exist, as β → ∞, for a � ac(b), or equivalently b � bc(a); a path of fold
bifurcations, at which aS + 1

3bS
2 is tangent to ln S2, terminates the solutions. The critical

boundary a = ac(b), or b = bc(a), is provided by the curve

a = 2
lnR2

c − 1

Rc
∈ [0, 2/e] b = 3

2− lnR2
c

R2
c

∈ [0, 3/e] for Rc ∈ [e1/2, e]

(29)

parametrized by the critical radius of a steady flame ball S = Rc that is found on the critical
boundary. The range of values of (a, b) within which solutions exist is shown in figure 1.
Within this range there are two solutions arising at two different radii. One of these solutions
moves away to infinity as both a and b tend to zero, leaving only a solution with S = 1 and
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Stability of a spherical flame ball in a porous medium 521

Figure 3. Variations with b of steady radius S (left) and temperature (right), shown as β(1− T̂ ),
at fixed values of a between 0 and 2/e. The small + symbols are numerical results calculated for
a = 0 and ae = 3

2 with β = 100. The lower broken curve follows the critical path a = ac(b),
corresponding to G = 1 in figure 5 and the upper broken curve corresponds to G = 0. The lower
dotted curve corresponds to G = 1 in figure 7 and the upper dotted curve corresponds to G = 0.

T̂ = 1. These are the dimensionless radius and temperature of a Zeldovich flame ball [1]
without any heat losses.

Figures 2 and 3 illustrate the dependence of radius and temperature on a at fixed values
of b, and on b at fixed values of a, respectively. These figures also present some numerically
calculated steady flame radii at a = 0, ae = 3

2 , b = 0 and be = 1, marked by the small +
symbols. The values plotted were all calculated for a Zeldovich number ofβ = 100. Normally,
a Zeldovich number of β = 10 or 20 is considered reasonably large, and yet, even for such a
large value of β, the numerical results deviate from the corresponding asymptotic curves by
about 10%.

Table 1 gives an idea of the dependence of solutions on β, by looking at the two main fold
bifurcation points for b = 0 and for a = 0. At β = 50 and 100 these are still relatively far from
the asymptotic value when β = ∞, although certainly approaching it as β increases. This
demonstrates that the asymptotic solutions may not be all that good at describing solutions
in which β is only moderately large. In our calculations, the values of a and b at the fold
bifurcations were found to arise at a distance of the order of one away from their asymptotic
values when β ≈ 30. The fold bifurcation at a = 0 was found to disappear altogether
(implying no multivaluedness of solutions) when β was between 20 and 30 in value, and the
same probably happens for the bifurcation at b = 0, although this was not investigated.

This paper is mainly concerned with investigating flame balls in the asymptotic limit
β →∞ and so the remaining numerical results that are to be presented were all calculated by
taking β = 100.
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522 A A Shah et al

Table 1. Numerically calculated values of a (with b = 0) and b (with a = 0) at the fold bifurcation
points for β = 50 and 100. The values shown for β = ∞ are the corresponding asymptotic result.

β a (at b = 0) b (at a = 0)

50 0.8102 1.3532
100 0.7716 1.2129

∞ 0.7358 1.1036

3.1.2. Spherically symmetric stability. We can now examine the linear stability of the steady
solutions (26), to spherically symmetric disturbances, by writing

R = S + eλt T = T0 + eλt+(r)

Y = Y0 + eλty(r) θ = T0 + eλt-(r)
(30)

taking eλt to be infinitesimally small, for which the equations to be satisfied are

y ′′ +
2

r
y ′ = λLey

+′′ +
2

r
+′ = λ

(
1 +

µ

1 + λτ

)
+ +

{
0 if r < S

a2+/β2 if r > S

(1 + λτ)- = +
lim
r→∞

(
y, +,-

) = (0, 0, 0
)

(31)

with y ≡ 0 for r < S. The jump conditions at r = S±

[T ′0 + +] = [Y ′0 + y] = 0 [Y ′′0 + y ′] = −[T ′′0 + +′] = β

2S

(
T ′0 + +

)
(32)

are arrived at by Taylor expansion of the conditions (17) about R = S. It can be noted from
the solutions for a steady flame ball and/or equations (18) that we also have

[Y ′0] = −[T ′0] = 1/S [Y ′′0 ] = −2/S2 [T ′′0 ] = 2/S2 − b/β + a2T̂ /β2 (33)

so that

[+] = −y(S+
) = 1/S b/β − [+′] + O(β−2) = y ′(S+

) = 2

S2
+
β

2S

(
T ′0 + +

)
(34)

with errors that are at most of order β−2.
Defining

δ2 = λ +
µλ

1 + λτ
κ2 = λ +

µλ

1 + λτ
+
a2

β2
ν2 = λLe (35)

the equations for y, + and - can be solved to give

y =


0 if r < S

ŷ
S

r
eν(S−r) if r > S

+ = (1 + λτ)- =


+̂b
S

r

sinh(δr)

sinh(δS)
if r < S

+̂a
S

r
eκ(S−r) if r > S

(36)
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Stability of a spherical flame ball in a porous medium 523

provided we assume, without loss of generality, that Re(ν) � 0 and Re(κ) � 0. The various
jump conditions now reveal that

+̂a − +̂b = −ŷ = 1/S

+̂a(S + κS2) + +̂b
(
δS2 coth(δS)− S) +

b

β
S2 = −ŷ(S + νS2) = 2 + 1

6bS
2 + 1

2βS+̂b
(37)

after ignoring terms that are of the order of β−2 or less. From this it can be seen that

ŷ = − 1

S
+̂a = +̂b +

1

S
=
δ coth(δS) + ν − b

β
S

δS coth(δS) + κS
= β − 2− 1

3bS
2 + 2νS

βS
(38)

revealing the dispersion relation

β(κ − ν) = −bS +
(
2 + 1

3bS
2 − 2νS

)(
δ coth(δS) + κ

)
(39)

or, substituting for δ, κ and ν(
λ +

µλ

1 + λτ
+
a2

β2

)1/2

− (λLe
)1/2 = −bS/β + β−1

(
2 + 1

3bS
2 − 2(λLe)1/2S

)
×
((
λ +

µλ

1 + λτ

)1/2

coth

((
λ +

µλ

1 + λτ

)1/2

S

)
+

(
λ +

µλ

1 + λτ
+
a2

β2

)1/2)
(40)

in which the square roots on the left must be assumed to have a non-negative real part for the
eigenfunctions to be bounded at infinity. It can be noted that no assumption that would restrict
the size of µ has been invoked in arriving at this result. We now need to solve the dispersion
relation (40) to determine all possible eigenvalues λ.

Large eigenvalues. Considering firstly values of λ that may be large as β → ∞ produces
the leading-order form of the dispersion relation, for any value of µ � 0,(

λ +
µλ

1 + λτ

)1/2

= β Le1/2 − [1 + µ/(1 + λτ)]1/2

4Le1/2S
(41)

in which the heat loss parameters a and b play no part. In this form, the dispersion relation
allows for the possibility that the dimensionless heat-transfer time τ could be small, having
λτ = O(1). Since λ1/2 has positive real part in this formula, it follows that large values of λ
appear only if Le > 1 + µ/(1+λτ). There are three distinct ranges of solution, depending on
the magnitude of τ :

λ =



β2

(
Le1/2 − (1 + µ)1/2

)2

16LeS2(1 + µ)
for Le > 1 + µ τ = o(β−2)

β2

(
Le1/2 − [1 + µ/(1 + λτ)]1/2

)2

16LeS2[1 + µ/(1 + λτ)]
for Le > 1 +

µ

1 + λτ
τ = O(β−2)

β2

(
Le1/2 − 1

)2

16LeS2
for Le > 1 τ 
 β−2µ.

(42)

In general, these formulae show that if τ is of the order of β−2, then positive and order β2 values
of λ arise for large enough values of the Lewis number, namely for Le > Lec(µ, β

2τ, S). The
threshold Lewis number Lec decreases from 1 + µ, as β2τ → 0, to unity, as β2τ → ∞, and
increases to infinity if µ increases such that µβ−2/τ →∞.
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524 A A Shah et al

Thus it can be seen that for values of τ that are small compared with β−2, the system
obtains a large positive eigenvalue only if Le > 1 + µ. If τ increases, the threshold value of
the Lewis number, above which a strong instability appears, decreases to unity. Large positive
eigenvalues do not arise at lower Lewis numbers. Moreover, if µ is increased to large enough
values, and in particular if it increases such that µ/τ 
 β2, then no large unstable eigenvalue
is found at any order-one Lewis number.

Order-one eigenvalues. Assuming that λ is of the order of one, provides the leading-order
form of the dispersion relation, also for any value of µ � 0(

λ +
µλ

1 + λτ

)1/2

− (λLe
)1/2 = 0 (43)

in which, once again, the heat loss parameters a and b do not appear. Provided τ �= 0 and
τ �= ∞, this equation has only one non-zero root

λ = 1 + µ− Le

τ(Le− 1)
(44)

which is positive if 1 < Le < 1 + µ for any order-one value of τ > 0. Thus, for τ �= o(1),
µ/τ = O(1) and Le > 1, the flame ball is always unstable, having at least one positive root
and possibly also a large positive root, regardless of the values of a and b.

Only if τ/(1+µ) = O(β−2) does the threshold for instability, with a large growth rate, rise
above Le = 1. We can see that, for τ/(1+µ)
 β−2 stability is only possible for Le < 1, while
for large values of µ, with µ/τ 
 β2, there are no large or order-one unstable eigenvalues
for any order-one Lewis number. Because we have already covered the cases for large and
order-one values of λ, the least stable eigenvalue would then have to be small as β →∞.

Small eigenvalues. When eigenvalues are small, an inspection of equation (40) reveals that λ
should be of the order of β−2. The leading-order form of the dispersion relation, as β →∞,
is then (

λ +
µλ

1 + λτ
+
a2

β2

)1/2

− (λLe
)1/2 = 2− 2

3bS
2

βS
(45)

provided only that (1 + µ)λ = o(1). As will be seen, roots of the dispersion relation in the
form (45) all satisfy (1 + µ)λ = O(β−2), so that the analysis remains valid for any value of
µ � 0.

The case a = 0. Considering firstly the situation in which a = 0, it is convenient to define

λ = ω/β2

1 + µ
2 = Le

1 + µ
(46)

which leads to the form of the dispersion relation

ω1/2(1− 21/2) = 2− 2
3bS

2

S
(47)

to leading order as β →∞, provided only that τ � β2. The right-hand side of this dispersion
relation changes sign where bS2 = 3; this happens at the fold bifurcation in the curve for
a = 0 in figure 3. On this curve, the right-hand side of equation (47) is positive (bS2 < 3) for
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Stability of a spherical flame ball in a porous medium 525

1 � S <
√

e, corresponding to the branch of smaller flame balls, and negative (bS2 > 3) for
S >
√

e, corresponding to larger flame balls.
It should be remembered that ω1/2 and (ω2)1/2, which represent scaled versions of κ and

ν, must have non-negative real parts for solutions to arise. This means that an eigenvalue λ of
the order of β−2 appears only if bS2 < 3 with 2 < 1 or bS2 > 3 with 2 > 1. The eigenvalue
is real and positive, indicating that smaller flame balls (bS2 < 3) are unstable for Le < 1 + µ
and larger flame balls (bS2 > 3) are unstable for Le > 1 +µ. Since we have already seen that,
at least for τ 
 β−2, stability is only possible for Le < 1, it follows that, when a = 0, the
larger branch of flame balls is stable for Le < 1.

The case a �= 0. Now considering the more general situation in which a �= 0, it is convenient
to define

λ = 3a
2/β2

1 + µ
2 = Le

1 + µ
G = 2− 2

3bS
2

aS
(48)

which leads to the form of the dispersion relation(
1 +3

)1/2 − (32)1/2 = G (49)

again provided only that τ � β2. Note that, as in the case a = 0, the right-hand sideG of this
dispersion relation changes sign where

bS2 = 3 or aS = ln S2 − 1 (50)

both of which are plotted as the upper broken curves in figures 2 and 3. The eigenvalues can
be determined as solutions of the quadratic equation for 31/2

(1− 2)3− 221/2G31/2 + 1−G2 = 0 or 31/2 = 21/2G±√G2 + 2− 1

1− 2 (51)

requiring, at least, that G � 0 for 2 < 1 so that 31/2 has a non-negative real part. The
eigenvalue 3 itself has a negative real part (implying stability) when Im(31/2) > Re(31/2).

For Le � 1 + µ (heavy reactants), equivalent to 2 � 1. As has already been shown, there
is a large positive eigenvalue for Le > 1 + µ so that this range of Lewis numbers is unstable
regardless of the existence or not of any small eigenvalues. It is more relevant therefore to
consider 2 < 1. All the same, positive values of 3 are found for all G < 1, also making this
region unstable to a disturbance with a weakly positive eigenvalue. If G = 1 then 3 = 0.
For G > 1 there are no solutions, real or complex, for which (1 + 3)1/2 and (32)1/2 have a
non-negative real part.

For Le < 1 + µ (light reactants or µ 
 1). For 2 < 1, at least one positive real value of 3
is found for all

G � (1− 2)1/2 (52)

two real values of 3 � 0 being found in the range

(1− 2)1/2 < G � 1. (53)

In the range (
1− 2
1 + 2

)1/2

< G < (1− 2)1/2 (54)
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526 A A Shah et al

complex conjugate pairs of values of3 are found with a positive real part, while smaller values
of G than the lower bound of this range produce non-positive real parts for 3. Thus small
eigenvalues become stable for

G <

(
1− 2
1 + 2

)1/2

=
(

1 + µ− Le

1 + µ + Le

)1/2

. (55)

The right-hand side of this inequality is in the range [0, 1) and increases towards unity as the
solid heat capacity µ increases or as the Lewis number Le decreases towards zero.

Figure 4. Variation of the instability parameter G with a at fixed values of b (left) and with b
at fixed values of a (right). The lower branches of values of G, at fixed a and b, correspond to
branches of solution with larger radii S and larger values of β(1− T̂ ) in figures 2 and 3.

Ranges of stability. To summarize, if β−2 � τ � β2 then stability arises for a �= 0 when

Le < 1 and G <

(
1 + µ− Le

1 + µ + Le

)1/2

. (56)

If τ = O(β−2) then stability arises for a �= 0 when

Le < Lec(µ, β
2τ, S) and G <

(
1 + µ− Le

1 + µ + Le

)1/2

(57)

where 1 � Lec(µ, β
2τ, S) � 1 + µ, with Lec(µ, 0, S) = 1 + µ and Lec(µ,∞, S) = 1. It is

probably unrealistic to encounter such small heat transfer times in practice, so that the former
pair of criteria above is likely to be the most practical set of conditions for µ = O(1). When
µ is large, and µ/τ 
 β2, the value of Lec becomes infinite so that only the condition G < 1
is needed to determine stability.

In order to determine where different solutions are stable or unstable, we must now relate
the parameter G to the values of a, b and S. From (28) and (48) we have the pair of relations

G = 2− 2
3bS

2

aS
with aS = ln S2 − 1

3bS
2 (58)

which can be used to parametrize the relationship between G and a at fixed values of b or
between G and b at fixed values of a. Both forms of variation are plotted in figure 4. In
practice, we have seen that stability arises only for G < Gs =

(
1−2
1+2

)1/2
< 1. Figure 4 shows

that this tends to occur more readily towards smaller values of a and larger values of b. The
flame-ball solution on the branch having smaller values of S is always unstable since it gives
G > 1 in all cases.
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Stability of a spherical flame ball in a porous medium 527

Figure 5. Contours of fixed G between zero and unity in the space of heat loss parameters
(a, b). Solutions for Le < 1 and µ � 0 are stable to spherically symmetric disturbances only for

G <
(

1+µ−Le
1+µ+Le

)1/2
, which happens on the branch having larger values of S.

The formulae

a = 2
ln S2 − 1

S(2−G) and b = 3
2−G ln S2

S2(2−G) (59)

parametrize the relationship between a and b at fixed values of G. It can be noted that the
case G = 1 corresponds exactly to the limit of existence of solutions a = ac(b) provided by
equations (29). Based on these formulae, figure 5 provides the range of values of a and b for
which stable solutions are possible when Le < 1. Solutions for Le < 1, on the branch having
larger values of S, are stable whenG < Gs, with 0 � Gs � 1, so that the contour forG = Gs

determines the limit of the range of values of a and b within which stable solutions can occur.
To illustrate the dependence of stability on the steady radius S, the broken curves in figures 2
and 3 show the paths of the limiting cases at which G = 0 and 1. Flame balls larger than the
radius at which G = 0 are always stable for any Le < 1, while those that are smaller than the
radius at which G = 1 are always unstable.

Because the paths G = 1 and a = ac(b) are the same, based on the linearized model
for heat loss in equations (18) that we are currently considering, the entire range of larger
flame-ball solutions becomes stable for all possible values of a � ac(b) only as µ → ∞ or
Le→ 0, in which caseGs → 1. For µ <∞ and Le > 0 a path of constantG betweenG = 0
and 1 divides stable from unstable flame balls.

In figure 6 we present the eigenvalues λ that arise in a case for which G = 1/
√

3. The
value of 2 at which λ has a real part of zero is then exactly 1

2 with λ becoming real at 2 = 2
3 . A

numerical calculation on the larger branch of flame balls for β = 100, with be = 1, a = 0.48
and µ = 0, gives almost exactly the same dependence of λ on 2, even though leading-order
asymptotic solutions do not actually exist, as β →∞, at these values of a and b; at this point,
a > ac(1/e) ≈ 0.449 14. In order to find G = 1/

√
3 with be = 1, a value of a ≈ 0.436 19

would be expected in the limit as β →∞.
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528 A A Shah et al

Figure 6. Real and imaginary parts of the eigenvalue λ for a case in which G = 1/
√

3 (leading to
stability when 2 < 1

2 ). The imaginary part is given by the dotted curve. The small + signs denote
numerically calculated eigenvalues for β = 100 with be = 1, a = 0.48 and µ = 0, which happens
to have almost the same point for marginal stability.

Nevertheless, the dependence of the numerical eigenvalues on 2 is remarkably well
predicted. The difference in the values of a and b used in these numerical calculations from
values that would give G = 1/

√
3 as β → ∞ is entirely consistent with the differences,

of the order of 10%, seen in figures 2 and 3. This diagram demonstrates that the stability
characteristics of the numerical solutions that are found for β = 100 (and by extension any
other large enough value of β) at given values of a and b are remarkably well predicted by the
dispersion relation (49) for a value of G that is found at some nearby values of a and b.

3.2. Stefan’s law for heat loss

3.2.1. Steady solutions. When the equation involving nonlinear radiation, distributed over
all values of r , is satisfied, namely

Tt + µθt = Trr +
2

r
Tr − b

β
T 4 − a2

β2
T (60)

a steady asymptotic solution for the solid and gas temperatures as β →∞ becomes

θ = T = T 0(r)

∼


T̂
S

r

sinh(ar/β)

sinh(aS/β)
+

(
b

β
T̂

4 − 2b2

3β2
T̂

7
S2

)
r2 − S2

6
+
b2

β2
T̂

7 r
4 − S4

30
if r < S

T̂
S

r
ea(S−r)/β +

b

2β
T̂

4
(
S4

r2
− S2

)
e4a(S−r)/β if r > S.

(61)

This solution is exact if b = 0, and can be arrived at by iteration starting from the solution for
b = 0. As written here, errors are of the order of (b3 + a2b)β−3 for r < S and, at most, of the
order of (b2 + ab)T 0β

−2, for all values of r > S.
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The jump conditions [Yr ] = −[Tr ] = eβ(T̂−1)/2, evaluated to order β−1, then yield

β
(
1− T̂

) = ln S2 = aS + 4
3 bS2 + O(β−1) (62)

which is completely analogous to the previous result (28) for constant heat losses in the burnt
gas and linear losses in the unburnt gas. If the earlier parameter b is replaced by 4b, for
values of a and b in the appropriate range a � ac(4b), then it provides the same range of
steady solutions, with asymptotically the same values of S and T̂ . In the case when b = 0 the
solutions are also asymptotically the same as those of the model (18) with b = 0, in spite of
the fact that linear heat losses are included in the model (60) for r < S. In this region, these
linear losses produce a gradient Tr for r < S that is only of the order of β−2. They therefore
contribute nothing to the solution to leading order.

3.2.2. Spherically symmetric stability. In proceeding to consider the linear stability of the
solution (61) we suppose, as before, that T = T 0 + eλt+(r). The linearized equation to be
satisfied by +(r) = (1 + λτ)-(r) can then be taken as

+′′ +
2

r
+′ =

(
λ +

µλ

1 + λτ
+
a2

β2

)
+

+
4b

β

(
1− ln S6

β

)
+ ×


1 for r < S

S3

r3
e3a(S−r)/β for r > S.

(63)

As before, the solution for y(r) is

y =


0 if r < S

−1

r
eν(S−r) if r > S

(64)

and, because heat losses are continuous across r = S for the model (60), we now have

−[T ′0] = 1/S [T ′′0] = 2/S2. (65)

Hence the jump conditions, equivalent to (32), to be satisfied by + become

[+] = 1/S − [+′] = 1

S2
+
ν

S
= 2

S2
+

b

6
+
β

2S
+(S−) + O(β−1) (66)

since y ′(S+) = S−2 + ν/S.
It remains to solve for + and to apply these jump conditions. The solution for r < S is

straightforward, namely

+ = +̂b
S

r

sinh(δr)

sinh(δS)
with δ2 = λ +

λµ

1 + λτ
+

4b

β

(
1− ln S6

β

)
+
a2

β2
. (67)

Note that we have redefined the value of δ from (35) although the parameter still applies to
the solution for + where r < S. The solution for r > S is less straightforward in view of the
non-constant coefficient. We need to solve

+′′ +
2

r
+′ =

(
4 2

β

e−3ar/β

r3
+ κ2

)
+ with 4 2 = 4bS3

(
1− ln S6

β

)
e3aS/β (68)

where κ is defined in (35). This equation appears to have no standard solution for general
values of κ , 4 and a/β. However, we can still proceed in the following way.
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Recalling that the large and order-one unstable eigenvalues, for Le > 1, that arose in
the previous model with constant heat loss in the burnt gas, did not depend on the heat loss
parameters, we can expect the same to be true in this case. Indeed, when λ � O(1) the terms
containing a and b are negligible in the differential equation (63) for the eigenfunction +(r).
Exactly the same eigenvalues (to leading order as β →∞) should therefore arise in this case.
There is no real need to repeat the analysis for this.

On the other hand, we can also anticipate that small eigenvalues, relevant only for Le < 1,
will be of the order of β−2 as before. We then find

+′′ +
2

r
+′ =

(
4 2

β

1

r3
− 4

2a

β2

3

r2
+
χ2

β2

)
+ where κ2 = χ2

β2
(69)

to order β−2 for r = O(1), provided τ � β2, as well as the form of the equation, rewritten for
large values of r

d2+

dz2
+

2

z

d+

dz
=
(
χ2 +

4 2

β2

e−3az

z3

)
+ with r = βz (70)

for z = O(1), also to order β−2. Asymptotic solutions of each of these equations as β →∞
are, respectively,

+ ∼ A
(

1

r
+
4 2

β

1

2r2
+
4 2a

β2
3

ln r + 1

r
+
4 4

β2

1

12r3
+
χ2

β2

r

2

)

+B

(
1− 4

2

β

ln r + 1

r
− 4

2a

β2
(ln r3 + 3)− 4

4

β2

ln r + 5
2

2r2
+
χ2

β2

r2

6

)
(71)

with errors that are of the order of Aβ−3 or Bβ−3 for r = O(1), and, after noting that + must
be bounded as z→∞
+ ∼ C e−χz

z
+ C

4 2

β2

(
e−(χ+3a)z

2z2
+

9a2

4χ

e−χzEi1(3az)

z

−
(
χ + 3a +

9a2

4χ

)
eχzEi1

(
(2χ + 3a)z

)
z

)
= C

(
1

z
− χ +

4 2

β2

1

2z2
+
4 2

β2
(χ + 3a)

ln z

z
+ O

(
z,
β−2

z

))
as z→ 0

(72)

involving errors that are of the order of Cβ−4 for z = r/β = O(1). In this result, the function
Ei1(z) =

∫∞
1 (e−zt /t) dt = − ln z− γ + z + O(z2) is the first exponential integral function and

γ is Euler’s constant. Written in terms of r , which is taken to be such that 1 � r � β, the
latter solution gives

+ = C
(
β

(
1

r
+
4 2

β

1

2r2

)
− χ + O

(
r

β
,

ln β

βr

))
(73)

which matches the solution (71) to the order of terms neglected only if

C = β−1A + O

(
ln β

β2

)
and B = −β−1χA + O

(
ln β

β2

)
. (74)

The asymptotic solution for order-one values of r > S is therefore

+ ∼ A
(

1

r
+
4 2

β

1

2r2
− χ
β

)
(75)
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Figure 7. Contours of fixed G between zero and unity in the space of heat loss parameters (a, b).
Solutions with distributed radiative losses for Le < 1 andµ � 0 are stable to spherically symmetric

disturbances only for G <
(

1+µ−Le
1+µ+Le

)1/2
.

with errors of the order of Aβ−2 ln β as β →∞.
The jump conditions (66) can now be used to deduce that

A

(
1− κS + 2

b

β
S2

)
− +̂bS = 1

A

(
1 + 4

b

β
S2

)
+ +̂b

(
δS2 coth(δS)− S) = 1 + νS = 2 + 1

6 bS2 + 1
2βS+̂b

(76)

after using (68) and (69) to substitute for4 andχ , and neglecting terms of the order of β−2 ln β
or less. It can thus be seen that

+̂b =
ν − κ − 2 b

β
S − κνS + 2 b

β
νS2

(1− κS + 2 b
β
S2)δS coth(δS) + 2 b

β
S2 + κS

= 2νS − 2− 1
3 bS2

βS
(77)

leading to the dispersion relation, for λ = O(β−2)(
λ +

µλ

1 + λτ
+
a2

β2

)1/2

− (λLe
)1/2 = 2− 5

3 bS2

βS
(78)

after neglecting terms that are of the order of β−2 ln β, remembering that for the small
eigenvalues that we are examining (with Le < 1) the values of ν and κ are themselves of
the order of β−1. From (67) it can be seen that δ is of the order of β−1/2 but its influence on the
dispersion relation is still only to provide a disturbance that is of the order of δ2/β = O(β−2).
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Ranges of stability. After comparing equations (45) and (78), it can be seen that stability
arguments follow in the same way as they did for the model (17) and (18) with G now defined
(in place of the previous function G; note the change in font) as

G = 2− 5
12bS

2

aS
with ln S2 = aS + 1

3bS
2 writing b = 4b (79)

in which we have used the symbol b instead of 4b so that the analogy with (and difference
from) the previous results can be seen more clearly. Flame balls are now found to be stable for
Le < 1 with G < Gs =

( 1+µ−Le
1+µ+Le

)1/2
. It can immediately be noted that G > G for equivalent

flame-ball solutions, except when b = b = 0. It follows that flame balls are found to have a
smaller range of stability when a more distributed nonlinear model for radiative heat loss is
applied. Indeed, figure 7 shows the range of values of a and b (or 4b) over which G varies
between zero and unity. No flame balls are stable for G > 1 and it can be seen that the boundary
where G = 1 is now distinct from the path of fold bifurcations at a = ac(4b), except where
b = 0. The paths at which G = 0 and 1 are shown as dotted curves in figures 2 and 3. Except
at b = b = 0, these curves are found at larger steady radii S than the corresponding broken
curves where G = 0 and 1.

Broadly speaking therefore, the model with nonlinear distributed radiative losses moves
the point at which flame balls become stable towards larger values of the steady radius S, above
the path of fold bifurcations that separates larger from smaller solutions.

4. Conclusions

For a model describing flame balls in a porous solid, in which the solid serves only as a
reservoir of heat and contributes nothing to conductive or radiative effects, the steady solutions
themselves are exactly the same as they would be if no solid were present. The solid simply
maintains the temperature that the gas would have in its absence. Although it certainly absorbs
heat from the gas in reaching this state, it simply copies the gas temperature and does not
influence it in any way. Neither does this removal of heat from the gas cause a reduction
in gas temperature because the system is unbounded with an infinite reservoir of available
enthalpy. However, in unsteady solutions, the reservoir of heat absorbed by the solid does
make a difference, tending to stabilize steady flame balls, especially for Lewis numbers less
than unity.

The principal results of our asymptotic analysis of flame balls as β →∞, in the presence
of an inert solid matrix, are maintained over a very wide range of values of the heat transfer
time τ , between gas and solid. Provided only that β−2 � τ � β2 and µ = o(β2τ), we
find that all flame balls are unstable for Lewis numbers Le greater than one. For Le < 1 the
presence of the solid increases the range of stable flame balls exactly as if the Lewis number
Le had been reduced to Le/(1 + µ), at least to leading order as β → ∞. If µ increases to
the extent that µ 
 β2τ , then the system behaves just as if the Lewis number was reduced
to zero. All stable flame balls arise on the branch of solutions that has larger radii than those
found below the path of fold bifurcations.

The nonlinear radiative law is found to produce exactly analogous steady solutions (to
leading order as β → ∞) to those found with the linearized law, related only by having
b = 4b. Their stability is altered, however, in a way that narrows the range in which stable
flame balls can be found. The stabilizing effect of heat exchange with the solid matrix is still
present and serves to alter the effective Lewis number for stability, when Le < 1, in exactly
the same way. In both cases, lean reactants that are more diffusive than heat, can therefore
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Stability of a spherical flame ball in a porous medium 533

produce flame balls that are stabilized more readily (with lower diffusivities) because of the
exchange of heat with a solid matrix.

It can be recalled from equations (10) and (11) that Le/(1 + µ) would serve as the Lewis
number, in place of Le in a model without the presence of any solid, if the heat transfer time
τ were to be exactly zero. The eigenvalues that are found in the linear stability analysis
when Le < 1, are all small, of the order of β−2. Thus any transfer time of τ � β2 is
asymptotically small on the long time-scale of slow growth (or decay) of any eigenmode. It
is therefore effectively zero, providing a ready explanation for the stabilizing effect that has
been demonstrated.

On the other hand, for Lewis numbers that are greater than unity, Le > 1, the eigenvalues
are, in fact, typically very large, of the order of β2. The time-scale for growth of the most
unstable eigenmode is therefore very short, of the order of β−2 and τ would then have to be
very small indeed, of the order of β−2, to have any effect on the stability of a flame ball. If,
however, τ is very small, having τ � β−2, then the same stabilizing effect is found, effectively
replacing the Lewis number in all cases by Le/(1 +µ). Otherwise, if τ is less small, τ 
 β−2,
then the solid simply has no influence at all (to leading order) on the instability of flame balls
when Le > 1. Thus, as far as the stability of a steady flame ball is concerned, intermediate
heat transfer times, β−2 � τ � β2, behave as if τ was infinite for Le > 1 and zero for Le < 1.

The results hold for any value of µ � 0, including relatively large values, representing
situations in which the solid matrix takes up a larger volumetric heat capacity (or mass) than
the gas phase, while still having a small-volume fraction. Situations in which the solid phase
conducts and radiates, or possibly also moves itself, as may happen in the case of a dust
suspension, remain to be studied. This paper has focused only on the primary role of the
transfer of heat between the solid and gas.

Numerical results are found to require unusually large activation temperatures in order to
approach the asymptotic results. Values of β of about 20 are found to produce solutions that are
different both qualitatively and quantitatively from the asymptotic solutions for β = ∞. We
believe that our numerical solutions are reliable: at β = 100 the steady solutions are consistent
with the asymptotic results; the dependence of numerically calculated unstable eigenvalues
on the Lewis number is very close to that found asymptotically at nearby values of the heat
loss parameters a and b. Indeed, the numerical and asymptotic results support each other
when β is very large indeed (at least where our numerical investigations were carried out, with
the linearized model for heat loss). It may be possible, but seems unlikely without any clear
reason for it, that the numerics and asymptotics will agree better at smaller values of β for the
continuous, nonlinear radiative model. This remains to be investigated.

When β is only moderately large, the numerical results are surprisingly different from
their asymptotic counterparts. This raises some basic questions concerning the relevance of
the asymptotic predictions for one-step chemistry in describing actual flame balls, questions
that deserve further investigation; numerical simulations based on more detailed hydrogen
chemistry appear to be successful [7–19]. Apart from this caveat, the analysis in this paper
has served to clarify and extend what is known about flame balls, as seen from the asymptotic
perspective. Studies of this nature [8–12] have proven successful at describing experimental
observations of flame balls, and their behaviour, with good qualitative accuracy, at low enough
Lewis numbers.
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