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The number of people travelling around an urban area varies greatly throughout the course of a 

day, week or year. As a result, the daily timing of a flood event, relative to these mobility patterns, 

is a critical factor in how a flood affects the local population. However, population mobility is 

seldom considered in flood risk assessments, meaning an important aspect of risk is missed. This 

thesis aims to investigate how daily variation in the travelling population, pluvial flood onset 

timing, and pluvial flood magnitude, interact to cause spatial and temporal variation in disruption 

to journey times and destination disruption across the urban area of York, UK. The population has 

been considered in subgroups, aligned to age and economic activity characteristics as these have 

been shown to have distinctive temporal characteristics. In each chapter, commuters and/or 

primary school children are the population groups selected as exemplars for analysis. 

  This thesis comprises three analysis chapters. The first analysis chapter’s goal was to develop a 

framework for combining spatiotemporal population flow data with GIS network analysis, using 

journeys to primary schools as an example. The second analysis chapter examined how estimated 

flood-related commuter travel disruption was affected by different approaches to spatiotemporal 

population modelling. The third analysis chapter’s goal was to assess if the time of flood onset is 

more important than flood magnitude for disrupting commuter and school travel in York. Overall, 

this thesis has provided evidence that for sudden onset flooding scenarios, timing of flood onset is 

a greater determinant of hazard-related travel disruption than flood magnitude. The semi-

dynamic framework could be applied to other urban areas to model the effects of pluvial flood 

events, as it works at the scale of a local authority, and to other types of hazard which disrupt 

travel like landslides, earthquakes and fallen trees.  
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Chapter 1 

1 

Chapter 1 Introduction 

1.1 Project Background 

Flooding is a major global natural hazard with three billion people affected between 1990 and 

2010 (Smith, 2013). The attractiveness of floodplains for urban development  has resulted in a 

spatial concentration of populations in flood risk zones (Smith, 2013), with an estimated one 

billion people living in these environments (Di Baldassarre et al., 2013), amplifying flood risk 

exposure. Consequently, research into the environmental, social and economic aspects of flood 

risk is very active. Risk theory is used as a conceptual framework for assessing the consequences 

of hazards, such as floods, and is often represented through a risk equation (Equation 1.1).  

Risk = Hazard x Exposure x Vulnerability     Equation 1.1 

Whilst spatial aspects of risk are always considered, as natural hazards are inherently spatial 

phenomenon, the temporal properties of risk are often neglected in research (Aubrecht et al., 

2013a; Freire & Aubrecht, 2012). The temporal aspects of the risk equation are critical though as 

risk is not a static or ubiquitous concept and continually evolves. In particular, population 

movement is a dynamic factor at a local level (Dawson et al., 2011), as the interaction between 

where people are and the time of hazard onset can substantially change the exposure and 

vulnerability elements of risk (Freire et al., 2013; Aubrecht et al., 2014; Terti et al., 2015).  

In the past it had been difficult to capture temporal population dynamics due to the difficulties of 

knowing the location of individuals at a given point in time and the effect of daily, weekly and 

seasonal fluctuations on population counts (Stepanov and Smith, 2009). The decennial census 

provides invaluable demographic data, however it represents a static night time population 

distribution (Smith et al., 2014). Spatiotemporal population modelling has been developed to 

address this issue, including the Population24/7 project in the UK which developed a framework 

using the SurfaceBuilder247 model (Martin et al., 2015) and Dynapop in the USA (Aubrecht et al., 

2014). These can model daily, weekly and seasonal movements of the target population by 

combining census data with administrative data sets. The availability of temporally dynamic 

population data can be applied to enhance risk assessments. 

The UK government describes flooding from all types as the greatest natural hazard risk to the UK 

(Cabinet Office, 2011). An estimated 5.4 million properties, 1 in 6 of those in England, are at risk 

of flooding with an average damage of £1.1 billion a year (Priestley & Rutherford, 2016). The 

endangerment of life, physical and mental health issues, economic damage to property and 
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agricultural crops, loss of access to services and damaged transport networks are some of the 

consequences of flooding in the UK (Pitt, 2008; Cabinet Office, 2011). The government has 

committed to spending £2.5 billion between 2015-2020 on flood defences (Priestley & 

Rutherford, 2016). However, this capital investment is only expected to reduce flood risk by 5% 

overall (Priestley & Rutherford, 2016), so flood defences are not the only strategy which is 

required. Improving societal and infrastructure resilience and adapting to flood events is vital.  

Pluvial flooding is the type of flooding caused by heavy rainfall and is prevalent in urban areas 

where natural drainage is reduced by impervious urban surfaces (Li et al., 2018).  These events 

often occur over a short period of time (Melo et al., 2015), therefore reducing the ability for flood 

forecasts and warnings (Li et al., 2018; Boeing et al., 2019). Pluvial flood events in urban areas 

disrupt road networks as they can cause road links to be impassable for anywhere between a few 

hours to a couple of days, if there is insufficient drainage for the rainfall. These are small, localised 

events when compared to fluvial flooding and do not get as high profile news coverage. However, 

they can be significant for the affected communities. Within the context of climate change, it 

seems apparent that increasingly intense rainfall is very likely (Boeing et al., 2019), therefore 

increasing the likelihood of disruption to road users. Continued population increases and urban 

expansion also increase exposure of people and capital in at risk areas (Mechler & Bouwer, 2014). 

Therefore, methods for estimating the impact of pluvial flooding on road travellers is useful.  

For UK infrastructure, natural hazards, especially pluvial flooding, are one of the top risks to 

maintaining normal function (Cabinet Office, 2011; Carter, 2015). Road networks are one aspect 

of infrastructure which are affected by flooding. They are ‘lifelines’ as roads provide access to 

health services, economic opportunities and leisure activities (Chen et al., 2007; Platt 1995; 

Nyberg & Johansson 2013), so any closure can result in negative impacts for individuals, 

businesses and government. Figure 1.1 illustrates how a number of major roads (Motorways and 

A roads) coincide with the historical flood data layer (the combined maximum extents of all flood 

events since 1946). Whilst this does not necessarily mean that all these flood events resulted in 

road inundation, Figure 1.1 does show that large parts of the country’s major road networks are 

at risk of flooding. During emergency situations, road networks are often the primary means of 

evacuating an area and providing vital resources (Rogelis, 2015), therefore maintaining function is 

essential. When damaged it is a priority to repair road links swiftly, however, this comes at a great 

cost. For example the emergency repairs to roads following Storms Desmond and Eva (2015) cost 

£40 million (Hankin et al., 2016).  
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Figure 1.1 Map showing the Major Road Network in England (A roads and Motorways) compared 

to the historic flood extent map. Contains public sector information licensed under the Open 

Government Licence v3.0. 
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Flooding on the roads can affect a greater geographic area and population than the footprint of 

the flood itself due to the restrictions on travel and congestion. The 2007 flooding in 

Gloucestershire trapped up to 10,000 people overnight in their cars as the M5 and other 

surrounding roads flooded and there were no alternative routes. In terms of economic 

consequences, it is estimated the summer 2007 floods caused £674 million in damage to critical 

infrastructure, with a knock-on effect of £4bn in damage to the economy overall (Pitt, 2008; 

Cabinet Office, 2011). There are numerous examples of recent events which have negatively 

affected national infrastructure including the 2007 summer floods, 2009 Cumbrian Floods, 

2013/14 winter floods in the South West and the 2015 winter floods in the North of England 

(Cabinet Office, 2011).  

1.2 Statement of the Research Problem 

As described in Section 1.1, the risk of flooding affecting road travel is widespread and the 

number of people travelling around urban areas varies greatly throughout the course of a day, 

week or year. As a result, the daily timing of a flood event, relative to these mobility patterns, is a 

critical factor in how a flood affects the local population. The dynamic nature of this problem 

increases the complexity of modelling the effects, and population mobility is seldom considered in 

flood risk assessments. Another source of complexity is that the conceptualisation of risk itself 

(Equation 1.1) should consider the spatial and temporal dynamics of each of its constituent parts. 

This thesis will attempt to encapsulate these complex spatial and temporal dynamics under one 

framework to further the development of spatiotemporal risk assessments for disruption to road 

networks. 

The case study of pluvial flooding in York, UK has been chosen for the development of the 

spatiotemporal risk analysis framework, described in more detail in Section 4.1.1. Pluvial flooding 

has been chosen as the temporal scale of these events is short and they often occur with little 

pre-warning, meaning they are suited towards analysing the interaction with daily population 

movements. The population has been considered in subgroups, aligned to age and economic 

activity characteristics as these have been shown to have distinctive temporal characteristics. In 

this thesis the travel of commuters to work and primary school children to school is modelled.  

1.2.1 Policy context 

As the case study site is York, England, relevant government policy documents which apply to 

England were considered. The Pitt Review (Pitt, 2008) was a milestone in UK flood risk policy and 

was commissioned following the summer 2007 floods. The key recommendations from this report 
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have translated into UK flood legislation, in compliance with European directives, and are 

referenced in subsequent government reports (for example Keeping the Country Running: Natural 

Hazards and Infrastructure, Cabinet Office, 2011). Table 1.1 outlines specific policy documents 

which are applicable to this PhD at both the national and local level of government.  

 

Table 1.1 List of policy documents utilised in this thesis 

Document Use in PhD 

The Pitt Review (Pitt, 2008) Used for core understanding of UK 

government policy and the specifics of 

transport issues in flood events.  

Keeping the Country Running: Natural Hazards 

and Infrastructure (Cabinet Office, 2011) 

Guidance on past issues, current government 

strategies, definitions of critical infrastructure 

National Flood Resilience Review (Cabinet 

Office, 2016) 

Most recent review of flooding, includes 

sections on transport infrastructure resilience. 

Surface Water Management Action Plan 

(DEFRA, 2018) 

Most recent review which contains policy on 

the management of pluvial flooding. 

Surface Water Management Plan (City of York 

Council, 2012) 

Understanding specific issues and policy to 

pluvial flooding in York 

City of York Strategic Flood Risk Assessment 

(City of York Council, 2013) 

Background information on flood risk 

assessments in York 

York 13 August 2018 Section 19 Surface Water 

Flood Investigation (City of York Council, 2019) 

The most recent pluvial flood event which led 

to an investigation, used for comparing flood 

areas and understanding the disruption 

caused by a historical event.  
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1.2.2 Conceptual interdisciplinary diagram 

The research problem of floods causing disruption to travellers and those living in the surrounding 

area is a complex one requiring the inclusion of several disciplines’ theory and methods; 

population modelling, flood risk theory and modelling and transport studies (Figure 1.2). To 

achieve the aims of this research project, all three were combined producing innovation in the 

merging of each.  

 

Figure 1.2 The interdisciplinary elements and innovations which are incorporated in this thesis 

 

1. Innovation: Linking gridded spatiotemporal population data to network analysis 

2. Innovation: Improvement in the representation of people in travel for risk analysis 

3. Innovation: Incorporating time of day of travel disruption into hazard risk assessments 

4. Innovation: Bringing these disciplines together in one framework to provide insights 

on flooding disruption to populations travelling around an urban area 

Spatiotemporal 
population modelling 

1. 2. 

3. 

4. 

Transport planning 
and modelling 

Hazard modelling and 
risk mapping 
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1.3 Research Aims and Objectives 

The overall goal of this research is:  

To determine how daily variations in the urban population in travel interact with the time of 

pluvial flood onset and magnitude to influence spatial and temporal disruptions to journey times 

and destinations.    

To address this goal, the following aims and objectives have been set for each results chapter:  

Chapter 5 

Aim: To develop a framework for combining spatiotemporal gridded population data with GIS 

network analysis, using journeys to primary school as an example.  

1. Create a baseline spatiotemporal representation of primary school children’s location 

across the study site, including the in-travel population.  

2. Evaluate the use of spatiotemporal gridded data for representing population in travel.   

3. To develop a method for converting the output from the SurfaceBuilder247 model into 

origin-destination flows for use in GIS network analysis. 

Chapter 6 

Aim: To assess the differences between using census origin-destination data and spatiotemporal 

population derived origin-destination data to measure the impact of a pluvial flood scenario on 

travel in York.  

1.  Generate pluvial flood scenarios for road travel disruption testing. 

2.  Analyse the differences in origin locations between census-derived origin-destination flows 

and flows simulated from workplace catchments using Chapter 5’s methodology.  

3.  Examine the impact of the two different approaches to modelling spatiotemporal 

population flows on the simulated road travel disruption from pluvial flood hazards.  

4. Test the inclusion of floods as obstructions in the network analysis tool. 

5. Test methods for the aggregation and presentation of the results. 

Chapter 7 

Aim: To analyse whether the time of pluvial flood onset is more important than flood magnitude 

for disrupting commuter and primary school travel in York.    

1. Analyse the extent to which pluvial flood magnitude and flood onset time affect journey 

times due to road network disruption. 

2. Assess whether commuter's or school children's travel to their destination is affected the 

most. 
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3. Identify schools and workplaces which are most susceptible to disruption from flooding 

and the effect pluvial flood magnitude and pluvial flood onset time has on identifying 

them.  

1.4 Novelty of this Thesis 

As highlighted in Section 1.2.2, this thesis is interdisciplinary, and these innovations lead to the 

following novel aspects of the research: 

• An original empirical assessment of hazard magnitude versus timing of flood onset in 

relation to disruption to the population in travel. 

• It generates temporally specific origins and destinations from the output of the 

SurfaceBuilder247 spatiotemporal model for use in network analysis for the first time. 

• It highlights how ‘critical roads’ can be viewed from the perspective of which population 

group is using a road network for a specific purpose, rather than from a topological 

perspective. 

• Introduces a semi-dynamic workflow through syncing the temporal properties of 

population, traffic and flood data. 

• A transferable and scalable methodology has been developed for assessing destination 

susceptibility to travel disruption  

1.5 Thesis Structure 

This chapter has introduced the research problem addressed in this thesis and stated the aims 

and objectives of the research. The novelty of the project has also been highlighted.  

Chapter 2 provides the conceptual background for this research, including risk theory and the 

spatial and temporal components of risk. How risk is defined in the wider literature is discussed 

before the definition of risk which is applied in this work is stated. The application of risk theory 

within the context of the research problem is the third section. 

Chapter 3 reviews the literature relevant to the three disciplines required for understanding the 

effect of pluvial flooding on road travel. The first section covers hazard modelling and theory for 

pluvial flooding, summarising pluvial flood policy and history in England, then the modelling 

methods used to simulate flood events and assess their risk. The second section reviews 

spatiotemporal population modelling, rooted in population geography, its origins, implementation 

and alternative new data sources for modelling people travelling across an area. This section also 

reviews the methods for spatiotemporal population modelling. The third section focusses on 
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transport planning and modelling, summarising key concepts which are applied in this thesis. Data 

and methods for analysing people in travel and network analysis are also presented. The fourth 

section draws the three disciplines together to the specific issue of modelling disruption to road 

travellers from pluvial flooding by applying temporally specific population data. The final section 

presents the evidence gap which has been highlighted through the review of the literature.  

Chapter 4 discusses the specific data, methods and models applied in this thesis. The study 

design, including choice of case study, population groups and flood scenarios are covered in the 

first section. The second section describes the models used for pluvial flood modelling, 

spatiotemporal population modelling and network analysis in turn. The third section presents an 

overview of the thesis and the methodology of each of the three analysis chapters which follow.  

Chapter 5 is the first results chapter and focusses on the development of a framework for 

converting spatiotemporal population data, from SurfaceBuilder247, into a point format for use in 

GIS network analysis. The York study area is used, and the focus is on primary school children. A 

spatially weighted Monte Carlo analysis was used to convert the gridded data into a point format, 

meaning the temporally specific population data could be used in network analysis.  

Chapter 6 is the second results chapter. The method developed in Chapter 5 is applied to a 

different population group, commuters, and compared to census origin-destination flow data. 

One pluvial flood scenario is introduced to gain an initial understanding of the impact of flooding 

in the network analysis model and resultant travel times.  

Chapter 7 is the final results chapter and addresses the central question of whether the time of 

day a pluvial flood event occurs at has as much of an effect on travel times as increasing the 

magnitude of a flood event. A semi-dynamic methodology is applied where three flood onset 

times (6am, 7am and 8am) are tested for two flood magnitudes (1 in 30 year and 1 in 100 year). 

The routes to schools and commuters were modelled using network analysis and the travel times 

for each destination across the scenarios were compared to a non-flood baseline.  

Chapter 8 analyses the results presented in the previous three chapters to identify key 

contributions which have emerged from this research. The transferability and scalability to other 

sites, natural hazards, population groups and transport systems is then discussed before the 

uncertainties and limitations of this work. The final two sections of the chapter cover the future 

recommendations for research and recommendations for policy which can be made.   

Chapter 9 summarises the work conducted in this thesis and states how the aims and objectives 

of the thesis have been met. The contribution of this research and future research directions are 

also summarised.  
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Three appendices follow the conclusion. Appendix A describes the population data applied in the 

spatiotemporal modelling part of this, Appendix B the conference papers submitted during this 

research project and Appendix C additional figures for Chapter 6.  
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Chapter 2 Conceptual Framework 

This chapter sets out the research problem addressed in this thesis and the risk theory which 

underpins it. Risk is an integral part of society and a person’s evaluation of risk is an important 

determinant of human behaviour (Slovic et al., 2004). Natural hazards like floods, hurricanes, 

earthquakes, landslides and volcanic eruptions, are some of the most dangerous events to human 

health and wellbeing. Hence judging the risks associated with them is vital. This chapter is divided 

into three sections; Section 2.1 defines risk and its constituent parts, Section 2.2 outlines the 

spatial and temporal aspects of risk and Section 2.3 covers the application of risk theory to the 

research problem set out in Chapter 1. 

2.1 Defining Risk 

There are several ways of defining risk and the components which contribute to a risk. This 

section compares the different definitions of risk and states the definition used in this thesis. The 

hazard, exposure and vulnerability elements of risk are then covered.  

2.1.1 Risk 

Risk is complex and there are various perspectives on its framing; from the ‘risk equation’ of the 

natural sciences (Romieu et al., 2010; Fuchs et al., 2013) to Beck’s ‘Risk society’ concept (Beck, 

2002) in the social sciences. Therefore, the definition of risk is often specific to the context of the 

analysis being conducted. There are two perspectives which natural hazards can be viewed from; 

‘hazard risk’, which focuses on the physical hazard and the damage the physical processes cause, 

and ‘disaster risk’, which focuses on the socioeconomic factors that combine with the physical 

hazard to cause a disaster. The natural sciences have previously focussed on the ‘hazard risk’ 

perspective, which involves linking physical hazards to their expected damage, through calculating 

the vulnerability of physical objects (Romieu et al., 2010; Fuchs et al., 2013). This is likely due to 

the relative ease of calculating physical hazard impacts and economic exposure compared to 

quantifying social vulnerability (Fekete, 2009; Koks et al., 2015). Following this perspective, risk 

can be defined in the natural sciences as the expected damages or potential loss to an exposed 

system from a hazard with a given probability (Aubrecht et al., 2013a; Yin et al., 2016). This 

probabilistic view of risk (Carrão et al., 2016) can be expressed in the form of Equation 2.1 and is 

applied by many researchers in the hazards literature (for example Eiser et al., 2012; Klijn et al., 

2015; Kron, 2005; Yin et al., 2016).  
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Risk = probability(of hazard) x consequences(of hazard)          Equation 2.1     

This is useful in studies of physical objects, like buildings, or economic exposure. However, this 

definition does not account for the social factors of risk. The United Nations International Decade 

for Disaster Reduction in the 1990s marked the shift from a hazard-centric approach to using risk 

as a central component of disaster management (Cutter et al., 2008), providing  a more 

encompassing view of a situation and the uncertainty associated with risk analysis (Aubrecht et 

al., 2013a). Since the International Decade for Disaster Reduction, it has been argued that 

socioeconomic variables are a bigger influence on a ‘disaster’ than the ‘natural’ hazard (Aubrecht 

et al., 2013a; Wisner et al., 2004). Therefore, by framing risk in a way which captures social 

vulnerability, it becomes an assessment of ‘disaster risk’ rather than just ‘hazard risk’ (Romieu et 

al., 2010). This acknowledges that disasters are not just natural hazards (Aubrecht et al., 2013a), 

but a combination of natural processes and human actors. The most recent UN framework, ‘The 

Sendai Framework for Disaster Risk Reduction 2015-2030’ (Nations Office for Disaster Risk 

Reduction United Nations, 2015), cements this focus on disaster risk management into the next 

two decades.  

To encapsulate disaster risk, a common definition considers risk as a product of three 

components; hazard, exposure and vulnerability (Equation 2.2) (Mechler & Bouwer, 2014; Koks et 

al., 2015; Freire et al., 2015). This is based upon Crichton’s ‘Risk Triangle’ (Crichton, 2008) and is 

favoured by spatial planners and social scientists (Albano et al., 2015). In some applications this 

equation differs by only including hazard and vulnerability (Equation 2.3), as vulnerability can be 

considered to incorporate exposure (Romieu et al., 2010). However, the United Nations Office for 

Disaster Risk Reduction considers exposure as independent  (Aubrecht et al., 2013b) and Klijn et 

al., (2015) argue the understanding of risk is richer for this division.  

 

Risk = Hazard x Exposure x Vulnerability             Equation 2.2 

Risk = Hazard x Vulnerability                Equation 2.3 

2.1.2 Hazard 

A hazard can be described as a threatening event (Kron, 2005) or phenomenon which can result in 

harm to people, economic assets or the environment. In line with the concept of ‘hazard risk’ 

described above, hazard is often addressed in a quantitative way, through a measure of the 

probability of occurrence or the magnitude of the hazard event. In reality, it is rare for there to be 

a single hazard in isolation and there are often compound hazards triggered by the main hazard. 

For example, in a flood situation there are hazards associated with the floodwater itself, affected 
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by its depth and velocity, but also secondary hazards, like waterborne diseases and debris. All 

possible hazards require consideration to fully understand the risk of a situation and ensure 

measures to mitigate one hazard do not lead to increased danger from another related hazard. 

However detailed examination of all hazards is difficult and often not possible within the scope of 

a study, leaving the main hazard as the focus. Finally, a hazard does not exist in isolation as it is a 

component of risk and the magnitude, spatial and temporal properties of it affects the level of 

exposure and vulnerability of a society.  

2.1.3 Exposure 

Exposure is considered the amount of population, infrastructure and other assets within a 

potential hazard area (Hirabayashi et al., 2013). Population data are used to calculate the number 

of people within a hazard zone (Smith et al., 2014). Whilst this does bring humans into the 

consideration of risk, it is more of a ‘head count’ of the number of people in an area and does not 

consider the social factors of why risk varies between population sub-groups in depth. Exposure 

often includes an economic measure of the damage which could be inflicted by a hazard of a 

given size (Jongman et al., 2014). Asset exposure is a key part of calculating Average Annual Loss 

(AAL), the value used in the insurance industry to assess the risk of insurance losses (Hallegatte et 

al., 2013). So, whilst hazard tends to be framed within the physical sciences, exposure is often 

framed within economics and the quantifiable number of people in the area affected by a hazard. 

As discussed in Section 2.1.1, ‘disaster risk’ involves understanding social as well as physical 

components in risk. Therefore exposure is closely linked with vulnerability, as a population may be 

equally exposed to a hazard but the unique vulnerability of certain individuals may mean the risk 

to them is greater (Wisner et al., 2004).  

2.1.4 Vulnerability 

If exposure is a numerical count of what is in a hazard zone and the economic value of it, 

vulnerability captures the nuances of society and the underlying reasons of why risk is unequal. It 

is not simply a function of proximity to the hazard, which is why it is different from exposure and 

should be considered separately, as stated in Equation 2.2. There is no universally agreed term of 

vulnerability (Papathoma-Kohle et al., 2011),  partly due to the wide range of disciplines the term 

is applied in and the fact it is difficult to quantify as it involves a multitude of complex qualitative 

factors (Fekete, 2009). Vulnerability is defined here as the degree a person is able to help 

themselves during a hazard event, influenced by the presence, or lack of, resources to cope with a 

hazard (McFadden et al., 2006; Civil Contingencies Secretariat, 2008).  
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The presence or absence of resources is important as it can be argued that vulnerability originates 

from underlying social conditions which limit access to resources, rather than the hazard event 

(Cutter et al., 2008). Wisner et al., (2004) conceived of the ‘Pressure and Release’ model of 

disasters which is a tool for understanding vulnerability. They argue a hazard is a ‘triggering 

event’, and a disaster only arises due to entrenched social structures, like macro-economic 

policies, unsafe living conditions and lack of access to resources.  When a hazard strikes, it acts as 

a tipping point in already precarious lives caused by social vulnerability. Whilst Wisner et al.’s 

(2004) model was designed for developing countries, it still has relevance for the UK as those who 

are poorer or less physically fit are often those who are identified as being most vulnerable to 

events like floods.  

Vulnerability feeds back into exposure, as those who are most vulnerable can end up living in 

cheaper housing, which has been shown to be a factor in hazard exposure (Wisner et al., 2004). 

Vulnerability is also shaped by risk perception, as how a person views their vulnerability can 

influence their behaviour and potentially lead them to experience higher exposure if they 

underestimate their own vulnerability. The ‘levee effect’ describes how people do not think they 

are vulnerable to flooding once a defence is in place (Wisner et al., 2004). But defences may be 

breached and are only designed for a certain level of flood, so the actual vulnerability is higher 

than those who live there are likely to perceive (Pitt, 2008). Therefore, this makes them 

vulnerable as they may not take sufficient action during an event. 

2.2 Spatial and Temporal Dimensions of Risk 

As described in Section 2.1.1, the appropriate definition of risk which can be applied to this 

research problem is that risk is a function of hazard, exposure and vulnerability (Equation 2.4). 

However, risk is not a static concept and fluctuates both spatially and temporally when comparing 

the same hazard event (Mechler & Bouwer, 2014). Mechler and Bouwer (2014) define risk as a 

dynamic function of hazard, vulnerability and exposure, and the word ‘dynamic’ is crucial as it 

acknowledges that risk is an evolving concept through space and time. The dynamic nature of risk 

needs to be considered for effective risk management; however, it is a challenging task as the 

scales of spatial and temporal change are complex.  

Risk = f(Hazard,Exposure,Vulnerability)         Equation 2.4 

In this thesis the spatial and temporal dynamics of risk are under consideration, so Equation 2.4 

needs extending. The majority of academic literature does not acknowledge this in their definition 

of risk (Freire and Aubrecht, 2012). Therefore for this thesis, it is necessary to adapt the ‘risk 

equation’, as it does not explicitly include space or time (Hu et al., 2017). Variations over space 
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and time are present in all three components of the risk equation (Lugeri et al., 2010). Therefore, 

in Equation 2.5 this is represented, where S represents spatial aspects and T temporal aspects, 

and this definition will be applied in the remainder of this thesis. Whilst both space and time are 

important, time is of particular interest in this work as examining risk over time adds a dynamic 

quality to the research findings.  

Risk = f(HazardST,ExposureST,VulnerabilityST)     Equation 2.5 

Variations over space and time are present in all three components of the risk equation (Lugeri et 

al., 2010), which means risk itself is not fixed in time nor equal over geographic space. Figure 2.1 

is a conceptual model which details how hazard, exposure and vulnerability combine to form risk 

and examples of the spatial and temporal components. 

The spatial impact of a hazard primarily lies with the location of the hazard relative to the 

population, infrastructure and assets. Often, secondary hazards are triggered by the primary 

hazard, for example water-borne disease from standing water, creating hazards chains. Temporal 

factors of hazards include the time of day and year it occurs at, the return period of a given 

magnitude and, for hydro-meteorological hazards, the impact of climate change. Exposure is the 

sum of assets, infrastructure and people in the hazard zone and the spatial distribution of these 

elements, particularly of people, is highly time-dependent (Aubrecht et al., 2012). The temporal 

dimension of exposure is at several scales; the shorter term of daily and seasonal fluctuations, 

often due to population change (Freire et al., 2013; Smith et al., 2014; Smith et al., 2015), or the 

longer term of years to decades, due to urban expansion and demographic changes. Thus 

fluctuating exposure can lead to changes in risk, regardless of changes in the hazard severity 

(Aubrecht et al., 2012; Freire et al., 2013; Liu et al., 2014; Mechler and Bouwer, 2014).  

The spatial context of vulnerability is the location of vulnerable groups, the services they require 

and how easily they are accessed (Rodríguez-Núñez et al., 2014; Dawson et al., 2011). These are 

considerations present outside of a hazard scenario, but during a hazard event may become more 

acute (Hemingway & Priestley, 2006). The temporal context is whether vulnerable groups are 

moving, or whether they are static. This would influence the level of exposure they could face at 

different times of the day or year. An example of a spatially mobile group would be tourists and 

school children (Smith et al., 2015), whilst those admitted to hospital as in-patients or in 

residential care homes are less likely to be moving away from their location. Demographic 

changes, particularly the increase in the number of older people (Donner & Rodríguez, 2008), is 

another factor which will cause vulnerability of a population to evolve. 
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Figure 2.1 Conceptual diagram showing how hazard, exposure and vulnerability combine to 

generate risk with their spatial and temporal dimensions, from the perspective of flood risk. Each 

element of the risk equation is detailed in the centre, with examples of the temporal and spatial 

context given around the outside. Arrows show the connections between elements.  
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In addition to existing as its own entity, the three components of risk interact with each other. 

The spatial and temporal context of a hazard influences exposure, as shifts in the location of the 

hazard lead to different levels of exposure. Exposure influences vulnerability in turn (Kienberger 

et al., 2013), as at some level all who are in an area exposed to a hazard are vulnerable compared 

to those outside of it. However, this connection is mutual, with the temporal context of 

vulnerability moderating exposure. For example macro-economic policy causing an unequal 

distribution of resources (Wisner et al., 2004) means those who are more socially vulnerable often 

live in areas particularly exposed to hazards where property is cheaper (Kaźmierczak & Cavan, 

2011). This interaction of vulnerability, exposure and hazard has been highlighted previously in 

other conceptual models. For example Wisner et al.’s (2004) pressure and release model and 

Cutter’s (1996) ‘Hazards of place model’ both demonstrate the complex interactions of natural 

hazard risk. However, these conceptual models do not identify the temporal component of risk as 

explicitly as the conceptual model in Figure 2.1.  

Flooding is considered a ‘known hazard’ as it occurs in the same locations (Wisner et al., 2004) 

and the probability of a given magnitude can be calculated statistically. Thus, conventional flood 

risk assessments look at the probability of flooding and its consequences (Dawson et al., 2011). 

However focussing solely on physical parameters does not capture the complexity of human and 

natural processes which interact to form flood risk, as it is not a simple function of probability of 

exposure (Donaldson et al., 2013). Over the last decade it has become apparent increases in flood 

risk are primarily due to social factors, rather than changes in flood magnitude (Mechler & 

Bouwer, 2014). Hence, including socio-economic factors to describe the vulnerability and 

exposure of affected populations has become more commonplace (Romieu et al., 2010).  

2.3 Application of Risk Theory to the Research Problem 

This section takes the risk theory covered previously in this chapter and applies it specifically to 

the research problem outlined in Section 1.2.  

2.3.1 Mapping the research problem onto the risk equation 

To restate the research problem, this thesis aims to analyse how the time of pluvial flood onset 

and flood magnitude affects the disruption to travel across road networks for two groups of the 

population. Figure 2.2 highlights how Equation 2.5 can be applied to this research problem and 

questions the results in this thesis should answer. Developing the risk equation in this way, 

particularly with the consideration of time, for use as a conceptual structure to hazard-related 

transport research project is novel. This framework can be applied to other hazards other than 
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flooding, for example earthquakes and landslides. 

 

Figure 2.2 The application of the risk equation to the research problem of this thesis, and 

questions to answer with the results presented in later chapters.  

2.3.2 Spatial and temporal scales in the research project 

As Figure 2.1 shows, there are spatial and temporal components to hazard, exposure and 

vulnerability. These factors operate at different spatial and temporal scales, for example macro-

economic policy is a larger spatial and temporal scale than the location of individuals at a given 

time of day. Figure 2.3 summarises the spatial and temporal scales of hazard, exposure and 

vulnerability applied in this thesis. The spatial scale is defined by probable limits to the size of 

flood models, the likely average distances travelled by daily commuters (15 kilometres (Office for 

National Statistics, 2014)) and emergency service catchments. Macro-economic policy and climate 

change operate at a spatial scale which is larger than the research problem considered in this 

thesis.  Pluvial flood events occur over reasonably short timescales (hours to days) therefore this 

is a logical threshold for the temporal scale. In addition, the data which are being used is census 

data from 2011-2016 and rainfall data from the last few decades. Hence, these data are only 

Risk f(HazardST, ExposureST, VulnerabilityST) 

Risk of restricted 
movement 
increasing travel 
time and 
reducing time 
spent at work 
and school. 

Are there places 
in space and 
time which can 
be identified as 
having greater 
risk? 

Spatial: The 
population head 
count by location 
on the road 
network; the 
location of flooded 
roads; the location 
of workplaces and 
schools. Are some 
locations identified 
as being exposure 
hotspots? 
 
Temporal: The 
varying counts of 
commuters and 
children using the 
road depending on 
the time of day. 
Does exposure vary 
in the time period 
chosen?  

Spatial: The 
extent and depth 
of floodwater. 
Does a larger 
magnitude 
rainstorm lead to 
a greater 
disruption?  
 
Temporal: The 
time of flood 
onset and the 
duration of the 
rainfall. How do 
changes in the 
time of flood 
onset affect 
disruption  

Spatial: The 
geographic 
concentration of a 
vulnerable group 
(primary school 
children). How is this 
group affected? Which 
destinations are most 
susceptible to 
disruption across the 
city? 
 
Temporal: The 
changes to 
vulnerability over 
time. Do changes in 
time of flood onset 
alter the disruption 
seen to primary school 
children or change 
which destinations are 
most susceptible to 
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reasonably applicable to near-future scenarios (up to 10 years after the data reference point) 

where substantial changes to the demographic makeup of the population and hydrological cycle 

has not occurred. Applying this temporal threshold to exposure and vulnerability, short-term 

changes like daily movement and the current structure of the road network are included in the 

scope of this project. However longer processes like urban expansion, infrastructure updates and 

demographic changes are not considered as they exceed the temporal threshold.  

Figure 2.3 Plots showing the spatial and temporal characteristics of a) Hazard, b) Exposure and C) 

Vulnerability in this research project. The dotted lines indicate the boundaries of the temporal and spatial 

scales considered in this project. Connected circles indicate a link between factors. Blue: Environmental 

Factors and Processes. Green: Man Made Structures. Yellow/orange: People. Pink: Policy 

 

a) 
b)  

c)  
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2.3.3 Hypothesised impact of varying timing of flood onset 

This section describes the likely effects of changing the time of flood onset and the impact on risk 

and road travel. Table 2.1 demonstrates some scenarios that might be observed when keeping 

the hazard characteristics constant, except the timing of onset. Scenario 1 happens during the day 

and Scenario 2 happens at night, which changes the number of people who are affected; 

therefore, exposure and vulnerability change and risk varies. Seasonal impacts are also important 

due to the potential of increased populations in summer due to tourism, or decreased population 

during university holidays, resulting in different total population numbers and the number of 

vulnerable people (Scenario 3 and 4). A flood which occurs early in the morning will impact 

morning commuting traffic (Scenario 1), however if it has cleared in the evening then the number 

of journeys taken will rise, although not to normal levels as some were unable to reach their 

normal daytime destinations. In comparison, a flood that strikes in the afternoon (Scenario 3) will 

not impact the morning commute but will limit evening travel and may cause above normal levels 

of journeys into the evening as the flood waters recede and roads are reopened. These examples 

demonstrate the changes to risk from shifting the time a flood occurs at. This level of temporal 

resolution, changing the time of flood onset during a single day, has not often been explored in 

wider literature and policy documents.  

Table 2.1 Hypothetical examples to illustrate how keeping the hazard element as a comparator, 

whilst varying the exposure and vulnerability elements, changes the overall population at risk. 

 

Hazard Exposure Vulnerability Risk 
x x = 

Scenario 1 1 in 100-

year flood 

Daytime 
population 

Road network 

Daytime population e.g 
children, elderly, 

students 
 

Road access 

750 people 
100 Vulnerable 

x x = 

Scenario 2 
1 in 100-

year flood 

Night-time 
population 

Road network 

Night-time population 
e.g children, elderly 

 
Road access 

500 people 
70 Vulnerable x x = 

Scenario 3 1 in 100-

year flood 

Summer Daytime 
population 

Road network 

Summer population 
e.g. tourists 
Road access 

1500 people 
300 
Vulnerable 

x x = 

Scenario 4 
1 in 100-

year flood 

Winter Daytime 
population 

Road network 

Winter population 
  

Road access 

600 people 
100 
Vulnerable 

x x = 
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2.4 Conclusion 

The interdisciplinary nature of this project requires more than just assessing the probability and 

consequences of a flood event in order to fully understand flood risk. A disaster risk perspective 

with vulnerability and exposure is required, explicitly distinguishing the hazard, exposure and 

vulnerability components. It has also been shown how spatial and temporal aspects of risk need 

to be considered for a dynamic perspective. By using the risk equation with specific spatial and 

temporal components, this focusses the research on these aspects.  
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Chapter 3 Literature Review 

This chapter is divided into five sections. The first three summarise the relevant literature around 

the three key disciplines dawn upon in this thesis; flood risk, spatiotemporal population modelling 

and transport modelling. The fourth section examines literature on the specific research problem 

where these disciplines overlap. The final section draws these disciplines together and 

summarises existing evidence concerning the research gap that this thesis is addressing.  

3.1 Review of Flood Risk Concepts 

Following on from Chapter 2 and the conceptualisation of risk, this section focusses on the 

specific issues associated with pluvial flood risk management in England.  

3.1.1 Mechanisms of flooding  

A flood can be defined as “the temporary covering of land by water as a result of surface waters 

escaping from their normal confines, or as a result of heavy precipitation” (Kron, 2005, p.58). 

There are three main types of flooding in the UK; coastal, fluvial and pluvial. Coastal flooding 

occurs when storms cause sea water to surge onto the land, and the combination of storm surge 

and point in the tidal cycle determine how high it will be. Fluvial flood events are from riverine 

sources and occur when water exceeds the rivers bankfull capacity, due to heavy rainfall. This can 

either be rapid through rainfall directly into the channel, which is more common in smaller 

streams in steeper catchments, or rainfall in the wider catchment running into the river over a 

longer period of time. The ability to forecast heavy rain events and the lag time between rainfall 

and flooding is often sufficient in the UK’s rivers to be able to provide warnings up to a few days 

before the high river levels, meaning the surrounding population can prepare for disruption. 

Finally, pluvial flooding is the result of heavy rainfall from convective rainstorms onto an 

impermeable surface causing flooding in the place it falls (Boeing et al., 2019). These floods are 

common in urban areas due to extensive changes to the natural land cover decreasing 

permeability (Li et al., 2018) and often occur over a short period of time (Melo et al., 2015), 

reducing the ability for flood forecasts and warnings (Li et al., 2018; Boeing et al., 2019). Due to 

their shorter time frames than fluvial floods, pluvial floods are less likely to be predicated and 

more likely to cause unexpected disruption to travellers on the road network.  

Pluvial flood risk emerges from the interaction between biophysical (duration and intensity of 

rainfall) and human factors (impermeable surfaces in urban areas, vulnerability of exposed 
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population, installation of complex infrastructure) (Jenkins et al., 2017). Therefore, the risk cannot 

be determined on the characteristics of the flood hazard alone. The number of pluvial floods will 

likely to increase in severity as a result of climate change, due to greater potential extremes in 

rainfall (Houston et al., 2011). The characteristics of pluvial flood hazards mean they are a suitable 

hazard to select for this thesis and are a relevant issue in urban areas.  

3.1.2 Recent English flood history  

For fluvial floods, it has been described that the UK has experienced ‘flood rich’ and ‘flood poor’ 

periods over the last century. For example, Wilby and Quin (2013) found that there were three 

flood rich episodes in river catchments; 1908-1934, 1977-1988 and 1998 onwards. National trends 

for pluvial flood events, particularly sudden onset localised urban floods, are not apparent as 

there is a high year-to-year climate-led variation in rainfall and thus pluvial flood frequency 

(Stevens et al., 2016). There has a been an increase in insurance loss for all flood events in 

England over the last century, which is largely explained by a growth in exposure rather than a 

change in hydrological regime (Stevens et al., 2016). Over the 20th century, the population of the 

UK grew from 38.2 million to 59.1 million, with the number of properties rising from 7.7 million to 

24.8 million (Stevens et al., 2016). This has resulted in large expansions to urban areas, including 

into the floodplains, and the impermeable material they contain. Rapid urban development of the 

past few decades has been reliant on an ageing drainage infrastructure (Boeing et al., 2019) in 

combination with a reduction in land surface permeability. This has led to an increase in property 

exposure to pluvial flooding and an increase in exposure to people travelling along the road 

networks. Presently, the EA estimates 3.2 million properties in England are currently at risk of 

pluvial flooding (DEFRA, 2018), a higher number than at risk from fluvial and coastal (Boeing et al., 

2019). Despite the increased risk, the recent UK government surface water management plan 

concluded pluvial flooding has been poorly understood and the risks not communicated to the 

public effectively (DEFRA, 2018). 

The effect of predicted changes on weather and climate extremes is an important issue when 

planning for natural hazards, particularly for pluvial floods as they have been identified as the 

type of flooding most likely to increase in severity with climate change (Houston et al., 2011). 

Continued population increases and urban expansion are also likely to increase exposure of 

people and capital in at risk areas, a dominant cause of predicted increases in financial losses over 

the next century (Mechler & Bouwer, 2014). These biophysical and socioeconomic changes mean 

assessing the risks of pluvial flooding will become increasingly important.   
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3.1.3 English flood policy  

Over the last century, there have been three paradigms used as the basis of flood policy: ‘land 

drainage’ (drain land in order to build on it), ‘flood defence’ (build ‘hard’ defences to prevent 

water reaching developments) and ‘flood risk management’ (measures to reduce the amount of 

flood water and reduce the building on at risk land) (Penning-Rowsell et al., 2014). More recently 

the approach of ‘learning to live with water’ has become more common in policy agendas 

(McEwen et al., 2017) as it recognises not all flooding can be prevented (Wisner et al., 2004). 

Flood risk management requires negotiation of socially acceptable levels of risk and exposure 

(McEwen et al., 2017), and it is not a simple function of level of exposure as there is a mixture of 

human and biophysical processes which determine the risk (Donaldson et al., 2013). The following 

summary of recent flood risk legislation or regulation, with a focus on pluvial flooding, 

demonstrates this need to balance human and physical factors of risk, and to develop a greater 

understanding of flooding in order to minimise disruption to society.  

The Pitt Review (Pitt, 2008) was a milestone in UK flood risk policy. Commissioned following the 

2007 summer floods, its aim was to review the decisions and strategies implemented in 2007 and 

to provide recommendations to improve the countries flood risk response. Whilst this was in 

response to a fluvial flood event, the recommendations have influenced all areas of flood risk 

policy. Following the Pitt Review, the Flood and Water Management Act (2010) was passed which 

sought to provide clarity of the roles and responsibilities of the EA, local government, water and 

sewerage companies and a framework for assessing flood risk. This legislation established that the 

EA has strategic responsibility for flooding on main water courses and coastal erosion whilst Lead 

Local Flood Authorities (LLFAs) were established to take responsibility for flood risk from surface 

water, groundwater and ordinary watercourses in local areas  (Bevan, 2018).  

Several reports were commissioned by the government in the following decade to meet 

recommendations from the Pitt Review, and those relevant to this research are highlighted here. 

Firstly, the report ‘Keeping the Country Running: Natural Hazards and Infrastructure’ was 

published by the Cabinet Office in 2011. A main issue in 2007 was infrastructure being impacted 

by flood water. From roads becoming impassable, with the notable example of motorists stranded 

on the M5, to sewerage and water treatment centres becoming inoperable due to flood water, 

leading to water shortages. Secondly, the ‘National Flood Resilience Review’ (2016) reviewed the 

steps that had been taken to increase flood resilience since 2007 and what future action should 

be taken. In this report, the government committed to consider issues related to pluvial flooding 

in a future report specifically on the topic. In 2017, pluvial flooding in an urban area was added as 

its own risk to the National Risk Register (Cabinet Office, 2017).  
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The most recent report for England on pluvial flooding is the ‘Surface Water Management Action 

Plan’ published in 2018. This review stated that pluvial flooding causes significant disruption to 

people’s lives and livelihoods and will become a growing challenge with more frequent heavy 

storms, due to climate change, over the next few decades, compounded by increased urban 

development (DEFRA, 2018). To manage this risk water needs to be drained effectively by 

maintaining and improving where necessary current drainage systems and including sufficient 

drainage in any new urban developments (DEFRA, 2018). However, the spatial pattern of pluvial 

flood risk is less obvious than fluvial or coastal flood areas meaning awareness is lower, leading to 

less mitigation action currently in place. The report made several recommendations to improving 

the capability of dealing with pluvial flood risk. These include first, risk communication needs to 

be improved to stakeholders through pluvial flood risk mapping and developing better systems for 

short term forecasts. Current methodologies are unable to determine where heavy rainfall will be 

with the necessary levels of precision for a useful forecast lead time (DEFRA, 2018). Second, 

infrastructure resilience needs to be prioritised and improved through reviewing the resilience of 

current infrastructure against extreme pluvial events and enacting change to increase resilience. 

Third, the roles and responsibilities of all organisations need to be clarified and LLFA need to be 

guided on local flood risk management strategies and their role in overseeing work. Finally, local 

government capacity will be built through advice and support to develop the skills of staff.  

The following governmental structure currently exists in England for managing flood risk. The 

Department for Environment and Rural Affairs (DEFRA) leads the policy for flood and coastal 

erosion risk management. The Cabinet Office is involved with emergency response planning 

(under the UK Civil Contingencies Act 2004) and the Department for Communities and Local 

Government are involved with land-use and planning policy (under the Local Government Act 

2000). As outlined in the Flood and Water Management Act (2010), the Risk Assessment and 

Management Authorities are the EA, LLFAs, District and Borough Councils, Coast protection 

authorities, water and sewerage companies, internal drainage boards and highways authorities. 

These authorities are required to co-operate with each other and act within the framework of 

national and local flood risk strategies whilst sharing information with each other (Local 

Government Association, 2020; Pitt, 2008). The EA provides the strategic overview of flooding for 

the country and risk management activities for main rivers and the coast, and works with the Met 

Office to provide flood forecasts and warnings (Local Government Association, 2020). LLFAs are 

county councils and unitary authorities with the lead in managing local flood risks from surface 

water, ground water and ordinary watercourses. LLFAs are required to; prepare and maintain a 

local flood risk management strategy, carry out works to manage local flood risks, maintain a 

register of assets, investigate significant local flooding and publish the results and play a lead role 
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in emergency planning and recovery after a flood event (Local Government Association, 2020). 

Highways authorities have the lead responsibility for providing and managing highway drainage 

and roadside ditches under the highways act 1980 (Local Government Association, 2020).  

The availability of flood insurance is also an important component of English flood risk policy. 

Rising insurance losses from flood events over the last decade led to rising insurance losses, with 

the 2015 floods in Northern England alone causing over £1.3 billion in insured damages (Marsh et 

al., 2016). This has affected the willingness of insurance companies to insure homeowners on 

floodplains (Lamond et al., 2009). The perception of increasing flood risk and growing economic 

loss led to the creation of FloodRe (FloodRE, 2020), a reinsurance scheme created to ensure 

homeowners could purchase home insurance (which includes flood insurance) for a reasonable 

price. This formalised a previously informal agreement between the government and insurers, as 

there was a danger of insurers ceasing affordable cover for flood risk properties. 

3.1.4 Flood transport policy  

General flood policy was summarised in Section 3.1.3 and this section summarises flood policy as 

it specifically relates to travel disruption, the focus of this research. In the UK, the Department for 

Transport’s 2014 Transport Resilience Review (Brown, 2014) is the most recent government 

report on natural hazard impacts on transport. In the wake of the Pitt Review (Pitt, 2008), the 

Transport Resilience review recommended that local authorities define a ‘resilient network’ which 

will be given maintenance priority in order to reduce the economic impact of any disruption from 

events like floods.  The National Security Strategy (Cabinet Office, 2011) states the criteria for 

determining whether local infrastructure is critical, and therefore should be targeted to be part of 

the resilient network, is whether the loss of it would cause, or be likely to cause, a local 

emergency (Cabinet Office, 2011). This guidance could be incorporated into flood risk reviews as it 

shows that critical roads are location specific and could be effectively identified through 

examining their importance to the community, rather than through traditional network 

techniques to identify critical links. Further discussion is given in Section 3.3.3. 

One of the key themes of the Surface Water Management plan (DEFRA, 2018) is to make 

infrastructure, including road networks, resilient to pluvial floods with future action to review the 

resilience of infrastructure networks against extreme pluvial floods stated as an outcome of the 

report. This demonstrates the intersection of flood and transport policy and the importance of 

understanding the effect of pluvial flooding on road networks. However, a standard method has 

not been created to assess this resilience. The government has identified this is an area which 

requires review but has not published the results of any reviews.  
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The depth of flood water which is considered disruptive is important when creating simulations to 

determine disruption. It is widely cited as between 25-30cm depth in the UK and other countries 

like the US  (Li et al., 2018; Arrighi et al., 2019; Pregnolato et al., 2017b). This is because it is the 

height of the air inlet on the average car (Li et al., 2018) and water entering a car engine can cause 

engine failure, trapping motorists in flood water. Consequently, government, insurers and 

breakdown companies have created warning emails and social media images to instruct drivers 

not to traverse flood water which is deeper than 30cm. This guidance has resulted in this 

threshold applied to academic papers on travel disruption from road closure. Most studies use a 

closed/open switch at 30cm depth, but Pregnolato et al., (2017b) developed a disruption-depth 

function which modelled the safe travel speed through floodwater up to 30cm depth, to provide a 

more nuanced being and realistic approach to flooding disruption.  

 

3.1.5 Methods 

This section describes the methods used to model floods and flood risk assessments.  

3.1.5.1 Hydrological and hydraulic models 

Traditionally, flood inundation maps are created by driving a hydraulic model with available 

streamflow data or the output from a hydrological model. However the entire stream network 

does not have gauges meaning there is not quality data available for all sites which need 

modelling in the UK (Rajib et al., 2020). To address this lack of information, hydrological models 

are used alongside hydraulic models. Hydrological models simulate streamflow for the upstream 

boundary conditions and the hydraulic models simulate the flood event extent to produce, depth 

and velocity results to create flood inundation maps  (Rajib et al., 2020). Both these types of 

models are common tools used for a wide variety of purposes as they allow multiple scenarios to 

be run and estimate the likely effect of different size floods on the area of interest (Balica et al., 

2013). Improvements in computing power and availability of high resolution data (Dottori et al., 

2013) means the application of flood models has been a mainstay of flood risk work over the last 

decade. In this section the theory behind hydrological and hydraulic models will be reviewed to 

provide context to the modelling work described in Chapter 4.  

Hydrological models are used to estimate how rainfall will result in runoff over a catchment, 

through sets of equations and parameters which describe the watershed and how water moves 

(Devia et al., 2015). At a minimum, rainfall data and drainage area are required, with watershed 

characteristics like soil properties, land use, topography and soil moisture sometimes required 

(Devia et al., 2015). There are some empirical models which use measured data for each 
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parameter, however due to the difficulties of having data for all watersheds of interest, most 

models are conceptual and instead rely on equations to replicate physical processes. Hydrological 

models can be classified as lumped, semi-lumped or distributed (Devia et al., 2015), referring to 

how the watershed is considered in the model. Lumped models take the catchment as 

homogenous whilst distributed models have cells in which the rainfall in and runoff out is 

calculated for a heterogenous representation of an area. Hydrological models can provide the 

input to a hydraulic model by generating a hydrograph or river flow stage curve which can be 

used as an input boundary condition to the hydraulic flood model (Kjeldsen et al., 2013).  

The Revitalised Flood Hydrograph model (ReFH) is a lumped conceptual rainfall-runoff model 

which is the de facto standard for flood hydrograph estimation in the UK (Kjeldsen et al., 2013). 

The model consists of three components; a loss model which creates an excess rainfall 

hyetograph, a unit-hydrograph based model for routing excess rainfall in the catchment and a 

baseflow model representing the flow in the river before the onset of a storm (Kjeldsen et al., 

2013). The ReFH has been designed with the fewest parameters as possible so it can be applied to 

ungauged catchments across the whole UK (Kjeldsen et al., 2013). The Flood Estimation Handbook 

(FEH) web service provides access to a national database of catchment descriptors for the whole 

UK. These descriptors include rainfall-depth-frequency data for any catchment larger than 0.5km2 

to enable hydrological modelling (Kjeldsen et al., 2006; UK Centre for Ecology & Hydrology, 2020). 

The output of the ReFH is flow hydrographs at the catchment outlet, which can then form the 

input into a more detailed hydraulic model representing the catchment with local topography 

(Kjeldsen et al., 2013). This is the hydrological model used in this thesis to provide boundary data 

for the hydraulic model (See Chapter 4 for details of its application).  

Hydraulic models are designed to produce representations of the depth, velocity and area 

covered by flood water as a result of the input hydrology. There are two main divisions in how 

hydraulic models represent the channels and floodplains of the study area, 1D and 2D models. 1D 

models calculate flow in the downstream direction only through one dimensional equations, for 

example the St. Venant equations (Gugat & Leugering, 2003). This assumption of downstream 

flow works well for river channels and the channel is modelled through cross sections where 

channel depth and width are known (Balica et al., 2013). The 1D flow equations calculate water 

flow through the cross-sections based on topography and river flow data. Having calculations at 

cross sections rather than at every part of the channel increases computational efficiency, so it is 

the preferred method for modelling fluvial flooding over large areas, particularly in homogenous 

catchments (Castellarin et al., 2009; Leandro et al., 2009). 2D models calculate flow both in the 

downstream and perpendicular direction, often on a grid matrix, and use two dimensional 

hydraulic equations. 2D models provide better data for flood flow, depth and extent in places 
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with more complicated flow paths like dense urban areas (Gallegos et al., 2009). The use of 2D 

equations in each grid cell does increase computational time and power which impedes its use 

over large model domains. It has therefore become common to combine the two model types to 

have a coupled 1D/2D model, where a 1D model with cross sections is used for the river channel 

and a 2D model for the floodplain (Leandro et al., 2011). Overland flow is not the only 

consideration in urban areas, and some flood models have coupled sewer models to the 2D flood 

model to capture the dynamics between surface water and sewer systems (Leandro et al., 2011). 

For modelling pluvial flooding, a 2D model would be required to capture the dynamics of water 

around a complex urban environment.  

Hydraulic flood models can also be categorised by how they represent flow. Steady state models 

represent changes in flow spatially but keep flow temporally constant and are useful when just 

the maximum extent of floodwater is required for hazard assessments. Unsteady state models 

vary flow both spatially and temporally and are more accurate when modelling the effect of flood 

water on flood defences to test the likelihood of failure (Büchele et al., 2006). For pluvial flooding, 

there are not often local flood defences designed specifically for the prevention of pluvial 

flooding, rather drainage mechanism are installed, so a steady state model is sufficient to 

understand pluvial risk over a large urban area during a rainstorm (Leandro et al., 2011).  

Many flood models exist and the type of model which is suitable depends on the size and 

characteristics of the study area, the purpose of the modelling work and the available software 

and computational power. A selection of hydraulic flood models, including the one used in this 

thesis, are compared in Table 3.1. For large areas, “low-complexity” inundation mapping tools 

which rely on topography, roughness parameters and simple hydraulic equations have been used 

frequently due to lower computational requirements (Rajib et al., 2020) However, they are less 

accurate than coupled 1D/2D models, so it is a trade-off of computational time compared to 

accuracy (Rajib et al., 2020; Sosa et al., 2020). The complexity of urban environments means they 

have always been a challenge to model (Ghimire et al., 2013) as surface flow is strongly influenced 

by topography. Therefore, the availability of accurate Digital Elevation Models (DEMs) or Digital 

Terrain Models (DTMs) at appropriate resolutions are central to accurately simulating flooding 

(Noh et al., 2018; Ghimire et al., 2013).  

As with all models, hydraulic and hydrological models are a simplified representation of reality 

and there is uncertainty associated with their outputs (Montanari and Di Baldassarre, 2013). The 

main source of uncertainty is flow data (Dottori et al., 2013) as it is the extreme events, which are 

hardest to measure, that are of most interest. The flooding in urban areas from rainfall is often 

caused by intense, short rainfall events causing field observations to often be non-existent or 
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difficult to collect, meaning model calibration is a challenge (Leandro et al., 2011). There is also 

typically only a small set of floods which have been recorded, which means simulations are 

required to fill in these data gap (Emanuelsson et al., 2014). 

Table 3.1 Comparison table of some well-known flood models, including the model applied in this 

thesis (Flowroute – iTM). Adapted from a Table in the authors MSc dissertation (Rawlings, 2016) 

Model Strengths Weaknesses 

HEC-RAS 

Developer: United 
States Army Corp of 
Engineers 

1D hydrologic modelling 
for channels and flood 
banks 

- Free 
- Easy to set up and use 
- Output compatible with GIS 

software 

- Does not model 2D 
domains well 

- No technical support 
provided by the 
manufacturer 

- Does not include urban 
drainage systems like 
sewers explicitly 

LISFLOOD FP 

Developer: Bates and De 
Roo, Bristol University 

2D model for 
hydrodynamic modelling 
of floodplain inundation 
(Bates et al., 2010) 

- Free software for academics 
- Coupled 1D/2D model 
- Outputs include depth, 

elevation and velocity 
compatible with GIS software 

- Can be applied to large areas 
(Rajib et al., 2020) 

- No support except via 
online tutorial exercises 

- Does not include urban 
drainage systems like 
sewers explicitly 

Flood Modeller 

Developer: Jacobs 

1D and 2D solvers for 
1D/2D flood models of 
channels and floodplains 

- Free version allows for small 
modelling domains to be 
used. 

- Can run 1D, 2D and linked 
models 

- Provides depth, extent, 
velocity and flow outputs 
which can be exported to GIS 
software 

- Support available via online 
tutorials and forums  

- Unclear error message 
- Larger modelling domains 

require ‘pro’ license 
- Support offered by a 

software support email 
with a pro license, not 
available for free users 

Flowroute-iTM 

Developer: Ambiental 
Risk Analytics  

A steady state 2D flood 
model  

- Guidance in using the 
software available 

- Suitable spatial resolution for 
pluvial flooding (5m) over 
large urban areas 

- A 2D model which can model 
fluvial, pluvial and tidal 
flooding 

- Provides depth and velocity 
outputs 

- Has been validated by the EA 
- Accounts for drainage, flood 

defences, ground roughness 
and infiltration 

- Results are compatible with 
GIS platforms  

- Limited application to 
academic settings 

- Does not include urban 
drainage systems like 
sewers explicitly 
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3.1.5.2 Flood risk assessments 

A flood risk assessment (FRA) is an analysis which reviews a development, urban area or region 

against the probability of a flood event occurring and the consequences for the site itself and the 

surrounding areas  (Emanuelsson et al., 2014; Ambiental Environmental Assessment, 2020). All 

types of flooding can be considered in an FRA. Often academic papers will focus on one type (for 

example pluvial) whilst the FRA required for planning development sites in the UK require 

consideration of groundwater, fluvial, pluvial, tidal and sewer sources (Ambiental Environmental 

Assessment, 2020). FRAs can be used to enable decisions on whether developments should be 

built (Ambiental Environmental Assessment, 2020), how to design flood defences to protect 

existing infrastructure, test which strategies are the best performing at keeping people safe and 

alleviating flood risk (Woodward et al., 2014). Insurance companies also conduct  risk assessment 

models to understand the value and risk of their portfolio for investment decisions (Hammond et 

al., 2015). Risk management often involves weighing up the benefits and costs of action to 

mitigate significant consequences (Emanuelsson et al., 2014), as some action may not be required 

if the cost of action is outweighed by the consequence of a flood. The consequences of a flood are 

often quantified in monetary terms, but the less easily quantifiable social and environmental 

impacts need consideration as well (Emanuelsson et al., 2014). 

Two categories of flood risk assessments are discussed here. Firstly, academic papers where the 

flood risk across a town, city or region is assessed, often in economic terms. Secondly, there are 

very localised flood risk assessments which are required by local authorities as part of the 

planning process in the UK for any development which falls within modelled flood zones.  

When assessing flood risk across an area, risk-based decision making relies upon estimates of risk 

now and in the future, in the context of a range of flood risk management options (Blanc et al., 

2012). Within the risk assessments, the risks and consequences from flooding can be categorised 

in many different ways. There are short term versus long term risks, for example shorter term risk 

include the risk to life in the immediate flood event, property and infrastructure damage whilst 

economic impacts tend to be longer term (Hammond et al., 2015). The risk can also be classed as 

tangible, those which are quantified, for example economic loss from damaged properties, or 

intangible, for example long-term mental health problems (Hammond et al., 2015). Finally, there 

are direct and indirect risks, direct risks arising from contact with the floodwater and its 

immediate vicinity and indirect risks to the wider area which is not itself flooded (Hammond et al., 

2015). How risk is defined, and which risks are of interest, varies between studies which leads to a 

variety of methods of assessing flood risk.  
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There are some broad commonalities in the approaches to assess flood risk, as outlined in Blanc 

et al., (2012), Hammond et al., (2015) and Emanuelsson et al., (2014) . Firstly, the flood scenarios 

of interest are determined through identifying the flood risk level of the study area and then the 

input rainfall and hydraulic simulations are completed. Secondly, the vulnerability of the study 

area is measured and suitability criteria for assessing the consequences of the flood are decided. 

Finally, the flood event is combined with the vulnerability and consequence assessment, which 

could be through numerical scoring of factors to produce an overall risk score like Emanuelsson et 

al., (2014). Risk assessment methodologies can also incorporate qualitative measures as well as 

quantitative. Sperotto et al., (2015) developed a regional risk assessment methodology for Venice 

through collecting the knowledge of local stakeholders, with workshops and surveys to identify 

places at risk and the measures which the community felt would be best placed to help.  

 

For quantifying direct economic costs, depth-damage curves are applied to estimate the costs 

related to building damage and business interruption (Blanc et al., 2012) particularly in insurance 

models. Depth-damage curves estimate the amount of loss a building type would expect for a 

given depth of flood water. In the UK, the National Property Dataset allows for the classification 

of individual properties by age, building type and social class of residents who use them 

(Hammond et al., 2015), for which depth-damage functions have been generated  (Penning-

Rowsell et al., 2005). These depth-damage curves are frequently used to ascertain economic risk, 

however there is uncertainty associated with their results. Depth is not the only factor in the level 

of damage to a building. Velocity of the water into and around the building is a significant factor 

in the damage (Kreibich et al., 2009; Hammond et al., 2015) but is not included in the economic 

risk calculation. Depth-damage curves also do not consider the indirect costs from flooding like 

interruption to supply chains or the social, health and environmental consequences (Blanc et al., 

2012).  

 

Flood risk can be measured as Expected Annual Damage (EAD) in order to balance the expected 

costs of flooding in a given year against the cost of mitigation measures for stakeholders 

(Woodward et al., 2014; Olsen et al., 2015).  One example is Woodward et al’s (2014) paper which 

designed a risk assessment for the Thames Estuary, UK. EAD was calculated through a model 

which considered the hydraulic load of defences, the condition of flood defences in combination 

with realistic flood scenarios. The result was a map which showed the estimated EAD value for 

each zone, identifying in a quantitative way which areas were at greatest risk to losses due to 

flooding. Olsen et al., (2015) tested several methods for calculating EAD and found the method 

itself had a minor impact on the risk analysis results. They applied a GIS-based risk model which 

incorporated asset classes (for example residential, commercial, roads) with each having a flood 
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depth threshold for when damage starts to occur, and the unit cost of the damage calculated 

from previous insurance pay-outs for that class. The shift in damage costs as a function of return 

period was more important, which in their study this threshold was around the 1 in 10 year return 

period, which they posit could be related to the capacity of the sewerage system (Olsen et al., 

2015).  

 

In flood risk literature, there has been great focus on tangible flood damage which can be 

economically calculated (Hammond et al., 2015) whilst understanding of the intangible impacts 

has been neglected. The indirect effects on infrastructure networks beyond the direct flood area 

is one of these. Infrastructure such as telecommunications network, transport networks, power 

lines, water networks and food production should all be considered in flood risk assessments 

(Hammond et al., 2015; Conrad et al., 2006), but rarely are due to the difficulties in capturing 

these indirect effects. Physical and mental health are another intangible impact where the risk to 

a population is difficult to capture and predict. To combine the intangible health impacts with 

tangible economic impacts, Hammond et al., (2015) argue that a quantification of health impacts 

would be needed, but this is difficult to calculate and controversial to attach an economic value to 

human life. There are examples though of multicriteria frameworks which explore combining all 

impacts, for example Kubal et al., (2009) Zhou et al., (2012). 

 

Under the UK National Planning Policy Framework and EA guidance, a FRA is required for any 

developments which are proposed in a flood risk zone (Ambiental Environmental Assessment, 

2020). Flood zone maps are generated through simulating flood events of a given magnitude and 

estimating the area which would be affected and can provide an overview of the flood risk for an 

area. In the UK, the EA’s flood maps have divided the country into zones as an easily accessible 

way of determining risk for flooding. For fluvial flooding, Zone 1 is land with less than a 1 in 1000 

annual probability of a flood (<0.1%), Flood Zone 2 is land with between a 1 in 100 and 1 in 1000 

annual probability of flooding (1%-0.1%) in any year and Flood Zone 3 is land with a 1 in 100 or 

greater annual probability of river flooding (>1%) (Ambiental Environmental Assessment, 2020). 

For pluvial flooding, a similar planning map is available with very low, low, medium and high-risk 

categories used as zones (Gov.UK, n.d.).  

 

The advice for FRAs from the UK government outlines the following steps for completing a FRA 

(DEFRA & EA., 2019): 

• Firstly, research the development site through contacting the EA and local planning 

authorities and check if it is likely to be affected by flooding  
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• Secondly, complete the risk assessment with details of the site, the flood risk from all 

sources and the estimated level of defence which is required.  

• Finally, submit the flood risk assessment and planning application to the local planning 

authority.  

 

For pluvial flood management at vulnerable sites, the requirements of the local authorities 

surface water management plan also need to be considered in the planning application  (DEFRA & 

EA., 2019). Often pluvial flooding is neglected when FRAs are considered, despite it being a large 

issue in urban areas due to the potential of new developments obstructing overland flow 

pathways (Ambiental Environmental Assessment, 2020). However, pluvial models with specific 

depth calculations to ensure flow paths are not obstructed are being requested more frequently 

(Ambiental Environmental Assessment, 2020). A key part of a FRA for development sites is the 

consideration of how people are able to enter and leave the site if there is flood water (DEFRA & 

EA., 2019; Ambiental Environmental Assessment, 2020). Buildings themselves may be secure and 

not be flooded, but if routes of entry and exit are blocked then the site is not safe for use. This 

requirement is to only consider access and evacuation of the development site and not any issues 

of isolation at the local area around the site due to surrounding roads being impassable.  

 

As with all models, there are many uncertainties associated with the methods and outputs of 

flood risk assessments. A key uncertainty is that in most locations there is not an extensive flood 

data set of past flood events, therefore hydraulic simulations are required to generate data 

(Emanuelsson et al., 2014). Whilst these models are calibrated to real flood events, predicting 

large events where there are few examples or projecting into future floods under climate change, 

there will always be a degree of uncertainty in the depth, velocity and coverage of a flood event. 

The scale and precision of flood inundation data relies heavily on very precise local topography 

data, particularly in dense heterogenous urban areas (Emanuelsson et al., 2014), so access to such 

data is vital for a reliable flood risk assessment (Ambiental Environmental Assessment, 2020; 

Emanuelsson et al., 2014). As discussed, intangible impacts or asset dependencies across 

networks are generally not considered in FRAs (Emanuelsson et al., 2014) meaning they do not 

capture the complete picture of risk for the area of study.  

 

3.2 Review of Spatiotemporal Population Modelling  

As highlighted in Chapter 2, the spatial location of a population in relation to a hazard is often the 

main factor in the scale of impact (Freire et al., 2013). Therefore, it is imperative to have 
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information on where the target population is and where they travel to at the finest temporal 

resolution possible. For the vast majority of natural hazard studies, residential population data are 

drawn from decennial national census data, which do not adequately capture the temporally 

variant nature of population in their calculation of exposure. Although many national censuses do 

also record place of work for the economically active population, and in some countries place of 

higher education for those studying (Shabou et al., 2017), these are seldom used in natural hazard 

planning. The field of spatiotemporal population modelling has rapidly expanded over the last 

decade as its importance in various fields including public health, urban planning, hazard risk has 

been recognised. New advances in technology provide opportunities for inclusion of such data 

models into natural hazard risk assessments and this thesis provides an attempt at linking these 

disciplines together. This section reviews ‘traditional’ population data from the census, 

spatiotemporal modelling principles and methods as well as the alternative ‘big data’ sets and 

microsimulation models.   

3.2.1 Census data  

Census data have been the standard for population research (Aubrecht et al., 2014), providing a 

cross-sectional snap shot of population location at set temporal intervals (Smith et al., 2014). In 

the UK, a census has traditionally been conducted decennially, with the last census taken in 2011. 

The census collects social, economic and health data which are applied in a wide range of 

purposes. However, processing vast amounts of data takes a couple of years before release for 

public use, meaning the data are several years old when made available for research.  There are 

five nested levels for census geography in England and Wales, relevant to flood risk management 

in England (Figure 3.1). Full unit postcode level is the finest resolution of census data, however for 

data protection purposes there are only very limited head counts by gender data available at this 

level. Output Area (OA) is the finest resolution available for data. To ensure confidentiality, 

sometimes data are suppressed at the OA level.  
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Figure 3.1 Diagram of the census geography hierarchy applied in 2011. (Office for National 

Statistics, 2016) 

Whilst censuses have provided an invaluable resource to many researchers, there are both spatial 

and temporal issues with using census units as measures of population density. Spatially, the 

administrative areas used to aggregate populations are not of equal geographic area and 

boundaries can change between censuses. This causes complications as the choice of boundaries 

can have a greater effect on the output analysis than the actual variation in the study 

phenomenon (Smith, 2015). This is referred to as the ‘Modifiable Areal Unit Problem (MAUP)’ 

(Openshaw & Taylor, 1979; Openshaw, 1984) and it is why it is important to use appropriate area 

sizes in analysis (Harland & Stillwell, 2010). Traditional choropleth mapping is subject to the 

MAUP (Holt et al., 2004).  

Temporal issues also arise because, as noted previously, the spatial distribution of population 

fluctuates at a temporal resolution of minutes to days (Aubrecht et al., 2014; Bian and Wilmot, 

2015) and census data are collected decennially. Census data are often thought of as the ‘night-

time’ residential population of an area (Aubrecht et al., 2013a; Smith, 2015), as the survey is sent 

to everybody’s home address, which is not where the majority of the population spend their day. 

Whilst the census does provide information on workplace zones and if there are students living 

away from home, it does not easily provide a record of where every person spends their time. 

Consequently the data can only provide limited information on spatial and temporal changes in 

the population at the resolution which matters to risk managers and spatial planning (Renner et 

al., 2018). In the UK, Mid-Year Estimates (MYEs) for population age are produced in order to 

update the census data annually; however, the finest resolution available is Lower Super Output 

Output Area (OA) 
(Average 309 people) 

Lower Super Output Area (LSOA) 
(Average 1614 people) 

Middle Super Output Area (MSOA) 
(Average 7201 people) 

Local Authority (LA) 
(Average 163619 people) 

Decreasing 
Geographic 
Area Size 

Full Unit Postcode 
(Average 43 people) 
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Area (LSOA) meaning spatial resolution is lost. This only provides an estimate of the night-time 

population once a year, a temporal resolution which is still too coarse for detailed risk analysis. 

Furthermore, MYEs only provide a population estimate by gender and age and do not include any 

other population characteristics.  In light of this, there has been increasing demand for population 

data which have a finer temporal scale and are independent of administrative areas (Aubrecht et 

al., 2013b). 

3.2.2 Spatiotemporal population data  

Traditionally, population data are often presented in the visual form of a choropleth map based 

on census zones. Holt et al., (2004) state that population mapping has two purposes; to 

cartographically portray population density within a study area and as a basis for deriving 

quantitative population estimates. On the surface, choropleth maps do fulfil these requirements. 

However, choropleth maps create the illusion of sudden changes across boundaries and uniform 

population densities, which is untrue, especially in rural areas where large parts do not have any 

population present (Tapp, 2010). Hence they do not provide a ‘realistic’ depiction of population 

location (Wright, 1936). Therefore, alternative ways to display population data have been created 

which rely on interpolation techniques as they improve the representation compared to census 

zones. Spatial interpolation is the process of estimating the value of properties at unsampled sites 

by using existing data points from the area (Heywood et al., 2011). There are many methods of 

interpolation and they can be broadly split into two groups; point-based interpolation and areal 

interpolation. 

Point-based interpolation takes point data and produces a gridded data set (Hengl et al., 2007) 

without the restriction of census boundaries. There are many point-based interpolation methods 

and one of the most popular is kernel density estimation (Danese et al., 2008). This interpolation 

method involves a fine grid being placed over the point data (Borruso, 2005) and a kernel is 

assigned to each data point. An algorithm calculates the density of the kernels through a 

bandwidth (or radius) for the observation point (Fotheringham et al., 2000; Anderson, 2009). A 

surface representing the variation of point density (typically census zone centroids with 

population counts as weights) across the area is created (Borruso, 2005), which can be used to 

show ‘hotspots’ in the spatial pattern of variables (Anderson, 2009; Gerber, 2014). In order to 

account for edge effects, the analysis needs to be extended one kernel beyond the study 

area (Bracken & Martin, 1989). Applications of kernel density analysis include population 

modelling (Martin et al., 2015), crime analysis (Gerber, 2014), spatial epidemiology (Gatrell et al., 

1996), population distribution, social segregation (O’Sullivan & Wong, 2007), animal ecology 

(Hemson et al., 2005) and urban modelling (Danese et al., 2008). An advantage of kernel density 
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estimation methods is that they are ‘volume preserving’, which means the number of people in 

the source zones translates exactly to the target zone. However, as these are locally specific 

models the results are not transferable to other geographic areas (Gerber, 2014) which does 

restrict the wider applicability of studies. Also, zone centroid location is critical to the analysis as 

irregular centroid position can lead to bias (Wu et al., 2005; Tapp, 2010). Other examples of point-

based interpolation techniques include kriging, spline functions and inverse distance weighting 

(Harman et al., 2016). 

Interpolation methods have primarily been focussed on spatial interpolation, rather than 

temporal interpolation, although time is a key concept in creating accurate population surfaces. 

Investigation into spatiotemporal dimensions of interpolation are not just restricted to population 

modelling, it is also a relevant research issue in environmental sciences, climate prediction, and 

hydrology. ‘Time-geography’ is the key underlying theory for temporal interpolation methods. 

‘Time-Geography’ is a branch of human geography, first defined by Torsten Hagerstrand, and was 

prominent in the 1970s. The theory states that time is a resource for social life and a key measure 

of productivity. It is complementary to space, as we move through space over time, so both 

should be considered in analyses  as the challenges and characteristics of each need to be 

addressed simultaneously (Bogaert, 1996; Pred, 1977). As part of the theory, constraints to the 

spatial-temporal movement of people are defined  (Pred, 1977):  

 

1. Capability constraints such as how much free time an individual has for an activity; and 

the limitation of distance they can cover in a given time on transport available 

2. Authority constraints: not all space can be occupied by anyone e.g. private property 

3. Individuals cannot do multiple activities at once so must not be duplicated in models 

4. Time is taken moving between activities, so needs considering in any analysis of how 

individuals spend their days  

 

Whilst the importance of including time in analyses is clear, actually including it in population 

models has proved challenging as much geographical software was designed primarily for spatial 

analysis. Although there has been development of specific spatiotemporal GIS packages, for 

example ‘spacetime clusters’ in ArcGIS Pro (ESRI, 2020f), R packages for handling and analysing 

spatiotemporal data (Pebesma et al., 2020) and STEMgis, a temporal GIS system (Discovery 

Software, 2020). Additionally, traditional raster and vector data structures limit the way temporal 

data can be handled, resulting in ‘snap shots’ of change between time periods. To address this 

problem, geostatistics can be extended to provide a joint tool for space-time analysis (Kyriakidis & 

Journel, 1999). Space-time kriging is one such tool (Bogaert, 1996). It yields optimal predictions 
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for any point in a space-time domain and the result of the interpolation can be displayed as an 

animation or series of maps (Heuvelink et al., 2016). Other techniques include conditional 

autoregressive regression modelling, which takes into account spatial and temporal 

autocorrelation in data. So, these methods can take an interpolated surface at specific time 

intervals and compare changes between them (Kyriakidis & Journel, 1999), which is an 

improvement on interpolation from a single census time period. But such interpolated outputs 

depict gradual long-term change, not the fine scale of population movement in real-time.  

The recognition of the limitations of census data and the availability of other administrative and 

remotely sensed data sources has led to an increased demand in spatiotemporal population 

modelling (Aubrecht et al., 2014). The principle behind spatiotemporal population data modelling 

is to mimic the flows of people as they conduct their daily routines to produce data of population 

counts for different times in a day or year in an area. These models assume population groups 

with similar characteristics share similar movements, determined by the location of economic, 

social and leisure facilities (Batista e Silva et al., 2018), which can be used to assign daily temporal 

routines (Bian & Wilmot, 2015). Bhaduri et al., (2007, p.106) provide useful definitions for 

identifying the groups within night-time and daytime populations, as shown in the Equation 3.1 

and Equation 3.2. 

Night time = Night time Residential Population + Night time workers + Tourists + Business 

Travelers (+ Immobile Population)          Equation 3.1 

Daytime Population = Workers + School Children +Tourists + Business Travelers + Residual Night 

time Population (+ Immobile Population)           Equation 3.2 

Within recent literature, the groups identified in Equation 3.1 and Equation 3.2 are commonly 

used, with night-time residents, workers, students and daytime residents as staples (Aubrecht et 

al., 2014; Bian and Wilmot, 2015; Freire et al., 2013) and tourists and shoppers recognised as 

important sub-groups with high mobility which are more challenging to model (Bian and Wilmot, 

2015; Smith et al., 2015). In relation to hazard preparation, tourists may not have knowledge 

about local hazards to be able to react quickly to a warning (Cahyanto et al., 2014) so are an 

important group to account for in a risk assessment.  

Such data are often gridded as this provides a more meaningful representation of settlements 

than choropleth maps of census zones (Martin et al., 2009). It also offers a consistent sampling 

grid over time, minimising the effect of the MAUP (Martin et al., 2009). Examples of 

spatiotemporal population distribution projects include Gridded Population of the World 

(Deichmann et al., 2001) , Global Rural Urban Mapping Project (Balk et al., 2006), LandScan USA 
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project (Bhaduri et al., 2007), DynaPop (Freire et al., 2015) WorldPop (Tatem, 2017) and 

Population 24/7 (Martin et al., 2009, Martin et al., 2015). More details are given in Section 1.2.4.1.  

3.2.3 New forms of data 

Future advances in spatiotemporal modelling of population will be from incorporating new non-

conventional data sources into spatiotemporal models (Batista e Silva et al., 2018). Types of non-

conventional data for population in travel include mobile phone data, from GPS and smartphone 

applications which track movement (Malleson et al., 2018), social media data, from platforms like 

Twitter, Flickr, foursquare (Malleson & Andresen, 2015) and automated ‘big data’ like footfall 

count, automatic number plate recognition and travel smart cards (Heppenstall et al., 2016; Crols 

& Malleson, 2019). This section will briefly describe the main new forms of data that are emerging 

and examples of their application to spatiotemporal population modelling.  

Mobile phones have become an increasingly popular source of population data as they allow 

movement to be followed in near-real time. Globally, 96% of people have a mobile phone (Deville 

et al., 2014), a figure which is only increasing, providing a very large data set. These data are 

especially valuable in countries where reliable census data at good spatial resolution is absent 

(Deville et al., 2014). Mobile phones provide the location of an individual via one of two ways: 

either through use of the cellular network which identifies the cellular zone the handset is in, or 

through the handset’s GPS chip.  For cellular zones, phones are recognised when they 

receive/place a call or text message or connect to the internet (Calabrese et al., 2011), so when 

not in use the phone’s location is not known, meaning some movement will inevitably not be 

captured. Also, these data are anonymised to the number of people within the cellular zone so 

cannot be used for individual modelling (Deville et al., 2014). Most modern phones are GPS 

enabled, which can provide a much greater spatial and temporal resolution on an individual’s 

location.  For example, in Herrera et al.’s (2010) study the phone’s GPS updated its location every 

3 seconds. GPS does not require the phone to be in use, just turned on, so a greater amount of 

the population’s movement can be tracked. Herrera et al., (2010) did a large scale experiment in 

the San Francisco Bay area and found reliable data on traffic conditions could be gained when as 

little as 5% of the cars on a road had GPS enabled phones. A decade later, this number of cars 

travelling with smart phones is a lot higher, with widespread use of navigation apps for real-time 

directions. Therefore, mobile phone data can be a powerful tool for applications including disaster 

monitoring, disease mapping (Tatem et al., 2014), and road travel behaviours (Deville et al., 

2014).  
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Smartphones and the applications which are installed on them are another source of 

spatiotemporal data on the population. Malleson et al., (2018) gathered data generated from a 

smartphone application in order to analyse the daily routes of pedestrians in the Greater Boston 

area, USA. The app from which the movement data were generated was downloaded by the user 

for the purpose of allowing the user to track their daily routine, so there was consent for the data 

to be collected. Malleson et al., (2018) mapped the routes taken using an algorithm to map them 

onto roads, with 94% of routes successfully matched to a road path. The data generated from the 

smartphone app was of sufficient quality and spatiotemporal resolution to examine pedestrian 

asymmetry. Travellers’ paths were about 20% longer than the direct shortest route between 

places and people changed their routes between origin and destination 15% of the time. This 

study is one example of how the widespread use of smartphones is producing new data sets 

which can provide greater insight to daily population movement and the routes they take.  

Mobile phone GPS data are collated by companies like Google to generate estimates of the 

number of people at a facility for a given time of day. The ‘popular times’ data appears 

underneath the details of many businesses and attractions on Google and show the relative 

busyness of a place at different times of day over the course of a week. This could be extremely 

useful data for retail and tourist spatiotemporal models; however, it is not currently available 

through the API due to its commercial value.  

The main advantage of mobile phone data over census data are the increase in temporal 

resolution (Deville et al., 2014). The spatial resolution is comparable to the spatial resolution 

which can be achieved through downscaling census data sets, but mobile phone data opens the 

potential for real-time monitoring of traffic for better management or locating population flows in 

emergencies (Deville et al., 2014). Studies have shown that mobile phone data can capture the 

differences between weekday/weekend movements which again is an improvement on census 

data (Calabrese et al., 2011; Herrera et al., 2010). Secondly, a much larger sample of the 

population is achieved than through travel surveys, a full order of magnitude in Herrera et al.’s 

(2010) survey, as people are increasingly leaving larger ‘digital footprints’ (Calabrese et al., 2011). 

The data from smartphones via location tracking apps can also be much more accurate than travel 

diaries (Malleson et al., 2018) as they do not require the participant to remember to complete the 

diary.  

However, there are some substantial issues with mobile phone derived data which still need 

resolving. Firstly, the ‘digital divide’ means it cannot be considered a fully representative data set 

of population demographics, with potentially serious biases towards the younger generation 

(Tatem et al., 2014; Malleson et al., 2018). Mobile phone uptake has shown to be low amongst 
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older people and those who are the most marginalised in society (Deville et al., 2014), meaning 

their representation is lower than from census data sets. Also, the youngest children are unlikely 

to have a phone of their own, so these data may not be suitable for tracking travel to schools 

without assumption on how many children are in travel per adult smartphone reading. Therefore, 

there is a divide between people who have and do not have a phone and who is represented in 

any data. Additionally, GPS location data are only recorded whilst a phone is turned on, meaning 

users could choose to switch their phones off and would not appear in any data.  

Secondly, there are data privacy and ethical concerns with the use of individual mobile phone 

data. Currently, the use of these data involves a rigorous anonymisation process before it can be 

used for academic research, so individual movements cannot be identified (Deville et al., 2014; 

Calabrese et al., 2011). For example, Herrera et al., (2010) had to ‘degrade’ their data as the 

temporal and spatial resolution was too fine and identified individuals, when their study was to 

provide an estimate of overall traffic flow on a road. Thirdly, the market share of the mobile 

phone data provider can limit the sample size (Calabrese et al., 2011). Mobile phone plans may 

limit how often someone uses their phone if they do not have a large phone call or data 

allowance, meaning not all movement may be logged (Calabrese et al., 2011). Using data from 

smartphone apps which work across a variety or networks and phones is one way to resolve this 

issue and is more feasible now than in 2011 when Calabrese et al., (2011) did their work. Finally, 

mobile phone data does not contain the demographic data that the census does, unless it is 

connected to other data sets (Herrera et al., 2010). So, whilst it is useful for looking at travel 

movement as a whole, as yet it cannot indicate how different sub-groups of the population move 

or why someone has undertaken a journey in the same way a travel survey does (Longley et al., 

2015). There are some examples where survey data has been combined with mobile phone data 

to generate travel patterns for groups of the population (for example Arai et al., 2014). Future 

data may facilitate more of this type of analysis.  

Following on from mobile phones, social media and the data the population publish on these 

platforms has drawn great interest in recent years as a potential proxy for population movement. 

There are a number of social media sites where users publish location data which can be viewed 

publicly or accessed via an Application Programming Interfaces (APIs), including Twitter, 

foursquare and Flickr (Malleson & Andresen, 2015). In recent years, Twitter data in particular has 

been a focus of spatiotemporal population studies. Geotagged tweets have been applied as 

proxies for movement to overcome data restrictions of mobile phone networks, as the data are 

available via an API. Twitter has an option where users can geotag the location they send the 

tweet from, based on GPS, and the accuracy of this function is quoted as 10-20m in various 

sources (Jurdak et al., 2015).  
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Jurdak et al., (2015) used Twitter data to study international migration, finding they could divide 

their twitter users into two groups, those who tweeted from the same place predictably and then 

those who were random. So, they argued that these data can be useful for tracking those who 

have migrated or move around a lot, which would not been seen at the same temporal resolution 

in other data sets. They attempted to introduce social characteristics to the data by using facial 

recognition software to classify people based on age and gender in order to map migration 

patterns. This is not a substitute for the wealth of data a census can provide but does show how 

more than just location can be estimated from twitter data. Longley et al., (2015) used the 

forenames and surnames of twitter users to define age, gender and ethnicity by cross-referencing 

twitter handles against detailed name data bases. As with facial recognition, Longley et al., (2015) 

recognised difficulties with this approach as the names or photos used may not be the account 

holders’ own, or someone may have a name which the profiling database does not consider 

‘typical’ for their age, gender or ethnicity.  

These studies are interesting in their exploration of new data for modelling people’s travel, 

however there are still many restrictions on the amount of data available and assumptions in 

these data which mean they cannot replace ‘traditional’ census and administrative data sets. 

Twitter data has also been used to assess the crime rate of a city, including the ambient non-

residential population, rather than basing crime rate solely on the residential census population. 

Malleson & Andresen (2015) used Twitter data of messages posted in Leeds with GPS coordinates 

and crime data for ‘street crimes’ to build a model which searched for spatiotemporal clusters of 

crime in Leeds. They found clusters for specific space and time points, for example the area 

around the University between 21:00 and 02:00 on a Saturday/Sunday, which registered 

significant levels of crime which would not likely have been picked up in traditional crime rate 

data based on census-derived residential data. This study demonstrates the value of incorporating 

‘new’ social media data with ‘traditional’ data sources to enhance the spatiotemporal 

understanding of an issue.  

The advantage of geotagged tweets is that the data are more accessible than mobile phone data 

as it can be downloaded via Twitters API with relative ease. However, it is estimated that 1% of 

tweets are geotagged, and the twitter API allows someone to download up to 1% of all tweets 

which match their search criteria (Singleton et al., 2011). Thus, any data used in research is a small 

subsection of the population on Twitter. Twitter is also predominantly used by younger ‘tech 

savvy’ people, which Longley (2015) found was not representative when compared to the census 

data for London. However, Jurdak et al., (2015) argue that it is younger adults who are most likely 

to migrate so twitter could still provide useful data for this application. Currently, there are no 

reliable means of extrapolating the data up to the scale of the population at large, so these data 
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are only applicable for the area and people surveyed. Furthermore, these data rely on users 

tweeting whilst conducting activities, rather than from their homes. So, there is the chance that 

the activity being tweeted about is not where the geotagged location indicates. A main issue with 

social media data are that there is little data to validate it against in order to know how it 

represents the day-time population (Malleson & Andresen, 2015). Where available, social media 

data could be compared to footfall data to see how much movement is captured as Crols & 

Malleson (2019), however there are difficulties in this as well as it is not known what proportion 

of the footfall data represents people with smartphones or Twitter accounts.  

3.2.4 Methods 

This section gives a brief overview of the main methods used in spatiotemporal mapping and 

modelling within the literature.  

 

3.2.4.1 Available spatiotemporal models 

Two approaches are emerging in spatiotemporal population methodologies, those that extend 

mapping technologies within a time-enabled framework, and those that attempt to track 

population movement through ‘big data’ (Martin et al., 2015). This section will focus on the 

former approach as this is the one applied in this thesis. Over the last two decades, gridded 

population models have been developed with increasing sophistication. The first such model 

output was the Global Population of the World (GWP) project and the Global Rural Urban 

Mapping Project (GRUMP) in 1990, and now there are several different models from projects 

across the world (see Table 3.2). These models have similar aims, however they utilise different 

interpolation methods which means they are appropriate in different situations (Galway et al., 

2012). In this thesis, SurfaceBuilder247 is used as it is the only spatiotemporal population model 

available for England at a fine spatial and temporal resolution (Martin et al., 2015). The National 

Population Database (Health and Safety Laboratory, 2020) is a source of spatiotemporal 

population data for England, however it is not freely available to the public and is only available in 

night/day time slices, rather than specific hours and day types.  
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Table 3.2 Available gridded population models and projects 

 

Applied as part of an ESRC funded project (UK Research and Innovation, n.d.), SurfaceBuilder247 

is a gridded spatiotemporal population model available to academics (Martin, 2011). This 

modelling framework can be applied to a range of applications which require spatiotemporal 

population data, including emergency planning for natural hazards (Martin et al., 2015), hence its 

suitability to this PhD research project. The model uses census data, administrative data sources 

and government travel data. Briefly, SurfaceBuilder247 determines where the origins and 

destinations of a synthetic population are, and then for the specific time of day chosen calculates 

the number of each population sub-group in every grid cell, either residing there at an origin, 

Project name Year Source Geographical Scope and Resolution 

Global Population of 
the World (GWP) 

1990, 
1995, 
2000, 
2005, 
2010, 2015 

Socioeconomic 
Data and 
Applications 
Center (SEDAC) 

Global, 5km grid resolution 

Global Rural Urban 
Mapping Project 
(GRUMP) 

1990, 
1995,2000 

Socioeconomic 
Data and 
Applications 
Center (SEDAC) 

Global, 1km grid resolution 

Landscan USA 2000-
present 

Oak Ridge 
National 
Laboratory 

Global, 1km grid resolution 

DynaPop 2014-
present 

(Aubrecht et al., 
2014) 

Up to 100m grid spatial resolution, up 
to hourly temporal resolution.  

WorldPop 2013-
present 

WorldPop, 
University of 
Southampton 

South America, Africa, Asia. Up to 
100m grid resolution.  

Population 24/7 2009-
present 

(Martin et al., 
2009) 

England and Wales population model, 
can be run at up to 100m grid cell 
resolution (depending on data 
sources) 

National Population 
Database 

2014-
present 

Health and Safety 
Laboratory 

GIS tool for Great Britain, 100m point 
resolution 

ENhancing ACTivity and 
population mapping 
(ENACT) 

2016-17 EU Science Hub Europe. 100m grid cell resolution.  

Population Density 
Maps 

2016-
present 

Facebook, in 
partnership with 
the Centre for 
International 
Earth Science 
Information 
Network at 
Colombia 
University 

30m grid cell resolution  
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destination or in travel on their way to an origin/destination. The interpolation method used 

within the SurfaceBuilder247 model is based on an adaptive kernel density approach developed 

by Martin (1996). It takes population-weighted centroids of small areas and redistributes them 

onto a regular grid (Martin et al., 2009). The width of redistribution kernel is adjusted according to 

typical areal extent zones in that locality and a distance decay function is used in the 

redistribution (Martin et al., 2009). The Surfacebuilder247 framework presents a volume-

preserving model, so the number of people present in the census origin input file is the same as in 

the output grid (Martin et al., 2015). It does not show the movement of individuals between 

places, as confidentiality restrictions on census data mean the initial inputs are aggregated 

beyond the individual level. Rather, the changing totals in grid cells of population groups are seen 

when each time slice is compared. More detail on how this model works is provided in Section 

4.2.2. 

3.2.4.2 Microsimulation models 

An alternative method to aggregate spatiotemporal population models is to apply a 

microsimulation model to investigate spatiotemporal population movement. Aggregate models, 

like spatial interaction models, have the disadvantage of lacking behavioural traits for individuals 

who compose the large complex populations of cities and respond to urban environments 

(Heppenstall et al., 2016). Agent based models (ABMs) represent individuals at multiple spatial 

and temporal levels who respond to their surroundings, often through behavioural triggers within 

a sensing radius. This generates complex emergent behaviours as agents have the ability to evolve 

and make decisions over time and space (Heppenstall et al., 2016). The advantages of ABMs are 

that they can represent the micro-dynamics of individuals, which cannot be captured as easily in 

statistical models (Heppenstall et al., 2016). ABMs can represent multiple spatial relationships and 

have the flexibility of incorporating equations and statistical techniques of other models 

(Heppenstall et al., 2016). An example of using an ABM to model spatiotemporal population 

movement is Crols and Malleson (2019) who applied the Simulating Urban Flows ABM to model 

population groups moving into and around a town centre. Census data for commuters were 

combined with a time use survey to parameterise the movement rules of agents, with other 

population groups iteratively added. The accuracy of their model was assessed by comparing it to 

footfall data in the town centre which tracks how many phones attempt to connect to the WiFi 

network. Disparities between the datasets were presented to local stakeholders who provided 

reasons for this by identifying groups which needed to be included in the model to more 

accurately reflect the footfall data. This paper demonstrates how the combination of traditional 

and new data sets can be effective in providing higher resolution spatiotemporal models of 

population movement.  
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Like all models, there are issues with ABMs. The main issue is that of calibration and validation of 

ABMs, as one method cannot be applied to all as the processes in an ABM occur at different 

spatial and temporal scales (Heppenstall et al., 2016). A large amount of data would also be 

required to validate potentially thousands of agents (Heppenstall et al., 2016), and often there is 

no suitable validation data set (Crols & Malleson, 2019). The ontology of the model can be 

validated, for example Crols & Malleson (2019) did this through presenting the results to local 

stakeholders, however there will always be a deviation from the real world in the model. Finally, 

ABM models can be very computationally intensive which could limit their application to large 

geographic areas.  

 

3.3 Review of Transport Planning and Network Analysis 

In order to research how flood events affect travel, an understanding of theory in transportation 

engineering is required. This section focusses on how people’s journeys are conceptualised, how 

road networks are modelled and how the risk of disruption is considered. As this research is 

specifically focussed on the functioning of road networks, the wider context of network science 

needs reviewing first as it forms the theoretical basis of the methods within transport modelling. 

3.3.1 Introduction to network science  

Network science is a broad, interdisciplinary field of scientific research which emerged during the 

‘quantitative revolution’ of the 1960s (Ducruet & Beauguitte, 2014) and gained popularity at the 

end of the 20th century (Fang et al., 2007; Börner et al., 2007). Network science can be defined as 

the understanding of the connections between elements, in the physical and social world, and is 

important in numerous research fields, including biology, social sciences, ecology, physics, 

computer science and mathematics (Börner et al., 2007; Baggio et al., 2010). Networks can be 

physical (e.g. road networks) virtual (e.g. the internet) or imagined (e.g. social networks) (Baggio 

et al., 2010). In all types of network, the ontology to describe the elements are the same. There 

are ‘nodes’ which connections are made from, which could be origins and destinations in physical 

networks, or people in a social network. ‘Links’, sometimes referred to as ‘edges’, are what 

connect nodes, and can be physical links like roads, virtual links on the internet or the 

relationships between people (Kong et al., 2010; Gross & Yellen, 2014; Demšar et al., 2008).  

Graph theory forms the foundation of network science with the concepts and terminology 

adapted from it (Barnes & Harary, 1983). Graph theory is a branch of mathematics in which 

‘graphs’ are a representation of a network (Demšar et al., 2008; Barnes & Harary, 1983). Graphs 
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can be directed, which means that the direction of travel along the edge is important, or 

weighted, where a numerical value is assigned to the edges and vertices to denote a variable 

(Demšar et al., 2008). The interaction of vertices and edges can be assessed in several ways. 

Shortest path is a common function and these algorithms determine the shortest route between 

two vertices (Kong et al., 2010). Centrality measures are values which describe how important a 

vertex is to the structure of the network, a higher centrality value means it has a high impact on 

other nodes if removed (Demšar et al., 2008), which is useful in calculating the impact of 

disruption. Finally, betweenness is the extent to which a node is needed to link the rest of the 

network, nodes with high betweenness values have a large impact on flow across the graph 

(Demšar et al., 2008). Graphs in mathematical models observe the topological properties of a 

network; however, in this form do not contain the spatial properties of many real-world networks. 

Graph theory has been used to create GIS network tools in order to examine networks as spatial 

phenomena (Demšar et al., 2008).  

Networks can be simple and consist of a few nodes and links, however real-life networks are often 

complex systems where the impacts of disruption are non-linear (Dawson et al., 2011). Whatever 

the type of network or complexity level, networks have broad properties which remain the same 

(Baggio et al., 2010). One of these is network topology, the geometric connections of elements in 

a network which are independent of a spatial coordinate system (Heywood et al., 2011). 

Connectivity is an ‘essential’ component of networks (Reggiani et al., 2015), as how networks 

connect and the status of these connections determines the functions which can be performed. 

Due to the importance of connection in networks, the exploration of the effects of network 

disruption is key, particularly for high consequence, low probability events (Berdica, 2002). 

Transport networks are complex system as they are the interface between physical, technological 

and social spheres. The layout of road networks is shaped by the social and economic connections 

between places, and the roads represent the physical manifestation of a societal desire to travel 

to destinations. Like all networks, when road networks are disrupted this reduces its overall 

performance and impacts the running of society. Consequently, the study of road network 

disruption and how to adapt to it is a highly active research area. The rest of this section 

addresses theories in modelling transport networks specifically and how the issue of network 

disruption is considered.  

3.3.2 Transport network theories 

Transport networks include roads, train lines and public transport routes which are along fixed 

paths, but also travel by boats and aeroplanes, which follow routes not physically marked. Road 
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networks have the same underlying properties as all transport networks, with their own unique 

features. Transport models are networks which contain properties specific to the transport mode, 

including speed restrictions, travel times, one-way roads and turn restrictions.  

Three distinct classifications of transport model scale can be identified (Alaeddine et al., 2015; 

Lämmel et al., 2010; Borrmann et al., 2012). Firstly, microscopic models cover the individual 

behaviours of people and vehicles to simulate interactions and emergent behaviour, making 

ABMs the tool of choice. This can result in high computational cost which restricts the spatial area 

it can be applied to. Mesoscopic models allow the tracking of small aggregate groups but they do 

not account for behaviour and interactions of the agents (Alaeddine et al., 2015; Borrmann et al., 

2012). Finally, macroscopic models treat the population as larger aggregate groups (for example 

travel between cities in a region) and again do not include behavioural interactions. The size and 

type of model applied depends on the purpose of the research, the scale of network and the 

available computing power.  

Traffic and congestion are a feature of road networks, something not present in all types of 

networks (Sohn, 2006). The impact of individual behaviour also has a large impact on the system, 

as individual decisions interact to form system wide features e.g. the morning travel peak formed 

by the structure of the typical working day. This decentralised decision making (Nagurney, 2011) 

adds challenge to constructing transport models as users of the system do not always make 

logical decisions and it is impossible to account for all individual decisions. From these principles, 

a few key conceptual models are used within transport planning and form the basis of computing 

workflows. Two of these models are described in the next subsection.  

3.3.2.1 Conceptual transport models  

First conceived in the 1960s, the ‘four stage transport model’ approaches transport planning from 

a ‘person-perspective’ (McNally, 2007; Ortuzar & Willumsen, 2011; Jones, 2012). The four stages 

represent the broad stages of an individual’s decision when planning travel (Figure 3.2). Trip 

generation is determining what journey needs to be undertaken and by whom. In transport 

planning this has largely been done through travel survey questionnaires to gain an understanding 

of how often different groups of people travel daily and weekly (Jones, 2012). The next stage is 

trip distribution, which assigns a destination to these potential journeys. If survey data exists then 

this can be used, if not, spatial interaction models have been used to determine the likely flows 

between origins and destinations. The third step is modal split, representing the decision 

concerning mode of transport (e.g. car, bus, bike or foot) to reach the desired destination. Finally, 

trip assignment is where a route needs to be selected based on the destination and mode of 

transport used. Often this will be the one which is calculated to be the quickest or most direct.   
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This model has largely remained unchanged since it was created, its simplicity providing flexibility 

in application to a wide range of scenarios. Like all models, the four-stage model has flaws and 

situations where it is not suitable. First, it is not easily applicable to journeys with multiple 

destinations as it was based on the concept of a singular origin and destination pair (Jones, 2012). 

Secondly, it does not include human behaviour which can have a large impact on the destinations, 

modes and routes taken (Jones, 2012). People do not always choose to take the shortest logical 

route. However, the four stage model remains a good base for transport models and is still widely 

used (Ortuzar & Willumsen, 2011; Jones, 2012).  

 

Emerging in the 1980s, activity-based models use the decisions made from activity choice as the 

basis for transport modelling (Wang & Cheng, 2001), considering measures of attractiveness and 

impedance (Bocarejo & Oviedo, 2012). Activity based models can include the demand for services, 

which Reggiani et al., (2015), among others, attest is the basis of travel, as people rarely 

undertake journeys for the sake of travelling.  

3.3.3 Key Concepts for transport network disruption 

There are key transport network concepts in relation to transport network disruption which need 

defining, especially as they often overlap and are measured in similar ways. This section covers 

the network concepts as well as other key terms found within transport literature.  

Society works when its networks are functional. Road networks are the lifelines of society (Chen 

et al., 2007; Platt 1995; Nyberg & Johansson 2013), hence, even minor disruptions can have 

negative effects. Disruptions can be caused by natural events, accidents, planned engineering 

works or terrorist attacks, and each type of disruption has its own warning period and adaptive 

measures. There has been a rise in the body of literature assessing the impacts of weather on 

travel (Liu et al., 2014a) as the increased frequency of extreme weather events has a high 

likelihood of causing significant future problems (Mitsakis et al., 2014). Society cannot afford 

absolute protection, so identifying what nodes and links are critical to the normal functioning of 

the network and prioritising this infrastructure is essential (Freiria et al., 2015).  

Trip Generation 

What journey 
needs to be 
undertaken? 

Trip Distribution 

What are the 
destinations of 
this journey? 

Modal Split 

What form of 
transport is 

used? 

Trip Assignment 

What route is 
taken to the 
destination? 

Figure 3.2 The Four-Stage Transport Model 
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Critical network links can be defined as those which when unavailable have the greatest impact 

on network function. There is not one method which is used to define critical links (Cats & 

Jenelius, 2015) as it largely depends on the researcher definition of ‘critical’, and the linked 

concepts of vulnerability and accessibility discussed later in section. Identifying critical links is 

important in all network systems in order to identify where resources for maintenance and 

protection should be prioritised to ensure the continuation of social and economic functions 

(Sohn, 2006; Jaroszweski et al., 2015). When considering transport networks, they are not aspatial 

and links which may not appear critical through the network scan methods may in fact be critical 

to local populations. A social science perspective of who uses the network is also important. This 

is particularly true in disruption events.  

The origins of network disruption methods are from graph theory. There are a set of methods 

which can be grouped as topological analyses (Khademi et al., 2015), as they are primarily aspatial 

methods based on graph theory and do not consider the geography of a disruption (Pregnolato et 

al., 2016b). The basic method is to remove one link at a time to systematically examine the impact 

on the whole networks function from their removal (Sohn, 2006). Eliminating singular links and 

testing the impact is a long process (Chandra & Quadrifoglio, 2013) and it does not provide a 

holistic view of the tolerance of the network as a whole (Duan & Lu, 2014). Hence, other 

measures have been developed which are quicker or are more targeted in their network attacks 

(Chandra & Quadrifoglio, 2013). A common technique is the ‘full network scan’ approach, which 

removes each link at a time but in an automated way (Freiria et al., 2015). However, this is still 

computationally expensive so cannot be used for large data sets (Freiria et al., 2015). These 

methods can work well for network problems which are not for physical networks e.g. internet 

communications, however spatial methods are better for physical networks with physical 

disruptions.  

Jenelius (2010a) proposes that research needs to go beyond those which are important in the 

normal functioning network, as when disruption occurs to critical links, re-routing is required 

(Jenelius, 2010a). So, these roads can be considered secondary critical links and their importance 

may only become apparent in disruption scenarios. Extrapolating the critical links theory further, 

research should consider a particular population group, as different routes and services are used 

by different groups of people, therefore the importance of a road link would vary depending on 

the perspective of the group of people. 

Vulnerability and accessibility are terms which are linked to defining critical links in networks. The 

term vulnerability is mostly used in relation to the risks posed by severe transport disruptions 

(Cats & Jenelius, 2014) and was first formalised by Berdica (2002). Chen et al., (2015), Reggiani et 
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al., (2015), Rupi et al., (2015) and Muriel-Villegas et al., (2016) state there lacks consensus on a 

definition for network vulnerability due to the numerous methods which try to capture the 

consequences of network disruption. In general, the definitions agree vulnerability is a measure of 

the susceptibility and impact of disruption on the network, independent of probability. Early 

conceptualisations of vulnerability for networks were related to the concept of reduced levels of 

accessibility as a consequence of network failure or degradation, however it has evolved to 

consider the wider consequences of failure (Muriel-Villegas et al., 2016). 

Jenelius (2010a) takes the concept of network vulnerability further by considering network equity; 

defining importance through how the network design can lead to inequitable distribution of the 

consequences from disruption. Their example is that if a link closure results in one area being 

affected substantially more than others, the link could be considered more important i.e. critical 

to maintain. Jenelius (2010b) identifies horizontal and vertical equity, where horizontal equity 

ensures the costs and benefits to be equally distributed across all individuals whilst vertical equity 

provides special consideration to vulnerable groups. This theory could be applied to hazard risk 

assessments, as those who are most vulnerable are often prioritised in plans, therefore road links 

which connect to these groups could be considered critical even if they are not topologically 

critical. 

Accessibility is the key for any transport network, since people need to be able to access the 

services they require. Accessibility is a useful measure for a number of reasons. Firstly, it can be 

used to calculate the opportunities available to an individual or group, like access to workplaces, 

shops, education and other amenities. Secondly it is important in emergency situations, where 

the level of access to affected groups needs to be assessed quickly to provide an appropriate 

response (Schnebele et al., 2014). Khademi et al., (2015) state there are similarities in the 

definitions of vulnerability and accessibility, and the link between accessibility and vulnerability 

was first made by D’Este and Taylor (2003). Common themes in accessibility definitions are the 

focus on positive connections networks provide between places and opportunities, rather than a 

more negative view of weak links and nodes given in vulnerability (Bocarejo & Oviedo, 2012; Ford 

et al., 2015a; Coles et al., 2017). Where they do correlate is that they can both be measured as a 

product of disruption, with the accessibility before and after an event calculated. The concept of 

potential and realised accessibility is also a consideration as analyses may indicate there is a route 

to provide access to a service, however other barriers like affordability of travel, availability of 

service and consumer choice can prevent potential accessibility becoming realised accessibility 

(Nieves, 2015). These factors can often be included through generalised cost indices.  
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There are many papers which address network accessibility for the general population, including 

Jenelius, 2010; Jenelius 2009; Jenelius & Mattsson, 2012; Rodríguez-Núñez et al., 2014; Sohn, 

2006; Taylor & D’Este, 2003; Taylor et al., 2006; Chen et al., 2007, Chen et al., 2015; Balijepalli & 

Oppong, 2014. However, there are few studies which look at accessibility for certain groups. 

Nyberg and Johansson (2013) modelled how accessibility for elderly residents is affected by 

storm-felled trees in Southern Sweden, whilst Coles et al., (2017) focussed on elderly residents’ 

access to care but this time in the context of flooding in York. Looking at key sub-groups of the 

population and which roads they use to access services can therefore be used to identify critical 

links those groups need to conduct their daily routines.  

3.3.4 Transportation-related geospatial data systems 

There are many geographic data sets which can be used in UK transport modelling and they can 

be classified into three categories; government data, open source data and commercial data. 

3.3.4.1 UK Government sources 

There are a number of data sources for data on traffic flow, speed, road location and accessibility 

available for use in UK transport studies. For traffic flow, the Highways Agency Traffic Information 

System collects information about traffic speeds and flows for UK motorways at a 15 minute 

temporal resolution (Jaroszweski et al., 2015) which can be accessed for transport planning and 

research. Another available data source is Annual Average Daily Flow (AADF) data for traffic points 

around the country, and they provide an average count of the number of vehicles using that 

section of the road by vehicle type. The UK national average value for generalised cost was 

designed to quantify travel time in transport planning (Postance et al., 2017) and can be used for 

major roads. The UK Department for Transport also has an accession GIS tool which calculates 

service accessibility to services via public transport for different groups (Ford et al., 2015b), useful 

data for assessing equality of service provision.  

In terms of GIS data for building network models, Ordnance Survey have developed several road 

network data products. OS MasterMap Highways Network is a comprehensive GIS data set of all 

roads in Great Britain, available via license to businesses and under the Public Sector Geospatial 

Agreement to public sector organisations. These data include information on any road 

restrictions, turnings and road ownership. Ordnance Survey do provide an open source roads data 

set, OS Open Roads which provides basic information on road location and topology, but without 

the additional information like average road speed data for different times of day. Finally, the 

National Public Transport Access Nodes (NaPTAN) is a data set for Great Britain of public transport 
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access points e.g. bus stops, rail stations, underground entrances. These data are for more 

specialised purposes but open the potential for modelling public transport networks.  

3.3.4.2 Open source data and software 

There are a number of open source data and software package and data which can be used in 

transport analysis. The main advantage is that they are free to use so can be used by more people 

than government or commercial software/data. However, as open source software and data are 

developed in a crowd-sourced manner, data set coverage and updating may be variable across a 

country, unlike Ordnance Survey whose mandate requires that all parts of the country be mapped 

to a consistent basis. For example, for Open Street Map (OSM) many contributors would not have 

training in surveying meaning their insertions and updates to the data base may be inaccurate or 

incomplete (Basiri et al., 2016). This can be mitigated through control processes to identify user 

errors (Basiri et al., 2016). This section describes some of the open source data and software 

packages relevant to transport network modelling.  

Open street map (OSM) is a crowd sourced GIS project and includes transport data which can be 

freely downloaded and used in projects. For example, Gil (2015) created a multimodal urban 

transport network model as there are data for private and public transport options. The OSM data 

consist of nodes (points) and ways (polylines), which have tags associated with them to denote if 

they are part of a transport structure (Gil, 2015; Dingil et al., 2018). Therefore, these data can be 

used for network modelling for roads and public transport. The OSMnx Python software package 

is one example of a way to extract and convert the OSM transport data into a transport graph for 

network analysis (Dingil et al., 2018). A benefit of OSM transport data are that it is available 

globally, although there may be differences in detail and the frequency of updates. It also 

provides data for ‘soft modes’ of transport (cycling, walking) as well as road network data (Gil, 

2015). In terms of positional accuracy, Gil (2015) found that for the Netherlands it was not 

substantially different from official data. However, a challenge with OSM data are quality issues 

with the attribute data, which are required for identification of transport nodes and ways  (Gil, 

2015).  

OpenTransportMap (Jedlicka et al., 2016) is a platform built on OSM data and allows for transport 

data for Europe to be viewed, downloaded, incorporated into online maps and to be used for 

network routing (Jedlicka et al., 2016). It also includes dynamic traffic volumes calculated from 

Annual Average Daily Traffic flows, daily traffic volumes and hourly traffic volumes processed in 

the OmniTrans software. The data can be downloaded for Nomenclature of Territorial Units for 

Statistics (NUTS) level 3 for European countries and contains information on road names, travel 

mode, capacity and in some cases traffic volume. However, it does not contain average speed 
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data or speed data for specific times of day, restricting its use for temporally specific analysis. 

Openrouteservice (The Heidelberg Institute for Geoinformation Technology, 2019) is another 

example of an open routing platform based on OSM data. Accessed via an API, several services 

are provided including directions, service area catchments and time-distance matrixes. The 

service allows for up to 2500 origin-destination pairs can be run per day for free. As with 

OpenTransportMap, the coverage is global as the underlying OSM data allows this. However, 

again it does not contain temporally specific traffic data to allow for temporally specific routing by 

itself.  

QGIS is a well-known, open source GIS software which has several network routing plugins. These 

include Online Routing Mapper, which allows for routes to be generated with online services like 

Google Directions, Here, MapBox and OSRM; Networks, a processing algorithm for linear 

networks and multimodal routing; QNetwork, a network analysis tool using the Geographic 

Network Model and Road Graph Plugin, which solves the shortest path problem (QGIS, n.d.). With 

these plug-ins routes can be simulated either through python coding or the graphical user 

interface to generate shortest path routes. QGIS can also access OSM data via the Overpass Turbo 

API for use within the software. R is another widely used open source software package, although 

the majority of its applications are for statistical purposes. However, a transport package called 

stplanr has been developed to provide functions for transport routing problems, but also to 

manipulate and clean transport data sets (Lovelace & Ellison, 2018). R can make use of open 

street map data and access data via API’s, so it has the potential to build powerful transport 

models for routing.  

3.3.4.3 Commercial data and software 

There is a range of commercial software and data which can be used for transport applications, 

covering regional-scale geographic analysis to planning for an individual road junction. ArcGIS is 

perhaps the most well-known GIS software as it is used by academics and industry. A license can 

be bought for the network analyst toolbox which provides a range of origin-destination and 

service area tools (ESRI, 2020b). Historical traffic data can be incorporated into network analysis 

through accessing the network routing server, available in ArcGIS online and ArcGIS Pro desktop 

(ESRI, 2018). The use of this service does require credits that the user pays for. This service does 

allow a user to easily specify the time of day they wish to run the route for, adding valuable 

temporal dimensions to the routing. Another advantage is open source GIS data and government 

data are often in a format compatible with ArcGIS software. ArcGIS therefore is a good software 

for running network analyses in, however the network analyst license and credits for historical 
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traffic data can be prohibitively expensive for some users (see Chapter 4 for more discussion on 

this).  

Google collects a vast amount of data on population movement, traffic and business opening 

hours. This is due to tracking mobile phones via GPS, and the live traffic can be seen when using 

Google maps online. The Google Routes function (Google, 2020) allows businesses to access 

google map data for routing to enable efficient route planning. It is updated 25 million times a day 

to allow for real-time location analysis, either through directions for routes or distance matrix’s, 

to provide travel times and distances for one or more locations (Google, 2020). The distance 

matrix API facilitates the calculation of travel time and distance for a matrix of origins and 

destinations. Use of the API is on a pay-as-you go model, with a range of 0.005 – 0.004 USD per 

route calculated. TomTom also provides a routing and traffic service for developers through its 

API, in addition to a partnership with Apple, and again there is a cost price associated with 

accessing the data. HERE are another company which provides traffic data and routing services 

and they have a partnership with ESRI to provide the traffic data for ESRI’s routing service (ESRI, 

2020d).  

In transport engineering, software tends to be designed for modelling small parts of a road 

network rather than a whole city. For example, PTV VISSIM is a traffic model which is good for 

testing the traffic flow at specific junctions, as it models all individual road users. This works for 

the purpose of many engineering projects which are adapting the existing road network but could 

not be used to look at traffic flow across a whole city. Two other examples of specific transport 

packages include Assessment of Roundabout Capacity and Delay (ARCADY) which is for 

roundabout modelling and Priority Intersection Capacity and Delay (PICADY) designed for testing 

the capacity, queues and accident risk at new unsignalled junctions.  

3.3.5 Methods  

This section gives a brief overview of the methods used for measuring proximity, flow, 

accessibility and critical roads in networks.  

3.3.5.1 Proximity metrics 

Proximity is a measure of how close two points are and there are three ways this can be 

calculated; distance (by Euclidean, Manhattan or network metrics), travel time (derived from a 

network or cost surface) and economic cost (measured through direct costs and value of time). 

Euclidean distance is the simplest and can be calculated either through a straight line between an 

origin-destination (Figure 3.3) pair, or using a buffer if considering service areas (Apparicio et al., 
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2008). In some cases, Euclidean distance and network distance can have a high correlation, so can 

be used as a proxy (Boscoe et al., 2012). However, Euclidean distance can never be completely 

accurate unless a road is a singular straight line. Manhattan distance is similar, although it 

calculates a distance between two points through the horizontal and vertical distances (Figure 

3.3). Manhattan distance approximates travel in grid-based cities (Charreire et al., 2010) however, 

in other types of city Euclidean distance is preferable (Apparicio et al., 2008).  

 

Figure 3.3 Euclidean distance (left) and Manhattan distance (right). The red lines show the 

distance measured in each.  

The more advanced way of measuring distance travelled is using the road network itself based on 

the principles of graph theory (see Section 3.3.1). The shortest distance between two points on a 

network can be calculated using network topology principles (Postance et al., 2017). This 

proximity metric is more realistic than Euclidean or Manhattan distance as it is accounts for the 

spatial road network configuration, rather than being a straight-line approximation. Therefore, it 

is more common in transport and travel analyses to use software packages such as ArcGIS, QGIS 

and R which have network analysis functions. There are numerous shortest path algorithms; 

however, Dijkstra’s algorithm (Dijkstra, 1959) is perhaps the most well-known (Wang, 2012). As it 

is the basis for the Network Analyst toolbox from ArcGIS used in this thesis, the algorithm 

workings will be described here.  

 

Dijkstra’s algorithm can be represented by G= (V,E)  where G is the graph, V is the set of all 

vertices or nodes, E is the set of all edges (Eneh & Arinze, 2017). The algorithm is designed for 

weighted graphs, i.e. networks where there is a cost associated with each link, for example 

seconds of travel time (Jiang et al., 2014).  To calculate a shortest-distance path, the origin node 

and the destination node are chosen. The algorithm works by first identifying nodes adjacent to 

the origin node and calculating weighted distances to these adjacent nodes, along the network 

edges. The path with the least weighted distance cost to an adjacent node is identified and this 

intermediary node becomes the focus for the next step.  In the next step, adjacent nodes around 

the new focus node are identified and the cumulative weighted distances from the origin node 



Chapter 3 

59 

are calculated. The node which the shortest cumulative weighted distance along the network 

edges from the two steps is identified, and this is the next node in the journey. These steps are 

repeated until the destination node has been reached and the minimum weighted distance 

pathway between the origin and destination is calculated.  A path from the origin node to a 

destination node is said to be the shortest path if its total cost is the minimum among all the 

possible paths (Chen, 2003). Dijkstra’s algorithm is the fastest known shortest path algorithm for 

directed graphs with non-negative weights (Eneh & Arinze, 2017). From Dijkstra’s (1959) original 

publication of the algorithm there have been many revisions and improvements to the algorithm, 

including Jiang et al., (2014), Chen (2003), Wang (2012) and Eneh & Arinze (2017). One example in 

commercial software is the ESRI network analysis toolbox. This has several routing algorithms 

which are based on Dijkstra’s, with additions to allow multiple-origin multiple-destination 

calculations (OD Cost Matrix and Closet Facility), and reductions to the performance time by 

including Hierarchical Routing to reduce the number of vertex pairs for which the path has to be 

calculated (ESRI, 2020a).  

It is not always the distance which is covered which is the important factor in an analysis. In 

instances like calculating service areas for emergency vehicles, it is the travel time to get to a 

destination which is the key metric. The time taken to travel between two points across the 

network can be calculated from the distance covered and the speed of travel, taken from average 

road speeds if data are not available. The fact network distance measures do not tend to include 

individual behaviour is a limitation (Sohn, 2006) as it presents an optimum functioning of the 

network rather than the complexity of individual decisions combining e.g. travelling to/from work 

at the same time which leads to congestion. Therefore travel times are often an underestimation 

of reality (Borrmann et al., 2012). Calculating individual routes also fails to consider the 

interdependencies of links and how drivers affect each other whilst travelling (Jenelius & 

Mattsson, 2015). 

Cost surfaces are another method of measuring proximity without using a network data set. 

These are raster files where the value in each grid cell is the measure of impedance across the 

surface. For example, Wood and Schmidtlein (2013) combined elevation, land cover and slope to 

create a speed impedance value across the raster surface, and when an average walking speed 

was applied, the time to evacuate from the area could be calculated. The cost surface therefore 

allows the travel cost, often in minutes, between an origin and destination to be calculated (Burns 

& Inglis, 2007) and the shortest suitable path found (Wood & Schmidtlein, 2013). One advantage 

of a cost surface is it allows physical and socioeconomic factors to be combined quantitatively 

(Jenelius, 2010a) and it has strong links to the generalised cost metric.  
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Finally, proximity between two points can be measured in terms of economic cost. In transport 

studies, this is often measured through generalised cost functions which include a set of cost 

components of a journey (Ford et al., 2015a; Davidson & Davidson, n.d.). There are two main 

components; the direct monetary costs and the cost of the time taken for the journey. Monetary 

costs are the direct costs of trips, which include the cost of petrol and the price of a ticket. This 

can either be from data for public transport ticket costs or can be based on distance with the price 

of petrol per mile. The distance can be calculated either by network analysis or cost surfaces, as 

described above. Secondly, the valuation of the costs accrued from the time an individual spends 

on a journey are included. The Value of Time is the value the average person places on an hour of 

their time, which could include their hourly wage for commuter journeys, although this varies for 

different socio-economic groups and the purpose of the journey (Ford et al., 2015a). This measure 

is used in the calculation of journeys and to understand the relative savings when improvements 

to transport networks are modelled, for example assessing schemes like the HS2 rail project 

(Department for Transport, n.d.).  

3.3.5.2 Accessibility and network disruption measures 

As described in Section 3.3.3, accessibility is a key transport concept and links to disruption 

metrics. Therefore, there are ways to measure accessibility based on proximity metrics described 

in Section 3.3.5.1. Service areas represent the area which is served by a specified service (e.g. 

hospitals, pharmacy, supermarket) and it is a key function in business models. Accessibility can be 

considered in terms of how many opportunities a transport system provides (Bocarejo and 

Oviedo, 2012) and service areas are one way of conducting research to ascertain which services 

are available. GIS software allows changes to the position of services or the network to be made 

to see how access changes. The generalised cost metric discussed in the previous section can also 

be used to calculate the cost of a delay to journeys through the extra time taken (Jenelius et al., 

2011; Postance et al., 2017) the quality of public transport service (Currie, 2010). An example of a 

study which includes Value of Time calculations for measuring the disruption to travellers across a 

city are Kilgarrif et al., (2019), who calculate the costs to commuters in Galway, Ireland due to a 

flood event. They used Subjective Value of Travel Time values for three subsamples of the Irish 

population based on the 2011 census of population for Ireland. They could then calculate how 

much additional cost the flood event caused to commuters’ journeys. Ford et al., (2015a) created 

a GIS-based accessibility tool using a generalised cost measure in order to calculate accessibility in 

London to destinations like employment locations.  

Introduced in 1946, Spatial Interaction Models, also known as gravity models, are a ‘prevailing 

framework’ for predicting flows between places (Simini et al., 2012). Based on Newton’s 
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gravitational theory, the underlying concept is that the number of trips from an origin to a 

destination can be calculated through the ‘attractiveness’ of a destination, balanced against the 

relative attractiveness of alternatives. Equation 3.3 is the standard equation for Spatial Interaction 

Models (Ortuzar & Willumsen, 2011) where Tij is the number of trips between origin i and 

destination j, Oi is the number of trips available from the origin, Dj the total number of trips 

attracted to that destination, f(Cij) a generalised cost function (often a distance decay function) 

and Ai and Bj balancing factors. Spatial Interaction Models are used to measure trip distribution in 

relation to current or past demand (Tsekeris & Stathopoulos, 2006) therefore require underlying 

data to provide validation of the calculated flows. These models can be singly constrained, where 

either the origin or destination totals are known, or doubly constrained, where both origin and 

destination totals are known (Simini et al., 2012). Another data requirement is for the generalised 

cost function, which can be as simple as distance, or include retail turnover, income, population 

numbers or employment data (Vickerman, 1974). A major limitation of this method is the amount 

of data which are required to fit the parameters of the model. It cannot be run if no data on flow 

between origin-destination pairs is available (Simini et al., 2012) and often relies on historical 

demand data for predictions (Tsekeris & Stathopoulos, 2006). Attempts have been made to create 

dynamic Spatial Interaction Models with real-time travel data (Tsekeris & Stathopoulos, 2006), 

however mostly historical data are used for planning purposes 

Tij = Ai Oi Bj Dj f(cij)             Equation 3.3 

Within transport geography, GIS based network analysis is a common method for measuring 

access and the impact of disruption (Ford et al., 2015a). Based on the network distance metrics 

described in section 3.3.5.1, GIS software can calculate routes between origins and destinations. 

Access can be measured by how much of an area is within an ‘accessibility threshold’ (Salonen et 

al., 2012) which could be by time or distance. Network analysis is often used in scenarios to see 

how access is affected when part of the network is closed (Nyberg & Johansson, 2013). The 

number of people who can/cannot now be reached along the roads, or get to their destinations, 

before and after applying the blockage, can therefore be calculated (Nyberg & Johansson, 2013). 

Often it is assumed the shortest route is taken which again, does not reflect every persons 

decision as people will take alternative routes to the ‘logical’ one (Sohn, 2006). Also, GIS network 

models do not consider traveller behaviour, so it is considered as the lower bound  of travel times 

(Borrmann et al., 2012). But the strengths of GIS network analysis are that it can spatially model 

the real world, putting graph theory into context, but can also enable socioeconomic data to be 

linked to network data sets (Liu & Zhu, 2004). 
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As covered in Section 3.2.4.2, agent-based models can be used to model individual vehicle or 

person travel. This technique is common in evacuation scenarios (Wood & Schmidtlein, 2013), 

where knowledge of the individual moving through the space is important. The main difference 

between this and GIS network models is that travel behaviour is incorporated, which should 

provide a more accurate measure of travel times and routes. Queuing theory can also be included 

which simulates traffic (Lämmel et al., 2010), something which non-behaviour methods lack. The 

main advantage is this inclusion of driver behaviour as individual decisions are an important factor 

in the capacity and performance of the network (Brown, 2014). However, agent-based models are 

computationally intensive and require a lot of data to parameterise agent behaviours.  

3.3.5.3 Overall travel model limitations 

As with the other simulation models discussed in this chapter, there are limitations and 

uncertainties associated with travel models. An almost ubiquitous assumption in network routing 

models is that drivers have optimal knowledge of the network, and disruptions which are on the 

network, when applying a shortest-path function (Arrighi et al., 2019). This assumption means 

that the results are limited to being a minimum estimation of disruption (Arrighi et al., 2019), as in 

reality there would likely be more congestion and disruption as people do not have perfect real-

time knowledge and some will ignore diversion signs. This links to the assumption often found in 

models that whilst an area is disrupted, the remaining network functions as normal (Cats & 

Jenelius, 2014). A disruption does indirectly impact the network around it through congestion 

propagating over the whole system (Cairns et al., 2002; Pregnolato et al., 2017a; Nagurney, 2011), 

again meaning the results of travel models are often an underestimation of actual disruption 

(Postance et al., 2017). Whilst ideally these assumptions would not have to be made, in reality 

they are used in models due to the difficulty of creating a model which incorporates traffic 

conditions and individual driver behaviours over a whole urban area. However, continuous 

improvements in computing power and ABMs may mean these issues are resolved.  

The validation of route changes and travel times from disruption scenarios presents difficulties. 

Often there is not an alternative data set which demonstrates the traffic for a specific disruption 

event, for example ESRI and Google provide average travel times for day types but not specific 

events. In some cases, like Pregnolato et al., (2017b), there is sensor data for traffic available for 

periods where there has been disruption, in this case from pluvial flooding. However, not all roads 

are installed with traffic sensors, especially local roads, so this is not suitable for all locations. In 

addition, this would not be possible for risk planning exercises for events which have not recently 

happened in an area, but stakeholders wish to prepare (for example a terrorist incident). Expert 

judgement and stakeholder engagement is used in many fields so should be successful in this 
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application as well as Crols & Malleson (2019) demonstrate. However, not all research studies will 

have the time and budget to invest in this level of validation.  

3.4 The Impact of Flooding on Population Mobility and Transport 

Networks 

The previous three sections have summarised the relevant literature in each of the three 

academic areas applied to this thesis. This section will now draw together the key strands where 

these disciplines overlap to inform the knowledge base upon which this thesis is structured.   

To summarise the research issue, roads underpin mobility within urban areas, both during day-to-

day life and emergencies, and fast connections to critical infrastructure and services is important 

(Arrighi et al., 2019). Pluvial flash floods are a common hazard in urban environments due to 

extensive impervious surfaces (Li et al., 2018) and identifying areas more likely to be cut off, or 

with reduced access, is fundamental for flood risk management and preparedness (Arrighi et al., 

2019). Over half of flood victims in post-industrial countries are motorists trapped by road 

flooding (Terti et al., 2017; Debionne et al., 2016), consequently, daily mobility is one of the 

primary causes of population exposure and vulnerability to flash floods. There are numerous 

studies of population exposure in homes and offices. However, mobility aspects are not 

systematically included in studies assessing human exposure and vulnerability in flood risk 

measurement. Population density data are often used assuming a static distribution, which do not 

match the rapid dynamics of a flash flood model (Shabou et al., 2017). However, the availability of 

spatiotemporal population models and new ‘big data’ are leading to dynamic population models. 

The combination of all these dynamic elements remains a challenge for researchers and planners.   

3.4.1 Applying risk theory to transport disruption 

Risk theory, as outlined in Chapter 2, can be applied to transport network assessments for travel 

disruptions. In general, risk theory is implicitly, but not explicitly, utilised in transport network 

disruption studies. Examples of where risk theory has explicitly been applied are Berdica (2002), 

Rupi et al., (2015) and Pregnolato et al., (2017a), as they consider risk as a function of disruption 

probability and consequences, and use it to structure their analyses. As detailed in Chapter 2, this 

physical sciences definition of risk works well for physical structures and economic impact, 

however it is not as good at capturing the social elements of risk, or perhaps the social dynamics 

behind transport decisions. Using the risk = f(Hazard,Exposure,Vulnerability) conceptual equation, 

as detailed section 2.4.1, should provide a better foundation to combine transport modelling 

methods with spatiotemporal population data, considering specific population groups and their 
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needs, which is one objective of this research. Indeed Arrighi et al., (2019) also use hazard, 

exposure and vulnerability to assess risk as it more functional and incorporates the natural and 

built environments (Arrighi et al., 2019), with this research including the social component of risk 

in the form of demographic data.  

Hammond et al., (2015) state that there is clear scope for traffic models to be combined with 

flood models to improve estimates of the disruption to travel, and therefore calculate the cost of 

delay. In addition, demographic data or a population model should also be included to fully 

understand the risk to those travelling on the road network as it is the effect on people, rather 

than the physical infrastructure, which is important to many stakeholders. Knowing the number of 

motorists exposed on flood prone road sections (Debionne et al., 2016), and the characteristics of 

the population in travel, would provide a more realistic evaluation of the degree of exposure.  

The role of individual behaviour in creating the dynamics of a transport system have been 

demonstrated earlier in this chapter; therefore, risk behaviour should also be considered as part 

of disruption planning. Liu et al., (2014a) found in their study that people chose closer 

destinations for shopping and leisure activities in adverse weather. Furthermore, Terti et al., 

(2015) argue that perception of warnings and environmental factors strongly depends on 

contingent conditions. For example, if a hazard occurs to disrupt a homeward journey, a person is 

more likely to persevere to get to their destination compared to if the same event increased the 

difficulty of a journey into work.  

At present, mobility aspects are not often taken into account when assessing human exposure 

and vulnerability to natural hazards, with residential population data used most of the time 

(Debionne et al., 2016). There are some examples of specific disaster risk management research 

which examine finer temporal resolution population data. Bian and Wilmot (2015) compared the 

population exposed to a chemical spill during a normal weekday and a weekend festival day. Their 

data set was created by using land use data to assign a percentage of the population to each sub-

area, and time-periods used to generate movement of population groups. However, these data 

are specific to New Orleans, and only for the two scenarios they tested, so it is not applicable to 

other areas. Kunwar et al., (2014) created their own temporal population data, using open source 

data; however, this is also study specific and only related to their work on evacuation of ten cities 

in the UK. Smith et al., (2015) investigated spatiotemporal changes to exposure from flooding in 

Cornwall by including the seasonal fluctuations in population from tourism. However, those 

conducting journeys were not explicitly considered and how the flooding would affect them. 
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3.4.2 Modelling disruption to travel over space and time 

Most studies on travel disruption consider transport networks from an engineering point of view, 

focussing on network connectivity, rather than measuring the impact of road closures on the 

population which use them (Pfurtscheller & Genovese, 2019). The inclusion of multidisciplinary 

methodologies comprised of hydrology, transportation and have proved effective in many case 

studies (Li et al., 2018) therefore, the inclusion of spatiotemporal population data should enhance 

these measures further.  

Roads are built to run at near maximum capacity to minimise costs, which means there is little 

redundancy in the system to cope with disruptions (Mossoux et al., 2019). When a disruption 

scenario occurs, the location of this is very important. If this is at a ‘critical link’ then the impacts 

will be much greater than a non-critical link. The spatial distribution of the network disruption is 

one factor (Postance et al., 2017), but time dimensions are ‘excessively important’ in transport 

systems, as fluctuations in demand and supply evolve on the daily to decadal scale (Reggiani et al., 

2015). For example, the morning and evening ‘rush hours’ when most people are travelling 

to/from home and work are the busiest times on England’s road networks, so a disruption has a 

greater impact than one occurring on a Sunday morning. The costs associated with a network link 

are time-dependent, as there are peaks and troughs in supply and demand, leading to the spatial 

distribution of critical and vulnerable links to evolve over time (Cats & Jenelius, 2014). Time is also 

important for travel behaviour, as Liu et al's., (2014a) paper shows that previous studies indicate 

commuters’ travel activity is less variable in adverse weather conditions than non-commuters’ 

travel. Space and time are interlinked concepts in transport disruption studies, and when 

capturing these dynamics in models often space is continuous whilst time is measured as 

snapshots (Wang & Cheng, 2001). The element of demand on the road network could be 

generated from data supplied by spatiotemporal population models as they produce time-specific 

information on the location of many demographic groups.  

The majority of network disruption studies look at which links are critical or vulnerable, but 

without the specific context of time of day/year and the relative demand on the network. When 

time is considered, it is often travel time to a destination and how that changes, rather than the 

actual time the disruption occurs and how this interacts with demand to produce varying impacts. 

There are some studies which have taken this view. Freire et al., (2013) looked at how day and 

night time population distributions affected hazard exposure and time taken to evacuate after a 

Tsunami warning in Lisbon, using shortest route calculations. Their results showed differences in 

total evacuation time with a night-time evacuation being quicker, probably due to a smaller 

number of people present in the city. However, they only considered daily fluctuations and did 

not investigate seasonal fluctuations or the differences for population sub-groups. Kunwar et al., 
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(2014) applied temporal population data to a model of total evacuation of ten UK cities to test 

how total evacuation time of agents varies with and without intervention. Again, they did not 

explore how routes change or compare the impacts from a specific day or time of year. 

Pregnolato et al., (2017a) examined the impact of disruption on an evening commute, due to the 

presence of validation data, however they do not examine the impact of flood events at other 

times of day. Shabou et al., (2017) used an activity-based ABM (MobRISK model) to combine 

travel behaviours with weather disruption to understand disruption. Their method required 

census data and travel activity survey data to assign daily activity programs to the population, 

then locate different activity areas, and mobility is generated when individual agents attempt to 

implement their activity programs. Exposure was measured by the likelihood of crossing flood 

roads along each individuals route (Shabou et al., 2017). These studies show that combining 

hydrology, transport and population is possible and a useful endeavour.  

For spatial models, scenario testing is the most common way of testing disruption to discover 

which links are most critical (Pregnolato et al., 2016b). Examples include Pregnolato et al.’s 

(2017a) paper on accessibility during flooding of the road network in Newcastle-upon-Tyne, UK 

and Yin et al., (2016) combining a hydrological model with a transport risk assessment to see how 

disruption affects traffic flow. In order for comparison, a baseline scenario must be run initially 

before any disruption is included (Pregnolato et al., 2016b), a common method of measuring 

disruption to travel from flooding (Kilgarriff et al., 2019; Wei et al., 2018). But, there could be a 

very large number of scenarios, so a few are picked to test the impact of a disruption event (Smith 

et al., 2014a). If the change in population is the key variable, then the hazard event should be kept 

the same (Bian & Wilmot, 2015). There is no universal methodology for understanding the impact 

of disruption, therefore the results of the critical road analysis cannot be transferred to other 

scenarios or locations (Mitsakis et al., 2014).  

 

As with all the models examined in this chapter, there are common limitations to models used for 

modelling spatiotemporal disruption to travel. Firstly, incorporating a dynamic flood, traffic and 

population model is challenging. Often, a dynamic flood model with a static travel model (Versini 

et al., 2010) or vice versa is common, reducing the realism of the simulation. Not including a 

dynamic flood model could lead to an overestimation of the impact of flooding on travel, due to 

localised changes in flood water depth meaning roads may be passable sooner than predicted 

(Chang et al., 2010). Secondly, it is hard to estimate the indirect costs of infrastructure damage on 

commuters. One London study estimated the flood related disruption to major roads at peak 

times in London was at least 146,000 Euros per hour (Arkell and Darch 2006). 
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3.5 The Evidence Gaps 

Several gaps in the understanding of spatiotemporal aspects of flood hazards and population in 

travel are apparent from this literature review: 

 

• Focussing specifically on the representation of sub-groups of the population in travel in 

spatiotemporal population modelling, which has received limited attention.   

• Combining gridded spatiotemporal population data with network analysis, which not 

been done before, as far as the author is aware. 

• Quantifying how the timing of flood onset interacts with flood magnitude to change the 

impacts on road travel disruption, through examining changes to time of flood onset for a 

short time window, like the morning commute. 

• Linking the ‘critical roads’ concept in literature, based on topology, to the requirement for 

local authorities to identify which links are critical for resilience, based on need of the 

population (Cabinet Office, 2011)  

 

The chapters that follow seek to generate evidence or methods to address these gaps. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

68 

 



Chapter 4 

69 

Chapter 4 Methods and Data 

This chapter provides an overview of the study design and methodology used in the thesis. The 

first section covers the study design and choice of case study location. The second section 

describes the three main existing modelling tools utilised in this thesis and their application to this 

work. Finally, the overall structure of the results chapters and the methodologies of each 

(Chapters 5, 6 and 7) is given. More detailed and specific methodologies are included in each 

results chapter. 

4.1 Study Design 

4.1.1 Case study site 

York has been selected as the study site due to its population size (just under 200,000 in 2011 

(City of York Council, 2018), which is a sufficient size to demonstrate a new methodology of using 

spatiotemporal population data with network analysis and flood modelling, but not too large the 

data processing is unmanageable. York is also a reasonably self-contained city in terms of 

commuting patterns, with 71% of those who work in York also usually resident in York (2011 

census, WU01EW - Location of usual residence and place of work by sex (MSOA level)), unlike 

other more complex conurbations like Manchester or London.  York has a long history of fluvial 

flooding and regularly experiences small floods, due to being situated at the confluence of the 

Rivers Ouse and Foss. The most recent large fluvial flood event was December 2015, when there 

was substantial flooding and the Foss Barrier failed, leading to 600 properties being flooded 

(Environment Agency, 2016). York, like most urban areas, is also at risk from pluvial flooding and 

has experienced pluvial flood events in the past, as described in Section 4.1.2. However, there is 

less knowledge of the effects of pluvial flooding than the fluvial flood risk (City of York Council, 

2012). There is only one previous academic study, to the author’s knowledge, which assesses the 

impact of flooding in York on access to services. Coles et al., (2017) demonstrated the relatively 

small number of roads which are flooded in York can cause significant changes to the accessibility 

of care homes to emergency services. Hence, it has been shown that there are impacts on travel 

in York, and this project will extend Coles et al.’s (2017) work by investigating disruption to 

different population subgroups and consider how the time of flood onset is important. 

Figure 4.1 shows the geographic area which data were gathered for the spatiotemporal 

population modelling of York. The red square captures the desired study area which is the York 

Local Authority. In addition, a buffer zone is required for the SurfaceBuilder247 population model 
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to allow for travel from outside of the study area into the study area (further explanation in 

Section 4.2.2).  A 20 km buffer was chosen as 82% of the people working in York travelled this 

distance or less (2011 census table for York Local Authority WP702EW - Distance travelled to work 

(Workplace population)), but it also would include the furthest likely distance school children 

would travel into York.  All the output areas whose population weighted centroid fell within the 

study area and buffer zone were included in the input for the SurfaceBuilder247 model, although 

only the study area is displayed in the model output.  

 

Figure 4.1  Study area and buffer zone around York, UK. Contains public sector information 

licensed under the Open Government Licence v3.0. 
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4.1.2 Hazard selection and York pluvial flood history 

York is known for fluvial flooding with the low-lying historic city centre at the confluence of the 

River’s Ouse and Foss regularly flooding (Environment Agency, 2020). However, there are several 

reasons for choosing pluvial flooding rather than fluvial flooding. Firstly, pluvial flooding has the 

potential to affect a much greater area of York than fluvial flooding. The floodplain in York from 

the Rivers Ouse and Foss does not include many of the primary roads, whilst any part of the urban 

area has the potential for pluvial flooding. There have also been previous instances of York’s outer 

A roads being affected by pluvial flooding causing disruption for several hours (City of York 

Council, 2012).  Additionally, a study of pluvial flooding has a greater transferability as it is an 

important issue for many urban areas in the UK (Kendon et al., 2018). Secondly, pluvial flood 

events are less predictable than fluvial flood events so the chance for preparation by drivers is 

limited (Li et al., 2018; Boeing et al., 2019). Pluvial storm events also tend to be shorter in 

duration than fluvial flood events, usually a couple of hours, which fits with the goal of this 

research to study the impact of an event at different times of the day. Thirdly, pluvial events are 

predicted to increase over the next century with climate change. Kendon et al.’s (2014) and Chan 

et al.’s (2018) climate models predicted increases in rainfall intensities in winter, and a greater 

number of short duration rainfall events in summer in the UK, with the EA’s ‘accumulation 

threshold’ of 30mm/hr expected to be exceeded more frequently in the future (Kendon et al., 

2014).  

City of York Council (2019) state that since 2000, there have been notable pluvial flood events in 

the summers of 2007, 2012, 2013, 2014 and 2018, although other smaller incidences of pluvial 

flooding would have occurred much more frequently. There are flood warning systems available 

from the Environment Agency providing notice if a fluvial flood event is likely. However, pluvial 

flooding is harder to predict and can affect any part of the city, indeed the previous pluvial flood 

events have occurred in different locations on each occasion (City of York Council, 2019). In York 

there is not considered to be a link between places at risk from fluvial flooding and pluvial 

flooding, as pluvial flooding occurs mostly due to ineffective or blocked drains and/or heavy 

rainfall (City of York Council, 2019).  

Pluvial flood policy for York is based on the national guidelines set out in Section 3.1.3, and the 

City of York Council is the LLFA for the study area of this thesis. The most recent intense summer 

rainfall event which led to a Surface Water Flood Investigation, as specified in the Flood and 

Water Management Act (2010), was on the 13th August 2018. This intense summer rainstorm 

resulted in >40 mm of rain falling on a large area of the city in just over 15 minutes, at a rate in 

excess of 100 mm/hr in some locations, the consequences of which were 123 locations reporting 
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flooding including many roads, gardens and a small number of properties and businesses (City of 

York Council, 2019). Heavy rainfall had been predicted at >32 mm/hr; however, the duration of 

rainfall was greater than expected, overwhelming drainage systems and resulting pluvial floods 

(City of York Council, 2019). Whilst this flood event is less severe than a fluvial flood event in York, 

it does outline the ongoing difficulties of prediction and mitigation of pluvial flood events. 

Research applying climate change models specifically for Yorkshire suggest that increasingly 

intense rainfall is a very likely outcome (Boeing et al., 2019), which is expected to lead to pluvial 

flooding in urban areas. 

The recommendations of the Surface Water Flood Investigation report include that the city of 

York and flood risk partners, should develop a strategy to increase understanding of pluvial flood 

resilience within the local population and internal highways design teams, as the effect on roads 

was one of the most significant. It was also recommended to develop and fund a network of 

digital rain gauges in the city to provide data for a better warning system (City of York Council, 

2019). The local paper reported that funding to install electronic flood signs around the River 

Ouse, to warn people about the risk of fluvial and pluvial flooding, had been approved, making 

use of technology to track, respond to and investigate heavy rainfall events (Laversuch, 2020). 

Academically, Yorkshire’s Integrated Catchment Solutions Programme (iCASP) has been set up as 

a NERC funded programme to target research and expertise to understand how the latest 

advances in probabilistic rainfall forecasting and high resolution hydrodynamic modelling can be 

combined into probabilistic, hyper-local forecasts with short lead times for making decisions 

(Boeing et al., 2019). 

4.1.3 Population group selection 

Whilst all of the population in an urban area can be affected by pluvial flooding and are at risk of 

experiencing negative consequences, some groups experience a greater risk due their age, 

socioeconomic status or health characteristics making them more vulnerable (as discussed in 

Section 2.1.4). Within the field of natural hazard risk, there are countless papers which describe 

which groups of the population are most vulnerable to hazard events (Cutter et al., 2008; Wisner 

et al., 2004; McFadden et al., 2006; Civil Contingencies Secretariat, 2008). Broadly, there is 

consensus over which groups are most vulnerable, although this does vary depending on the 

nature of the hazard (Wisner et al., 2004). In this thesis, the UK Government’s guidelines for 

defining vulnerable groups, as outlined in the report ‘Identifying People who are Vulnerable in a 

Crisis’ (Civil Contingencies Secretariat, 2008), are applied as it is the guidance policy makers use in 

England. This will aid the transference of results to the non-academic sector. The groups 
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identified in this report broadly concur with the academic literature (for example Cutter et al., 

2003). 

The groups identified by the Civil Contingencies Secretariat (2008) (Table 4.1) were considered for 

implementation within the SurfaceBuilder247 model. The model framework requires the 

population to be divided into mutually exclusive groups that share temporal characteristics, 

where the location of their origins and destinations is known, in addition to the typical amount of 

time they spend at each location. These conditions meant several vulnerable groups identified by 

the Government (e.g. the mobility impaired, sensory impaired, or homeless) were not suitable for 

inclusion as the required data were not available, or they could not be defined as a mutually 

exclusive group. Children of primary school age were chosen as the vulnerable group for 

modelling as they are a mutually exclusive group and there are sufficient data to model their daily 

movements. 

The second population subgroup studied in this thesis’ analysis are commuters going to 

workplaces in York aged 18-64 years. This will be the majority of the residential population in 

York. This group was chosen in order to capture the effects on workplaces due to flooding 

disruption. The commuting patterns and locations of where people travel to work is contained 

withing the 2011 census and other data sets like the quarterly labour force survey.  

 

Table 4.1  Vulnerable groups identified by Civil Contingencies Secretariat (2008) 

Group Reason considered vulnerable 

Children Children, particularly young children, lack knowledge on how to deal with 
emergency situations. Local authorities have a duty of care whilst children are at 
school. 

Older People Certain sections of the elderly community, especially those in ill health, require 
regular medical attention or support. 

Mobility 
impaired 

Cannot react to emergency situations as quickly as those who are not mobility 
impaired 

Sensory 
impaired 

For example, blind or reduced sight, deaf and speech impaired. May need extra 
communication measures to receive warnings or help evacuating. 

Homeless Unlikely to have standard infrastructure used for warnings (phones, television) 
and do not have financial reserves to cope with an emergency 

Tourists Are unfamiliar with the area and procedures, would not be signed up to local 
warning systems. 
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4.2 Models, Tools and Data Sources 

This section provides an overview of the models, tools and software applied in this thesis. Specific 

details on how each is applied to the analysis in each chapter is discussed in Chapter 5, 6, and 7.  

4.2.1 Pluvial flood modelling  

The Flowroute – iTM flood model, created by Ambiental Risk Analytics, was used to generate 

pluvial flood scenarios for York, UK. Flowroute-iTM is a steady state 2D flood model designed to 

produce accurate flood event data for local, regional and national projects. Previously it has been 

used for creating national flood maps for countries including the UK, Ireland and Australia and 

local flood analysis including pluvial flood modelling for Hull, UK. It was included in the EA’s 

benchmarking exercise on the capabilities of 2D flood modelling software available in the UK, and 

the Flowroute-iTM software package was found to be appropriate for supporting flood risk 

management activities (Néelz & Pender, 2013).  

For this thesis, Flowroute – iTM was used to create flood data for two pluvial storm events in York; 

a 1 in 30 year storm event and a 1 in 100 year event. These two return periods were chosen as 

both storms would lead to disruption to the road network, with representation of a smaller but 

more frequent event (1 in 30 year) and a larger but less frequent event (1 in 100 year). This is 

similar to the EA’s pluvial flood maps which show a 1 in 30 and 1 in 200 year event (City of York 

Council, 2019). As this flood modelling is based on design hydrographs, it does not simulate a 

specific historical flood event but instead represents where flooding is likely to occur under 

different storm scenarios. The geographic area used in the flood modelling was based on the 

study area defined for the SurfaceBuilder247 population model, with the same 20km buffer area 

for capturing catchment drainage into the city. The input data required for Flowroute-iTM is 

outlined in Table 4.2 and the specific data for the York study area were applied.  
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Table 4.2 Data required for input to Flowroute- iTM model and their source 

Data Source Description 

Digital Terrain 
Model (DTM) 

Environment Agency LIDAR 
data, 5m resolution, BlueSky 
Lidar  

A raster which represents the height 
above sea level of the terrain for the study 
area. The resolution was resampled to 5m 
due to the size of the area required for 
flood modelling.  

Cellmap file Ambiental Risk Analytics A raster which represents the land 
classifications of the model area. The cells 
are given a value of either 0 (water), -1 
(rural) or -2 (urban) to denote land use 
class for different infiltration values to be 
applied.  

   

Manning’s 
roughness file 

Ambiental Risk Analytics  A raster which represents the manning’s 
roughness coefficient for each cell in the 
model area. This classification is based on 
the OS Vectormap data product which has 
been reclassified to the appropriate 
manning’s roughness coefficient for each 
land use type.  

Storm 
Hydrograph ReFH computer programme 

(UK Centre for Ecology & 
Hydrology, 2020) used with 
permission from Ambiental 
Risk Analytics 

A text file which represents the rainfall 
(mm/hr) at each time step for input to the 
flood model. This is generated from storm 
hydrograph profiles for the catchment of 
the River Ouse upstream of York. 

 

To model pluvial flood scenarios for York, a set of simulated storm events were required to 

provide rainfall inputs to the model. Catchment data from the Centre for Ecology and Hydrology’s 

Flood Estimation Handbook (FEH) web service (UK Centre for Ecology & Hydrology, 2020) was 

downloaded for use in the Revitalised Flood Hydrograph (ReFH) computer programme in order to 

generate storm hydrographs for the catchment. The FEH was the primary source of the 

methodological approach used in designing the pluvial flood scenarios. The storm events chosen 

were summer storms for a 1 in 30 and 1 in 100 year magnitude. Using the ReFH computer 

programme flood hydrographs, two storm profiles were created by taking the peak rainfall rate 

and applying it for one hour. The rainfall then stops and the model continues to run for a further 

two hours simulation time to allow for overland flow and drainage (Figure 4.2). These data were 

input into the model as a text file. A rainfall event of an hour fits the aim of researching the effect 

of sudden onset pluvial events and is compatible with focussing on a short time frame for analysis 

in Chapter 7 (the morning commute).  Flowroute – iTM models the depth and velocity of water in 

each cell during the simulation, and a raster for both depth and velocity across the study area is 
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produced at each 15 minutes of simulation time. Additional final maximum depth and velocity 

rasters, which represent the maximum value each for each cell at some point during the 

simulation, were also generated for each scenario.  

 

Figure 4.2 Storm hydrograph profile created from the ReFH catchment data. These data are used 

as a boundary input into the flood model. The graph shows a storm of peak rainfall intensity for 

an hour before the rain stops. Contains data which are copyright of UKCEH and Ambiental Risk 

Analytics, used with permission. 

The output raster data for the two scenarios were processed before they were used within the 

network analysis. In the network model, the flood data are represented as barriers to the network 

where travel through them is prevented. Therefore, the exact modelled flood depths across the 

city were not required. A vector file for each time step of the flood scenario, which contained the 

areas where the floodwater met the conditions to prevent travel of vehicles along the road was 

sufficient. Two criteria were applied to the raster data. Firstly, the depth of water is a key factor in 

whether a road is impassable and a depth of 30cm was applied as the threshold, a value used in 

other studies (Li et al., 2018; Arrighi et al., 2019; Pregnolato et al., 2017b) and in UK government 

advice as the maximum depth for safe driving. Secondly, small patches of water can be easily 

circumnavigated, or very small patches could be model artefacts. Therefore, any areas of water 

which were smaller than 125m2 were removed. Finally the data were further cleaned to remove 

flooding across the city’s bridges, as Coles et al., (2017) did for their study in York.  This was 

necessary because there is no record of the bridges flooding in York and bridges are often poorly 

represented in the DTMs used in flood models (Coles et al., 2017). After this processing the areas 
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of flood water which would pose an issue to road travel for each 15-minute time step for both 

pluvial flood scenarios were left.  

4.2.2 Population model 

The approach for creating spatiotemporal population data developed by Martin et al., (2015) 

using the SurfaceBuilder247 software tool (Martin, 2011) is applied in this thesis. A full description 

of the background, data and framework can be found in Martin et al., (2015) and this section will 

summarise the model as it is relevant to this thesis.  

The Population24/7 project (University of Southampton, 2011) developed a framework for 

spatiotemporal analysis based on previous work of an adaptive kernel density approach for 

building gridded population models by Martin (1989) and Martin (1996) (Martin et al., 2009). 

Figure 4.3 diagrammatically represents the spatiotemporal framework. The framework is split into 

two parts, the data system and the analysis system. The division of the data system and the data 

required for each domain is given in Table 4.3.  

 

Figure 4.3 The  framework for spatiotemporal population modelling used in the SurfaceBuilder247 

software (Figure from Martin et al., 2015). The two parts (the data system and analysis system) 

are divided by the dotted line. Permission to reproduce this figure has been granted by Taylor & 

Francis Group.  
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Table 4.3 Description of data classifications required for each domain shown in Figure 4.3 and 

examples of data sources which could be used to capture them.  

Domain Data Classification Description Example data source 

Spatial domain Origins 

 

 

 

The usually resident 
population located at 
census population 
weighted centroids. 
Includes mobile and 
immobile groups (e.g. those 
in residential facilities) 

Resident population 
data from the Census 
for divisions like 
output areas, source 
the Office for National 
Statistics. Communal 
establishment resident 
data. 

Destinations 

 

Locations where non-
resident populations travel 
to for an activity e.g. work, 
education, health care, 
retail, leisure 

Census data like 
workplace data, 
Edubase data, hospital 
episode data 

Population in travel Those who are in transit 
between two locations at 
the time of day being 
modelled. A background 
layer containing features 
which people travel on 
(roads) and where people 
cannot be (land use classes 
like water) is required.  

Time profiles for 
activities; AADF data 
for weighting 
background layer from 
the Department for 
Transport (NTM; 
Department for 
Transport, 2009). OS 
Strategi data for land 
use classes.  

Temporal domain Time profiles Data which informs when 
the population is present at 
origins or destinations. 
Each destination type will 
have a daily time profile 
with the percentage of the 
destination population 
present at each time of day.  

Local education 
authority and survey 
data (schools) 

Quarterly labour force 
survey (workforce) 

Attribute domain Origins  Associated information 
with the origins and 
destinations including the 
population subgroups 
which attend a destination 
(e.g. age group attending a 
school). 

Local education 
authority data 

 

Destinations Destinations each have a 
catchment or wide are 
dispersal area where the 
population travels to the 
destination from. 

Travel to work census 
data 
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The spatial domain represents the ‘containers’ of human activity which can be divided into origins 

and destinations (Table 4.3). There is also a third group of the population who are in transit 

between locations and this can be estimated by examining the numbers of people arriving and 

departing from destinations in adjacent time periods (Martin et al., 2015). To provide a spatial 

structure for the distribution of the population a background layer is created (Figure 4.3). The 

background layer has two functions. Firstly, it masks out features where no population can be 

located e.g. water bodies (Martin et al., 2015). Secondly, it contains information on the major 

road network in order to represent population in transit (Martin et al., 2015), taken from 

Highways England (Highways England, n.d.). Two types of traffic data are combined in the 

background layer. Firstly, Average Annual Daily Flow (AADF) data from the Department of 

Transport which represent the average number of each type of vehicle passing along a section of 

road (Department for Transport, 2018b). Secondly Department for Transport traffic flow time 

periods covering the 7-day week with 17 time periods within a single day which have similar 

traffic levels (Martin et al., 2015). Together, these two types of data are able to simulate weights 

for the strategic road network for any time specified in the model input, so busier roads have 

more people travelling on them. This results in a raster layer which contains gridded traffic-

derived weights that are used to estimate counts of population in travel in grid cells. The 

adjustments to the background layer from the original Martin et al., (2015) project are outlined in 

Section 5.2.1. The attribute domain is linked to the spatial domain as it provides the information 

for the origins and destinations (Martin et al., 2015). This includes the population sub-groups who 

attend a destination or the catchment area from which population to supply to destination can be 

drawn from Table 4.3.  

The temporal domain is the collection of time profiles used to inform the population present at 

each origin and destination for a given time of day (Table 4.3). A data library of time profiles is 

built to cover each type of destination and the types of day which are of most interest (Martin et 

al., 2015). With a large time profile database, this approach allows for a more flexible choice in 

time of day to be used in the analysis query rather than restricting the analysis to predefined 

reference periods (e.g. day time or weekday morning) (Martin et al., 2015). As Figure 4.4 shows, 

the time profiles used in this thesis have data at 15-minute intervals and represent the 

percentage of the population at a destination at the specific time. The data is derived from the 

Quarterly Labour Force Survey (UK Data Service, 2020). 

The entire modelled population must be represented in the spatial domain at any time point for 

volume preservation i.e. that the number of people does not change but rather everyone is 

redistributed across the area (Martin et al., 2015). This means a geographic area larger than the 

study area, and the accompanying data, needs to be input into the model to allow for a buffer 
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zone of people travelling into and out of the study area during the day (Martin et al., 2015). This is 

recommended to be at least 20 km (Martin, 2017,pers. comm.).  

 

Figure 4.4 Time series profile for primary school children. The dashed line is the percentage of the 

population subgroup who are in travel at that given time of day and the solid line is the 

percentage at their destination site. This profile shows that children travel to school between 8am 

and 9am and 94% of the population group are present a school for the day. 

The analytical system (Figure 4.3) provides the means to interrogate these data to answer specific 

spatiotemporal queries (Martin et al., 2015). Origin population is reallocated either to the nearest 

destination or to meet known proportions of population travelling in successive distance bands 

(for example those created from travel to work data) (Martin et al., 2015). This approach allows 

for overlapping catchment areas; however, it does not account for more complex travel patterns, 

like a traveller not going to the nearest applicable destination. The product of the model is a 

series of rasters which represent each population sub-groups distribution at the time of day 

specified. The spatial units of this raster should reflect the spatial resolution of the source data, 

and for origin populations drawn from census output areas this is a 200 m grid cell (Martin et al., 

2015). The grid cells contain the estimated number of people located there at that time of day. A 

gridded output has the advantage of stability over time and is easier to integrate with other data 

sets which are commonly gridded formats, for example environmental data (Martin et al., 2015).  

Applying the SurfaceBuilder247 software to this research, Table 4.4 describes the main data 

required for this thesis. The chosen year of analysis was 2016 so the data closest to this year was 
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used. The origin files for the residential population counts per output area are derived from the 

2011 England and Wales census and projected to 2016 using mid-year estimates at the LSOA 

level. Seven population sub-groups were used to cover the entire population, dividing the 

population by age, based on educational and workplace stage, which have similar temporal and 

spatial patterns. The groups were split into the following ages; 0-4, 5-10,11-17, 18-64 students, 

18-64 non-students, 65-79 and over 80. For destinations, each was given a wide area dispersion 

radius which specifies the area that people should be drawn from, for workplaces this was from 

travel to work data and for schools this was from Edubase catchments. For a detailed description 

of all data sources for the SurfaceBuilder247 model see Appendix A. 

Table 4.4  Sources for the main data used in the SurfaceBuilder247 tool when implemented in this 

thesis. The codes in brackets refer to 2011 census tables the data was acquired from.  

Data Source Year Description 

Population totals and age 

structure  

Office for National 

Statistics (QS103EW) 

2011 Residential population at 

origins 

Mid-Year Estimates of 

York’s population  

Office for National 

Statistics 

2016 Data applied to residential 

population to scale to 2016 

Communal establishment 

residents  

Office for National 

Statistics  

(QS420EW and 

DC4210EWla) 

2011 Data for the ‘immobile 

population’ who are in 

facilities which mean they 

do not leave during a 

typical day e.g. care home, 

prison 

Workplace zone and travel 

to work  

Office for National 

Statistics (via Nomis) 

(WP605EW and 

WP702EW) 

2011 Location of workplace 

zones and the distance 

travelled by commuters 

Hospital admissions NHS digital 2016 The number of people in 

hospital for the day type 

Schools Edubase 

York City Council 

Independent School’s 

council 

2017 The location of schools and 

the de facto catchments 

Traffic data (AADF and 

traffic flow for time of 

day) 

Department for Transport 

(via data.gov) 

2016 Data for the background 

layer weightings to enable 

distribution of the 

population in travel 

Time profile Quarterly Labour Force 

Survey 

2006 Proportion of population 

group in travel or at work 
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4.2.3 Network analysis tool  

The network analysis tool used in this research is the closest facility tool, part of ESRI’s ArcGIS 

network analysis toolbox (ESRI, 2020a). ArcGIS routing tools have been utilised in other similar 

research projects. For example, Kilgarriff et al., (2019) used ArcGIS routing tools for their study of 

the impact of flooding on commuters in Galway. Pregnolato et al., (2015) used ArcGIS to calculate 

least cost path routes between origin and destination locations according to the shortest time. By 

overlaying water depth estimates onto the network, they could assess the impacts of the flood 

through comparing the perturbed travel times from the flood event to the non-flood event. 

ArcGIS network analysis tools have been used in relation to other natural hazards as well as 

floods. Toma-Danila (2018) used ArcGIS network analysis to study the implications of urban road 

network failure due to earthquakes. Toma-Danila (2018) states that ArcGIS one of the most 

advanced and used GIS platforms for road network modelling, due to its flexibility to be used in 

many different situations whilst being a specialised tool for routing algorithms. ArcGIS can handle 

large networks and process routes across an urban area. As Ahmed et al., (2017) attest, the 

software allows for time to be used as the criteria for shortest route, more useful than distance in 

real-world travel studies, and a specific travel start time and day type can be specified. This allows 

for temporal differences in travel times across the study area to be explored. It is for these 

reasons why it was selected for this research.   

The closest facility tool locates the nearest ‘facility’ (destination) for an ‘incident’ (origin) and 

returns a shapefile of the route and the journey time and distance travelled. The analysis enables 

users to find the routes for multiple origins to multiple destinations with parameters including; 

specifying the number of destinations to search for each origin, mode of transport, impedance 

value which the shortest path is calculated on (time or distance) and time of day for the journey. 

This tool is based on the well-known Dijkstra’s algorithm (see Section 3.3.5.1), which is used to 

find the shortest path between two locations (Debionne et al., 2016; Li et al., 2018). ESRI’s closest 

facility analysis uses a modified version of Dijkstra’s algorithm to reflect real-world transportation 

rules like one-way streets, turn restrictions and barriers on the network (ESRI, 2020a). It is also 

applied in conjunction with a hierarchical path solver which improves calculation time and is 

designed to reflect travel behaviour. Hierarchy is based on the fact that not all road segments are 

used equally, since some roads are major transport routes with more people travelling on them 

and some are small minor roads with few cars (ESRI, 2020a). The hierarchical path solver searches 

from the origin and destination location for entry points to higher-level roads, for example A 

roads in a UK city, and then tracks along these segments until the two meet (ESRI, 2020a). This 

means a smaller number of roads are searched which results in quicker solve. The hierarchical 
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approach is also a better reflection of driver behaviour as main roads are more often used when 

traversing a city than local roads.  

The server version of this tool was used over the desktop version as it allowed for the use of 

ESRI’s historical traffic information. As the focus of this research was on how the time of day of a 

flood event affects the travel across the city, including traffic data for specific times of day was 

important. ESRI’s traffic data allows for any time of day to be specified for a typical day of the 

week when running the closest facility query. The traffic data are collected by HERE who have a 

partnership with ESRI (ESRI, 2020d). HERE collect billions of GPS and cell phone probe records per 

month which is compiled to compute accurate speeds, utilising sensor data to augment the probe 

data collection where available (ESRI, 2019). Historical traffic information is generated from the 

average of observed traffic speeds over the past three years (ESRI, 2019). These traffic data are 

representative of ‘normal’ conditions and do not reflect the traffic conditions and congestion 

caused by a flood event in the city. However, in the absence of city-wide traffic data for every 

road during a flood event it was applied to the network analysis conducted for the flood scenarios 

to keep that variable the same. The network analysis using traffic data also requires subscription 

to ArcGIS online and uses credits per closest facility analysis (ESRI, 2020e) which does restrict the 

use of these data. It is worth noting though that other routing tools with traffic data, for example 

Google routing, also use a credit-based system. 

Barriers are a term for any object, in this case water, which impedes travel on the road network 

and can be represented as a point, line or polygon feature (ESRI, 2020b). There are two options 

for barriers: either they slow down travel along the link by a set scale factor, or travel is not 

permitted (ESRI, 2020b). Barriers were used to represent the flooding across the study area to 

capture the effect on the road system. As described in Section 4.2.1, the raster output from the 

Flowroute-iTM model was converted into polygon files and processed to represent the areas where 

flooding fit the criteria for causing disruption to the road network. These polygon files were 

included as impassable barriers in the closest facility analysis in all flood scenarios.  

For Chapter 5 (modelling spatiotemporal flows), the analysis was conducted manually via ArcGIS 

online whilst initial analysis for primary school children using the closest facility tool with traffic 

data were conducted. For Chapters 6 (Evaluation of spatiotemporal flow data) and 7 (the effect of 

flooding on travel), a Python script was written to enable batch processing of a folder of data for 

one scenario, a much quicker computational process than individually running data using ArcGIS 

online.   
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4.3 Overall Methodology 

4.3.1 Thesis overview 

The following three chapters contain the analysis conducted during the course of this research 

project and the results inform the discussion in Chapter 8. Figure 4.5 provides an overview of how 

the research chapters are structured. Chapter 5 presents the first piece of analysis in this thesis 

and examines how to create spatiotemporal flow data from the spatiotemporal population data. 

Chapter 6 takes the approach developed in Chapter 5 and applies it to commuters before 

introducing a flood scenario. The final piece of analysis is presented in Chapter 7 where the main 

aim of the thesis is addressed. In this chapter, the spatiotemporal flow data created in chapters 5 

and 6 is applied to different flood scenarios, to see the effect of flood onset time and magnitude.  
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Figure 4.5  Overview of the analysis structure of the thesis and the interaction of the three results chapters. The top row of boxes are the input models, the middle row 

the description of the analysis chapter and the bottom row the results. The work of one chapter build into the analysis of the next chapter. 
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4.3.2 Modelling implementation by chapter 

Chapter 5 is the initial prototype of a spatiotemporal travel methodology (Figure 4.6). Chapter 6 

will be applying the prototype to commuters (Figure 4.7). Chapter 7 introducing flood risk 

scenarios (Figure 4.8). Due to the substantial number of possible scenarios from combining 

models, only a few scenarios tend to be chosen to illustrate research objectives (Smith et al., 

2014a). Hence, in this research a couple of flood scenarios are selected for testing as it would be 

beyond the scope of this study to investigate all likely scenarios. Instead, the merit here it to 

evaluate and demonstrate the transferability of the approach developed, using a set of 

reasonable exemplar scenarios.   

 

Figure 4.6 Chapter 5 overall methods structure 
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Figure 4.7 Methodological approach of Chapter 6.Blue boxes are analysis processes, black boxes are data 
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                            Figure 4.8 Overall methods structure for Chapter 7 
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Chapter 5 Modelling Spatiotemporal Population Flows 

5.1 Introduction and Background 

Accurate location information on population groups underpins numerous research fields including 

health geographies, retail planning, political science and emergency planning. Traditionally, 

census data for usual place of residence and place of work for the study population have been 

used in research (Aubrecht et al., 2013a; Smith, 2015; Debionne et al., 2016). However, this does 

not represent the true dynamic nature of population mobility  (Aubrecht et al., 2014; Bian & 

Wilmot, 2015; Renner et al., 2018). Most people make journeys every day, be that from homes to 

places of work, schools, medical facilities or leisure and retail activities. The average number of 

trips undertaken per person in 2016 in England was 774 (Department for Transport, 2017), or just 

over two per day, with 62% of these by car (Department for Transport, 2017).  There has also 

been an increase in commuting distances as people are living further away from their place of 

work (Bates, 2015), and this ‘hypermobility’ is not captured well within traditional population data 

sets. Over the last decade, administrative data sets and data from emerging technologies have 

become more important as they can provide detailed information between census years (Einav & 

Levin, 2014). For example, school enrolment data can capture the numbers of children travelling 

to a school and the increased use of smartphones amongst the population provide the 

opportunity to monitor footfall through shopping areas (Malleson et al., 2018). Data of this 

nature, when used in conjunction with census data, enables a richer understanding of population 

travel.   

 

Journeys are individual decisions, but the data provided for them are often aggregated in time 

and space. Whilst administrative data can rectify some of the temporal issues with census data, 

there are spatial issues surrounding the aggregation of data for both census and administrative 

data sets. For example, in England the census is collected at an individual level but aggregated for 

spatial analysis into output areas in order to protect privacy. As these areas are designed to 

include 40 households as the minimum (Office for National Statistics, n.d.), they are not spatially 

regular as densely populated areas will have output areas of a smaller physical size compared to 

rural output areas. Furthermore, between censuses there can be boundary changes meaning a 

household may be aggregated into a different zone in the 1991 or 2001 census compared to the 

2011 census, reducing the temporal stability of data from census zones. Spatiotemporal gridded 

population data provides a way of combining census boundaries with other administrative 

geographies, as well as addressing the spatiotemporal stability of aggregation zones. As described 
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in Table 3.2, there are a number of spatiotemporal gridded population projects and data sets, 

some of which are for specific purposes and others for global use. These provide an alternative 

form of population data and are easier to link to other data which typically use a raster format, for 

example environmental data. Some of these gridded population models produce data to 

represent population at different times of day (LandScan (Bhaduri et al., 2007), Population 24/7 

(Martin et al., 2015), Dynapop (Aubrecht et al., 2014)). These data have led to valuable research in 

infectious disease spread (Strano et al., 2018), natural hazards (Renner et al., 2018; Smith et al., 

2015; Aubrecht et al., 2014), population estimates in developing countries (Wardrop et al., 2018; 

Weber et al., 2018), maternal health inequalities (Ruktanonchai et al., 2016) and migration (Tatem 

& Smith, 2010). 

  

One instance where the location and travel patterns of a population is key knowledge is natural 

hazard planning. As discussed in Chapter 2, it has been shown that the time of day when a natural 

hazard event occurs is a large determinant of the scale of impacts (Aubrecht et al., 2012). Within 

natural hazard literature, certain population sub-groups have been identified as particularly 

vulnerable, including children, the elderly, disabled persons and tourists (Cutter et al., 2003; Civil 

Contingencies Secretariat, 2008). Knowing how these vulnerable sub-groups move throughout the 

day is therefore of particular interest, as it enables risk mitigation measures to be specifically 

tailored towards them. The availability of spatiotemporal gridded population data which identifies 

vulnerable population sub-groups opens the potential for their movement and travel to be 

studied.   

  

However, spatiotemporal gridded population data do not show the routes taken by individuals to 

travel across an area, rather they show how the number of people in each grid cell changes 

between time periods and where those ‘in travel’ are likely to be. Vector-based analyses, like 

network analysis in GIS, have been used to generate journeys from census output area centroids 

for example, Comber et al., (2008); Langford & Higgs, (2010); Higgs et al., (2012). This provides a 

reasonably fine spatial resolution and has demographic data attached, but it is only valid for the 

time the census was taken. Alternative data sources like Smart Card travel data have been used to 

model individual journeys across urban areas (Han & Sohn, 2016; Wang et al., 2017) which does 

capture individual spatiotemporal dynamics, however this does not provide detailed demographic 

information on the travellers. Linking spatiotemporal gridded population data to travel models 

enables the demographic data from the census to be preserved, but also allows a temporal 

resolution more similar to that used with transport software, combining social science research 

with transport planning. Therefore, the aim of this chapter is to assess how spatiotemporal 

gridded population data can be linked to existing GIS network analysis tools in order to provide 
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more detailed insights on population travel. As far as the author is aware, there is no literature 

expressly discussing how to improve the representation of travel from spatiotemporal gridded 

population data and linking it to vector-based network analysis, making this research novel.  The 

first three objectives of the thesis are fulfilled in this chapter: 

 

Aim: To develop a framework for combining spatiotemporal gridded population data with GIS 

network analysis, using journeys to primary school as an example.  

 

Objectives: 

1. Create a baseline spatiotemporal representation of primary school children’s location 

across the study site, including the in-travel population.  

2. Evaluate the use of spatiotemporal gridded data for representing population in travel   

3. To develop a method for converting the output from the SurfaceBuilder247 model into 

origin-destination flows for use in GIS network analysis 

 

In this chapter, primary school children (aged 4-11 years) are the group which have been selected 

for study in order to develop the methodological framework. This group has been chosen because 

they are a ‘data rich’ population group (Harland & Stillwell, 2010) with information on daily travel 

patterns during the working week available. Education is compulsory for all children in this age 

group, therefore the vast majority of children age 4-11 will travel to a school and back again on a 

typical term-time day. Whilst the relative numeric changes in the primary school population can 

be modelled over space and time through the existing spatiotemporal framework in the 

SurfaceBuilder247 model, the specific routes individuals take across space is much more 

complicated to model. In England, school admissions were traditionally arranged through school 

catchments, designated geographic areas for each school based primarily on distance to school, 

sibling attendance and religious affiliation, where the children who met these criteria attended 

the school (Burgess et al., 2011). However, the introduction of the 1988 Education Reform Act, 

later strengthened by the 2006 Education and Inspection Act, has enabled parental choice in 

school selection and made it simpler for children to attend schools outside of their catchment 

area (Burgess et al., 2011). The increase in parental choice, along with the creation of academies 

(Academies Act 2010), has led to progressive marketization of school choice, making published 

school catchment areas unreliable as representations of student home location. Parsons et al., 

(2000) found 35% of children in their study area did not go to their catchment school and this is 

likely to be a larger proportion now through the introduction of parental choice measures. 

Therefore, an alternative method is needed to calculate where children travel to school from.  
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5.1.1 Study Site 

As described in Section 4.1.1, York is the location used for this research. Within the York study 

area, there are 40 state primary schools which educate pupils age 4 to 11 years (Figure 5.1). 

Independent schools are not included as there is no publicly available information on their pupils’ 

home addresses are. However, as pupils educated at independent schools account for 7% of 

school children (Independent Schools Council, 2017), they represent a minority of children.  

 

Figure 5.1 Map of the location of the primary schools in York. Contains public sector information 

licensed under the Open Government Licence v3.0 
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5.2 Methods 

In this chapter, the SurfaceBuilder247 model outputs for population in travel are compared to an 

extended methodology framework, based on the four-stage conceptual transport model (Ortuzar 

& Willumsen, 2011; Jones, 2012) (see Section 3.3.2.1 for a full description). The SurfaceBuilder247 

model is described in Section 4.2.2 and a full explanation of the theory is given in Martin et al., 

(2015). The model’s implementation in the context of the York case study will be described 

here. To allow the spatiotemporal gridded population data from SurfaceBuilder247 to be used in 

network analysis, a spatially weighted Monte Carlo procedure was designed to produce 

statistically likely origins for each primary school destination. This is described in Section 5.2.2.  

5.2.1 Application of SurfaceBuilder247 software 

Briefly, SurfaceBuilder247 model produces gridded data layers which represent the number of 

people present in each cell at a given point in time, whether they are at an origin, destination or 

in travel. The model was used to create a series of spatiotemporal population grids for all 

population sub-groups at the times of day which were of interest in this study. The data produced 

for the population sub-groups who attend primary school (0-4, 5-10 and 11-17 groups) are used in 

this chapter to develop spatiotemporal population flow data.  

The origin data for the residential population was generated as described in Section 4.2.2. 

Destinations in this Chapter are state run primary schools (Figure 5.1) and a point data set was 

generated of each school’s location with the number of pupils in attendance taken from local 

authority data (City of York Council, 2020). Determining a catchment area from which population 

can be selected by the SurfaceBuilder247 model and the spatially weighted Monte Carlo process 

for each school is challenging, due to the complications of school admissions (Section 5.1).  A ‘de 

facto’ catchment can be defined as the radius from a school where a given percentage of the pupil 

intake was drawn from in the previous year (Burgess et al., 2011). This provides a reasonable 

estimation of where pupils are travelling from and can be used as the wide area dispersion. 

Edubase data for the Euclidean radii encompassing 95% of the children from the last intake was 

utilised, extracted from Locrating (2017) data used was for the 2017 school intake, the closest 

available data to the target year. Schools collect data on their pupils home location and mode of 

travel to school which is stored in the National Pupil Database (Department for Education, 2018). 

Using these data would provide more realistic catchments than the catchment radii used in this 

chapter. However, there are several reasons why the generalised catchment radii are appropriate 

in this instance. Firstly, the radii fit well with the existing wide area dispersion function in the 

SurfaceBuilder247 model. Secondly, there are strict data protection measures when using data 
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from the National Pupil Database, so uploading such data to ArcGIS Online for the routing 

calculations would be in breach of these terms. Finally, the intention is to use the methodology 

developed for groups other than school children where individual data on origins are not 

available, therefore this method is preferable as it is more easily transferable. 

The Population24/7 NRT project (UK Research and Innovation, n.d.) updated the methodology for 

creating the background layer, a key data input to the SurfaceBuilder247 model which determines 

the location population in travel are distributed to. Therefore, the background layers used in this 

thesis were updated in line with this project. To summarise, the main updates were as follows. 

Background layers for a specific day type e.g. normal working weekday, bank holiday Monday, 

Saturday’s in December, were able to be created due to Traffic England’s National Transport 

Model time period data becoming available to support this (Department for Transport, 2018a).  

Minor roads were also introduced to give a more detailed spatial representation of those in travel 

around York.  

To create the updated background layers, Annual Average Daily Flow (AADF) data for the target 

year (2016) was downloaded, which provides the average number of each vehicle type which 

passes a count point each day for that year. The count point data were then combined with the 

National Transport Model data which denotes the day type and time period (Department for 

Transport, 2018a).  The count point data were then classified by road type and whether it was 

urban or rural. Finally, for each time period the count point data are interpolated using Inverse 

Distance Weighting to produce a gridded surface of the number of people per grid cell for each 

type of road, i.e. motorways and A roads, based on the OS open roads data set. The separate 

raster files were overlaid to generate one background layer at a 200m resolution. As  Figure 5.2 

shows, the SurfaceBuilder247 output for the population in travel is noticeably different with a 

greater spatial dispersion of the ‘in travel’ population reflecting the inclusion of minor roads. 
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Figure 5.2 Distribution of the total population ‘in travel’ with a) the original background layer and 

b) the updated background layer. Contains public sector information licensed under the Open 

Government Licence v3.0 

As described in Section 4.2.2, a time profile for each type of destination and day type is required. 

For schools, nobody is present during the early morning and between 0800-0900 hours the 

destination fills up with school children. They remain on site until 1500 hours when they start to 

leave and return to their home destinations. Schools should be at near full capacity as children 

registered at the school must attend, although there will be some absences due to illness and 

other events. SurfaceBuilder247 therefore seeks to fill 94% of the school capacity with the correct 

population age groups and there should not be unfilled places at the destination.  

5.2.2 Adapted four-stage model 

The ‘four-stage model’ is a classic conceptual model in transportation engineering (see Section 

3.3.2.1). This conceptual model was chosen as the foundation for this chapter’s methodology for 

its simplicity and adaptability (Ortuzar & Willumsen, 2011; Jones, 2012), and because it is well 

known within transportation research, forming the basis of the UK government’s National 

Transport Model (Thiessen, n.d.). McNally (2007) describes this model as approaching transport 

planning from a ‘person-perspective’, which makes it suitable for combining with spatiotemporal 
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population data. Figure 5.3 illustrates the adapted four-stage model proposed in this chapter, 

henceforth known as the four-step approach.   

 

Figure 5.3 The four-stage transport model 

 

The trip generation stage, defining the number of people who need to travel, is fulfilled with the 

spatiotemporal population grids for the target group generated by SurfaceBuilder247. Here a 

spatiotemporal population grid for a time period before travel occurs e.g. 6 am is used, indicating 

the number of people available in each grid cell able to travel. 

Trip distribution identifies the destinations to fulfil the travel requirements from the trip 

generation stage. As SurfaceBuilder247 does not indicate where individuals have travelled to and 

from, an alternative model is required. One solution would be to create a spatial interaction 

model, as these are designed to calculate the flows of people between origin and destinations and 

are widely used, including for school travel (Harland & Stillwell, 2010). However as discussed in 

Section 5.1, ‘de facto’ catchments are being used rather than individual data. An alternative 

solution was required to fulfil the trip distribution stage. An original spatially weighted Monte 

Carlo simulation was created in R (Nieves, 2018, pers. comm.), using computer cluster techniques 

from Stevens et al., (2015) and the WorldPop research group at Southampton University (World 

Pop, 2020). The Monte Carlo simulation code selects individuals to fulfil demand at school 

destinations, based on the probability of a grid cell providing children to that destination, until all 

the schools are full (Figure 5.4). Each school has a probability raster, similar to Sofianopoulou et 

al.,(2012) and Nieves (2015), based on the primary school catchment areas used for wide area 

dispersions in the SurfaceBuilder247 model, maintaining consistency through the framework. It 

assigns greatest probability to those grid cells that fall within the radii of where 95% of the intake 

are from and all grid cells outside of this are assigned a proportion of the remaining 5% of the 

probability. The other input data into the spatially weighted Monte Carlo simulation are the 

gridded population data for each age group, and a shapefile of the school destinations with the 

number of children in each age group it requires. The number of children was 94% of the total 

school places, introducing the assumption that there are some absences, as defined in the 

SurfaceBuilder247 model. 
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As described in Figure 5.4, the simulation takes one school destination at a time and assigns 

individuals to it using the probability raster for that school. Once an individual has been selected 

from a grid cell they are no longer available to any other school destination to ensure that the 

population volume is preserved. In urban areas like York, there is a large overlap of school 

catchment areas (Figure 5.5). This has been found in other studies, for example Burgess et al., 

(2011) found there was an average of 19 schools within a 3km radius of a pupil in an urban area. 

Consequently, the order in which the schools are run through the simulation is of great 

importance as those at the beginning have the greatest available population to select from, and 

those at the end the least. This could mean that schools with smaller catchments have not enough 

people available if other school destinations have already selected the population. The schools 

were therefore ranked by the area of their school catchment and the simulations run starting with 

the school with the smallest catchment and descending to the one with the largest. This meant 

the schools with the greatest geographic constraint had an available population.  

 

Figure 5.4 Flow chart of the procedure of the spatially weighed Monte Carlo process applying a 

bootstrapping technique. 
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Figure 5.5  School catchment overlap for selected primary schools in York. Contains public sector 

information licensed under the Open Government Licence v3.0 
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A bootstrapping process was applied to run the simulation 1000 times for each school, balancing 

the requirements for statistical accuracy and constraints of computing power. A bootstrap 

process is a random sampling method with replacement. It works by randomly selecting data 

points to fulfil a sampling requirement and noting the data value. Over many repetitions, an 

average of the small samples of the data allows estimation of the characteristics of a population 

(Brownlee, 2018). In the application in this thesis, the data are the origin population grid which is 

sampled to generate an average of where people travel to the destination from.  

 

The output of the spatially weighted Monto Carlo process was an origin shapefile for each 

destination, which specifies the frequency of selection and a statistical weighting reflecting this 

frequency for the origin destination pair. The average frequency also allows the average number 

of children assigned to that school in a simulation from the grid cell to be calculated. The 

weighting of the origin-destination pairs was used as the first step in selecting only origins which 

were more frequently selected. A plot of the origin weights from largest to smallest showed a 

long tail end in the distribution, and these origins which all had low weightings were removed 

from further analysis. Origin-destination pairs averaging less than 1 child over all simulations were 

excluded. Upon review of the data, for the 0-4 and 11-17 age groups it was not possible to restrict 

origins to just those providing at least 1 child. As the population required at each destination was 

small, in large catchment areas the origins were only fractions of children e.g. 0.34. In these cases, 

0.1 was used as threshold and the sum of the origins was checked against the destinations, again 

finding a close match to the total required.  

  

Modal Split defines the method of transport used for journeys. Since equivalent data were 

unavailable locally for York, a cross-tabulation of school travel mode by distance band for England 

(Table 5.2) was used to estimate modal split (Department for Transport, 2014), based on the 

Euclidean distance between each origin-destination pair. The origin-destination pairs were split 

into two categories, motorised and non-motorised travel. Motorised travel included those who 

travelled by car and bus, non-motorised was walking and cycling. This is due to travel by public 

transport and bike being a very small percentage of primary school children, so they can be 

subsumed into categories with cars and walking respectively. This classification was also used by 

Easton & Ferrari (2015). 
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Table 5.1 Travel mode by distance band for Primary schools in England 

Classification Distance band Motorised Non-motorised 

1 Under 1 mile (up to 1.6km) 20% 80% 

2 1 to under 2 miles (1.6-3.2km) 72% 28% 

3 2 to under 5 miles (3.2 up to 8km) 99% 1% 

4 5 miles and over (over 8 km) 100% 0% 

 

Trip assignment was fulfilled by ArcGIS Online’s network analysis function. The online version of 

the software package was used as it allows for mode of transport to be easily specified and the 

historic traffic for a time of day to be included in driving times. The historical traffic data are based 

on the average travel speeds of cars over the last three years, recorded in 15-minute intervals 

(ESRI, 2018), and allows for time of day to be considered throughout the framework. For each 

school destination, the travel times and distances for the walking origins and driving origins were 

calculated for the three population groups; 0-4 years, 5-10 years, 11-17 years. The result were 

shapefiles for each mode, origin destination pair and age group which represented the travel time 

or the shortest route at the time specified.   

  

5.2.3  Comparison of population in travel modelled via two approaches 

To address the second objective, the results of the four-step approach were transformed into a 

raster data set showing the number of children in travel at 8:15am comparable to the output from 

SurfaceBuilder247. To consolidate the route information, maps were produced to show the 

number of children who use each road. This identifies spatial patterns for which roads are used 

most in allowing children access to school.  

5.3 Results 

In this section, the results from the development of the four-step approach for linking gridded 

spatiotemporal population data to vector-based network analysis and the network analysis route 

results will be presented.  

5.3.1 Outputs from preliminary population models 

The initial results from the SurfaceBuilder247 model did not succeed in capturing the dynamics of 

school travel as there were 4240 unfilled school places in York’s primary schools (Figure 5.6 and 
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Figure 5.7) which could not be met from origin populations, an 11% deficit. With adjustment of 

the model parameters and the input data, the deficit reduced through successive 

reparameterisations of the models as shown in Figure 5.6. Figure 5.7 shows that there was a 

spatial nature to those schools with unfilled places, as in V1 the majority of the schools were on 

the South East side of the city, and V3 and V5 the two schools were within 1km of each other. The 

change between V1 and V3 is the greatest and there is a change in which schools have unfilled 

places. 

 

 

Figure 5.6 Graph showing the model version and the unmet demand at primary schools in York. 

The table describes the changes made in each successive parameterisation of the model version.  
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1 First model run (with MYE) 

2 Adjusted MYE values in origins 

3 Have school population split as 5% 11-17 and 95% 5-10 

4 Use the York Local Authority school population data for target York schools 

5 Expanded study are and buffer zone so they include the catchment radiuses 
for all schools 

6 Have school population split as 7% 0-4, 86% 5-10 and 7% 11-17 

7 Have school population split as 10% 0-4, 83% 5-19 and 7% 11-17 

8 Have school population split as 13% 0-4, 80% 5-10 and 7%11-17 
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Figure 5.7  Maps showing the location of primary schools in York and the number of unfilled 

demand at the school. The version number is denoted by the Vx in the top right-hand corner of 

each map. Contains public sector information licensed under the Open Government Licence v3.0 

5.3.2 Comparing SurfaceBuilder247 output to the four-step approach output 

Objective 2 was to compare the outputs of SurfaceBuilder247 and the four-step approach to see 

how they represent population in travel.  Figure 5.8 shows that the SurfaceBuilder247 output has 

a high weighting of school children in travel on the main A roads around York and the arterial 

roads into the city centre. The results of the four-step approach show a greater use of minor 

roads, with a large proportion of children not using the main ring road for travel. There is also a 
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greater homogeneity in the number of people per grid cell with a more even spread across the 

city, particularly for walkers (C). 

 

Figure 5.8  Comparison raster maps of the primary school population in travel at the same time 

point across York. a) is the output from SurfaceBuilder24/7, b) the output of the network analysis 

for those travelling by car and c) the output of the network analysis for those walking. Contains 

public sector information licensed under the Open Government Licence v3.0 

 

5.3.3 Network Analysis Results  

Figure 5.9 and Figure 5.10 present the results of the network analysis for school travel on a typical 

Monday morning, dividing road sections into quintiles based on the modelled number of children 

travelling along a road section. The roads used by those who walk are more clustered around 

destinations than those used by car travellers, particularly for schools in the villages on the edge 

of York (Figure 5.9). The concentration of children travelling on roads is also higher for walking 



Chapter 5 

104 

routes, with 465 the greatest number on a section compared to 109 for car travel. There is also a 

difference between walking and motorised transport, with car journeys tending to be longer and 

utilising a greater proportion of the road network. In both forms of travel, it is local roads which 

are used more than major A roads.  It can be inferred that the greater the number of children 

using a road, the more important the road is to school travel, so those in the highest quintile can 

be considered the most critical. 
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Figure 5.9  The cumulative number of children using each road segment for those walking to 

school. Inset image extents shown on main map. Contains public sector information licensed 

under the Open Government Licence v3.0 
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Figure 5.10 The cumulative number of children using each road segment for those being taken by 

car to school. Inset image extents shown on main map. Contains public sector information 

licensed under the Open Government Licence v3.0 
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5.4 Discussion 

5.4.1 Configuration of SurfaceBuilder247 model 

Primary school children are a unique group in the wider population, as the vast majority of people 

in this age group follow a well-defined routine during the weekdays (going to and from school). 

The SurfaceBuilder247 parameters mean that all school destinations should be filled on any 

working weekday. If there is unmet demand at a destination this is likely due to discrepancies 

between school administrative (destinations) and census data sets (origins). The initial 

parameterisation of the SurfaceBuilder247 model had 11% of the school destination places 

unfilled in the output grid, demonstrating the mismatch between the census data and the school 

data. There was also a spatial pattern to schools with unmet demand (Figure 5.7) as urban areas 

have a limited number of children with multiple destinations competing for them. By adjusting 

the model parameters and the input data, a parameterisation where all the demand in schools 

was met was achieved.  

 

There are several factors which contributed to this discrepancy. Firstly, the proportional split in 

the numbers of children from each age group attending primary schools was revised. Between V1 

and V2, adjusting the school population so that 5% were from the 11-17 category, leaving 95% as 

aged 5-10 rather than 100%, halved the number of unfilled places. This establishes that the 

proportional split of population groups at school destinations is an important parameter and 

needs to be as accurate as possible for the model to work. To say that a primary school is filled by 

5-10 year olds only is not true, and will partly explain why there is a deficit of 5-10 year olds for 

these destination places as some of the school capacity is filled by 4 and 11 year olds. The 

challenge is that during the school year, the proportion of 4 year olds and 11 year olds changes, 

adding an extra temporal dimension to this modelling. In this example, data were found which 

stated that 80% of children enrolled at primary schools are aged 5-10 (Department for Education, 

2016). Therefore, the model was adjusted to fulfil this by V7. 

Secondly, potential issues with the school destination data (from Edubase) were investigated. It 

was assumed that the census data would be correct for the number of children in York at the time 

it was taken, and adjustments were made to the administrative data for the destination numbers. 

The issue could therefore be that more children were being required at some schools than the 

population available to them from the origin census data. It is possible that the school data are 

affected by a lag in de-registration of outgoing pupils once they transfer to another 

establishment. This is similar to the health sector, where there is a lag in deregistration from 

practice registers as patients move between practices. This means that population headcounts 
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from general practice registers often exceed headcounts from census data, because the lag 

inflates register sizes (Smallwood & Lynch, 2010). Whilst school registers may be affected by 

similar lags as pupils change schools, head counts of children from school registers nationally are 

in fact lower than head counts of children from census data, but there can be local variations in 

such discrepancies (Office for National Statistics, 2013). Some children do go to school outside of 

their local authority, so would not be captured by the population data for the study area. In York, 

cross-border flows account for a 0.8% increase in children registered at schools (Department for 

Education, 2016) which is not enough to account for the discrepancy seen in these initial model 

results. Thirdly, the census data and school capacity data were from different years, 2011 for the 

census data and 2017 for school data. Whilst the census data were scaled using the 2016 Mid-

Year Estimate, this will not be the exact number of people present in York as it is still an estimate. 

However, it is unlikely the Mid-Year Estimate is so inaccurate it accounts for the 11% discrepancy 

in itself. Consequently, a data set from York Local Authority on school enrolment for the target 

year (2016) was used instead of national Edubase data as the number of pupils was lower, 

therefore a better match to the origin census data.  

 

Finally, it should be noted that the spatial concentration of schools had an impact. As Figure 5.5 

shows, the school catchments in York greatly overlap, meaning there is high competition between 

destinations for students. The total number of children over the study area and buffer zone was 

always enough to fulfil school demand; however, there was not enough within the catchments of 

some of the schools in York. Figure 5.7 demonstrates the schools with unfilled places were 

clustered together, supporting the theory that urban areas with lots of schools and a finite 

number of children can cause model problems. What can be taken from this is that in an urban 

area it is important to get different data sets as closely matched as possible.  

5.4.2 Comparing the modelled results of population in travel 

Objective 2 was to compare the output of the four-step approach to the output of 

SurfaceBuilder247 for the representation of people in travel. The results shown in Figure 5.8 have 

demonstrated that the four-step approach can provide a more detailed representation of the 

spatial distribution of population in travel than SurfaceBuilder247. This is largely due to the nature 

of the background layer in SurfaceBuilder247 placing the people in travel across the whole study 

area, based on the relative weightings of roads, which is not specific to population sub-groups. 

The four-step approach therefore is an improvement on SurfaceBuilder247 in its current form as 

it represents travel on the local roads which would be used for school travel. 
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5.4.3 Defining critical roads 

Jenelius (2009, 2010a) define a critical link as one which many people typically use whilst 

travelling around an area. Therefore, the four-step approach could be used to identify critical 

roads, as it identifies which are used by the most people within a population group. The results 

show it is mostly smaller roads rather than strategic network which are important for schools. 

There are more clusters of the road network for walking routes than car routes, which is 

unsurprising as walking was the mode used for shorter distances. As discussed previously, the 

studies by Nyberg and Johansson (2013) and Coles et al., (2017) have looked at defining critical 

links for a sub-group. Both of these studies look at access for the elderly. Therefore, this research 

has examined a new group. The four-step approach could be used for any population sub-group 

with the right data, so after running multiple groups a detailed picture of road use would emerge. 

A strength of these results is that they are for the whole city which is a useful scale for local 

authority planning. Also, displaying the results as the number of children is an accessible way of 

displaying the data to stakeholders.  

5.4.4 Preliminary assessment of the four-step approach to modelling population in travel 

The four-step approach is a novel framework which can be used to bring spatiotemporal 

population dynamics to GIS network analysis and has achieved Objective 1. The greatest challenge 

for this chapter was converting the gridded spatiotemporal population data into a format suitable 

for network analysis which, as far as the author is aware, has not been addressed within academic 

literature before. The spatially weighted Monte Carlo simulation has the same underlying 

principles of Spatial Interaction Models and microsimulation techniques, so the logic for the 

method is sound. The difficulty lies in validation as the data used as the input for 

SurfaceBuilder24/7 is the best data available and there is not an alternative data set for 

comparison. Nevertheless, the development of a code which assigns destinations to origins is a 

useful advancement to the field of population modelling as it opens the potential to link these 

data to other techniques. 

  

Like all models, there are limitations to the four-step approach. It is based on modelled data so 

the results can never be used as an exact representation of population in travel or for real-time 

emergency management. A key assumption is that people of a certain group follow the same 

movement patterns (Bian & Wilmot, 2015), when in reality transport networks are a collection of 

individual decisions (Nagurney, 2011). However, this is an issue with all transport models of this 

scale (Borrmann et al., 2012; Sohn, 2006; Jones, 2012) and the approach is still a good tool for 

city-scale transport planning. 
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The four-step approach is an aggregate modelling approach which means it cannot account for 

individual behaviour, a key determinant of travel (Jones, 2012), like an agent based model 

would. Whilst detail would be gained with a micro-scale approach, individual-level micro models 

would be more computationally expensive than the network analysis for areas as large as 

York. Also, micro-scale models need to contain behavioural choice-making data (Harland & 

Stillwell, 2010) which is difficult to come by and challenging to validate. When considering the size 

of the study area (a city) this aggregate ‘meso-scale’ framework is the best option as it provides 

detailed enough information for decisions to be made on a city-wide basis (Alaeddine et al., 

2015), the scale local government is ultimately working at.  

  

Journeys with multiple stops cannot be included as part of the four-step approach, as the original 

concept is based on a principle of journeys being from one origin to a destination (Jones, 2012) 

which does limit its applications. However, for school travel, it is more likely a child is just 

travelling to the school rather than going via other amenities, so a simplified travel model is 

appropriate. A linked limitation is that the results are just for primary school children and do not 

represent the adults which will be travelling with them. Assumptions could be made about how 

many adults are travelling these routes for every child, but further investigation is needed to find 

empirical data to base these on. Validation of the results is a challenge for SurfaceBuilder247 and 

the four-step approach, as the best available data are used in the models and there is not an 

independent data set to verify the results against. Whilst individual level data like the National 

Pupil Database and mobile phone data do exist (Singleton et al., 2011; Alexander et al., 2015; 

Deville et al., 2014), this is at a different scale to the census data the models use so would not be 

suitable for validation.  

  

The four-step approach has been designed to work for any population group which can be 

modelled in SurfaceBuilder247 or other spatiotemporal gridded population models, as it is 

intended for a wider use than just modelling school travel. The fact it only requires origin data, 

destination data and destination catchments mean it is a transferable framework as these are 

standard data required for transport analysis. Therefore, this four-step approach could be used in 

transport planning as it introduces demographic data to transport analysis allowing more detailed 

scenarios to be tested. The identification of critical roads could be used within risk management 

frameworks as society cannot afford absolute protection; therefore, prioritising resources on 

those nodes and links which are essential is necessary (Freiria et al., 2015). Introducing disruption 

scenarios to the network analysis part of the framework would allow policymakers to assess how 
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different population group’s travel is affected differently, enabling policy to be designed with 

specific groups in mind. 

  

There are several aspects to this work which can be considered original. Firstly, incorporating the 

four-stage conceptual transport model with gridded spatiotemporal population modelling has not 

been attempted before. This chapter has shown it is an appropriate and successful conceptual 

model for population transport analysis and could be used more widely within Geography. 

Secondly, how the SurfaceBuilder247 model represents population in travel has not been 

evaluated before or compared to an alternative method, which this chapter has provided. This 

work has also looked at the representation of primary school children in the model and how the 

destination parameters and input data can have a large effect on model outcomes. Thirdly, it has 

applied code components for population modelling developed by Stevens et al., (2015) to a new 

situation, demonstrating the transferability of these techniques. Finally, many papers address 

network functions for the population as a whole including Jenelius (2010b), Rodríguez-Núñez et 

al.,(2014), Sohn (2006), Taylor et al., (2006); Chen et al., (2015) and Balijepalli & Oppong, (2014). 

However, this is one of few studies which develops a method to examine the impact on specific 

population groups, and the only one to use the detailed demographic data provided by gridded 

populations. 

5.5 Conclusion 

This chapter has provided a framework for linking gridded population data to vector-based 

network analyses and shown how it can be used to map routes taken by specific population 

groups. This is a transferable framework which can be used for other population groups and with 

different types of gridded data other than SurfaceBuilder247. In terms of the case study area, it 

has provided more detail on which roads in York are used for school travel at a finer scale than 

SurfaceBuilder247 alone can currently. The objectives set have therefore been met and this 

original research provides a sound basis for development in the remainder of the thesis. 
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Chapter 6 Evaluation of Approaches to Modelling 

Spatiotemporal Population Flows and Flood-Related 

Travel Disruption  

This chapter has been presented as a conference paper at the GISRUK 2019 conference in 

Newcastle. See Appendix B for paper.  

6.1 Introduction and Background 

The majority of fatalities caused by pluvial flash-floods in post-industrial countries are due to 

people travelling in vehicles (Debionne et al., 2016; Arrighi et al., 2019; Terti et al., 2017; Shabou 

et al., 2017) rather than those exposed whilst in a residential building. However, daily mobility 

aspects are not frequently considered in flood exposure and risk assessments (Debionne et al., 

2016). As flood risk assessments can now involve dynamic flood models, it follows that dynamic 

population data should also be included to understand exposure and risk fully (Shabou et al., 

2017). Batista e Silva et al., (2018) state that multi-temporal population grids from the ENACT 

project, similar to the ones created by the SurfaceBuilder247 model, are useful for assessing 

exposure to natural hazards and planning and modelling transport. This chapter therefore tests 

this assertion by seeing whether spatiotemporal population grids can be used in a common 

network analyst tool for the purposes of assessing the effect of a flood event on travellers.  

 

In previous studies of pluvial flash floods on road networks, using census data for origin-

destination pairs is a common way of determining travel flow, for example Debionne et al., 

(2016). However, this does not capture daily flow dynamics in the way the spatiotemporal data 

used in Chapter 5 does. Alternative methods to include a dynamic nature to the census data 

include Shabou et al., (2017), who added travel activity data to their census data to include a 

measure of daily travel activity. In other studies, traffic data has been used to provide the 

dynamic quality to the road network, either average data for that day (Li et al., 2018) or for a 

specific flood event (Pregnolato et al., 2017a). However, using traffic flow or count data do not 

reveal anything about the demographic characteristics of road users, information which would be 

useful to those involved in risk planning like councils and local resilience forums. In this chapter I 

will attempt to use a third type of data, spatiotemporal population data created through 

SurfaceBuilder247, to assess the effect on intra-city journeys from a flash flood event in York.   



Chapter 6 

114 

Chapter 5 introduced a method for adapting spatiotemporal gridded population data to create 

time-specific origins for use in ArcGIS network analysis tools. However, assessment of these data 

was not possible due to a lack of reference data for school children. In this chapter, the focus is on 

commuters and there is origin-destination flow data for workplace travel recorded in the England 

and Wales census. This can be used to as a comparison to the origin-destination flow data 

produced from the spatiotemporal gridded population data. In this chapter, the origin data will be 

compared to identify differences in spatial locations. The origin data will then be used in a cloud-

based proprietary transport network tool (ArcGIS closest facility tool), without a flood event, to 

measure how commuting routes and journey times compare between the two. This process will 

then be repeated with a flood event acting as a barrier to the roads to assess the effect of a flood 

on commuter travel times. Finally, the sensitivity of the parameters of the network analyst tool 

are tested. This chapter has the following aim and objectives. 

Aim: To assess the differences between using census origin-destination data and spatiotemporal 

population derived origin-destination data, to measure the impact of a pluvial flood scenario on 

travel in York.  

 

Objectives: 

1.  Generate pluvial flood scenarios for road travel disruption testing  

2.  Analyse the differences in origin locations between census-derived origin-destination flows 

and flows simulated from workplace catchments using Chapter 5’s methodology  

3.  Examine the impact of the two different approaches to modelling spatiotemporal 

population flows on the simulated road travel disruption from pluvial flood hazards  

4. Test the inclusion of floods as obstructions in the network analysis tool 

5. Test methods for the aggregation and presentation of the results  

 

6.2 Methods 

6.2.1 Overview 

An interdisciplinary methodology of hydrology, transport and GIS has been applied effectively by 

previous researchers to this problem area (for example Li et al., 2018). A similar approach is taken 

in this chapter. The study area is the city of York, as described in Section 4.1.1, focussing on intra-

city travel as this is the area covered by the SurfaceBuilder247 population data. There are also 
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restrictions to the number of origin-destination pairs which can be analysed with the ArcGIS 

network analyst server, which restricts the size of study area to a city rather than a region. Whilst 

this does not account for all travellers who come into York for work, 71% of those who work in 

York also live in York (ONS census table WU01EW for MSOA level). Therefore, the majority of 

work trips are included in this area. I will analyse pluvial flash floods as they are a common hazard 

in urban environments, due to the prevalence of impervious surfaces (Li et al., 2018). Two 

approaches to creating population flow data for conducting network analysis were applied; 

Method A, which utilises raster data from the SurfaceBuilder247 model and Method B, which uses 

2011 workplace origin-destination census data. Figure 6.1 provides a diagrammatic overview of 

both procedures. 
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Figure 6.1 Methodological approach of Chapter 6.Blue boxes are analysis processes, black boxes are data
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Comparison metrics 
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(with HERE traffic 

data) 

Network analysis 
(with HERE traffic 

data) 

Control routes (no flood 
scenario modelled) 

Disrupted routes (flood 
scenario modelled) 

Comparison metrics 

Flood 
layer 

Origin-destination pairs from 
census 

Network analysis 
(with HERE traffic 

data) 

Comparison metrics 

Probability proportional to size sampling 
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6.2.2 Creating flood data 

The flood data used in this chapter was modelled using the Flowroute-iTM software from 

Ambiental Risk Analytics. For a full description of the model and the pluvial flood modelling 

strategy, see Section 4.2.1. In this chapter, the one-hour summer storm event for a 1 in 30 year 

return period was applied as the disruption scenario, taking the maximum depth raster. This was 

post-processed to remove any areas of flood water which were too shallow to cause impedance 

to vehicles or had an extent smaller than 125m2. There is a range for the threshold depth of water 

which makes a road impassable to a car, with the estimation of 20-30cm of water cited in the UK 

and US as the air inlet height on a typical car (Li et al., 2018). Pregnolato et al., (2017b) created a 

depth-disruption curve which indicates 30cm is sufficient water to stop an average car from 

crossing a road section. In this chapter I have used 25cm depth, a median between all estimates. 

As the main focus of this chapter is the testing of population flow data and the network analysis 

tools one flood scenario is used with the intention for the effect of different flood scenarios to be 

explored in Chapter 7.   

6.2.3 Adapting the spatially weighted Monte Carlo approach (Method A) 

An R script for a spatially weighted Monte Carlo analysis (Nieves, 2018, pers. comm.) was 

developed and presented in Chapter 5, to simulate the population origins which are likely to 

provide people to a destination from spatiotemporal gridded population data and destination 

catchments (see Section 5.2.2). As the spatiotemporal gridded population data are the same 

format for commuters as school children, this script was adapted to generate origins for 

commuters. Three sets of data are required for the script; (i) a population grid, (ii) a shapefile of 

destinations with population demand and (iii) probability surfaces denoting areas where those 

working at a destination are likely to live. The population grid was the output of 

SurfaceBuilder247 for the working population aged 18-64. The destinations were the centroids of 

workplace zones within the study area using the most recent 2011 census geography. As the 

study area does not cover the area where all people who work at the selected workplace zones 

live, the population demand for each destination was reduced to reflect the estimated proportion 

of workers commuting from within the study area. The distance travelled to work (workplace 

zone) is provided as a 2011 census output table (WP702EW – Distance travelled to work 

(workplace population)). These data were used to calculate the proportion of each selected 

workplace zone that commuted from outside of the chosen study area. This cumulative 
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percentage was then the proportion of the number of people working at that workplace zone 

who should be sought for each destination, ensuring the number of people required did not 

exceed those present in the population grid. 

The surfaces depicting probability of an adult working in a given workplace zone were based on 

the same method used to create the probability surfaces for each school in Section 5.2.2. The 

travel to work distance bands were again used as the basis for creating the probability surface. 

Each WPZ destination had 3-4 distance bands represented within the study area, depending on its 

location within the study area. To calculate the weighting of each band, the population 

percentages were divided by the number of grid cells in each distance band. As no other 

information is available to indicate if a grid cell has a higher likelihood than any other to provide 

to the destination, it is assumed all grid cells have an equal chance of supplying the destination. 

The script took 10 days to run, longer than for school children due to more destinations to 

process and greater numbers of people to be selected. The results were 1166 origins for each 

destination, equating to the number of grid cells with population present in the study area. The 

weighting of these origins followed the pattern of the probability surface however, with the 

points most picked in the 2km ring around the destination. This meant a ‘tail end’ could not be 

discerned to remove from analysis like in Chapter 5. However, the number of origins needed to be 

reduced, as 1166 would be unrealistic number to model for the number of people in the 

destination and computationally expensive when subsequently calculating routes using network 

analysis. Probability Proportional to Size sampling was used to pick a selection of origins for each 

destination. The number of origins to find was 50% of the number of people at the WPZ, assuming 

two people travelled from each origin. This produced a sampled selection of origins for each 

destination, reflecting likely commuter travel between that origin and destination. 

6.2.4 Applying census data (Method B) 

Method B uses 2011 census data of origin-destination flows for commuters, taken from the 

WF02EW data table, for the output area and workplace zone levels. These data are directly 

reported by 2011 census respondents, rather than the simulated data of Method A, although with 

the caveat that output areas with very small numbers of commuters are swapped for data 

protection. As the majority of origin-destination pairs in the census data consist of 1-3 travellers, 

it is likely these data protection measure has influenced the data used. However, the general 

spatial pattern should be maintained. The data were processed using python scripts to remove 

any origin-destination pairs where either the workplace zone or output area were not in the study 
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area, and then any pairs where the commuter flow was zero. A shapefile of origins was then 

created for each destination, with between 80-150 origins for each workplace zone. In this 

chapter, only one time of day is considered in the model, 7am on a typical working Monday, so 

additional temporal information is not added to the census data. 

6.2.5 Network Analysis 

The origin-destination data generated by Method A and B were implemented in the ArcGIS 

network analysis tool ‘closest facility’, accessed via the online server using a python script, as 

described in Section 4.2.3. There are many optional parameters but the ones of interest here are 

the inclusion of barriers and hierarchy function. To investigate how flood events change the 

closest facility routing, the 1 in 30 year flood was incorporated as a barrier in the closest facility 

analysis for both origin data sets. The flood layer represented all flood water deemed impassable 

(as described in Section 6.2.2.) so was classified as an impassable barrier in the tool parameters. 

Ideally, flood water which would slow down traffic, but still allows travel, would have also been 

included, based on the depth-disruption function created by Pregnolato et al., (2017b). However 

in practice, network analysis via the ArcGIS server is limited to a maximum of 2000 road segments 

being intersected by barriers (ESRI, 2020b), meaning only the impassable flood barriers were able 

to be included.  

The hierarchy function is included to attempt to mimic the preference for driving on main roads 

over local roads. This algorithm works in conjunction with Dijkstra’s algorithm (Section 4.2.3) to 

direct the calculated route onto main roads as soon as possible, and complete as much of the 

journey on higher order roads (ESRI, 2020a). By default, this is turned on in the network analysis 

tools. However, after noticing some unexpected results between the non-flood and flood routes 

for some destinations, the effect of hierarchy was tested by turning it off and re-running the 

analysis to see how the results were affected. Validation of this work is difficult, but sensitivity 

tests can be used to examine the influence of parameters on the model (Arrighi et al., 2019). 

Overall, seven scenarios were analysed using the closest facility server tool in order to compare 

flood to non-flood travel times, between origin-destination data creation methods and to test the 

sensitivities of the hierarchy function. The scenarios are described in Table 6.1 below. The time of 

day used in the network analysis was the departure time from the destination, based on the 

SurfaceBuilder247 spatiotemporal population data. Journey times in the network analysis were 

calculated from this point in time for completed origin-destination journeys.  
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Table 6.1 Description of scenarios run for data collection in this chapter 

Scenario Description 

1 Method B origin-destination pairs, hierarchy on, typical Monday morning at 7am, no 
flooding 

2 Method B origin-destination pairs, hierarchy off, typical Monday morning at 7am, no 
flooding 

3 Method B origin-destination pairs, hierarchy on, typical Monday morning at 7am, 
flood layer including bridge coverage 

4 Method B origin-destination pairs, hierarchy on, typical Monday morning at 7am, 
flood layer not including bridge coverage 

5 Method B origin-destination pairs, hierarchy off, typical Monday morning at 7am, 
flood layer not including bridge coverage 

6 Method A origin-destination pairs, hierarchy on, typical Monday morning at 7am, 
flood layer not including bridge coverage 

7 Method A origin-destination pairs, hierarchy on, typical Monday morning at 7am, no 
flooding. 

 

6.2.6 Comparing the data 

Several techniques were used to process the raw origin-destination route data and compare 

between scenarios. To compare the origin spatial pattern for each destination, the directional 

distributional tool from ArcGIS was used. This comparison is designed to show if the catchments 

of the origins from Method A were similar to those of Method B, as it is assumed the census-

derived data is a correct measure of catchment. This technique fits an elliptical catchment that 

encloses 95% of population-weighted origins, when 2 standard deviations are applied, estimating 

the x and y axis lengths for each destination’s ellipse (ESRI, 2020c). The x and y axis lengths were 

used to calculate a ratio reflecting the compactness of each destination catchment. A value of 

close to 1 indicates a more circular catchment and a value further away from 1 a more elliptical 

catchment. To statistically test for differences in modelled catchments, the axis ratios were 

compared using a paired sample t-test for Method A versus Method B. 

To test the effect that differing origin data sets had on the desired routing outcomes, the closest 

facility tool was run for both origin data sets to the same destinations. These data were used to 

calculate an average travel time to each destination, aggregating the data into 215 values (one for 

each destination) per origin data set. These two data sets were then compared to see if the 

destinations with the highest or lowest average travel times were the same between the two data 
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sets. This aggregation also allowed the comparison between travel times for the non-flood 

baseline and the flood scenario, to see the effect flooding had.  

The hierarchy property of the closest facility tool was tested by running the analysis with the 

function turned on and the function turned off, for both the non-flood routing scenario and the 

flood routing scenario, using Method B’s origin data. The average travel time and distance for 

each destination were then calculated for the non-flood and flood scenarios, before the 

difference between the two for each destination was calculated. 

Finally, the spatial route data were consolidated to ascertain which roads were most frequently 

used in the routing simulations and compare the difference in outcome between the two origin 

data sets. Each route was given a count of 1 and then combined to give each road segment a 

value for the number of times it was used. 

6.3 Results  

6.3.1 Comparison of method origin data 

The directional distribution tool showed that the catchments were generally elliptical (a sample is 

shown in Figure 6.2) and as expected, the catchments for the 215 destinations covered the study 

area of York. Visually, Method A has a much smaller catchment sizes than Method B, indicating 

that the origin data sets are substantially different. In the sample shown, the direction of the long 

axis also differs in the catchments between the two datasets. The mean ratio of the ellipticals for 

Method A was 1.042 and for Method B 0.875. This demonstrates that the catchments for Method 

A were generally closer to circular in shape than for Method B. This could be due to the 

underlying weighting layer used in Method A containing circular catchments. A paired sample t-

test was conducted on the ratio values which showed a significant difference between the ratio 

values of the destinations generated by each method (p value of <0.001). This shows that Method 

A has not created an origin data set which is similar in spatial size of catchment to Method B (the 

census data). This is likely due to the underlying probability surfaces used in Method A having 

higher weightings close to the destination point, meaning more origins were selected which are 

nearer to the destination than is reflected in the census data of Method B. 

 

 



Chapter 6 

122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Directional distribution elliptical catchments for 10 Workplace Zones, each elliptical cover 95% of the origin data for that destination (2 standard deviations). 

a) is Method A, b) is Method B. Contains public sector information licensed under the Open Government Licence v3.0 

a) b) 
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Figure 6.3 compares the average travel time to each destination in the non-flood baseline 

scenario for Method A and B (scenario 6 and 1 Table 6.1). The overall trend is that the 

destinations with the longest average travel times are the same for each method. There is a 

cluster of the majority of the 215 WPZs with travel times between 4 and 10 minutes, with 10 WPZ 

with an average travel time above 10 minutes. This data does show that average travel times in 

Method B are longer than for Method A for the same destinations by around 1 or 2 minutes. This 

aligns with the results that the catchment areas in Method B are larger, therefore travel time to 

the destination would be longer.  

 

Figure 6.3 A comparison of the average travel times for each WPZ in Method A and Method B.  

 

A comparison of the usage of road segments is presented next. Method B had a higher number of 

routes using segments. However, this could be due to Method B producing more origin-

destination pairs therefore more journeys were modelled. In both data sets, main roads like the 

A1237 around York and the A19 into York were used more than minor roads. This is unsurprising 

given the hierarchy properties of the closest facility analysis and the longer journeys compared to 

school children (Figure 5.10). Overall, a similar spatial usage exists, indicating which roads are 

used by commuters the most, regardless of the input origin data set.  
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Figure 6.4 Cumulative route map for origins to workplace destinations for Method A.  

Contains public sector information licensed under the Open Government Licence v3.0 

 

 

Figure 6.5 Cumulative route map for origins to workplace destinations for Method B. Contains 

public sector information licensed under the Open Government Licence v3.0 
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6.3.2 Modelled flood event 

The chosen flood event (one hour summer storm for a 1 in 30 year return period) resulted in 

small patches of flooding across the city and areas where roads were deemed to be impassable 

(Figure 6.6). Inset A shows one area of flooding, which while small, is at the start of a one-way 

road system which meant travel into this part of the city centre was not possible. This is one 

example of pinch points in the city network. Whilst the flood model did place flood water on the 

bridges over the city’s rivers, these were removed due to the low likelihood that they would in 

fact be flooded in a real situation. The DEM data which underlies the flood model does not always 

capture bridges well, so this may account for this discrepancy.  

 

 

Figure 6.6 Modelled flood area for York for a 1 in 30 year flood event for a 1hr duration, summer 

hydrology. Insets show part of the city where flooding has caused roads to be blocked (circles). 

Contains public sector information licensed under the Open Government Licence v3.0 

Contains data which are copyright of Ambiental Risk Analytics, used with permission. 
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6.3.3 Sensitivity of network analysis hierarchy setting 

Figure 6.7 are graphs of the average distance difference plotted against average time difference, 

of the flood scenarios compared to the baseline, for the workplace zone destinations, using 

origins produced by Method B. Figure 6.7 shows that time and distance increased when flooding 

was introduced, which would be expected as the flood layer should cause disruption. There are 

some cases where distance decreases, but time increases. This could possibly be due to the flood 

route involving local roads which are a shorter distance to the destination but are slower due to 

lower speed restrictions. The hierarchy function also recalculates values for roads each time the 

analysis is run, so when the flood layer is included the roads will be given a different hierarchy 

value to the non-flood simulation (Applebaum, 2019, pers. comm.), this is therefore another likely 

cause. The removal of the hierarchy function means fewer destinations appearing in the upper 

left quadrant of the graph where time increased while distance decreased. In this case, all roads 

are treated as equals so the effect of adding the flood layer (and changing the hierarchy values) is 

not seen. The general spread of results does not change substantially from when the hierarchy is 

turned on.  
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Figure 6.7 Modelled journey times with hierarchy function turned on (a) and turned off (b), for a 

flood scenario where floods which cover bridges were included. (dots represent workplace zones)  
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6.3.4 Effect of flooding on network analysis 

Figure 6.8 demonstrates there was a general trend of distance and time increasing after the flood 

event was introduced to the closest facility analysis for both Method A and B. There are some 

destinations where distance decreases as time increases, partly explained by the hierarchy 

function as demonstrated in Section 6.3.3. Figure 6.8 identifies the five destinations which have 

increases in distance and time larger than the general cluster of the data. These five are the same 

in both Method A and Method B, demonstrating that the WPZ with longest average travel times 

will be identified despite changes in the origins. Appendix C contains maps showing the spatial 

distribution of workplace zones and the average travel time to reach them.  
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Figure 6.8 Comparative graphs of mean distance and mean time to each destination for Method A 

and Method B. 
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The spatial routing data were aggregated for Method A (Figure 6.9) and Method B (Figure 6.10) 

for travel during the flood scenario. In both data sets, there are a notable absence of any routes 

travelling on the Northern section of the A1237 near Earswick. In the non-flood scenarios (Figure 

6.4 and Figure 6.5) this was one of the road segments with the highest usage. Leeman Road 

(alongside York station) also does not have any road users during the flood event having 

previously been a well-used road.  

 

Figure 6.9 Cumulative routes in flood event for Method A. Contains public sector information 

licensed under the Open Government Licence v3.
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Figure 6.10 Cumulative routes in flood event for Method B. Contains public sector information 

licensed under the Open Government Licence v3.0 

6.4 Discussion 

6.4.1 Comparison of the origin data 

The second objective of this chapter was to compare how the origins from Method A, designed in 

Chapter 5, compared to the origins from the census data for commuter flows (Method B). The 

origin selection process in Method A did not work as well as expected and a clear set of origins 

which were statistically more likely were not as easily distinguishable as in Chapter 5. This led to 

using the proportional population sampling approach to reduce the number of origins modelled in 

the closest facility routing tool as the 1166 origins initially selected was much greater than the 

number of people required.  

The results of the paired t-test and directional distribution tool have shown that the two data sets 

are significantly different  (Section 6.3.1), therefore Method A was unable to produce origin data 
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similar to that in Method B. The smaller catchments of Method A’s data are likely due to more 

origins being selected closer to the destination than in the small area census data of Method B. 

This lies in the properties of the underlying probability grids created for Method A. These were 

based on travel band data for the percentage of the working population living within set distances 

from their workplace zone. An assumption of creating the raster probability surface was that any 

grid cell within one of these distance bands has as equal a chance of providing to the destination 

as any other grid cell within the same band. Therefore, the proportion of the working population 

required in the workplace zone from that band was divided equally amongst all grid cells within it. 

The first distance band (<2km) was the smallest and had the lowest number of grid cells, with the 

number of grid cells increasing through the distance bands. This meant that the area with the 

highest weighting was the distance band closest to the destination and the lowest the furthest 

distance band. This skews the data, so more origins were selected closer to the destination than 

appears in Method B’s data.  

The resultant routes generated from these origin data were also compared. Figure 6.5 and Figure 

6.6 show broadly the same spatial pattern of which roads are used most frequently in the routes, 

demonstrating that on an aggregate level the differences in the origins do not have a marked 

effect on which roads are shown to be used most by commuters. The difference is more notable 

in Figure 6.4 where there are differences of 1-2 minutes in average travel times between the two 

data sets. This is perhaps because those destinations which take longest to travel to, perhaps 

because they lie on the outside of the main city centre, will always be those with the longer travel 

time.  

6.4.2 Sensitivity of the network analysis tool 

The hierarchy function does influence the closest facility routing results with more destinations 

showing an average change of shorter distance, but greater time, once a flood event is 

introduced. This sensitivity test has shown that the hierarchy does have an effect; however, it is a 

useful parameter to keep as it is designed to mimic human behaviour of preferring to travel on 

larger roads.  

6.4.3 Scoping of network tool behaviour with flood scenarios 

The general pattern of Figure 6.8 is not surprising, it is expected that introducing a flood event 

would cause disruption by increasing travel time and that the destinations with the largest 

increases in travel time are generally those with large increases in distance too. The actual time 

disruption is not very large, but this could partly be a product of the journeys being intra-city, 
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meaning they are shorter. The network analysis model also does not account for congestion 

caused by drivers having to take alternative routes, so the travel times presented here are likely 

to be underestimations of the actual disruption (Borrmann et al., 2012).  

 

There are spatial clusters of destinations which were affected more than others (Appendix C), 

indicating that these places would have more disruption to workplaces due to difficulties in 

reaching the area. Whilst there are differences between the two methods, they show similar 

results when identifying places where the largest impact of flooding occurs. This is useful as it 

means the extremes of the data distribution are consistent and there is more confidence in the 

results, identifying places most disrupted if this method was used for flood risk assessments.  

6.4.4 Limitations and uncertainties  

There are limitations in the analysis presented in this chapter which are shared with other studies. 

Firstly, not including dynamic congestion within the traffic model (Versini et al., 2010) will lead to 

an underestimation of travel times, and could potentially affect the routes some travellers would 

be assigned. Secondly, the closest facility tool uses algorithms which assume travellers take the 

least-cost path which is known to be an underestimation of travel time and disruption (Li et al., 

2018). Thirdly, validation of the outcomes of the flood disruption to travel time is difficult as often 

there is not ‘real-world’ traffic data to compare the results to (Arrighi et al., 2019). 

6.5 Conclusion 

Comparing the outcomes of Method A and B, it has been shown there are significant differences. 

The origins generated from the Method A were affected by the probability surfaces used to 

dictate the likelihood of a grid cell providing to an origin, leading to an underestimation of 

distance from origin to destinations. So, whilst Method A worked well for primary school children 

in Chapter 5, it has not worked well for generating reliable origin data for commuters. Therefore, 

in Chapter 7 an alternative method of combining census data with time profiles will be used to 

capture the spatial accuracy of the census data and incorporate a dynamic element. One objective 

of this Chapter was to assess the differences between using spatiotemporal population data 

(method A) and census origin-destination data to measure the impact of a pluvial flood scenario 

on travel in York. This has been achieved as it has been shown that whilst there are differences in 

the origins, similar results appeared for the travel times and routes to destinations when the flood 

scenarios were introduced. 
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Chapter 7 Spatiotemporal modelling of flood-related 

impacts on daily population movement  

This chapter has been presented as a conference paper at the GISRUK 2020 online conference. 

See Appendix B for paper.  

7.1 Introduction and Background  

The previous two chapters have examined how spatiotemporal flow data can be created from 

spatiotemporal population data and compared the results to census origin-destination data. This 

chapter is applying these spatiotemporal flow data to the issue of pluvial flood events disrupting 

road travel, incorporating the principles highlighted in Chapter 2, in order to create a proof of 

concept for spatiotemporal flood and transport risk analysis.  

As discussed in Chapter 6, the majority of fatalities in post-industrial countries caused by pluvial 

flash-floods are due to people travelling into floodwaters in vehicles (Debionne et al., 2016; 

Arrighi et al., 2019; Terti et al., 2017; Shabou et al., 2017). Traditional flood risk assessments focus 

on the characteristics of the hazard (e.g. magnitude, velocity, spatial location) and do not consider 

the effect of population characteristics. Risk literature (for example Aubrecht et al., 2012; Wisner 

et al., 2004; Freire et al., 2013; Liu et al., 2014a) asserts that time of day is a critical factor in the 

scale of impact, due to the movement of people throughout the day leading to different demands 

on road use. Therefore, the hypothesis for this chapter is that the time of day of flood onset is as 

important as the size of the flood.  

In this thesis, risk is defined as a function of hazard, exposure and vulnerability over space and 

time (Section 2.2). This research is thus positioned in the ‘disaster risk’ view of natural hazards by 

integrating time-specific estimates of population in travel to provide what Aubrecht et al., (2013) 

describe as a more ‘encompassing’ view of risk. In Chapter 2, a risk equation (Equation 7.1) was 

developed as a foundation for considering the spatial and temporal nature of risk and these 

principles are applied in this chapter.  

Risk = f(HazardST,ExposureST,VulnerabilityST)    Equation 7.1 

As set out in Section 1.3, the third aim of the overall thesis will be fulfilled in this chapter with 

several objectives to structure the analysis.  
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Aim: To analyse whether the time of pluvial flood onset is more important than flood magnitude 

for disrupting commuter and primary school travel in York.   

 

1. Analyse the extent to which pluvial flood magnitude and flood onset time affect journey 

times due to road network disruption. 

2. Assess whether commuter's or school children's travel to workplace or school is affected 

the most. 

3. Identify schools and workplaces which are most susceptible to disruption from flooding 

and the effect pluvial flood magnitude and pluvial flood onset time has on identifying 

them.  

This chapter presents a proof of concept for combining spatiotemporal flow data with flood data 

and network analysis to quantify the effect of time of flood onset and size of flood hazard. It 

focuses on the 18-64 aged commuter population and primary school children aged 4-11, as 

described in Sections 4.1.3 and 4.2.2.  

7.2 Study Design, Data and Methods 

7.2.1 Choice of case study scenarios  

The population groups modelled in this analysis are the same as those in Chapters 5 and 6, 

primary school children (aged 4-11) and commuters aged 18-64. These two groups are chosen 

because their travel patterns are known through travel surveys and one is considered a 

vulnerable group (primary school children). To decide on a suitable time period of study, the 

number of people in travel at a given time of day were calculated from time profiles applied in the 

population modelling (Figure 7.1) and showed the interaction of primary school children and 

commuters in travel during the morning. The time period chosen for study was 07:00 – 09:00 

hours on a typical Tuesday weekday morning (an ‘average’ day of the week), correlating to the 

morning commute. This was because this time period involves substantial variation in both school 

children and commuters travelling in a confined time frame, enabling examination of the effects 

of changes in time of flood onset relative to the population movement. Similarly, Pregnolato et 

al., (2017a) simulated travel in the morning and evening commutes for their study of flood 

disruption to travel, as the greatest economic disruption occurs from interruption to commuter 

journeys.  
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Figure 7.1 The number of people in travel on a normal working weekday. The box highlights the 

time period selected in this chapter for analysis 

Both the time of the flood event onset and the magnitude of the flood were variables when 

designing the hazard component of the scenarios for simulation. The flood events modelled were 

1 hour duration summer storms with 2 hours additional simulation time to capture the flooding 

after the rainfall stops (see Section 4.2.1 for full pluvial flooding methodology). As the research 

interest is the effect of flood events on road travel, it was critical to examine the temporal 

coincidence of the peak travel period with peak flooding. As the target time period was the 

morning travel period (07:00-09:00 hours) flood onset times were selected based on this. 

A scenario based approach was taken to test the hypothesis as outlined in Figure 7.2 and Table 

7.1.  First, a ‘baseline’ set of data were created to be a control comparison to the flood scenarios. 

This represents ‘business as usual’ without any flood disruption. Two factors, time of flood onset 

and magnitude of flood event, were then varied in turn. Three times to introduce the start of the 

flood scenario were chosen to cover the morning commute, 6am (flood time 1 (FT1)), 7am (flood 

time 2 (FT2)) and 8am (flood time 3(FT3)) (Figure 7.2). As flooding does not appear immediately as 

rainfall begins, the rainfall was introduced an hour before the time period of interest, so there 

would be flooding in the city at 7am in the first scenario. On Figure 7.2, the duration of the rainfall 

in the scenario is highlighted by the blue lines. These were chosen as they systematically shifted 

peak flooding to coincide with, or avoid, the morning travel patterns and should reveal hourly 

temporal changes in the travel data. Two flood magnitudes were modelled, 1 in 30 and 1 in 100 
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year events, both for summer hydrology, and introduced at each of the three flood onset times. 

This resulted in seven scenarios being modelled in total, including the non-flood baseline (Table 

7.1).  The data used in the network model was the flood area exceeding 30 cm depth and 125m2 

at each time point. As discussed in section 4.2.1, a snapshot of the flood area was available for 

every 15 minutes in the simulation period. This meant a different set of flood data could be 

selected to align with the time elapsed since the rain began. For example, FT1 (6am), the network 

analysis run at 7am would use the flood data for 1 hour into the simulation. Chang et al., (2010) 

state that studies on travel disruption can overestimate the impact of flooding due to not 

modelling the receding water at a fast enough rate, particularly if one static flood outline is used. 

Therefore, this method of using a series of flood layers for each time point during the flood 

scenario means it is more likely changes in which roads are open or closed during the course of 

the flood event are captured. As Figure 7.2 shows, there were five ‘sampling points’ the network 

analysis was run at for each of the 7 scenarios. This meant there were consistent time points 

results could be compared at between scenarios.  

 

Figure 7.2 Conceptual graph of the population in travel during a typical weekday morning and the 

flood hazard onset for each flood scenario, the time where rainfall occurs is highlighted in blue. 
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Table 7.1 Scenario structure used in this chapter 

Scenario Name Description 

Non-flood Baseline Network analysis with no flood layer included, a baseline to 
compare the flood results to for changes.  

Flood time 1, 30yr flood Network analysis with flood layer for a 1 in 30 year event, 
flood onset at 6am.  

Flood time 2, 30yr flood Network analysis with flood layer for a 1 in 30 year event, 
flood onset at 7am. 

Flood time 3, 30yr flood Network analysis with flood layer for a 1 in 30 year event, 
flood onset at 8am. 

Flood time 1, 100yr flood Network analysis with flood layer for a 1 in 100 year event, 
flood onset at 6am. 

Flood time 2, 100yr flood Network analysis with flood layer for a 1 in 100 year event, 
flood onset at 7am. 

Flood time 3, 100yr flood Network analysis with flood layer for a 1 in 100 year event, 
flood onset at 8am. 

 

7.2.2 Overview of study design 

A semi-dynamic workflow has been created to utilise the temporal dynamics of the datasets 

available. Three main types of data are utilised in this chapter; population, traffic and flood. Each 

of these has a temporal and spatial element which are synchronised, as shown in Figure 7.3. For 

each modelling scenario (Table 7.1) the datasets are input into a routing algorithm to calculate 

the origin-destination routes for each workplace or school.  Within the scenario, routes are 

calculated at five time points: 07:00hrs, 07:30hrs, 08:00hrs, 08:30hrs and 09:00hrs (Figure 7.2). 

The output is a set of routes and associated time data for those origin-destination pairs, for the 

school children and commuters.  

 



Chapter 7 

140 

 

Figure 7.3 Overview diagram of how the flood disruption scenarios are structured in this chapter 

to achieve a semi-dynamic work flow, using the example of flood onset time 1.  

7.2.3 Flood modelling  

As described in Section 7.2.1, two flood magnitudes for a 1 hour summer storm were modelled, a 

1 in 30 year event and a 1 in 100 year event. These two return periods were chosen as both 

storms would lead to disruption to the road network, with representation of a smaller but more 

frequent event (1 in 30 year) and a larger but less frequent event (1 in 100 year). This is similar to 

the EA’s pluvial flood maps which show a 1 in 30 and 1 in 200 year event (City of York Council, 

2019). A full description of the Flowroute-iTM model and its functionality were given in Section 

4.2.1. In summary, Flowroute – iTM models the depth and velocity of water in each cell during the 

simulation and a raster for both depth and velocity across the study area is produced for each 15 

minutes of simulation time. In the network model, the flood data are represented as barriers to 

the network where travel through them is prevented. Therefore, the exact modelled flood depths 

across the city were not required, only a vector file for each time step of the flood scenario which 

contained the areas where the floodwater met the conditions to prevent travel of vehicles along 

the road. Two conditions for ‘disruptive flooding’ were set, a depth of 30 cm or greater and an 
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area of 125 m2 or more. The depth threshold has been discussed previously (see Sections 3.1.4, 

4.2.1 and 6.2.2) and 30 cm was used in this chapter as it is the depth considered no longer safe for 

most cars (Pregnolato et al., 2017b). After this processing, the areas of flood water which would 

be considered disruptive to car travel remained, one shapefile per 15-minute time step in the 

three hour simulation, for both flood magnitudes.  

The geographic area used in the flood modelling was based on the study area defined for the 

SurfaceBuilder247 population model, with the same 20km buffer area for capturing catchment 

drainage into the city. As there is the restriction on the number of barriers which can be included 

in the network analysis tool (ESRI, 2020b), the area of the flood output used was clipped to the 

area of the study area (the city of York as shown in Figure 4.1 and Figure 5.1). Including flooding 

for the entirety of this square study area worked for the 1 in 30 year storm event; however, the 

area included too many flood barriers for the 1 in 100 year event, due to more flooding from 

greater rainfall. This meant the area of flooding included had to be adjusted in order for the 

network analysis to run, excluding any flooding outside of the main A1237/A64 York Road 

surrounding the city. This led to some differences in routing for origins outside of the main city 

between the two flood scenarios. However, it did not affect the main part of the study area.   

7.2.4 Time-specific origin data 

A data library of time-specific origin data was created for commuters and school children which 

could be applied to all flood scenarios. By creating time-specific origins for each of the time points 

(07:00, 07:30, 08:00, 08:30 and 09:00), the temporal nature of population movement could be 

captured. Chapter 6 resolved that the spatially weighted Monte Carlo technique did not work well 

for commuters, therefore the alternative method of combining census origin-destination data 

with the time profiles, based on the Labour Force Survey data, of travel patterns was used. To 

create the time-specific origins, some of the principles of the spatially weighted Monte Carlo 

simulation were replicated. The 2011 census provided the population weighted centroids of the 

output areas from which commuters travelled to each workplace zone (WPZ) centroid, with the 

associated number of people (Nomis (2020) data table WF02EW). This was the total number of 

commuters over the entire day, so using the time profiles for the percentage of workers in travel 

at a given time the proportion of people travelling at each time point was calculated for each 

destination. This gave the total number travelling to the destination at a given time, however the 

number per origin was required. A spatially weighted random selection process was created using 

Python to select the number of people required from the output area origins to fulfil the travel 

demand to each destination. Similar to the spatially weighted Monte Carlo process in Chapter 5, 

the origins and their number of people were listed for each destination, and one person selected 
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at a time and the origin OA code stored. This continued until the number of people for the 

destination was selected and the relevant origins extracted as a shapefile. An origin could be 

selected more than once, with those origins with the highest number of people given a higher 

chance of selection. This spatially weighted random selection script was run for all destinations at 

each of the five time points (07:00, 07:30, 08:00, 08:30 and 09:00) to generate five sets of origin 

data points per destination which now had time-specific populations attached.  

The time-specific origins for school children were created using the spatially weighted Monte 

Carlo simulation, as this worked effectively in Chapter 5 and there are no alternative freely 

available origin-destination data on travel to schools. The time profile data from the 

SurfaceBuilder247 model has travel to school occurring between 08:00-09:00 hours, so only two 

time points (08:00 and 08:30 hours) were modelled for school children. For primary schools, three 

population groups from the SurfaceBuilder247 model are required; 0-4 years, 5-10 years and 11-

17 years. For each of the three children population groups, origins for each time point (08:00, 

08:30 hours) were created.  

7.2.5 Traffic data and network analysis 

As outlined in Section 4.2.3, the ArcGIS network analysis ‘closest facility’ tool was the method 

used for route analysis in this thesis. The script developed in Chapter 6 for accessing the server 

version of the tool with historic traffic information (source HERE) was utilised again. Incorporating 

traffic data addresses limitations affecting baseline scenario modelling in studies like Coles et al., 

(2017), who were unable to include traffic data in their study of flooding in York. In this thesis, the 

traffic data are applied to the flood scenarios, however it will be an underestimation of travel 

time as it does not account for the increased travel time due to congestion on surrounding roads 

to the flood disruption.  

7.2.6 Assessment of flood-related travel disruption 

The methodological structure of the analysis for this chapter is set out in Figure 7.4. The origin, 

destination and flood layer (if applicable) were used in the network analysis, producing shapefiles 

of the routes taken between each origin-destination pair and the distance and travel time of the 

route. This procedure was repeated for each destination across each time point (07:00-09:00 

hours) in the scenario for commuters and school children. This process was repeated for each of 

the 7 scenarios.  
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Figure 7.4 The analysis workflow of Chapter 7. Black boxes indicate inputs and outputs, the blue 

box optional flood data, the yellow boxes processes and the dashed arrows steps included for 

flood scenario analysis. 

 

The result of this analysis cycle were thousands of route shapefiles ready for comparison between 

each scenario and the baseline, with the challenge to create readable graphics from the 

complexity. To answer the main research question, whether flood onset has more of an effect on 

travel disruption than flood magnitude, the total time lost at destinations for commuters and 

school children across the city for each scenario was calculated. This measure is used as a value of 

the cost caused by the flood event. Those origins where travel to the destination was not possible 

were given a time value of 480 minutes per person, the value of missing a day’s work. The travel 

time for each origin-destination journey was the chosen metric for comparison as time is a 

common measure of journeys (Wei et al., 2018; Kilgarriff et al., 2019). Python scripts were written 

to sum total time lost at work or school overall per destination and scenario. A Spearman’s Rank 

correlation test was conducted to see if those destinations with the highest time lost at school or 
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work were consistent across the scenarios. These data were then visualised to highlight spatial 

patterns in the destinations affected by the largest loss of time. Maps of the roads used at each 

time point in the scenarios were created by merging the relevant route shapefiles together and 

adding up the number of people traversing a section of road. This value was then plotted as 

proportional line symbols on the map.  

7.3 Results 

7.3.1 Modelled flood events 

Figure 7.5 (1 in 30 year storm ) and Figure 7.6 (1 in 100 year storm) show the places where the 

flood model predicted there would be floods greater than 30 cm deep and 125 m2  in size. At 30 

minutes into the scenario, there are only small areas where the flooding meets the disruption 

criteria. From 60 minutes disruptive flooding is clearly visible on the map in both scenarios. 

Overall, the 100 year flood has a greater flood area than the 30 year flood, but both show 

disruptive flooding in the same locations across the city, providing confidence that these are the 

places which are at risk of pluvial flooding.  
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Figure 7.5. 1 in 30yr flood event modelled flood area (area shown is where the flood depth was at 

least 0.3m with an area of 125m2, conditions required for there to be an impediment to road 

travel). Contains public sector information licensed under the Open Government Licence v3.0. 

Contains data which are copyright of Ambiental Risk Analytics, used with permission. 
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Figure 7.6. 1 in 100yr flood event modelled flood area (area shown is where the flood depth was 

at least 0.3m with an area of 125m2, conditions required for there to be an impediment to road 

travel). Contains public sector information licensed under the Open Government Licence v3.0. 

Contains data which are copyright of Ambiental Risk Analytics, used with permission. 



Chapter 7 

147 

Whilst the area susceptible to flooding looks large on the flood maps (Figure 7.5 and Figure 7.6), 

not all of this flooding is affecting the road network. Figure 7.7 represents the percentage of the 

road network in the study area covered in disruptive flooding (at least 30 cm deep and 125 m2 in 

area), over the course of the three hour flood simulation. It is raining for the first hour of the 

study (see Figure 4.2). Figure 7.7 reveals that only a small proportion of the road network is 

directly affected by flooding, a maximum of 0.9% (9.6 km) for the 1 in 100 year magnitude and 

0.6% (6.6 km) for the 1 in 30 year event. The 1 in 100 year storm event results in a greater 

proportion of the road network being flooded, which is unsurprising as a greater area was flooded 

overall (Figure 7.6). For both magnitudes, the amount of road affected by disruptive flooding 

increases rapidly from 0.5 hours into the simulation before levelling off from 1.5 hours for the 1 in 

30 year storm and 1 hour for the 1 in 100 year storm.  

 

Figure 7.7 Percentage of the road network in the study area which experiences disruptive 

flooding (at least 0.3 m depth and 125 m2 area). Contains data which are copyright of 

Ambiental Risk Analytics, used with permission. 

7.3.2 Modelled trips to school and work  

The non-flood baseline trips to school and workplaces across York were mapped to see the spatial 

distribution of people across the network at each time point. The travel profiles used in this 

chapter (Section 7.2.4) specify the peak road usage is at 08:30 hours for commuters. This is 

reflected in the maps for commuters (Figure 7.8 to Figure 7.15) with 08:30 hours having the most 
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number of people on the roads and 07:00 hrs the least. Commuters have a more homogenous 

spatial pattern in the usage of roads, with particularly high volumes of people on the ring road 

and city centre roads. This is not surprising due to hierarchy function in the network analyst tool 

(Section 4.2.3) simulating the behaviour of people travelling on major roads. The data for 09:00 

hours is interesting as there is more spatial variation in road usage, reflecting that some have 

finished going to work and others are travelling in later.  

The data for school children only have two time points, as primary school children travel between 

8-9 am, according to the underlying travel profiles (Figure 7.13 and Figure 7.14). The city centre 

roads have the highest number of children using them. This likely reflects the fact more primary 

schools are located in the city centre than on the outskirts and surrounding villages (see Figure 

5.1). In contrast to the commuter data, the A road ring road is not utilised much at all. This 

confirms that journeys to schools are shorter and more local than journeys to workplaces. Some 

of the roads highlighted as high usage are ones leading up to schools, so it is therefore 

unsurprising lots of children are using them. 

 



Chapter 7 

149 

Figure 7.8 The number of commuters on the roads at 0700hrs in non-flood 

baseline scenario. Contains public sector information licensed under the Open Government 

Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission. 

Figure 7.9 The number of commuters on the roads at 0730hrs in non-flood 

baseline scenarioContains public sector information licensed under the Open Government 

Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission 
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Figure 7.10 The number of commuters on the roads at 0800hrs in non-flood 

baseline scenario. Contains public sector information licensed under the Open Government 

Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission. 

Figure 7.11 The number of commuters on the roads at 0830hrs in non-flood 

baseline scenario. Contains public sector information licensed under the Open Government 

Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission 
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Figure 7.12 The number of commuters on the roads at 0900hrs in non-flood 

baseline scenario. Contains public sector information licensed under the Open Government 

Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission. 
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Figure 7.13 The modelled number of primary school children on the roads at 

0800hrs in non-flood baseline scenario. Contains public sector information licensed under 

the Open Government Licence v3.0. Contains data which are copyright of Ambiental Risk 

Analytics, used with permission.  

 

Figure 7.14 The modelled number of primary school children on the roads at 

0830hrs in non-flood baseline scenario. Contains public sector information licensed under 

the Open Government Licence v3.0. Contains data which are copyright of Ambiental Risk 

Analytics, used with permission. 
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7.3.3 Travel disruption by scenario and population group 

The first measure of travel disruption presented is the number of destinations that were 

inaccessible from any origin at each time point across the scenario (Table 7.2). There is an 

increase in the number of destinations where no origin could reach them between the 30yr and 

100yr flood sizes, which is expected as there was a greater percentage of the road network 

flooded (Figure 7.7). For the first time point where there is sufficient disruptive flooding (07:00 

hours FT1, 08:00 hours FT2 and 09:00 hours FT3), the number of destinations where no origins 

could travel to them is just over double the number in the 30yr equivalent scenarios. For other 

time points in the scenarios the number of destinations is only slightly higher (1 or 2 more).  

Changing the time of flood onset means the number of destinations inaccessible from any origin 

shifts through the day, which is as expected. The number of destinations with no origins able to 

travel to them is highest at 0700hrs in FT1. This is due to there being fewer origins where people 

are travelling from at this time of day (as the number of commuters from the travel survey data is 

lower), so whilst there is less disruptive flooding, there are fewer places which need to be flooded 

to prevent travel from these contributing origins. For example, some workplace zones only have 

one origin where travel is modelled from at 07:00 hours, therefore the risk of this one origin – 

destination pair being split is higher. These results do not mean any travel to the destination is 

prevented, as travel from every part of the city is not modelled, just from the origins sampled.  

The data were investigated to understand the spatial location of these and the reasons for no 

route being possible. There were three categories of reasons. Firstly, there was flooding close to 

the destination preventing access to it from anywhere. This was the case for 6/8 of the 

destinations in the 1 in 30 year scenarios and 7/21 of the destinations in the 1 in 100 year 

scenarios. These destinations appeared frequently across all of the modelled scenarios. Secondly, 

there were destinations where there were a small number of origins, often only one, assigned to 

that destination at that time point and flooding close to the origin prevented travel to it. This was 

the case for 2/8 of the destinations in the 1 in 30 year scenarios and 5/21 of the destinations in 

the 1 in 100 year scenarios. These destinations would only appear once or twice across the 

scenarios. Finally, the remainder of the destinations were those which were only present in one 

or two of the scenarios and appeared to be due to flooding blocking travel somewhere between 

the origin and destination, as there was no obvious flood next to either.  
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Table 7.2 The number of destinations where travel from the origins to the destination was not 

possible for commuters. The percentages represent the data as a proportion of the 215 

destinations. Contains public sector information licensed under the Open Government Licence 

v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission. 

 

The average travel time of the origins to each destination were calculated for each scenario a 

sample are presented in Figure 7.15 (commuters) and Figure 7.16 (school children). For 

commuters across all destinations, there is a noticeable difference to the baseline average travel 

times from the modelled flood time scenarios. Generally, in the 1 in 30 year scenarios, FT1 shows 

an increase in average travel time, compared to the baseline, across the five time points, FT2 an 

increase from 08:00 hours and FT3 an increase at 09:00 hours. The increase in travel time during 

FT1 and FT2 generally converges at an average of 8:30am, indicating that despite greater area of 

flooding the level of disruption remains unchanged. FT3 sees disruption from 09:00am where it 

diverges from the baseline but does not reach the level of FT1 and FT2 in the 1 in 30 year 

scenario. 

For the 1 in 100 year event, broadly the same patterns are shown as for the 1 in 30 year scenario. 

Average travel time at 07:00 hours are slightly higher than the baseline and the equivalent in the 

30yr flood scenario. Again, data for FT2 diverges from the baseline with greater disruption seen 

from 7:30am – 8:00am, but it does not reach the same level as the FT1 for all the examples. FT3 

shows more divergence from the baseline earlier in the day (08:30 hours), with a greater increase 

in average travel time than shown in the 30yr scenario. Whilst there are differences, there is not 

always a large numerical difference in average travel time between the 30yr and 100yr, perhaps 

  30yr 100yr 

Time 

(hrs) Baseline FloodTime1 FloodTime2 FloodTime3 FloodTime1 FloodTime2 FloodTime3 

0700 0 7 (3.3%) 0 0 16 (7.4%) 0 0 

0730 0 6 (2.8%) 0 0 7 (3.3%) 0 0 

0800 0 5 (2.3%) 4 (1.8%) 0 7 (3.3%) 10 (4.6%) 0 

0830 0 5 (2.3%) 5 (2.3%) 0 6 (2.8%) 7 (3.3%) 0 

0900 0 5 (2.3%) 6 (2.8%) 6 (2.8%) 7 (3.3%) 7 (3.3%) 12 (5.6%) 
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one or two minutes, for example Figure 7.15a and b. There are also destinations where there is 

little or no disruption from flooding. 

The data for school children is only measured at two time points, 08:00 and 08:30 hours, and 

Figure 7.16 displays less variation between the scenarios than for commuters. This is likely due to 

school children having shorter journeys to complete, reducing the chance of encountering an area 

of floodwater. It may also indicate that schools are located in areas less at risk from pluvial 

flooding. The examples for the 1 in 30 year magnitude show that there is a difference in average 

travel time, however this is mostly less than 1 minute. The only exception is the school with the 

largest catchment area where there is an increase of two minutes on the average travel time. As 

the journeys to school are short, a small detour in the route will not have a large effect on the 

time taken.  

A comparison of the number of people using road segments at each time point for each scenario, 

was created for both commuters and primary school children through maps. Figure 7.17 shows 

the comparison at 08:30 hours for FT1 between the baseline, 30 year and 100 year flood events. 

The figure highlights that there are effects of flooding, with sections of road which were used in 

the baseline scenario no longer being used in the flood scenarios. For example, a part of the A 

road in the north of the city and the road alongside York station in the centre (Leeman Road). This 

demonstrates that there is a spatial variation to disruptive flooding for transport links and the 

places where travellers are diverted to.  

For primary school children, there are again noticeable spatial differences in the distribution of   

travellers across the city (Figure 7.18). As with commuters, the road leading up to York station is 

affected causing more use of other roads. This appears for both flood magnitudes. There are 

some spatial changes in the 1 in 100 year magnitude event which are not apparent for the 1 in 30 

year event. Firstly there is an area in the North East of the city at Dodsworth Avenue which had 

previously been a well-used road and does not have anybody using it during the 1 in 100 year 

storm event. This indicates that there is flooding along this road which prevents travel. Secondly, 

as was seen in the commuter data, the A road in the North East corner of the ring road has no 

travel along it indicating a flood barrier, and this is seen for both flood magnitudes. For the 1 in 

100 year event there are a greater number of people using rural roads in the North East of the 

study area which indicate there is flooding which is preventing travel along other roads, leading to 

detours. 
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Figure 7.15 Sample of workplace destination graphs comparing the average travel time between scenarios, for a 30yr flood magnitude (a) and 100yr magnitude (b). 

Contains public sector information licensed under the Open Government Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission. 

a) 

b) 
WPZ_E33010098 
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Figure 7.16 Sample of school destination graphs comparing the average travel time between scenarios, for a 30yr flood magnitude. Contains public sector information licensed 

under the Open Government Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission. 
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Figure 7.17 The modelled number of commuters on the roads at 0830hrs for a) non-flood baseline scenario b) 1 in 30yr event c) 1 in 100 year event. Black boxes indicate 

areas where routes noticeably diverge from the baseline scenario.  Contains public sector information licensed under the Open Government Licence v3.0. Contains data 

which are copyright of Ambiental Risk Analytics, used with permission.  

 

a b c 
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Figure 7.18 The modelled number of primary school children on the roads at 0830hrs for a) non-flood baseline scenario b) 1 in 30yr event c) 1 in 100 year event. Black 

boxes indicate areas where routes noticeably diverge from the baseline scenario. Contains public sector information licensed under the Open Government Licence v3.0. 

Contains data which are copyright of Ambiental Risk Analytics, used with permission. 

a b c 
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By visually examining Figure 7.17 and Figure 7.18, roads which were used frequently by travellers 

in the baseline non-flood scenario, but not in the flood scenarios, were identified. These could be 

indicators of critical roads for each population group, as the blockage of these well-used roads 

would cause more traffic to use other roads. Figure 7.19 highlights such roads in York and 

whether they were important for one or both population groups. 

 

Figure 7.19 Potential critical roads in York based on route results. Red are critical for commuters 

and school children, purple for school children only and orange for commuters only. Contains 

public sector information licensed under the Open Government Licence v3.0.  
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To summarise the travel time data for the whole city and answer the aim of the thesis, the time 

lost in each flood scenario at each destination were aggregated. Figure 7.20 and Figure 7.21 show 

that commuters have the higher time lost than school children, which is expected as the journeys 

to work are longer and there are more commuters than school children so more origins-

destination pairs. For both commuters and school children, there is an increase in the amount of 

time lost at work or school in every scenario. The values for a 1 in 100 year event are greater than 

a 1 in 30 year event across all scenarios. The time of flood onset does affect the time lost at work 

or school, most noticeably the difference between FT1 and FT3, which is greater than the 

difference between flood magnitudes. This indicates that flood onset time is having a larger effect 

than flood magnitude.  

 

Figure 7.20 Total time lost at all destinations for commuters in each scenario. Contains public 

sector information licensed under the Open Government Licence v3.0. Contains data which are 

copyright of Ambiental Risk Analytics, used with permission. 
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Figure 7.21 Total time lost at all destinations for primary school children in each scenario. Contains 

public sector information licensed under the Open Government Licence v3.0. Contains data which 

are copyright of Ambiental Risk Analytics, used with permission. 

 

Finally, it was investigated if the same destinations across all scenarios were experiencing the 

greatest travel disruption to them, to see if those most susceptible to disruption could be 

identified. Firstly for commuters, Table 7.3 presents the correlation coefficients from the 

Spearman’s rank correlation tests and these show that the destination time lost at destinations 

for the FT1 and FT2 scenarios are statistically similar to each other, for both magnitudes of flood, 

with high to medium-high agreement. The statistical significance of the correlations is <0.001. FT3 

has a lower level of agreement, however still shows correlation to the other flood scenarios, with 

greatest agreement between FT3 1 in 30 year and FT3 1 in 100 year. Overall, this shows that there 

is consistency between which destinations have the most time lost at them, therefore are the 

most susceptible, for FT1 and FT2, FT3 has a different pattern in the most affected destinations.  
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Table 7.3 Correlation coefficients for commuter travel data for 215 destinations. The columns are 

labelled as Flood Time (FT), the flood time of onset (1, 2 or 3) and the flood magnitude (30 year or 

100 year). Contains public sector information licensed under the Open Government Licence v3.0. 

Contains data which are copyright of Ambiental Risk Analytics, used with permission. 

 

To view travel disruption by destination spatially, workplace zone centroids were visualised, 

setting their symbol sizes to be proportional to time lost at work from flood-related travel 

disruption. As the Spearman’s Rank test showed strong correlation between travel disruption for 

scenarios relating FT1 and FT2 but weaker correlation between these four scenarios and those for 

FT3, an example of a FT3 scenario is presented here for comparison with a scenario from FT1/FT2. 

Figure 7.22 demonstrates that there is spatial clustering of the destinations with most time lost at 

them, around York station in the western centre of the city, with a few smaller clusters on the 

Northern and Western parts of the city. This appeared to be related to flood water accumulating 

in these areas. For FT3 (Figure 7.23) there is a more homogenous spread of disruption but with a 

cluster again around York station clearly defined.  

 

 

 

 

 FT1_30yr FT2_30yr FT3_30yr FT1_100yr FT2_100yr FT3_100yr 

FT1_30yr  .963 .466 .841 .852 .499 

FT2_30yr   .521 .813 .839 .539 

FT3_30yr    .415 .402 .712 

FT1_100yr     .910 .465 

FT2_100yr      .520 

FT3_100yr       



Chapter 7 

164 

 

Figure 7.22 Time lost at work due to travel disruption per workplace zone for flood onset time 1 

and 2.Contains public sector information licensed under the Open Government Licence v3.0. Contains data which are 

copyright of Ambiental Risk Analytics, used with permission.  

 

Figure 7.23 Time lost at work due to travel disruption per workplace zone for flood onset time 

3.Contains public sector information licensed under the Open Government Licence v3.0. Contains data which are 

copyright of Ambiental Risk Analytics, used with permission. 
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For school children, the Spearman’s Rank showed a broadly similar pattern of correlation values, 

with more agreement between FT1 and FT2 and FT3 not statistically similar to the other data sets. 

However, there is a greater range of correlation coefficients across the scenarios for commuters. 

For example, the top row shows that scenario FT1 1 in 30 year is highly correlated to FT2 1 in 

30yr, but more weakly agree to FT1 1 in 100 year scenario. FT3, 1 in 30 year scenario has the 

lowest correlation coefficients, with only one scenario reaching the minimum significance 

threshold. For FT1 and FT2, the data are significant to >0.001 whilst FT3, particularly for the 30 

year magnitude, is not significant. This shows that there is greater variation across the scenarios 

in terms of which destinations are disrupted more than for commuters. In FT1 and FT2 (Figure 

7.24), those schools with the greatest increase in additional travel time were those around the 

station in the central and north western parts of the city, similar to the workplace zones. Again, 

for FT3 (Figure 7.25), the data are more homogenous with a small spatial clustering around the 

station and the destination with the largest additional travel increase central southern part of the 

city.  

Table 7.4 Spearman’s rank Correlation coefficients for school travel data. Contains public sector 

information licensed under the Open Government Licence v3.0. Contains data which are 

copyright of Ambiental Risk Analytics, used with permission. 

 

 FT1_30yr FT2_30yr FT3_30yr FT1_100yr FT2_100yr FT3_100yr 

FT1_30yr  .966 .172 .574 .758 .358 

FT2_30yr   .199 .555 .749 .332 

FT3_30yr    .083 .165 .387 

FT1_100yr     .852 .434 

FT2_100yr      .444 

FT3_100yr       
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Figure 7.24 Total time lost at school due to travel disruption per school for FT1 and FT2.Contains 

public sector information licensed under the Open Government Licence v3.0. Contains data which are copyright of 

Ambiental Risk Analytics, used with permission. 

 

Figure 7.25 Total time lost at school due to travel disruption per school for flood onset time 

3.Contains public sector information licensed under the Open Government Licence v3.0. Contains data which are 

copyright of Ambiental Risk Analytics, used with permission. 
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7.4 Discussion 

7.4.1 Assessment of the results in achieving the chapter research questions 

The aim of this chapter was to assess if the time of pluvial flood onset is more important than 

flood magnitude for disrupting commuter and school travel in York.  Three objectives were posed 

in order to achieve this aim, and each are discussed here in the context of the findings of this 

chapter.  

 

1. Analyse the extent to which pluvial flood magnitude and flood onset time affect journey 

times, due to road network disruption. 

The flood model results show that a greater magnitude storm leads to a larger area of the city 

being inundated (Figure 7.6) and subsequently a greater amount of the road network experienced 

disruptive flooding (Figure 7.7). This is expected as more rainfall logically leads to more flooding. 

However, the translation of this increase in flood water to disruption of the origin-destination 

journeys is perhaps not as large as expected. For some destinations, there is a difference in the 

average increase in travel time of a couple of minutes and for some there is no substantial change 

between magnitude scenarios (Figure 7.15 and Figure 7.16). There was also agreement in which 

destinations had the largest increases in time lost at destinations for both flood magnitudes in the 

spearman’s rank test (Table 7.3 and Table 7.4). This provides evidence that whilst the size of flood 

area may change, the same areas are still affected by flooding and the increases in travel time can 

be slight or the same.  

The modelled changes in time of onset were relatively small, with all three time of onsets within a 

2-hour window. However, there is a noticeable difference in the average travel time to 

destinations and time lost at destinations. Figure 7.20 and Figure 7.21 demonstrate that there is a 

clear reduction in the time lost at destinations between FT1 and FT3, most likely due to more 

travellers already having reached their destination by the time there is substantial disruptive 

flooding in FT3. Between FT1 and FT2, there is a relatively small difference in time lost for both 

flood magnitudes, indicating the flood onset at 06:00 (FT1) and 07:00 (FT2) are similarly disruptive 

and are both affecting the peak of travellers. When observing changes at the destination level, 

the Spearman’s rank test highlighted the data for FT3 as being weakly correlated with the other 

scenario outputs, whilst the other scenarios had strong agreement. This demonstrates that the 

time of day when the flood occurs at seems to have a larger effect that the flood magnitude, 

supporting the hypothesis.  
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The temporal properties of risk are often neglected in research (Aubrecht et al., 2013a; Freire & 

Aubrecht, 2012) despite the time a hazard begins known to be a key factor in its impacts and time 

dimensions being ‘excessively important’ in transport systems (Reggiani et al., 2015). The analysis 

presented in this chapter has highlighted the importance of time when considering risk and has 

introduced a semi-dynamic method, which differs from other studies of network disruption due 

to flooding. For example, Kasmalkar et al., (n.d.) used a generic 1-hour window within peak 

morning commute hours to test the impact of flooding on travel. However, this was not expanded 

to include more time periods or shift the time of flood onset, like the analysis in this study. 

Another example is Li et al., (2018) who calculated the delay to journeys from flood events in 

peak morning travel time, again without examining the effect of changing the time of flood onset 

around the peak travel period. Therefore, systematically assessing the impact of changing timing 

of hazard onset represents a novel contribution of the work.  

 
2. Assess whether commuter's or school children's travel to workplace or school is affected 

the most. 

Most studies on travel disruption consider transport networks from an engineering point of view, 

focussing on network connectivity, rather than measuring the impact of road closures on the 

population which use them (Pfurtscheller & Genovese, 2019). The focus in this chapter on who is 

travelling, linked to a purpose for the journey (school or work), therefore presents a method 

which does look at the effect of road closures on the populations which use them. Examining the 

results presented in this chapter, it seems commuters are more affected than school children, for 

example the time lost at workplaces is greater than the time lost at schools. Whilst this will 

partially be explained by there being more commuter journeys happening, the journeys taken to 

work are also longer than those to school (Figure 7.15 has greater average travel times than 

Figure 7.16). Therefore, this increases the likelihood of disruption. Debionne et al., (2016) found 

in their study not all commuters are exposed equally, with those with longer journeys more 

exposed, similar to the findings in this chapter comparing school and work journeys. Risk theory 

states that children are more vulnerable than adults to natural hazards (Civil Contingencies 

Secretariat, 2008). However, in the case of the vulnerability of those in travel to their place of 

work or school, primary school children, and the adults who travel with them, are less vulnerable 

partly due to their shorter exposure time on the road network and the location of flooding in the 

scenarios tested. Therefore, this indicates that more focus could be placed on mitigating the 

effects for businesses and commuters to future pluvial flood events. 

A novel aspect of this research is the comparison between population groups on the impact of 

flooding on road travel. Other work, including Debionne et al. (2016) examined travel disruption 
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from flooding among commuters in the Gard Region, France; Pregnolato et al., (2017a)  examined 

flood disruption among commuters in Newcastle and Coles et al., (2017) access to emergency 

services for care homes, but there are few studies that the author is aware of which model the 

differences in flood-related travel disruption across more than one population group.  One similar 

study is Kunwar et al., (2014), who applied spatiotemporal population data to an activity-based 

agent model to investigate total evacuation of ten UK cities. They used gridded population data 

from the Global Urban Rural Mapping Project, version 1 (GRUMPv1) as population data for their 

agent model, and also included some socioeconomic data on the population to parameterise 

agent behaviour, to allow investigation of effects on some groups of the population (men, 

women, workers, students etc.). They found men are more likely to be exposed to flood water 

while travelling due to their commuting patterns which tended to consist of longer journeys. 

However, they have not looked at the routes taken by each group or developed the comparison 

between groups in the same way the analysis in this chapter has done.  

 
3. Identify schools and workplaces which are most susceptible to disruption from flooding and 

the effect pluvial flood magnitude and pluvial flood onset time has on identifying them. 

 

Under the modelled flood scenarios, travel was possible from at least some of the assigned origins 

to all schools, but some workplace zones became completely inaccessible from their assigned 

origins. This provides evidence that workplaces are affected more than schools. Upon comparing 

the identified destinations to the flood area, it became apparent most of the destinations (6/8) 

with no travel to them during a 1 in 30 year flood scenario were due to flooding at the destination 

(Table 7.2). For the 1 in 100 year event, a smaller proportion of destinations had flooding which 

blocked travel to them (7/21) meaning there were more cases where the roads outside the origin 

points are flooded, or somewhere on the route between the origin and destination experiences 

flooding. These recurring destinations being cut off in the scenarios indicate these are more 

susceptible to flooding.  

Despite changes in the flood magnitude and time of flood onset, the same destinations were 

consistently among those experiencing the most disruption in travel to them. As Figure 7.22 and 

Figure 7.23 highlight, there are spatial patterns for the destinations most affected by flooding, 

which differ based on the time of day the flood begins. This evidence indicates that time of flood 

onset is important, and it is affecting the level of disruption more than changes of magnitude. The 

time of flood onset is important as it relates to the number of people who are in travel, and these 

results support the claims of risk literature that time of day is an important consideration (Section 

2.2). In this research, when a flood event happens even an hour later in the day there is a 

noticeable effect. To explore this observation further, a Spearman’s rank test was conducted to 
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see if those destinations with the most time lost at them were consistent across the scenarios 

tested. It was found that there was statistical agreement in which destinations were most 

affected by the flood scenario between flood magnitudes, when comparing the results for the 

equivalent time of flood onset. This is evidence that the same destinations are most affected, i.e. 

they are most susceptible to disruption, and are identified even when changing the size of the 

flood magnitude and time of flood onset. Several studies (Li et al., 2018; Kilgarriff et al., 2019; 

Pregnolato et al., 2017a) have modelled travel disruption from flooding, but none of these have 

looked at how such disruption varies across different work and school destinations. The work in 

this chapter is therefore the first to examine the susceptibility of workplaces or places of 

education to hazard-related travel disruption, as far as the author is aware. 

7.4.2 Implications for flood management in York and England  

There are previous instances of pluvial flooding in York causing disruption to travel. For example, 

the City of York Surface Water Management Plan (City of York Council, 2012) states that flooding 

on 27th April 2012 at the A19/A1237 roundabout caused ‘major disruption’ to the A1237 ring road 

around York from 07:00-14:00 adding 1.5 to 2 hours to journey times. Given such road sections 

therefore have a history of flooding, the modelled flooding on the A road causing lengthy detours 

is therefore not unreasonable. Those areas which appear most susceptible to flooding in the 

scenarios modelled are similar to the ‘flood hotspots’ highlighted in Coles et al., (2017), namely 

the Western part of the city around Acomb and the station, providing confidence to the findings. 

Based on these findings, the workplace and school destinations which are highlighted as being 

most affected by flooding could therefore be prioritised by local stakeholders for further 

investigation of the ingress routes to them.  

The semi-dynamic method that has been developed could also be applied to other flood 

scenarios, times of day, week or year to expand the knowledge base for York. The results have 

shown that flood events do affect travel to destinations, and overall thousands of hours were lost 

at work or school. This could be taken forward to estimate the monetary cost to businesses and 

commuters, as undertaken by Wei et al., (2018) and Kilgarriff et al., (2019), to further understand 

the cost implications to the local economy of disruption to road networks from flooding. Whilst 

the data are modelled rather than representative of a real flood event, so cannot be taken 

prescriptively, the principles could be applied to decision making in York. If better real-time flood 

data or population travel data were available, these could be incorporated into the workflow.  
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7.4.3 Application to risk theory 

The risk theory presented in Chapter 2 states human exposure to flood events varies throughout 

the day as people undertake their daily routines (Debionne et al., 2016). The results of this 

chapter’s research support this assertion, as it has been shown that the time of flood onset 

affects the time lost at work or school and which destinations are affected the most. This work is 

a proof of concept and has its assumptions and limitations, but it does make a case for 

considering the population in travel related to the time of flood onset in risk studies. It has been 

shown to have a slightly greater effect than hazard magnitude, so should be included in flood risk 

analysis. As there is a lack of short-term forecasting models for pluvial flash flood events (Li et al., 

2018), using the framework set out in this chapter could allow scenarios to be tested to identify at 

risk locations. This would enable the introduction of suitable preparation steps to raise public 

awareness and reduce disruption. A vulnerable group, primary school children, have been 

considered as they may require more assistance or rescue during a flood event (Arrighi et al., 

2019). However, in these results school children are less affected than commuters, probably due 

to the short journeys from home to school, so may not require much assistance in a flood event. 

In a larger area with rural catchments this would likely not be the case as longer journeys increase 

exposure. Being able to travel around urban areas is not just important for journeys to work and 

school, but also required for emergency vehicles to reach communities fast (Arrighi et al., 2019). 

An extension of this research would be to include travel to and from hospitals and the access of 

emergency services to key sites such as schools. Further research steps are discussed in Section 

8.5. 

7.4.4 Limitations and assumptions 

There are several assumptions and limitations to the work, which will also be discussed within the 

context of the whole thesis in Section 8.4.3. Beyond using the specific time of day historic traffic 

data, travel behaviour and congestion during the flood events are not included in the model, 

although both would have an effect on travel times. This limitation is present in other similar 

studies (for example Arrighi et al., (2019), Versini et al., (2010)). This is due to a lack of historic 

traffic data during pluvial flood events in York, and more widely in England. It is also assumed that 

travellers take the least cost path between locations by using Dijkstra’s algorithm, another 

common assumption in origin-destination studies (Li et al., 2018). Therefore, the travel times 

presented here are likely to be an underestimation of the disruption caused by a flood event. 

However, the relative changes between scenarios do provide a useful measure of scale of effect 

of the changes in flood magnitude and flood onset time. The measure for disruption used in this 

chapter is time lost at work, which does not directly link to economic activity, which does limit the 
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applicability of the findings to businesses. Quantifying the disruption through a generalised cost 

function, as Ford et al., (2015a), Davidson & Davidson (n.d.) and Kilgarriff  (2019) have done, 

would increase the applicability to businesses and would be a logical step to advance this 

framework. Finally, the trips measured in this chapter were single purpose journeys when this is 

not the case for many travellers. The primary school children would not be travelling to school by 

car on their own, and their parents may head onwards to work after dropping the children at 

school. So, the focus on single purpose trips is a limitation. A model which could account for 

multi-purpose journeys, for example an ABM, could overcome this issue.  

7.4.5 Unique contributions  

There are several novel contributions presented in this chapter: 

• It is an example of one the very few assessments of the importance of hazard magnitude 

versus timing of onset as determinants of disruption to travellers 

• A transferable and scalable methodology has been developed for the assessment of 

destination susceptibility to travel disruption, rather than flood risk at the site. 

• One of very few studies to disaggregate hazard impact on travellers by population sub-

group, rather than for population as a whole 

• Whilst the method of comparing travel times under hazard scenarios to a business-as-

usual scenario is similar to most other studies looking at this issue, for example Mossoux 

et al., (2019), Wei et al., (2018), Pfurtscheller and Genovese (2019)), the inclusion of 

historic traffic data and time-specific origin points in the network analysis extends the 

modelling framework of these earlier studies.  

7.5 Conclusion 

To conclude, this chapter has presented the analysis from a proof-of-concept methodology, 

allowing temporally specific analysis of travel disruption to flood events. It has been shown that 

within the scenarios studied, the time of day of flood onset is as, if not more, important than the 

magnitude of the flood event. The differences in travel disruption to workplaces and schools has 

also been explored, and destinations which were most affected by time lost at them when 

journeys were delayed or prevented spatially identified. Chapter 8 will discuss the findings from 

this chapter and Chapters 5 and 6 to draw together the main contributions of this thesis.  

 



Chapter 8 

173 

Chapter 8 Discussion 

8.1 Overview 

The aim of this thesis was to investigate how daily variation in the population in travel and pluvial 

flood magnitude interact to cause spatial and temporal variation in disruption to journey times 

and time spent at destinations across an urban area. Chapter 5 developed a framework for 

combining spatiotemporal gridded population data with GIS network analysis, with the case study 

of primary school children in York. The developed framework was successful in creating 

spatiotemporal origin-destination flow data for primary school children in York and improving the 

representation of the population in travel. Chapter 6 tested this framework by assessing the 

differences between using census origin-destination data and spatiotemporal population data to 

measure the impact of a pluvial flood scenario on commuter travel in York. It was found that the 

spatially weighted Monte Carlo process produced significantly different origin-destination pairs to 

those recorded in the census. Finally, Chapter 7 took elements from Chapters 5 and 6 in order to 

assess if the time of pluvial flood onset is more important than flood magnitude for disrupting 

commuter and school travel in York. The results indicated that time of flood onset is more 

important than flood magnitude in sudden onset pluvial flood events. There has been little 

previous research of the relative importance of changing population exposure versus changes in 

flood magnitude on travel disruption from flooding. The literature presented in Chapter 2 

highlights the importance of time of hazard onset, however there are few empirical studies 

looking at this. Therefore, this thesis has contributed to risk analysis knowledge. 

This chapter will discuss the key contributions of this research within the specific context of the 

case study and their application to other geographical areas, risk theory and flood policy (Sections 

8.2 and 8.3). There will also be a reflection on the limitations and uncertainties of this analysis 

(Section 8.4), recommendations for further research (Section 8.5) and recommendations for 

policy makers (Section 8.6). 

8.2 Key Contributions 

The key contributions of this work have been identified from the analysis conducted in Chapters 

5,6 and 7. Arguably, the most significant contributions are those included in Section 8.2.2, which 

pertain to the flood travel disruption analysis in Chapter 7. This section will state each 

contribution and present the evidence for them in relation to other studies and wider risk 

literature.  
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8.2.1 Methodological contributions 

Reconciling administrative and census data from different sources and years can cause data 

issues when parameterising the SurfaceBuilder247 model.  

In Chapter 5, the parameterisation of the SurfaceBuilder247 input data required several 

iterations, as after the first model run it was discovered there were not enough children in the 

origin data set to meet the demand at the school destinations (Figure 5.6). Such inconsistencies 

between input origin and destination data might not be apparent at national scale. However, for 

the York case study, initially most schools did not have enough pupils and only through close 

examination of the output grid were schools which were ‘missing’ due to there being no 

population for them to select identified. This had not previously been highlighted in Martin et al.’s 

(2015) paper introducing the modelling framework. One likely cause for this discrepancy is the 

mismatch between the census data (the origin data source) and the school administrative data 

(the destination data source). A refinement in school destination data set choice and adjusting the 

percentage splits in the quantity of each population sub-group which the destinations required, 

was enough to rectify the discrepancy between origin and destination data sets.  

The development of a spatially weighted Monte Carlo simulation tool for modelling origin-

destination flows through time. 

This thesis’ main contribution to spatiotemporal population modelling has been the extension of 

the framework proposed by Martin et al., (2015), and utilised by Smith et al., (2015) and Renner 

et al., (2018), to incorporate origin-destination flows. In these previous papers the population in 

travel were weighted across the study area through the use of a background layer, which denotes 

where roads are and their relative busyness for a time of day (Section 4.2.2). Martin et al., (2015) 

state that their framework makes no attempt to directly estimate movements between locations, 

however this is critical for the purposes of this thesis, assessing the impact of flooding on travel to 

places. Batista e Silva et al., (2018) state that multi-temporal population grids from the ENACT 

project, similar to the ones created by the SurfaceBuilder247 model, are useful for assessing 

exposure to natural hazards and planning and modelling transport. This assertion was therefore 

tested in Chapters 5 and 6 through the development of a tool for simulating origin-destination 

flows, given an attending population count for a destination, a catchment polygon for the 

destination and a gridded population surface.  

The aim of Chapter 5 was to develop a method for combining gridded spatiotemporal population 

data, created using the framework developed by Martin et al., (2015), with GIS network analysis. 

This required converting the gridded data to a point data set in order to represent spatiotemporal 
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flow data, a challenging task to keep the spatiotemporal dynamic of the population data and to 

convert a raster grid to specific vector points of origins. This was achieved in Chapter 5 for school 

children through the creation of a spatially weighted Monte Carlo analysis code, the application 

specification for which was designed by the author, but the script written by Nieves (2018 pers. 

comm.), and then applied by the author to the problem scenario. As far as the author is aware, 

the conversion to spatiotemporal origin-destination flow data in this manner is a novel 

contribution to the spatiotemporal representation of the population in travel. This conversion 

was successful as primary school destinations have a well-defined catchment area from which a 

probability surface could be constructed from. When comparing the representation of the 

population ‘in travel’ in Figure 5.8, the output from SurfaceBuilder247 shows a different 

distribution as the in travel population is weighted across the whole study network in York, for 

example along the whole outer A road. In contrast, the result of the spatiotemporal flow data and 

network analysis shows more travel on the smaller local roads and a smaller proportion on the A 

roads. This is a better reflection of where primary school children in travel are, as most of the 

distances primary school pupils are travelling are short journeys inside York. The average distance 

for primary-aged children to school is 1.6 miles (Easton & Ferrari, 2015), so they are unlikely to be 

distributed as widely as SurfaceBuilder24/7 shows. Therefore, for the purposes of explicitly 

studying the effect of floods on those in travel, this conversion of the data and subsequent 

network analysis is beneficial. The success of this conversion is largely due to primary school 

children being a ‘data rich’ population group (Harland & Stillwell, 2010), meaning spatiotemporal 

modelling is easier.  

This tool was extended from simple to multiple-band circular catchments when applying the 

spatially weighted Monte Carlo process to commuters (Chapter 6). The catchment size for 

workplace zone destinations were based on travel to work data from the census and, unlike 

schools, this was a series of bands containing weights based on the percentage of commuters 

who travelled from each distance band. This led to a weighted surface with more probability 

gradations for the spatially weighted Monte Carlo procedure than was created for school 

children. This selection method resulted in more commuters chosen from cells closer to the 

destination than was reflected in the census origin-destination data, with the two data sets 

proving statistically different (Section 6.3.1). With the current configuration for creating weighted 

surfaces, the approach of combining census origin-destination pairs with travel survey data 

provides a more realistic spatial distribution of origins for a destination (as applied in Chapter 7). 

Other studies have taken this approach. Crols and Malleson (2019) combined census data with 

travel survey data to define the commuting behaviour of the agents in their model, whilst Martin 
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et al., (2018) used the data for the number of persons travelling from each output area of 

residence to their primary employment WPZ to calculate aggregate flows.  

Although there are developments which could be made to the approach presented in Chapters 5 

and 6, the tool for simulating origin-destination flows when only catchment information is known 

would be useful to analysis beyond the specific research problem of this thesis. Whilst detailed 

origin-destination data is available for some groups of the population, often it cannot be released 

to preserve confidentiality. For example, the home origin locations of those using healthcare 

facilities, like the Demographic and Health Surveys which release distance bands for travel to 

healthcare facilities, but not origin-destination data (USAID, 2020). Therefore, this tool could be 

useful for these instances where network analysis is required but the origin data is not available.  

8.2.2 Flood travel disruption results 

The total amount of road flooded in an urban area does not need to be large for substantial 

disruption to occur. 

Through the analysis conducted in Chapters 6 and 7, it was found that the spatial placement of 

floodwater is important and even small areas of flooding can have a substantial effect. In York, 

only a very small percentage of road area was flooded with disruptive flooding i.e. at least 30cm 

deep and 125m2 in area (0.9% max for 100 year and 0.6% for 1 in 30 year in Figure 7.7). However, 

disruption was seen across the city. This has been found in other studies of the effect on flooding 

on road travel. For example, Sohn (2006) found that disruption to a few road links could lead to 

whole counties in Maryland being cut off from the rest of the state in the 1 in 100 year flood 

scenario they tested. It is also widely understood that the risk is not restricted to the geographical 

area directly impacted by the flood hazard as the effects are felt further afield across the road 

network (Kasmalkar et al., n.d.).   

As roads are built to run at near maximum capacity to minimise costs, this means there is little 

redundancy in the system to cope with disruptions (Mossoux et al., 2019). Therefore, a small 

amount of road which flooded can have a much larger effect than disrupting travel just to that 

section. In Chapter 6, the results show the example of no access into the one-way system in the 

historic city centre due to flooding located at the junction of Goodramgate and the A1036, leading 

to a cluster of workplace destinations where no commuters could reach them. In a different 

study, Rowley et al., (2016) identified that in Worcestershire there are various pinch points, 

mostly bridges crossing the River Severn, which act as key links to cross-county movement. There 

are only two bridges across the River Severn in Worcester, one of which is prone to flooding. The 

nearest other bridge at Upton upon Severn is also often flooded, meaning travel across the 
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county can be impacted from just a small proportion of road being flooded. At a more localised 

scale, Ellis & Viavatenne (2014) studied a residential area of Coventry to identify ‘critical drainage 

hotspots’. They found one key pinch point was a flooded area which obstructed a major 

exit/entrance from a residential site. This is a similar phenomenon to the observed flooding in 

York, and fits with the nature of pluvial flooding being smaller areas of water than fluvial flooding. 

These examples in other studies and the results of the analysis in this thesis show that there is a 

need for tools to enable risk managers to identify sites where small amounts of flooding can cause 

larger issues. The framework provided in Chapter 7 could be used for this purpose and to allow 

for retrofitting measures to reduce flooding (Houston et al., 2011). The pinch points in a road 

network system may be the ‘critical links’ which enable travel to destinations for groups of the 

population, and the idea of ‘critical links’ is discussed further later in this section.  

Destination susceptibility to disruption from flooding can be assessed based on workforce or 

pupil travel, not just workplace or school site characteristics. 

Chapters 6 and 7 provide evidence that despite changes in the flood magnitude and time of flood 

onset, the same destinations were consistently among those experiencing the most disruption. 

These destinations can therefore be considered to be the most susceptible to travel disruption 

from pluvial flooding. In Chapter 6, the network travel time for the two origin datasets to their 

destinations were compared during a flood scenario. It was found that the five destinations with 

the highest travel times were the same between the two datasets (Figure 6.8). This is evidence 

that those destinations most affected by disruption to travel will become apparent even with 

differences in the origin data sets.  

Examining the results spatially, there did appear to be clusters of destinations for schools and 

workplaces where travel to them was most disrupted, for example in the West of city around York 

station (Figure 7.22 and Figure 7.25). Investigating the reasons behind the observation that there 

was no travel from origins to some workplace destinations, it became apparent most of the 

destinations (6/8) with no travel to them during a 1 in 30 year flood were due to flooding at the 

destination (Table 7.2). For the 1 in 100 year event, fewer destinations had flooding where travel 

to them was blocked (7/21) meaning there were more cases where the roads outside the origin 

points are flooded, or somewhere on the route between is flooded, which prevents travel. This 

provides some evidence that there are some destinations which could be considered particularly 

susceptible to disruption from flooding and will be apparent regardless of change in flood 

magnitude or onset. Similar data could be generated for other sites and destinations to provide 

the same information to stakeholders for flood preparation measures.  
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Many studies (for example Li et al., 2018; Arrighi et al., 2019; Pregnolato et al., 2016a; Freiria et 

al., 2015) have modelled travel disruption from flooding; however, none of these have looked at 

how such disruption varies across different destinations which the same groups of people attend 

e.g. workplaces and schools. The work presented in Chapters 6 and 7 is therefore believed to be 

the first to do this. Commercial flood risk assessments required for planning developments assess 

the access directly onto the site (Emanuelsson et al., 2014; Ambiental Environmental Assessment, 

2020), and national flood maps do not show comparisons of how the effects of flooding vary 

between places. Therefore, the ideas and framework presented in Chapter 7 present a novel way 

for viewing flood risk, from the perspective of the destination’s susceptibility to disruption from 

flooding on the road network.  

To further explore the observation that the same destinations appeared most susceptible to 

disruption, a Spearman’s rank test was conducted to see if those destinations with greatest 

increases in travel times to them were consistent across the flood magnitude and onset time 

scenarios tested. It was found that there was statistical agreement in which destinations were 

most affected by the flood scenario between flood magnitudes when comparing the results for 

the equivalent time of flood onset (Table 7.3 and Table 7.4). This is evidence that the same 

destinations are most affected, i.e. they are most susceptible, and are identified even when 

changing the size of the flood magnitude and time of flood onset. The exception were the results 

for FT3 for both flood magnitudes as there was not statistical agreement between these data and 

the rest of the scenarios, demonstrating that different destinations were more affected. This was 

seen for both commuters and primary school children, but there were stronger correlations for 

commuters. These results provide evidence that those destinations most susceptible to the 

effects of pluvial flooding on travellers will likely be identified whichever flood magnitude is 

chosen, however changes in the time of flood in relation to commuting patterns can have a 

bearing on these results. In the context of the risk equation highlighted in Chapter 2 (Equation 

2.5) space and time are important for risk. The spatial location is important as flood-prone areas 

consistently show flooding across these scenarios, leading to the same destinations experiencing 

difficulty in access to them. Time is also shown to be important here as destinations are flagged as 

most vulnerable to disruption do change, likely due to later onset of rainfall leading to some 

destinations not being impacted as much as more of their travellers had already reached them.  

Floods disrupt the travel of York’s commuters more than travel by its primary school children. 

The risk to travellers in flooding situations is an area where an increasing amount of research has 

been conducted (Liu et al., 2014a), as a high number of fatalities are drivers in their cars and road 

closures lead to socioeconomic disruption. A novel aspect of this thesis is the comparison 
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between population groups on the impact of flooding on road travel, made possible through the 

use of spatiotemporal population data. Other work, including Debionne et al. (2016), Pregnolato 

et al., (2017a), Nyberg and Johansson (2013), Jenelius and Mattson (2012), Rodríguez-Núñez et 

al., (2014), Sohn (2006), Taylor et al., (2006); Chen et al., (2015) and Balijepalli & Oppong, (2014) 

and Coles et al., (2017) examine the disruption to the population as a whole or one particular 

group (for example the elderly). However, there are few examples of studies, that the author is 

aware of, which model the differences in flood-related travel disruption across more than one 

population group.  One similar study is Kunwar et al., (2014) who applied spatiotemporal 

population data to an activity-based agent model to investigate total evacuation of ten UK cities 

and could model the effects on some groups of the population (men, women, workers, students 

etc.). However, they have not looked at the routes taken by each group or developed the 

comparison between groups in the same way the analysis in this thesis has.  

The evidence from Chapter 7 is that in the scenarios undertaken, commuters were more affected 

than primary school children in their journeys to their destination. Firstly, there were no school 

destinations across any of the scenarios tested that became completely unreachable for the 

origins linked to them. For workplace destinations, as discussed in the contribution above, there 

were destinations that became unreachable for all commuters across both flood magnitudes and 

the three times of flood onset (Table 7.2). This provides initial evidence that access to schools was 

maintained whilst it was not fully maintained to all workplace destinations. In terms of the 

journey times of those successful origin-destination journeys, Figure 7.15 shows that commuters 

travelling to destinations have a larger increase in journey times than school children (Figure 7.16) 

from the same flood event. This is likely due to the shorter journeys that children take to school 

meaning a slight detour does not add much time, but it also shows that commuters may be 

coming across floods which cause larger diversions on their routes. Debionne et al., (2016) found 

in their study that commuters with longer journeys had the greatest risk of being exposed to 

floodwater, supporting the findings here that the population group with the longest journeys will 

have the most risk and disruption. The location of some workplaces may also be in areas where 

there is more likely to be flooding blocking the road leading up to the workplace destination 

point.  

Risk theory states that children are more vulnerable than adults (Civil Contingencies Secretariat, 

2008), however, in the case of the vulnerability of those in travel to their place of work or school, 

primary school children are less vulnerable partly due to their shorter exposure time on the road 

network and the location of flooding in the scenarios tested. Therefore, this indicates that more 

focus could be placed on mitigating the effects for businesses and commuters to future pluvial 

flood events. Business value of time savings can be a significant part of the benefits of transport 
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schemes (Department for Transport, n.d.), so the fact they are more affected than schools could 

mean that reducing time lost at work through flood prevention measures could have an economic 

benefit to local businesses. These results cannot be projected to other specific population groups 

without knowing their journeys around York. However, the principle that those with longer 

journeys are more likely to encounter pluvial flooding in a storm event is sound.  

Critical links can be defined locally by examining which closures lead to the most disruption to 

the destinations of specific population groups.  

Most studies on travel disruption consider transport networks from an engineering point of view, 

focussing on network connectivity, rather than measuring the impact of road closures on the 

population which use them (Pfurtscheller & Genovese, 2019). This is evidenced in the definitions 

and methods for identifying critical road links in a road network. As discussed in Section 3.3.3, 

other research papers which investigate critical links look at the overall connectivity of the 

network to determine which links are critical, for example Jenelius (2010a);  Jenelius & Mattsson 

(2012); Rodríguez-Núñez et al., (2014);  Sohn (2006); Taylor & D’Este (2003); Taylor et al., (2006); 

Chen et al., (2007), Chen et al.,(2015); Balijepalli & Oppong, (2014). These studies do not consider 

the needs of specific groups of travellers, which a stakeholder like a local authority may be 

interested in, when creating their distinction of a critical road. Assessing critical links from the 

perspective of the groups who use the roads enhances the exposure and vulnerability 

components of a risk assessment. The exposure, i.e. number of people using a road link, can be 

assessed per group of the population, and those groups which are considered vulnerable can have 

specific roads identified as being critical for them.  

‘Basic’ methods like eliminating a single link at a time to determine the effect on the system and 

which are most ‘critical’ (Sohn, 2006; Chandra & Quadrifoglio, 2013; Duan & Lu, 2014), do not 

consider the geography of the disruption which is key to understanding the effect on travellers 

(Pregnolato et al., 2016b). Identifying critical links is stated in various research papers as being 

important for prioritising resources for maintenance (Sohn, 2006; Jaroszweski et al., 2015; Freiria 

et al., 2015). If the purpose of the analysis is to know which links are critical in order to be 

targeted for maintenance to keep social and economic functions of a city running, then the 

analysis should instead be based on the needs of different population groups and how they use 

the network. Using the framework established in Chapters 5,6 and 7, the effect of flooding on the 

travel of specific population sub-groups can be calculated and therefore the roads critical to them 

identified. This is a key contribution of this thesis.  

The case for combining the theory of critical road links into flood risk assessments is found in UK 

government legislation. The Civil Contingencies Act states it is the local government's 
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responsibility to understand the nature of their critical infrastructure and if its failure is likely to 

cause a local emergency (Cabinet Office, 2011). The methods created in this thesis of integrating 

specific population sub-groups with travel analysis and hazards could facilitate this identification 

of critical roads and make it more relevant to the groups who are most vulnerable or 

economically impacted. By integrating population group data into the disruption analysis, this 

moves research beyond seeing networks just as physical infrastructure (Demšar et al., 2008) and 

aligning the concept to the consequences of network failure on people (Muriel-Villegas et al., 

2016). This makes these methods useful to local governments who are responsible for pluvial 

flood management. Whilst most network studies look at travel from the perspective of the whole 

population, there are other research examples of the effects of road disruption on particular 

groups of the population. For example, Nyberg and Johansson (2013) and Coles et al., (2017) both 

look at accessibility to services for elderly residents during hazard events. However, they did not 

expand their work to identify specific roads which were vital to keep open to give access, i.e. 

those which could be classed as the critical roads. They also only look at one population group 

and do not compare which links are critical for different groups within the same study, a unique 

aspect of this thesis. So, whilst the idea of investigating the effects of natural hazard induced 

disruption on the travel, or accessibility, of specific population groups is not new, taking the step 

further to defining critical links in this way and identifying them is novel.   

In the specific context of York, the results generated indicate which roads may be critical for 

primary school children and commuters. The roads which primary school children use to travel to 

their destinations are mostly smaller local roads (see Figure 5.9 and Figure 5.10), which would 

probably not be considered critical in ‘network scan’ approaches (Freiria et al., 2015). However, 

for this population group they are critical for enabling children’s education and those which are 

most utilised could therefore be targeted for flood mitigation measures. For commuters, the 

flooding on the A1237 York outer ring road is a clear example of a place where substantial detours 

can be incurred through its closure. There have been real events where pluvial flooding has 

occurred on this section of A road leading to its closure for several hours (City of York Council, 

2012), demonstrating the reasonableness of the modelled scenario. The road next to York station 

(Leeman Road) and the roads surrounding the historic city centre (A59, Water End, A1036) are 

also roads used frequently by commuters, and the flooding near the station is a source of 

disruption to the surrounding workplaces. These roads are highlighted in Figure 7.19 as potential 

‘critical roads’ for these population groups in York. These were identified based on visual 
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examination of data, but analytical techniques to quantify which are critical could be applied as a 

further step.  

The time of flood onset is more important than flood magnitude for rapid onset pluvial flood 

events. 

A key part of the theoretical underpinning of this thesis was that the time of day when a hazard 

occurs is very important to the level of risk the surrounding population experiences (see Chapter 

2). Whilst this was a common statement in risk theory literature, there are fewer quantitative 

studies measuring the effect of time of onset on the outcomes for the population. One example is 

Kasmalkar et al., (n.d.), who used a generic 1-hour window within peak morning commuting 

hours, to test the impact of flooding on travel. However, this was not expanded to include more 

time periods like the analysis in this study. Another example is Li et al., (2018), who calculated the 

delay to journeys from flood events in peak travel time, again without examining the effect of 

changing the time of flood onset around the peak travel period. They did test the effect of four 

different magnitudes of flood, capturing the physical hazard element of risk, but not the time of 

flood onset which has a greater bearing on the socioeconomic aspects of vulnerability and 

exposure.  

One of the aims of Chapter 7 was to assess if pluvial flood onset was more important than flood 

magnitude in the scenarios tested. The results in Chapter 7 provide evidence of the importance of 

time of onset. By changing the time of flood onset by two hours it is enough to see differences in 

the travel time lost at destinations as a result of flood disruption. For example, for the 1 in 30 year 

flood event there is a decrease of 36,639 lost minutes at work if the time of flood onset changes 

from 6am to 8am. This large difference is due to a substantial level of flooding not being reached 

until the majority of commuters have already reached work. Increasing the flood magnitude to 1 

in 100 year and keeping the flood onset time the same, therefore just increasing the amount of 

flood water on the roads, the difference is 9,440 additional minutes at work lost. This is less than 

the difference between the flood onset being delayed by 2 hours. In Chapter 2, risk was defined 

as the dynamic function of hazard, vulnerability and exposure (Mechler & Bouwer, 2014) and 

Chapter 7’s results have empirically demonstrated that population movement is a dynamic local 

factor (Dawson et al., 2011) which is having a larger effect than changes in the physical hazard.  

Further evidence for this key finding can be found by examining the numbers of workplace 

destinations which were unreachable by their assigned origins in the different scenarios (Table 

7.2). The scenarios with the most destinations where no origin could reach them (i.e. greatest 

level of disruption to people) were the two with the earliest rainfall start time (6am), with seven 

destinations for the 1 in 30 year flood and 16 destinations for 1 in 100 year event. This is likely 
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due to fewer travellers earlier in the day, so there are less origins from which people are travelling 

from, increasing the chances of all the origins being blocked by flooding. Furthermore, when 

comparing the statistical agreement between which destinations experienced the greatest time 

lost at them, the results for FT3 were the only scenarios where there was no statistical 

agreement. This is evidence that the time of day the event occurred at had a larger effect than 

flood magnitude, as it interacts with travel patterns. Hence, the time of day is important in 

sudden onset events like pluvial flooding as it relates to the demand on the road network from 

travellers, it is not the magnitude of the flood itself which is driving the effect. 

The results in Chapter 7 have shown that as the variables change in both time and space, the risk 

(the effect on travel time) has fluctuated. In risk literature, it is highlighted that the interaction 

between where people are and the time of hazard onset can substantially change the exposure 

and vulnerability elements of the risk equation (Freire et al., 2013; Aubrecht et al., 2014; Terti et 

al., 2015). The influence of time on the risk to those travelling on the road network has been 

investigated by other researchers. For example, Ruin et al., (2008) investigated a flash flood event 

in Southern France. Due to the flood beginning on a Sunday evening in September, outside of the 

normal working week and the tourist season, they state the consequences were less than they 

could have been at a busier time on the roads. This supports the case that the time of day of 

sudden onset hazards like pluvial floods is very important. However, they did not empirically test 

how changing the time of onset would have changed the effect on the population in travel. 

Spitalar et al., (2014) conducted an analysis to find common factors in flash floods which 

increased risk to the population, by examining a database of all flash floods which occurred in the 

US between 2006-2012. They found that short duration events and those which happened in the 

evening resulted in more fatalities, therefore were riskier to the population. This was due to short 

duration events often having little pre-warning to enable people to prepare and the darkness in 

the evenings reducing visibility of flood water. Relating these findings to this study, this supports 

the notion that for pluvial flood events, which are generally short events with little lead time, the 

time of day when they happen is important.  

The findings specific to York could be applied to other areas which have broadly similar patterns 

in peak travel times across urban areas, as the time of day is likely to have the same effect in 

similar settings. The temporally specific analysis conducted in this thesis to assess risk to the 

population in travel and destination disruption could be incorporated into future modelling for 

surface water management plans, as it has been shown that the risk will not be static over the 

course of a day.  As far as the author is aware there is not another study which has looked at the 

effect of time of flood onset and flood magnitude in this way, so this is a novel contribution of the 

work  
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8.2.3 Contributions to risk theory 

Extending the risk conceptual framework beyond static residential populations to cover 

travellers and workplaces should be incorporated into transport-based flood risk assessments. 

The statement of the research problem (Section 1.2) outlines the focus of this thesis as the effect 

of flooding on travellers and the resultant disruption to time spent at their destinations. The 

analysis in this thesis has therefore focussed on the risk posed to travellers, which sets it apart 

from most traditional flood risk analysis work which is based on the residential population (Balica 

et al., 2013). For example, Koks et al., (2015) assessed the risk to residential households in 

Rotterdam; Kubal et al., (2009) also conducted a flood risk assessment for the residential 

population in Leipzig and Arnell & Gosling (2016) modelled the likely increases in flood risk 

globally under different climate change scenarios, again for residents of floodplains. UK 

government requirements for flood risk assessments also view risk from a static population 

viewpoint. Flood risk reports generally quote the number of houses and businesses affected, but 

they do not specifically explore the knock-on effect of travel disruption and time lost at work or 

school. The flood risk maps for England and Wales, created by the EA, are applied to calculate 

exposure of static populations, either for residential or business sites in FRAs as required for 

developments. These FRAs look at access and exit from a site during a flood but are not required 

to consider travel into the wider area (DEFRA & EA., 2019; Ambiental Environmental Assessment, 

2020). This therefore fails to capture the dynamic nature of the population between residential 

and business sites.  

The creation of spatiotemporal flow data, maps showing the routes taken by those travelling to 

destinations and identification of which destinations are most susceptible to disruption in this 

thesis, provide an example of how temporal population dynamics can be considered in risk 

analysis. Incorporating the ‘four-step transport model’ into the research approach worked well as 

it was designed to view transport management from the ‘person perspective’ (McNally, 2007; 

Ortuzar & Willumsen, 2011; Jones, 2012), therefore spatiotemporal population data fits well 

within this perspective. Similar work was done by Smith et al., (2015), where spatiotemporal 

population data enabled risk to the population in residential, workplace and retail areas from 

flooding to be mapped. However, this thesis is novel as it specifically is focussing on travellers and 

the disruption posed to them from a flood.  

Framing natural hazards research around travellers and the effect on work/school destinations 

fits within a wider body of work which has focussed on developing methods for incorporating 

non-resident populations into analyses. Workplace zones, as proposed by Martin et al, (2013), 

were introduced to allow small-area analysis of populations at work (Berry et al., 2016). These 
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were applied in this thesis as the destination points for the network analysis for commuters. Most 

recently, Cockings et al., (2020) have developed a geodemographic classification structure based 

on the characteristics of workers and workplaces, rather than by residential population. This 

classification has provided new insights into the characters of workers and workplaces at the 

small area level, and is useful as it can be applied to health, transport and commerce applications. 

Outside of natural hazard risk, using measures of the ambient population who travel through an 

area, but do not reside there at night, has been highlighted as a key component of assessing retail 

patterns (Berry et al., 2016) and assessing crime hotspots (Malleson & Andresen, 2015, 2016). The 

continuing improvements to the representation of non-residential populations in population data 

will mean creating risk maps and metrics of transient populations, like those using the road 

network, will become easier. The framework outlined in Chapter 7 for assessing spatiotemporal 

risk to travellers and destinations could be expanded and improved on as these data sources 

become more available.  

 

Including spatiotemporal population data and examining a fine temporal scale of flood onset 

enhances the temporal aspects of transport-based flood risk analysis. 

The main conceptual underpinning of this analysis work was there are spatial and temporal 

components to all elements of the risk equation. Time is complementary to space, as we move 

through space over time, so both should be considered in analyses as the challenges and 

characteristics need to be addressed together (Bogaert, 1996; Pred, 1977). In the case of the 

applied problem studied in this thesis, it is people moving across a city along the road network 

and this fluctuates over time as demand changes. Time dimensions are ‘excessively important’ in 

transport systems and the fluctuations in demand are at a daily to seasonal scale (Reggiani et al., 

2015). Therefore, the risks associated with disruption from flooding are time dependent with a 

high temporal resolution to risk (Cats & Jenelius, 2014; Fuchs et al., 2013; Renner et al., 2018). 

As set out in Figure 8.1, the spatiotemporal questions posed in Figure 2.2 can be answered by the 

results generated in this research. The locations in space and time where the risk of disruption to 

travellers is greatest have been identified through the results presented in Chapter 7. Including 

spatiotemporal population data and the fine temporal scale of flood onset has enabled this 

temporal risk analysis. The framework developed in this thesis could be applied to other locations 

and hazards.   
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However, the inclusion of time in an analysis workflow can be difficult, particularly for the social 

elements of risk. A key part of incorporating time in this thesis has been the inclusion of 

spatiotemporal population data. Alternative data sets of travel surveys, traffic flow, footfall data 

and call detail records are available and can have a greater spatial and temporal resolution than 

census data (Herrera et al., 2010; Deville et al., 2014). However, the lack of demographic data 

attached to them (Herrera et al., 2010) means specific analysis of population sub-groups is not 

possible. The usefulness of including spatiotemporal population data in hazard analysis has been 

demonstrated by other researchers. Smith et al., (2015) applied SurfaceBuilder247 in their study 

of exposure of different population groups in Cornwall, the inclusion of demographic data allowed 

the relative vulnerability of people to be considered. Renner et al., (2018) applied spatiotemporal 

population data created with SurfaceBuilder247 to Bolzano in Italy to also estimate flood 

Risk f(HazardST, ExposureST, VulnerabilityST) 

Risk of restricted 
movement 
increasing travel 
time an reducing 
time spent at work 
and school. 

Spatial: The area 
around the station 
in York and the 
roads identified in  
are locations with 
greater risk of 
disruption.  

Temporal: The 
storm beginning at 
6am and flooding 
beginning earlier 
in the morning 
leads to greater 
risk across the city.  

Spatial: There is 
spatial clustering of 
disrupted 
destinations (Figure 
7.22 and Figure 7.24) 
and roads which are 
no longer used in 
flood scenarios 

(Figure 7.19). 
 
Temporal: More time 
is lost at school and 
work with the earlier 
flood onset times 
(Figure 7.20 and 

Figure 7.21), as more 
people are travelling 
therefore exposure is 
greater at these 
times of day.  

Spatial: More 
flooding is seen 
from a larger 
magnitude event. 
 
Temporal: The time 
of flood onset does 
change disruption 
levels. 
 
The time of flood 
onset has a larger 
effect on disruption 
than flood 
magnitude (Figure 
7.20 and Figure 
7.21).   

Spatial: Primary school 
children are less affected 
than commuters, although 
identified as vulnerable in 
risk literature. This is a 
product of shorter school 
journeys. There is spatial 
clustering seen of 
destinations most 
susceptible to disruption 
in the West of the city 

(Figure 7.24). 

Temporal: A flood 
occurring before children 
travel (6-8am) leads to 
more time lost at school 
than a flood onset time at 
8am when travel begins 

(Figure 7.21). There is a 
shift in the location of 
most susceptible 
destinations as time of 

onset changes (Figure 
7.25) 

Figure 8.1 The conceptual risk equation and answers to questions set in Chapter 2, categorised 

by the specific spatial and temporal components of each element.  
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exposure. This thesis has expanded on this previous work by considering the specific risks to those 

in travel, but all these studies show that spatial and temporal aspects of all parts of the risk 

equation can be included in flood risk analysis with spatiotemporal population data.  

There are many examples of research papers where the impact of flooding on travellers is 

considered, and some include a temporal aspect to their work. For example, Freire et al., (2013) 

looked at how day and night time population distributions affected hazard exposure and the time 

taken to evacuate after a tsunami warning in Lisbon. They found night time evacuation was 

modelled as being quicker, potentially due to less people being in the city centre than during the 

daytime. However, they did not investigate the effect of smaller scale temporal changes to 

population which are seen through daily travel patterns or look at the differences in disruption to 

different population sub-groups. Debionne et al. (2016) and Shabou et al. (2017) in their papers 

measured the exposure drivers experienced in flood scenarios and ascertained there was a risk 

amplification effect for drivers, although again they did not test the effect of altering the time of 

day of the flood event, or investigate if there was differential risk between groups in the 

population. Li et al, (2018) looked at effect of pluvial flooding on road travellers and tested 

different magnitudes; however, again they did not incorporate time of day the flood occurs or 

consider specific groups who are affected. Chang et al., (2010), Pregnolato et al., (2017a, 2017b) 

and Arrighi et al., (2019) all present methods for measuring disruption to commuters from pluvial 

rainfall events at the scale of a city. However, their frameworks do not consider time as a 

component of risk as explicitly as the one in this thesis does and there was not a comparison on 

how the flood event effects different groups of the population differently.  

So, whilst the concept of investigating the risk to travellers from flooding is not new, there are 

novel elements of the framework designed in this thesis. Firstly, including spatiotemporal 

population data which allows for the relative risk of specific groups of travellers to be assessed. 

Secondly, the temporal timescale analysed, the impact of shifting the onset of a flood event by an 

hour or two, is a finer scale than other studies have investigated but it is important as the 

dynamics of travel are at this scale. This could open up opportunities for more targeted local risk 

analysis covering people in travel to assess where mitigation action should take place. UK 

government policy documents have frequently identified the risk to travellers, and the people 

who become isolated due to flooding, is an important area to address to build flood resilience 

(Cabinet Office, 2011, 2016; Pitt, 2008). However, this has not led to the integration of risk from 

the perspective of travellers into flood risk assessments. Further development of this framework, 

which can be applied at the LLFA level, could facilitate the inclusion of the risk to travellers in 

flood risk assessments. 
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8.3 Transferability and Scalability of Approach 

This section describes how the methodology developed in this thesis could be transferred and 

scaled up to other geographic areas, population groups and hazards. The methodological 

framework, as shown in Chapter 7, is transferable to other local authorities in the UK, both urban 

and rural. It could also be conducted at a larger scale than in this research if the computational 

power is available. The spatiotemporal population model (SurfaceBuilder247) and population 

data used in this thesis are available for England and Wales, as the majority of data are from 

census sources and administrative data sets which are available under open government license. 

The next census is due to take place in 2021, therefore in a few years new data will be available. It 

is also possible to take the SurfaceBuilder247 model and apply it to other countries, as 

demonstrated by Renner et al., (2018). With the equivalent data sources, this part of the 

methodology could be transferred to case studies in other countries. Travel to work data were 

applied in the SurfaceBuilder247 model and the spatially weighted Monte Carlo analysis to 

parameterise the selection of origins for destinations. Similar census data is available for countries 

like Italy (Renner et al., 2018), France (Shabou et al., 2017), Australia (Mees et al., 2008) and many 

others, increasing the transferability of these methods.  

The principles of the analysis, the effect of time of flood onset on disruption, can be assessed 

from many sources of traffic data and routing tools. The network analysis technique can be 

conducted at a larger scale and the network data and historic traffic data from ESRI is available for 

the entire UK and many other countries. Therefore, transferring this part of the methodology to 

another location in the UK, and many other counties, would be straightforward. If this analysis 

was conducted over a larger area with more origin-destination journeys, then creating a network 

data set with time-specific traffic speeds (for example with OS MasterMap Highways Network 

with speed data) could be more cost-effective than accessing the ESRI HERE data via the server. 

Alternative network routing tools could be used in place of ESRI’s tools if traffic data is available in 

other countries. As outlined in Section 3.3.4.2, open source tools like OpenTransportMap and 

OpenRouteService, and in Section 3.3.4.3 commercial tools like Google Routes, exist which could 

be used within the framework to provide routing and traffic data. Kilgariff et al., (2019) used 

measured road traffic data for a 17-day period of disruption in Galway and the surrounding area 

due to flooding, which is different to this thesis and most papers which rely on modelled data. 

Real event data for the traffic disruption is extremely beneficial for calculating the effects of 

disruption, however a lot of cities and towns do not have sufficient data for their method to be 

transferred elsewhere. Also, the testing of the temporal effect of moving the time of flood onset 

as this thesis has shown is not possible.  
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Finally, for the flood model component of the methodology it is possible to model flood events 

for larger areas, and the model used in this thesis has been applied in the UK and abroad with 

success. As with the previous two computational models, the computing power available may be 

a restriction on the size of area which could be modelled. There are numerous other flood models 

available, like LISFLOOD-FP which is often used in UK academic work (for example Sosa et al., 

2020; Neal et al., 2011; Rajib et al., 2020; Smith, 2015), so the creation of the flood hazard data 

for another area is definitely achievable. Although a flood model which capture the dynamics of 

urban drainage may be most beneficial as pluvial flood events which affect traffic tend to occur in 

urban areas.  

A national data set which detailed destinations, like workplaces and schools, which were at risk of 

isolation or reduced travel to them during a flood event, would be a useful addition to current 

flood risk maps. A main challenge in scaling up this methodology to a region or nation would be 

choosing a flood scenario to incorporate. It is unrealistic to test a scenario where the whole 

country is flooded at the same time, as pluvial flood hazards tend to be caused by localised heavy 

rainfall. Although, if the goal was to make a dataset identifying areas at risk of being cut off, this 

assumption might be needed. Scaling up to the whole country would require experience of 

national flood modelling in order to determine if there is an appropriate disruption scenarios. A 

second challenge would be determining which origin-destination pairs should be modelled to gain 

a national understanding of the impact of disruption. The creation of a national time-specific data 

set of origins and their associated destinations could be complicated and time consuming, and for 

groups other than commuters even more difficult. However, it could be possible with enough 

computing power to iterate through every workplace zone and model the routes from their 

origins for an area of interest. This could be provided as a data download similar to other 

products from the Population 247 project (GeoData Institute, 2016).  

The methodology presented in this thesis could be transferred to other population groups, 

natural hazards and types of transport network. Expanding the methodology to the inclusion of 

other population sub-groups in the flood risk analysis is possible but relies on the availability of 

sufficient travel data. The main challenge in transferring to other population sub-groups is the 

availability of mobility data. Smith et al., (2015) demonstrated that there is sufficient data to 

include tourists and retail populations for flood exposure calculations. However, having the origin-

destination data to model journeys in a network analysis is a greater task. Renner et al., (2018) 

state a limitation of their work is assuming that tourists are static and stay in their study area, as 

the absence of travel data means their origin-destination journeys cannot be determined. With 

new administrative and big data available in the next few years, it may become possible to 

include more groups into this framework.  



Chapter 8 

190 

The flood hazard was included in the network analysis model as a barrier, therefore any hazard 

which causes a blockage to a road with a known spatial area could be included in the analysis. 

There are many hazards besides flooding which pose a risk to roads, for example landslides 

(Postance et al., 2017), Tsunamis (Freire et al., 2013), fallen trees (Nyberg & Johansson, 2013) and 

earthquakes (Khademi et al., 2015). All of these hazards could easily be incorporated into the 

framework as shapefiles or points where obstructions have occurred. The potential for including 

primary hazards (e.g. floods) and secondary hazards (fallen trees) in one analysis is also there.  

As stated earlier, the network analysis algorithm can be applied to any road network and the 

historical traffic data were available for the whole of the UK and many other countries worldwide. 

The focus here was on road travel by car, however road networks and travel by private vehicle are 

not the only forms of travel. There have been some studies of transport disruption which have 

looked at public transport as well (Cats & Jenelius, 2015, 2016; Tympakianaki et al., 2018). So, 

with the appropriate public transport model, the transference of the key ideas of time being 

critical in the hazard onset and including population data, may be possible for other forms of 

transportation. 

Whilst census data has been the standard for population research (Aubrecht et al., 2014), the 

2021 census may be the last ‘traditional’ census, as an approach which links administrative data 

sets to generate the same data are proposed to replace it (Tinsley, 2017). Whilst the 

spatiotemporal population model used in this thesis relies on census data, alternative data sets 

and new data sources could be used within the overall risk methodology instead, as they become 

available. Any data which provides the origin and destination of the journeys of a group of people, 

and the time of day these are undertaken, could be used as part of the risk analysis methodology 

in this thesis in place of the spatiotemporal population model. New forms of ‘big data’ (call detail 

records, smartphone apps, social media, travel cards, footfall data) currently exist and are 

continuously being improved. There are many studies which have used this type of data for 

modelling the ambient population and travel around an area, for example Heppenstall et al., 

(2016); Crols & Malleson (2019); Malleson et al., (2018); Batista e Silva et al., (2018). At present, 

these data sets do not contain demographic information which is required for modelling specific 

groups of the population, so cannot be a substitute for spatiotemporal population modelling.  

8.4 Uncertainties and Limitations 

Throughout this thesis, the uncertainties and limitations of the methods applied have been 

highlighted and discussed. In this section, the key points and their likely effect on the work are 

identified. The first section covers validation of the data created in the analysis, the second 



Chapter 8 

191 

section highlights the sensitivity tests conducted and the final section the key assumptions and 

their effect on the results of the analysis.  

8.4.1 Validation 

Validation of the research findings, so as to quantify uncertainty, is challenging as the only 

relevant data sets currently available are those census data and associated administrative data 

sets which are used in this thesis. Therefore, there is not an independent data set for comparison 

with the modelled spatiotemporal population data, spatiotemporal flow data or the routes and 

travel times measured in the scenarios tested. 

The validation of the outputs from the SurfaceBuilder247 model are challenging “because we are 

attempting to estimate time-specific population distributions not directly captured by any other 

measurement systems” (Martin et al., 2015, p.768). The best available census, and other 

administrative data, were used in the creation of the spatiotemporal population data, as there is 

not a data set of the phenomenon of interest already in existence. One way of validating the data 

would be through direct population counts of areas or buildings at a specific time of day and 

comparing it to the results from the SurfaceBuilder247 model. However, this would involve a 

substantial cost and resources (Martin et al., 2015) which are beyond the scope of this thesis.  

As already discussed in this chapter, and in Section 3.2.3, alternative data like call detail records, 

footfall sensors, smart card travel data and automatic number plate recognition exist (Malleson et 

al., 2018; Heppenstall et al., 2016; Crols & Malleson, 2019) These can provide data on how many 

people are travelling through an area, but do not have the demographic data on who is travelling 

(Herrera et al., 2010), so are not necessarily a direct validation data set. However, alternative data 

can be used to evaluate the output from SurfaceBuilder247. Malleson and Andresen (2016) use 

data from SurfaceBuilder247 as one representation of ambient population in their study of crime 

hotspots in London. In their comparisons, they found the data from SurfaceBuilder247 were 

reasonably strongly correlated to workday (from census) and mobile telephone data, so they 

were capturing similar populations. This demonstrates one approach which could be used to 

evaluate the spatiotemporal output from SurfaceBuilder247. However, again this was beyond the 

scope of this thesis to do a similar evaluation as the main aim of the thesis was on the risk analysis 

problem. Despite the limitations of validating the data, the approach taken by using 

SurfaceBuilder247 to create spatiotemporal population data is still sound. The benefits of using 

this model framework is that it is a volume-preserving approach, meaning all people in the study 

area are accounted for between time steps, and it is based on known origin and destination flows 
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and travel data from the census (Martin et al., 2015; Smith et al., 2015). Therefore, it can be 

assumed that the outputs of the model are reliable.  

The travel time and routing results presented in this thesis are a product of the spatiotemporal 

origin-destination flows and the network analysis. There is currently no available data set to 

directly compare travel time results to, as this would require the observation of pluvial flood 

events in York and the recording of traffic data for the whole city, beyond the scope of this thesis. 

Pregnolato et al., (2017b) did use traffic count data to attempt validation of the route and travel 

time data in their model. However, this only describes volume of traffic and not the key 

information of who is travelling and making the journey, which was important to this research. 

Arrighi et al., (2019) suggest validation could be achieved through applying the judgement of 

experts and sensitivity tests can be used to examine the influence of parameters on the model. 

They also suggest Google Maps and its function of giving live and historic travel times for routes 

could be used for validating baseline route modelling. These techniques could be useful in some 

cases; however, this relies on a pluvial flood event occurring during the time period the research 

project is active and then modelling the same pluvial flood event for the network analysis model. 

Qualitative validation based on observations of flood events might strengthen the quantitative 

findings of risk analysis. For example, qualitative comparisons were made in Section 8.2.2 of 

modelled flood results in this thesis to previous flood risk assessments done by the council. More 

widely, the names of places and roads can be used as an indication of their propensity to flood. 

‘Water lane’ in York, for example, was a road which experienced a high level of flooding in the 

modelled flood results and is an access road to a primary school.  

8.4.2 Sensitivity analysis 

Whilst validation of the results presented in Chapters 5, 6 and 7 is difficult, sensitivity tests can be 

used to understand how the parameters of the models and methods may be affecting the results. 

Sensitivity testing was done for two aspects of the overall thesis framework; the 

SurfaceBuilder247 model in Chapter 5 and the parameters of the network analysis tool in Chapter 

6.  

In Section 5.3.1, it was found there was unfilled demand at schools, with not enough children in 

the origin data to fill the school destinations (11% deficit). The input parameter of how many 

children came from each sub-group for each school destination was adjusted to test the 

sensitivity of the outcomes. Initially the model parameters were for only children aged 5-10 to 

attend primary schools, but this is not the case as primary schools have 4 year olds and 11 year 

olds, and some of the schools were junior schools which are for the youngest children. Adjusting 
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to 13|80|7 split of 0-4|5-10|11-17 year olds based on school count data for York (Department for 

Education, 2016), rectified this issue. The aim of Chapter 6 was to assess the differences between 

census origin-destination data and spatiotemporal population data, so this was a sensitivity test 

for the new data created to see how well it reflected the recorded travel to work data. This was 

possible for commuters as there were alternative data.  

Finally, in Chapter 6 the sensitivity of the Network Analysis tool was tested in relation to the 

hierarchy property. It was found that this parameter did have an effect when comparing the non-

flood to flood scenarios, as when turned on the hierarchy changes how the algorithm assigns 

routes leading to some instances of distance travelled decreasing in the flood scenario whilst time 

increases.  

 

8.4.3 Key assumptions 

Table 8.1 lists the key assumptions applied during the analysis work and the likely impact on the 

findings. Overall, the assumptions applied would have led to an underestimation and 

simplification of the disruption caused by flooding on road travel.  

 

Table 8.1 Key assumptions and their anticipated impact on model outputs 

Assumption Likely impact on findings 

There is equal probability of a person 

travelling from any grid cell in a distance band 

to the specific destination. 

Large underestimation of catchment size of 

commuters in Chapter 6, due to how the 

catchment weightings were calculated. A small 

underestimation of school children catchment 

size as the catchments covered 95% of children. 

Historic traffic data were used and impact of 

disruption on traffic not modelled. 

Large underestimation of traffic levels and 

therefore travel times, in flood scenarios. 

Pregnolato et al., (2017b) found travel times may 

increase by more than 50% when congestion is 

included. 

Catchment areas for workplace and school 

destinations from administrative data exclude 

5% of population making longest journeys 

(trip distribution). 

Moderate underestimation of travel time and 

disruption 

All individuals in a population sub-group act in 

the same way, so individual behaviour is not 

included. Bian and Wilmot (2015) call it a key 

assumption in transport studies. 

 

Moderate underestimation of variation in travel 

time and disruption. Drivers do not all behave in 

a rational way like an algorithm does, and 

perception of risk and purpose of journey can 
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have an effect on decisions make whilst 

travelling (Terti et al., 2015).  

Assumed census data correct and adjusted 

pupil age breakdown to fit school demand 

profile. 

Moderate impact of unknown direction. 

Time profiles are generalised for the country 

and do not allow for multipurpose journeys. 

Moderate underestimation of the travel times as 

multipurpose journeys would be longer, 

therefore increasing likelihood of exposure. 

All drivers have perfect knowledge of the 

road network and diversion routes. 

Moderate underestimation of travel times.  

Shortest time path is taken to reach a 

destination (using Dijkstra’s algorithm within 

network analyst tools), as in similar studies 

(Postance et al., 2017). 

Moderate underestimation of travel time 

Each person is travelling in a car on their own, 

or in Chapter 5 children were walking on their 

own or by car on their own. 

Minor underestimation of the number of people 

on the roads, especially if parents travelling with 

their child. 

Drainage failures are not modelled. Small overestimation of travel time increase. The 

flood model does not include urban drainage 

systems explicitly, so there may be more flooding 

than in reality.  

That there is a passable/impassable switch in 

flooding when there is more variation. 

Small underestimation in travel time. 

 

Rainfall timing and intensity are constant 

across the city of York. 
Small overestimation in the travel time increases 
due to disruption. 

Origin-destination data for commuters is from 

the 2011 census. 

Direction of effect unknown. It is not known how 

the home and work locations of the residents of 

York have changed between 2011 and 2016 (the 

reference year). 

Assumption of disruptive floods being at least 

30cm in depth and 125m2 in area. 

Direction of effect unknown. Some vehicles can 

travel safely through this depth (Pregnolato et 

al., 2017b), but for the majority of cars this is a 

sound assumption.  

 
Following on from Table 8.1, there are some further limitations to consider. Firstly, it is only 

possible to model a small number of flood scenarios out of a great many possible scenarios (Smith 

et al., 2014a). Previous work on pluvial flooding in York by the city council (2019) found that each 

real event experienced included flooding in different locations across the city. Therefore, the 

places found in these modelling scenarios to be prone to flood disruption may not necessarily be 

seen in a real flood event, and the spatial patterns of disruption seen in this thesis would not be 

replicated exactly. Choosing the scenarios is an important consideration when designing a study 
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and selecting event which will show a range of flooding, like the 1 in 30 year and 1 in 100 year 

scenarios in this thesis, is desirable.  

 

Linked to this limitation, an assumption was made on what ‘disruptive flooding’ was. Only two 

flood magnitudes were tested in this work and more magnitudes between these could have 

provided some additional information. Pluvial flooding is not just a factor of topography as 

drainage failures often have a large part to play, and these were not included in the flood model 

used. The thresholds used for identifying the flood area which would be ‘disruptive’ (30cm depth 

and over 125m2 in size) is based on UK environment agency guidelines (Li et al., 2018; Arrighi et 

al., 2019; Pregnolato et al., 2017b). However, any adjustment to criteria would lead to potentially 

different results for example if drainage was included. Although the comparison of the effect of 

the two magnitudes in this study does indicate the effect of magnitude might be small in respect 

to the amount of disruptive flooding recorded. Ideally, a series of flood barriers where some 

blocked all travel, for flooded roads above the threshold, and some allowed travel but at a slower 

rate, for roads with less deep or wide flooding, would be included in the network analysis. The 

depth categories for this could be based on Pregnolato et al.’s (2017b) depth-disruption function.  

 

Finally, the concept of critical roads has been considered in this thesis and some visually identified 

for York. However, critical roads are dynamic, not static, and can change as a flood event 

progresses, as those roads which are identified as critical pre-flood event may not be those which 

are critical during the flood event. Jenelius (2010a) proposed the idea of secondary critical links, 

i.e. those which become important when your disruption scenario is introduced, and other roads 

are no longer accessible. Including this extension of the critical links idea, and with the inclusion of 

analysis for specific sub-groups from this research, could further how network studies be 

conducted. 

 

8.5 Future Research Directions 

Based on the achievements of this research and its limitations, there are several 

recommendations for future research.  

Options for extending the work presented in this thesis, using the existing framework to model 

other time periods. 

In this thesis, it was only possible to study the morning commute and two population sub-groups 

(Chapter 7). Repeating the analysis for different day times and types of day is an essential next 

step in order to build a fuller picture of how the temporal dynamics of population in travel and 
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flood events interact, in order to affirm the finding that time of day has more influence than flood 

magnitude. It is possible that the interaction of pluvial flood onset time and magnitude may be 

different for other day types and times of day. For example, the effect may be less at a weekend 

when the majority of travel is not confined to a few hours in the morning and evening.  

Developing alternative approaches for spatiotemporal flow data and calculating disruption 

from flooding to road travel.  

Census data were used in a spatiotemporal population model and adapted to create 

spatiotemporal flow data of likely origin-destination journeys. There are alternative data sets and 

methods which could be used for this purpose, as described in Section 8.3. For future research 

directions, the application of agent-based models for the purpose of determining the disruption 

to travellers from flooding could be explored. Dawson et al., (2011) did use an ABM for analysing 

evacuation decisions in Towyn in Wales, but since this most studies have used network analysis 

methods for analysing disruption at a city level. Since Dawson et al.’s (2011) paper, there has 

been an exponential increase in the amount of ‘big data’ sources which have the potential for 

innovating urban modelling (Heppenstall et al., 2016). Determining which data sets are useful for 

the specific issue of flood disruption of road travel is a key priority, and these would likely be data 

sets which provide the origin-destination journeys of the population (perhaps via smartphone 

apps like Malleson et al., (2018)) but ideally with specific demographic data attached. For a 

successful ABM there would also need to be data on the underlying behaviours which drive travel 

decisions both in non-flood and flood conditions. This could be through travel surveys or 

incorporating social science observations of people’s behaviour during natural hazards. For 

example, Terti et al., (2015) established in their research that travellers would persevere with a 

homeward journey for longer than an outward journey to work. If an ABM with the right 

underlying data could be created, this could be a powerful way of capturing spatial and temporal 

dynamics of individual travellers and modelling congestion as a result of flooding, addressing a 

common limitation in current studies.  

The approach developed in this thesis was semi-dynamic with time steps at which the flood, 

population and travel elements were synchronously moved. Near-real time models in population 

modelling, flood modelling and travel either exist or are in development and linking these up 

could be an interesting exercise. If achieved, the monitoring of events in near-real time to enable 

response as the event happens could improve flood hazard response. There are examples of other 

researchers using real traffic and flood data within their travel disruption studies. Coles et al., 

(2017) recreated real flood events in their flood model to test accessibility of emergency services 

to care homes. However, they did not have traffic data to see what the effect of the flood was on 
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vehicles at the time, instead relying on network analysis. Kilgarriff et al., (2019) used real traffic 

disruption data and flood data for a 17-day period of disruption in Galway, Ireland in order to 

calculate the financial loss due to increased commuting time. Pregnolato et al., (2017b) were also 

able to use traffic data from a real pluvial flood event and compare it to a non-flood average to 

assess the impact on traffic count, and with increasing use of Automatic Traffic Counters, CCTV 

and smart sensors in cities this will become an option for more places. Whilst smart sensors for 

traffic and pedestrian counts are becoming available, this does not provide information on who is 

travelling, just the numbers of people or vehicles. Near real time population modelling is still 

being developed, for example The Population 24/7 Near Real Time project (GeoData Institute, 

2018), and integrating this near real time approach with a dynamic flood model could be 

extremely useful for risk planning.  

Include more population sub-groups into the analysis to understand where the focus of 

mitigation actions should lie. 

Only two population sub-groups were included in this thesis, primary school children and 

commuters. The spatiotemporal methods developed in this thesis could be applied to population 

sub-groups other than primary school children and commuters providing appropriate temporal 

data are available. SurfaceBuilder247 has been used to create tourist data (Smith et al., 2015) and 

applied for analysing the exposure of populations to flooding. If there was sufficient travel data 

for tourists around an area, then the methods developed in this thesis could be applied to 

generate spatiotemporal flow data and then analysis of the routes they take. However, the 

difficulty would lie in determining where people go to and from as tourists have more 

complicated journeys than school children or commuters. Modelling the risk of people travelling 

to and from retail sites is potentially more likely than simulating tourists. There are many studies 

on the travel to and from retail centres, how they are modelled and who the customers are 

(Newing et al., 2013). These data could therefore be applied to flood risk, as Smith et al., (2015) 

demonstrated. Other key workers could include those who work on critical infrastructure (for 

example, communication, civil nuclear, defence, energy and water sites (Centre for the Protection 

of National Infrastructure, 2020)), school teachers, or those involved in the food supply chain. The 

author is not aware of any published work which takes this focus. Alternatively, the focus could be 

on vulnerable groups, the elderly or tourists, if it is a tourist area. The groups which should be 

prioritised would be determined by the organisation who is conducting the flood analysis and the 

purpose of the flood risk study.  
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National and local study sites should be investigated. 

The Brown review (Brown, 2014) states that the identification of critical single points of failure in 

the country’s transport system is a key task for flood management going forward. This applies 

both to local authorities concerned with a single urban area and national governments. At a 

national level, motorways and main A roads which are prone to flooding could be targeted. In the 

2007 floods, the closure and entrapment of 10,000 vehicles on the M5 in Gloucestershire 

highlighted the large scale disruption caused by the flooding of major roads (Pitt, 2008). This was 

a singular high impact event, but these types of events could be crucial to national risk 

assessments. Examining regional flow would also be useful for identifying the potential 

repercussions on the movement of food and other goods. At a local authority level, the analysis 

should be done for the whole urban area of interest to identify critical roads and then further 

work could focus on these areas specifically.  

Secondary hazards involved in flood events should be included in future analysis. 

The framework developed in this thesis could be applied to other hazards which impact on road 

travel. This will vary between places which hazards are most important to be modelled, and 

existing hazard risk assessments can be used as a guide. In England, it is flooding which has the 

greatest impact on the road network therefore, this should be the primary natural hazard focus 

(Brown, 2014). Whilst flooding is a primary hazard, there are often multiple secondary hazards 

which occur as a result of the storm which has caused the flooding. Jaroszweski et al., (2015) 

highlight that blockages in storms come from flooding and from other sources like fallen trees and 

collapsed roads. A future extension of this risk analysis framework should aim to include primary 

and secondary hazards which cause road blockages, to gain a more rounded picture of the 

disruption caused.  

Creating a national database which identifies areas at risk of being isolated in floods or cut off. 

Finally, this framework could be utilised to create a data product of places identified as at risk of 

being cut off in flood events. By running multiple flood scenarios, the results could be used to 

identify places where travel to and from the wider community is not possible. This is important 

information to know as current flood risk zones only identify places at risk of direct flood water 

contact, not areas which are not flooded but are isolated during the event.   
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8.6 Recommendations for Policy 

8.6.1 Flood management in York 

Several recommendations can be made for the city of York based on the results of this thesis’ 

analysis. Firstly, pinch points in the road network system should be identified and targeted 

drainage measures retrofitted to reduce the risk of road closure. Figure 7.19 indicates road which 

were identified as potentially being critical to the travel of commuters and school children, and 

more extensive quantitative work could be done to investigate the pluvial flood risk and 

disruption caused by closures of these roads.  

Secondly, if possible, the analysis conducted in this thesis should be extended to focus on retail 

journeys and tourists, a particularly important industry for York. These are both examples of 

transient groups which contribute to the local economy, therefore, keeping these groups moving 

around the city and the places they visit accessible during sudden onset rainstorms would be 

beneficial economically.  

Finally, the city council and flood risk partners should develop a strategy to increase the 

awareness of pluvial flood resilience within the local population and internal highways design 

teams. It has been shown that pluvial flooding does disrupt travel and time spent at businesses 

and should be given consideration alongside fluvial flooding, which is a much more well-known 

risk in York.  

8.6.2 Wider Policy for travel and risk management 

Based on the research presented in this thesis, several recommendations can be made for policy 

and practice. Firstly, local authorities, the level of government responsible for pluvial flood 

events, could integrate a more temporally dynamic approach to assessing the effect on travel, as 

demonstrated in the framework created in this thesis. Current surface water (pluvial) 

management plans states the number of homes at risk of surface water flooding, highlighting the 

focus on houses not the wider implications of travel disruption (Brown, 2014). This is despite the 

evidence pointing to more danger posed to people who drive into flood water and the large 

economic effects of travel disruption. This thesis therefore makes a case that this aspect can be 

modelled within a flood risk assessment and should be in the future. Spatiotemporal risk 

assessments for disruption to road networks are worth doing as roads are the lifelines of our 

society (Chen et al., 2007; Platt 1995; Nyberg & Johansson 2013) and there are a number of 

hazards which can disrupt them. The explicit function of the wider road network is missing from 

current flood risk assessments, despite making road networks resilient to extreme pluvial flood 
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events being a key theme of the UK’s Surface Water Management Plan (DEFRA, 2018). Key 

considerations when creating spatiotemporal flood risk assessments of road network effects 

would be the flood scenarios tested, the temporal properties of the origin-destination flow data 

and the specific population groups of interest. For sudden onset events, it is vital to model the 

peak of the hazard with the peak of the road travel. The framework should be used to simulate 

enough time periods to cover the part of the day of interest, and at least two flood magnitudes 

would be required. It is not just flood hazards which this framework could be applied to, other 

hazards like landslides, tree falls, and bridge collapses could also be investigated.  

Secondly, population data could be integrated into hazard risk assessments. This research has 

shown that time of onset is important because of the demands on the road network and the 

variable location of the in-travel population. The interest in monitoring flood events and other 

hazards is due to the impact on humans, therefore spatiotemporal population data should be 

included with flood risk assessments. Scenario planning is already a well-used tool in risk and 

hazard mitigation, so incorporating temporally specific population data and journeys is 

achievable. The combination of near-real time population, traffic and flood data are achievable 

and would create an almost dynamic picture of risk. Temporally specific population in travel data 

could also be integrated into risk assessments for other hazard assessments, for example 

landslides and disease vector mapping. 

Looking ahead, it seems likely that pluvial flash flood events will become more common, with 

increasing intensity in the UK (Boeing et al., 2019) without action to reduce the effect of climate 

change. Therefore, the country will have to adapt and prepare for pluvial flood events reducing 

travel by targeting resources to pinch points in the road system where flooding causes the largest 

disruption. With improvements in the data collected in all aspects of life, better datasets and 

approaches for modelling the spatiotemporal dynamics of the population in travel will be created. 

The framework developed here can be adapted to accommodate new data as the core issue will 

remain for our urban areas.  
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Chapter 9 Conclusions 

This thesis has explored the problem of pluvial floods disrupting travel in an urban area and the 

subsequent effect on travel times and time spent at workplaces and schools. A crucial element of 

this research has been understanding the interactions of spatial and temporal properties of the 

hazard, exposure and vulnerability elements which make up the risk. This research has also 

required an interdisciplinary approach combining theory and methods from population 

geography, transport planning, and natural hazards science. This interdisciplinary approach has 

led to novel methodologies being developed to enable spatiotemporal analysis of the effect of 

flooding on the population in travel.  

This chapter summarises the findings of the thesis and their applicability beyond the case study 

example chosen and is structured as follows. The first section presents the main findings, the 

second highlights the research contribution before the transferability of this research is 

summarised. Finally, the third section recommend further research which could be explored. 

9.1 Assessment of Thesis Aim and Main Contributions  

The overall goal of the thesis was to determine how daily variation in the urban population in 

travel interacts with the time of pluvial flood onset and magnitude to influence spatial and 

temporal disruptions to journey times and destinations. This goal has been achieved through the 

work set out in the three results chapters (5,6 and 7). It has been shown that the time of pluvial 

flood onset does have a substantial effect on disruption to travel time and time spent at 

destinations, as there are fluctuations in the number of people in travel.  

From the analysis conducted in this thesis, the following contributions have been presented: 

• Reconciling administrative and census data from different sources and years can cause 

issues parameterising the SurfaceBuilder247 model.  

• The development of a spatially weighted Monte Carlo simulation tool for modelling 

origin-destination flows through time. 

• The total amount of road flooded in an urban area does not need to be large for 

substantial disruption to occur. 

• Destination susceptibility to disruption from flooding can be assessed based on workforce 

or pupil travel, not just workplace or school site characteristics. 

• Floods disrupt travel of York’s commuters more than travel by its primary school children, 

due to length of journey time and number of commuters. 
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• Critical links can be defined locally by examining which closures lead to the most 

disruption to the destinations of specific population groups.  

• The time of flood onset is more important than flood magnitude for rapid onset pluvial 

flood events. 

• Extending the risk conceptual framework beyond static populations to cover travellers 

should be incorporated into transport-based flood risk assessments  

• Including spatiotemporal population data and examining a fine temporal scale of flood 

onset enhances the temporal aspects of transport-based flood risk analysis 

This research has provided knowledge contributions to the three disciplines from which the 

theory and methods underpinning the analysis were derived. It has also provided an example 

framework for tackling an applied research problem; travel disruption due to the presence of 

hazards on a road network.  

9.2 Transferability of methods and findings  

The methodology developed in this thesis could be transferred and scaled up to other geographic 

areas, population groups and hazards. The methodological framework, as shown in Chapter 7, is 

transferable to other local authorities in the UK, both urban and rural, and could be conducted at 

a larger scale than in this research if the computational power is available. The effect of other 

natural hazards on road travel could also be examined using the framework outlined, as events 

like landslides, earthquakes and fallen trees could be incorporated into the network analysis as 

barriers. Spatiotemporal flow data, as presented in chapters 5 and 6, could be applied to research 

areas beyond natural hazards. For example, for measuring access to health care services. At 

present there is a lack of spatiotemporal data for journeys of various different groups of the 

population, like tourists and the elderly, which restricts the applicability of these methods to the 

entire population. However, this is likely to improve over the next decade as more data is 

collected on movement around cities.  

9.3 Recommendations for Further Research 

Three key recommendations have been identified for future research projects examining the 

effects of flooding on travel and workplaces. Firstly, there are options for extending the work 

presented in this thesis by using the existing framework to model other time periods. Useful time 

periods to explore include the normal evening commute, Saturday and Sunday traffic and school 

holidays. By evaluating more time periods, a broader understanding of how change in the time of 

flood onset affects travel time would be achieved.  
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Second, developing alternative approaches for spatiotemporal flow data and calculating 

disruption from flooding to road travel. In this thesis, census data were used in a spatiotemporal 

population model and adapted to create spatiotemporal flow data of likely origin-destination 

journeys. There are alternative data sets and methods which could be used for this purpose, such 

as agent-based models, call detail records and smartphone GPS data and open source road 

network and traffic tools. For future research directions, incorporating agent-based models into 

the semi-dynamic analysis framework outlined in Chapter 7 for the purpose of determining the 

disruption to travellers from flooding could be explored.  

Finally, future research should aim to include more population sub-groups into the analysis in 

order to understand where the focus of mitigation actions should lie. Due to time and 

spatiotemporal data constraints, only commuters and primary school children were able to be 

included in the analysis conducted for this thesis. With more time to develop the spatiotemporal 

flow data, other groups of the population could be modelled and the effect of flooding on their 

travel assessed.  
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Appendix A Population Data Sources 

This appendix describes the data which were used in the SurfaceBuilder247 model for creating 

spatiotemporal gridded population data for the study site of the City of York. As a 20km buffer 

area around the study area is required, data for areas beyond the York local authority were 

included. The area which the study area and the buffer zone encapsulate is referred to as the 

analysis area in this appendix.  

All data sets  

Data for the following district authorities in Yorkshire and the Humber were used as inputs into 

the SurfaceBuilder247 model: East Riding of Yorkshire, Hambleton, Harrogate, Leeds, Ryedale, 

Selby, Wakefield and York. These are the authorities which fall within the analysis area. Microsoft 

access was used to extract the output area/workplace zones in the analysis area from the larger 

census data sets of these 8 district authorities.  

Output areas 

Population weighted centroids were used to calculate which output areas are within the analysis 

area. Output area is used as the basis for analysis as this is the finest spatial scale which the 

required census data is available. The source of these data was the 2011 census. 

Residential Population  

There are two aspects of the residential population data, the term time and non-term time 

population, as large numbers of students move around the country between their term and non-

term time addresses. Therefore, two population data sets are needed to reflect this internal 

population shift. York itself is a prominent university city, hence it is particularly important to 

consider the movements of the student population. The term time population will be dealt with 

first.  

The number of people in each age bracket is a main requirement for running the 

SurfaceBuilder247 model. The data table QS103EW, age by individual year, from 

www.nomisweb.co.uk, was chosen to enable the number of people in each population sub-group 

could be calculated.  The population subgroups chosen were: 0-4 years, 5-10 years, 11-17 years, 

18-64 years (university students), 18-64 years (non-students), 65-79 years, over 80 year. These 

population groups equate to the main school age groups, and now 16 and 17 year olds must be in 

full time education or training, the minimum age of the working population has been increased to 

age 18. There are two groups for the retired population, as the ‘oldest old’ are identified as one of 

http://www.nomisweb.co.uk/
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the most vulnerable groups in natural hazard events. As it is gathered as single year of age, these 

data are easy to consolidate into groups of the users choosing. These groups represent mutually 

exclusive groups whose daily movements can be assumed to follow similar patterns.  

These data are for 2011, however they can be extrapolated to the target year of 2016 through 

using mid-year estimates (MYE). MYE are calculated each year, however this is done for lower 

super output area level, one spatial level higher than the 2011 single year of age data. Therefore, 

it is not directly transferable and requires reweighting. The total population for the LSOA MYE was 

taken and proportionally split amongst the output areas within in it, assuming that the relative 

proportion of the population of each output area within an LSOA remained unchanged. This gave 

a new total population for each output area. This then required dividing between each population 

sub-group, and it was assumed the age structure of the population remained the same between 

2011 and 2015. This produced a data set of term time population, divided into age categories, for 

the year 2016.  

Data for out of term time population is provided for output area in five-year age categories, 

rather than single year of age like term time population. This gives an added complication as the 

five-year age categories do not match those chosen for analysis, or the English education system. 

The out of term time data was divided into the analysis age categories by assuming there were 

equal numbers of each age within a category and reassigning the population appropriately. This 

provides a reasonable estimate of the number of people in each of the analysis age categories for 

2011.  

MYE are not available for out of term time populations. In order to produce a reasonable estimate 

of the population, the percentage change for each output area between term time and out of 

term time total population was calculated for the 2011 data. This percentage difference was then 

applied to the term time totals to estimate what the out of term time population would be in 

2016.  

Immobile population  

This is the percentage of people in each output area who can be considered to be immobile due 

to the communal establishment they live in, for example prisons or long-term care facilities. 

QS420EW (communal establishment management and type) and DC4210EWla (communal 

establishment management and type by sex and age) accessed via the Nomis website were used 

to calculate the percentage of each of the population age categories who were immobile.  
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The age breakdown in each type of communal establishment is available as an average for a 

unitary authority. So, the data for York unitary authority was used and it was assumed that this 

could be applied to each occurrence of an establishment type.  

A threshold of 10 people was used as the minimum number of people in a communal 

establishment who would be considered. This is because any smaller population will blend into 

the general population and be difficult to distinguish. The types of communal establishments 

considered were Prisons, detention centres, care homes and secure mental health units.  

These data are for 2011 and were not scaled up using MYE as there is not data available for 

communal establishments outside of the census year. It was assumed that the percentages of 

immobile population would still be applicable, in the same way the proportional split of the 

population into age categories remained the same for the general population.  

Workplace zone data 

Workplace zones were created for the 2011 census to provide a census geography for the working 

destinations of the population. Workplace zones are used to define workplace destinations within 

this model. The age breakdown of the workers in each workplace zone were as well as the 

number of people were required, and this was taken from the sex by single year of age 

(workplace population) census data. The majority were in the 18-64 category, with a small 

percentage 64-79. The number of 16/17 year olds for each workplace zone were removed from 

the total, as those in this age group are now included in the education data set as the minimum 

age at which full time employment (without training) is permitted is now 18.  This gave a total 

number of people in each industry cluster for each workplace zone. 

The following data sets were utilised: 

WP605EW – Industry (workplace population) 

https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construc

t&dataset=1314&version=0&anal=1&initsel= 

Data capture year: 2011 

WP702EW - Sex by single year of age (workplace population) 

https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construc

t&dataset=1320&version=0&anal=1&initsel=  

Data capture year: 2011 

https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construct&dataset=1314&version=0&anal=1&initsel
https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construct&dataset=1314&version=0&anal=1&initsel
https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construct&dataset=1320&version=0&anal=1&initsel
https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construct&dataset=1320&version=0&anal=1&initsel
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Time profiles for each industry type were required to specify temporal commuting patterns in the 

model. Each industry type has different work patterns so require a different time profile. The time 

profiles used were ones created by Smith et al., (2015) in their work. There are 6 clusters of 

industries in total, covering all the industries listed in the census, and are categorised by those 

workplaces with similar working patterns e.g. a hospitability cluster, a retail cluster, an office-

based cluster etc.  

Travel to work data  

Census table WP702EW – Distance travelled to work (workplace population) was used to calculate 

how far people travel into York’s workplace zones. This data was captured in the 2011 census. 

This is for all usual residents aged 16-74 who work, and it is measured by Euclidean distance. This 

data is used in the model as a unique wide area dispersion radius for each workplace zone. The 

majority of workers were in the 18-64 age group. Those workers who were 16 or 17 were 

discounted as 16- and 17-year olds will no longer be in full time employment.  

The distance travelled to work, through the dataset WU02UK – Location of Usual Residence and 

Place of Work by Age, was also used to understand the proportion of people who lived and 

worked in York in order to base decisions on the size of buffer area.   

Care Homes  

The communal establishment data set includes care homes (see immobile population section), 

and this was used to give an initial estimate of the population in the analysis area residing in 

them. The data year is 2011. The types of care homes included were those under local authority 

control with and without nursing, and private care homes with and without nursing. This data was 

supplemented with York city council data 

(https://www.york.gov.uk/info/20135/residential_care/1462/residential_care ) which lists the 

five council run care homes in York and the data listed on care homes.co.uk which lists the 

locations and maximum number of residents a facility can have 

(https://www.carehome.co.uk/care_search_results.cfm/searchtown/York). Both of these data 

were captured in 2017.  

Hospitals and Health care facilities  

For inclusion in the spatiotemporal population model, the number of patients, age breakdown of 

patients and the location of the hospitals is needed. The number of patients needs to be split into 

inpatients, outpatients and A&E admissions, as these all have different time profiles, and broken 

down into an expected daily number. NHS digital has data for hospital episode statistics, which 

https://www.york.gov.uk/info/20135/residential_care/1462/residential_care
https://www.carehome.co.uk/care_search_results.cfm/searchtown/York
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provide the number of patients admitted and the admission category. These data also contain 

broad age categories. These data are at the resolution of healthcare provider, which can be an 

NHS hospitals trust, or for some private health care facilities a single hospital. The data for the 

2015-16 hospital episode statistics was used. For NHS trusts with multiple hospitals, the number 

of admitted patients were divided proportionally by the size of the hospital. Hospital size was 

considered to relate to the number of beds it contains for inpatient care. These data were found 

from hospital websites and CQC reports. In the analysis area, there is only one large hospital (The 

York Hospital) so this receives the majority of inpatients. It is also the only A&E facility, so all 

emergency admissions would be at the York Hospital. To supplement this data, the NHS choices 

website to search for hospitals, urgent care, minor injury centres and rehabilitation hospitals to 

get the number of beds at a facility and the services provided. The data capture year was 2017. 

Schools   

For schools in the buffer area, data from edubase was used. This includes the establishment’s 

details, number of pupils, location etc. This provided destination data for school age children. The 

age range for each school is given, and the majority fit within the population subgroups chosen 

for this analysis. However, some Junior schools, infant schools and nursery have an age range 

which overlaps the 0-4 and 5-11 categories. In these cases, the number of pupil’s was assumed to 

be the same for each age group, and thus divided into the analysis age categories appropriately.  

For schools in York, data from York City Council was used to give a more accurate representation 

of the number of pupils at a school. This data was from the following sources and was for the year 

2017:  

York City Council 

  https://www.york.gov.uk/directory/3/schools_directory/category/4  

  https://www.york.gov.uk/directory/3/schools_directory/category/5 

  https://www.york.gov.uk/directory/3/schools_directory/category/6  

Information provided: Name, Address, Postcode, Age Range, Admissions Policy, Opening 

Hours, Pupil Count 

Data capture year: May 2017 

Independent schools were taken from the independent schools council as these are not 

listed in York council data. This data was also for 2017. 

https://www.york.gov.uk/directory/3/schools_directory/category/4
https://www.york.gov.uk/directory/3/schools_directory/category/5
https://www.york.gov.uk/directory/3/schools_directory/category/6
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 Independent School’s Council 

 https://www.isc.co.uk/schools/england/yorkshire-area-north/york/  

Information Provided: Name, Address, Postcode, Age Range, Number of Pupils 

(borders and day) 

 

 

 

  

https://www.isc.co.uk/schools/england/yorkshire-area-north/york/
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Appendix B Conference papers 

Short paper abstract submitted to the GISRUK 2019 conference 

Integrating spatiotemporal dynamics for modelling disruption to 

road travel in flood events 

 

Kate Rawlings11, Jim Wright21, Alan Smith32, Sally Brown43 and Jeremiah 

Nievesǂ1 

1School of Geography and Environment, University of Southampton  

2Geography, Earth and Environmental Sciences, University of Plymouth 

3School of Engineering, University of Southampton 

3 January 2019 

 

KEYWORDS: spatiotemporal population, flood risk, network analysis 

Abstract 

Flooding can significantly disrupt road networks and the time of day or week in which a flood 

event happens has a large effect on how disruptive it is. For example, a flood event during the 

morning rush hour will likely affect more people than one which occurs on a Sunday morning as 

demand on the road network is greater. Previous GIS-based research has introduced disruptive 

hazard events to road network models, but have not considered the temporal nature of how risk 

arises from the interaction of population movement with flooding. This research examines how 

standard GIS methods compare to an enhanced method for assessing the effect of a storm event on 

the travel of two population groups, primary school children and commuters, in York, UK.  

Figure 1 outlines the methods compared in this work. The standard method (1a) uses school 

catchment areas and origin-destination travel to work data to determine the output areas associated 

with a destination (school or workplace zone). These origin-destination pairs are used in ArcGIS 

 

1 K.Rawlings@soton.ac.uk 
2 j.a.wright@soton.ac.uk 
3 alan.smith@plymouth.ac.uk 
4 sb20@soton.ac.uk 
ǂ j.j.nieves@soton.ac.uk 
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network analyst to generate routes as a measure of travel function. The enhanced method (1b) 

utilises spatiotemporal population data generated using the Population 24/7 model (Martin et al., 

2015), which uses census data and other administrative information to create gridded estimates of 

the number of people in an area at a given point in time. For example, in this work gridded 

population estimates are produced for a Tuesday morning in term time and out of term time. 

Origins are assigned a destination using an R code that statistically calculates the grid cells from 

which people most likely travel to a destination. Finally, routes are generated using ArcGIS 

network analyst. Both methods will compare routes generated in a non-flood baseline scenario to 

the same flood scenario, generated using the Flowroute-iTM flood model from Ambiental Risk 

Analytics, in order to quantify the disruption to road travel from the flood. It also ensures any 

variation in results between the methods is due to their differences rather than the flood simulation.  

It is expected that the enhanced method’s use of temporally specific population estimates will 

provide more detailed information on the disruption to road travel than the standard method. This 

data could be used to create flood risk assessments tailored to specific day times of interest. These 

findings will be useful to those working in the field of spatiotemporal population data, but also 

those working on assessing disruption to road travel, particularly from natural hazards.  

 

References  

Martin, D., Cockings, S., Leung, S, 2015 Developing a Flexible Framework for Spatiotemporal 

Population Modelling. Annals of the Association of American Geographers, 105(4), 754-772 
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Spatiotemporal modelling of flood-related impacts on daily 

population movement 

 

Kate Rawlings51, Jim Wright61, Alan Smith72, Sally Brown83 and Jeremiah J 

Nievesǂ1 
1School of Geography and Environmental Science, University of Southampton  

2Geography, Earth and Environmental Sciences, University of Plymouth 
3Department of Life and Environmental Sciences, Bournemouth University 

July 2, 2020 

Summary 

This paper presents research combining spatiotemporal population flow data, flood modelling and 

network analysis to examine the effect of time of flood onset and flood magnitude on travel across 

a city for commuters and primary school children.  Findings quantify that flood onset time has an 

effect on the disruption to travel comparable to flood event magnitude.  

 

KEYWORDS: Spatiotemporal modelling, Network Analysis, Risk Analysis 

 

1. Introduction and Background 

The majority of fatalities caused by pluvial flash-floods in post-industrial countries concern those 

travelling in a vehicle (Debionne et al., 2016; Arrighi et al., 2019). The number of people travelling 

varies greatly over the course of the day, week or year, however mobility aspects are not frequently 

considered in flood exposure and risk assessments (Debionne et al., 2016; Dawson et al., 2011). 

This lack of dynamic population consideration means an important aspect of risk is missing when 

planning for flood events. 

Risk is a dynamic phenomenon and varies over both space and time (Mechler & Bouwer, 2014). 

The ‘risk equation’ is a common conceptualisation of risk but rarely includes time or space (Hu et 

al., 2017). Therefore, in this paper it is adapted to include both (Equation 1).  

Risk = f(Hazardst,Exposurest, Vulnerabilityst)         (1) 

When studying the effect of floods on human populations, the time of flood onset is important as 

the same hazard event could have different effects due to variation in the exposure and 

vulnerability components of the risk equation (Freire et al., 2013; Dawson et al., 2011). Exposure is 

highly time dependent (Aubrecht et al., 2012),  for example, a flood occurring during the Monday 

morning rush hour would mean more people are exposed on the roads than a Sunday morning. 
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There are also differences in vulnerability as certain groups of the population are less able to react 

swiftly to floods, for example young children and the elderly (Smith et al., 2015).  

This paper presents a proof of concept for combining spatiotemporal population flow data with 

flood data and network analysis to quantify the effect of time of flood onset versus size of flood 

hazard. The hypothesis is that the time of flood onset has an effect on travel disruption comparable 

to flood event magnitude. Commuters and primary school children are the population groups 

selected for analysis using a case study for York, UK.  

2. Methods 

Spatiotemporal population origins were produced in two different ways. (i) For commuters, census 

data describing output area to workplace zone commutes were combined with Labour Force Survey 

data to create temporal profiles of numbers of people travelling at a given time. (ii) The origin data 

for schoolchildren were generated through a spatially weighted Monte Carlo process converting 

spatiotemporal gridded population data into a set of likely origin centroids. The destinations were 

the population weighted centroids for the workplace zones and the point location of the primary 

schools. Inundated areas were delineated through pluvial flood modelling of York using the 

Flowroute-iTM model (Ambiental Risk Analytics). These data were analysed using ESRI’s ‘closest 

facility’ algorithm and traffic data from HERE to model driving routes for a specific time of day.  

A scenario-based approach was taken to test the hypothesis (Table 1). First a ‘baseline’ set of data 

were created to be a control comparison to the flood scenarios. Two factors, time of flood onset and 

size of flood event, were varied in turn. Three times of flood onset were picked to cover the 

morning commute, 6am (flood time 1, FT1), 7am (flood time 2, FT2) and 8am (flood time 3, FT3). 

1 in 30 and 1 in 100 year flood layers formed barriers to travel at each of these onset times and the 

output routes saved for comparison to each other and the baseline. The network analysis was 

conducted at set points during the morning commute (7am, 7:30am, 8am, 8:30am and 9am) to 

capture variation. The analytical overview for this paper is presented in Figure 1. The origin, 

destination and flood layer (if applicable) were used in the network analysis, producing shapefiles 

of the routes taken between each origin-destination pair with distance and travel time. This 

procedure was repeated for each time step in the scenario.  

Table 1 Scenarios run during the analysis 

Scenario Name Description 

Non-flood Baseline Network analysis with no flood layer included as a baseline.  

Flood time 1, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood 

onset at 6am.  

Flood time 2, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood 

onset at 7am. 

Flood time 3, 30yr flood 

 

Flood time 1, 100yr flood 

Network analysis with flood layer for a 1 in 30 year event, flood 

onset at 8am. 

Network analysis with flood layer for a 1 in 100 year event, flood 

onset at 6am. 

Flood time 2, 100yr flood Network analysis with flood layer for a 1 in 100 year event, flood 

onset at 7am. 

Flood time 3, 100yr flood Network analysis with flood layer for a 1 in 100 year event, flood 

onset at 8am. 



Appendix B 

215 

 

3. Results and Discussion 

Three examples of the results from the analysis are given. Firstly, Figure 2 compares road travel 

between the baseline and a flood scenario, the FT1 1 in 30yr scenario. Whilst there are similarities 

in road usage volumes, with the city centre and ring road most used, a northern part of the ring road 

is flooded in Figure 2b and longer routes are taken outside of the city to avoid flooding.  

Secondly, Figure 3 compares the average travel time to an example destination between all 

scenarios. FT1 has the highest average travel times, higher than the baseline at all given time 

points, with FT2 rising above the baseline after 7:30am. In Figure 3a the increase in travel time for 

FT2 is similar to FT1 from 8:30am, and in Figure 3b average travel time rises but not enough to 

reach FT1. In both Figure 3a and 3b, the results for FT3 match the baseline until 9:00am where 

there is a slight increase from the baseline. The pattern of results is similar between Figure 3a and 

3b, but with a greater increase in travel time seen in 3b as the flood magnitude has increased.  

Finally Figure 4 is a summary of the effect of each disruption scenario on the city. The time lost 

was calculated by aggregating the additional travel time per origin-destination pair and, if a journey 

to a destination was not possible, the time for a full work/school day. This gives the total time lost 

at workplaces and schools due to flood disruptions. Commuters have more time lost partly due to 

higher numbers of commuters and workplaces meaning more journeys take place. It shows that the 

disruption is greater from FT1 for both magnitudes, and the decrease in time lost is greater when 

changing the time of flood onset than changes in the flood magnitude. This therefore provides 
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Figure 1 Diagram of analysis workflow. Black boxes indicate inputs and outputs, the 

blue box optional flood data, the yellow boxes processes and the dashed arrows steps 

included for flood scenario analysis.  
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evidence to support the hypothesis that flood onset time has a comparable effect to flood 

magnitude. 

 

Figure 2 Road usage maps for 8:30am, a) non-flood baseline conditions and b) 1 in 30 year flood at flood 

onset time 1 (FT1) (6am).  

a) b) 

Figure 3 Average travel time of origins to an example destination (Workplace zone E33010098) for 

each flood magnitude a) 1 in 30 b) 1 in 100. The three flood onset scenarios plus the baseline are 

shown in each.  

a) b) 
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4. Conclusion 

These results show that there are spatial and temporal differences in the impact of flooding on road 

travel, with time of flood onset and magnitude affecting the average travel time to a destination. 

This workflow could be applied to other cities and types of hazard for risk assessments including 

spatiotemporal population data.  
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Appendix C  Additional Figures for Chapter 6 

Figure A.1 presents the 215 workplace zone destinations, categorised into quintiles based on the average travel time increase experienced to reach them during the 

flood event. The red destinations denote where no travel to this point was possible during the flood event, and these were broadly similar between the two sets of data 

with spatial clustering primarily in the city centre and a couple of places in the suburbs. In both data sets there is spatial clustering of destinations which were more 

affected by the flood event and those which were least affected.  

Figure A.2. To identify spatial patterns in the flood scenario data, again the average travel time were mapped for each WPZ. This again showed spatial correlation in 

where the destinations in each quartile were distributed. There were broad similarities between the data for Method A and Method B. 
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Figure A.1 Method A (a) and Method B (b) average increase in travel time to a destination presented as quintiles. Contains public sector information licensed under the 

Open Government Licence v3.0 

 

a. b. 
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Figure A.2 Quartiles for destinations with flood scenario. Contains public sector information licensed under the Open Government Licence v3 
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Glossary of Terms 

Exposure: The scope of population, infrastructure and other assets located in a potential hazard 
area (Hirabayashi et al., 2013) 

Flood: Flood defined in insurance contracts as “temporary covering of land by water as a result of 

surface waters escaping from their normal confines or as a result of heavy precipitation” (Kron, 

2005) 

Fluvial: Water whose source is a river 

Hazard: A threatening event which has the potential to cause harm and has a calculated 

probability of occurrence (Kron, 2005).  

Natural Hazard: Any natural process which can result in harm to society e.g. volcanic eruption, 

earthquake, flood, wild fire, drought 

Network: A series of links and nodes which combine to form a network 

Network science: The study of network representations of physical, biological and social 

phenomena leading to predictive models of these phenomena (National Research Council, 2006). 

Ones involving roads must have the topology of the transport network and the location of people 

who are evacuating/moving (Brachman & Dragicevic, 2014) 

Pluvial: Water accumulated on the surface through rainfall  

Risk: Dynamic function of hazard, vulnerability and exposure (Mechler & Bouwer, 2014) which 

fluctuates over space and time.  The function of hazard, vulnerability and exposure over space 

and time.  

Spatiotemporal: Looking at both the spatial and temporal factors/dynamics of a phenomenon  

Vulnerability: The degree a person is able to help themselves during a hazard event, influenced 

by the presence, or lack of, resources to cope with a hazard (Civil Contingencies Secretariat, 2008; 

McFadden et al., 2006) Everyone who is exposed is vulnerable to flooding, but some are more 

susceptible due to social factors, therefore the risk is greater (Rogelis, 2015).  
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