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The number of people travelling around an urban area varies greatly throughout the course of a
day, week or year. As a result, the daily timing of a flood event, relative to these mobility patterns,
is a critical factor in how a flood affects the local population. However, population mobility is
seldom considered in flood risk assessments, meaning an important aspect of risk is missed. This
thesis aims to investigate how daily variation in the travelling population, pluvial flood onset
timing, and pluvial flood magnitude, interact to cause spatial and temporal variation in disruption
to journey times and destination disruption across the urban area of York, UK. The population has
been considered in subgroups, aligned to age and economic activity characteristics as these have
been shown to have distinctive temporal characteristics. In each chapter, commuters and/or
primary school children are the population groups selected as exemplars for analysis.

This thesis comprises three analysis chapters. The first analysis chapter’s goal was to develop a
framework for combining spatiotemporal population flow data with GIS network analysis, using
journeys to primary schools as an example. The second analysis chapter examined how estimated
flood-related commuter travel disruption was affected by different approaches to spatiotemporal
population modelling. The third analysis chapter’s goal was to assess if the time of flood onset is
more important than flood magnitude for disrupting commuter and school travel in York. Overall,
this thesis has provided evidence that for sudden onset flooding scenarios, timing of flood onset is
a greater determinant of hazard-related travel disruption than flood magnitude. The semi-
dynamic framework could be applied to other urban areas to model the effects of pluvial flood
events, as it works at the scale of a local authority, and to other types of hazard which disrupt
travel like landslides, earthquakes and fallen trees.
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Chapter1 Introduction

1.1 Project Background

Flooding is a major global natural hazard with three billion people affected between 1990 and
2010 (Smith, 2013). The attractiveness of floodplains for urban development has resulted in a
spatial concentration of populations in flood risk zones (Smith, 2013), with an estimated one
billion people living in these environments (Di Baldassarre et al., 2013), amplifying flood risk
exposure. Consequently, research into the environmental, social and economic aspects of flood
risk is very active. Risk theory is used as a conceptual framework for assessing the consequences

of hazards, such as floods, and is often represented through a risk equation (Equation 1.1).

Risk = Hazard x Exposure x Vulnerability ~Equation 1.1

Whilst spatial aspects of risk are always considered, as natural hazards are inherently spatial
phenomenon, the temporal properties of risk are often neglected in research (Aubrecht et al.,
2013a; Freire & Aubrecht, 2012). The temporal aspects of the risk equation are critical though as
risk is not a static or ubiquitous concept and continually evolves. In particular, population
movement is a dynamic factor at a local level (Dawson et al., 2011), as the interaction between
where people are and the time of hazard onset can substantially change the exposure and

vulnerability elements of risk (Freire et al., 2013; Aubrecht et al., 2014; Terti et al., 2015).

In the past it had been difficult to capture temporal population dynamics due to the difficulties of
knowing the location of individuals at a given point in time and the effect of daily, weekly and
seasonal fluctuations on population counts (Stepanov and Smith, 2009). The decennial census
provides invaluable demographic data, however it represents a static night time population
distribution (Smith et al., 2014). Spatiotemporal population modelling has been developed to
address this issue, including the Population24/7 project in the UK which developed a framework
using the SurfaceBuilder247 model (Martin et al., 2015) and Dynapop in the USA (Aubrecht et al.,
2014). These can model daily, weekly and seasonal movements of the target population by
combining census data with administrative data sets. The availability of temporally dynamic

population data can be applied to enhance risk assessments.

The UK government describes flooding from all types as the greatest natural hazard risk to the UK
(Cabinet Office, 2011). An estimated 5.4 million properties, 1 in 6 of those in England, are at risk
of flooding with an average damage of £1.1 billion a year (Priestley & Rutherford, 2016). The

endangerment of life, physical and mental health issues, economic damage to property and
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agricultural crops, loss of access to services and damaged transport networks are some of the
consequences of flooding in the UK (Pitt, 2008; Cabinet Office, 2011). The government has
committed to spending £2.5 billion between 2015-2020 on flood defences (Priestley &
Rutherford, 2016). However, this capital investment is only expected to reduce flood risk by 5%
overall (Priestley & Rutherford, 2016), so flood defences are not the only strategy which is

required. Improving societal and infrastructure resilience and adapting to flood events is vital.

Pluvial flooding is the type of flooding caused by heavy rainfall and is prevalent in urban areas
where natural drainage is reduced by impervious urban surfaces (Li et al., 2018). These events
often occur over a short period of time (Melo et al., 2015), therefore reducing the ability for flood
forecasts and warnings (Li et al., 2018; Boeing et al., 2019). Pluvial flood events in urban areas
disrupt road networks as they can cause road links to be impassable for anywhere between a few
hours to a couple of days, if there is insufficient drainage for the rainfall. These are small, localised
events when compared to fluvial flooding and do not get as high profile news coverage. However,
they can be significant for the affected communities. Within the context of climate change, it
seems apparent that increasingly intense rainfall is very likely (Boeing et al., 2019), therefore
increasing the likelihood of disruption to road users. Continued population increases and urban
expansion also increase exposure of people and capital in at risk areas (Mechler & Bouwer, 2014).

Therefore, methods for estimating the impact of pluvial flooding on road travellers is useful.

For UK infrastructure, natural hazards, especially pluvial flooding, are one of the top risks to
maintaining normal function (Cabinet Office, 2011; Carter, 2015). Road networks are one aspect
of infrastructure which are affected by flooding. They are ‘lifelines’ as roads provide access to
health services, economic opportunities and leisure activities (Chen et al., 2007; Platt 1995;
Nyberg & Johansson 2013), so any closure can result in negative impacts for individuals,
businesses and government. Figure 1.1 illustrates how a number of major roads (Motorways and
A roads) coincide with the historical flood data layer (the combined maximum extents of all flood
events since 1946). Whilst this does not necessarily mean that all these flood events resulted in
road inundation, Figure 1.1 does show that large parts of the country’s major road networks are
at risk of flooding. During emergency situations, road networks are often the primary means of
evacuating an area and providing vital resources (Rogelis, 2015), therefore maintaining function is
essential. When damaged it is a priority to repair road links swiftly, however, this comes at a great
cost. For example the emergency repairs to roads following Storms Desmond and Eva (2015) cost

£40 million (Hankin et al., 2016).
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Flooding on the roads can affect a greater geographic area and population than the footprint of
the flood itself due to the restrictions on travel and congestion. The 2007 flooding in
Gloucestershire trapped up to 10,000 people overnight in their cars as the M5 and other
surrounding roads flooded and there were no alternative routes. In terms of economic
consequences, it is estimated the summer 2007 floods caused £674 million in damage to critical
infrastructure, with a knock-on effect of £4bn in damage to the economy overall (Pitt, 2008;
Cabinet Office, 2011). There are numerous examples of recent events which have negatively
affected national infrastructure including the 2007 summer floods, 2009 Cumbrian Floods,
2013/14 winter floods in the South West and the 2015 winter floods in the North of England
(Cabinet Office, 2011).

1.2 Statement of the Research Problem

As described in Section 1.1, the risk of flooding affecting road travel is widespread and the
number of people travelling around urban areas varies greatly throughout the course of a day,
week or year. As a result, the daily timing of a flood event, relative to these mobility patterns, is a
critical factor in how a flood affects the local population. The dynamic nature of this problem
increases the complexity of modelling the effects, and population mobility is seldom considered in
flood risk assessments. Another source of complexity is that the conceptualisation of risk itself
(Equation 1.1) should consider the spatial and temporal dynamics of each of its constituent parts.
This thesis will attempt to encapsulate these complex spatial and temporal dynamics under one
framework to further the development of spatiotemporal risk assessments for disruption to road

networks.

The case study of pluvial flooding in York, UK has been chosen for the development of the
spatiotemporal risk analysis framework, described in more detail in Section 4.1.1. Pluvial flooding
has been chosen as the temporal scale of these events is short and they often occur with little
pre-warning, meaning they are suited towards analysing the interaction with daily population
movements. The population has been considered in subgroups, aligned to age and economic
activity characteristics as these have been shown to have distinctive temporal characteristics. In

this thesis the travel of commuters to work and primary school children to school is modelled.

1.2.1 Policy context

As the case study site is York, England, relevant government policy documents which apply to
England were considered. The Pitt Review (Pitt, 2008) was a milestone in UK flood risk policy and

was commissioned following the summer 2007 floods. The key recommendations from this report
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have translated into UK flood legislation, in compliance with European directives, and are
referenced in subsequent government reports (for example Keeping the Country Running: Natural
Hazards and Infrastructure, Cabinet Office, 2011). Table 1.1 outlines specific policy documents

which are applicable to this PhD at both the national and local level of government.

Table 1.1 List of policy documents utilised in this thesis

Document Use in PhD

The Pitt Review (Pitt, 2008) Used for core understanding of UK
government policy and the specifics of
transport issues in flood events.

Keeping the Country Running: Natural Hazards Guidance on past issues, current government

and Infrastructure (Cabinet Office, 2011) strategies, definitions of critical infrastructure
National Flood Resilience Review (Cabinet Most recent review of flooding, includes
Office, 2016) sections on transport infrastructure resilience.
Surface Water Management Action Plan Most recent review which contains policy on
(DEFRA, 2018) the management of pluvial flooding.

Surface Water Management Plan (City of York  Understanding specific issues and policy to

Council, 2012) pluvial flooding in York
City of York Strategic Flood Risk Assessment Background information on flood risk
(City of York Council, 2013) assessments in York

York 13 August 2018 Section 19 Surface Water The most recent pluvial flood event which led

Flood Investigation (City of York Council, 2019) to an investigation, used for comparing flood
areas and understanding the disruption
caused by a historical event.
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1.2.2 Conceptual interdisciplinary diagram

The research problem of floods causing disruption to travellers and those living in the surrounding
area is a complex one requiring the inclusion of several disciplines’ theory and methods;
population modelling, flood risk theory and modelling and transport studies (Figure 1.2). To
achieve the aims of this research project, all three were combined producing innovation in the

merging of each.

Spatiotemporal
population modelling

Transport planning Hazard modelling and
and modelling risk mapping

Innovation: Linking gridded spatiotemporal population data to network analysis
Innovation: Improvement in the representation of people in travel for risk analysis

Innovation: Incorporating time of day of travel disruption into hazard risk assessments

W N PR

Innovation: Bringing these disciplines together in one framework to provide insights

on flooding disruption to populations travelling around an urban area

Figure 1.2 The interdisciplinary elements and innovations which are incorporated in this thesis
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1.3 Research Aims and Objectives

The overall goal of this research is:

To determine how daily variations in the urban population in travel interact with the time of
pluvial flood onset and magnitude to influence spatial and temporal disruptions to journey times

and destinations.
To address this goal, the following aims and objectives have been set for each results chapter:

Chapter 5
Aim: To develop a framework for combining spatiotemporal gridded population data with GIS
network analysis, using journeys to primary school as an example.
1. Create a baseline spatiotemporal representation of primary school children’s location
across the study site, including the in-travel population.
2. Evaluate the use of spatiotemporal gridded data for representing population in travel.
3. To develop a method for converting the output from the SurfaceBuilder247 model into

origin-destination flows for use in GIS network analysis.

Chapter 6
Aim: To assess the differences between using census origin-destination data and spatiotemporal
population derived origin-destination data to measure the impact of a pluvial flood scenario on
travel in York.

1. Generate pluvial flood scenarios for road travel disruption testing.

2. Analyse the differences in origin locations between census-derived origin-destination flows

and flows simulated from workplace catchments using Chapter 5’s methodology.
3. Examine the impact of the two different approaches to modelling spatiotemporal
population flows on the simulated road travel disruption from pluvial flood hazards.
4. Test the inclusion of floods as obstructions in the network analysis tool.

5. Test methods for the aggregation and presentation of the results.

Chapter 7
Aim: To analyse whether the time of pluvial flood onset is more important than flood magnitude
for disrupting commuter and primary school travel in York.

1. Analyse the extent to which pluvial flood magnitude and flood onset time affect journey

times due to road network disruption.

2. Assess whether commuter's or school children's travel to their destination is affected the

most.
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3. Identify schools and workplaces which are most susceptible to disruption from flooding
and the effect pluvial flood magnitude and pluvial flood onset time has on identifying

them.

1.4 Novelty of this Thesis

As highlighted in Section 1.2.2, this thesis is interdisciplinary, and these innovations lead to the

following novel aspects of the research:

e An original empirical assessment of hazard magnitude versus timing of flood onset in
relation to disruption to the population in travel.

e It generates temporally specific origins and destinations from the output of the
SurfaceBuilder247 spatiotemporal model for use in network analysis for the first time.

e It highlights how ‘critical roads’ can be viewed from the perspective of which population
group is using a road network for a specific purpose, rather than from a topological
perspective.

e Introduces a semi-dynamic workflow through syncing the temporal properties of
population, traffic and flood data.

e Atransferable and scalable methodology has been developed for assessing destination

susceptibility to travel disruption

1.5 Thesis Structure

This chapter has introduced the research problem addressed in this thesis and stated the aims

and objectives of the research. The novelty of the project has also been highlighted.

Chapter 2 provides the conceptual background for this research, including risk theory and the
spatial and temporal components of risk. How risk is defined in the wider literature is discussed
before the definition of risk which is applied in this work is stated. The application of risk theory

within the context of the research problem is the third section.

Chapter 3 reviews the literature relevant to the three disciplines required for understanding the
effect of pluvial flooding on road travel. The first section covers hazard modelling and theory for
pluvial flooding, summarising pluvial flood policy and history in England, then the modelling
methods used to simulate flood events and assess their risk. The second section reviews
spatiotemporal population modelling, rooted in population geography, its origins, implementation
and alternative new data sources for modelling people travelling across an area. This section also

reviews the methods for spatiotemporal population modelling. The third section focusses on
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transport planning and modelling, summarising key concepts which are applied in this thesis. Data
and methods for analysing people in travel and network analysis are also presented. The fourth
section draws the three disciplines together to the specific issue of modelling disruption to road
travellers from pluvial flooding by applying temporally specific population data. The final section

presents the evidence gap which has been highlighted through the review of the literature.

Chapter 4 discusses the specific data, methods and models applied in this thesis. The study
design, including choice of case study, population groups and flood scenarios are covered in the
first section. The second section describes the models used for pluvial flood modelling,
spatiotemporal population modelling and network analysis in turn. The third section presents an

overview of the thesis and the methodology of each of the three analysis chapters which follow.

Chapter 5 is the first results chapter and focusses on the development of a framework for
converting spatiotemporal population data, from SurfaceBuilder247, into a point format for use in
GIS network analysis. The York study area is used, and the focus is on primary school children. A
spatially weighted Monte Carlo analysis was used to convert the gridded data into a point format,

meaning the temporally specific population data could be used in network analysis.

Chapter 6 is the second results chapter. The method developed in Chapter 5 is applied to a
different population group, commuters, and compared to census origin-destination flow data.
One pluvial flood scenario is introduced to gain an initial understanding of the impact of flooding

in the network analysis model and resultant travel times.

Chapter 7 is the final results chapter and addresses the central question of whether the time of
day a pluvial flood event occurs at has as much of an effect on travel times as increasing the
magnitude of a flood event. A semi-dynamic methodology is applied where three flood onset
times (6am, 7am and 8am) are tested for two flood magnitudes (1 in 30 year and 1 in 100 year).
The routes to schools and commuters were modelled using network analysis and the travel times

for each destination across the scenarios were compared to a non-flood baseline.

Chapter 8 analyses the results presented in the previous three chapters to identify key
contributions which have emerged from this research. The transferability and scalability to other
sites, natural hazards, population groups and transport systems is then discussed before the
uncertainties and limitations of this work. The final two sections of the chapter cover the future

recommendations for research and recommendations for policy which can be made.

Chapter 9 summarises the work conducted in this thesis and states how the aims and objectives
of the thesis have been met. The contribution of this research and future research directions are

also summarised.
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Three appendices follow the conclusion. Appendix A describes the population data applied in the
spatiotemporal modelling part of this, Appendix B the conference papers submitted during this

research project and Appendix C additional figures for Chapter 6.

10
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Chapter2 Conceptual Framework

This chapter sets out the research problem addressed in this thesis and the risk theory which
underpins it. Risk is an integral part of society and a person’s evaluation of risk is an important
determinant of human behaviour (Slovic et al., 2004). Natural hazards like floods, hurricanes,
earthquakes, landslides and volcanic eruptions, are some of the most dangerous events to human
health and wellbeing. Hence judging the risks associated with them is vital. This chapter is divided
into three sections; Section 2.1 defines risk and its constituent parts, Section 2.2 outlines the
spatial and temporal aspects of risk and Section 2.3 covers the application of risk theory to the

research problem set out in Chapter 1.

2.1 Defining Risk

There are several ways of defining risk and the components which contribute to a risk. This
section compares the different definitions of risk and states the definition used in this thesis. The

hazard, exposure and vulnerability elements of risk are then covered.

2.1.1 Risk

Risk is complex and there are various perspectives on its framing; from the ‘risk equation’ of the
natural sciences (Romieu et al., 2010; Fuchs et al., 2013) to Beck’s ‘Risk society’ concept (Beck,
2002) in the social sciences. Therefore, the definition of risk is often specific to the context of the
analysis being conducted. There are two perspectives which natural hazards can be viewed from;
‘hazard risk’, which focuses on the physical hazard and the damage the physical processes cause,
and ‘disaster risk’, which focuses on the socioeconomic factors that combine with the physical
hazard to cause a disaster. The natural sciences have previously focussed on the ‘hazard risk’
perspective, which involves linking physical hazards to their expected damage, through calculating
the vulnerability of physical objects (Romieu et al., 2010; Fuchs et al., 2013). This is likely due to
the relative ease of calculating physical hazard impacts and economic exposure compared to
quantifying social vulnerability (Fekete, 2009; Koks et al., 2015). Following this perspective, risk
can be defined in the natural sciences as the expected damages or potential loss to an exposed
system from a hazard with a given probability (Aubrecht et al., 20133a; Yin et al., 2016). This
probabilistic view of risk (Carrdo et al., 2016) can be expressed in the form of Equation 2.1 and is
applied by many researchers in the hazards literature (for example Eiser et al., 2012; Klijn et al.,

2015; Kron, 2005; Yin et al., 2016).

11
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Risk = probability(of hazard) x consequences(of hazard) Equation 2.1

This is useful in studies of physical objects, like buildings, or economic exposure. However, this
definition does not account for the social factors of risk. The United Nations International Decade
for Disaster Reduction in the 1990s marked the shift from a hazard-centric approach to using risk
as a central component of disaster management (Cutter et al., 2008), providing a more
encompassing view of a situation and the uncertainty associated with risk analysis (Aubrecht et
al., 2013a). Since the International Decade for Disaster Reduction, it has been argued that
socioeconomic variables are a bigger influence on a ‘disaster’ than the ‘natural’ hazard (Aubrecht
et al., 2013a; Wisner et al., 2004). Therefore, by framing risk in a way which captures social
vulnerability, it becomes an assessment of ‘disaster risk’ rather than just ‘hazard risk’ (Romieu et
al., 2010). This acknowledges that disasters are not just natural hazards (Aubrecht et al., 2013a),
but a combination of natural processes and human actors. The most recent UN framework, ‘The
Sendai Framework for Disaster Risk Reduction 2015-2030’ (Nations Office for Disaster Risk
Reduction United Nations, 2015), cements this focus on disaster risk management into the next

two decades.

To encapsulate disaster risk, a common definition considers risk as a product of three
components; hazard, exposure and vulnerability (Equation 2.2) (Mechler & Bouwer, 2014; Koks et
al., 2015; Freire et al., 2015). This is based upon Crichton’s ‘Risk Triangle’ (Crichton, 2008) and is
favoured by spatial planners and social scientists (Albano et al., 2015). In some applications this
equation differs by only including hazard and vulnerability (Equation 2.3), as vulnerability can be
considered to incorporate exposure (Romieu et al., 2010). However, the United Nations Office for
Disaster Risk Reduction considers exposure as independent (Aubrecht et al., 2013b) and Klijn et

al.,, (2015) argue the understanding of risk is richer for this division.

Risk = Hazard x Exposure x Vulnerability Equation 2.2

Risk = Hazard x Vulnerability Equation 2.3

2.1.2 Hazard

A hazard can be described as a threatening event (Kron, 2005) or phenomenon which can result in
harm to people, economic assets or the environment. In line with the concept of ‘hazard risk’
described above, hazard is often addressed in a quantitative way, through a measure of the
probability of occurrence or the magnitude of the hazard event. In reality, it is rare for there to be
a single hazard in isolation and there are often compound hazards triggered by the main hazard.

For example, in a flood situation there are hazards associated with the floodwater itself, affected

12
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by its depth and velocity, but also secondary hazards, like waterborne diseases and debris. All
possible hazards require consideration to fully understand the risk of a situation and ensure
measures to mitigate one hazard do not lead to increased danger from another related hazard.
However detailed examination of all hazards is difficult and often not possible within the scope of
a study, leaving the main hazard as the focus. Finally, a hazard does not exist in isolation as it is a
component of risk and the magnitude, spatial and temporal properties of it affects the level of

exposure and vulnerability of a society.

213 Exposure

Exposure is considered the amount of population, infrastructure and other assets within a
potential hazard area (Hirabayashi et al., 2013). Population data are used to calculate the number
of people within a hazard zone (Smith et al., 2014). Whilst this does bring humans into the
consideration of risk, it is more of a ‘head count’ of the number of people in an area and does not
consider the social factors of why risk varies between population sub-groups in depth. Exposure
often includes an economic measure of the damage which could be inflicted by a hazard of a
given size (Jongman et al., 2014). Asset exposure is a key part of calculating Average Annual Loss
(AAL), the value used in the insurance industry to assess the risk of insurance losses (Hallegatte et
al., 2013). So, whilst hazard tends to be framed within the physical sciences, exposure is often
framed within economics and the quantifiable number of people in the area affected by a hazard.
As discussed in Section 2.1.1, ‘disaster risk’ involves understanding social as well as physical
components in risk. Therefore exposure is closely linked with vulnerability, as a population may be
equally exposed to a hazard but the unique vulnerability of certain individuals may mean the risk

to them is greater (Wisner et al., 2004).

2.14 Vulnerability

If exposure is a numerical count of what is in a hazard zone and the economic value of it,
vulnerability captures the nuances of society and the underlying reasons of why risk is unequal. It
is not simply a function of proximity to the hazard, which is why it is different from exposure and
should be considered separately, as stated in Equation 2.2. There is no universally agreed term of
vulnerability (Papathoma-Kohle et al., 2011), partly due to the wide range of disciplines the term
is applied in and the fact it is difficult to quantify as it involves a multitude of complex qualitative
factors (Fekete, 2009). Vulnerability is defined here as the degree a person is able to help
themselves during a hazard event, influenced by the presence, or lack of, resources to cope with a

hazard (McFadden et al., 2006; Civil Contingencies Secretariat, 2008).
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The presence or absence of resources is important as it can be argued that vulnerability originates
from underlying social conditions which limit access to resources, rather than the hazard event
(Cutter et al., 2008). Wisner et al., (2004) conceived of the ‘Pressure and Release’ model of
disasters which is a tool for understanding vulnerability. They argue a hazard is a ‘triggering
event’, and a disaster only arises due to entrenched social structures, like macro-economic
policies, unsafe living conditions and lack of access to resources. When a hazard strikes, it acts as
a tipping point in already precarious lives caused by social vulnerability. Whilst Wisner et al.’s
(2004) model was designed for developing countries, it still has relevance for the UK as those who
are poorer or less physically fit are often those who are identified as being most vulnerable to

events like floods.

Vulnerability feeds back into exposure, as those who are most vulnerable can end up living in
cheaper housing, which has been shown to be a factor in hazard exposure (Wisner et al., 2004).
Vulnerability is also shaped by risk perception, as how a person views their vulnerability can
influence their behaviour and potentially lead them to experience higher exposure if they
underestimate their own vulnerability. The ‘levee effect’ describes how people do not think they
are vulnerable to flooding once a defence is in place (Wisner et al., 2004). But defences may be
breached and are only designed for a certain level of flood, so the actual vulnerability is higher
than those who live there are likely to perceive (Pitt, 2008). Therefore, this makes them

vulnerable as they may not take sufficient action during an event.

2.2 Spatial and Temporal Dimensions of Risk

As described in Section 2.1.1, the appropriate definition of risk which can be applied to this
research problem is that risk is a function of hazard, exposure and vulnerability (Equation 2.4).
However, risk is not a static concept and fluctuates both spatially and temporally when comparing
the same hazard event (Mechler & Bouwer, 2014). Mechler and Bouwer (2014) define risk as a
dynamic function of hazard, vulnerability and exposure, and the word ‘dynamic’ is crucial as it
acknowledges that risk is an evolving concept through space and time. The dynamic nature of risk
needs to be considered for effective risk management; however, it is a challenging task as the

scales of spatial and temporal change are complex.

Risk = f(Hazard,Exposure,Vulnerability) Equation 2.4

In this thesis the spatial and temporal dynamics of risk are under consideration, so Equation 2.4
needs extending. The majority of academic literature does not acknowledge this in their definition
of risk (Freire and Aubrecht, 2012). Therefore for this thesis, it is necessary to adapt the ‘risk

equation’, as it does not explicitly include space or time (Hu et al., 2017). Variations over space
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and time are present in all three components of the risk equation (Lugeri et al., 2010). Therefore,
in Equation 2.5 this is represented, where S represents spatial aspects and T temporal aspects,
and this definition will be applied in the remainder of this thesis. Whilst both space and time are
important, time is of particular interest in this work as examining risk over time adds a dynamic

quality to the research findings.

Risk = f(Hazardsr,Exposuresr,Vulnerabilitysr)  Equation 2.5

Variations over space and time are present in all three components of the risk equation (Lugeri et
al., 2010), which means risk itself is not fixed in time nor equal over geographic space. Figure 2.1
is a conceptual model which details how hazard, exposure and vulnerability combine to form risk

and examples of the spatial and temporal components.

The spatial impact of a hazard primarily lies with the location of the hazard relative to the
population, infrastructure and assets. Often, secondary hazards are triggered by the primary
hazard, for example water-borne disease from standing water, creating hazards chains. Temporal
factors of hazards include the time of day and year it occurs at, the return period of a given
magnitude and, for hydro-meteorological hazards, the impact of climate change. Exposure is the
sum of assets, infrastructure and people in the hazard zone and the spatial distribution of these
elements, particularly of people, is highly time-dependent (Aubrecht et al., 2012). The temporal
dimension of exposure is at several scales; the shorter term of daily and seasonal fluctuations,
often due to population change (Freire et al., 2013; Smith et al., 2014; Smith et al., 2015), or the
longer term of years to decades, due to urban expansion and demographic changes. Thus
fluctuating exposure can lead to changes in risk, regardless of changes in the hazard severity

(Aubrecht et al., 2012; Freire et al., 2013; Liu et al., 2014; Mechler and Bouwer, 2014).

The spatial context of vulnerability is the location of vulnerable groups, the services they require
and how easily they are accessed (Rodriguez-Nufiez et al., 2014; Dawson et al., 2011). These are
considerations present outside of a hazard scenario, but during a hazard event may become more
acute (Hemingway & Priestley, 2006). The temporal context is whether vulnerable groups are
moving, or whether they are static. This would influence the level of exposure they could face at
different times of the day or year. An example of a spatially mobile group would be tourists and
school children (Smith et al., 2015), whilst those admitted to hospital as in-patients or in
residential care homes are less likely to be moving away from their location. Demographic
changes, particularly the increase in the number of older people (Donner & Rodriguez, 2008), is

another factor which will cause vulnerability of a population to evolve.
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Figure 2.1 Conceptual diagram showing how hazard, exposure and vulnerability combine to
generate risk with their spatial and temporal dimensions, from the perspective of flood risk. Each

element of the risk equation is detailed in the centre, with examples of the temporal and spatial

context given around the outside. Arrows show the connections between elements.
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In addition to existing as its own entity, the three components of risk interact with each other.
The spatial and temporal context of a hazard influences exposure, as shifts in the location of the
hazard lead to different levels of exposure. Exposure influences vulnerability in turn (Kienberger
et al., 2013), as at some level all who are in an area exposed to a hazard are vulnerable compared
to those outside of it. However, this connection is mutual, with the temporal context of
vulnerability moderating exposure. For example macro-economic policy causing an unequal
distribution of resources (Wisner et al., 2004) means those who are more socially vulnerable often
live in areas particularly exposed to hazards where property is cheaper (Kazmierczak & Cavan,
2011). This interaction of vulnerability, exposure and hazard has been highlighted previously in
other conceptual models. For example Wisner et al.’s (2004) pressure and release model and
Cutter’s (1996) ‘Hazards of place model’ both demonstrate the complex interactions of natural
hazard risk. However, these conceptual models do not identify the temporal component of risk as

explicitly as the conceptual model in Figure 2.1.

Flooding is considered a ‘known hazard’ as it occurs in the same locations (Wisner et al., 2004)
and the probability of a given magnitude can be calculated statistically. Thus, conventional flood
risk assessments look at the probability of flooding and its consequences (Dawson et al., 2011).
However focussing solely on physical parameters does not capture the complexity of human and
natural processes which interact to form flood risk, as it is not a simple function of probability of
exposure (Donaldson et al., 2013). Over the last decade it has become apparent increases in flood
risk are primarily due to social factors, rather than changes in flood magnitude (Mechler &
Bouwer, 2014). Hence, including socio-economic factors to describe the vulnerability and

exposure of affected populations has become more commonplace (Romieu et al., 2010).

23 Application of Risk Theory to the Research Problem

This section takes the risk theory covered previously in this chapter and applies it specifically to

the research problem outlined in Section 1.2.

23.1 Mapping the research problem onto the risk equation

To restate the research problem, this thesis aims to analyse how the time of pluvial flood onset
and flood magnitude affects the disruption to travel across road networks for two groups of the
population. Figure 2.2 highlights how Equation 2.5 can be applied to this research problem and
questions the results in this thesis should answer. Developing the risk equation in this way,
particularly with the consideration of time, for use as a conceptual structure to hazard-related

transport research project is novel. This framework can be applied to other hazards other than
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flooding, for example earthquakes and landslides.
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Figure 2.2 The application of the risk equation to the research problem of this thesis, and

questions to answer with the results presented in later chapters.

2.3.2 Spatial and temporal scales in the research project

As Figure 2.1 shows, there are spatial and temporal components to hazard, exposure and
vulnerability. These factors operate at different spatial and temporal scales, for example macro-
economic policy is a larger spatial and temporal scale than the location of individuals at a given
time of day. Figure 2.3 summarises the spatial and temporal scales of hazard, exposure and
vulnerability applied in this thesis. The spatial scale is defined by probable limits to the size of
flood models, the likely average distances travelled by daily commuters (15 kilometres (Office for
National Statistics, 2014)) and emergency service catchments. Macro-economic policy and climate
change operate at a spatial scale which is larger than the research problem considered in this
thesis. Pluvial flood events occur over reasonably short timescales (hours to days) therefore this
is a logical threshold for the temporal scale. In addition, the data which are being used is census

data from 2011-2016 and rainfall data from the last few decades. Hence, these data are only
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reasonably applicable to near-future scenarios (up to 10 years after the data reference point)
where substantial changes to the demographic makeup of the population and hydrological cycle
has not occurred. Applying this temporal threshold to exposure and vulnerability, short-term
changes like daily movement and the current structure of the road network are included in the
scope of this project. However longer processes like urban expansion, infrastructure updates and

demographic changes are not considered as they exceed the temporal threshold.
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Figure 2.3 Plots showing the spatial and temporal characteristics of a) Hazard, b) Exposure and C)
Vulnerability in this research project. The dotted lines indicate the boundaries of the temporal and spatial
scales considered in this project. Connected circles indicate a link between factors. Blue: Environmental

Factors and Processes. Green: Man Made Structures. Yellow/orange: People. Pink: Policy
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233 Hypothesised impact of varying timing of flood onset

This section describes the likely effects of changing the time of flood onset and the impact on risk
and road travel. Table 2.1 demonstrates some scenarios that might be observed when keeping
the hazard characteristics constant, except the timing of onset. Scenario 1 happens during the day
and Scenario 2 happens at night, which changes the number of people who are affected;
therefore, exposure and vulnerability change and risk varies. Seasonal impacts are also important
due to the potential of increased populations in summer due to tourism, or decreased population
during university holidays, resulting in different total population numbers and the number of
vulnerable people (Scenario 3 and 4). A flood which occurs early in the morning will impact
morning commuting traffic (Scenario 1), however if it has cleared in the evening then the number
of journeys taken will rise, although not to normal levels as some were unable to reach their
normal daytime destinations. In comparison, a flood that strikes in the afternoon (Scenario 3) will
not impact the morning commute but will limit evening travel and may cause above normal levels
of journeys into the evening as the flood waters recede and roads are reopened. These examples
demonstrate the changes to risk from shifting the time a flood occurs at. This level of temporal
resolution, changing the time of flood onset during a single day, has not often been explored in

wider literature and policy documents.

Table 2.1 Hypothetical examples to illustrate how keeping the hazard element as a comparator,

whilst varying the exposure and vulnerability elements, changes the overall population at risk.

Hazard Exposure Vulnerability Risk

Daytime Daytime population e.g

; 750 people
. children, elderly
: population ’ ’
Scenario 1 1in 100- Road network students 100 Vulnerable
Road access
Night-time Night-time population 500 people
Scenario 2 1in100- population e.g children, elderly 70 Vulnerable
Road network
Road access
Summer Daytime Summer population 1500 people
Scenario 3 1in 100- population e.g. tourists 300
Road network Road access
Winter Daytime Wi lati
Scenario 4 1in 100- population inter population 600 people
Road network 100

Road access
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2.4 Conclusion

The interdisciplinary nature of this project requires more than just assessing the probability and
consequences of a flood event in order to fully understand flood risk. A disaster risk perspective
with vulnerability and exposure is required, explicitly distinguishing the hazard, exposure and
vulnerability components. It has also been shown how spatial and temporal aspects of risk need
to be considered for a dynamic perspective. By using the risk equation with specific spatial and

temporal components, this focusses the research on these aspects.
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Chapter 3  Literature Review

This chapter is divided into five sections. The first three summarise the relevant literature around
the three key disciplines dawn upon in this thesis; flood risk, spatiotemporal population modelling
and transport modelling. The fourth section examines literature on the specific research problem
where these disciplines overlap. The final section draws these disciplines together and

summarises existing evidence concerning the research gap that this thesis is addressing.

3.1 Review of Flood Risk Concepts

Following on from Chapter 2 and the conceptualisation of risk, this section focusses on the

specific issues associated with pluvial flood risk management in England.

3.1.1 Mechanisms of flooding

A flood can be defined as “the temporary covering of land by water as a result of surface waters
escaping from their normal confines, or as a result of heavy precipitation” (Kron, 2005, p.58).
There are three main types of flooding in the UK; coastal, fluvial and pluvial. Coastal flooding
occurs when storms cause sea water to surge onto the land, and the combination of storm surge
and point in the tidal cycle determine how high it will be. Fluvial flood events are from riverine
sources and occur when water exceeds the rivers bankfull capacity, due to heavy rainfall. This can
either be rapid through rainfall directly into the channel, which is more common in smaller
streams in steeper catchments, or rainfall in the wider catchment running into the river over a
longer period of time. The ability to forecast heavy rain events and the lag time between rainfall
and flooding is often sufficient in the UK’s rivers to be able to provide warnings up to a few days
before the high river levels, meaning the surrounding population can prepare for disruption.
Finally, pluvial flooding is the result of heavy rainfall from convective rainstorms onto an
impermeable surface causing flooding in the place it falls (Boeing et al., 2019). These floods are
common in urban areas due to extensive changes to the natural land cover decreasing
permeability (Li et al., 2018) and often occur over a short period of time (Melo et al., 2015),
reducing the ability for flood forecasts and warnings (Li et al., 2018; Boeing et al., 2019). Due to
their shorter time frames than fluvial floods, pluvial floods are less likely to be predicated and

more likely to cause unexpected disruption to travellers on the road network.

Pluvial flood risk emerges from the interaction between biophysical (duration and intensity of

rainfall) and human factors (impermeable surfaces in urban areas, vulnerability of exposed
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population, installation of complex infrastructure) (Jenkins et al., 2017). Therefore, the risk cannot
be determined on the characteristics of the flood hazard alone. The number of pluvial floods will
likely to increase in severity as a result of climate change, due to greater potential extremes in
rainfall (Houston et al., 2011). The characteristics of pluvial flood hazards mean they are a suitable

hazard to select for this thesis and are a relevant issue in urban areas.

3.1.2 Recent English flood history

For fluvial floods, it has been described that the UK has experienced ‘flood rich’ and ‘flood poor’
periods over the last century. For example, Wilby and Quin (2013) found that there were three
flood rich episodes in river catchments; 1908-1934, 1977-1988 and 1998 onwards. National trends
for pluvial flood events, particularly sudden onset localised urban floods, are not apparent as
there is a high year-to-year climate-led variation in rainfall and thus pluvial flood frequency
(Stevens et al., 2016). There has a been an increase in insurance loss for all flood events in
England over the last century, which is largely explained by a growth in exposure rather than a
change in hydrological regime (Stevens et al., 2016). Over the 20" century, the population of the
UK grew from 38.2 million to 59.1 million, with the number of properties rising from 7.7 million to
24.8 million (Stevens et al., 2016). This has resulted in large expansions to urban areas, including
into the floodplains, and the impermeable material they contain. Rapid urban development of the
past few decades has been reliant on an ageing drainage infrastructure (Boeing et al., 2019) in
combination with a reduction in land surface permeability. This has led to an increase in property
exposure to pluvial flooding and an increase in exposure to people travelling along the road
networks. Presently, the EA estimates 3.2 million properties in England are currently at risk of
pluvial flooding (DEFRA, 2018), a higher number than at risk from fluvial and coastal (Boeing et al.,
2019). Despite the increased risk, the recent UK government surface water management plan
concluded pluvial flooding has been poorly understood and the risks not communicated to the

public effectively (DEFRA, 2018).

The effect of predicted changes on weather and climate extremes is an important issue when
planning for natural hazards, particularly for pluvial floods as they have been identified as the
type of flooding most likely to increase in severity with climate change (Houston et al., 2011).
Continued population increases and urban expansion are also likely to increase exposure of
people and capital in at risk areas, a dominant cause of predicted increases in financial losses over
the next century (Mechler & Bouwer, 2014). These biophysical and socioeconomic changes mean

assessing the risks of pluvial flooding will become increasingly important.
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3.13 English flood policy

Over the last century, there have been three paradigms used as the basis of flood policy: ‘land
drainage’ (drain land in order to build on it), ‘flood defence’ (build ‘hard’ defences to prevent
water reaching developments) and ‘flood risk management’ (measures to reduce the amount of
flood water and reduce the building on at risk land) (Penning-Rowsell et al., 2014). More recently
the approach of ‘learning to live with water’ has become more common in policy agendas
(McEwen et al., 2017) as it recognises not all flooding can be prevented (Wisner et al., 2004).
Flood risk management requires negotiation of socially acceptable levels of risk and exposure
(McEwen et al., 2017), and it is not a simple function of level of exposure as there is a mixture of
human and biophysical processes which determine the risk (Donaldson et al., 2013). The following
summary of recent flood risk legislation or regulation, with a focus on pluvial flooding,
demonstrates this need to balance human and physical factors of risk, and to develop a greater

understanding of flooding in order to minimise disruption to society.

The Pitt Review (Pitt, 2008) was a milestone in UK flood risk policy. Commissioned following the
2007 summer floods, its aim was to review the decisions and strategies implemented in 2007 and
to provide recommendations to improve the countries flood risk response. Whilst this was in
response to a fluvial flood event, the recommendations have influenced all areas of flood risk
policy. Following the Pitt Review, the Flood and Water Management Act (2010) was passed which
sought to provide clarity of the roles and responsibilities of the EA, local government, water and
sewerage companies and a framework for assessing flood risk. This legislation established that the
EA has strategic responsibility for flooding on main water courses and coastal erosion whilst Lead
Local Flood Authorities (LLFAs) were established to take responsibility for flood risk from surface

water, groundwater and ordinary watercourses in local areas (Bevan, 2018).

Several reports were commissioned by the government in the following decade to meet
recommendations from the Pitt Review, and those relevant to this research are highlighted here.
Firstly, the report ‘Keeping the Country Running: Natural Hazards and Infrastructure’ was
published by the Cabinet Office in 2011. A main issue in 2007 was infrastructure being impacted
by flood water. From roads becoming impassable, with the notable example of motorists stranded
on the M5, to sewerage and water treatment centres becoming inoperable due to flood water,
leading to water shortages. Secondly, the ‘National Flood Resilience Review’ (2016) reviewed the
steps that had been taken to increase flood resilience since 2007 and what future action should
be taken. In this report, the government committed to consider issues related to pluvial flooding
in a future report specifically on the topic. In 2017, pluvial flooding in an urban area was added as

its own risk to the National Risk Register (Cabinet Office, 2017).
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The most recent report for England on pluvial flooding is the ‘Surface Water Management Action
Plan’ published in 2018. This review stated that pluvial flooding causes significant disruption to
people’s lives and livelihoods and will become a growing challenge with more frequent heavy
storms, due to climate change, over the next few decades, compounded by increased urban
development (DEFRA, 2018). To manage this risk water needs to be drained effectively by
maintaining and improving where necessary current drainage systems and including sufficient
drainage in any new urban developments (DEFRA, 2018). However, the spatial pattern of pluvial
flood risk is less obvious than fluvial or coastal flood areas meaning awareness is lower, leading to
less mitigation action currently in place. The report made several recommendations to improving
the capability of dealing with pluvial flood risk. These include first, risk communication needs to
be improved to stakeholders through pluvial flood risk mapping and developing better systems for
short term forecasts. Current methodologies are unable to determine where heavy rainfall will be
with the necessary levels of precision for a useful forecast lead time (DEFRA, 2018). Second,
infrastructure resilience needs to be prioritised and improved through reviewing the resilience of
current infrastructure against extreme pluvial events and enacting change to increase resilience.
Third, the roles and responsibilities of all organisations need to be clarified and LLFA need to be
guided on local flood risk management strategies and their role in overseeing work. Finally, local

government capacity will be built through advice and support to develop the skills of staff.

The following governmental structure currently exists in England for managing flood risk. The
Department for Environment and Rural Affairs (DEFRA) leads the policy for flood and coastal
erosion risk management. The Cabinet Office is involved with emergency response planning
(under the UK Civil Contingencies Act 2004) and the Department for Communities and Local
Government are involved with land-use and planning policy (under the Local Government Act
2000). As outlined in the Flood and Water Management Act (2010), the Risk Assessment and
Management Authorities are the EA, LLFAs, District and Borough Councils, Coast protection
authorities, water and sewerage companies, internal drainage boards and highways authorities.
These authorities are required to co-operate with each other and act within the framework of
national and local flood risk strategies whilst sharing information with each other (Local
Government Association, 2020; Pitt, 2008). The EA provides the strategic overview of flooding for
the country and risk management activities for main rivers and the coast, and works with the Met
Office to provide flood forecasts and warnings (Local Government Association, 2020). LLFAs are
county councils and unitary authorities with the lead in managing local flood risks from surface
water, ground water and ordinary watercourses. LLFAs are required to; prepare and maintain a
local flood risk management strategy, carry out works to manage local flood risks, maintain a

register of assets, investigate significant local flooding and publish the results and play a lead role
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in emergency planning and recovery after a flood event (Local Government Association, 2020).
Highways authorities have the lead responsibility for providing and managing highway drainage

and roadside ditches under the highways act 1980 (Local Government Association, 2020).

The availability of flood insurance is also an important component of English flood risk policy.
Rising insurance losses from flood events over the last decade led to rising insurance losses, with
the 2015 floods in Northern England alone causing over £1.3 billion in insured damages (Marsh et
al., 2016). This has affected the willingness of insurance companies to insure homeowners on
floodplains (Lamond et al., 2009). The perception of increasing flood risk and growing economic
loss led to the creation of FloodRe (FloodRE, 2020), a reinsurance scheme created to ensure
homeowners could purchase home insurance (which includes flood insurance) for a reasonable
price. This formalised a previously informal agreement between the government and insurers, as

there was a danger of insurers ceasing affordable cover for flood risk properties.

3.14 Flood transport policy

General flood policy was summarised in Section 3.1.3 and this section summarises flood policy as
it specifically relates to travel disruption, the focus of this research. In the UK, the Department for
Transport’s 2014 Transport Resilience Review (Brown, 2014) is the most recent government
report on natural hazard impacts on transport. In the wake of the Pitt Review (Pitt, 2008), the
Transport Resilience review recommended that local authorities define a ‘resilient network’ which
will be given maintenance priority in order to reduce the economic impact of any disruption from
events like floods. The National Security Strategy (Cabinet Office, 2011) states the criteria for
determining whether local infrastructure is critical, and therefore should be targeted to be part of
the resilient network, is whether the loss of it would cause, or be likely to cause, a local
emergency (Cabinet Office, 2011). This guidance could be incorporated into flood risk reviews as it
shows that critical roads are location specific and could be effectively identified through
examining their importance to the community, rather than through traditional network

techniques to identify critical links. Further discussion is given in Section 3.3.3.

One of the key themes of the Surface Water Management plan (DEFRA, 2018) is to make
infrastructure, including road networks, resilient to pluvial floods with future action to review the
resilience of infrastructure networks against extreme pluvial floods stated as an outcome of the
report. This demonstrates the intersection of flood and transport policy and the importance of
understanding the effect of pluvial flooding on road networks. However, a standard method has
not been created to assess this resilience. The government has identified this is an area which

requires review but has not published the results of any reviews.
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The depth of flood water which is considered disruptive is important when creating simulations to
determine disruption. It is widely cited as between 25-30cm depth in the UK and other countries
like the US (Li et al., 2018; Arrighi et al., 2019; Pregnolato et al., 2017b). This is because it is the
height of the air inlet on the average car (Li et al., 2018) and water entering a car engine can cause
engine failure, trapping motorists in flood water. Consequently, government, insurers and
breakdown companies have created warning emails and social media images to instruct drivers
not to traverse flood water which is deeper than 30cm. This guidance has resulted in this
threshold applied to academic papers on travel disruption from road closure. Most studies use a
closed/open switch at 30cm depth, but Pregnolato et al., (2017b) developed a disruption-depth
function which modelled the safe travel speed through floodwater up to 30cm depth, to provide a

more nuanced being and realistic approach to flooding disruption.

3.1.5 Methods

This section describes the methods used to model floods and flood risk assessments.

3.1.5.1 Hydrological and hydraulic models

Traditionally, flood inundation maps are created by driving a hydraulic model with available
streamflow data or the output from a hydrological model. However the entire stream network
does not have gauges meaning there is not quality data available for all sites which need
modelling in the UK (Rajib et al., 2020). To address this lack of information, hydrological models
are used alongside hydraulic models. Hydrological models simulate streamflow for the upstream
boundary conditions and the hydraulic models simulate the flood event extent to produce, depth
and velocity results to create flood inundation maps (Rajib et al., 2020). Both these types of
models are common tools used for a wide variety of purposes as they allow multiple scenarios to
be run and estimate the likely effect of different size floods on the area of interest (Balica et al.,
2013). Improvements in computing power and availability of high resolution data (Dottori et al.,
2013) means the application of flood models has been a mainstay of flood risk work over the last
decade. In this section the theory behind hydrological and hydraulic models will be reviewed to

provide context to the modelling work described in Chapter 4.

Hydrological models are used to estimate how rainfall will result in runoff over a catchment,
through sets of equations and parameters which describe the watershed and how water moves
(Devia et al., 2015). At a minimum, rainfall data and drainage area are required, with watershed
characteristics like soil properties, land use, topography and soil moisture sometimes required

(Devia et al., 2015). There are some empirical models which use measured data for each
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parameter, however due to the difficulties of having data for all watersheds of interest, most
models are conceptual and instead rely on equations to replicate physical processes. Hydrological
models can be classified as lumped, semi-lumped or distributed (Devia et al., 2015), referring to
how the watershed is considered in the model. Lumped models take the catchment as
homogenous whilst distributed models have cells in which the rainfall in and runoff out is
calculated for a heterogenous representation of an area. Hydrological models can provide the
input to a hydraulic model by generating a hydrograph or river flow stage curve which can be

used as an input boundary condition to the hydraulic flood model (Kjeldsen et al., 2013).

The Revitalised Flood Hydrograph model (ReFH) is a lumped conceptual rainfall-runoff model
which is the de facto standard for flood hydrograph estimation in the UK (Kjeldsen et al., 2013).
The model consists of three components; a loss model which creates an excess rainfall
hyetograph, a unit-hydrograph based model for routing excess rainfall in the catchment and a
baseflow model representing the flow in the river before the onset of a storm (Kjeldsen et al.,
2013). The ReFH has been designed with the fewest parameters as possible so it can be applied to
ungauged catchments across the whole UK (Kjeldsen et al., 2013). The Flood Estimation Handbook
(FEH) web service provides access to a national database of catchment descriptors for the whole
UK. These descriptors include rainfall-depth-frequency data for any catchment larger than 0.5km?
to enable hydrological modelling (Kjeldsen et al., 2006; UK Centre for Ecology & Hydrology, 2020).
The output of the ReFH is flow hydrographs at the catchment outlet, which can then form the
input into a more detailed hydraulic model representing the catchment with local topography
(Kjeldsen et al., 2013). This is the hydrological model used in this thesis to provide boundary data

for the hydraulic model (See Chapter 4 for details of its application).

Hydraulic models are designed to produce representations of the depth, velocity and area
covered by flood water as a result of the input hydrology. There are two main divisions in how
hydraulic models represent the channels and floodplains of the study area, 1D and 2D models. 1D
models calculate flow in the downstream direction only through one dimensional equations, for
example the St. Venant equations (Gugat & Leugering, 2003). This assumption of downstream
flow works well for river channels and the channel is modelled through cross sections where
channel depth and width are known (Balica et al., 2013). The 1D flow equations calculate water
flow through the cross-sections based on topography and river flow data. Having calculations at
cross sections rather than at every part of the channel increases computational efficiency, so it is
the preferred method for modelling fluvial flooding over large areas, particularly in homogenous
catchments (Castellarin et al., 2009; Leandro et al., 2009). 2D models calculate flow both in the
downstream and perpendicular direction, often on a grid matrix, and use two dimensional

hydraulic equations. 2D models provide better data for flood flow, depth and extent in places
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with more complicated flow paths like dense urban areas (Gallegos et al., 2009). The use of 2D
equations in each grid cell does increase computational time and power which impedes its use
over large model domains. It has therefore become common to combine the two model types to
have a coupled 1D/2D model, where a 1D model with cross sections is used for the river channel
and a 2D model for the floodplain (Leandro et al., 2011). Overland flow is not the only
consideration in urban areas, and some flood models have coupled sewer models to the 2D flood
model to capture the dynamics between surface water and sewer systems (Leandro et al., 2011).
For modelling pluvial flooding, a 2D model would be required to capture the dynamics of water

around a complex urban environment.

Hydraulic flood models can also be categorised by how they represent flow. Steady state models
represent changes in flow spatially but keep flow temporally constant and are useful when just
the maximum extent of floodwater is required for hazard assessments. Unsteady state models
vary flow both spatially and temporally and are more accurate when modelling the effect of flood
water on flood defences to test the likelihood of failure (Blichele et al., 2006). For pluvial flooding,
there are not often local flood defences designed specifically for the prevention of pluvial
flooding, rather drainage mechanism are installed, so a steady state model is sufficient to

understand pluvial risk over a large urban area during a rainstorm (Leandro et al., 2011).

Many flood models exist and the type of model which is suitable depends on the size and
characteristics of the study area, the purpose of the modelling work and the available software
and computational power. A selection of hydraulic flood models, including the one used in this
thesis, are compared in Table 3.1. For large areas, “low-complexity” inundation mapping tools
which rely on topography, roughness parameters and simple hydraulic equations have been used
frequently due to lower computational requirements (Rajib et al., 2020) However, they are less
accurate than coupled 1D/2D models, so it is a trade-off of computational time compared to
accuracy (Rajib et al., 2020; Sosa et al., 2020). The complexity of urban environments means they
have always been a challenge to model (Ghimire et al., 2013) as surface flow is strongly influenced
by topography. Therefore, the availability of accurate Digital Elevation Models (DEMs) or Digital
Terrain Models (DTMs) at appropriate resolutions are central to accurately simulating flooding

(Noh et al., 2018; Ghimire et al., 2013).

As with all models, hydraulic and hydrological models are a simplified representation of reality
and there is uncertainty associated with their outputs (Montanari and Di Baldassarre, 2013). The
main source of uncertainty is flow data (Dottori et al., 2013) as it is the extreme events, which are
hardest to measure, that are of most interest. The flooding in urban areas from rainfall is often

caused by intense, short rainfall events causing field observations to often be non-existent or
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difficult to collect, meaning model calibration is a challenge (Leandro et al., 2011). There is also

typically only a small set of floods which have been recorded, which means simulations are

required to fill in these data gap (Emanuelsson et al., 2014).

Table 3.1 Comparison table of some well-known flood models, including the model applied in this

thesis (Flowroute — i™). Adapted from a Table in the authors MSc dissertation (Rawlings, 2016)

Model

Strengths

Weaknesses

HEC-RAS

Developer: United
States Army Corp of
Engineers

1D hydrologic modelling

for channels and flood
banks

Free

Easy to set up and use
Output compatible with GIS
software

Does not model 2D
domains well

No technical support
provided by the
manufacturer

Does not include urban
drainage systems like
sewers explicitly

LISFLOOD FP

Developer: Bates and De
Roo, Bristol University
2D model for
hydrodynamic modelling
of floodplain inundation
(Bates et al., 2010)

Free software for academics
Coupled 1D/2D model
Outputs include depth,
elevation and velocity
compatible with GIS software
Can be applied to large areas
(Rajib et al., 2020)

No support except via
online tutorial exercises
Does not include urban
drainage systems like
sewers explicitly

Flood Modeller
Developer: Jacobs

1D and 2D solvers for
1D/2D flood models of
channels and floodplains

Free version allows for small
modelling domains to be
used.

Can run 1D, 2D and linked
models

Provides depth, extent,
velocity and flow outputs
which can be exported to GIS
software

Support available via online
tutorials and forums

Unclear error message
Larger modelling domains
require ‘pro’ license
Support offered by a
software support email
with a pro license, not
available for free users

Flowroute-i™
Developer: Ambiental
Risk Analytics

A steady state 2D flood
model

Guidance in using the
software available

Suitable spatial resolution for
pluvial flooding (5m) over
large urban areas

A 2D model which can model
fluvial, pluvial and tidal
flooding

Provides depth and velocity
outputs

Has been validated by the EA
Accounts for drainage, flood
defences, ground roughness
and infiltration

Results are compatible with
GIS platforms

Limited application to
academic settings
Does not include urban
drainage systems like
sewers explicitly
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3.1.5.2 Flood risk assessments

A flood risk assessment (FRA) is an analysis which reviews a development, urban area or region
against the probability of a flood event occurring and the consequences for the site itself and the
surrounding areas (Emanuelsson et al., 2014; Ambiental Environmental Assessment, 2020). All
types of flooding can be considered in an FRA. Often academic papers will focus on one type (for
example pluvial) whilst the FRA required for planning development sites in the UK require
consideration of groundwater, fluvial, pluvial, tidal and sewer sources (Ambiental Environmental
Assessment, 2020). FRAs can be used to enable decisions on whether developments should be
built (Ambiental Environmental Assessment, 2020), how to design flood defences to protect
existing infrastructure, test which strategies are the best performing at keeping people safe and
alleviating flood risk (Woodward et al., 2014). Insurance companies also conduct risk assessment
models to understand the value and risk of their portfolio for investment decisions (Hammond et
al., 2015). Risk management often involves weighing up the benefits and costs of action to
mitigate significant consequences (Emanuelsson et al., 2014), as some action may not be required
if the cost of action is outweighed by the consequence of a flood. The consequences of a flood are
often quantified in monetary terms, but the less easily quantifiable social and environmental

impacts need consideration as well (Emanuelsson et al., 2014).

Two categories of flood risk assessments are discussed here. Firstly, academic papers where the
flood risk across a town, city or region is assessed, often in economic terms. Secondly, there are
very localised flood risk assessments which are required by local authorities as part of the

planning process in the UK for any development which falls within modelled flood zones.

When assessing flood risk across an area, risk-based decision making relies upon estimates of risk
now and in the future, in the context of a range of flood risk management options (Blanc et al.,
2012). Within the risk assessments, the risks and consequences from flooding can be categorised
in many different ways. There are short term versus long term risks, for example shorter term risk
include the risk to life in the immediate flood event, property and infrastructure damage whilst
economic impacts tend to be longer term (Hammond et al., 2015). The risk can also be classed as
tangible, those which are quantified, for example economic loss from damaged properties, or
intangible, for example long-term mental health problems (Hammond et al., 2015). Finally, there
are direct and indirect risks, direct risks arising from contact with the floodwater and its
immediate vicinity and indirect risks to the wider area which is not itself flooded (Hammond et al.,
2015). How risk is defined, and which risks are of interest, varies between studies which leads to a

variety of methods of assessing flood risk.
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There are some broad commonalities in the approaches to assess flood risk, as outlined in Blanc
et al., (2012), Hammond et al., (2015) and Emanuelsson et al., (2014) . Firstly, the flood scenarios
of interest are determined through identifying the flood risk level of the study area and then the
input rainfall and hydraulic simulations are completed. Secondly, the vulnerability of the study
area is measured and suitability criteria for assessing the consequences of the flood are decided.
Finally, the flood event is combined with the vulnerability and consequence assessment, which
could be through numerical scoring of factors to produce an overall risk score like Emanuelsson et
al.,, (2014). Risk assessment methodologies can also incorporate qualitative measures as well as
guantitative. Sperotto et al., (2015) developed a regional risk assessment methodology for Venice
through collecting the knowledge of local stakeholders, with workshops and surveys to identify

places at risk and the measures which the community felt would be best placed to help.

For quantifying direct economic costs, depth-damage curves are applied to estimate the costs
related to building damage and business interruption (Blanc et al., 2012) particularly in insurance
models. Depth-damage curves estimate the amount of loss a building type would expect for a
given depth of flood water. In the UK, the National Property Dataset allows for the classification
of individual properties by age, building type and social class of residents who use them
(Hammond et al., 2015), for which depth-damage functions have been generated (Penning-
Rowsell et al., 2005). These depth-damage curves are frequently used to ascertain economic risk,
however there is uncertainty associated with their results. Depth is not the only factor in the level
of damage to a building. Velocity of the water into and around the building is a significant factor
in the damage (Kreibich et al., 2009; Hammond et al., 2015) but is not included in the economic
risk calculation. Depth-damage curves also do not consider the indirect costs from flooding like
interruption to supply chains or the social, health and environmental consequences (Blanc et al.,

2012).

Flood risk can be measured as Expected Annual Damage (EAD) in order to balance the expected
costs of flooding in a given year against the cost of mitigation measures for stakeholders
(Woodward et al., 2014; Olsen et al., 2015). One example is Woodward et al’s (2014) paper which
designed a risk assessment for the Thames Estuary, UK. EAD was calculated through a model
which considered the hydraulic load of defences, the condition of flood defences in combination
with realistic flood scenarios. The result was a map which showed the estimated EAD value for
each zone, identifying in a quantitative way which areas were at greatest risk to losses due to
flooding. Olsen et al., (2015) tested several methods for calculating EAD and found the method
itself had a minor impact on the risk analysis results. They applied a GIS-based risk model which

incorporated asset classes (for example residential, commercial, roads) with each having a flood
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depth threshold for when damage starts to occur, and the unit cost of the damage calculated
from previous insurance pay-outs for that class. The shift in damage costs as a function of return
period was more important, which in their study this threshold was around the 1 in 10 year return
period, which they posit could be related to the capacity of the sewerage system (Olsen et al.,

2015).

In flood risk literature, there has been great focus on tangible flood damage which can be
economically calculated (Hammond et al., 2015) whilst understanding of the intangible impacts
has been neglected. The indirect effects on infrastructure networks beyond the direct flood area
is one of these. Infrastructure such as telecommunications network, transport networks, power
lines, water networks and food production should all be considered in flood risk assessments
(Hammond et al., 2015; Conrad et al., 2006), but rarely are due to the difficulties in capturing
these indirect effects. Physical and mental health are another intangible impact where the risk to
a population is difficult to capture and predict. To combine the intangible health impacts with
tangible economic impacts, Hammond et al., (2015) argue that a quantification of health impacts
would be needed, but this is difficult to calculate and controversial to attach an economic value to
human life. There are examples though of multicriteria frameworks which explore combining all

impacts, for example Kubal et al., (2009) Zhou et al., (2012).

Under the UK National Planning Policy Framework and EA guidance, a FRA is required for any
developments which are proposed in a flood risk zone (Ambiental Environmental Assessment,
2020). Flood zone maps are generated through simulating flood events of a given magnitude and
estimating the area which would be affected and can provide an overview of the flood risk for an
area. In the UK, the EA’s flood maps have divided the country into zones as an easily accessible
way of determining risk for flooding. For fluvial flooding, Zone 1 is land with less than a 1 in 1000
annual probability of a flood (<0.1%), Flood Zone 2 is land with between a 1 in 100 and 1 in 1000
annual probability of flooding (1%-0.1%) in any year and Flood Zone 3 is land with a 1 in 100 or
greater annual probability of river flooding (>1%) (Ambiental Environmental Assessment, 2020).
For pluvial flooding, a similar planning map is available with very low, low, medium and high-risk

categories used as zones (Gov.UK, n.d.).

The advice for FRAs from the UK government outlines the following steps for completing a FRA

(DEFRA & EA., 2019):

e Firstly, research the development site through contacting the EA and local planning

authorities and check if it is likely to be affected by flooding
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e Secondly, complete the risk assessment with details of the site, the flood risk from all
sources and the estimated level of defence which is required.
e Finally, submit the flood risk assessment and planning application to the local planning

authority.

For pluvial flood management at vulnerable sites, the requirements of the local authorities
surface water management plan also need to be considered in the planning application (DEFRA &
EA., 2019). Often pluvial flooding is neglected when FRAs are considered, despite it being a large
issue in urban areas due to the potential of new developments obstructing overland flow
pathways (Ambiental Environmental Assessment, 2020). However, pluvial models with specific
depth calculations to ensure flow paths are not obstructed are being requested more frequently
(Ambiental Environmental Assessment, 2020). A key part of a FRA for development sites is the
consideration of how people are able to enter and leave the site if there is flood water (DEFRA &
EA., 2019; Ambiental Environmental Assessment, 2020). Buildings themselves may be secure and
not be flooded, but if routes of entry and exit are blocked then the site is not safe for use. This
requirement is to only consider access and evacuation of the development site and not any issues

of isolation at the local area around the site due to surrounding roads being impassable.

As with all models, there are many uncertainties associated with the methods and outputs of
flood risk assessments. A key uncertainty is that in most locations there is not an extensive flood
data set of past flood events, therefore hydraulic simulations are required to generate data
(Emanuelsson et al., 2014). Whilst these models are calibrated to real flood events, predicting
large events where there are few examples or projecting into future floods under climate change,
there will always be a degree of uncertainty in the depth, velocity and coverage of a flood event.
The scale and precision of flood inundation data relies heavily on very precise local topography
data, particularly in dense heterogenous urban areas (Emanuelsson et al., 2014), so access to such
data is vital for a reliable flood risk assessment (Ambiental Environmental Assessment, 2020;
Emanuelsson et al., 2014). As discussed, intangible impacts or asset dependencies across
networks are generally not considered in FRAs (Emanuelsson et al., 2014) meaning they do not

capture the complete picture of risk for the area of study.

3.2 Review of Spatiotemporal Population Modelling

As highlighted in Chapter 2, the spatial location of a population in relation to a hazard is often the

main factor in the scale of impact (Freire et al., 2013). Therefore, it is imperative to have
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information on where the target population is and where they travel to at the finest temporal
resolution possible. For the vast majority of natural hazard studies, residential population data are
drawn from decennial national census data, which do not adequately capture the temporally
variant nature of population in their calculation of exposure. Although many national censuses do
also record place of work for the economically active population, and in some countries place of
higher education for those studying (Shabou et al., 2017), these are seldom used in natural hazard
planning. The field of spatiotemporal population modelling has rapidly expanded over the last
decade as its importance in various fields including public health, urban planning, hazard risk has
been recognised. New advances in technology provide opportunities for inclusion of such data
models into natural hazard risk assessments and this thesis provides an attempt at linking these
disciplines together. This section reviews ‘traditional’ population data from the census,
spatiotemporal modelling principles and methods as well as the alternative ‘big data’ sets and

microsimulation models.

3.2.1 Census data

Census data have been the standard for population research (Aubrecht et al., 2014), providing a
cross-sectional snap shot of population location at set temporal intervals (Smith et al., 2014). In
the UK, a census has traditionally been conducted decennially, with the last census taken in 2011.
The census collects social, economic and health data which are applied in a wide range of
purposes. However, processing vast amounts of data takes a couple of years before release for
public use, meaning the data are several years old when made available for research. There are
five nested levels for census geography in England and Wales, relevant to flood risk management
in England (Figure 3.1). Full unit postcode level is the finest resolution of census data, however for
data protection purposes there are only very limited head counts by gender data available at this
level. Output Area (OA) is the finest resolution available for data. To ensure confidentiality,

sometimes data are suppressed at the OA level.
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Local Authority (LA)
(Average 163619 people)

Middle Super Output Area (MSOA)
(Average 7201 people)

Decreasing
Lower Super Output Area (LSOA) Geographic
(Average 1614 people) Area Size

Output Area (OA)
(Average 309 people)

Full Unit Postcode
(Average 43 people)

Figure 3.1 Diagram of the census geography hierarchy applied in 2011. (Office for National
Statistics, 2016)

Whilst censuses have provided an invaluable resource to many researchers, there are both spatial
and temporal issues with using census units as measures of population density. Spatially, the
administrative areas used to aggregate populations are not of equal geographic area and
boundaries can change between censuses. This causes complications as the choice of boundaries
can have a greater effect on the output analysis than the actual variation in the study
phenomenon (Smith, 2015). This is referred to as the ‘Modifiable Areal Unit Problem (MAUP)’
(Openshaw & Taylor, 1979; Openshaw, 1984) and it is why it is important to use appropriate area
sizes in analysis (Harland & Stillwell, 2010). Traditional choropleth mapping is subject to the
MAUP (Holt et al., 2004).

Temporal issues also arise because, as noted previously, the spatial distribution of population
fluctuates at a temporal resolution of minutes to days (Aubrecht et al., 2014; Bian and Wilmot,
2015) and census data are collected decennially. Census data are often thought of as the ‘night-
time’ residential population of an area (Aubrecht et al., 2013a; Smith, 2015), as the survey is sent
to everybody’s home address, which is not where the majority of the population spend their day.
Whilst the census does provide information on workplace zones and if there are students living
away from home, it does not easily provide a record of where every person spends their time.
Consequently the data can only provide limited information on spatial and temporal changes in
the population at the resolution which matters to risk managers and spatial planning (Renner et
al., 2018). In the UK, Mid-Year Estimates (MYEs) for population age are produced in order to

update the census data annually; however, the finest resolution available is Lower Super Output
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Area (LSOA) meaning spatial resolution is lost. This only provides an estimate of the night-time
population once a year, a temporal resolution which is still too coarse for detailed risk analysis.
Furthermore, MYEs only provide a population estimate by gender and age and do not include any
other population characteristics. In light of this, there has been increasing demand for population
data which have a finer temporal scale and are independent of administrative areas (Aubrecht et

al., 2013b).

3.2.2 Spatiotemporal population data

Traditionally, population data are often presented in the visual form of a choropleth map based
on census zones. Holt et al., (2004) state that population mapping has two purposes; to
cartographically portray population density within a study area and as a basis for deriving
guantitative population estimates. On the surface, choropleth maps do fulfil these requirements.
However, choropleth maps create the illusion of sudden changes across boundaries and uniform
population densities, which is untrue, especially in rural areas where large parts do not have any
population present (Tapp, 2010). Hence they do not provide a ‘realistic’ depiction of population
location (Wright, 1936). Therefore, alternative ways to display population data have been created
which rely on interpolation techniques as they improve the representation compared to census
zones. Spatial interpolation is the process of estimating the value of properties at unsampled sites
by using existing data points from the area (Heywood et al., 2011). There are many methods of
interpolation and they can be broadly split into two groups; point-based interpolation and areal

interpolation.

Point-based interpolation takes point data and produces a gridded data set (Hengl et al., 2007)
without the restriction of census boundaries. There are many point-based interpolation methods
and one of the most popular is kernel density estimation (Danese et al., 2008). This interpolation
method involves a fine grid being placed over the point data (Borruso, 2005) and a kernel is
assigned to each data point. An algorithm calculates the density of the kernels through a
bandwidth (or radius) for the observation point (Fotheringham et al., 2000; Anderson, 2009). A
surface representing the variation of point density (typically census zone centroids with
population counts as weights) across the area is created (Borruso, 2005), which can be used to
show ‘hotspots’ in the spatial pattern of variables (Anderson, 2009; Gerber, 2014). In order to
account for edge effects, the analysis needs to be extended one kernel beyond the study

area (Bracken & Martin, 1989). Applications of kernel density analysis include population
modelling (Martin et al., 2015), crime analysis (Gerber, 2014), spatial epidemiology (Gatrell et al.,
1996), population distribution, social segregation (O’Sullivan & Wong, 2007), animal ecology

(Hemson et al., 2005) and urban modelling (Danese et al., 2008). An advantage of kernel density
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estimation methods is that they are ‘volume preserving’, which means the number of people in
the source zones translates exactly to the target zone. However, as these are locally specific
models the results are not transferable to other geographic areas (Gerber, 2014) which does
restrict the wider applicability of studies. Also, zone centroid location is critical to the analysis as
irregular centroid position can lead to bias (Wu et al., 2005; Tapp, 2010). Other examples of point-
based interpolation techniques include kriging, spline functions and inverse distance weighting

(Harman et al., 2016).

Interpolation methods have primarily been focussed on spatial interpolation, rather than
temporal interpolation, although time is a key concept in creating accurate population surfaces.
Investigation into spatiotemporal dimensions of interpolation are not just restricted to population
modelling, it is also a relevant research issue in environmental sciences, climate prediction, and
hydrology. ‘Time-geography’ is the key underlying theory for temporal interpolation methods.
‘Time-Geography’ is a branch of human geography, first defined by Torsten Hagerstrand, and was
prominent in the 1970s. The theory states that time is a resource for social life and a key measure
of productivity. It is complementary to space, as we move through space over time, so both
should be considered in analyses as the challenges and characteristics of each need to be
addressed simultaneously (Bogaert, 1996; Pred, 1977). As part of the theory, constraints to the

spatial-temporal movement of people are defined (Pred, 1977):

1. Capability constraints such as how much free time an individual has for an activity; and
the limitation of distance they can cover in a given time on transport available

2. Authority constraints: not all space can be occupied by anyone e.g. private property

3. Individuals cannot do multiple activities at once so must not be duplicated in models

4. Time is taken moving between activities, so needs considering in any analysis of how

individuals spend their days

Whilst the importance of including time in analyses is clear, actually including it in population
models has proved challenging as much geographical software was designed primarily for spatial
analysis. Although there has been development of specific spatiotemporal GIS packages, for
example ‘spacetime clusters’ in ArcGIS Pro (ESRI, 2020f), R packages for handling and analysing
spatiotemporal data (Pebesma et al., 2020) and STEMgis, a temporal GIS system (Discovery
Software, 2020). Additionally, traditional raster and vector data structures limit the way temporal
data can be handled, resulting in ‘snap shots’ of change between time periods. To address this
problem, geostatistics can be extended to provide a joint tool for space-time analysis (Kyriakidis &

Journel, 1999). Space-time kriging is one such tool (Bogaert, 1996). It yields optimal predictions
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for any point in a space-time domain and the result of the interpolation can be displayed as an
animation or series of maps (Heuvelink et al., 2016). Other techniques include conditional
autoregressive regression modelling, which takes into account spatial and temporal
autocorrelation in data. So, these methods can take an interpolated surface at specific time
intervals and compare changes between them (Kyriakidis & Journel, 1999), which is an
improvement on interpolation from a single census time period. But such interpolated outputs

depict gradual long-term change, not the fine scale of population movement in real-time.

The recognition of the limitations of census data and the availability of other administrative and
remotely sensed data sources has led to an increased demand in spatiotemporal population
modelling (Aubrecht et al., 2014). The principle behind spatiotemporal population data modelling
is to mimic the flows of people as they conduct their daily routines to produce data of population
counts for different times in a day or year in an area. These models assume population groups
with similar characteristics share similar movements, determined by the location of economic,
social and leisure facilities (Batista e Silva et al., 2018), which can be used to assign daily temporal
routines (Bian & Wilmot, 2015). Bhaduri et al., (2007, p.106) provide useful definitions for
identifying the groups within night-time and daytime populations, as shown in the Equation 3.1

and Equation 3.2.

Night time = Night time Residential Population + Night time workers + Tourists + Business
Travelers (+ Immobile Population) Equation 3.1
Daytime Population = Workers + School Children +Tourists + Business Travelers + Residual Night

time Population (+ Immobile Population) Equation 3.2

Within recent literature, the groups identified in Equation 3.1 and Equation 3.2 are commonly
used, with night-time residents, workers, students and daytime residents as staples (Aubrecht et
al., 2014; Bian and Wilmot, 2015; Freire et al., 2013) and tourists and shoppers recognised as
important sub-groups with high mobility which are more challenging to model (Bian and Wilmot,
2015; Smith et al., 2015). In relation to hazard preparation, tourists may not have knowledge
about local hazards to be able to react quickly to a warning (Cahyanto et al., 2014) so are an

important group to account for in a risk assessment.

Such data are often gridded as this provides a more meaningful representation of settlements
than choropleth maps of census zones (Martin et al., 2009). It also offers a consistent sampling
grid over time, minimising the effect of the MAUP (Martin et al., 2009). Examples of
spatiotemporal population distribution projects include Gridded Population of the World

(Deichmann et al., 2001) , Global Rural Urban Mapping Project (Balk et al., 2006), LandScan USA
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project (Bhaduri et al., 2007), DynaPop (Freire et al., 2015) WorldPop (Tatem, 2017) and
Population 24/7 (Martin et al., 2009, Martin et al., 2015). More details are given in Section 1.2.4.1.

3.2.3 New forms of data

Future advances in spatiotemporal modelling of population will be from incorporating new non-
conventional data sources into spatiotemporal models (Batista e Silva et al., 2018). Types of non-
conventional data for population in travel include mobile phone data, from GPS and smartphone
applications which track movement (Malleson et al., 2018), social media data, from platforms like
Twitter, Flickr, foursquare (Malleson & Andresen, 2015) and automated ‘big data’ like footfall
count, automatic number plate recognition and travel smart cards (Heppenstall et al., 2016; Crols
& Malleson, 2019). This section will briefly describe the main new forms of data that are emerging

and examples of their application to spatiotemporal population modelling.

Mobile phones have become an increasingly popular source of population data as they allow
movement to be followed in near-real time. Globally, 96% of people have a mobile phone (Deville
et al., 2014), a figure which is only increasing, providing a very large data set. These data are
especially valuable in countries where reliable census data at good spatial resolution is absent
(Deville et al., 2014). Mobile phones provide the location of an individual via one of two ways:
either through use of the cellular network which identifies the cellular zone the handset is in, or
through the handset’s GPS chip. For cellular zones, phones are recognised when they
receive/place a call or text message or connect to the internet (Calabrese et al., 2011), so when
not in use the phone’s location is not known, meaning some movement will inevitably not be
captured. Also, these data are anonymised to the number of people within the cellular zone so
cannot be used for individual modelling (Deville et al., 2014). Most modern phones are GPS
enabled, which can provide a much greater spatial and temporal resolution on an individual’s
location. For example, in Herrera et al.’s (2010) study the phone’s GPS updated its location every
3 seconds. GPS does not require the phone to be in use, just turned on, so a greater amount of
the population’s movement can be tracked. Herrera et al., (2010) did a large scale experiment in
the San Francisco Bay area and found reliable data on traffic conditions could be gained when as
little as 5% of the cars on a road had GPS enabled phones. A decade later, this number of cars
travelling with smart phones is a lot higher, with widespread use of navigation apps for real-time
directions. Therefore, mobile phone data can be a powerful tool for applications including disaster
monitoring, disease mapping (Tatem et al., 2014), and road travel behaviours (Deville et al.,

2014).
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Smartphones and the applications which are installed on them are another source of
spatiotemporal data on the population. Malleson et al., (2018) gathered data generated from a
smartphone application in order to analyse the daily routes of pedestrians in the Greater Boston
area, USA. The app from which the movement data were generated was downloaded by the user
for the purpose of allowing the user to track their daily routine, so there was consent for the data
to be collected. Malleson et al., (2018) mapped the routes taken using an algorithm to map them
onto roads, with 94% of routes successfully matched to a road path. The data generated from the
smartphone app was of sufficient quality and spatiotemporal resolution to examine pedestrian
asymmetry. Travellers’ paths were about 20% longer than the direct shortest route between
places and people changed their routes between origin and destination 15% of the time. This
study is one example of how the widespread use of smartphones is producing new data sets

which can provide greater insight to daily population movement and the routes they take.

Mobile phone GPS data are collated by companies like Google to generate estimates of the
number of people at a facility for a given time of day. The ‘popular times’ data appears
underneath the details of many businesses and attractions on Google and show the relative
busyness of a place at different times of day over the course of a week. This could be extremely
useful data for retail and tourist spatiotemporal models; however, it is not currently available

through the API due to its commercial value.

The main advantage of mobile phone data over census data are the increase in temporal
resolution (Deville et al., 2014). The spatial resolution is comparable to the spatial resolution
which can be achieved through downscaling census data sets, but mobile phone data opens the
potential for real-time monitoring of traffic for better management or locating population flows in
emergencies (Deville et al., 2014). Studies have shown that mobile phone data can capture the
differences between weekday/weekend movements which again is an improvement on census
data (Calabrese et al., 2011; Herrera et al., 2010). Secondly, a much larger sample of the
population is achieved than through travel surveys, a full order of magnitude in Herrera et al.’s
(2010) survey, as people are increasingly leaving larger ‘digital footprints’ (Calabrese et al., 2011).
The data from smartphones via location tracking apps can also be much more accurate than travel
diaries (Malleson et al., 2018) as they do not require the participant to remember to complete the

diary.

However, there are some substantial issues with mobile phone derived data which still need
resolving. Firstly, the ‘digital divide’ means it cannot be considered a fully representative data set
of population demographics, with potentially serious biases towards the younger generation

(Tatem et al., 2014; Malleson et al., 2018). Mobile phone uptake has shown to be low amongst
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older people and those who are the most marginalised in society (Deville et al., 2014), meaning
their representation is lower than from census data sets. Also, the youngest children are unlikely
to have a phone of their own, so these data may not be suitable for tracking travel to schools
without assumption on how many children are in travel per adult smartphone reading. Therefore,
there is a divide between people who have and do not have a phone and who is represented in
any data. Additionally, GPS location data are only recorded whilst a phone is turned on, meaning

users could choose to switch their phones off and would not appear in any data.

Secondly, there are data privacy and ethical concerns with the use of individual mobile phone
data. Currently, the use of these data involves a rigorous anonymisation process before it can be
used for academic research, so individual movements cannot be identified (Deville et al., 2014;
Calabrese et al., 2011). For example, Herrera et al., (2010) had to ‘degrade’ their data as the
temporal and spatial resolution was too fine and identified individuals, when their study was to
provide an estimate of overall traffic flow on a road. Thirdly, the market share of the mobile
phone data provider can limit the sample size (Calabrese et al., 2011). Mobile phone plans may
limit how often someone uses their phone if they do not have a large phone call or data
allowance, meaning not all movement may be logged (Calabrese et al., 2011). Using data from
smartphone apps which work across a variety or networks and phones is one way to resolve this
issue and is more feasible now than in 2011 when Calabrese et al., (2011) did their work. Finally,
mobile phone data does not contain the demographic data that the census does, unless it is
connected to other data sets (Herrera et al., 2010). So, whilst it is useful for looking at travel
movement as a whole, as yet it cannot indicate how different sub-groups of the population move
or why someone has undertaken a journey in the same way a travel survey does (Longley et al.,
2015). There are some examples where survey data has been combined with mobile phone data
to generate travel patterns for groups of the population (for example Arai et al., 2014). Future

data may facilitate more of this type of analysis.

Following on from mobile phones, social media and the data the population publish on these
platforms has drawn great interest in recent years as a potential proxy for population movement.
There are a number of social media sites where users publish location data which can be viewed
publicly or accessed via an Application Programming Interfaces (APls), including Twitter,
foursquare and Flickr (Malleson & Andresen, 2015). In recent years, Twitter data in particular has
been a focus of spatiotemporal population studies. Geotagged tweets have been applied as
proxies for movement to overcome data restrictions of mobile phone networks, as the data are
available via an API. Twitter has an option where users can geotag the location they send the
tweet from, based on GPS, and the accuracy of this function is quoted as 10-20m in various

sources (Jurdak et al., 2015).
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Jurdak et al., (2015) used Twitter data to study international migration, finding they could divide
their twitter users into two groups, those who tweeted from the same place predictably and then
those who were random. So, they argued that these data can be useful for tracking those who
have migrated or move around a lot, which would not been seen at the same temporal resolution
in other data sets. They attempted to introduce social characteristics to the data by using facial
recognition software to classify people based on age and gender in order to map migration
patterns. This is not a substitute for the wealth of data a census can provide but does show how
more than just location can be estimated from twitter data. Longley et al., (2015) used the
forenames and surnames of twitter users to define age, gender and ethnicity by cross-referencing
twitter handles against detailed name data bases. As with facial recognition, Longley et al., (2015)
recognised difficulties with this approach as the names or photos used may not be the account
holders’ own, or someone may have a name which the profiling database does not consider

‘typical’ for their age, gender or ethnicity.

These studies are interesting in their exploration of new data for modelling people’s travel,
however there are still many restrictions on the amount of data available and assumptions in
these data which mean they cannot replace ‘traditional’ census and administrative data sets.
Twitter data has also been used to assess the crime rate of a city, including the ambient non-
residential population, rather than basing crime rate solely on the residential census population.
Malleson & Andresen (2015) used Twitter data of messages posted in Leeds with GPS coordinates
and crime data for ‘street crimes’ to build a model which searched for spatiotemporal clusters of
crime in Leeds. They found clusters for specific space and time points, for example the area
around the University between 21:00 and 02:00 on a Saturday/Sunday, which registered
significant levels of crime which would not likely have been picked up in traditional crime rate
data based on census-derived residential data. This study demonstrates the value of incorporating
‘new’ social media data with ‘traditional’ data sources to enhance the spatiotemporal

understanding of an issue.

The advantage of geotagged tweets is that the data are more accessible than mobile phone data
as it can be downloaded via Twitters AP| with relative ease. However, it is estimated that 1% of
tweets are geotagged, and the twitter APl allows someone to download up to 1% of all tweets
which match their search criteria (Singleton et al., 2011). Thus, any data used in research is a small
subsection of the population on Twitter. Twitter is also predominantly used by younger ‘tech
savvy’ people, which Longley (2015) found was not representative when compared to the census
data for London. However, Jurdak et al., (2015) argue that it is younger adults who are most likely
to migrate so twitter could still provide useful data for this application. Currently, there are no

reliable means of extrapolating the data up to the scale of the population at large, so these data
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are only applicable for the area and people surveyed. Furthermore, these data rely on users
tweeting whilst conducting activities, rather than from their homes. So, there is the chance that
the activity being tweeted about is not where the geotagged location indicates. A main issue with
social media data are that there is little data to validate it against in order to know how it
represents the day-time population (Malleson & Andresen, 2015). Where available, social media
data could be compared to footfall data to see how much movement is captured as Crols &
Malleson (2019), however there are difficulties in this as well as it is not known what proportion

of the footfall data represents people with smartphones or Twitter accounts.

3.24 Methods

This section gives a brief overview of the main methods used in spatiotemporal mapping and

modelling within the literature.

3.24.1 Available spatiotemporal models

Two approaches are emerging in spatiotemporal population methodologies, those that extend
mapping technologies within a time-enabled framework, and those that attempt to track
population movement through ‘big data’ (Martin et al., 2015). This section will focus on the
former approach as this is the one applied in this thesis. Over the last two decades, gridded
population models have been developed with increasing sophistication. The first such model
output was the Global Population of the World (GWP) project and the Global Rural Urban
Mapping Project (GRUMP) in 1990, and now there are several different models from projects
across the world (see Table 3.2). These models have similar aims, however they utilise different
interpolation methods which means they are appropriate in different situations (Galway et al.,
2012). In this thesis, SurfaceBuilder247 is used as it is the only spatiotemporal population model
available for England at a fine spatial and temporal resolution (Martin et al., 2015). The National
Population Database (Health and Safety Laboratory, 2020) is a source of spatiotemporal
population data for England, however it is not freely available to the public and is only available in

night/day time slices, rather than specific hours and day types.
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Table 3.2 Available gridded population models and projects

Project name Year Source Geographical Scope and Resolution
Global Population of 1990, Socioeconomic Global, 5km grid resolution
the World (GWP) 1995, Data and
2000, Applications
2005, Center (SEDAC)
2010, 2015
Global Rural Urban 1990, Socioeconomic Global, 1km grid resolution
Mapping Project 1995,2000 Dataand
(GRUMP) Applications
Center (SEDAC)
Landscan USA 2000- Oak Ridge Global, 1km grid resolution
present National
Laboratory
DynaPop 2014- (Aubrecht et al., Up to 100m grid spatial resolution, up
present 2014) to hourly temporal resolution.
WorldPop 2013- WorldPop, South America, Africa, Asia. Up to
present University of 100m grid resolution.
Southampton
Population 24/7 2009- (Martin et al., England and Wales population model,
present 2009) can be run at up to 100m grid cell
resolution (depending on data
sources)
National Population 2014- Health and Safety  GIS tool for Great Britain, 100m point
Database present Laboratory resolution
ENhancing ACTivity and  2016-17 EU Science Hub Europe. 100m grid cell resolution.
population mapping
(ENACT)
Population Density 2016- Facebook, in 30m grid cell resolution
Maps present partnership with

the Centre for
International
Earth Science
Information
Network at
Colombia
University

Applied as part of an ESRC funded project (UK Research and Innovation, n.d.), SurfaceBuilder247

is a gridded spatiotemporal population model available to academics (Martin, 2011). This

modelling framework can be applied to a range of applications which require spatiotemporal

population data, including emergency planning for natural hazards (Martin et al., 2015), hence its

suitability to this PhD research project. The model uses census data, administrative data sources

and government travel data. Briefly, SurfaceBuilder247 determines where the origins and

destinations of a synthetic population are, and then for the specific time of day chosen calculates

the number of each population sub-group in every grid cell, either residing there at an origin,
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destination or in travel on their way to an origin/destination. The interpolation method used
within the SurfaceBuilder247 model is based on an adaptive kernel density approach developed
by Martin (1996). It takes population-weighted centroids of small areas and redistributes them
onto a regular grid (Martin et al., 2009). The width of redistribution kernel is adjusted according to
typical areal extent zones in that locality and a distance decay function is used in the
redistribution (Martin et al., 2009). The Surfacebuilder247 framework presents a volume-
preserving model, so the number of people present in the census origin input file is the same as in
the output grid (Martin et al., 2015). It does not show the movement of individuals between
places, as confidentiality restrictions on census data mean the initial inputs are aggregated
beyond the individual level. Rather, the changing totals in grid cells of population groups are seen
when each time slice is compared. More detail on how this model works is provided in Section

4.2.2.

3.2.4.2 Microsimulation models

An alternative method to aggregate spatiotemporal population models is to apply a
microsimulation model to investigate spatiotemporal population movement. Aggregate models,
like spatial interaction models, have the disadvantage of lacking behavioural traits for individuals
who compose the large complex populations of cities and respond to urban environments
(Heppenstall et al., 2016). Agent based models (ABMs) represent individuals at multiple spatial
and temporal levels who respond to their surroundings, often through behavioural triggers within
a sensing radius. This generates complex emergent behaviours as agents have the ability to evolve
and make decisions over time and space (Heppenstall et al., 2016). The advantages of ABMs are
that they can represent the micro-dynamics of individuals, which cannot be captured as easily in
statistical models (Heppenstall et al., 2016). ABMs can represent multiple spatial relationships and
have the flexibility of incorporating equations and statistical techniques of other models
(Heppenstall et al., 2016). An example of using an ABM to model spatiotemporal population
movement is Crols and Malleson (2019) who applied the Simulating Urban Flows ABM to model
population groups moving into and around a town centre. Census data for commuters were
combined with a time use survey to parameterise the movement rules of agents, with other
population groups iteratively added. The accuracy of their model was assessed by comparing it to
footfall data in the town centre which tracks how many phones attempt to connect to the WiFi
network. Disparities between the datasets were presented to local stakeholders who provided
reasons for this by identifying groups which needed to be included in the model to more
accurately reflect the footfall data. This paper demonstrates how the combination of traditional
and new data sets can be effective in providing higher resolution spatiotemporal models of

population movement.
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Like all models, there are issues with ABMs. The main issue is that of calibration and validation of
ABMs, as one method cannot be applied to all as the processes in an ABM occur at different
spatial and temporal scales (Heppenstall et al., 2016). A large amount of data would also be
required to validate potentially thousands of agents (Heppenstall et al., 2016), and often there is
no suitable validation data set (Crols & Malleson, 2019). The ontology of the model can be
validated, for example Crols & Malleson (2019) did this through presenting the results to local
stakeholders, however there will always be a deviation from the real world in the model. Finally,
ABM models can be very computationally intensive which could limit their application to large

geographic areas.

3.3 Review of Transport Planning and Network Analysis

In order to research how flood events affect travel, an understanding of theory in transportation
engineering is required. This section focusses on how people’s journeys are conceptualised, how
road networks are modelled and how the risk of disruption is considered. As this research is
specifically focussed on the functioning of road networks, the wider context of network science

needs reviewing first as it forms the theoretical basis of the methods within transport modelling.

3.3.1 Introduction to network science

Network science is a broad, interdisciplinary field of scientific research which emerged during the
‘quantitative revolution’ of the 1960s (Ducruet & Beauguitte, 2014) and gained popularity at the
end of the 20" century (Fang et al., 2007; Bérner et al., 2007). Network science can be defined as
the understanding of the connections between elements, in the physical and social world, and is
important in numerous research fields, including biology, social sciences, ecology, physics,
computer science and mathematics (Boérner et al., 2007; Baggio et al., 2010). Networks can be
physical (e.g. road networks) virtual (e.g. the internet) or imagined (e.g. social networks) (Baggio
et al., 2010). In all types of network, the ontology to describe the elements are the same. There
are ‘nodes’ which connections are made from, which could be origins and destinations in physical
networks, or people in a social network. ‘Links’, sometimes referred to as ‘edges’, are what
connect nodes, and can be physical links like roads, virtual links on the internet or the

relationships between people (Kong et al., 2010; Gross & Yellen, 2014; Demsar et al., 2008).

Graph theory forms the foundation of network science with the concepts and terminology
adapted from it (Barnes & Harary, 1983). Graph theory is a branch of mathematics in which

‘graphs’ are a representation of a network (Demsar et al., 2008; Barnes & Harary, 1983). Graphs
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can be directed, which means that the direction of travel along the edge is important, or
weighted, where a numerical value is assigned to the edges and vertices to denote a variable
(Demsar et al., 2008). The interaction of vertices and edges can be assessed in several ways.
Shortest path is a common function and these algorithms determine the shortest route between
two vertices (Kong et al., 2010). Centrality measures are values which describe how important a
vertex is to the structure of the network, a higher centrality value means it has a high impact on
other nodes if removed (Demsar et al., 2008), which is useful in calculating the impact of
disruption. Finally, betweenness is the extent to which a node is needed to link the rest of the
network, nodes with high betweenness values have a large impact on flow across the graph
(Demsar et al., 2008). Graphs in mathematical models observe the topological properties of a
network; however, in this form do not contain the spatial properties of many real-world networks.
Graph theory has been used to create GIS network tools in order to examine networks as spatial

phenomena (Demsar et al., 2008).

Networks can be simple and consist of a few nodes and links, however real-life networks are often
complex systems where the impacts of disruption are non-linear (Dawson et al., 2011). Whatever
the type of network or complexity level, networks have broad properties which remain the same
(Baggio et al., 2010). One of these is network topology, the geometric connections of elements in
a network which are independent of a spatial coordinate system (Heywood et al., 2011).
Connectivity is an ‘essential’ component of networks (Reggiani et al., 2015), as how networks
connect and the status of these connections determines the functions which can be performed.
Due to the importance of connection in networks, the exploration of the effects of network

disruption is key, particularly for high consequence, low probability events (Berdica, 2002).

Transport networks are complex system as they are the interface between physical, technological
and social spheres. The layout of road networks is shaped by the social and economic connections
between places, and the roads represent the physical manifestation of a societal desire to travel
to destinations. Like all networks, when road networks are disrupted this reduces its overall
performance and impacts the running of society. Consequently, the study of road network
disruption and how to adapt to it is a highly active research area. The rest of this section
addresses theories in modelling transport networks specifically and how the issue of network

disruption is considered.

3.3.2 Transport network theories

Transport networks include roads, train lines and public transport routes which are along fixed

paths, but also travel by boats and aeroplanes, which follow routes not physically marked. Road
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networks have the same underlying properties as all transport networks, with their own unique
features. Transport models are networks which contain properties specific to the transport mode,

including speed restrictions, travel times, one-way roads and turn restrictions.

Three distinct classifications of transport model scale can be identified (Alaeddine et al., 2015;
Ldmmel et al., 2010; Borrmann et al., 2012). Firstly, microscopic models cover the individual
behaviours of people and vehicles to simulate interactions and emergent behaviour, making
ABMs the tool of choice. This can result in high computational cost which restricts the spatial area
it can be applied to. Mesoscopic models allow the tracking of small aggregate groups but they do
not account for behaviour and interactions of the agents (Alaeddine et al., 2015; Borrmann et al.,
2012). Finally, macroscopic models treat the population as larger aggregate groups (for example
travel between cities in a region) and again do not include behavioural interactions. The size and
type of model applied depends on the purpose of the research, the scale of network and the

available computing power.

Traffic and congestion are a feature of road networks, something not present in all types of
networks (Sohn, 2006). The impact of individual behaviour also has a large impact on the system,
as individual decisions interact to form system wide features e.g. the morning travel peak formed
by the structure of the typical working day. This decentralised decision making (Nagurney, 2011)
adds challenge to constructing transport models as users of the system do not always make
logical decisions and it is impossible to account for all individual decisions. From these principles,
a few key conceptual models are used within transport planning and form the basis of computing

workflows. Two of these models are described in the next subsection.

3.3.2.1 Conceptual transport models

First conceived in the 1960s, the ‘four stage transport model’ approaches transport planning from
a ‘person-perspective’ (McNally, 2007; Ortuzar & Willumsen, 2011; Jones, 2012). The four stages
represent the broad stages of an individual’s decision when planning travel (Figure 3.2). Trip
generation is determining what journey needs to be undertaken and by whom. In transport
planning this has largely been done through travel survey questionnaires to gain an understanding
of how often different groups of people travel daily and weekly (Jones, 2012). The next stage is
trip distribution, which assigns a destination to these potential journeys. If survey data exists then
this can be used, if not, spatial interaction models have been used to determine the likely flows
between origins and destinations. The third step is modal split, representing the decision
concerning mode of transport (e.g. car, bus, bike or foot) to reach the desired destination. Finally,
trip assignment is where a route needs to be selected based on the destination and mode of

transport used. Often this will be the one which is calculated to be the quickest or most direct.
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This model has largely remained unchanged since it was created, its simplicity providing flexibility
in application to a wide range of scenarios. Like all models, the four-stage model has flaws and
situations where it is not suitable. First, it is not easily applicable to journeys with multiple
destinations as it was based on the concept of a singular origin and destination pair (Jones, 2012).
Secondly, it does not include human behaviour which can have a large impact on the destinations,
modes and routes taken (Jones, 2012). People do not always choose to take the shortest logical
route. However, the four stage model remains a good base for transport models and is still widely

used (Ortuzar & Willumsen, 2011; Jones, 2012).

Trip Generation

What journey
needs to be
undertaken?

\ 4

Trip Distribution

What are the
destinations of
this journey?

A 4

Modal Split

What form of
transport is
used?

Trip Assignment

What route is
taken to the
destination?

Figure 3.2 The Four-Stage Transport Model

Emerging in the 1980s, activity-based models use the decisions made from activity choice as the
basis for transport modelling (Wang & Cheng, 2001), considering measures of attractiveness and
impedance (Bocarejo & Oviedo, 2012). Activity based models can include the demand for services,
which Reggiani et al., (2015), among others, attest is the basis of travel, as people rarely

undertake journeys for the sake of travelling.

333 Key Concepts for transport network disruption

There are key transport network concepts in relation to transport network disruption which need
defining, especially as they often overlap and are measured in similar ways. This section covers

the network concepts as well as other key terms found within transport literature.

Society works when its networks are functional. Road networks are the lifelines of society (Chen
et al., 2007; Platt 1995; Nyberg & Johansson 2013), hence, even minor disruptions can have
negative effects. Disruptions can be caused by natural events, accidents, planned engineering
works or terrorist attacks, and each type of disruption has its own warning period and adaptive
measures. There has been a rise in the body of literature assessing the impacts of weather on
travel (Liu et al., 2014a) as the increased frequency of extreme weather events has a high
likelihood of causing significant future problems (Mitsakis et al., 2014). Society cannot afford
absolute protection, so identifying what nodes and links are critical to the normal functioning of

the network and prioritising this infrastructure is essential (Freiria et al., 2015).
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Critical network links can be defined as those which when unavailable have the greatest impact
on network function. There is not one method which is used to define critical links (Cats &
Jenelius, 2015) as it largely depends on the researcher definition of ‘critical’, and the linked
concepts of vulnerability and accessibility discussed later in section. Identifying critical links is
important in all network systems in order to identify where resources for maintenance and
protection should be prioritised to ensure the continuation of social and economic functions
(Sohn, 2006; Jaroszweski et al., 2015). When considering transport networks, they are not aspatial
and links which may not appear critical through the network scan methods may in fact be critical
to local populations. A social science perspective of who uses the network is also important. This

is particularly true in disruption events.

The origins of network disruption methods are from graph theory. There are a set of methods
which can be grouped as topological analyses (Khademi et al., 2015), as they are primarily aspatial
methods based on graph theory and do not consider the geography of a disruption (Pregnolato et
al., 2016b). The basic method is to remove one link at a time to systematically examine the impact
on the whole networks function from their removal (Sohn, 2006). Eliminating singular links and
testing the impact is a long process (Chandra & Quadrifoglio, 2013) and it does not provide a
holistic view of the tolerance of the network as a whole (Duan & Lu, 2014). Hence, other
measures have been developed which are quicker or are more targeted in their network attacks
(Chandra & Quadrifoglio, 2013). A common technique is the ‘full network scan’ approach, which
removes each link at a time but in an automated way (Freiria et al., 2015). However, this is still
computationally expensive so cannot be used for large data sets (Freiria et al., 2015). These
methods can work well for network problems which are not for physical networks e.g. internet
communications, however spatial methods are better for physical networks with physical

disruptions.

Jenelius (2010a) proposes that research needs to go beyond those which are important in the
normal functioning network, as when disruption occurs to critical links, re-routing is required
(Jenelius, 2010a). So, these roads can be considered secondary critical links and their importance
may only become apparent in disruption scenarios. Extrapolating the critical links theory further,
research should consider a particular population group, as different routes and services are used
by different groups of people, therefore the importance of a road link would vary depending on

the perspective of the group of people.

Vulnerability and accessibility are terms which are linked to defining critical links in networks. The
term vulnerability is mostly used in relation to the risks posed by severe transport disruptions

(Cats & Jenelius, 2014) and was first formalised by Berdica (2002). Chen et al., (2015), Reggiani et
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al., (2015), Rupi et al., (2015) and Muriel-Villegas et al., (2016) state there lacks consensus on a
definition for network vulnerability due to the numerous methods which try to capture the
consequences of network disruption. In general, the definitions agree vulnerability is a measure of
the susceptibility and impact of disruption on the network, independent of probability. Early
conceptualisations of vulnerability for networks were related to the concept of reduced levels of
accessibility as a consequence of network failure or degradation, however it has evolved to

consider the wider consequences of failure (Muriel-Villegas et al., 2016).

Jenelius (2010a) takes the concept of network vulnerability further by considering network equity;
defining importance through how the network design can lead to inequitable distribution of the
consequences from disruption. Their example is that if a link closure results in one area being
affected substantially more than others, the link could be considered more important i.e. critical
to maintain. Jenelius (2010b) identifies horizontal and vertical equity, where horizontal equity
ensures the costs and benefits to be equally distributed across all individuals whilst vertical equity
provides special consideration to vulnerable groups. This theory could be applied to hazard risk
assessments, as those who are most vulnerable are often prioritised in plans, therefore road links
which connect to these groups could be considered critical even if they are not topologically

critical.

Accessibility is the key for any transport network, since people need to be able to access the
services they require. Accessibility is a useful measure for a number of reasons. Firstly, it can be
used to calculate the opportunities available to an individual or group, like access to workplaces,
shops, education and other amenities. Secondly it is important in emergency situations, where
the level of access to affected groups needs to be assessed quickly to provide an appropriate
response (Schnebele et al., 2014). Khademi et al., (2015) state there are similarities in the
definitions of vulnerability and accessibility, and the link between accessibility and vulnerability
was first made by D’Este and Taylor (2003). Common themes in accessibility definitions are the
focus on positive connections networks provide between places and opportunities, rather than a
more negative view of weak links and nodes given in vulnerability (Bocarejo & Oviedo, 2012; Ford
et al., 2015a; Coles et al., 2017). Where they do correlate is that they can both be measured as a
product of disruption, with the accessibility before and after an event calculated. The concept of
potential and realised accessibility is also a consideration as analyses may indicate there is a route
to provide access to a service, however other barriers like affordability of travel, availability of
service and consumer choice can prevent potential accessibility becoming realised accessibility

(Nieves, 2015). These factors can often be included through generalised cost indices.
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There are many papers which address network accessibility for the general population, including
Jenelius, 2010; Jenelius 2009; Jenelius & Mattsson, 2012; Rodriguez-Nunez et al., 2014; Sohn,
2006; Taylor & D’Este, 2003; Taylor et al., 2006; Chen et al., 2007, Chen et al., 2015; Balijepalli &
Oppong, 2014. However, there are few studies which look at accessibility for certain groups.
Nyberg and Johansson (2013) modelled how accessibility for elderly residents is affected by
storm-felled trees in Southern Sweden, whilst Coles et al., (2017) focussed on elderly residents’
access to care but this time in the context of flooding in York. Looking at key sub-groups of the
population and which roads they use to access services can therefore be used to identify critical

links those groups need to conduct their daily routines.

3.34 Transportation-related geospatial data systems

There are many geographic data sets which can be used in UK transport modelling and they can

be classified into three categories; government data, open source data and commercial data.

3.34.1 UK Government sources

There are a number of data sources for data on traffic flow, speed, road location and accessibility
available for use in UK transport studies. For traffic flow, the Highways Agency Traffic Information
System collects information about traffic speeds and flows for UK motorways at a 15 minute
temporal resolution (Jaroszweski et al., 2015) which can be accessed for transport planning and
research. Another available data source is Annual Average Daily Flow (AADF) data for traffic points
around the country, and they provide an average count of the number of vehicles using that
section of the road by vehicle type. The UK national average value for generalised cost was
designed to quantify travel time in transport planning (Postance et al., 2017) and can be used for
major roads. The UK Department for Transport also has an accession GIS tool which calculates
service accessibility to services via public transport for different groups (Ford et al., 2015b), useful

data for assessing equality of service provision.

In terms of GIS data for building network models, Ordnance Survey have developed several road
network data products. OS MasterMap Highways Network is a comprehensive GIS data set of all
roads in Great Britain, available via license to businesses and under the Public Sector Geospatial
Agreement to public sector organisations. These data include information on any road
restrictions, turnings and road ownership. Ordnance Survey do provide an open source roads data
set, OS Open Roads which provides basic information on road location and topology, but without
the additional information like average road speed data for different times of day. Finally, the

National Public Transport Access Nodes (NaPTAN) is a data set for Great Britain of public transport
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access points e.g. bus stops, rail stations, underground entrances. These data are for more

specialised purposes but open the potential for modelling public transport networks.

3.3.4.2 Open source data and software

There are a number of open source data and software package and data which can be used in
transport analysis. The main advantage is that they are free to use so can be used by more people
than government or commercial software/data. However, as open source software and data are
developed in a crowd-sourced manner, data set coverage and updating may be variable across a
country, unlike Ordnance Survey whose mandate requires that all parts of the country be mapped
to a consistent basis. For example, for Open Street Map (OSM) many contributors would not have
training in surveying meaning their insertions and updates to the data base may be inaccurate or
incomplete (Basiri et al., 2016). This can be mitigated through control processes to identify user
errors (Basiri et al., 2016). This section describes some of the open source data and software

packages relevant to transport network modelling.

Open street map (OSM) is a crowd sourced GIS project and includes transport data which can be
freely downloaded and used in projects. For example, Gil (2015) created a multimodal urban
transport network model as there are data for private and public transport options. The OSM data
consist of nodes (points) and ways (polylines), which have tags associated with them to denote if
they are part of a transport structure (Gil, 2015; Dingil et al., 2018). Therefore, these data can be
used for network modelling for roads and public transport. The OSMnx Python software package
is one example of a way to extract and convert the OSM transport data into a transport graph for
network analysis (Dingil et al., 2018). A benefit of OSM transport data are that it is available
globally, although there may be differences in detail and the frequency of updates. It also
provides data for ‘soft modes’ of transport (cycling, walking) as well as road network data (Gil,
2015). In terms of positional accuracy, Gil (2015) found that for the Netherlands it was not
substantially different from official data. However, a challenge with OSM data are quality issues
with the attribute data, which are required for identification of transport nodes and ways (Gil,

2015).

OpenTransportMap (Jedlicka et al., 2016) is a platform built on OSM data and allows for transport
data for Europe to be viewed, downloaded, incorporated into online maps and to be used for
network routing (Jedlicka et al., 2016). It also includes dynamic traffic volumes calculated from
Annual Average Daily Traffic flows, daily traffic volumes and hourly traffic volumes processed in
the OmniTrans software. The data can be downloaded for Nomenclature of Territorial Units for
Statistics (NUTS) level 3 for European countries and contains information on road names, travel

mode, capacity and in some cases traffic volume. However, it does not contain average speed
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data or speed data for specific times of day, restricting its use for temporally specific analysis.
Openrouteservice (The Heidelberg Institute for Geoinformation Technology, 2019) is another
example of an open routing platform based on OSM data. Accessed via an API, several services
are provided including directions, service area catchments and time-distance matrixes. The
service allows for up to 2500 origin-destination pairs can be run per day for free. As with
OpenTransportMap, the coverage is global as the underlying OSM data allows this. However,
again it does not contain temporally specific traffic data to allow for temporally specific routing by

itself.

QGIS is a well-known, open source GIS software which has several network routing plugins. These
include Online Routing Mapper, which allows for routes to be generated with online services like
Google Directions, Here, MapBox and OSRM; Networks, a processing algorithm for linear
networks and multimodal routing; QNetwork, a network analysis tool using the Geographic
Network Model and Road Graph Plugin, which solves the shortest path problem (QGIS, n.d.). With
these plug-ins routes can be simulated either through python coding or the graphical user
interface to generate shortest path routes. QGIS can also access OSM data via the Overpass Turbo
API for use within the software. R is another widely used open source software package, although
the majority of its applications are for statistical purposes. However, a transport package called
stplanr has been developed to provide functions for transport routing problems, but also to
manipulate and clean transport data sets (Lovelace & Ellison, 2018). R can make use of open
street map data and access data via API’s, so it has the potential to build powerful transport

models for routing.

3.3.4.3 Commercial data and software

There is a range of commercial software and data which can be used for transport applications,
covering regional-scale geographic analysis to planning for an individual road junction. ArcGIS is
perhaps the most well-known GIS software as it is used by academics and industry. A license can
be bought for the network analyst toolbox which provides a range of origin-destination and
service area tools (ESRI, 2020b). Historical traffic data can be incorporated into network analysis
through accessing the network routing server, available in ArcGIS online and ArcGIS Pro desktop
(ESRI, 2018). The use of this service does require credits that the user pays for. This service does
allow a user to easily specify the time of day they wish to run the route for, adding valuable
temporal dimensions to the routing. Another advantage is open source GIS data and government
data are often in a format compatible with ArcGIS software. ArcGIS therefore is a good software

for running network analyses in, however the network analyst license and credits for historical

56



Chapter 3

traffic data can be prohibitively expensive for some users (see Chapter 4 for more discussion on

this).

Google collects a vast amount of data on population movement, traffic and business opening
hours. This is due to tracking mobile phones via GPS, and the live traffic can be seen when using
Google maps online. The Google Routes function (Google, 2020) allows businesses to access
google map data for routing to enable efficient route planning. It is updated 25 million times a day
to allow for real-time location analysis, either through directions for routes or distance matrix’s,
to provide travel times and distances for one or more locations (Google, 2020). The distance
matrix API facilitates the calculation of travel time and distance for a matrix of origins and
destinations. Use of the API is on a pay-as-you go model, with a range of 0.005 — 0.004 USD per
route calculated. TomTom also provides a routing and traffic service for developers through its
API, in addition to a partnership with Apple, and again there is a cost price associated with
accessing the data. HERE are another company which provides traffic data and routing services
and they have a partnership with ESRI to provide the traffic data for ESRI’s routing service (ESRI,
2020d).

In transport engineering, software tends to be designed for modelling small parts of a road
network rather than a whole city. For example, PTV VISSIM is a traffic model which is good for
testing the traffic flow at specific junctions, as it models all individual road users. This works for
the purpose of many engineering projects which are adapting the existing road network but could
not be used to look at traffic flow across a whole city. Two other examples of specific transport
packages include Assessment of Roundabout Capacity and Delay (ARCADY) which is for
roundabout modelling and Priority Intersection Capacity and Delay (PICADY) designed for testing

the capacity, queues and accident risk at new unsignalled junctions.

3.3.5 Methods

This section gives a brief overview of the methods used for measuring proximity, flow,

accessibility and critical roads in networks.

3.3.5.1 Proximity metrics

Proximity is a measure of how close two points are and there are three ways this can be
calculated; distance (by Euclidean, Manhattan or network metrics), travel time (derived from a
network or cost surface) and economic cost (measured through direct costs and value of time).
Euclidean distance is the simplest and can be calculated either through a straight line between an

origin-destination (Figure 3.3) pair, or using a buffer if considering service areas (Apparicio et al.,
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2008). In some cases, Euclidean distance and network distance can have a high correlation, so can
be used as a proxy (Boscoe et al., 2012). However, Euclidean distance can never be completely
accurate unless a road is a singular straight line. Manhattan distance is similar, although it
calculates a distance between two points through the horizontal and vertical distances (Figure
3.3). Manhattan distance approximates travel in grid-based cities (Charreire et al., 2010) however,

in other types of city Euclidean distance is preferable (Apparicio et al., 2008).

N\

Figure 3.3 Euclidean distance (left) and Manhattan distance (right). The red lines show the

distance measured in each.

The more advanced way of measuring distance travelled is using the road network itself based on
the principles of graph theory (see Section 3.3.1). The shortest distance between two points on a
network can be calculated using network topology principles (Postance et al., 2017). This
proximity metric is more realistic than Euclidean or Manhattan distance as it is accounts for the
spatial road network configuration, rather than being a straight-line approximation. Therefore, it
is more common in transport and travel analyses to use software packages such as ArcGIS, QGIS
and R which have network analysis functions. There are numerous shortest path algorithms;
however, Dijkstra’s algorithm (Dijkstra, 1959) is perhaps the most well-known (Wang, 2012). As it
is the basis for the Network Analyst toolbox from ArcGIS used in this thesis, the algorithm

workings will be described here.

Dijkstra’s algorithm can be represented by G= (V,E) where G is the graph, V is the set of all
vertices or nodes, E is the set of all edges (Eneh & Arinze, 2017). The algorithm is designed for
weighted graphs, i.e. networks where there is a cost associated with each link, for example
seconds of travel time (Jiang et al., 2014). To calculate a shortest-distance path, the origin node
and the destination node are chosen. The algorithm works by first identifying nodes adjacent to
the origin node and calculating weighted distances to these adjacent nodes, along the network
edges. The path with the least weighted distance cost to an adjacent node is identified and this
intermediary node becomes the focus for the next step. In the next step, adjacent nodes around

the new focus node are identified and the cumulative weighted distances from the origin node
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are calculated. The node which the shortest cumulative weighted distance along the network
edges from the two steps is identified, and this is the next node in the journey. These steps are
repeated until the destination node has been reached and the minimum weighted distance
pathway between the origin and destination is calculated. A path from the origin node to a
destination node is said to be the shortest path if its total cost is the minimum among all the
possible paths (Chen, 2003). Dijkstra’s algorithm is the fastest known shortest path algorithm for
directed graphs with non-negative weights (Eneh & Arinze, 2017). From Dijkstra’s (1959) original
publication of the algorithm there have been many revisions and improvements to the algorithm,
including Jiang et al., (2014), Chen (2003), Wang (2012) and Eneh & Arinze (2017). One example in
commercial software is the ESRI network analysis toolbox. This has several routing algorithms
which are based on Dijkstra’s, with additions to allow multiple-origin multiple-destination
calculations (OD Cost Matrix and Closet Facility), and reductions to the performance time by
including Hierarchical Routing to reduce the number of vertex pairs for which the path has to be

calculated (ESRI, 2020a).

It is not always the distance which is covered which is the important factor in an analysis. In
instances like calculating service areas for emergency vehicles, it is the travel time to get to a
destination which is the key metric. The time taken to travel between two points across the
network can be calculated from the distance covered and the speed of travel, taken from average
road speeds if data are not available. The fact network distance measures do not tend to include
individual behaviour is a limitation (Sohn, 2006) as it presents an optimum functioning of the
network rather than the complexity of individual decisions combining e.g. travelling to/from work
at the same time which leads to congestion. Therefore travel times are often an underestimation
of reality (Borrmann et al., 2012). Calculating individual routes also fails to consider the
interdependencies of links and how drivers affect each other whilst travelling (Jenelius &

Mattsson, 2015).

Cost surfaces are another method of measuring proximity without using a network data set.
These are raster files where the value in each grid cell is the measure of impedance across the
surface. For example, Wood and Schmidtlein (2013) combined elevation, land cover and slope to
create a speed impedance value across the raster surface, and when an average walking speed
was applied, the time to evacuate from the area could be calculated. The cost surface therefore
allows the travel cost, often in minutes, between an origin and destination to be calculated (Burns
& Inglis, 2007) and the shortest suitable path found (Wood & Schmidtlein, 2013). One advantage
of a cost surface is it allows physical and socioeconomic factors to be combined quantitatively

(Jenelius, 2010a) and it has strong links to the generalised cost metric.

59



Chapter 3

Finally, proximity between two points can be measured in terms of economic cost. In transport
studies, this is often measured through generalised cost functions which include a set of cost
components of a journey (Ford et al., 2015a; Davidson & Davidson, n.d.). There are two main
components; the direct monetary costs and the cost of the time taken for the journey. Monetary
costs are the direct costs of trips, which include the cost of petrol and the price of a ticket. This
can either be from data for public transport ticket costs or can be based on distance with the price
of petrol per mile. The distance can be calculated either by network analysis or cost surfaces, as
described above. Secondly, the valuation of the costs accrued from the time an individual spends
on a journey are included. The Value of Time is the value the average person places on an hour of
their time, which could include their hourly wage for commuter journeys, although this varies for
different socio-economic groups and the purpose of the journey (Ford et al., 2015a). This measure
is used in the calculation of journeys and to understand the relative savings when improvements
to transport networks are modelled, for example assessing schemes like the HS2 rail project

(Department for Transport, n.d.).

3.3.5.2 Accessibility and network disruption measures

As described in Section 3.3.3, accessibility is a key transport concept and links to disruption
metrics. Therefore, there are ways to measure accessibility based on proximity metrics described
in Section 3.3.5.1. Service areas represent the area which is served by a specified service (e.g.
hospitals, pharmacy, supermarket) and it is a key function in business models. Accessibility can be
considered in terms of how many opportunities a transport system provides (Bocarejo and
Oviedo, 2012) and service areas are one way of conducting research to ascertain which services
are available. GIS software allows changes to the position of services or the network to be made
to see how access changes. The generalised cost metric discussed in the previous section can also
be used to calculate the cost of a delay to journeys through the extra time taken (Jenelius et al.,
2011; Postance et al., 2017) the quality of public transport service (Currie, 2010). An example of a
study which includes Value of Time calculations for measuring the disruption to travellers across a
city are Kilgarrif et al., (2019), who calculate the costs to commuters in Galway, Ireland due to a
flood event. They used Subjective Value of Travel Time values for three subsamples of the Irish
population based on the 2011 census of population for Ireland. They could then calculate how
much additional cost the flood event caused to commuters’ journeys. Ford et al., (2015a) created
a GIS-based accessibility tool using a generalised cost measure in order to calculate accessibility in

London to destinations like employment locations.

Introduced in 1946, Spatial Interaction Models, also known as gravity models, are a ‘prevailing

framework’ for predicting flows between places (Simini et al., 2012). Based on Newton’s
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gravitational theory, the underlying concept is that the number of trips from an origin to a
destination can be calculated through the ‘attractiveness’ of a destination, balanced against the
relative attractiveness of alternatives. Equation 3.3 is the standard equation for Spatial Interaction
Models (Ortuzar & Willumsen, 2011) where Tj is the number of trips between origin i and
destination j, Oj is the number of trips available from the origin, Dj the total number of trips
attracted to that destination, f(Cij) a generalised cost function (often a distance decay function)
and A;and B; balancing factors. Spatial Interaction Models are used to measure trip distribution in
relation to current or past demand (Tsekeris & Stathopoulos, 2006) therefore require underlying
data to provide validation of the calculated flows. These models can be singly constrained, where
either the origin or destination totals are known, or doubly constrained, where both origin and
destination totals are known (Simini et al., 2012). Another data requirement is for the generalised
cost function, which can be as simple as distance, or include retail turnover, income, population
numbers or employment data (Vickerman, 1974). A major limitation of this method is the amount
of data which are required to fit the parameters of the model. It cannot be run if no data on flow
between origin-destination pairs is available (Simini et al., 2012) and often relies on historical
demand data for predictions (Tsekeris & Stathopoulos, 2006). Attempts have been made to create
dynamic Spatial Interaction Models with real-time travel data (Tsekeris & Stathopoulos, 2006),

however mostly historical data are used for planning purposes
T,'j = Ai Oi Bj Djf(C,'j) Equation 3.3

Within transport geography, GIS based network analysis is a common method for measuring
access and the impact of disruption (Ford et al., 2015a). Based on the network distance metrics
described in section 3.3.5.1, GIS software can calculate routes between origins and destinations.
Access can be measured by how much of an area is within an ‘accessibility threshold’ (Salonen et
al., 2012) which could be by time or distance. Network analysis is often used in scenarios to see
how access is affected when part of the network is closed (Nyberg & Johansson, 2013). The
number of people who can/cannot now be reached along the roads, or get to their destinations,
before and after applying the blockage, can therefore be calculated (Nyberg & Johansson, 2013).
Often it is assumed the shortest route is taken which again, does not reflect every persons
decision as people will take alternative routes to the ‘logical’ one (Sohn, 2006). Also, GIS network
models do not consider traveller behaviour, so it is considered as the lower bound of travel times
(Borrmann et al., 2012). But the strengths of GIS network analysis are that it can spatially model
the real world, putting graph theory into context, but can also enable socioeconomic data to be

linked to network data sets (Liu & Zhu, 2004).
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As covered in Section 3.2.4.2, agent-based models can be used to model individual vehicle or
person travel. This technique is common in evacuation scenarios (Wood & Schmidtlein, 2013),
where knowledge of the individual moving through the space is important. The main difference
between this and GIS network models is that travel behaviour is incorporated, which should
provide a more accurate measure of travel times and routes. Queuing theory can also be included
which simulates traffic (Lémmel et al., 2010), something which non-behaviour methods lack. The
main advantage is this inclusion of driver behaviour as individual decisions are an important factor
in the capacity and performance of the network (Brown, 2014). However, agent-based models are

computationally intensive and require a lot of data to parameterise agent behaviours.

3.3.5.3 Overall travel model limitations

As with the other simulation models discussed in this chapter, there are limitations and
uncertainties associated with travel models. An almost ubiquitous assumption in network routing
models is that drivers have optimal knowledge of the network, and disruptions which are on the
network, when applying a shortest-path function (Arrighi et al., 2019). This assumption means
that the results are limited to being a minimum estimation of disruption (Arrighi et al., 2019), as in
reality there would likely be more congestion and disruption as people do not have perfect real-
time knowledge and some will ignore diversion signs. This links to the assumption often found in
models that whilst an area is disrupted, the remaining network functions as normal (Cats &
Jenelius, 2014). A disruption does indirectly impact the network around it through congestion
propagating over the whole system (Cairns et al., 2002; Pregnolato et al., 2017a; Nagurney, 2011),
again meaning the results of travel models are often an underestimation of actual disruption
(Postance et al., 2017). Whilst ideally these assumptions would not have to be made, in reality
they are used in models due to the difficulty of creating a model which incorporates traffic
conditions and individual driver behaviours over a whole urban area. However, continuous

improvements in computing power and ABMs may mean these issues are resolved.

The validation of route changes and travel times from disruption scenarios presents difficulties.
Often there is not an alternative data set which demonstrates the traffic for a specific disruption
event, for example ESRI and Google provide average travel times for day types but not specific
events. In some cases, like Pregnolato et al., (2017b), there is sensor data for traffic available for
periods where there has been disruption, in this case from pluvial flooding. However, not all roads
are installed with traffic sensors, especially local roads, so this is not suitable for all locations. In
addition, this would not be possible for risk planning exercises for events which have not recently
happened in an area, but stakeholders wish to prepare (for example a terrorist incident). Expert

judgement and stakeholder engagement is used in many fields so should be successful in this
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application as well as Crols & Malleson (2019) demonstrate. However, not all research studies will

have the time and budget to invest in this level of validation.

3.4 The Impact of Flooding on Population Mobility and Transport

Networks

The previous three sections have summarised the relevant literature in each of the three
academic areas applied to this thesis. This section will now draw together the key strands where

these disciplines overlap to inform the knowledge base upon which this thesis is structured.

To summarise the research issue, roads underpin mobility within urban areas, both during day-to-
day life and emergencies, and fast connections to critical infrastructure and services is important
(Arrighi et al., 2019). Pluvial flash floods are a common hazard in urban environments due to
extensive impervious surfaces (Li et al., 2018) and identifying areas more likely to be cut off, or
with reduced access, is fundamental for flood risk management and preparedness (Arrighi et al.,
2019). Over half of flood victims in post-industrial countries are motorists trapped by road
flooding (Terti et al., 2017; Debionne et al., 2016), consequently, daily mobility is one of the
primary causes of population exposure and vulnerability to flash floods. There are numerous
studies of population exposure in homes and offices. However, mobility aspects are not
systematically included in studies assessing human exposure and vulnerability in flood risk
measurement. Population density data are often used assuming a static distribution, which do not
match the rapid dynamics of a flash flood model (Shabou et al., 2017). However, the availability of
spatiotemporal population models and new ‘big data’ are leading to dynamic population models.

The combination of all these dynamic elements remains a challenge for researchers and planners.

34.1 Applying risk theory to transport disruption

Risk theory, as outlined in Chapter 2, can be applied to transport network assessments for travel
disruptions. In general, risk theory is implicitly, but not explicitly, utilised in transport network
disruption studies. Examples of where risk theory has explicitly been applied are Berdica (2002),
Rupi et al., (2015) and Pregnolato et al., (2017a), as they consider risk as a function of disruption
probability and consequences, and use it to structure their analyses. As detailed in Chapter 2, this
physical sciences definition of risk works well for physical structures and economic impact,
however it is not as good at capturing the social elements of risk, or perhaps the social dynamics
behind transport decisions. Using the risk = f(Hazard,Exposure,Vulnerability) conceptual equation,
as detailed section 2.4.1, should provide a better foundation to combine transport modelling

methods with spatiotemporal population data, considering specific population groups and their
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needs, which is one objective of this research. Indeed Arrighi et al., (2019) also use hazard,
exposure and vulnerability to assess risk as it more functional and incorporates the natural and
built environments (Arrighi et al., 2019), with this research including the social component of risk

in the form of demographic data.

Hammond et al., (2015) state that there is clear scope for traffic models to be combined with
flood models to improve estimates of the disruption to travel, and therefore calculate the cost of
delay. In addition, demographic data or a population model should also be included to fully
understand the risk to those travelling on the road network as it is the effect on people, rather
than the physical infrastructure, which is important to many stakeholders. Knowing the number of
motorists exposed on flood prone road sections (Debionne et al., 2016), and the characteristics of

the population in travel, would provide a more realistic evaluation of the degree of exposure.

The role of individual behaviour in creating the dynamics of a transport system have been
demonstrated earlier in this chapter; therefore, risk behaviour should also be considered as part
of disruption planning. Liu et al., (2014a) found in their study that people chose closer
destinations for shopping and leisure activities in adverse weather. Furthermore, Terti et al.,
(2015) argue that perception of warnings and environmental factors strongly depends on
contingent conditions. For example, if a hazard occurs to disrupt a homeward journey, a person is
more likely to persevere to get to their destination compared to if the same event increased the

difficulty of a journey into work.

At present, mobility aspects are not often taken into account when assessing human exposure
and vulnerability to natural hazards, with residential population data used most of the time
(Debionne et al., 2016). There are some examples of specific disaster risk management research
which examine finer temporal resolution population data. Bian and Wilmot (2015) compared the
population exposed to a chemical spill during a normal weekday and a weekend festival day. Their
data set was created by using land use data to assign a percentage of the population to each sub-
area, and time-periods used to generate movement of population groups. However, these data
are specific to New Orleans, and only for the two scenarios they tested, so it is not applicable to
other areas. Kunwar et al., (2014) created their own temporal population data, using open source
data; however, this is also study specific and only related to their work on evacuation of ten cities
in the UK. Smith et al., (2015) investigated spatiotemporal changes to exposure from flooding in
Cornwall by including the seasonal fluctuations in population from tourism. However, those

conducting journeys were not explicitly considered and how the flooding would affect them.
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3.4.2 Modelling disruption to travel over space and time

Most studies on travel disruption consider transport networks from an engineering point of view,
focussing on network connectivity, rather than measuring the impact of road closures on the
population which use them (Pfurtscheller & Genovese, 2019). The inclusion of multidisciplinary
methodologies comprised of hydrology, transportation and have proved effective in many case
studies (Li et al., 2018) therefore, the inclusion of spatiotemporal population data should enhance

these measures further.

Roads are built to run at near maximum capacity to minimise costs, which means there is little
redundancy in the system to cope with disruptions (Mossoux et al., 2019). When a disruption
scenario occurs, the location of this is very important. If this is at a ‘critical link’ then the impacts
will be much greater than a non-critical link. The spatial distribution of the network disruption is
one factor (Postance et al., 2017), but time dimensions are ‘excessively important’ in transport
systems, as fluctuations in demand and supply evolve on the daily to decadal scale (Reggiani et al.,
2015). For example, the morning and evening ‘rush hours’ when most people are travelling
to/from home and work are the busiest times on England’s road networks, so a disruption has a
greater impact than one occurring on a Sunday morning. The costs associated with a network link
are time-dependent, as there are peaks and troughs in supply and demand, leading to the spatial
distribution of critical and vulnerable links to evolve over time (Cats & Jenelius, 2014). Time is also
important for travel behaviour, as Liu et al's., (2014a) paper shows that previous studies indicate
commuters’ travel activity is less variable in adverse weather conditions than non-commuters’
travel. Space and time are interlinked concepts in transport disruption studies, and when
capturing these dynamics in models often space is continuous whilst time is measured as
snapshots (Wang & Cheng, 2001). The element of demand on the road network could be
generated from data supplied by spatiotemporal population models as they produce time-specific

information on the location of many demographic groups.

The majority of network disruption studies look at which links are critical or vulnerable, but
without the specific context of time of day/year and the relative demand on the network. When
time is considered, it is often travel time to a destination and how that changes, rather than the
actual time the disruption occurs and how this interacts with demand to produce varying impacts.
There are some studies which have taken this view. Freire et al., (2013) looked at how day and
night time population distributions affected hazard exposure and time taken to evacuate after a
Tsunami warning in Lisbon, using shortest route calculations. Their results showed differences in
total evacuation time with a night-time evacuation being quicker, probably due to a smaller
number of people present in the city. However, they only considered daily fluctuations and did

not investigate seasonal fluctuations or the differences for population sub-groups. Kunwar et al.,
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(2014) applied temporal population data to a model of total evacuation of ten UK cities to test
how total evacuation time of agents varies with and without intervention. Again, they did not
explore how routes change or compare the impacts from a specific day or time of year.
Pregnolato et al., (2017a) examined the impact of disruption on an evening commute, due to the
presence of validation data, however they do not examine the impact of flood events at other
times of day. Shabou et al., (2017) used an activity-based ABM (MobRISK model) to combine
travel behaviours with weather disruption to understand disruption. Their method required
census data and travel activity survey data to assign daily activity programs to the population,
then locate different activity areas, and mobility is generated when individual agents attempt to
implement their activity programs. Exposure was measured by the likelihood of crossing flood
roads along each individuals route (Shabou et al., 2017). These studies show that combining

hydrology, transport and population is possible and a useful endeavour.

For spatial models, scenario testing is the most common way of testing disruption to discover
which links are most critical (Pregnolato et al., 2016b). Examples include Pregnolato et al.’s
(2017a) paper on accessibility during flooding of the road network in Newcastle-upon-Tyne, UK
and Yin et al., (2016) combining a hydrological model with a transport risk assessment to see how
disruption affects traffic flow. In order for comparison, a baseline scenario must be run initially
before any disruption is included (Pregnolato et al., 2016b), a common method of measuring
disruption to travel from flooding (Kilgarriff et al., 2019; Wei et al., 2018). But, there could be a
very large number of scenarios, so a few are picked to test the impact of a disruption event (Smith
et al., 2014a). If the change in population is the key variable, then the hazard event should be kept
the same (Bian & Wilmot, 2015). There is no universal methodology for understanding the impact
of disruption, therefore the results of the critical road analysis cannot be transferred to other

scenarios or locations (Mitsakis et al., 2014).

As with all the models examined in this chapter, there are common limitations to models used for
modelling spatiotemporal disruption to travel. Firstly, incorporating a dynamic flood, traffic and
population model is challenging. Often, a dynamic flood model with a static travel model (Versini
et al., 2010) or vice versa is common, reducing the realism of the simulation. Not including a
dynamic flood model could lead to an overestimation of the impact of flooding on travel, due to
localised changes in flood water depth meaning roads may be passable sooner than predicted
(Chang et al., 2010). Secondly, it is hard to estimate the indirect costs of infrastructure damage on
commuters. One London study estimated the flood related disruption to major roads at peak

times in London was at least 146,000 Euros per hour (Arkell and Darch 2006).
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3.5 The Evidence Gaps

Several gaps in the understanding of spatiotemporal aspects of flood hazards and population in

travel are apparent from this literature review:

e Focussing specifically on the representation of sub-groups of the population in travel in
spatiotemporal population modelling, which has received limited attention.

e Combining gridded spatiotemporal population data with network analysis, which not
been done before, as far as the author is aware.

e Quantifying how the timing of flood onset interacts with flood magnitude to change the
impacts on road travel disruption, through examining changes to time of flood onset for a
short time window, like the morning commute.

e Linking the ‘critical roads’ concept in literature, based on topology, to the requirement for
local authorities to identify which links are critical for resilience, based on need of the

population (Cabinet Office, 2011)

The chapters that follow seek to generate evidence or methods to address these gaps.
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Chapter4  Methods and Data

This chapter provides an overview of the study design and methodology used in the thesis. The
first section covers the study design and choice of case study location. The second section
describes the three main existing modelling tools utilised in this thesis and their application to this
work. Finally, the overall structure of the results chapters and the methodologies of each
(Chapters 5, 6 and 7) is given. More detailed and specific methodologies are included in each

results chapter.

4.1 Study Design

4.1.1 Case study site

York has been selected as the study site due to its population size (just under 200,000 in 2011
(City of York Council, 2018), which is a sufficient size to demonstrate a new methodology of using
spatiotemporal population data with network analysis and flood modelling, but not too large the
data processing is unmanageable. York is also a reasonably self-contained city in terms of
commuting patterns, with 71% of those who work in York also usually resident in York (2011
census, WUO1EW - Location of usual residence and place of work by sex (MSOA level)), unlike
other more complex conurbations like Manchester or London. York has a long history of fluvial
flooding and regularly experiences small floods, due to being situated at the confluence of the
Rivers Ouse and Foss. The most recent large fluvial flood event was December 2015, when there
was substantial flooding and the Foss Barrier failed, leading to 600 properties being flooded
(Environment Agency, 2016). York, like most urban areas, is also at risk from pluvial flooding and
has experienced pluvial flood events in the past, as described in Section 4.1.2. However, there is
less knowledge of the effects of pluvial flooding than the fluvial flood risk (City of York Council,
2012). There is only one previous academic study, to the author’s knowledge, which assesses the
impact of flooding in York on access to services. Coles et al., (2017) demonstrated the relatively
small number of roads which are flooded in York can cause significant changes to the accessibility
of care homes to emergency services. Hence, it has been shown that there are impacts on travel
in York, and this project will extend Coles et al.’s (2017) work by investigating disruption to

different population subgroups and consider how the time of flood onset is important.

Figure 4.1 shows the geographic area which data were gathered for the spatiotemporal
population modelling of York. The red square captures the desired study area which is the York

Local Authority. In addition, a buffer zone is required for the SurfaceBuilder247 population model
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to allow for travel from outside of the study area into the study area (further explanation in
Section 4.2.2). A 20 km buffer was chosen as 82% of the people working in York travelled this
distance or less (2011 census table for York Local Authority WP702EW - Distance travelled to work
(Workplace population)), but it also would include the furthest likely distance school children
would travel into York. All the output areas whose population weighted centroid fell within the
study area and buffer zone were included in the input for the SurfaceBuilder247 model, although

only the study area is displayed in the model output.
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Figure 4.1 Study area and buffer zone around York, UK. Contains public sector information

licensed under the Open Government Licence v3.0.
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4.1.2 Hazard selection and York pluvial flood history

York is known for fluvial flooding with the low-lying historic city centre at the confluence of the
River’s Ouse and Foss regularly flooding (Environment Agency, 2020). However, there are several
reasons for choosing pluvial flooding rather than fluvial flooding. Firstly, pluvial flooding has the
potential to affect a much greater area of York than fluvial flooding. The floodplain in York from
the Rivers Ouse and Foss does not include many of the primary roads, whilst any part of the urban
area has the potential for pluvial flooding. There have also been previous instances of York’s outer
A roads being affected by pluvial flooding causing disruption for several hours (City of York
Council, 2012). Additionally, a study of pluvial flooding has a greater transferability as it is an
important issue for many urban areas in the UK (Kendon et al., 2018). Secondly, pluvial flood
events are less predictable than fluvial flood events so the chance for preparation by drivers is
limited (Li et al., 2018; Boeing et al., 2019). Pluvial storm events also tend to be shorter in
duration than fluvial flood events, usually a couple of hours, which fits with the goal of this
research to study the impact of an event at different times of the day. Thirdly, pluvial events are
predicted to increase over the next century with climate change. Kendon et al.’s (2014) and Chan
et al.’s (2018) climate models predicted increases in rainfall intensities in winter, and a greater
number of short duration rainfall events in summer in the UK, with the EA’s ‘accumulation
threshold’ of 30mm/hr expected to be exceeded more frequently in the future (Kendon et al.,

2014).

City of York Council (2019) state that since 2000, there have been notable pluvial flood events in
the summers of 2007, 2012, 2013, 2014 and 2018, although other smaller incidences of pluvial
flooding would have occurred much more frequently. There are flood warning systems available
from the Environment Agency providing notice if a fluvial flood event is likely. However, pluvial
flooding is harder to predict and can affect any part of the city, indeed the previous pluvial flood
events have occurred in different locations on each occasion (City of York Council, 2019). In York
there is not considered to be a link between places at risk from fluvial flooding and pluvial
flooding, as pluvial flooding occurs mostly due to ineffective or blocked drains and/or heavy

rainfall (City of York Council, 2019).

Pluvial flood policy for York is based on the national guidelines set out in Section 3.1.3, and the
City of York Council is the LLFA for the study area of this thesis. The most recent intense summer
rainfall event which led to a Surface Water Flood Investigation, as specified in the Flood and
Water Management Act (2010), was on the 13 August 2018. This intense summer rainstorm
resulted in >40 mm of rain falling on a large area of the city in just over 15 minutes, at a rate in

excess of 100 mm/hr in some locations, the consequences of which were 123 locations reporting
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flooding including many roads, gardens and a small number of properties and businesses (City of
York Council, 2019). Heavy rainfall had been predicted at >32 mm/hr; however, the duration of
rainfall was greater than expected, overwhelming drainage systems and resulting pluvial floods
(City of York Council, 2019). Whilst this flood event is less severe than a fluvial flood event in York,
it does outline the ongoing difficulties of prediction and mitigation of pluvial flood events.
Research applying climate change models specifically for Yorkshire suggest that increasingly
intense rainfall is a very likely outcome (Boeing et al., 2019), which is expected to lead to pluvial

flooding in urban areas.

The recommendations of the Surface Water Flood Investigation report include that the city of
York and flood risk partners, should develop a strategy to increase understanding of pluvial flood
resilience within the local population and internal highways design teams, as the effect on roads
was one of the most significant. It was also recommended to develop and fund a network of
digital rain gauges in the city to provide data for a better warning system (City of York Council,
2019). The local paper reported that funding to install electronic flood signs around the River
Ouse, to warn people about the risk of fluvial and pluvial flooding, had been approved, making
use of technology to track, respond to and investigate heavy rainfall events (Laversuch, 2020).
Academically, Yorkshire’s Integrated Catchment Solutions Programme (iCASP) has been set up as
a NERC funded programme to target research and expertise to understand how the latest
advances in probabilistic rainfall forecasting and high resolution hydrodynamic modelling can be
combined into probabilistic, hyper-local forecasts with short lead times for making decisions

(Boeing et al., 2019).

4.1.3 Population group selection

Whilst all of the population in an urban area can be affected by pluvial flooding and are at risk of
experiencing negative consequences, some groups experience a greater risk due their age,
socioeconomic status or health characteristics making them more vulnerable (as discussed in
Section 2.1.4). Within the field of natural hazard risk, there are countless papers which describe
which groups of the population are most vulnerable to hazard events (Cutter et al., 2008; Wisner
et al., 2004; McFadden et al., 2006; Civil Contingencies Secretariat, 2008). Broadly, there is
consensus over which groups are most vulnerable, although this does vary depending on the
nature of the hazard (Wisner et al., 2004). In this thesis, the UK Government’s guidelines for
defining vulnerable groups, as outlined in the report ‘Identifying People who are Vulnerable in a
Crisis’ (Civil Contingencies Secretariat, 2008), are applied as it is the guidance policy makers use in

England. This will aid the transference of results to the non-academic sector. The groups
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identified in this report broadly concur with the academic literature (for example Cutter et al.,

2003).

The groups identified by the Civil Contingencies Secretariat (2008) (Table 4.1) were considered for
implementation within the SurfaceBuilder247 model. The model framework requires the
population to be divided into mutually exclusive groups that share temporal characteristics,
where the location of their origins and destinations is known, in addition to the typical amount of
time they spend at each location. These conditions meant several vulnerable groups identified by
the Government (e.g. the mobility impaired, sensory impaired, or homeless) were not suitable for
inclusion as the required data were not available, or they could not be defined as a mutually
exclusive group. Children of primary school age were chosen as the vulnerable group for
modelling as they are a mutually exclusive group and there are sufficient data to model their daily

movements.

The second population subgroup studied in this thesis’” analysis are commuters going to
workplaces in York aged 18-64 years. This will be the majority of the residential population in
York. This group was chosen in order to capture the effects on workplaces due to flooding
disruption. The commuting patterns and locations of where people travel to work is contained

withing the 2011 census and other data sets like the quarterly labour force survey.

Table 4.1 Vulnerable groups identified by Civil Contingencies Secretariat (2008)

Group Reason considered vulnerable

Children Children, particularly young children, lack knowledge on how to deal with
emergency situations. Local authorities have a duty of care whilst children are at
school.

Older People Certain sections of the elderly community, especially those in ill health, require
regular medical attention or support.

Mobility Cannot react to emergency situations as quickly as those who are not mobility

impaired impaired

Sensory For example, blind or reduced sight, deaf and speech impaired. May need extra
impaired communication measures to receive warnings or help evacuating.

Homeless Unlikely to have standard infrastructure used for warnings (phones, television)

and do not have financial reserves to cope with an emergency

Tourists Are unfamiliar with the area and procedures, would not be signed up to local
warning systems.
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4.2 Models, Tools and Data Sources

This section provides an overview of the models, tools and software applied in this thesis. Specific

details on how each is applied to the analysis in each chapter is discussed in Chapter 5, 6, and 7.

421 Pluvial flood modelling

The Flowroute —i™ flood model, created by Ambiental Risk Analytics, was used to generate
pluvial flood scenarios for York, UK. Flowroute-i™ is a steady state 2D flood model designed to
produce accurate flood event data for local, regional and national projects. Previously it has been
used for creating national flood maps for countries including the UK, Ireland and Australia and
local flood analysis including pluvial flood modelling for Hull, UK. It was included in the EA’s
benchmarking exercise on the capabilities of 2D flood modelling software available in the UK, and
the Flowroute-i™ software package was found to be appropriate for supporting flood risk

management activities (Néelz & Pender, 2013).

For this thesis, Flowroute —i™ was used to create flood data for two pluvial storm events in York;
a 1in 30 year storm event and a 1 in 100 year event. These two return periods were chosen as
both storms would lead to disruption to the road network, with representation of a smaller but
more frequent event (1 in 30 year) and a larger but less frequent event (1 in 100 year). This is
similar to the EA’s pluvial flood maps which show a 1 in 30 and 1 in 200 year event (City of York
Council, 2019). As this flood modelling is based on design hydrographs, it does not simulate a
specific historical flood event but instead represents where flooding is likely to occur under
different storm scenarios. The geographic area used in the flood modelling was based on the
study area defined for the SurfaceBuilder247 population model, with the same 20km buffer area
for capturing catchment drainage into the city. The input data required for Flowroute-i™ is

outlined in Table 4.2 and the specific data for the York study area were applied.
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Table 4.2 Data required for input to Flowroute- i™ model and their source

Data Source Description

Digital Terrain Environment Agency LIDAR A raster which represents the height
Model (DTM) data, 5m resolution, BlueSky above sea level of the terrain for the study
Lidar area. The resolution was resampled to 5m
due to the size of the area required for
flood modelling.

Cellmap file Ambiental Risk Analytics A raster which represents the land
classifications of the model area. The cells
are given a value of either 0 (water), -1
(rural) or -2 (urban) to denote land use
class for different infiltration values to be

applied.
Manning’s Ambiental Risk Analytics A raster which represents the manning’s
roughness file roughness coefficient for each cell in the

model area. This classification is based on
the OS Vectormap data product which has
been reclassified to the appropriate
manning’s roughness coefficient for each
land use type.

Storm A text file which represents the rainfall

Hydrograph ReFH computer programme (mm/hr) at each time step for input to the
(UK Centre for Ecology &_ flood model. This is generated from storm
Hydrology, 2020) used with hydrograph profiles for the catchment of

p.erm|55|on.from Ambiental the River Ouse upstream of York.
Risk Analytics

To model pluvial flood scenarios for York, a set of simulated storm events were required to
provide rainfall inputs to the model. Catchment data from the Centre for Ecology and Hydrology’s
Flood Estimation Handbook (FEH) web service (UK Centre for Ecology & Hydrology, 2020) was
downloaded for use in the Revitalised Flood Hydrograph (ReFH) computer programme in order to
generate storm hydrographs for the catchment. The FEH was the primary source of the
methodological approach used in designing the pluvial flood scenarios. The storm events chosen
were summer storms for a 1 in 30 and 1 in 100 year magnitude. Using the ReFH computer
programme flood hydrographs, two storm profiles were created by taking the peak rainfall rate
and applying it for one hour. The rainfall then stops and the model continues to run for a further
two hours simulation time to allow for overland flow and drainage (Figure 4.2). These data were
input into the model as a text file. A rainfall event of an hour fits the aim of researching the effect
of sudden onset pluvial events and is compatible with focussing on a short time frame for analysis
in Chapter 7 (the morning commute). Flowroute —i™ models the depth and velocity of water in

each cell during the simulation, and a raster for both depth and velocity across the study area is
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produced at each 15 minutes of simulation time. Additional final maximum depth and velocity
rasters, which represent the maximum value each for each cell at some point during the

simulation, were also generated for each scenario.
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Figure 4.2 Storm hydrograph profile created from the ReFH catchment data. These data are used
as a boundary input into the flood model. The graph shows a storm of peak rainfall intensity for
an hour before the rain stops. Contains data which are copyright of UKCEH and Ambiental Risk

Analytics, used with permission.

The output raster data for the two scenarios were processed before they were used within the
network analysis. In the network model, the flood data are represented as barriers to the network
where travel through them is prevented. Therefore, the exact modelled flood depths across the
city were not required. A vector file for each time step of the flood scenario, which contained the
areas where the floodwater met the conditions to prevent travel of vehicles along the road was
sufficient. Two criteria were applied to the raster data. Firstly, the depth of water is a key factor in
whether a road is impassable and a depth of 30cm was applied as the threshold, a value used in
other studies (Li et al., 2018; Arrighi et al., 2019; Pregnolato et al., 2017b) and in UK government
advice as the maximum depth for safe driving. Secondly, small patches of water can be easily
circumnavigated, or very small patches could be model artefacts. Therefore, any areas of water
which were smaller than 125m? were removed. Finally the data were further cleaned to remove
flooding across the city’s bridges, as Coles et al., (2017) did for their study in York. This was
necessary because there is no record of the bridges flooding in York and bridges are often poorly

represented in the DTMs used in flood models (Coles et al., 2017). After this processing the areas
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of flood water which would pose an issue to road travel for each 15-minute time step for both

pluvial flood scenarios were left.

4.2.2 Population model

The approach for creating spatiotemporal population data developed by Martin et al., (2015)
using the SurfaceBuilder247 software tool (Martin, 2011) is applied in this thesis. A full description
of the background, data and framework can be found in Martin et al., (2015) and this section will

summarise the model as it is relevant to this thesis.

The Population24/7 project (University of Southampton, 2011) developed a framework for
spatiotemporal analysis based on previous work of an adaptive kernel density approach for
building gridded population models by Martin (1989) and Martin (1996) (Martin et al., 2009).
Figure 4.3 diagrammatically represents the spatiotemporal framework. The framework is split into
two parts, the data system and the analysis system. The division of the data system and the data

required for each domain is given in Table 4.3.
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Figure 4.3 The framework for spatiotemporal population modelling used in the SurfaceBuilder247
software (Figure from Martin et al., 2015). The two parts (the data system and analysis system)
are divided by the dotted line. Permission to reproduce this figure has been granted by Taylor &

Francis Group.
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Table 4.3 Description of data classifications required for each domain shown in Figure 4.3 and

examples of data sources which could be used to capture them.

Domain

Data Classification

Description

Example data source

Spatial domain

Origins

The usually resident
population located at
census population
weighted centroids.
Includes mobile and

immobile groups (e.g. those

in residential facilities)

Resident population
data from the Census
for divisions like
output areas, source
the Office for National
Statistics. Communal
establishment resident
data.

Destinations

Locations where non-

resident populations travel
to for an activity e.g. work,

education, health care,
retail, leisure

Census data like
workplace data,
Edubase data, hospital
episode data

Population in travel

Those who are in transit
between two locations at
the time of day being
modelled. A background
layer containing features
which people travel on
(roads) and where people

cannot be (land use classes

like water) is required.

Time profiles for
activities; AADF data
for weighting
background layer from
the Department for
Transport (NTM;
Department for
Transport, 2009). OS
Strategi data for land
use classes.

Temporal domain

Time profiles

Data which informs when

the population is present at

origins or destinations.
Each destination type will
have a daily time profile

with the percentage of the

destination population

present at each time of day.

Local education
authority and survey
data (schools)
Quarterly labour force
survey (workforce)

Attribute domain

Origins

Associated information
with the origins and
destinations including the
population subgroups

which attend a destination
(e.g. age group attending a

school).

Local education
authority data

Destinations

Destinations each have a
catchment or wide are
dispersal area where the
population travels to the
destination from.

Travel to work census
data
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The spatial domain represents the ‘containers’ of human activity which can be divided into origins
and destinations (Table 4.3). There is also a third group of the population who are in transit
between locations and this can be estimated by examining the numbers of people arriving and
departing from destinations in adjacent time periods (Martin et al., 2015). To provide a spatial
structure for the distribution of the population a background layer is created (Figure 4.3). The
background layer has two functions. Firstly, it masks out features where no population can be
located e.g. water bodies (Martin et al., 2015). Secondly, it contains information on the major
road network in order to represent population in transit (Martin et al., 2015), taken from
Highways England (Highways England, n.d.). Two types of traffic data are combined in the
background layer. Firstly, Average Annual Daily Flow (AADF) data from the Department of
Transport which represent the average number of each type of vehicle passing along a section of
road (Department for Transport, 2018b). Secondly Department for Transport traffic flow time
periods covering the 7-day week with 17 time periods within a single day which have similar
traffic levels (Martin et al., 2015). Together, these two types of data are able to simulate weights
for the strategic road network for any time specified in the model input, so busier roads have
more people travelling on them. This results in a raster layer which contains gridded traffic-
derived weights that are used to estimate counts of population in travel in grid cells. The
adjustments to the background layer from the original Martin et al., (2015) project are outlined in
Section 5.2.1. The attribute domain is linked to the spatial domain as it provides the information
for the origins and destinations (Martin et al., 2015). This includes the population sub-groups who
attend a destination or the catchment area from which population to supply to destination can be

drawn from Table 4.3.

The temporal domain is the collection of time profiles used to inform the population present at
each origin and destination for a given time of day (Table 4.3). A data library of time profiles is
built to cover each type of destination and the types of day which are of most interest (Martin et
al., 2015). With a large time profile database, this approach allows for a more flexible choice in
time of day to be used in the analysis query rather than restricting the analysis to predefined
reference periods (e.g. day time or weekday morning) (Martin et al., 2015). As Figure 4.4 shows,
the time profiles used in this thesis have data at 15-minute intervals and represent the
percentage of the population at a destination at the specific time. The data is derived from the

Quarterly Labour Force Survey (UK Data Service, 2020).

The entire modelled population must be represented in the spatial domain at any time point for
volume preservation i.e. that the number of people does not change but rather everyone is
redistributed across the area (Martin et al., 2015). This means a geographic area larger than the

study area, and the accompanying data, needs to be input into the model to allow for a buffer
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zone of people travelling into and out of the study area during the day (Martin et al., 2015). This is

recommended to be at least 20 km (Martin, 2017,pers. comm.).
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Figure 4.4 Time series profile for primary school children. The dashed line is the percentage of the
population subgroup who are in travel at that given time of day and the solid line is the
percentage at their destination site. This profile shows that children travel to school between 8am

and 9am and 94% of the population group are present a school for the day.

The analytical system (Figure 4.3) provides the means to interrogate these data to answer specific
spatiotemporal queries (Martin et al., 2015). Origin population is reallocated either to the nearest
destination or to meet known proportions of population travelling in successive distance bands
(for example those created from travel to work data) (Martin et al., 2015). This approach allows
for overlapping catchment areas; however, it does not account for more complex travel patterns,
like a traveller not going to the nearest applicable destination. The product of the model is a
series of rasters which represent each population sub-groups distribution at the time of day
specified. The spatial units of this raster should reflect the spatial resolution of the source data,
and for origin populations drawn from census output areas this is a 200 m grid cell (Martin et al.,
2015). The grid cells contain the estimated number of people located there at that time of day. A
gridded output has the advantage of stability over time and is easier to integrate with other data

sets which are commonly gridded formats, for example environmental data (Martin et al., 2015).

Applying the SurfaceBuilder247 software to this research, Table 4.4 describes the main data

required for this thesis. The chosen year of analysis was 2016 so the data closest to this year was
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used. The origin files for the residential population counts per output area are derived from the
2011 England and Wales census and projected to 2016 using mid-year estimates at the LSOA
level. Seven population sub-groups were used to cover the entire population, dividing the
population by age, based on educational and workplace stage, which have similar temporal and
spatial patterns. The groups were split into the following ages; 0-4, 5-10,11-17, 18-64 students,
18-64 non-students, 65-79 and over 80. For destinations, each was given a wide area dispersion
radius which specifies the area that people should be drawn from, for workplaces this was from
travel to work data and for schools this was from Edubase catchments. For a detailed description

of all data sources for the SurfaceBuilder247 model see Appendix A.

Table 4.4 Sources for the main data used in the SurfaceBuilder247 tool when implemented in this

thesis. The codes in brackets refer to 2011 census tables the data was acquired from.

Data Source Year Description
Population totals and age  Office for National 2011 Residential population at
structure Statistics (QS103EW) origins
Mid-Year Estimates of Office for National 2016 Data applied to residential
York’s population Statistics population to scale to 2016
Communal establishment Office for National 2011 Data for the ‘immobile
residents Statistics population” who are in
(QS420EW and facilities which mean they
DC4210EWIa) do not leave during a
typical day e.g. care home,
prison
Workplace zone and travel Office for National 2011  Location of workplace
to work Statistics (via Nomis) zones and the distance
(WP605EW and travelled by commuters
WP702EW)
Hospital admissions NHS digital 2016  The number of people in
hospital for the day type
Schools Edubase 2017 The location of schools and
York City Council the de facto catchments

Independent School’s

council
Traffic data (AADF and Department for Transport 2016  Data for the background
traffic flow for time of (via data.gov) layer weightings to enable
day) distribution of the
population in travel
Time profile Quarterly Labour Force 2006 Proportion of population
Survey group in travel or at work
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4.2.3 Network analysis tool

The network analysis tool used in this research is the closest facility tool, part of ESRI’s ArcGIS
network analysis toolbox (ESRI, 2020a). ArcGIS routing tools have been utilised in other similar
research projects. For example, Kilgarriff et al., (2019) used ArcGIS routing tools for their study of
the impact of flooding on commuters in Galway. Pregnolato et al., (2015) used ArcGIS to calculate
least cost path routes between origin and destination locations according to the shortest time. By
overlaying water depth estimates onto the network, they could assess the impacts of the flood
through comparing the perturbed travel times from the flood event to the non-flood event.
ArcGIS network analysis tools have been used in relation to other natural hazards as well as
floods. Toma-Danila (2018) used ArcGIS network analysis to study the implications of urban road
network failure due to earthquakes. Toma-Danila (2018) states that ArcGIS one of the most
advanced and used GIS platforms for road network modelling, due to its flexibility to be used in
many different situations whilst being a specialised tool for routing algorithms. ArcGIS can handle
large networks and process routes across an urban area. As Ahmed et al., (2017) attest, the
software allows for time to be used as the criteria for shortest route, more useful than distance in
real-world travel studies, and a specific travel start time and day type can be specified. This allows
for temporal differences in travel times across the study area to be explored. It is for these

reasons why it was selected for this research.

The closest facility tool locates the nearest ‘facility’ (destination) for an ‘incident’ (origin) and
returns a shapefile of the route and the journey time and distance travelled. The analysis enables
users to find the routes for multiple origins to multiple destinations with parameters including;
specifying the number of destinations to search for each origin, mode of transport, impedance
value which the shortest path is calculated on (time or distance) and time of day for the journey.
This tool is based on the well-known Dijkstra’s algorithm (see Section 3.3.5.1), which is used to
find the shortest path between two locations (Debionne et al., 2016; Li et al., 2018). ESRI’s closest
facility analysis uses a modified version of Dijkstra’s algorithm to reflect real-world transportation
rules like one-way streets, turn restrictions and barriers on the network (ESRI, 2020a). It is also
applied in conjunction with a hierarchical path solver which improves calculation time and is
designed to reflect travel behaviour. Hierarchy is based on the fact that not all road segments are
used equally, since some roads are major transport routes with more people travelling on them
and some are small minor roads with few cars (ESRI, 2020a). The hierarchical path solver searches
from the origin and destination location for entry points to higher-level roads, for example A
roads in a UK city, and then tracks along these segments until the two meet (ESRI, 2020a). This

means a smaller number of roads are searched which results in quicker solve. The hierarchical
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approach is also a better reflection of driver behaviour as main roads are more often used when

traversing a city than local roads.

The server version of this tool was used over the desktop version as it allowed for the use of
ESRI’s historical traffic information. As the focus of this research was on how the time of day of a
flood event affects the travel across the city, including traffic data for specific times of day was
important. ESRI’s traffic data allows for any time of day to be specified for a typical day of the
week when running the closest facility query. The traffic data are collected by HERE who have a
partnership with ESRI (ESRI, 2020d). HERE collect billions of GPS and cell phone probe records per
month which is compiled to compute accurate speeds, utilising sensor data to augment the probe
data collection where available (ESRI, 2019). Historical traffic information is generated from the
average of observed traffic speeds over the past three years (ESRI, 2019). These traffic data are
representative of ‘normal’ conditions and do not reflect the traffic conditions and congestion
caused by a flood event in the city. However, in the absence of city-wide traffic data for every
road during a flood event it was applied to the network analysis conducted for the flood scenarios
to keep that variable the same. The network analysis using traffic data also requires subscription
to ArcGIS online and uses credits per closest facility analysis (ESRI, 2020e) which does restrict the
use of these data. It is worth noting though that other routing tools with traffic data, for example

Google routing, also use a credit-based system.

Barriers are a term for any object, in this case water, which impedes travel on the road network
and can be represented as a point, line or polygon feature (ESRI, 2020b). There are two options
for barriers: either they slow down travel along the link by a set scale factor, or travel is not
permitted (ESRI, 2020b). Barriers were used to represent the flooding across the study area to
capture the effect on the road system. As described in Section 4.2.1, the raster output from the
Flowroute-i™ model was converted into polygon files and processed to represent the areas where
flooding fit the criteria for causing disruption to the road network. These polygon files were

included as impassable barriers in the closest facility analysis in all flood scenarios.

For Chapter 5 (modelling spatiotemporal flows), the analysis was conducted manually via ArcGIS
online whilst initial analysis for primary school children using the closest facility tool with traffic
data were conducted. For Chapters 6 (Evaluation of spatiotemporal flow data) and 7 (the effect of
flooding on travel), a Python script was written to enable batch processing of a folder of data for
one scenario, a much quicker computational process than individually running data using ArcGIS

online.
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4.3 Overall Methodology

4.3.1 Thesis overview

The following three chapters contain the analysis conducted during the course of this research
project and the results inform the discussion in Chapter 8. Figure 4.5 provides an overview of how
the research chapters are structured. Chapter 5 presents the first piece of analysis in this thesis
and examines how to create spatiotemporal flow data from the spatiotemporal population data.
Chapter 6 takes the approach developed in Chapter 5 and applies it to commuters before
introducing a flood scenario. The final piece of analysis is presented in Chapter 7 where the main
aim of the thesis is addressed. In this chapter, the spatiotemporal flow data created in chapters 5

and 6 is applied to different flood scenarios, to see the effect of flood onset time and magnitude.

84



Chapter 4

Input models SB247 Network SB247 Network Time-specific Flood SB247 Network Time-specific Flood
and data model analysis model analysis census data model model analysis census data model
v A A 4
Assessment of Spatiotemporal
Protqtypeffor chapter 5's risk assessment
Description (s:;i?;zzrgporal m.ethodolog\./ of the disruption
P with comparison
flow data. to travel and
Target gr to census flow time spent at
E:irizrgszrmzol data. Target destinations
f:)hildre:l\. group '
commuters.
l l v
Spatiotemporal Two sets of Average travel
Results flow data for spatiotemporal time and time

primary school
children and
routes

flow data for
commuters and
routes

lost at
destinations
per scenario

Figure 4.5 Overview of the analysis structure of the thesis and the interaction of the three results chapters. The top row of boxes are the input models, the middle row

the description of the analysis chapter and the bottom row the results. The work of one chapter build into the analysis of the next chapter.

85




Chapter 4

4.3.2 Modelling implementation by chapter

Chapter 5 is the initial prototype of a spatiotemporal travel methodology (Figure 4.6). Chapter 6
will be applying the prototype to commuters (Figure 4.7). Chapter 7 introducing flood risk
scenarios (Figure 4.8). Due to the substantial number of possible scenarios from combining
models, only a few scenarios tend to be chosen to illustrate research objectives (Smith et al.,
2014a). Hence, in this research a couple of flood scenarios are selected for testing as it would be
beyond the scope of this study to investigate all likely scenarios. Instead, the merit here it to
evaluate and demonstrate the transferability of the approach developed, using a set of

reasonable exemplar scenarios.
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Figure 4.6 Chapter 5 overall methods structure
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Chapter5 Modelling Spatiotemporal Population Flows

5.1 Introduction and Background

Accurate location information on population groups underpins numerous research fields including
health geographies, retail planning, political science and emergency planning. Traditionally,
census data for usual place of residence and place of work for the study population have been
used in research (Aubrecht et al., 2013a; Smith, 2015; Debionne et al., 2016). However, this does
not represent the true dynamic nature of population mobility (Aubrecht et al., 2014; Bian &
Wilmot, 2015; Renner et al., 2018). Most people make journeys every day, be that from homes to
places of work, schools, medical facilities or leisure and retail activities. The average number of
trips undertaken per person in 2016 in England was 774 (Department for Transport, 2017), or just
over two per day, with 62% of these by car (Department for Transport, 2017). There has also
been an increase in commuting distances as people are living further away from their place of
work (Bates, 2015), and this ‘hypermobility’ is not captured well within traditional population data
sets. Over the last decade, administrative data sets and data from emerging technologies have
become more important as they can provide detailed information between census years (Einav &
Levin, 2014). For example, school enrolment data can capture the numbers of children travelling
to a school and the increased use of smartphones amongst the population provide the
opportunity to monitor footfall through shopping areas (Malleson et al., 2018). Data of this
nature, when used in conjunction with census data, enables a richer understanding of population

travel.

Journeys are individual decisions, but the data provided for them are often aggregated in time
and space. Whilst administrative data can rectify some of the temporal issues with census data,
there are spatial issues surrounding the aggregation of data for both census and administrative
data sets. For example, in England the census is collected at an individual level but aggregated for
spatial analysis into output areas in order to protect privacy. As these areas are designed to
include 40 households as the minimum (Office for National Statistics, n.d.), they are not spatially
regular as densely populated areas will have output areas of a smaller physical size compared to
rural output areas. Furthermore, between censuses there can be boundary changes meaning a
household may be aggregated into a different zone in the 1991 or 2001 census compared to the
2011 census, reducing the temporal stability of data from census zones. Spatiotemporal gridded
population data provides a way of combining census boundaries with other administrative

geographies, as well as addressing the spatiotemporal stability of aggregation zones. As described
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in Table 3.2, there are a number of spatiotemporal gridded population projects and data sets,
some of which are for specific purposes and others for global use. These provide an alternative
form of population data and are easier to link to other data which typically use a raster format, for
example environmental data. Some of these gridded population models produce data to
represent population at different times of day (LandScan (Bhaduri et al., 2007), Population 24/7
(Martin et al., 2015), Dynapop (Aubrecht et al., 2014)). These data have led to valuable research in
infectious disease spread (Strano et al., 2018), natural hazards (Renner et al., 2018; Smith et al.,
2015; Aubrecht et al., 2014), population estimates in developing countries (Wardrop et al., 2018;
Weber et al., 2018), maternal health inequalities (Ruktanonchai et al., 2016) and migration (Tatem

& Smith, 2010).

One instance where the location and travel patterns of a population is key knowledge is natural
hazard planning. As discussed in Chapter 2, it has been shown that the time of day when a natural
hazard event occurs is a large determinant of the scale of impacts (Aubrecht et al., 2012). Within
natural hazard literature, certain population sub-groups have been identified as particularly
vulnerable, including children, the elderly, disabled persons and tourists (Cutter et al., 2003; Civil
Contingencies Secretariat, 2008). Knowing how these vulnerable sub-groups move throughout the
day is therefore of particular interest, as it enables risk mitigation measures to be specifically
tailored towards them. The availability of spatiotemporal gridded population data which identifies
vulnerable population sub-groups opens the potential for their movement and travel to be

studied.

However, spatiotemporal gridded population data do not show the routes taken by individuals to
travel across an area, rather they show how the number of people in each grid cell changes
between time periods and where those ‘in travel’ are likely to be. Vector-based analyses, like
network analysis in GIS, have been used to generate journeys from census output area centroids
for example, Comber et al., (2008); Langford & Higgs, (2010); Higgs et al., (2012). This provides a
reasonably fine spatial resolution and has demographic data attached, but it is only valid for the
time the census was taken. Alternative data sources like Smart Card travel data have been used to
model individual journeys across urban areas (Han & Sohn, 2016; Wang et al., 2017) which does
capture individual spatiotemporal dynamics, however this does not provide detailed demographic
information on the travellers. Linking spatiotemporal gridded population data to travel models
enables the demographic data from the census to be preserved, but also allows a temporal
resolution more similar to that used with transport software, combining social science research
with transport planning. Therefore, the aim of this chapter is to assess how spatiotemporal

gridded population data can be linked to existing GIS network analysis tools in order to provide
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more detailed insights on population travel. As far as the author is aware, there is no literature
expressly discussing how to improve the representation of travel from spatiotemporal gridded
population data and linking it to vector-based network analysis, making this research novel. The

first three objectives of the thesis are fulfilled in this chapter:

Aim: To develop a framework for combining spatiotemporal gridded population data with GIS

network analysis, using journeys to primary school as an example.

Objectives:
1. Create a baseline spatiotemporal representation of primary school children’s location
across the study site, including the in-travel population.
2. Evaluate the use of spatiotemporal gridded data for representing population in travel
3. To develop a method for converting the output from the SurfaceBuilder247 model into

origin-destination flows for use in GIS network analysis

In this chapter, primary school children (aged 4-11 years) are the group which have been selected
for study in order to develop the methodological framework. This group has been chosen because
they are a ‘data rich’ population group (Harland & Stillwell, 2010) with information on daily travel
patterns during the working week available. Education is compulsory for all children in this age
group, therefore the vast majority of children age 4-11 will travel to a school and back again on a
typical term-time day. Whilst the relative numeric changes in the primary school population can
be modelled over space and time through the existing spatiotemporal framework in the
SurfaceBuilder247 model, the specific routes individuals take across space is much more
complicated to model. In England, school admissions were traditionally arranged through school
catchments, designated geographic areas for each school based primarily on distance to school,
sibling attendance and religious affiliation, where the children who met these criteria attended
the school (Burgess et al., 2011). However, the introduction of the 1988 Education Reform Act,
later strengthened by the 2006 Education and Inspection Act, has enabled parental choice in
school selection and made it simpler for children to attend schools outside of their catchment
area (Burgess et al., 2011). The increase in parental choice, along with the creation of academies
(Academies Act 2010), has led to progressive marketization of school choice, making published
school catchment areas unreliable as representations of student home location. Parsons et al.,
(2000) found 35% of children in their study area did not go to their catchment school and this is
likely to be a larger proportion now through the introduction of parental choice measures.

Therefore, an alternative method is needed to calculate where children travel to school from.
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5.1.1 Study Site

As described in Section 4.1.1, York is the location used for this research. Within the York study
area, there are 40 state primary schools which educate pupils age 4 to 11 years (Figure 5.1).
Independent schools are not included as there is no publicly available information on their pupils’
home addresses are. However, as pupils educated at independent schools account for 7% of

school children (Independent Schools Council, 2017), they represent a minority of children.
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Schools

York Study Area

1. New Earswick Primary School 21. Carr Junior School

2. Woodthorpe Primary School 22. Fishergate Primary School

3. Burton Green Primary School 23. Knavesmire Primary School

4. Scarcroft Primary School 24. Poppleton Road Primary School

5. Carr Infant School 25. St. Lawrence's C of E Primary Academy

6. Hempland Primary Academy 26. St. Paul's C of E Primary School

7. St. Oswald's C of E Primary School 27. Copmanthorpe Primary School

8. Hob Moor Community Primary School 28. St. Barnabas C of E Primary School

9. Osbaldwick Primary Schools 29. Archbishop of York's C of E Junior School

10. Westfield Primary Community School 30. Poppleton Ousebank Primary School

11. Park Grove Primary Academy 31. St. George's Roman Catholic Primary School
12. Dringhouses Primary School 32. Huntington Primary Academy

13. Heworth C of E Primary Academy 33. Bishopthorpe Infant School

14. Lakeside Primary School 34, Lord Deramore's Primary School

15. Clifton Green Primary School 35. Our Lady of Queen of Martyrs Roman Catholic Primary School
16. Acomb Primary School 36. St. Wilfrid's Roman Catholic Primary School
17. Tang Hall Primary Academy 37. Badger Hill Primary Academy

18. Yearsley Grove Primary School 38. Haxby Road Primary Academy

19. Clifton with Rawcliffe Primary School 39. Skelton Primary School

20. St. Aelred's Roman Catholic Primary School  40. Stockton-on-the-Forest Primary School

Figure 5.1 Map of the location of the primary schools in York. Contains public sector information

licensed under the Open Government Licence v3.0
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5.2 Methods

In this chapter, the SurfaceBuilder247 model outputs for population in travel are compared to an
extended methodology framework, based on the four-stage conceptual transport model (Ortuzar
& Willumsen, 2011; Jones, 2012) (see Section 3.3.2.1 for a full description). The SurfaceBuilder247
model is described in Section 4.2.2 and a full explanation of the theory is given in Martin et al.,
(2015). The model’s implementation in the context of the York case study will be described

here. To allow the spatiotemporal gridded population data from SurfaceBuilder247 to be used in
network analysis, a spatially weighted Monte Carlo procedure was designed to produce

statistically likely origins for each primary school destination. This is described in Section 5.2.2.

5.2.1 Application of SurfaceBuilder247 software

Briefly, SurfaceBuilder247 model produces gridded data layers which represent the number of
people present in each cell at a given point in time, whether they are at an origin, destination or
in travel. The model was used to create a series of spatiotemporal population grids for all
population sub-groups at the times of day which were of interest in this study. The data produced
for the population sub-groups who attend primary school (0-4, 5-10 and 11-17 groups) are used in

this chapter to develop spatiotemporal population flow data.

The origin data for the residential population was generated as described in Section 4.2.2.
Destinations in this Chapter are state run primary schools (Figure 5.1) and a point data set was
generated of each school’s location with the number of pupils in attendance taken from local
authority data (City of York Council, 2020). Determining a catchment area from which population
can be selected by the SurfaceBuilder247 model and the spatially weighted Monte Carlo process
for each school is challenging, due to the complications of school admissions (Section 5.1). A ‘de
facto’ catchment can be defined as the radius from a school where a given percentage of the pupil
intake was drawn from in the previous year (Burgess et al., 2011). This provides a reasonable
estimation of where pupils are travelling from and can be used as the wide area dispersion.
Edubase data for the Euclidean radii encompassing 95% of the children from the last intake was
utilised, extracted from Locrating (2017) data used was for the 2017 school intake, the closest
available data to the target year. Schools collect data on their pupils home location and mode of
travel to school which is stored in the National Pupil Database (Department for Education, 2018).
Using these data would provide more realistic catchments than the catchment radii used in this
chapter. However, there are several reasons why the generalised catchment radii are appropriate
in this instance. Firstly, the radii fit well with the existing wide area dispersion function in the

SurfaceBuilder247 model. Secondly, there are strict data protection measures when using data
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from the National Pupil Database, so uploading such data to ArcGIS Online for the routing
calculations would be in breach of these terms. Finally, the intention is to use the methodology
developed for groups other than school children where individual data on origins are not

available, therefore this method is preferable as it is more easily transferable.

The Population24/7 NRT project (UK Research and Innovation, n.d.) updated the methodology for
creating the background layer, a key data input to the SurfaceBuilder247 model which determines
the location population in travel are distributed to. Therefore, the background layers used in this
thesis were updated in line with this project. To summarise, the main updates were as follows.
Background layers for a specific day type e.g. normal working weekday, bank holiday Monday,
Saturday’s in December, were able to be created due to Traffic England’s National Transport
Model time period data becoming available to support this (Department for Transport, 2018a).
Minor roads were also introduced to give a more detailed spatial representation of those in travel

around York.

To create the updated background layers, Annual Average Daily Flow (AADF) data for the target
year (2016) was downloaded, which provides the average number of each vehicle type which
passes a count point each day for that year. The count point data were then combined with the
National Transport Model data which denotes the day type and time period (Department for
Transport, 2018a). The count point data were then classified by road type and whether it was
urban or rural. Finally, for each time period the count point data are interpolated using Inverse
Distance Weighting to produce a gridded surface of the number of people per grid cell for each
type of road, i.e. motorways and A roads, based on the OS open roads data set. The separate
raster files were overlaid to generate one background layer at a 200m resolution. As Figure 5.2
shows, the SurfaceBuilder247 output for the population in travel is noticeably different with a

greater spatial dispersion of the ‘in travel’ population reflecting the inclusion of minor roads.
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Figure 5.2 Distribution of the total population ‘in travel’ with a) the original background layer and
b) the updated background layer. Contains public sector information licensed under the Open

Government Licence v3.0

As described in Section 4.2.2, a time profile for each type of destination and day type is required.
For schools, nobody is present during the early morning and between 0800-0900 hours the
destination fills up with school children. They remain on site until 1500 hours when they start to
leave and return to their home destinations. Schools should be at near full capacity as children
registered at the school must attend, although there will be some absences due to illness and
other events. SurfaceBuilder247 therefore seeks to fill 94% of the school capacity with the correct

population age groups and there should not be unfilled places at the destination.

5.2.2 Adapted four-stage model

The ‘four-stage model’ is a classic conceptual model in transportation engineering (see Section
3.3.2.1). This conceptual model was chosen as the foundation for this chapter’s methodology for
its simplicity and adaptability (Ortuzar & Willumsen, 2011; Jones, 2012), and because it is well
known within transportation research, forming the basis of the UK government’s National
Transport Model (Thiessen, n.d.). McNally (2007) describes this model as approaching transport

planning from a ‘person-perspective’, which makes it suitable for combining with spatiotemporal
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population data. Figure 5.3 illustrates the adapted four-stage model proposed in this chapter,

henceforth known as the four-step approach.

Trip Trip Modal Split Trip
Generation Distribution - Assignment
»  What form of
What journey What are the transport is What route is
needs to be destinations of used? taken to the
undertaken? this journey? destination?

Figure 5.3 The four-stage transport model

The trip generation stage, defining the number of people who need to travel, is fulfilled with the
spatiotemporal population grids for the target group generated by SurfaceBuilder247. Here a
spatiotemporal population grid for a time period before travel occurs e.g. 6 am is used, indicating

the number of people available in each grid cell able to travel.

Trip distribution identifies the destinations to fulfil the travel requirements from the trip
generation stage. As SurfaceBuilder247 does not indicate where individuals have travelled to and
from, an alternative model is required. One solution would be to create a spatial interaction
model, as these are designed to calculate the flows of people between origin and destinations and
are widely used, including for school travel (Harland & Stillwell, 2010). However as discussed in
Section 5.1, ‘de facto’ catchments are being used rather than individual data. An alternative
solution was required to fulfil the trip distribution stage. An original spatially weighted Monte
Carlo simulation was created in R (Nieves, 2018, pers. comm.), using computer cluster techniques
from Stevens et al., (2015) and the WorldPop research group at Southampton University (World
Pop, 2020). The Monte Carlo simulation code selects individuals to fulfil demand at school
destinations, based on the probability of a grid cell providing children to that destination, until all
the schools are full (Figure 5.4). Each school has a probability raster, similar to Sofianopoulou et
al.,(2012) and Nieves (2015), based on the primary school catchment areas used for wide area
dispersions in the SurfaceBuilder247 model, maintaining consistency through the framework. It
assigns greatest probability to those grid cells that fall within the radii of where 95% of the intake
are from and all grid cells outside of this are assigned a proportion of the remaining 5% of the
probability. The other input data into the spatially weighted Monte Carlo simulation are the
gridded population data for each age group, and a shapefile of the school destinations with the
number of children in each age group it requires. The number of children was 94% of the total
school places, introducing the assumption that there are some absences, as defined in the

SurfaceBuilder247 model.
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As described in Figure 5.4, the simulation takes one school destination at a time and assigns
individuals to it using the probability raster for that school. Once an individual has been selected
from a grid cell they are no longer available to any other school destination to ensure that the
population volume is preserved. In urban areas like York, there is a large overlap of school
catchment areas (Figure 5.5). This has been found in other studies, for example Burgess et al.,
(2011) found there was an average of 19 schools within a 3km radius of a pupil in an urban area.
Consequently, the order in which the schools are run through the simulation is of great
importance as those at the beginning have the greatest available population to select from, and
those at the end the least. This could mean that schools with smaller catchments have not enough
people available if other school destinations have already selected the population. The schools
were therefore ranked by the area of their school catchment and the simulations run starting with
the school with the smallest catchment and descending to the one with the largest. This meant
the schools with the greatest geographic constraint had an available population.

INPUT: Probabilty rasters, Population raster,
Destination shapefile

l

Pre-process: Set functions which are used in code,
create clusters, create variables which will store data,
create tables to store data, set up bootstrapping
procedure

»
P

v

/Main Process: Randomly select one ‘person’ at a time from grid\
cells for a destination, preferentially selecting those with highest
probabilities. Keeps a running total of number of people in each
grid cell left to sample, and how many the destination needs.
Continues until school is full, which provides a list of destination-
origin pairs and how many times each was selected. This is done for

Bootstapping’, all schools. When cell no longer has any people, it cannot provide
r?apeat process n people to any other school. After all schools done, this leaves a
times (e.g. 1000) table listing all the destination-origin pairs created and their

\ frequencies. /

v

OUTPUT: The frequency of times an origin has been
sampled during the bootstrapping for a destination.

v

s ™
Post-process: Calculate the average frequency, the

weighting of each destination-origin combination and

the standard deviations for both.
(. J

l

FINAL QUTPUT: An ESRI shapefile for each origin, with
the destination, frequency, average frequency,
weighting and standard deviations listed

Figure 5.4 Flow chart of the procedure of the spatially weighed Monte Carlo process applying a

bootstrapping technique.
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7 St Oswald's C of E Primary School

9 Osbaldwick Primary School

11 Park Grove Primary Academy

13 Heworth C of E Priamry Academy

20 St Aelred's Roman Catholic Primary School
22 Fishergate Primary School

23 Knavesmire Primary School

25 St Lawrence's C of E Primary Academy

29 Archbishop of York's C of E Primary School
31 St George's Roman Catholic Primary School
33 Bishopthorpe Infant School

34 Lord Deramore's Primary School

35 Our Lady Queen of Martyrs Roman Catholic Primary School
37 Badger Hill Primary School

38 Haxby Road Primary Academy

Figure 5.5 School catchment overlap for selected primary schools in York. Contains public sector

information licensed under the Open Government Licence v3.0
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A bootstrapping process was applied to run the simulation 1000 times for each school, balancing
the requirements for statistical accuracy and constraints of computing power. A bootstrap
process is a random sampling method with replacement. It works by randomly selecting data
points to fulfil a sampling requirement and noting the data value. Over many repetitions, an
average of the small samples of the data allows estimation of the characteristics of a population
(Brownlee, 2018). In the application in this thesis, the data are the origin population grid which is

sampled to generate an average of where people travel to the destination from.

The output of the spatially weighted Monto Carlo process was an origin shapefile for each
destination, which specifies the frequency of selection and a statistical weighting reflecting this
frequency for the origin destination pair. The average frequency also allows the average number
of children assigned to that school in a simulation from the grid cell to be calculated. The
weighting of the origin-destination pairs was used as the first step in selecting only origins which
were more frequently selected. A plot of the origin weights from largest to smallest showed a
long tail end in the distribution, and these origins which all had low weightings were removed
from further analysis. Origin-destination pairs averaging less than 1 child over all simulations were
excluded. Upon review of the data, for the 0-4 and 11-17 age groups it was not possible to restrict
origins to just those providing at least 1 child. As the population required at each destination was
small, in large catchment areas the origins were only fractions of children e.g. 0.34. In these cases,
0.1 was used as threshold and the sum of the origins was checked against the destinations, again

finding a close match to the total required.

Modal Split defines the method of transport used for journeys. Since equivalent data were
unavailable locally for York, a cross-tabulation of school travel mode by distance band for England
(Table 5.2) was used to estimate modal split (Department for Transport, 2014), based on the
Euclidean distance between each origin-destination pair. The origin-destination pairs were split
into two categories, motorised and non-motorised travel. Motorised travel included those who
travelled by car and bus, non-motorised was walking and cycling. This is due to travel by public
transport and bike being a very small percentage of primary school children, so they can be
subsumed into categories with cars and walking respectively. This classification was also used by

Easton & Ferrari (2015).
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Table 5.1 Travel mode by distance band for Primary schools in England

Classification Distance band Motorised Non-motorised
1 Under 1 mile (up to 1.6km) 20% 80%

2 1 to under 2 miles (1.6-3.2km) 72% 28%

3 2 to under 5 miles (3.2 up to 8km) 99% 1%

4 5 miles and over (over 8 km) 100% 0%

Trip assignment was fulfilled by ArcGIS Online’s network analysis function. The online version of
the software package was used as it allows for mode of transport to be easily specified and the
historic traffic for a time of day to be included in driving times. The historical traffic data are based
on the average travel speeds of cars over the last three years, recorded in 15-minute intervals
(ESRI, 2018), and allows for time of day to be considered throughout the framework. For each
school destination, the travel times and distances for the walking origins and driving origins were
calculated for the three population groups; 0-4 years, 5-10 years, 11-17 years. The result were
shapefiles for each mode, origin destination pair and age group which represented the travel time

or the shortest route at the time specified.

5.2.3 Comparison of population in travel modelled via two approaches

To address the second objective, the results of the four-step approach were transformed into a
raster data set showing the number of children in travel at 8:15am comparable to the output from
SurfaceBuilder247. To consolidate the route information, maps were produced to show the
number of children who use each road. This identifies spatial patterns for which roads are used

most in allowing children access to school.

5.3 Results

In this section, the results from the development of the four-step approach for linking gridded
spatiotemporal population data to vector-based network analysis and the network analysis route

results will be presented.

5.3.1 Outputs from preliminary population models

The initial results from the SurfaceBuilder247 model did not succeed in capturing the dynamics of

school travel as there were 4240 unfilled school places in York’s primary schools (Figure 5.6 and
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Figure 5.7) which could not be met from origin populations, an 11% deficit. With adjustment of
the model parameters and the input data, the deficit reduced through successive
reparameterisations of the models as shown in Figure 5.6. Figure 5.7 shows that there was a
spatial nature to those schools with unfilled places, as in V1 the majority of the schools were on
the South East side of the city, and V3 and V5 the two schools were within 1km of each other. The
change between V1 and V3 is the greatest and there is a change in which schools have unfilled

places.
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Parameterisation Number
Parameterisation Notes
1 First model run (with MYE)
2 Adjusted MYE values in origins
3 Have school population split as 5% 11-17 and 95% 5-10
4 Use the York Local Authority school population data for target York schools
5 Expanded study are and buffer zone so they include the catchment radiuses
for all schools
6 Have school population split as 7% 0-4, 86% 5-10 and 7% 11-17
7 Have school population split as 10% 0-4, 83% 5-19 and 7% 11-17
8 Have school population split as 13% 0-4, 80% 5-10 and 7%11-17

Figure 5.6 Graph showing the model version and the unmet demand at primary schools in York.

The table describes the changes made in each successive parameterisation of the model version.
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Figure 5.7 Maps showing the location of primary schools in York and the number of unfilled
demand at the school. The version number is denoted by the Vx in the top right-hand corner of

each map. Contains public sector information licensed under the Open Government Licence v3.0

5.3.2 Comparing SurfaceBuilder247 output to the four-step approach output

Objective 2 was to compare the outputs of SurfaceBuilder247 and the four-step approach to see
how they represent population in travel. Figure 5.8 shows that the SurfaceBuilder247 output has
a high weighting of school children in travel on the main A roads around York and the arterial
roads into the city centre. The results of the four-step approach show a greater use of minor

roads, with a large proportion of children not using the main ring road for travel. There is also a

102



Chapter 5

greater homogeneity in the number of people per grid cell with a more even spread across the

city, particularly for walkers (C).
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Figure 5.8 Comparison raster maps of the primary school population in travel at the same time
point across York. a) is the output from SurfaceBuilder24/7, b) the output of the network analysis
for those travelling by car and c) the output of the network analysis for those walking. Contains

public sector information licensed under the Open Government Licence v3.0

5.3.3 Network Analysis Results

Figure 5.9 and Figure 5.10 present the results of the network analysis for school travel on a typical
Monday morning, dividing road sections into quintiles based on the modelled number of children
travelling along a road section. The roads used by those who walk are more clustered around
destinations than those used by car travellers, particularly for schools in the villages on the edge

of York (Figure 5.9). The concentration of children travelling on roads is also higher for walking
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routes, with 465 the greatest number on a section compared to 109 for car travel. There is also a
difference between walking and motorised transport, with car journeys tending to be longer and
utilising a greater proportion of the road network. In both forms of travel, it is local roads which
are used more than major A roads. It can be inferred that the greater the number of children
using a road, the more important the road is to school travel, so those in the highest quintile can

be considered the most critical.
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Figure 5.9 The cumulative number of children using each road segment for those walking to

school. Inset image extents shown on main map. Contains public sector information licensed

under the Open Government Licence v3.0
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5.4 Discussion

5.4.1 Configuration of SurfaceBuilder247 model

Primary school children are a unique group in the wider population, as the vast majority of people
in this age group follow a well-defined routine during the weekdays (going to and from school).
The SurfaceBuilder247 parameters mean that all school destinations should be filled on any
working weekday. If there is unmet demand at a destination this is likely due to discrepancies
between school administrative (destinations) and census data sets (origins). The initial
parameterisation of the SurfaceBuilder247 model had 11% of the school destination places
unfilled in the output grid, demonstrating the mismatch between the census data and the school
data. There was also a spatial pattern to schools with unmet demand (Figure 5.7) as urban areas
have a limited number of children with multiple destinations competing for them. By adjusting
the model parameters and the input data, a parameterisation where all the demand in schools

was met was achieved.

There are several factors which contributed to this discrepancy. Firstly, the proportional split in
the numbers of children from each age group attending primary schools was revised. Between V1
and V2, adjusting the school population so that 5% were from the 11-17 category, leaving 95% as
aged 5-10 rather than 100%, halved the number of unfilled places. This establishes that the
proportional split of population groups at school destinations is an important parameter and
needs to be as accurate as possible for the model to work. To say that a primary school is filled by
5-10 year olds only is not true, and will partly explain why there is a deficit of 5-10 year olds for
these destination places as some of the school capacity is filled by 4 and 11 year olds. The
challenge is that during the school year, the proportion of 4 year olds and 11 year olds changes,
adding an extra temporal dimension to this modelling. In this example, data were found which
stated that 80% of children enrolled at primary schools are aged 5-10 (Department for Education,

2016). Therefore, the model was adjusted to fulfil this by V7.

Secondly, potential issues with the school destination data (from Edubase) were investigated. It
was assumed that the census data would be correct for the number of children in York at the time
it was taken, and adjustments were made to the administrative data for the destination numbers.
The issue could therefore be that more children were being required at some schools than the
population available to them from the origin census data. It is possible that the school data are
affected by a lag in de-registration of outgoing pupils once they transfer to another
establishment. This is similar to the health sector, where there is a lag in deregistration from

practice registers as patients move between practices. This means that population headcounts
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from general practice registers often exceed headcounts from census data, because the lag
inflates register sizes (Smallwood & Lynch, 2010). Whilst school registers may be affected by
similar lags as pupils change schools, head counts of children from school registers nationally are
in fact lower than head counts of children from census data, but there can be local variations in
such discrepancies (Office for National Statistics, 2013). Some children do go to school outside of
their local authority, so would not be captured by the population data for the study area. In York,
cross-border flows account for a 0.8% increase in children registered at schools (Department for
Education, 2016) which is not enough to account for the discrepancy seen in these initial model
results. Thirdly, the census data and school capacity data were from different years, 2011 for the
census data and 2017 for school data. Whilst the census data were scaled using the 2016 Mid-
Year Estimate, this will not be the exact number of people present in York as it is still an estimate.
However, it is unlikely the Mid-Year Estimate is so inaccurate it accounts for the 11% discrepancy
in itself. Consequently, a data set from York Local Authority on school enrolment for the target
year (2016) was used instead of national Edubase data as the number of pupils was lower,

therefore a better match to the origin census data.

Finally, it should be noted that the spatial concentration of schools had an impact. As Figure 5.5
shows, the school catchments in York greatly overlap, meaning there is high competition between
destinations for students. The total number of children over the study area and buffer zone was
always enough to fulfil school demand; however, there was not enough within the catchments of
some of the schools in York. Figure 5.7 demonstrates the schools with unfilled places were
clustered together, supporting the theory that urban areas with lots of schools and a finite
number of children can cause model problems. What can be taken from this is that in an urban

area it is important to get different data sets as closely matched as possible.

5.4.2 Comparing the modelled results of population in travel

Objective 2 was to compare the output of the four-step approach to the output of
SurfaceBuilder247 for the representation of people in travel. The results shown in Figure 5.8 have
demonstrated that the four-step approach can provide a more detailed representation of the
spatial distribution of population in travel than SurfaceBuilder247. This is largely due to the nature
of the background layer in SurfaceBuilder247 placing the people in travel across the whole study
area, based on the relative weightings of roads, which is not specific to population sub-groups.
The four-step approach therefore is an improvement on SurfaceBuilder247 in its current form as

it represents travel on the local roads which would be used for school travel.
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5.4.3 Defining critical roads

Jenelius (2009, 2010a) define a critical link as one which many people typically use whilst
travelling around an area. Therefore, the four-step approach could be used to identify critical
roads, as it identifies which are used by the most people within a population group. The results
show it is mostly smaller roads rather than strategic network which are important for schools.
There are more clusters of the road network for walking routes than car routes, which is
unsurprising as walking was the mode used for shorter distances. As discussed previously, the
studies by Nyberg and Johansson (2013) and Coles et al., (2017) have looked at defining critical
links for a sub-group. Both of these studies look at access for the elderly. Therefore, this research
has examined a new group. The four-step approach could be used for any population sub-group
with the right data, so after running multiple groups a detailed picture of road use would emerge.
A strength of these results is that they are for the whole city which is a useful scale for local
authority planning. Also, displaying the results as the number of children is an accessible way of

displaying the data to stakeholders.

5.4.4 Preliminary assessment of the four-step approach to modelling population in travel

The four-step approach is a novel framework which can be used to bring spatiotemporal
population dynamics to GIS network analysis and has achieved Objective 1. The greatest challenge
for this chapter was converting the gridded spatiotemporal population data into a format suitable
for network analysis which, as far as the author is aware, has not been addressed within academic
literature before. The spatially weighted Monte Carlo simulation has the same underlying
principles of Spatial Interaction Models and microsimulation techniques, so the logic for the
method is sound. The difficulty lies in validation as the data used as the input for
SurfaceBuilder24/7 is the best data available and there is not an alternative data set for
comparison. Nevertheless, the development of a code which assigns destinations to origins is a
useful advancement to the field of population modelling as it opens the potential to link these

data to other techniques.

Like all models, there are limitations to the four-step approach. It is based on modelled data so
the results can never be used as an exact representation of population in travel or for real-time
emergency management. A key assumption is that people of a certain group follow the same
movement patterns (Bian & Wilmot, 2015), when in reality transport networks are a collection of
individual decisions (Nagurney, 2011). However, this is an issue with all transport models of this
scale (Borrmann et al., 2012; Sohn, 2006; Jones, 2012) and the approach is still a good tool for

city-scale transport planning.
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The four-step approach is an aggregate modelling approach which means it cannot account for
individual behaviour, a key determinant of travel (Jones, 2012), like an agent based model

would. Whilst detail would be gained with a micro-scale approach, individual-level micro models
would be more computationally expensive than the network analysis for areas as large as

York. Also, micro-scale models need to contain behavioural choice-making data (Harland &
Stillwell, 2010) which is difficult to come by and challenging to validate. When considering the size
of the study area (a city) this aggregate ‘meso-scale’ framework is the best option as it provides
detailed enough information for decisions to be made on a city-wide basis (Alaeddine et al.,

2015), the scale local government is ultimately working at.

Journeys with multiple stops cannot be included as part of the four-step approach, as the original
concept is based on a principle of journeys being from one origin to a destination (Jones, 2012)
which does limit its applications. However, for school travel, it is more likely a child is just
travelling to the school rather than going via other amenities, so a simplified travel model is
appropriate. A linked limitation is that the results are just for primary school children and do not
represent the adults which will be travelling with them. Assumptions could be made about how
many adults are travelling these routes for every child, but further investigation is needed to find
empirical data to base these on. Validation of the results is a challenge for SurfaceBuilder247 and
the four-step approach, as the best available data are used in the models and there is not an
independent data set to verify the results against. Whilst individual level data like the National
Pupil Database and mobile phone data do exist (Singleton et al., 2011; Alexander et al., 2015;
Deville et al., 2014), this is at a different scale to the census data the models use so would not be

suitable for validation.

The four-step approach has been designed to work for any population group which can be
modelled in SurfaceBuilder247 or other spatiotemporal gridded population models, as it is
intended for a wider use than just modelling school travel. The fact it only requires origin data,
destination data and destination catchments mean it is a transferable framework as these are
standard data required for transport analysis. Therefore, this four-step approach could be used in
transport planning as it introduces demographic data to transport analysis allowing more detailed
scenarios to be tested. The identification of critical roads could be used within risk management
frameworks as society cannot afford absolute protection; therefore, prioritising resources on
those nodes and links which are essential is necessary (Freiria et al., 2015). Introducing disruption

scenarios to the network analysis part of the framework would allow policymakers to assess how
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different population group’s travel is affected differently, enabling policy to be designed with

specific groups in mind.

There are several aspects to this work which can be considered original. Firstly, incorporating the
four-stage conceptual transport model with gridded spatiotemporal population modelling has not
been attempted before. This chapter has shown it is an appropriate and successful conceptual
model for population transport analysis and could be used more widely within Geography.
Secondly, how the SurfaceBuilder247 model represents population in travel has not been
evaluated before or compared to an alternative method, which this chapter has provided. This
work has also looked at the representation of primary school children in the model and how the
destination parameters and input data can have a large effect on model outcomes. Thirdly, it has
applied code components for population modelling developed by Stevens et al., (2015) to a new
situation, demonstrating the transferability of these techniques. Finally, many papers address
network functions for the population as a whole including Jenelius (2010b), Rodriguez-Nufiez et
al.,(2014), Sohn (2006), Taylor et al., (2006); Chen et al., (2015) and Balijepalli & Oppong, (2014).
However, this is one of few studies which develops a method to examine the impact on specific
population groups, and the only one to use the detailed demographic data provided by gridded

populations.

5.5 Conclusion

This chapter has provided a framework for linking gridded population data to vector-based
network analyses and shown how it can be used to map routes taken by specific population
groups. This is a transferable framework which can be used for other population groups and with
different types of gridded data other than SurfaceBuilder247. In terms of the case study area, it
has provided more detail on which roads in York are used for school travel at a finer scale than
SurfaceBuilder247 alone can currently. The objectives set have therefore been met and this

original research provides a sound basis for development in the remainder of the thesis.
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Chapter 6  Evaluation of Approaches to Modelling
Spatiotemporal Population Flows and Flood-Related

Travel Disruption

This chapter has been presented as a conference paper at the GISRUK 2019 conference in

Newcastle. See Appendix B for paper.

6.1 Introduction and Background

The majority of fatalities caused by pluvial flash-floods in post-industrial countries are due to
people travelling in vehicles (Debionne et al., 2016; Arrighi et al., 2019; Terti et al., 2017; Shabou
et al., 2017) rather than those exposed whilst in a residential building. However, daily mobility
aspects are not frequently considered in flood exposure and risk assessments (Debionne et al.,
2016). As flood risk assessments can now involve dynamic flood models, it follows that dynamic
population data should also be included to understand exposure and risk fully (Shabou et al.,
2017). Batista e Silva et al., (2018) state that multi-temporal population grids from the ENACT
project, similar to the ones created by the SurfaceBuilder247 model, are useful for assessing
exposure to natural hazards and planning and modelling transport. This chapter therefore tests
this assertion by seeing whether spatiotemporal population grids can be used in a common

network analyst tool for the purposes of assessing the effect of a flood event on travellers.

In previous studies of pluvial flash floods on road networks, using census data for origin-
destination pairs is a common way of determining travel flow, for example Debionne et al.,
(2016). However, this does not capture daily flow dynamics in the way the spatiotemporal data
used in Chapter 5 does. Alternative methods to include a dynamic nature to the census data
include Shabou et al., (2017), who added travel activity data to their census data to include a
measure of daily travel activity. In other studies, traffic data has been used to provide the
dynamic quality to the road network, either average data for that day (Li et al., 2018) or for a
specific flood event (Pregnolato et al., 2017a). However, using traffic flow or count data do not
reveal anything about the demographic characteristics of road users, information which would be
useful to those involved in risk planning like councils and local resilience forums. In this chapter |
will attempt to use a third type of data, spatiotemporal population data created through

SurfaceBuilder247, to assess the effect on intra-city journeys from a flash flood event in York.
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Chapter 5 introduced a method for adapting spatiotemporal gridded population data to create
time-specific origins for use in ArcGIS network analysis tools. However, assessment of these data
was not possible due to a lack of reference data for school children. In this chapter, the focus is on
commuters and there is origin-destination flow data for workplace travel recorded in the England
and Wales census. This can be used to as a comparison to the origin-destination flow data
produced from the spatiotemporal gridded population data. In this chapter, the origin data will be
compared to identify differences in spatial locations. The origin data will then be used in a cloud-
based proprietary transport network tool (ArcGIS closest facility tool), without a flood event, to
measure how commuting routes and journey times compare between the two. This process will
then be repeated with a flood event acting as a barrier to the roads to assess the effect of a flood
on commuter travel times. Finally, the sensitivity of the parameters of the network analyst tool

are tested. This chapter has the following aim and objectives.

Aim: To assess the differences between using census origin-destination data and spatiotemporal
population derived origin-destination data, to measure the impact of a pluvial flood scenario on

travel in York.

Objectives:
1. Generate pluvial flood scenarios for road travel disruption testing
2. Analyse the differences in origin locations between census-derived origin-destination flows
and flows simulated from workplace catchments using Chapter 5’s methodology
3. Examine the impact of the two different approaches to modelling spatiotemporal
population flows on the simulated road travel disruption from pluvial flood hazards
4. Test the inclusion of floods as obstructions in the network analysis tool

5. Test methods for the aggregation and presentation of the results

6.2 Methods

6.2.1 Overview

An interdisciplinary methodology of hydrology, transport and GIS has been applied effectively by
previous researchers to this problem area (for example Li et al., 2018). A similar approach is taken
in this chapter. The study area is the city of York, as described in Section 4.1.1, focussing on intra-

city travel as this is the area covered by the SurfaceBuilder247 population data. There are also
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restrictions to the number of origin-destination pairs which can be analysed with the ArcGIS
network analyst server, which restricts the size of study area to a city rather than a region. Whilst
this does not account for all travellers who come into York for work, 71% of those who work in
York also live in York (ONS census table WUO1EW for MSOA level). Therefore, the majority of
work trips are included in this area. | will analyse pluvial flash floods as they are a common hazard
in urban environments, due to the prevalence of impervious surfaces (Li et al., 2018). Two
approaches to creating population flow data for conducting network analysis were applied;
Method A, which utilises raster data from the SurfaceBuilder247 model and Method B, which uses
2011 workplace origin-destination census data. Figure 6.1 provides a diagrammatic overview of

both procedures.
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Figure 6.1 Methodological approach of Chapter 6.Blue boxes are analysis processes, black boxes are data
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6.2.2 Creating flood data

The flood data used in this chapter was modelled using the Flowroute-i™ software from
Ambiental Risk Analytics. For a full description of the model and the pluvial flood modelling
strategy, see Section 4.2.1. In this chapter, the one-hour summer storm event for a 1 in 30 year
return period was applied as the disruption scenario, taking the maximum depth raster. This was
post-processed to remove any areas of flood water which were too shallow to cause impedance
to vehicles or had an extent smaller than 125m2. There is a range for the threshold depth of water
which makes a road impassable to a car, with the estimation of 20-30cm of water cited in the UK
and US as the air inlet height on a typical car (Li et al., 2018). Pregnolato et al., (2017b) created a
depth-disruption curve which indicates 30cm is sufficient water to stop an average car from
crossing a road section. In this chapter | have used 25cm depth, a median between all estimates.
As the main focus of this chapter is the testing of population flow data and the network analysis
tools one flood scenario is used with the intention for the effect of different flood scenarios to be

explored in Chapter 7.

6.2.3 Adapting the spatially weighted Monte Carlo approach (Method A)

An R script for a spatially weighted Monte Carlo analysis (Nieves, 2018, pers. comm.) was
developed and presented in Chapter 5, to simulate the population origins which are likely to
provide people to a destination from spatiotemporal gridded population data and destination
catchments (see Section 5.2.2). As the spatiotemporal gridded population data are the same
format for commuters as school children, this script was adapted to generate origins for
commuters. Three sets of data are required for the script; (i) a population grid, (ii) a shapefile of
destinations with population demand and (iii) probability surfaces denoting areas where those
working at a destination are likely to live. The population grid was the output of
SurfaceBuilder247 for the working population aged 18-64. The destinations were the centroids of
workplace zones within the study area using the most recent 2011 census geography. As the
study area does not cover the area where all people who work at the selected workplace zones
live, the population demand for each destination was reduced to reflect the estimated proportion
of workers commuting from within the study area. The distance travelled to work (workplace
zone) is provided as a 2011 census output table (WP702EW — Distance travelled to work
(workplace population)). These data were used to calculate the proportion of each selected

workplace zone that commuted from outside of the chosen study area. This cumulative
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percentage was then the proportion of the number of people working at that workplace zone
who should be sought for each destination, ensuring the number of people required did not

exceed those present in the population grid.

The surfaces depicting probability of an adult working in a given workplace zone were based on
the same method used to create the probability surfaces for each school in Section 5.2.2. The
travel to work distance bands were again used as the basis for creating the probability surface.
Each WPZ destination had 3-4 distance bands represented within the study area, depending on its
location within the study area. To calculate the weighting of each band, the population
percentages were divided by the number of grid cells in each distance band. As no other
information is available to indicate if a grid cell has a higher likelihood than any other to provide

to the destination, it is assumed all grid cells have an equal chance of supplying the destination.

The script took 10 days to run, longer than for school children due to more destinations to
process and greater numbers of people to be selected. The results were 1166 origins for each
destination, equating to the number of grid cells with population present in the study area. The
weighting of these origins followed the pattern of the probability surface however, with the
points most picked in the 2km ring around the destination. This meant a ‘tail end’ could not be
discerned to remove from analysis like in Chapter 5. However, the number of origins needed to be
reduced, as 1166 would be unrealistic number to model for the number of people in the
destination and computationally expensive when subsequently calculating routes using network
analysis. Probability Proportional to Size sampling was used to pick a selection of origins for each
destination. The number of origins to find was 50% of the number of people at the WPZ, assuming
two people travelled from each origin. This produced a sampled selection of origins for each

destination, reflecting likely commuter travel between that origin and destination.

6.2.4 Applying census data (Method B)

Method B uses 2011 census data of origin-destination flows for commuters, taken from the
WFO02EW data table, for the output area and workplace zone levels. These data are directly
reported by 2011 census respondents, rather than the simulated data of Method A, although with
the caveat that output areas with very small numbers of commuters are swapped for data
protection. As the majority of origin-destination pairs in the census data consist of 1-3 travellers,
it is likely these data protection measure has influenced the data used. However, the general
spatial pattern should be maintained. The data were processed using python scripts to remove

any origin-destination pairs where either the workplace zone or output area were not in the study
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area, and then any pairs where the commuter flow was zero. A shapefile of origins was then
created for each destination, with between 80-150 origins for each workplace zone. In this
chapter, only one time of day is considered in the model, 7am on a typical working Monday, so

additional temporal information is not added to the census data.

6.2.5 Network Analysis

The origin-destination data generated by Method A and B were implemented in the ArcGIS
network analysis tool ‘closest facility’, accessed via the online server using a python script, as
described in Section 4.2.3. There are many optional parameters but the ones of interest here are
the inclusion of barriers and hierarchy function. To investigate how flood events change the
closest facility routing, the 1 in 30 year flood was incorporated as a barrier in the closest facility
analysis for both origin data sets. The flood layer represented all flood water deemed impassable
(as described in Section 6.2.2.) so was classified as an impassable barrier in the tool parameters.
Ideally, flood water which would slow down traffic, but still allows travel, would have also been
included, based on the depth-disruption function created by Pregnolato et al., (2017b). However
in practice, network analysis via the ArcGIS server is limited to a maximum of 2000 road segments
being intersected by barriers (ESRI, 2020b), meaning only the impassable flood barriers were able

to be included.

The hierarchy function is included to attempt to mimic the preference for driving on main roads
over local roads. This algorithm works in conjunction with Dijkstra’s algorithm (Section 4.2.3) to
direct the calculated route onto main roads as soon as possible, and complete as much of the
journey on higher order roads (ESRI, 2020a). By default, this is turned on in the network analysis
tools. However, after noticing some unexpected results between the non-flood and flood routes
for some destinations, the effect of hierarchy was tested by turning it off and re-running the
analysis to see how the results were affected. Validation of this work is difficult, but sensitivity

tests can be used to examine the influence of parameters on the model (Arrighi et al., 2019).

Overall, seven scenarios were analysed using the closest facility server tool in order to compare
flood to non-flood travel times, between origin-destination data creation methods and to test the
sensitivities of the hierarchy function. The scenarios are described in Table 6.1 below. The time of
day used in the network analysis was the departure time from the destination, based on the
SurfaceBuilder247 spatiotemporal population data. Journey times in the network analysis were

calculated from this point in time for completed origin-destination journeys.
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Table 6.1 Description of scenarios run for data collection in this chapter

Scenario Description

1 Method B origin-destination pairs, hierarchy on, typical Monday morning at 7am, no
flooding

2 Method B origin-destination pairs, hierarchy off, typical Monday morning at 7am, no
flooding

3 Method B origin-destination pairs, hierarchy on, typical Monday morning at 7am,

flood layer including bridge coverage

4 Method B origin-destination pairs, hierarchy on, typical Monday morning at 7am,
flood layer not including bridge coverage

5 Method B origin-destination pairs, hierarchy off, typical Monday morning at 7am,
flood layer not including bridge coverage

6 Method A origin-destination pairs, hierarchy on, typical Monday morning at 7am,
flood layer not including bridge coverage
7 Method A origin-destination pairs, hierarchy on, typical Monday morning at 7am, no
flooding.
6.2.6 Comparing the data

Several techniques were used to process the raw origin-destination route data and compare
between scenarios. To compare the origin spatial pattern for each destination, the directional
distributional tool from ArcGIS was used. This comparison is designed to show if the catchments
of the origins from Method A were similar to those of Method B, as it is assumed the census-
derived data is a correct measure of catchment. This technique fits an elliptical catchment that
encloses 95% of population-weighted origins, when 2 standard deviations are applied, estimating
the x and y axis lengths for each destination’s ellipse (ESRI, 2020c). The x and y axis lengths were
used to calculate a ratio reflecting the compactness of each destination catchment. A value of
close to 1 indicates a more circular catchment and a value further away from 1 a more elliptical
catchment. To statistically test for differences in modelled catchments, the axis ratios were

compared using a paired sample t-test for Method A versus Method B.

To test the effect that differing origin data sets had on the desired routing outcomes, the closest
facility tool was run for both origin data sets to the same destinations. These data were used to
calculate an average travel time to each destination, aggregating the data into 215 values (one for
each destination) per origin data set. These two data sets were then compared to see if the

destinations with the highest or lowest average travel times were the same between the two data
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sets. This aggregation also allowed the comparison between travel times for the non-flood

baseline and the flood scenario, to see the effect flooding had.

The hierarchy property of the closest facility tool was tested by running the analysis with the
function turned on and the function turned off, for both the non-flood routing scenario and the
flood routing scenario, using Method B’s origin data. The average travel time and distance for
each destination were then calculated for the non-flood and flood scenarios, before the

difference between the two for each destination was calculated.

Finally, the spatial route data were consolidated to ascertain which roads were most frequently
used in the routing simulations and compare the difference in outcome between the two origin
data sets. Each route was given a count of 1 and then combined to give each road segment a

value for the number of times it was used.

6.3 Results

6.3.1 Comparison of method origin data

The directional distribution tool showed that the catchments were generally elliptical (a sample is
shown in Figure 6.2) and as expected, the catchments for the 215 destinations covered the study
area of York. Visually, Method A has a much smaller catchment sizes than Method B, indicating
that the origin data sets are substantially different. In the sample shown, the direction of the long
axis also differs in the catchments between the two datasets. The mean ratio of the ellipticals for
Method A was 1.042 and for Method B 0.875. This demonstrates that the catchments for Method
A were generally closer to circular in shape than for Method B. This could be due to the
underlying weighting layer used in Method A containing circular catchments. A paired sample t-
test was conducted on the ratio values which showed a significant difference between the ratio
values of the destinations generated by each method (p value of <0.001). This shows that Method
A has not created an origin data set which is similar in spatial size of catchment to Method B (the
census data). This is likely due to the underlying probability surfaces used in Method A having
higher weightings close to the destination point, meaning more origins were selected which are

nearer to the destination than is reflected in the census data of Method B.
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a) is Method A, b) is Method B. Contains public sector information licensed under the Open Government Licence v3.0
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Figure 6.3 compares the average travel time to each destination in the non-flood baseline
scenario for Method A and B (scenario 6 and 1 Table 6.1). The overall trend is that the
destinations with the longest average travel times are the same for each method. There is a
cluster of the majority of the 215 WPZs with travel times between 4 and 10 minutes, with 10 WPZ
with an average travel time above 10 minutes. This data does show that average travel times in
Method B are longer than for Method A for the same destinations by around 1 or 2 minutes. This
aligns with the results that the catchment areas in Method B are larger, therefore travel time to

the destination would be longer.
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Figure 6.3 A comparison of the average travel times for each WPZ in Method A and Method B.

A comparison of the usage of road segments is presented next. Method B had a higher number of
routes using segments. However, this could be due to Method B producing more origin-
destination pairs therefore more journeys were modelled. In both data sets, main roads like the
A1237 around York and the A19 into York were used more than minor roads. This is unsurprising
given the hierarchy properties of the closest facility analysis and the longer journeys compared to
school children (Figure 5.10). Overall, a similar spatial usage exists, indicating which roads are

used by commuters the most, regardless of the input origin data set.
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Chapter 6

The chosen flood event (one hour summer storm for a 1 in 30 year return period) resulted in

small patches of flooding across the city and areas where roads were deemed to be impassable

(Figure 6.6). Inset A shows one area of flooding, which while small, is at the start of a one-way

road system which meant travel into this part of the city centre was not possible. This is one

example of pinch points in the city network. Whilst the flood model did place flood water on the

bridges over the city’s rivers, these were removed due to the low likelihood that they would in

fact be flooded in a real situation. The DEM data which underlies the flood model does not always

capture bridges well, so this may account for this discrepancy.
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Figure 6.6 Modelled flood area for York for a 1 in 30 year flood event for a 1hr duration, summer

hydrology. Insets show part of the city where flooding has caused roads to be blocked (circles).

Contains public sector information licensed under the Open Government Licence v3.0

Contains data which are copyright of Ambiental Risk Analytics, used with permission.
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6.3.3 Sensitivity of network analysis hierarchy setting

Figure 6.7 are graphs of the average distance difference plotted against average time difference,
of the flood scenarios compared to the baseline, for the workplace zone destinations, using
origins produced by Method B. Figure 6.7 shows that time and distance increased when flooding
was introduced, which would be expected as the flood layer should cause disruption. There are
some cases where distance decreases, but time increases. This could possibly be due to the flood
route involving local roads which are a shorter distance to the destination but are slower due to
lower speed restrictions. The hierarchy function also recalculates values for roads each time the
analysis is run, so when the flood layer is included the roads will be given a different hierarchy
value to the non-flood simulation (Applebaum, 2019, pers. comm.), this is therefore another likely
cause. The removal of the hierarchy function means fewer destinations appearing in the upper
left quadrant of the graph where time increased while distance decreased. In this case, all roads
are treated as equals so the effect of adding the flood layer (and changing the hierarchy values) is
not seen. The general spread of results does not change substantially from when the hierarchy is

turned on.
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Figure 6.7 Modelled journey times with hierarchy function turned on (a) and turned off (b), for a

flood scenario where floods which cover bridges were included. (dots represent workplace zones)
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6.3.4 Effect of flooding on network analysis

Figure 6.8 demonstrates there was a general trend of distance and time increasing after the flood
event was introduced to the closest facility analysis for both Method A and B. There are some
destinations where distance decreases as time increases, partly explained by the hierarchy
function as demonstrated in Section 6.3.3. Figure 6.8 identifies the five destinations which have
increases in distance and time larger than the general cluster of the data. These five are the same
in both Method A and Method B, demonstrating that the WPZ with longest average travel times
will be identified despite changes in the origins. Appendix C contains maps showing the spatial

distribution of workplace zones and the average travel time to reach them.
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and Method B.
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The spatial routing data were aggregated for Method A (Figure 6.9) and Method B (Figure 6.10)

for travel during the flood scenario. In both data sets, there are a notable absence of any routes

travelling on the Northern section of the A1237 near Earswick. In the non-flood scenarios (Figure

6.4 and Figure 6.5) this was one of the road segments with the highest usage. Leeman Road

(alongside York station) also does not have any road users during the flood event having

previously been a well-used road.
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6.4 Discussion

6.4.1 Comparison of the origin data

The second objective of this chapter was to compare how the origins from Method A, designed in
Chapter 5, compared to the origins from the census data for commuter flows (Method B). The
origin selection process in Method A did not work as well as expected and a clear set of origins
which were statistically more likely were not as easily distinguishable as in Chapter 5. This led to
using the proportional population sampling approach to reduce the number of origins modelled in
the closest facility routing tool as the 1166 origins initially selected was much greater than the

number of people required.

The results of the paired t-test and directional distribution tool have shown that the two data sets

are significantly different (Section 6.3.1), therefore Method A was unable to produce origin data
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similar to that in Method B. The smaller catchments of Method A’s data are likely due to more
origins being selected closer to the destination than in the small area census data of Method B.
This lies in the properties of the underlying probability grids created for Method A. These were
based on travel band data for the percentage of the working population living within set distances
from their workplace zone. An assumption of creating the raster probability surface was that any
grid cell within one of these distance bands has as equal a chance of providing to the destination
as any other grid cell within the same band. Therefore, the proportion of the working population
required in the workplace zone from that band was divided equally amongst all grid cells within it.
The first distance band (<2km) was the smallest and had the lowest number of grid cells, with the
number of grid cells increasing through the distance bands. This meant that the area with the
highest weighting was the distance band closest to the destination and the lowest the furthest
distance band. This skews the data, so more origins were selected closer to the destination than

appears in Method B’s data.

The resultant routes generated from these origin data were also compared. Figure 6.5 and Figure
6.6 show broadly the same spatial pattern of which roads are used most frequently in the routes,
demonstrating that on an aggregate level the differences in the origins do not have a marked
effect on which roads are shown to be used most by commuters. The difference is more notable
in Figure 6.4 where there are differences of 1-2 minutes in average travel times between the two
data sets. This is perhaps because those destinations which take longest to travel to, perhaps
because they lie on the outside of the main city centre, will always be those with the longer travel

time.

6.4.2 Sensitivity of the network analysis tool

The hierarchy function does influence the closest facility routing results with more destinations
showing an average change of shorter distance, but greater time, once a flood event is
introduced. This sensitivity test has shown that the hierarchy does have an effect; however, it is a
useful parameter to keep as it is designed to mimic human behaviour of preferring to travel on

larger roads.

6.4.3 Scoping of network tool behaviour with flood scenarios

The general pattern of Figure 6.8 is not surprising, it is expected that introducing a flood event
would cause disruption by increasing travel time and that the destinations with the largest
increases in travel time are generally those with large increases in distance too. The actual time

disruption is not very large, but this could partly be a product of the journeys being intra-city,
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meaning they are shorter. The network analysis model also does not account for congestion
caused by drivers having to take alternative routes, so the travel times presented here are likely

to be underestimations of the actual disruption (Borrmann et al., 2012).

There are spatial clusters of destinations which were affected more than others (Appendix C),
indicating that these places would have more disruption to workplaces due to difficulties in
reaching the area. Whilst there are differences between the two methods, they show similar
results when identifying places where the largest impact of flooding occurs. This is useful as it
means the extremes of the data distribution are consistent and there is more confidence in the

results, identifying places most disrupted if this method was used for flood risk assessments.

6.4.4 Limitations and uncertainties

There are limitations in the analysis presented in this chapter which are shared with other studies.
Firstly, not including dynamic congestion within the traffic model (Versini et al., 2010) will lead to
an underestimation of travel times, and could potentially affect the routes some travellers would
be assigned. Secondly, the closest facility tool uses algorithms which assume travellers take the
least-cost path which is known to be an underestimation of travel time and disruption (Li et al.,
2018). Thirdly, validation of the outcomes of the flood disruption to travel time is difficult as often

there is not ‘real-world’ traffic data to compare the results to (Arrighi et al., 2019).

6.5 Conclusion

Comparing the outcomes of Method A and B, it has been shown there are significant differences.
The origins generated from the Method A were affected by the probability surfaces used to
dictate the likelihood of a grid cell providing to an origin, leading to an underestimation of
distance from origin to destinations. So, whilst Method A worked well for primary school children
in Chapter 5, it has not worked well for generating reliable origin data for commuters. Therefore,
in Chapter 7 an alternative method of combining census data with time profiles will be used to
capture the spatial accuracy of the census data and incorporate a dynamic element. One objective
of this Chapter was to assess the differences between using spatiotemporal population data
(method A) and census origin-destination data to measure the impact of a pluvial flood scenario
on travel in York. This has been achieved as it has been shown that whilst there are differences in
the origins, similar results appeared for the travel times and routes to destinations when the flood

scenarios were introduced.
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Chapter 7 Spatiotemporal modelling of flood-related

impacts on daily population movement

This chapter has been presented as a conference paper at the GISRUK 2020 online conference.

See Appendix B for paper.

7.1 Introduction and Background

The previous two chapters have examined how spatiotemporal flow data can be created from
spatiotemporal population data and compared the results to census origin-destination data. This
chapter is applying these spatiotemporal flow data to the issue of pluvial flood events disrupting
road travel, incorporating the principles highlighted in Chapter 2, in order to create a proof of

concept for spatiotemporal flood and transport risk analysis.

As discussed in Chapter 6, the majority of fatalities in post-industrial countries caused by pluvial
flash-floods are due to people travelling into floodwaters in vehicles (Debionne et al., 2016;
Arrighi et al., 2019; Terti et al., 2017; Shabou et al., 2017). Traditional flood risk assessments focus
on the characteristics of the hazard (e.g. magnitude, velocity, spatial location) and do not consider
the effect of population characteristics. Risk literature (for example Aubrecht et al., 2012; Wisner
et al., 2004; Freire et al., 2013; Liu et al., 2014a) asserts that time of day is a critical factor in the
scale of impact, due to the movement of people throughout the day leading to different demands
on road use. Therefore, the hypothesis for this chapter is that the time of day of flood onset is as

important as the size of the flood.

In this thesis, risk is defined as a function of hazard, exposure and vulnerability over space and
time (Section 2.2). This research is thus positioned in the ‘disaster risk’ view of natural hazards by
integrating time-specific estimates of population in travel to provide what Aubrecht et al., (2013)
describe as a more ‘encompassing’ view of risk. In Chapter 2, a risk equation (Equation 7.1) was
developed as a foundation for considering the spatial and temporal nature of risk and these

principles are applied in this chapter.
Risk = f(Hazardsr,Exposuresr,Vulnerabilitysr) Equation 7.1

As set out in Section 1.3, the third aim of the overall thesis will be fulfilled in this chapter with

several objectives to structure the analysis.
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Aim: To analyse whether the time of pluvial flood onset is more important than flood magnitude

for disrupting commuter and primary school travel in York.

1. Analyse the extent to which pluvial flood magnitude and flood onset time affect journey
times due to road network disruption.

2. Assess whether commuter's or school children's travel to workplace or school is affected
the most.

3. Identify schools and workplaces which are most susceptible to disruption from flooding
and the effect pluvial flood magnitude and pluvial flood onset time has on identifying

them.

This chapter presents a proof of concept for combining spatiotemporal flow data with flood data
and network analysis to quantify the effect of time of flood onset and size of flood hazard. It
focuses on the 18-64 aged commuter population and primary school children aged 4-11, as

described in Sections 4.1.3 and 4.2.2.

7.2 Study Design, Data and Methods

7.2.1 Choice of case study scenarios

The population groups modelled in this analysis are the same as those in Chapters 5 and 6,
primary school children (aged 4-11) and commuters aged 18-64. These two groups are chosen
because their travel patterns are known through travel surveys and one is considered a
vulnerable group (primary school children). To decide on a suitable time period of study, the
number of people in travel at a given time of day were calculated from time profiles applied in the
population modelling (Figure 7.1) and showed the interaction of primary school children and
commuters in travel during the morning. The time period chosen for study was 07:00 — 09:00
hours on a typical Tuesday weekday morning (an ‘average’ day of the week), correlating to the
morning commute. This was because this time period involves substantial variation in both school
children and commuters travelling in a confined time frame, enabling examination of the effects
of changes in time of flood onset relative to the population movement. Similarly, Pregnolato et
al., (2017a) simulated travel in the morning and evening commutes for their study of flood
disruption to travel, as the greatest economic disruption occurs from interruption to commuter

journeys.
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Figure 7.1 The number of people in travel on a normal working weekday. The box highlights the

time period selected in this chapter for analysis

Both the time of the flood event onset and the magnitude of the flood were variables when
designing the hazard component of the scenarios for simulation. The flood events modelled were
1 hour duration summer storms with 2 hours additional simulation time to capture the flooding
after the rainfall stops (see Section 4.2.1 for full pluvial flooding methodology). As the research
interest is the effect of flood events on road travel, it was critical to examine the temporal
coincidence of the peak travel period with peak flooding. As the target time period was the

morning travel period (07:00-09:00 hours) flood onset times were selected based on this.

A scenario based approach was taken to test the hypothesis as outlined in Figure 7.2 and Table
7.1. First, a ‘baseline’ set of data were created to be a control comparison to the flood scenarios.
This represents ‘business as usual’ without any flood disruption. Two factors, time of flood onset
and magnitude of flood event, were then varied in turn. Three times to introduce the start of the
flood scenario were chosen to cover the morning commute, 6am (flood time 1 (FT1)), 7am (flood
time 2 (FT2)) and 8am (flood time 3(FT3)) (Figure 7.2). As flooding does not appear immediately as
rainfall begins, the rainfall was introduced an hour before the time period of interest, so there
would be flooding in the city at 7am in the first scenario. On Figure 7.2, the duration of the rainfall
in the scenario is highlighted by the blue lines. These were chosen as they systematically shifted
peak flooding to coincide with, or avoid, the morning travel patterns and should reveal hourly

temporal changes in the travel data. Two flood magnitudes were modelled, 1 in 30 and 1 in 100
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year events, both for summer hydrology, and introduced at each of the three flood onset times.
This resulted in seven scenarios being modelled in total, including the non-flood baseline (Table
7.1). The data used in the network model was the flood area exceeding 30 cm depth and 125m?
at each time point. As discussed in section 4.2.1, a snapshot of the flood area was available for
every 15 minutes in the simulation period. This meant a different set of flood data could be
selected to align with the time elapsed since the rain began. For example, FT1 (6am), the network
analysis run at 7am would use the flood data for 1 hour into the simulation. Chang et al., (2010)
state that studies on travel disruption can overestimate the impact of flooding due to not
modelling the receding water at a fast enough rate, particularly if one static flood outline is used.
Therefore, this method of using a series of flood layers for each time point during the flood
scenario means it is more likely changes in which roads are open or closed during the course of
the flood event are captured. As Figure 7.2 shows, there were five ‘sampling points’ the network
analysis was run at for each of the 7 scenarios. This meant there were consistent time points

results could be compared at between scenarios.

Flood time 1 Flood time 2 Flood time 3
7~ T T
/ \
/ \
/ \
w
3 / \
g rTTT A / \
£ ! \ / \
5 / \ / \
7] \ /
o I \
g \ /
= [’ \ / \
1. Network 2. Network 3. Network 4. Network 5. Network
J analysis run analysis run analysis run analysis run analy! if'l""
/
/
/
06:00 0630 07:00 07:30 08:00 08:30 08:06 Time

7am population origins  7.30am population origins 8am population origins 8.30am population origins 9am population origins
7am traffic data 7.30am traffic data 8am traffic data 8.30am traffic data 9am traffic data

Figure 7.2 Conceptual graph of the population in travel during a typical weekday morning and the

flood hazard onset for each flood scenario, the time where rainfall occurs is highlighted in blue.
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Table 7.1 Scenario structure used in this chapter

Scenario Name

Description

Non-flood Baseline

Network analysis with no flood layer included, a baseline to
compare the flood results to for changes.

Flood time 1, 30yr flood

Network analysis with flood layer for a 1 in 30 year event,
flood onset at 6am.

Flood time 2, 30yr flood

Network analysis with flood layer for a 1 in 30 year event,
flood onset at 7am.

Flood time 3, 30yr flood

Network analysis with flood layer for a 1 in 30 year event,
flood onset at 8am.

Flood time 1, 100yr flood

Network analysis with flood layer for a 1 in 100 year event,
flood onset at 6am.

Flood time 2, 100yr flood

Network analysis with flood layer for a 1 in 100 year event,
flood onset at 7am.

Flood time 3, 100yr flood

Network analysis with flood layer for a 1 in 100 year event,
flood onset at 8am.

7.2.2 Overview of study design

A semi-dynamic workflow has been created to utilise the temporal dynamics of the datasets

available. Three main types of data are utilised in this chapter; population, traffic and flood. Each

of these has a temporal and spatial element which are synchronised, as shown in Figure 7.3. For

each modelling scenario (Table 7.1) the datasets are input into a routing algorithm to calculate

the origin-destination routes for each workplace or school. Within the scenario, routes are

calculated at five time points: 07:00hrs, 07:30hrs, 08:00hrs, 08:30hrs and 09:00hrs (Figure 7.2).

The output is a set of routes and associated time data for those origin-destination pairs, for the

school children and commuters.
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Traffic Data Flood Data

\ R

Population Data

s G T Fowg ~
Time specific population grid Available for any T Output every 15 mins in simulation
T T 1hour summer storm event

for normal working day (children)
Time specific origin points
for normal working day (commuters)

time of day

Two return periods (30yr, 100yr)

S City of York study area
200m resolution

Available for UK incl York

S York study area
5m resolution

Scenario Population Traffic Flood
Time
7am 7am population Run network analysis for Flood area for 60 minute mark
origins 7am traffic time of 3 hr flood simulation
7:30am 7:30am population Run network analysis for Flood area for 90 minute mark
' origins 7:30am traffic time of 3 hr flood simulation
8am 8am population Run network analysis for Flood area for 120 minute
origins 8am traffic time mark of 3 hr flood simulation
8:30am 8:30am population Run network analysis for Flood area for 150 minute mark
: origins 8:30am traffic time of 3 hr flood simulation
9am 9am population Run network analysis for Flood area for 180 minute mark
origins 9:00am traffic time of 3 hr flood simulation

Outputs * Route shapefile of each origin - destination journey
* Time and distance values for each route
Figure 7.3 Overview diagram of how the flood disruption scenarios are structured in this chapter

to achieve a semi-dynamic work flow, using the example of flood onset time 1.

7.23 Flood modelling

As described in Section 7.2.1, two flood magnitudes for a 1 hour summer storm were modelled, a
1in 30 year event and a 1 in 100 year event. These two return periods were chosen as both
storms would lead to disruption to the road network, with representation of a smaller but more
frequent event (1 in 30 year) and a larger but less frequent event (1 in 100 year). This is similar to
the EA’s pluvial flood maps which show a 1 in 30 and 1 in 200 year event (City of York Council,
2019). A full description of the Flowroute-i™ model and its functionality were given in Section
4.2.1. In summary, Flowroute —i™ models the depth and velocity of water in each cell during the
simulation and a raster for both depth and velocity across the study area is produced for each 15
minutes of simulation time. In the network model, the flood data are represented as barriers to
the network where travel through them is prevented. Therefore, the exact modelled flood depths
across the city were not required, only a vector file for each time step of the flood scenario which
contained the areas where the floodwater met the conditions to prevent travel of vehicles along

the road. Two conditions for ‘disruptive flooding’ were set, a depth of 30 cm or greater and an

140



Chapter 7

area of 125 m? or more. The depth threshold has been discussed previously (see Sections 3.1.4,
4.2.1 and 6.2.2) and 30 cm was used in this chapter as it is the depth considered no longer safe for
most cars (Pregnolato et al., 2017b). After this processing, the areas of flood water which would
be considered disruptive to car travel remained, one shapefile per 15-minute time step in the

three hour simulation, for both flood magnitudes.

The geographic area used in the flood modelling was based on the study area defined for the
SurfaceBuilder247 population model, with the same 20km buffer area for capturing catchment
drainage into the city. As there is the restriction on the number of barriers which can be included
in the network analysis tool (ESRI, 2020b), the area of the flood output used was clipped to the
area of the study area (the city of York as shown in Figure 4.1 and Figure 5.1). Including flooding
for the entirety of this square study area worked for the 1 in 30 year storm event; however, the
area included too many flood barriers for the 1 in 100 year event, due to more flooding from
greater rainfall. This meant the area of flooding included had to be adjusted in order for the
network analysis to run, excluding any flooding outside of the main A1237/A64 York Road
surrounding the city. This led to some differences in routing for origins outside of the main city

between the two flood scenarios. However, it did not affect the main part of the study area.

7.2.4 Time-specific origin data

A data library of time-specific origin data was created for commuters and school children which
could be applied to all flood scenarios. By creating time-specific origins for each of the time points
(07:00, 07:30, 08:00, 08:30 and 09:00), the temporal nature of population movement could be
captured. Chapter 6 resolved that the spatially weighted Monte Carlo technique did not work well
for commuters, therefore the alternative method of combining census origin-destination data
with the time profiles, based on the Labour Force Survey data, of travel patterns was used. To
create the time-specific origins, some of the principles of the spatially weighted Monte Carlo
simulation were replicated. The 2011 census provided the population weighted centroids of the
output areas from which commuters travelled to each workplace zone (WPZ) centroid, with the
associated number of people (Nomis (2020) data table WF02EW). This was the total number of
commuters over the entire day, so using the time profiles for the percentage of workers in travel
at a given time the proportion of people travelling at each time point was calculated for each
destination. This gave the total number travelling to the destination at a given time, however the
number per origin was required. A spatially weighted random selection process was created using
Python to select the number of people required from the output area origins to fulfil the travel
demand to each destination. Similar to the spatially weighted Monte Carlo process in Chapter 5,

the origins and their number of people were listed for each destination, and one person selected
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at a time and the origin OA code stored. This continued until the number of people for the
destination was selected and the relevant origins extracted as a shapefile. An origin could be
selected more than once, with those origins with the highest number of people given a higher
chance of selection. This spatially weighted random selection script was run for all destinations at
each of the five time points (07:00, 07:30, 08:00, 08:30 and 09:00) to generate five sets of origin

data points per destination which now had time-specific populations attached.

The time-specific origins for school children were created using the spatially weighted Monte
Carlo simulation, as this worked effectively in Chapter 5 and there are no alternative freely
available origin-destination data on travel to schools. The time profile data from the
SurfaceBuilder247 model has travel to school occurring between 08:00-09:00 hours, so only two
time points (08:00 and 08:30 hours) were modelled for school children. For primary schools, three
population groups from the SurfaceBuilder247 model are required; 0-4 years, 5-10 years and 11-
17 years. For each of the three children population groups, origins for each time point (08:00,

08:30 hours) were created.

7.2.5 Traffic data and network analysis

As outlined in Section 4.2.3, the ArcGIS network analysis ‘closest facility’ tool was the method
used for route analysis in this thesis. The script developed in Chapter 6 for accessing the server
version of the tool with historic traffic information (source HERE) was utilised again. Incorporating
traffic data addresses limitations affecting baseline scenario modelling in studies like Coles et al.,
(2017), who were unable to include traffic data in their study of flooding in York. In this thesis, the
traffic data are applied to the flood scenarios, however it will be an underestimation of travel
time as it does not account for the increased travel time due to congestion on surrounding roads

to the flood disruption.

7.2.6 Assessment of flood-related travel disruption

The methodological structure of the analysis for this chapter is set out in Figure 7.4. The origin,
destination and flood layer (if applicable) were used in the network analysis, producing shapefiles
of the routes taken between each origin-destination pair and the distance and travel time of the
route. This procedure was repeated for each destination across each time point (07:00-09:00
hours) in the scenario for commuters and school children. This process was repeated for each of

the 7 scenarios.
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Figure 7.4 The analysis workflow of Chapter 7. Black boxes indicate inputs and outputs, the blue

box optional flood data, the yellow boxes processes and the dashed arrows steps included for

flood scenario analysis.

The result of this analysis cycle were thousands of route shapefiles ready for comparison between

each scenario and the baseline, with the challenge to create readable graphics from the

complexity. To answer the main research question, whether flood onset has more of an effect on

travel disruption than flood magnitude, the total time lost at destinations for commuters and

school children across the city for each scenario was calculated. This measure is used as a value of

the cost caused by the flood event. Those origins where travel to the destination was not possible

were given a time value of 480 minutes per person, the value of missing a day’s work. The travel

time for each origin-destination journey was the chosen metric for comparison as time is a

common measure of journeys (Wei et al., 2018; Kilgarriff et al., 2019). Python scripts were written

to sum total time lost at work or school overall per destination and scenario. A Spearman’s Rank

correlation test was conducted to see if those destinations with the highest time lost at school or
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work were consistent across the scenarios. These data were then visualised to highlight spatial
patterns in the destinations affected by the largest loss of time. Maps of the roads used at each
time point in the scenarios were created by merging the relevant route shapefiles together and
adding up the number of people traversing a section of road. This value was then plotted as

proportional line symbols on the map.

7.3 Results

7.3.1 Modelled flood events

Figure 7.5 (1 in 30 year storm ) and Figure 7.6 (1 in 100 year storm) show the places where the
flood model predicted there would be floods greater than 30 cm deep and 125 m? in size. At 30
minutes into the scenario, there are only small areas where the flooding meets the disruption
criteria. From 60 minutes disruptive flooding is clearly visible on the map in both scenarios.
Overall, the 100 year flood has a greater flood area than the 30 year flood, but both show
disruptive flooding in the same locations across the city, providing confidence that these are the

places which are at risk of pluvial flooding.
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Figure 7.5. 1 in 30yr flood event modelled flood area (area shown is where the flood depth was at
least 0.3m with an area of 125m?, conditions required for there to be an impediment to road
travel). Contains public sector information licensed under the Open Government Licence v3.0.

Contains data which are copyright of Ambiental Risk Analytics, used with permission.
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Figure 7.6. 1 in 100yr flood event modelled flood area (area shown is where the flood depth was

at least 0.3m with an area of 125m?, conditions required for there to be an impediment to road

travel). Contains public sector information licensed under the Open Government Licence v3.0.

Contains data which are copyright of Ambiental Risk Analytics, used with permission.
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Whilst the area susceptible to flooding looks large on the flood maps (Figure 7.5 and Figure 7.6),
not all of this flooding is affecting the road network. Figure 7.7 represents the percentage of the
road network in the study area covered in disruptive flooding (at least 30 cm deep and 125 m?in
area), over the course of the three hour flood simulation. It is raining for the first hour of the
study (see Figure 4.2). Figure 7.7 reveals that only a small proportion of the road network is
directly affected by flooding, a maximum of 0.9% (9.6 km) for the 1 in 100 year magnitude and
0.6% (6.6 km) for the 1 in 30 year event. The 1 in 100 year storm event results in a greater
proportion of the road network being flooded, which is unsurprising as a greater area was flooded
overall (Figure 7.6). For both magnitudes, the amount of road affected by disruptive flooding
increases rapidly from 0.5 hours into the simulation before levelling off from 1.5 hours for the 1 in

30 year storm and 1 hour for the 1 in 100 year storm.
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Figure 7.7 Percentage of the road network in the study area which experiences disruptive
flooding (at least 0.3 m depth and 125 m? area). Contains data which are copyright of

Ambiental Risk Analytics, used with permission.

7.3.2 Modelled trips to school and work

The non-flood baseline trips to school and workplaces across York were mapped to see the spatial
distribution of people across the network at each time point. The travel profiles used in this
chapter (Section 7.2.4) specify the peak road usage is at 08:30 hours for commuters. This is

reflected in the maps for commuters (Figure 7.8 to Figure 7.15) with 08:30 hours having the most
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number of people on the roads and 07:00 hrs the least. Commuters have a more homogenous
spatial pattern in the usage of roads, with particularly high volumes of people on the ring road
and city centre roads. This is not surprising due to hierarchy function in the network analyst tool
(Section 4.2.3) simulating the behaviour of people travelling on major roads. The data for 09:00
hours is interesting as there is more spatial variation in road usage, reflecting that some have

finished going to work and others are travelling in later.

The data for school children only have two time points, as primary school children travel between
8-9 am, according to the underlying travel profiles (Figure 7.13 and Figure 7.14). The city centre
roads have the highest number of children using them. This likely reflects the fact more primary
schools are located in the city centre than on the outskirts and surrounding villages (see Figure
5.1). In contrast to the commuter data, the A road ring road is not utilised much at all. This
confirms that journeys to schools are shorter and more local than journeys to workplaces. Some
of the roads highlighted as high usage are ones leading up to schools, so it is therefore

unsurprising lots of children are using them.
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Figure 7.8 The number of commuters on the roads at 0700hrs in non-flood

baseline scenario. Contains public sector information licensed under the Open Government

Licence v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission.
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Figure 7.11 The number of commuters on the roads at 0830hrs in non-flood
baseline scenario. Contains public sector information licensed under the Open Government
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the Open Government Licence v3.0. Contains data which are copyright of Ambiental Risk

Analytics, used with permission.

Figure 7.14 The modelled number of primary school children on the roads at

0830hrs in non-flood baseline scenario. Contains public sector information licensed under

the Open Government Licence v3.0. Contains data which are copyright of Ambiental Risk
Analytics, used with permission.
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733 Travel disruption by scenario and population group

The first measure of travel disruption presented is the number of destinations that were
inaccessible from any origin at each time point across the scenario (Table 7.2). There is an
increase in the number of destinations where no origin could reach them between the 30yr and
100yr flood sizes, which is expected as there was a greater percentage of the road network
flooded (Figure 7.7). For the first time point where there is sufficient disruptive flooding (07:00
hours FT1, 08:00 hours FT2 and 09:00 hours FT3), the number of destinations where no origins
could travel to them is just over double the number in the 30yr equivalent scenarios. For other

time points in the scenarios the number of destinations is only slightly higher (1 or 2 more).

Changing the time of flood onset means the number of destinations inaccessible from any origin
shifts through the day, which is as expected. The number of destinations with no origins able to
travel to them is highest at 0700hrs in FT1. This is due to there being fewer origins where people
are travelling from at this time of day (as the number of commuters from the travel survey data is
lower), so whilst there is less disruptive flooding, there are fewer places which need to be flooded
to prevent travel from these contributing origins. For example, some workplace zones only have
one origin where travel is modelled from at 07:00 hours, therefore the risk of this one origin —
destination pair being split is higher. These results do not mean any travel to the destination is

prevented, as travel from every part of the city is not modelled, just from the origins sampled.

The data were investigated to understand the spatial location of these and the reasons for no
route being possible. There were three categories of reasons. Firstly, there was flooding close to
the destination preventing access to it from anywhere. This was the case for 6/8 of the
destinations in the 1 in 30 year scenarios and 7/21 of the destinations in the 1 in 100 year
scenarios. These destinations appeared frequently across all of the modelled scenarios. Secondly,
there were destinations where there were a small number of origins, often only one, assigned to
that destination at that time point and flooding close to the origin prevented travel to it. This was
the case for 2/8 of the destinations in the 1 in 30 year scenarios and 5/21 of the destinations in
the 1in 100 year scenarios. These destinations would only appear once or twice across the
scenarios. Finally, the remainder of the destinations were those which were only present in one
or two of the scenarios and appeared to be due to flooding blocking travel somewhere between

the origin and destination, as there was no obvious flood next to either.
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Table 7.2 The number of destinations where travel from the origins to the destination was not
possible for commuters. The percentages represent the data as a proportion of the 215
destinations. Contains public sector information licensed under the Open Government Licence

v3.0. Contains data which are copyright of Ambiental Risk Analytics, used with permission.

30yr 100yr
Time
(hrs) | Baseline | FloodTimel | FloodTime2 | FloodTime3 | FloodTimel | FloodTime2 | FloodTime3
0700 | O 7 (3.3%) 0 0 16 (7.4%) 0 0
0730 | O 6 (2.8%) 0 0 7 (3.3%) 0 0
0800 | O 5(2.3%) 4 (1.8%) 0 7 (3.3%) 10 (4.6%) 0
0830 | 0 5(2.3%) 5(2.3%) 0 6 (2.8%) 7 (3.3%) 0
0900 | O 5(2.3%) 6 (2.8%) 6 (2.8%) 7 (3.3%) 7 (3.3%) 12 (5.6%)

The average travel time of the origins to each destination were calculated for each scenario a
sample are presented in Figure 7.15 (commuters) and Figure 7.16 (school children). For
commuters across all destinations, there is a noticeable difference to the baseline average travel
times from the modelled flood time scenarios. Generally, in the 1 in 30 year scenarios, FT1 shows
an increase in average travel time, compared to the baseline, across the five time points, FT2 an
increase from 08:00 hours and FT3 an increase at 09:00 hours. The increase in travel time during
FT1 and FT2 generally converges at an average of 8:30am, indicating that despite greater area of
flooding the level of disruption remains unchanged. FT3 sees disruption from 09:00am where it
diverges from the baseline but does not reach the level of FT1 and FT2 in the 1 in 30 year

scenario.

For the 1 in 100 year event, broadly the same patterns are shown as for the 1 in 30 year scenario.
Average travel time at 07:00 hours are slightly higher than the baseline and the equivalent in the
30yr flood scenario. Again, data for FT2 diverges from the baseline with greater disruption seen
from 7:30am — 8:00am, but it does not reach the same level as the FT1 for all the examples. FT3
shows more divergence from the baseline earlier in the day (08:30 hours), with a greater increase
in average travel time than shown in the 30yr scenario. Whilst there are differences, there is not

always a large numerical difference in average travel time between the 30yr and 100yr, perhaps
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one or two minutes, for example Figure 7.15a and b. There are also destinations where there is

little or no disruption from flooding.

The data for school children is only measured at two time points, 08:00 and 08:30 hours, and
Figure 7.16 displays less variation between the scenarios than for commuters. This is likely due to
school children having shorter journeys to complete, reducing the chance of encountering an area
of floodwater. It may also indicate that schools are located in areas less at risk from pluvial
flooding. The examples for the 1 in 30 year magnitude show that there is a difference in average
travel time, however this is mostly less than 1 minute. The only exception is the school with the
largest catchment area where there is an increase of two minutes on the average travel time. As
the journeys to school are short, a small detour in the route will not have a large effect on the

time taken.

A comparison of the number of people using road segments at each time point for each scenario,
was created for both commuters and primary school children through maps. Figure 7.17 shows
the comparison at 08:30 hours for FT1 between the baseline, 30 year and 100 year flood events.
The figure highlights that there are effects of flooding, with sections of road which were used in
the baseline scenario no longer being used in the flood scenarios. For example, a part of the A
road in the north of the city and the road alongside York station in the centre (Leeman Road). This
demonstrates that there is a spatial variation to disruptive flooding for transport links and the

places where travellers are diverted to.

For primary school children, there are again noticeable spatial differences in the distribution of
travellers across the city (Figure 7.18). As with commuters, the road leading up to York station is
affected causing more use of other roads. This appears for both flood magnitudes. There are
some spatial changes in the 1 in 100 year magnitude event which are not apparent for the 1 in 30
year event. Firstly there is an area in the North East of the city at Dodsworth Avenue which had
previously been a well-used road and does not have anybody using it during the 1 in 100 year
storm event. This indicates that there is flooding along this road which prevents travel. Secondly,
as was seen in the commuter data, the A road in the North East corner of the ring road has no
travel along it indicating a flood barrier, and this is seen for both flood magnitudes. For the 1 in
100 year event there are a greater number of people using rural roads in the North East of the
study area which indicate there is flooding which is preventing travel along other roads, leading to

detours.
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By visually examining Figure 7.17 and Figure 7.18, roads which were used frequently by travellers

in the baseline non-flood scenario, but not in the flood scenarios, were identified. These could be

indicators of critical roads for each population group, as the blockage of these well-used roads

would cause more traffic to use other roads. Figure 7.19 highlights such roads in York and

whether they were important for one or both population groups.
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Figure 7.19 Potential critical roads in York based on route results. Red are critical for commuters

and school children, purple for school children only and orange for commuters only. Contains

public sector information licensed under the Open Government Licence v3.0.
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To summarise the travel time data for the whole city and answer the aim of the thesis, the time
lost in each flood scenario at each destination were aggregated. Figure 7.20 and Figure 7.21 show
that commuters have the higher time lost than school children, which is expected as the journeys
to work are longer and there are more commuters than school children so more origins-
destination pairs. For both commuters and school children, there is an increase in the amount of
time lost at work or school in every scenario. The values for a 1 in 100 year event are greater than
a 1in 30 year event across all scenarios. The time of flood onset does affect the time lost at work
or school, most noticeably the difference between FT1 and FT3, which is greater than the
difference between flood magnitudes. This indicates that flood onset time is having a larger effect

than flood magnitude.
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Figure 7.20 Total time lost at all destinations for commuters in each scenario. Contains public
sector information licensed under the Open Government Licence v3.0. Contains data which are

copyright of Ambiental Risk Analytics, used with permission.
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Figure 7.21 Total time lost at all destinations for primary school children in each scenario. Contains
public sector information licensed under the Open Government Licence v3.0. Contains data which

are copyright of Ambiental Risk Analytics, used with permission.

Finally, it was investigated if the same destinations across all scenarios were experiencing the
greatest travel disruption to them, to see if those most susceptible to disruption could be
identified. Firstly for commuters, Table 7.3 presents the correlation coefficients from the
Spearman’s rank correlation tests and these show that the destination time lost at destinations
for the FT1 and FT2 scenarios are statistically similar to each other, for both magnitudes of flood,
with high to medium-high agreement. The statistical significance of the correlations is <0.001. FT3
has a lower level of agreement, however still shows correlation to the other flood scenarios, with
greatest agreement between FT3 1 in 30 year and FT3 1 in 100 year. Overall, this shows that there
is consistency between which destinations have the most time lost at them, therefore are the

most susceptible, for FT1 and FT2, FT3 has a different pattern in the most affected destinations.
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Table 7.3 Correlation coefficients for commuter travel data for 215 destinations. The columns are
labelled as Flood Time (FT), the flood time of onset (1, 2 or 3) and the flood magnitude (30 year or
100 year). Contains public sector information licensed under the Open Government Licence v3.0.

Contains data which are copyright of Ambiental Risk Analytics, used with permission.

FT1_30yr FT2_30yr FT3_30yr FT1_100yr |FT2_100yr |FT3_100yr
FT1_30yr .963 466 .841 .852 .499
FT2_30yr 521 .813 .839 .539
FT3_30yr 415 402 712
FT1_100yr .910 465
FT2_100yr .520
FT3_100yr

To view travel disruption by destination spatially, workplace zone centroids were visualised,
setting their symbol sizes to be proportional to time lost at work from flood-related travel
disruption. As the Spearman’s Rank test showed strong correlation between travel disruption for
scenarios relating FT1 and FT2 but weaker correlation between these four scenarios and those for
FT3, an example of a FT3 scenario is presented here for comparison with a scenario from FT1/FT2.
Figure 7.22 demonstrates that there is spatial clustering of the destinations with most time lost at
them, around York station in the western centre of the city, with a few smaller clusters on the
Northern and Western parts of the city. This appeared to be related to flood water accumulating
in these areas. For FT3 (Figure 7.23) there is a more homogenous spread of disruption but with a

cluster again around York station clearly defined.
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For school children, the Spearman’s Rank showed a broadly similar pattern of correlation values,
with more agreement between FT1 and FT2 and FT3 not statistically similar to the other data sets.
However, there is a greater range of correlation coefficients across the scenarios for commuters.
For example, the top row shows that scenario FT1 1 in 30 year is highly correlated to FT2 1 in
30yr, but more weakly agree to FT1 1 in 100 year scenario. FT3, 1 in 30 year scenario has the
lowest correlation coefficients, with only one scenario reaching the minimum significance
threshold. For FT1 and FT2, the data are significant to >0.001 whilst FT3, particularly for the 30
year magnitude, is not significant. This shows that there is greater variation across the scenarios
in terms of which destinations are disrupted more than for commuters. In FT1 and FT2 (Figure
7.24), those schools with the greatest increase in additional travel time were those around the
station in the central and north western parts of the city, similar to the workplace zones. Again,
for FT3 (Figure 7.25), the data are more homogenous with a small spatial clustering around the
station and the destination with the largest additional travel increase central southern part of the

city.

Table 7.4 Spearman’s rank Correlation coefficients for school travel data. Contains public sector
information licensed under the Open Government Licence v3.0. Contains data which are

copyright of Ambiental Risk Analytics, used with permission.

FT1_30yr FT2_30yr FT3_30yr FT1_100yr |FT2_100yr |FT3_100yr
FT1_30yr .966 172 .574 .758 .358
FT2_30yr .199 .555 .749 332
FT3_30yr .083 .165 .387
FT1_100yr .852 434
FT2_100yr 444
FT3_100yr
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Figure 7.24 Total time lost at school due to travel disruption per school for FT1 and FT2.Contains
public sector information licensed under the Open Government Licence v3.0. Contains data which are copyright of

Ambiental Risk Analytics, used with permission.
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7.4 Discussion

7.4.1 Assessment of the results in achieving the chapter research questions

The aim of this chapter was to assess if the time of pluvial flood onset is more important than
flood magnitude for disrupting commuter and school travel in York. Three objectives were posed
in order to achieve this aim, and each are discussed here in the context of the findings of this

chapter.

1. Analyse the extent to which pluvial flood magnitude and flood onset time affect journey

times, due to road network disruption.

The flood model results show that a greater magnitude storm leads to a larger area of the city
being inundated (Figure 7.6) and subsequently a greater amount of the road network experienced
disruptive flooding (Figure 7.7). This is expected as more rainfall logically leads to more flooding.
However, the translation of this increase in flood water to disruption of the origin-destination
journeys is perhaps not as large as expected. For some destinations, there is a difference in the
average increase in travel time of a couple of minutes and for some there is no substantial change
between magnitude scenarios (Figure 7.15 and Figure 7.16). There was also agreement in which
destinations had the largest increases in time lost at destinations for both flood magnitudes in the
spearman’s rank test (Table 7.3 and Table 7.4). This provides evidence that whilst the size of flood
area may change, the same areas are still affected by flooding and the increases in travel time can

be slight or the same.

The modelled changes in time of onset were relatively small, with all three time of onsets within a
2-hour window. However, there is a noticeable difference in the average travel time to
destinations and time lost at destinations. Figure 7.20 and Figure 7.21 demonstrate that there is a
clear reduction in the time lost at destinations between FT1 and FT3, most likely due to more
travellers already having reached their destination by the time there is substantial disruptive
flooding in FT3. Between FT1 and FT2, there is a relatively small difference in time lost for both
flood magnitudes, indicating the flood onset at 06:00 (FT1) and 07:00 (FT2) are similarly disruptive
and are both affecting the peak of travellers. When observing changes at the destination level,
the Spearman’s rank test highlighted the data for FT3 as being weakly correlated with the other
scenario outputs, whilst the other scenarios had strong agreement. This demonstrates that the
time of day when the flood occurs at seems to have a larger effect that the flood magnitude,

supporting the hypothesis.
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The temporal properties of risk are often neglected in research (Aubrecht et al., 2013a; Freire &
Aubrecht, 2012) despite the time a hazard begins known to be a key factor in its impacts and time
dimensions being ‘excessively important’ in transport systems (Reggiani et al., 2015). The analysis
presented in this chapter has highlighted the importance of time when considering risk and has
introduced a semi-dynamic method, which differs from other studies of network disruption due
to flooding. For example, Kasmalkar et al., (n.d.) used a generic 1-hour window within peak
morning commute hours to test the impact of flooding on travel. However, this was not expanded
to include more time periods or shift the time of flood onset, like the analysis in this study.
Another example is Li et al., (2018) who calculated the delay to journeys from flood events in
peak morning travel time, again without examining the effect of changing the time of flood onset
around the peak travel period. Therefore, systematically assessing the impact of changing timing

of hazard onset represents a novel contribution of the work.

2. Assess whether commuter's or school children's travel to workplace or school is affected

the most.

Most studies on travel disruption consider transport networks from an engineering point of view,
focussing on network connectivity, rather than measuring the impact of road closures on the
population which use them (Pfurtscheller & Genovese, 2019). The focus in this chapter on who is
travelling, linked to a purpose for the journey (school or work), therefore presents a method
which does look at the effect of road closures on the populations which use them. Examining the
results presented in this chapter, it seems commuters are more affected than school children, for
example the time lost at workplaces is greater than the time lost at schools. Whilst this will
partially be explained by there being more commuter journeys happening, the journeys taken to
work are also longer than those to school (Figure 7.15 has greater average travel times than
Figure 7.16). Therefore, this increases the likelihood of disruption. Debionne et al., (2016) found
in their study not all commuters are exposed equally, with those with longer journeys more
exposed, similar to the findings in this chapter comparing school and work journeys. Risk theory
states that children are more vulnerable than adults to natural hazards (Civil Contingencies
Secretariat, 2008). However, in the case of the vulnerability of those in travel to their place of
work or school, primary school children, and the adults who travel with them, are less vulnerable
partly due to their shorter exposure time on the road network and the location of flooding in the
scenarios tested. Therefore, this indicates that more focus could be placed on mitigating the

effects for businesses and commuters to future pluvial flood events.

A novel aspect of this research is the comparison between population groups on the impact of

flooding on road travel. Other work, including Debionne et al. (2016) examined travel disruption
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from flooding among commuters in the Gard Region, France; Pregnolato et al., (2017a) examined
flood disruption among commuters in Newcastle and Coles et al., (2017) access to emergency
services for care homes, but there are few studies that the author is aware of which model the
differences in flood-related travel disruption across more than one population group. One similar
study is Kunwar et al., (2014), who applied spatiotemporal population data to an activity-based
agent model to investigate total evacuation of ten UK cities. They used gridded population data
from the Global Urban Rural Mapping Project, version 1 (GRUMPv1) as population data for their
agent model, and also included some socioeconomic data on the population to parameterise
agent behaviour, to allow investigation of effects on some groups of the population (men,
women, workers, students etc.). They found men are more likely to be exposed to flood water
while travelling due to their commuting patterns which tended to consist of longer journeys.
However, they have not looked at the routes taken by each group or developed the comparison

between groups in the same way the analysis in this chapter has done.

3. Identify schools and workplaces which are most susceptible to disruption from flooding and

the effect pluvial flood magnitude and pluvial flood onset time has on identifying them.

Under the modelled flood scenarios, travel was possible from at least some of the assigned origins
to all schools, but some workplace zones became completely inaccessible from their assigned
origins. This provides evidence that workplaces are affected more than schools. Upon comparing
the identified destinations to the flood area, it became apparent most of the destinations (6/8)
with no travel to them during a 1 in 30 year flood scenario were due to flooding at the destination
(Table 7.2). For the 1 in 100 year event, a smaller proportion of destinations had flooding which
blocked travel to them (7/21) meaning there were more cases where the roads outside the origin
points are flooded, or somewhere on the route between the origin and destination experiences
flooding. These recurring destinations being cut off in the scenarios indicate these are more

susceptible to flooding.

Despite changes in the flood magnitude and time of flood onset, the same destinations were
consistently among those experiencing the most disruption in travel to them. As Figure 7.22 and
Figure 7.23 highlight, there are spatial patterns for the destinations most affected by flooding,
which differ based on the time of day the flood begins. This evidence indicates that time of flood
onset is important, and it is affecting the level of disruption more than changes of magnitude. The
time of flood onset is important as it relates to the number of people who are in travel, and these
results support the claims of risk literature that time of day is an important consideration (Section
2.2). In this research, when a flood event happens even an hour later in the day there is a

noticeable effect. To explore this observation further, a Spearman’s rank test was conducted to
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see if those destinations with the most time lost at them were consistent across the scenarios
tested. It was found that there was statistical agreement in which destinations were most
affected by the flood scenario between flood magnitudes, when comparing the results for the
equivalent time of flood onset. This is evidence that the same destinations are most affected, i.e.
they are most susceptible to disruption, and are identified even when changing the size of the
flood magnitude and time of flood onset. Several studies (Li et al., 2018; Kilgarriff et al., 2019;
Pregnolato et al., 2017a) have modelled travel disruption from flooding, but none of these have
looked at how such disruption varies across different work and school destinations. The work in
this chapter is therefore the first to examine the susceptibility of workplaces or places of

education to hazard-related travel disruption, as far as the author is aware.

7.4.2 Implications for flood management in York and England

There are previous instances of pluvial flooding in York causing disruption to travel. For example,
the City of York Surface Water Management Plan (City of York Council, 2012) states that flooding
on 27" April 2012 at the A19/A1237 roundabout caused ‘major disruption’ to the A1237 ring road
around York from 07:00-14:00 adding 1.5 to 2 hours to journey times. Given such road sections
therefore have a history of flooding, the modelled flooding on the A road causing lengthy detours
is therefore not unreasonable. Those areas which appear most susceptible to flooding in the
scenarios modelled are similar to the ‘flood hotspots’ highlighted in Coles et al., (2017), namely
the Western part of the city around Acomb and the station, providing confidence to the findings.
Based on these findings, the workplace and school destinations which are highlighted as being
most affected by flooding could therefore be prioritised by local stakeholders for further

investigation of the ingress routes to them.

The semi-dynamic method that has been developed could also be applied to other flood
scenarios, times of day, week or year to expand the knowledge base for York. The results have
shown that flood events do affect travel to destinations, and overall thousands of hours were lost
at work or school. This could be taken forward to estimate the monetary cost to businesses and
commuters, as undertaken by Wei et al., (2018) and Kilgarriff et al., (2019), to further understand
the cost implications to the local economy of disruption to road networks from flooding. Whilst
the data are modelled rather than representative of a real flood event, so cannot be taken
prescriptively, the principles could be applied to decision making in York. If better real-time flood

data or population travel data were available, these could be incorporated into the workflow.
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743 Application to risk theory

The risk theory presented in Chapter 2 states human exposure to flood events varies throughout
the day as people undertake their daily routines (Debionne et al., 2016). The results of this
chapter’s research support this assertion, as it has been shown that the time of flood onset
affects the time lost at work or school and which destinations are affected the most. This work is
a proof of concept and has its assumptions and limitations, but it does make a case for
considering the population in travel related to the time of flood onset in risk studies. It has been
shown to have a slightly greater effect than hazard magnitude, so should be included in flood risk
analysis. As there is a lack of short-term forecasting models for pluvial flash flood events (Li et al.,
2018), using the framework set out in this chapter could allow scenarios to be tested to identify at
risk locations. This would enable the introduction of suitable preparation steps to raise public
awareness and reduce disruption. A vulnerable group, primary school children, have been
considered as they may require more assistance or rescue during a flood event (Arrighi et al.,
2019). However, in these results school children are less affected than commuters, probably due
to the short journeys from home to school, so may not require much assistance in a flood event.
In a larger area with rural catchments this would likely not be the case as longer journeys increase
exposure. Being able to travel around urban areas is not just important for journeys to work and
school, but also required for emergency vehicles to reach communities fast (Arrighi et al., 2019).
An extension of this research would be to include travel to and from hospitals and the access of
emergency services to key sites such as schools. Further research steps are discussed in Section

8.5.

7.4.4 Limitations and assumptions

There are several assumptions and limitations to the work, which will also be discussed within the
context of the whole thesis in Section 8.4.3. Beyond using the specific time of day historic traffic
data, travel behaviour and congestion during the flood events are not included in the model,
although both would have an effect on travel times. This limitation is present in other similar
studies (for example Arrighi et al., (2019), Versini et al., (2010)). This is due to a lack of historic
traffic data during pluvial flood events in York, and more widely in England. It is also assumed that
travellers take the least cost path between locations by using Dijkstra’s algorithm, another
common assumption in origin-destination studies (Li et al., 2018). Therefore, the travel times
presented here are likely to be an underestimation of the disruption caused by a flood event.
However, the relative changes between scenarios do provide a useful measure of scale of effect
of the changes in flood magnitude and flood onset time. The measure for disruption used in this

chapter is time lost at work, which does not directly link to economic activity, which does limit the
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applicability of the findings to businesses. Quantifying the disruption through a generalised cost
function, as Ford et al., (2015a), Davidson & Davidson (n.d.) and Kilgarriff (2019) have done,
would increase the applicability to businesses and would be a logical step to advance this
framework. Finally, the trips measured in this chapter were single purpose journeys when this is
not the case for many travellers. The primary school children would not be travelling to school by
car on their own, and their parents may head onwards to work after dropping the children at
school. So, the focus on single purpose trips is a limitation. A model which could account for

multi-purpose journeys, for example an ABM, could overcome this issue.

7.45 Unique contributions

There are several novel contributions presented in this chapter:

It is an example of one the very few assessments of the importance of hazard magnitude

versus timing of onset as determinants of disruption to travellers

e Atransferable and scalable methodology has been developed for the assessment of

destination susceptibility to travel disruption, rather than flood risk at the site.

e One of very few studies to disaggregate hazard impact on travellers by population sub-

group, rather than for population as a whole

e  Whilst the method of comparing travel times under hazard scenarios to a business-as-
usual scenario is similar to most other studies looking at this issue, for example Mossoux
et al., (2019), Wei et al., (2018), Pfurtscheller and Genovese (2019)), the inclusion of
historic traffic data and time-specific origin points in the network analysis extends the

modelling framework of these earlier studies.

7.5 Conclusion

To conclude, this chapter has presented the analysis from a proof-of-concept methodology,
allowing temporally specific analysis of travel disruption to flood events. It has been shown that
within the scenarios studied, the time of day of flood onset is as, if not more, important than the
magnitude of the flood event. The differences in travel disruption to workplaces and schools has
also been explored, and destinations which were most affected by time lost at them when
journeys were delayed or prevented spatially identified. Chapter 8 will discuss the findings from

this chapter and Chapters 5 and 6 to draw together the main contributions of this thesis.
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Chapter 8 Discussion

8.1 Overview

The aim of this thesis was to investigate how daily variation in the population in travel and pluvial
flood magnitude interact to cause spatial and temporal variation in disruption to journey times
and time spent at destinations across an urban area. Chapter 5 developed a framework for
combining spatiotemporal gridded population data with GIS network analysis, with the case study
of primary school children in York. The developed framework was successful in creating
spatiotemporal origin-destination flow data for primary school children in York and improving the
representation of the population in travel. Chapter 6 tested this framework by assessing the
differences between using census origin-destination data and spatiotemporal population data to
measure the impact of a pluvial flood scenario on commuter travel in York. It was found that the
spatially weighted Monte Carlo process produced significantly different origin-destination pairs to
those recorded in the census. Finally, Chapter 7 took elements from Chapters 5 and 6 in order to
assess if the time of pluvial flood onset is more important than flood magnitude for disrupting
commuter and school travel in York. The results indicated that time of flood onset is more
important than flood magnitude in sudden onset pluvial flood events. There has been little
previous research of the relative importance of changing population exposure versus changes in
flood magnitude on travel disruption from flooding. The literature presented in Chapter 2
highlights the importance of time of hazard onset, however there are few empirical studies

looking at this. Therefore, this thesis has contributed to risk analysis knowledge.

This chapter will discuss the key contributions of this research within the specific context of the
case study and their application to other geographical areas, risk theory and flood policy (Sections
8.2 and 8.3). There will also be a reflection on the limitations and uncertainties of this analysis
(Section 8.4), recommendations for further research (Section 8.5) and recommendations for

policy makers (Section 8.6).

8.2 Key Contributions

The key contributions of this work have been identified from the analysis conducted in Chapters
5,6 and 7. Arguably, the most significant contributions are those included in Section 8.2.2, which
pertain to the flood travel disruption analysis in Chapter 7. This section will state each
contribution and present the evidence for them in relation to other studies and wider risk

literature.
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8.2.1 Methodological contributions

Reconciling administrative and census data from different sources and years can cause data

issues when parameterising the SurfaceBuilder247 model.

In Chapter 5, the parameterisation of the SurfaceBuilder247 input data required several
iterations, as after the first model run it was discovered there were not enough children in the
origin data set to meet the demand at the school destinations (Figure 5.6). Such inconsistencies
between input origin and destination data might not be apparent at national scale. However, for
the York case study, initially most schools did not have enough pupils and only through close
examination of the output grid were schools which were ‘missing’ due to there being no
population for them to select identified. This had not previously been highlighted in Martin et al.’s
(2015) paper introducing the modelling framework. One likely cause for this discrepancy is the
mismatch between the census data (the origin data source) and the school administrative data
(the destination data source). A refinement in school destination data set choice and adjusting the
percentage splits in the quantity of each population sub-group which the destinations required,

was enough to rectify the discrepancy between origin and destination data sets.

The development of a spatially weighted Monte Carlo simulation tool for modelling origin-

destination flows through time.

This thesis’ main contribution to spatiotemporal population modelling has been the extension of
the framework proposed by Martin et al., (2015), and utilised by Smith et al., (2015) and Renner
et al., (2018), to incorporate origin-destination flows. In these previous papers the population in
travel were weighted across the study area through the use of a background layer, which denotes
where roads are and their relative busyness for a time of day (Section 4.2.2). Martin et al., (2015)
state that their framework makes no attempt to directly estimate movements between locations,
however this is critical for the purposes of this thesis, assessing the impact of flooding on travel to
places. Batista e Silva et al., (2018) state that multi-temporal population grids from the ENACT
project, similar to the ones created by the SurfaceBuilder247 model, are useful for assessing
exposure to natural hazards and planning and modelling transport. This assertion was therefore
tested in Chapters 5 and 6 through the development of a tool for simulating origin-destination
flows, given an attending population count for a destination, a catchment polygon for the

destination and a gridded population surface.

The aim of Chapter 5 was to develop a method for combining gridded spatiotemporal population
data, created using the framework developed by Martin et al., (2015), with GIS network analysis.

This required converting the gridded data to a point data set in order to represent spatiotemporal

174



Chapter 8

flow data, a challenging task to keep the spatiotemporal dynamic of the population data and to
convert a raster grid to specific vector points of origins. This was achieved in Chapter 5 for school
children through the creation of a spatially weighted Monte Carlo analysis code, the application
specification for which was designed by the author, but the script written by Nieves (2018 pers.
comm.), and then applied by the author to the problem scenario. As far as the author is aware,
the conversion to spatiotemporal origin-destination flow data in this manner is a novel
contribution to the spatiotemporal representation of the population in travel. This conversion
was successful as primary school destinations have a well-defined catchment area from which a
probability surface could be constructed from. When comparing the representation of the
population ‘in travel’ in Figure 5.8, the output from SurfaceBuilder247 shows a different
distribution as the in travel population is weighted across the whole study network in York, for
example along the whole outer A road. In contrast, the result of the spatiotemporal flow data and
network analysis shows more travel on the smaller local roads and a smaller proportion on the A
roads. This is a better reflection of where primary school children in travel are, as most of the
distances primary school pupils are travelling are short journeys inside York. The average distance
for primary-aged children to school is 1.6 miles (Easton & Ferrari, 2015), so they are unlikely to be
distributed as widely as SurfaceBuilder24/7 shows. Therefore, for the purposes of explicitly
studying the effect of floods on those in travel, this conversion of the data and subsequent
network analysis is beneficial. The success of this conversion is largely due to primary school
children being a ‘data rich’ population group (Harland & Stillwell, 2010), meaning spatiotemporal

modelling is easier.

This tool was extended from simple to multiple-band circular catchments when applying the
spatially weighted Monte Carlo process to commuters (Chapter 6). The catchment size for
workplace zone destinations were based on travel to work data from the census and, unlike
schools, this was a series of bands containing weights based on the percentage of commuters
who travelled from each distance band. This led to a weighted surface with more probability
gradations for the spatially weighted Monte Carlo procedure than was created for school
children. This selection method resulted in more commuters chosen from cells closer to the
destination than was reflected in the census origin-destination data, with the two data sets
proving statistically different (Section 6.3.1). With the current configuration for creating weighted
surfaces, the approach of combining census origin-destination pairs with travel survey data
provides a more realistic spatial distribution of origins for a destination (as applied in Chapter 7).
Other studies have taken this approach. Crols and Malleson (2019) combined census data with

travel survey data to define the commuting behaviour of the agents in their model, whilst Martin
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et al., (2018) used the data for the number of persons travelling from each output area of

residence to their primary employment WPZ to calculate aggregate flows.

Although there are developments which could be made to the approach presented in Chapters 5
and 6, the tool for simulating origin-destination flows when only catchment information is known
would be useful to analysis beyond the specific research problem of this thesis. Whilst detailed
origin-destination data is available for some groups of the population, often it cannot be released
to preserve confidentiality. For example, the home origin locations of those using healthcare
facilities, like the Demographic and Health Surveys which release distance bands for travel to
healthcare facilities, but not origin-destination data (USAID, 2020). Therefore, this tool could be

useful for these instances where network analysis is required but the origin data is not available.

8.2.2 Flood travel disruption results

The total amount of road flooded in an urban area does not need to be large for substantial

disruption to occur.

Through the analysis conducted in Chapters 6 and 7, it was found that the spatial placement of
floodwater is important and even small areas of flooding can have a substantial effect. In York,
only a very small percentage of road area was flooded with disruptive flooding i.e. at least 30cm
deep and 125m? in area (0.9% max for 100 year and 0.6% for 1 in 30 year in Figure 7.7). However,
disruption was seen across the city. This has been found in other studies of the effect on flooding
on road travel. For example, Sohn (2006) found that disruption to a few road links could lead to
whole counties in Maryland being cut off from the rest of the state in the 1 in 100 year flood
scenario they tested. It is also widely understood that the risk is not restricted to the geographical
area directly impacted by the flood hazard as the effects are felt further afield across the road

network (Kasmalkar et al., n.d.).

As roads are built to run at near maximum capacity to minimise costs, this means there is little
redundancy in the system to cope with disruptions (Mossoux et al., 2019). Therefore, a small
amount of road which flooded can have a much larger effect than disrupting travel just to that
section. In Chapter 6, the results show the example of no access into the one-way system in the
historic city centre due to flooding located at the junction of Goodramgate and the A1036, leading
to a cluster of workplace destinations where no commuters could reach them. In a different
study, Rowley et al., (2016) identified that in Worcestershire there are various pinch points,
mostly bridges crossing the River Severn, which act as key links to cross-county movement. There
are only two bridges across the River Severn in Worcester, one of which is prone to flooding. The

nearest other bridge at Upton upon Severn is also often flooded, meaning travel across the

176



Chapter 8

county can be impacted from just a small proportion of road being flooded. At a more localised
scale, Ellis & Viavatenne (2014) studied a residential area of Coventry to identify ‘critical drainage
hotspots’. They found one key pinch point was a flooded area which obstructed a major
exit/entrance from a residential site. This is a similar phenomenon to the observed flooding in
York, and fits with the nature of pluvial flooding being smaller areas of water than fluvial flooding.
These examples in other studies and the results of the analysis in this thesis show that there is a
need for tools to enable risk managers to identify sites where small amounts of flooding can cause
larger issues. The framework provided in Chapter 7 could be used for this purpose and to allow
for retrofitting measures to reduce flooding (Houston et al., 2011). The pinch points in a road
network system may be the ‘critical links” which enable travel to destinations for groups of the

population, and the idea of ‘critical links’ is discussed further later in this section.

Destination susceptibility to disruption from flooding can be assessed based on workforce or

pupil travel, not just workplace or school site characteristics.

Chapters 6 and 7 provide evidence that despite changes in the flood magnitude and time of flood
onset, the same destinations were consistently among those experiencing the most disruption.
These destinations can therefore be considered to be the most susceptible to travel disruption
from pluvial flooding. In Chapter 6, the network travel time for the two origin datasets to their
destinations were compared during a flood scenario. It was found that the five destinations with
the highest travel times were the same between the two datasets (Figure 6.8). This is evidence
that those destinations most affected by disruption to travel will become apparent even with

differences in the origin data sets.

Examining the results spatially, there did appear to be clusters of destinations for schools and
workplaces where travel to them was most disrupted, for example in the West of city around York
station (Figure 7.22 and Figure 7.25). Investigating the reasons behind the observation that there
was no travel from origins to some workplace destinations, it became apparent most of the
destinations (6/8) with no travel to them during a 1 in 30 year flood were due to flooding at the
destination (Table 7.2). For the 1 in 100 year event, fewer destinations had flooding where travel
to them was blocked (7/21) meaning there were more cases where the roads outside the origin
points are flooded, or somewhere on the route between is flooded, which prevents travel. This
provides some evidence that there are some destinations which could be considered particularly
susceptible to disruption from flooding and will be apparent regardless of change in flood
magnitude or onset. Similar data could be generated for other sites and destinations to provide

the same information to stakeholders for flood preparation measures.
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Many studies (for example Li et al., 2018; Arrighi et al., 2019; Pregnolato et al., 2016a; Freiria et
al., 2015) have modelled travel disruption from flooding; however, none of these have looked at
how such disruption varies across different destinations which the same groups of people attend
e.g. workplaces and schools. The work presented in Chapters 6 and 7 is therefore believed to be
the first to do this. Commercial flood risk assessments required for planning developments assess
the access directly onto the site (Emanuelsson et al., 2014; Ambiental Environmental Assessment,
2020), and national flood maps do not show comparisons of how the effects of flooding vary
between places. Therefore, the ideas and framework presented in Chapter 7 present a novel way
for viewing flood risk, from the perspective of the destination’s susceptibility to disruption from

flooding on the road network.

To further explore the observation that the same destinations appeared most susceptible to
disruption, a Spearman’s rank test was conducted to see if those destinations with greatest
increases in travel times to them were consistent across the flood magnitude and onset time
scenarios tested. It was found that there was statistical agreement in which destinations were
most affected by the flood scenario between flood magnitudes when comparing the results for
the equivalent time of flood onset (Table 7.3 and Table 7.4). This is evidence that the same
destinations are most affected, i.e. they are most susceptible, and are identified even when
changing the size of the flood magnitude and time of flood onset. The exception were the results
for FT3 for both flood magnitudes as there was not statistical agreement between these data and
the rest of the scenarios, demonstrating that different destinations were more affected. This was
seen for both commuters and primary school children, but there were stronger correlations for
commuters. These results provide evidence that those destinations most susceptible to the
effects of pluvial flooding on travellers will likely be identified whichever flood magnitude is
chosen, however changes in the time of flood in relation to commuting patterns can have a
bearing on these results. In the context of the risk equation highlighted in Chapter 2 (Equation
2.5) space and time are important for risk. The spatial location is important as flood-prone areas
consistently show flooding across these scenarios, leading to the same destinations experiencing
difficulty in access to them. Time is also shown to be important here as destinations are flagged as
most vulnerable to disruption do change, likely due to later onset of rainfall leading to some

destinations not being impacted as much as more of their travellers had already reached them.

Floods disrupt the travel of York’s commuters more than travel by its primary school children.

The risk to travellers in flooding situations is an area where an increasing amount of research has
been conducted (Liu et al., 2014a), as a high number of fatalities are drivers in their cars and road

closures lead to socioeconomic disruption. A novel aspect of this thesis is the comparison
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between population groups on the impact of flooding on road travel, made possible through the
use of spatiotemporal population data. Other work, including Debionne et al. (2016), Pregnolato
et al., (2017a), Nyberg and Johansson (2013), Jenelius and Mattson (2012), Rodriguez-Nufiez et
al., (2014), Sohn (2006), Taylor et al., (2006); Chen et al., (2015) and Balijepalli & Oppong, (2014)
and Coles et al., (2017) examine the disruption to the population as a whole or one particular
group (for example the elderly). However, there are few examples of studies, that the author is
aware of, which model the differences in flood-related travel disruption across more than one
population group. One similar study is Kunwar et al., (2014) who applied spatiotemporal
population data to an activity-based agent model to investigate total evacuation of ten UK cities
and could model the effects on some groups of the population (men, women, workers, students
etc.). However, they have not looked at the routes taken by each group or developed the

comparison between groups in the same way the analysis in this thesis has.

The evidence from Chapter 7 is that in the scenarios undertaken, commuters were more affected
than primary school children in their journeys to their destination. Firstly, there were no school
destinations across any of the scenarios tested that became completely unreachable for the
origins linked to them. For workplace destinations, as discussed in the contribution above, there
were destinations that became unreachable for all commuters across both flood magnitudes and
the three times of flood onset (Table 7.2). This provides initial evidence that access to schools was
maintained whilst it was not fully maintained to all workplace destinations. In terms of the
journey times of those successful origin-destination journeys, Figure 7.15 shows that commuters
travelling to destinations have a larger increase in journey times than school children (Figure 7.16)
from the same flood event. This is likely due to the shorter journeys that children take to school
meaning a slight detour does not add much time, but it also shows that commuters may be
coming across floods which cause larger diversions on their routes. Debionne et al., (2016) found
in their study that commuters with longer journeys had the greatest risk of being exposed to
floodwater, supporting the findings here that the population group with the longest journeys will
have the most risk and disruption. The location of some workplaces may also be in areas where
there is more likely to be flooding blocking the road leading up to the workplace destination

point.

Risk theory states that children are more vulnerable than adults (Civil Contingencies Secretariat,
2008), however, in the case of the vulnerability of those in travel to their place of work or school,
primary school children are less vulnerable partly due to their shorter exposure time on the road
network and the location of flooding in the scenarios tested. Therefore, this indicates that more
focus could be placed on mitigating the effects for businesses and commuters to future pluvial

flood events. Business value of time savings can be a significant part of the benefits of transport
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schemes (Department for Transport, n.d.), so the fact they are more affected than schools could
mean that reducing time lost at work through flood prevention measures could have an economic
benefit to local businesses. These results cannot be projected to other specific population groups
without knowing their journeys around York. However, the principle that those with longer

journeys are more likely to encounter pluvial flooding in a storm event is sound.

Critical links can be defined locally by examining which closures lead to the most disruption to

the destinations of specific population groups.

Most studies on travel disruption consider transport networks from an engineering point of view,
focussing on network connectivity, rather than measuring the impact of road closures on the
population which use them (Pfurtscheller & Genovese, 2019). This is evidenced in the definitions
and methods for identifying critical road links in a road network. As discussed in Section 3.3.3,
other research papers which investigate critical links look at the overall connectivity of the
network to determine which links are critical, for example Jenelius (2010a); Jenelius & Mattsson
(2012); Rodriguez-Nufiez et al., (2014); Sohn (2006); Taylor & D’Este (2003); Taylor et al., (2006);
Chen et al., (2007), Chen et al.,(2015); Balijepalli & Oppong, (2014). These studies do not consider
the needs of specific groups of travellers, which a stakeholder like a local authority may be
interested in, when creating their distinction of a critical road. Assessing critical links from the
perspective of the groups who use the roads enhances the exposure and vulnerability
components of a risk assessment. The exposure, i.e. number of people using a road link, can be
assessed per group of the population, and those groups which are considered vulnerable can have

specific roads identified as being critical for them.

‘Basic’ methods like eliminating a single link at a time to determine the effect on the system and
which are most ‘critical’ (Sohn, 2006; Chandra & Quadrifoglio, 2013; Duan & Lu, 2014), do not
consider the geography of the disruption which is key to understanding the effect on travellers
(Pregnolato et al., 2016b). Identifying critical links is stated in various research papers as being
important for prioritising resources for maintenance (Sohn, 2006; Jaroszweski et al., 2015; Freiria
et al., 2015). If the purpose of the analysis is to know which links are critical in order to be
targeted for maintenance to keep social and economic functions of a city running, then the
analysis should instead be based on the needs of different population groups and how they use
the network. Using the framework established in Chapters 5,6 and 7, the effect of flooding on the
travel of specific population sub-groups can be calculated and therefore the roads critical to them

identified. This is a key contribution of this thesis.

The case for combining the theory of critical road links into flood risk assessments is found in UK

government legislation. The Civil Contingencies Act states it is the local government's
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responsibility to understand the nature of their critical infrastructure and if its failure is likely to
cause a local emergency (Cabinet Office, 2011). The methods created in this thesis of integrating
specific population sub-groups with travel analysis and hazards could facilitate this identification
of critical roads and make it more relevant to the groups who are most vulnerable or
economically impacted. By integrating population group data into the disruption analysis, this
moves research beyond seeing networks just as physical infrastructure (Demsar et al., 2008) and
aligning the concept to the consequences of network failure on people (Muriel-Villegas et al.,
2016). This makes these methods useful to local governments who are responsible for pluvial
flood management. Whilst most network studies look at travel from the perspective of the whole
population, there are other research examples of the effects of road disruption on particular
groups of the population. For example, Nyberg and Johansson (2013) and Coles et al., (2017) both
look at accessibility to services for elderly residents during hazard events. However, they did not
expand their work to identify specific roads which were vital to keep open to give access, i.e.
those which could be classed as the critical roads. They also only look at one population group
and do not compare which links are critical for different groups within the same study, a unique
aspect of this thesis. So, whilst the idea of investigating the effects of natural hazard induced
disruption on the travel, or accessibility, of specific population groups is not new, taking the step

further to defining critical links in this way and identifying them is novel.

In the specific context of York, the results generated indicate which roads may be critical for
primary school children and commuters. The roads which primary school children use to travel to
their destinations are mostly smaller local roads (see Figure 5.9 and Figure 5.10), which would
probably not be considered critical in ‘network scan’ approaches (Freiria et al., 2015). However,
for this population group they are critical for enabling children’s education and those which are
most utilised could therefore be targeted for flood mitigation measures. For commuters, the
flooding on the A1237 York outer ring road is a clear example of a place where substantial detours
can be incurred through its closure. There have been real events where pluvial flooding has
occurred on this section of A road leading to its closure for several hours (City of York Council,
2012), demonstrating the reasonableness of the modelled scenario. The road next to York station
(Leeman Road) and the roads surrounding the historic city centre (A59, Water End, A1036) are
also roads used frequently by commuters, and the flooding near the station is a source of
disruption to the surrounding workplaces. These roads are highlighted in Figure 7.19 as potential

‘critical roads’ for these population groups in York. These were identified based on visual
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examination of data, but analytical techniques to quantify which are critical could be applied as a

further step.

The time of flood onset is more important than flood magnitude for rapid onset pluvial flood

events.

A key part of the theoretical underpinning of this thesis was that the time of day when a hazard
occurs is very important to the level of risk the surrounding population experiences (see Chapter
2). Whilst this was a common statement in risk theory literature, there are fewer quantitative
studies measuring the effect of time of onset on the outcomes for the population. One example is
Kasmalkar et al., (n.d.), who used a generic 1-hour window within peak morning commuting
hours, to test the impact of flooding on travel. However, this was not expanded to include more
time periods like the analysis in this study. Another example is Li et al., (2018), who calculated the
delay to journeys from flood events in peak travel time, again without examining the effect of
changing the time of flood onset around the peak travel period. They did test the effect of four
different magnitudes of flood, capturing the physical hazard element of risk, but not the time of
flood onset which has a greater bearing on the socioeconomic aspects of vulnerability and

exposure.

One of the aims of Chapter 7 was to assess if pluvial flood onset was more important than flood
magnitude in the scenarios tested. The results in Chapter 7 provide evidence of the importance of
time of onset. By changing the time of flood onset by two hours it is enough to see differences in
the travel time lost at destinations as a result of flood disruption. For example, for the 1 in 30 year
flood event there is a decrease of 36,639 lost minutes at work if the time of flood onset changes
from 6am to 8am. This large difference is due to a substantial level of flooding not being reached
until the majority of commuters have already reached work. Increasing the flood magnitude to 1
in 100 year and keeping the flood onset time the same, therefore just increasing the amount of
flood water on the roads, the difference is 9,440 additional minutes at work lost. This is less than
the difference between the flood onset being delayed by 2 hours. In Chapter 2, risk was defined
as the dynamic function of hazard, vulnerability and exposure (Mechler & Bouwer, 2014) and
Chapter 7’s results have empirically demonstrated that population movement is a dynamic local

factor (Dawson et al., 2011) which is having a larger effect than changes in the physical hazard.

Further evidence for this key finding can be found by examining the numbers of workplace
destinations which were unreachable by their assigned origins in the different scenarios (Table
7.2). The scenarios with the most destinations where no origin could reach them (i.e. greatest
level of disruption to people) were the two with the earliest rainfall start time (6am), with seven

destinations for the 1 in 30 year flood and 16 destinations for 1 in 100 year event. This is likely
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due to fewer travellers earlier in the day, so there are less origins from which people are travelling
from, increasing the chances of all the origins being blocked by flooding. Furthermore, when
comparing the statistical agreement between which destinations experienced the greatest time
lost at them, the results for FT3 were the only scenarios where there was no statistical
agreement. This is evidence that the time of day the event occurred at had a larger effect than
flood magnitude, as it interacts with travel patterns. Hence, the time of day is important in
sudden onset events like pluvial flooding as it relates to the demand on the road network from

travellers, it is not the magnitude of the flood itself which is driving the effect.

The results in Chapter 7 have shown that as the variables change in both time and space, the risk
(the effect on travel time) has fluctuated. In risk literature, it is highlighted that the interaction
between where people are and the time of hazard onset can substantially change the exposure
and vulnerability elements of the risk equation (Freire et al., 2013; Aubrecht et al., 2014; Terti et
al., 2015). The influence of time on the risk to those travelling on the road network has been
investigated by other researchers. For example, Ruin et al., (2008) investigated a flash flood event
in Southern France. Due to the flood beginning on a Sunday evening in September, outside of the
normal working week and the tourist season, they state the consequences were less than they
could have been at a busier time on the roads. This supports the case that the time of day of
sudden onset hazards like pluvial floods is very important. However, they did not empirically test
how changing the time of onset would have changed the effect on the population in travel.
Spitalar et al., (2014) conducted an analysis to find common factors in flash floods which
increased risk to the population, by examining a database of all flash floods which occurred in the
US between 2006-2012. They found that short duration events and those which happened in the
evening resulted in more fatalities, therefore were riskier to the population. This was due to short
duration events often having little pre-warning to enable people to prepare and the darkness in
the evenings reducing visibility of flood water. Relating these findings to this study, this supports
the notion that for pluvial flood events, which are generally short events with little lead time, the

time of day when they happen is important.

The findings specific to York could be applied to other areas which have broadly similar patterns
in peak travel times across urban areas, as the time of day is likely to have the same effect in
similar settings. The temporally specific analysis conducted in this thesis to assess risk to the
population in travel and destination disruption could be incorporated into future modelling for
surface water management plans, as it has been shown that the risk will not be static over the
course of a day. As far as the author is aware there is not another study which has looked at the
effect of time of flood onset and flood magnitude in this way, so this is a novel contribution of the

work
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8.2.3 Contributions to risk theory

Extending the risk conceptual framework beyond static residential populations to cover

travellers and workplaces should be incorporated into transport-based flood risk assessments.

The statement of the research problem (Section 1.2) outlines the focus of this thesis as the effect
of flooding on travellers and the resultant disruption to time spent at their destinations. The
analysis in this thesis has therefore focussed on the risk posed to travellers, which sets it apart
from most traditional flood risk analysis work which is based on the residential population (Balica
et al., 2013). For example, Koks et al., (2015) assessed the risk to residential households in
Rotterdam; Kubal et al., (2009) also conducted a flood risk assessment for the residential
population in Leipzig and Arnell & Gosling (2016) modelled the likely increases in flood risk
globally under different climate change scenarios, again for residents of floodplains. UK
government requirements for flood risk assessments also view risk from a static population
viewpoint. Flood risk reports generally quote the number of houses and businesses affected, but
they do not specifically explore the knock-on effect of travel disruption and time lost at work or
school. The flood risk maps for England and Wales, created by the EA, are applied to calculate
exposure of static populations, either for residential or business sites in FRAs as required for
developments. These FRAs look at access and exit from a site during a flood but are not required
to consider travel into the wider area (DEFRA & EA., 2019; Ambiental Environmental Assessment,
2020). This therefore fails to capture the dynamic nature of the population between residential

and business sites.

The creation of spatiotemporal flow data, maps showing the routes taken by those travelling to
destinations and identification of which destinations are most susceptible to disruption in this
thesis, provide an example of how temporal population dynamics can be considered in risk
analysis. Incorporating the ‘four-step transport model’ into the research approach worked well as
it was designed to view transport management from the ‘person perspective’ (McNally, 2007;
Ortuzar & Willumsen, 2011; Jones, 2012), therefore spatiotemporal population data fits well
within this perspective. Similar work was done by Smith et al., (2015), where spatiotemporal
population data enabled risk to the population in residential, workplace and retail areas from
flooding to be mapped. However, this thesis is novel as it specifically is focussing on travellers and

the disruption posed to them from a flood.

Framing natural hazards research around travellers and the effect on work/school destinations
fits within a wider body of work which has focussed on developing methods for incorporating
non-resident populations into analyses. Workplace zones, as proposed by Martin et al, (2013),

were introduced to allow small-area analysis of populations at work (Berry et al., 2016). These
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were applied in this thesis as the destination points for the network analysis for commuters. Most
recently, Cockings et al., (2020) have developed a geodemographic classification structure based
on the characteristics of workers and workplaces, rather than by residential population. This
classification has provided new insights into the characters of workers and workplaces at the
small area level, and is useful as it can be applied to health, transport and commerce applications.
Outside of natural hazard risk, using measures of the ambient population who travel through an
area, but do not reside there at night, has been highlighted as a key component of assessing retail
patterns (Berry et al., 2016) and assessing crime hotspots (Malleson & Andresen, 2015, 2016). The
continuing improvements to the representation of non-residential populations in population data
will mean creating risk maps and metrics of transient populations, like those using the road
network, will become easier. The framework outlined in Chapter 7 for assessing spatiotemporal
risk to travellers and destinations could be expanded and improved on as these data sources

become more available.

Including spatiotemporal population data and examining a fine temporal scale of flood onset

enhances the temporal aspects of transport-based flood risk analysis.

The main conceptual underpinning of this analysis work was there are spatial and temporal
components to all elements of the risk equation. Time is complementary to space, as we move
through space over time, so both should be considered in analyses as the challenges and
characteristics need to be addressed together (Bogaert, 1996; Pred, 1977). In the case of the
applied problem studied in this thesis, it is people moving across a city along the road network
and this fluctuates over time as demand changes. Time dimensions are ‘excessively important’ in
transport systems and the fluctuations in demand are at a daily to seasonal scale (Reggiani et al.,
2015). Therefore, the risks associated with disruption from flooding are time dependent with a

high temporal resolution to risk (Cats & Jenelius, 2014; Fuchs et al., 2013; Renner et al., 2018).

As set out in Figure 8.1, the spatiotemporal questions posed in Figure 2.2 can be answered by the
results generated in this research. The locations in space and time where the risk of disruption to
travellers is greatest have been identified through the results presented in Chapter 7. Including
spatiotemporal population data and the fine temporal scale of flood onset has enabled this
temporal risk analysis. The framework developed in this thesis could be applied to other locations

and hazards.
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Risk

l

Risk of restricted
movement
increasing travel
time an reducing
time spent at work
and school.

Spatial: The area
around the station
in York and the
roads identified in
are locations with
greater risk of
disruption.

Temporal: The
storm beginning at
6am and flooding
beginning earlier
in the morning
leads to greater
risk across the city.

f (Hazardsr,

Exposuresr,

l

Vulnerabilitysr)

l

Spatial: More
flooding is seen
from a larger
magnitude event.

Temporal: The time
of flood onset does
change disruption
levels.

The time of flood
onset has a larger
effect on disruption
than flood
magnitude (Figure
7.20 and Figure
7.21).

Spatial: There is
spatial clustering of
disrupted
destinations (Figure
7.22 and Figure 7.24)
and roads which are
no longer used in
flood scenarios
(Figure 7.19).

Temporal: More time
is lost at school and
work with the earlier
flood onset times
(Figure 7.20 and
Figure 7.21), as more
people are travelling
therefore exposure is
greater at these
times of day.

Spatial: Primary school
children are less affected
than commuters, although
identified as vulnerable in
risk literature. This is a
product of shorter school
journeys. There is spatial
clustering seen of
destinations most
susceptible to disruption
in the West of the city
(Figure 7.24).

Temporal: A flood
occurring before children
travel (6-8am) leads to
more time lost at school
than a flood onset time at
8am when travel begins
(Figure 7.21). There is a
shift in the location of
most susceptible
destinations as time of
onset changes (Figure
7.25)

Figure 8.1 The conceptual risk equation and answers to questions set in Chapter 2, categorised

by the specific spatial and temporal components of each element.

However, the inclusion of time in an analysis workflow can be difficult, particularly for the social

elements of risk. A key part of incorporating time in this thesis has been the inclusion of

spatiotemporal population data. Alternative data sets of travel surveys, traffic flow, footfall data

and call detail records are available and can have a greater spatial and temporal resolution than

census data (Herrera et al., 2010; Deville et al., 2014). However, the lack of demographic data

attached to them (Herrera et al., 2010) means specific analysis of population sub-groups is not

possible. The usefulness of including spatiotemporal population data in hazard analysis has been

demonstrated by other researchers. Smith et al., (2015) applied SurfaceBuilder247 in their study

of exposure of different population groups in Cornwall, the inclusion of demographic data allowed

the relative vulnerability of people to be considered. Renner et al., (2018) applied spatiotemporal

population data created with SurfaceBuilder247 to Bolzano in Italy to also estimate flood
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exposure. This thesis has expanded on this previous work by considering the specific risks to those
in travel, but all these studies show that spatial and temporal aspects of all parts of the risk

equation can be included in flood risk analysis with spatiotemporal population data.

There are many examples of research papers where the impact of flooding on travellers is
considered, and some include a temporal aspect to their work. For example, Freire et al., (2013)
looked at how day and night time population distributions affected hazard exposure and the time
taken to evacuate after a tsunami warning in Lisbon. They found night time evacuation was
modelled as being quicker, potentially due to less people being in the city centre than during the
daytime. However, they did not investigate the effect of smaller scale temporal changes to
population which are seen through daily travel patterns or look at the differences in disruption to
different population sub-groups. Debionne et al. (2016) and Shabou et al. (2017) in their papers
measured the exposure drivers experienced in flood scenarios and ascertained there was a risk
amplification effect for drivers, although again they did not test the effect of altering the time of
day of the flood event, or investigate if there was differential risk between groups in the
population. Li et al, (2018) looked at effect of pluvial flooding on road travellers and tested
different magnitudes; however, again they did not incorporate time of day the flood occurs or
consider specific groups who are affected. Chang et al., (2010), Pregnolato et al., (2017a, 2017b)
and Arrighi et al., (2019) all present methods for measuring disruption to commuters from pluvial
rainfall events at the scale of a city. However, their frameworks do not consider time as a
component of risk as explicitly as the one in this thesis does and there was not a comparison on

how the flood event effects different groups of the population differently.

So, whilst the concept of investigating the risk to travellers from flooding is not new, there are
novel elements of the framework designed in this thesis. Firstly, including spatiotemporal
population data which allows for the relative risk of specific groups of travellers to be assessed.
Secondly, the temporal timescale analysed, the impact of shifting the onset of a flood event by an
hour or two, is a finer scale than other studies have investigated but it is important as the
dynamics of travel are at this scale. This could open up opportunities for more targeted local risk
analysis covering people in travel to assess where mitigation action should take place. UK
government policy documents have frequently identified the risk to travellers, and the people
who become isolated due to flooding, is an important area to address to build flood resilience
(Cabinet Office, 2011, 2016; Pitt, 2008). However, this has not led to the integration of risk from
the perspective of travellers into flood risk assessments. Further development of this framework,
which can be applied at the LLFA level, could facilitate the inclusion of the risk to travellers in

flood risk assessments.
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8.3 Transferability and Scalability of Approach

This section describes how the methodology developed in this thesis could be transferred and
scaled up to other geographic areas, population groups and hazards. The methodological
framework, as shown in Chapter 7, is transferable to other local authorities in the UK, both urban
and rural. It could also be conducted at a larger scale than in this research if the computational
power is available. The spatiotemporal population model (SurfaceBuilder247) and population
data used in this thesis are available for England and Wales, as the majority of data are from
census sources and administrative data sets which are available under open government license.
The next census is due to take place in 2021, therefore in a few years new data will be available. It
is also possible to take the SurfaceBuilder247 model and apply it to other countries, as
demonstrated by Renner et al., (2018). With the equivalent data sources, this part of the
methodology could be transferred to case studies in other countries. Travel to work data were
applied in the SurfaceBuilder247 model and the spatially weighted Monte Carlo analysis to
parameterise the selection of origins for destinations. Similar census data is available for countries
like Italy (Renner et al., 2018), France (Shabou et al., 2017), Australia (Mees et al., 2008) and many

others, increasing the transferability of these methods.

The principles of the analysis, the effect of time of flood onset on disruption, can be assessed
from many sources of traffic data and routing tools. The network analysis technique can be
conducted at a larger scale and the network data and historic traffic data from ESRI is available for
the entire UK and many other countries. Therefore, transferring this part of the methodology to
another location in the UK, and many other counties, would be straightforward. If this analysis
was conducted over a larger area with more origin-destination journeys, then creating a network
data set with time-specific traffic speeds (for example with OS MasterMap Highways Network
with speed data) could be more cost-effective than accessing the ESRI HERE data via the server.
Alternative network routing tools could be used in place of ESRI’s tools if traffic data is available in
other countries. As outlined in Section 3.3.4.2, open source tools like OpenTransportMap and
OpenRouteService, and in Section 3.3.4.3 commercial tools like Google Routes, exist which could
be used within the framework to provide routing and traffic data. Kilgariff et al., (2019) used
measured road traffic data for a 17-day period of disruption in Galway and the surrounding area
due to flooding, which is different to this thesis and most papers which rely on modelled data.
Real event data for the traffic disruption is extremely beneficial for calculating the effects of
disruption, however a lot of cities and towns do not have sufficient data for their method to be
transferred elsewhere. Also, the testing of the temporal effect of moving the time of flood onset

as this thesis has shown is not possible.
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Finally, for the flood model component of the methodology it is possible to model flood events
for larger areas, and the model used in this thesis has been applied in the UK and abroad with
success. As with the previous two computational models, the computing power available may be
a restriction on the size of area which could be modelled. There are numerous other flood models
available, like LISFLOOD-FP which is often used in UK academic work (for example Sosa et al.,
2020; Neal et al., 2011; Rajib et al., 2020; Smith, 2015), so the creation of the flood hazard data
for another area is definitely achievable. Although a flood model which capture the dynamics of
urban drainage may be most beneficial as pluvial flood events which affect traffic tend to occur in

urban areas.

A national data set which detailed destinations, like workplaces and schools, which were at risk of
isolation or reduced travel to them during a flood event, would be a useful addition to current
flood risk maps. A main challenge in scaling up this methodology to a region or nation would be
choosing a flood scenario to incorporate. It is unrealistic to test a scenario where the whole
country is flooded at the same time, as pluvial flood hazards tend to be caused by localised heavy
rainfall. Although, if the goal was to make a dataset identifying areas at risk of being cut off, this
assumption might be needed. Scaling up to the whole country would require experience of
national flood modelling in order to determine if there is an appropriate disruption scenarios. A
second challenge would be determining which origin-destination pairs should be modelled to gain
a national understanding of the impact of disruption. The creation of a national time-specific data
set of origins and their associated destinations could be complicated and time consuming, and for
groups other than commuters even more difficult. However, it could be possible with enough
computing power to iterate through every workplace zone and model the routes from their
origins for an area of interest. This could be provided as a data download similar to other

products from the Population 247 project (GeoData Institute, 2016).

The methodology presented in this thesis could be transferred to other population groups,

natural hazards and types of transport network. Expanding the methodology to the inclusion of
other population sub-groups in the flood risk analysis is possible but relies on the availability of
sufficient travel data. The main challenge in transferring to other population sub-groups is the
availability of mobility data. Smith et al., (2015) demonstrated that there is sufficient data to
include tourists and retail populations for flood exposure calculations. However, having the origin-
destination data to model journeys in a network analysis is a greater task. Renner et al., (2018)
state a limitation of their work is assuming that tourists are static and stay in their study area, as
the absence of travel data means their origin-destination journeys cannot be determined. With
new administrative and big data available in the next few years, it may become possible to

include more groups into this framework.
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The flood hazard was included in the network analysis model as a barrier, therefore any hazard
which causes a blockage to a road with a known spatial area could be included in the analysis.
There are many hazards besides flooding which pose a risk to roads, for example landslides
(Postance et al., 2017), Tsunamis (Freire et al., 2013), fallen trees (Nyberg & Johansson, 2013) and
earthquakes (Khademi et al., 2015). All of these hazards could easily be incorporated into the
framework as shapefiles or points where obstructions have occurred. The potential for including

primary hazards (e.g. floods) and secondary hazards (fallen trees) in one analysis is also there.

As stated earlier, the network analysis algorithm can be applied to any road network and the
historical traffic data were available for the whole of the UK and many other countries worldwide.
The focus here was on road travel by car, however road networks and travel by private vehicle are
not the only forms of travel. There have been some studies of transport disruption which have
looked at public transport as well (Cats & Jenelius, 2015, 2016; Tympakianaki et al., 2018). So,
with the appropriate public transport model, the transference of the key ideas of time being
critical in the hazard onset and including population data, may be possible for other forms of

transportation.

Whilst census data has been the standard for population research (Aubrecht et al., 2014), the
2021 census may be the last ‘traditional’ census, as an approach which links administrative data
sets to generate the same data are proposed to replace it (Tinsley, 2017). Whilst the
spatiotemporal population model used in this thesis relies on census data, alternative data sets
and new data sources could be used within the overall risk methodology instead, as they become
available. Any data which provides the origin and destination of the journeys of a group of people,
and the time of day these are undertaken, could be used as part of the risk analysis methodology
in this thesis in place of the spatiotemporal population model. New forms of ‘big data’ (call detail
records, smartphone apps, social media, travel cards, footfall data) currently exist and are
continuously being improved. There are many studies which have used this type of data for
modelling the ambient population and travel around an area, for example Heppenstall et al.,
(2016); Crols & Malleson (2019); Malleson et al., (2018); Batista e Silva et al., (2018). At present,
these data sets do not contain demographic information which is required for modelling specific

groups of the population, so cannot be a substitute for spatiotemporal population modelling.

8.4 Uncertainties and Limitations

Throughout this thesis, the uncertainties and limitations of the methods applied have been
highlighted and discussed. In this section, the key points and their likely effect on the work are

identified. The first section covers validation of the data created in the analysis, the second
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section highlights the sensitivity tests conducted and the final section the key assumptions and

their effect on the results of the analysis.

8.4.1 Validation

Validation of the research findings, so as to quantify uncertainty, is challenging as the only
relevant data sets currently available are those census data and associated administrative data
sets which are used in this thesis. Therefore, there is not an independent data set for comparison
with the modelled spatiotemporal population data, spatiotemporal flow data or the routes and

travel times measured in the scenarios tested.

The validation of the outputs from the SurfaceBuilder247 model are challenging “because we are
attempting to estimate time-specific population distributions not directly captured by any other
measurement systems” (Martin et al., 2015, p.768). The best available census, and other
administrative data, were used in the creation of the spatiotemporal population data, as there is
not a data set of the phenomenon of interest already in existence. One way of validating the data
would be through direct population counts of areas or buildings at a specific time of day and
comparing it to the results from the SurfaceBuilder247 model. However, this would involve a

substantial cost and resources (Martin et al., 2015) which are beyond the scope of this thesis.

As already discussed in this chapter, and in Section 3.2.3, alternative data like call detail records,
footfall sensors, smart card travel data and automatic number plate recognition exist (Malleson et
al., 2018; Heppenstall et al., 2016; Crols & Malleson, 2019) These can provide data on how many
people are travelling through an area, but do not have the demographic data on who is travelling
(Herrera et al., 2010), so are not necessarily a direct validation data set. However, alternative data
can be used to evaluate the output from SurfaceBuilder247. Malleson and Andresen (2016) use
data from SurfaceBuilder247 as one representation of ambient population in their study of crime
hotspots in London. In their comparisons, they found the data from SurfaceBuilder247 were
reasonably strongly correlated to workday (from census) and mobile telephone data, so they
were capturing similar populations. This demonstrates one approach which could be used to
evaluate the spatiotemporal output from SurfaceBuilder247. However, again this was beyond the
scope of this thesis to do a similar evaluation as the main aim of the thesis was on the risk analysis
problem. Despite the limitations of validating the data, the approach taken by using
SurfaceBuilder247 to create spatiotemporal population data is still sound. The benefits of using
this model framework is that it is a volume-preserving approach, meaning all people in the study

area are accounted for between time steps, and it is based on known origin and destination flows
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and travel data from the census (Martin et al., 2015; Smith et al., 2015). Therefore, it can be

assumed that the outputs of the model are reliable.

The travel time and routing results presented in this thesis are a product of the spatiotemporal
origin-destination flows and the network analysis. There is currently no available data set to
directly compare travel time results to, as this would require the observation of pluvial flood
events in York and the recording of traffic data for the whole city, beyond the scope of this thesis.
Pregnolato et al., (2017b) did use traffic count data to attempt validation of the route and travel
time data in their model. However, this only describes volume of traffic and not the key
information of who is travelling and making the journey, which was important to this research.
Arrighi et al., (2019) suggest validation could be achieved through applying the judgement of
experts and sensitivity tests can be used to examine the influence of parameters on the model.
They also suggest Google Maps and its function of giving live and historic travel times for routes
could be used for validating baseline route modelling. These techniques could be useful in some
cases; however, this relies on a pluvial flood event occurring during the time period the research
project is active and then modelling the same pluvial flood event for the network analysis model.
Qualitative validation based on observations of flood events might strengthen the quantitative
findings of risk analysis. For example, qualitative comparisons were made in Section 8.2.2 of
modelled flood results in this thesis to previous flood risk assessments done by the council. More
widely, the names of places and roads can be used as an indication of their propensity to flood.
‘Water lane’ in York, for example, was a road which experienced a high level of flooding in the

modelled flood results and is an access road to a primary school.

8.4.2 Sensitivity analysis

Whilst validation of the results presented in Chapters 5, 6 and 7 is difficult, sensitivity tests can be
used to understand how the parameters of the models and methods may be affecting the results.
Sensitivity testing was done for two aspects of the overall thesis framework; the

SurfaceBuilder247 model in Chapter 5 and the parameters of the network analysis tool in Chapter

6.

In Section 5.3.1, it was found there was unfilled demand at schools, with not enough children in
the origin data to fill the school destinations (11% deficit). The input parameter of how many
children came from each sub-group for each school destination was adjusted to test the
sensitivity of the outcomes. Initially the model parameters were for only children aged 5-10 to
attend primary schools, but this is not the case as primary schools have 4 year olds and 11 year

olds, and some of the schools were junior schools which are for the youngest children. Adjusting
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to 13|80|7 split of 0-4|5-10|11-17 year olds based on school count data for York (Department for
Education, 2016), rectified this issue. The aim of Chapter 6 was to assess the differences between
census origin-destination data and spatiotemporal population data, so this was a sensitivity test
for the new data created to see how well it reflected the recorded travel to work data. This was

possible for commuters as there were alternative data.

Finally, in Chapter 6 the sensitivity of the Network Analysis tool was tested in relation to the
hierarchy property. It was found that this parameter did have an effect when comparing the non-
flood to flood scenarios, as when turned on the hierarchy changes how the algorithm assigns
routes leading to some instances of distance travelled decreasing in the flood scenario whilst time

increases.

8.4.3 Key assumptions

Table 8.1 lists the key assumptions applied during the analysis work and the likely impact on the
findings. Overall, the assumptions applied would have led to an underestimation and

simplification of the disruption caused by flooding on road travel.

Table 8.1 Key assumptions and their anticipated impact on model outputs

Assumption Likely impact on findings

There is equal probability of a person Large underestimation of catchment size of

travelling from any grid cell in a distance band commuters in Chapter 6, due to how the

to the specific destination. catchment weightings were calculated. A small
underestimation of school children catchment
size as the catchments covered 95% of children.

Historic traffic data were used and impact of  Large underestimation of traffic levels and

disruption on traffic not modelled. therefore travel times, in flood scenarios.
Pregnolato et al., (2017b) found travel times may
increase by more than 50% when congestion is
included.

Catchment areas for workplace and school Moderate underestimation of travel time and
destinations from administrative data exclude disruption

5% of population making longest journeys

(trip distribution).

All individuals in a population sub-group act in Moderate underestimation of variation in travel
the same way, so individual behaviour is not  time and disruption. Drivers do not all behave in
included. Bian and Wilmot (2015) call it a key a rational way like an algorithm does, and
assumption in transport studies. perception of risk and purpose of journey can
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have an effect on decisions make whilst
travelling (Terti et al., 2015).

Assumed census data correct and adjusted
pupil age breakdown to fit school demand
profile.

Moderate impact of unknown direction.

Time profiles are generalised for the country
and do not allow for multipurpose journeys.

Moderate underestimation of the travel times as
multipurpose journeys would be longer,
therefore increasing likelihood of exposure.

All drivers have perfect knowledge of the
road network and diversion routes.

Moderate underestimation of travel times.

Shortest time path is taken to reach a
destination (using Dijkstra’s algorithm within
network analyst tools), as in similar studies
(Postance et al., 2017).

Moderate underestimation of travel time

Each person is travelling in a car on their own,
or in Chapter 5 children were walking on their
own or by car on their own.

Minor underestimation of the number of people
on the roads, especially if parents travelling with
their child.

Drainage failures are not modelled.

Small overestimation of travel time increase. The
flood model does not include urban drainage
systems explicitly, so there may be more flooding
than in reality.

That there is a passable/impassable switch in
flooding when there is more variation.

Small underestimation in travel time.

Rainfall timing and intensity are constant
across the city of York.

Small overestimation in the travel time increases
due to disruption.

Origin-destination data for commuters is from
the 2011 census.

Direction of effect unknown. It is not known how
the home and work locations of the residents of
York have changed between 2011 and 2016 (the
reference year).

Assumption of disruptive floods being at least
30cm in depth and 125m?in area.

Direction of effect unknown. Some vehicles can
travel safely through this depth (Pregnolato et

al., 2017b), but for the majority of cars this is a

sound assumption.

Following on from Table 8.1, there are some further limitations to consider. Firstly, it is only

possible to model a small number of flood scenarios out of a great many possible scenarios (Smith

et al., 2014a). Previous work on pluvial flooding in York by the city council (2019) found that each

real event experienced included flooding in different locations across the city. Therefore, the

places found in these modelling scenarios to be prone to flood disruption may not necessarily be

seen in a real flood event, and the spatial patterns of disruption seen in this thesis would not be

replicated exactly. Choosing the scenarios is an

important consideration when designing a study
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and selecting event which will show a range of flooding, like the 1 in 30 year and 1 in 100 year

scenarios in this thesis, is desirable.

Linked to this limitation, an assumption was made on what ‘disruptive flooding’ was. Only two
flood magnitudes were tested in this work and more magnitudes between these could have
provided some additional information. Pluvial flooding is not just a factor of topography as
drainage failures often have a large part to play, and these were not included in the flood model
used. The thresholds used for identifying the flood area which would be ‘disruptive’ (30cm depth
and over 125m? in size) is based on UK environment agency guidelines (Li et al., 2018; Arrighi et
al., 2019; Pregnolato et al., 2017b). However, any adjustment to criteria would lead to potentially
different results for example if drainage was included. Although the comparison of the effect of
the two magnitudes in this study does indicate the effect of magnitude might be small in respect
to the amount of disruptive flooding recorded. Ideally, a series of flood barriers where some
blocked all travel, for flooded roads above the threshold, and some allowed travel but at a slower
rate, for roads with less deep or wide flooding, would be included in the network analysis. The

depth categories for this could be based on Pregnolato et al.’s (2017b) depth-disruption function.

Finally, the concept of critical roads has been considered in this thesis and some visually identified
for York. However, critical roads are dynamic, not static, and can change as a flood event
progresses, as those roads which are identified as critical pre-flood event may not be those which
are critical during the flood event. Jenelius (2010a) proposed the idea of secondary critical links,
i.e. those which become important when your disruption scenario is introduced, and other roads
are no longer accessible. Including this extension of the critical links idea, and with the inclusion of
analysis for specific sub-groups from this research, could further how network studies be

conducted.

8.5 Future Research Directions

Based on the achievements of this research and its limitations, there are several

recommendations for future research.

Options for extending the work presented in this thesis, using the existing framework to model

other time periods.

In this thesis, it was only possible to study the morning commute and two population sub-groups
(Chapter 7). Repeating the analysis for different day times and types of day is an essential next

step in order to build a fuller picture of how the temporal dynamics of population in travel and
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flood events interact, in order to affirm the finding that time of day has more influence than flood
magnitude. It is possible that the interaction of pluvial flood onset time and magnitude may be
different for other day types and times of day. For example, the effect may be less at a weekend

when the majority of travel is not confined to a few hours in the morning and evening.

Developing alternative approaches for spatiotemporal flow data and calculating disruption

from flooding to road travel.

Census data were used in a spatiotemporal population model and adapted to create
spatiotemporal flow data of likely origin-destination journeys. There are alternative data sets and
methods which could be used for this purpose, as described in Section 8.3. For future research
directions, the application of agent-based models for the purpose of determining the disruption
to travellers from flooding could be explored. Dawson et al., (2011) did use an ABM for analysing
evacuation decisions in Towyn in Wales, but since this most studies have used network analysis
methods for analysing disruption at a city level. Since Dawson et al.’s (2011) paper, there has
been an exponential increase in the amount of ‘big data’ sources which have the potential for
innovating urban modelling (Heppenstall et al., 2016). Determining which data sets are useful for
the specific issue of flood disruption of road travel is a key priority, and these would likely be data
sets which provide the origin-destination journeys of the population (perhaps via smartphone
apps like Malleson et al., (2018)) but ideally with specific demographic data attached. For a
successful ABM there would also need to be data on the underlying behaviours which drive travel
decisions both in non-flood and flood conditions. This could be through travel surveys or
incorporating social science observations of people’s behaviour during natural hazards. For
example, Terti et al., (2015) established in their research that travellers would persevere with a
homeward journey for longer than an outward journey to work. If an ABM with the right
underlying data could be created, this could be a powerful way of capturing spatial and temporal
dynamics of individual travellers and modelling congestion as a result of flooding, addressing a

common limitation in current studies.

The approach developed in this thesis was semi-dynamic with time steps at which the flood,
population and travel elements were synchronously moved. Near-real time models in population
modelling, flood modelling and travel either exist or are in development and linking these up
could be an interesting exercise. If achieved, the monitoring of events in near-real time to enable
response as the event happens could improve flood hazard response. There are examples of other
researchers using real traffic and flood data within their travel disruption studies. Coles et al.,
(2017) recreated real flood events in their flood model to test accessibility of emergency services

to care homes. However, they did not have traffic data to see what the effect of the flood was on
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vehicles at the time, instead relying on network analysis. Kilgarriff et al., (2019) used real traffic
disruption data and flood data for a 17-day period of disruption in Galway, Ireland in order to
calculate the financial loss due to increased commuting time. Pregnolato et al., (2017b) were also
able to use traffic data from a real pluvial flood event and compare it to a non-flood average to
assess the impact on traffic count, and with increasing use of Automatic Traffic Counters, CCTV
and smart sensors in cities this will become an option for more places. Whilst smart sensors for
traffic and pedestrian counts are becoming available, this does not provide information on who is
travelling, just the numbers of people or vehicles. Near real time population modelling is still
being developed, for example The Population 24/7 Near Real Time project (GeoData Institute,
2018), and integrating this near real time approach with a dynamic flood model could be

extremely useful for risk planning.

Include more population sub-groups into the analysis to understand where the focus of

mitigation actions should lie.

Only two population sub-groups were included in this thesis, primary school children and
commuters. The spatiotemporal methods developed in this thesis could be applied to population
sub-groups other than primary school children and commuters providing appropriate temporal
data are available. SurfaceBuilder247 has been used to create tourist data (Smith et al., 2015) and
applied for analysing the exposure of populations to flooding. If there was sufficient travel data
for tourists around an area, then the methods developed in this thesis could be applied to
generate spatiotemporal flow data and then analysis of the routes they take. However, the
difficulty would lie in determining where people go to and from as tourists have more
complicated journeys than school children or commuters. Modelling the risk of people travelling
to and from retail sites is potentially more likely than simulating tourists. There are many studies
on the travel to and from retail centres, how they are modelled and who the customers are
(Newing et al., 2013). These data could therefore be applied to flood risk, as Smith et al., (2015)
demonstrated. Other key workers could include those who work on critical infrastructure (for
example, communication, civil nuclear, defence, energy and water sites (Centre for the Protection
of National Infrastructure, 2020)), school teachers, or those involved in the food supply chain. The
author is not aware of any published work which takes this focus. Alternatively, the focus could be
on vulnerable groups, the elderly or tourists, if it is a tourist area. The groups which should be
prioritised would be determined by the organisation who is conducting the flood analysis and the

purpose of the flood risk study.
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National and local study sites should be investigated.

The Brown review (Brown, 2014) states that the identification of critical single points of failure in
the country’s transport system is a key task for flood management going forward. This applies
both to local authorities concerned with a single urban area and national governments. At a
national level, motorways and main A roads which are prone to flooding could be targeted. In the
2007 floods, the closure and entrapment of 10,000 vehicles on the M5 in Gloucestershire
highlighted the large scale disruption caused by the flooding of major roads (Pitt, 2008). This was
a singular high impact event, but these types of events could be crucial to national risk
assessments. Examining regional flow would also be useful for identifying the potential
repercussions on the movement of food and other goods. At a local authority level, the analysis
should be done for the whole urban area of interest to identify critical roads and then further

work could focus on these areas specifically.

Secondary hazards involved in flood events should be included in future analysis.

The framework developed in this thesis could be applied to other hazards which impact on road
travel. This will vary between places which hazards are most important to be modelled, and
existing hazard risk assessments can be used as a guide. In England, it is flooding which has the
greatest impact on the road network therefore, this should be the primary natural hazard focus
(Brown, 2014). Whilst flooding is a primary hazard, there are often multiple secondary hazards
which occur as a result of the storm which has caused the flooding. Jaroszweski et al., (2015)
highlight that blockages in storms come from flooding and from other sources like fallen trees and
collapsed roads. A future extension of this risk analysis framework should aim to include primary
and secondary hazards which cause road blockages, to gain a more rounded picture of the

disruption caused.

Creating a national database which identifies areas at risk of being isolated in floods or cut off.

Finally, this framework could be utilised to create a data product of places identified as at risk of
being cut off in flood events. By running multiple flood scenarios, the results could be used to
identify places where travel to and from the wider community is not possible. This is important
information to know as current flood risk zones only identify places at risk of direct flood water

contact, not areas which are not flooded but are isolated during the event.
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8.6 Recommendations for Policy

8.6.1 Flood management in York

Several recommendations can be made for the city of York based on the results of this thesis’
analysis. Firstly, pinch points in the road network system should be identified and targeted
drainage measures retrofitted to reduce the risk of road closure. Figure 7.19 indicates road which
were identified as potentially being critical to the travel of commuters and school children, and
more extensive quantitative work could be done to investigate the pluvial flood risk and

disruption caused by closures of these roads.

Secondly, if possible, the analysis conducted in this thesis should be extended to focus on retail
journeys and tourists, a particularly important industry for York. These are both examples of
transient groups which contribute to the local economy, therefore, keeping these groups moving
around the city and the places they visit accessible during sudden onset rainstorms would be

beneficial economically.

Finally, the city council and flood risk partners should develop a strategy to increase the
awareness of pluvial flood resilience within the local population and internal highways design
teams. It has been shown that pluvial flooding does disrupt travel and time spent at businesses
and should be given consideration alongside fluvial flooding, which is a much more well-known

risk in York.

8.6.2 Wider Policy for travel and risk management

Based on the research presented in this thesis, several recommendations can be made for policy
and practice. Firstly, local authorities, the level of government responsible for pluvial flood
events, could integrate a more temporally dynamic approach to assessing the effect on travel, as
demonstrated in the framework created in this thesis. Current surface water (pluvial)
management plans states the number of homes at risk of surface water flooding, highlighting the
focus on houses not the wider implications of travel disruption (Brown, 2014). This is despite the
evidence pointing to more danger posed to people who drive into flood water and the large
economic effects of travel disruption. This thesis therefore makes a case that this aspect can be
modelled within a flood risk assessment and should be in the future. Spatiotemporal risk
assessments for disruption to road networks are worth doing as roads are the lifelines of our
society (Chen et al., 2007; Platt 1995; Nyberg & Johansson 2013) and there are a number of
hazards which can disrupt them. The explicit function of the wider road network is missing from

current flood risk assessments, despite making road networks resilient to extreme pluvial flood

199



Chapter 8

events being a key theme of the UK’s Surface Water Management Plan (DEFRA, 2018). Key
considerations when creating spatiotemporal flood risk assessments of road network effects
would be the flood scenarios tested, the temporal properties of the origin-destination flow data
and the specific population groups of interest. For sudden onset events, it is vital to model the
peak of the hazard with the peak of the road travel. The framework should be used to simulate
enough time periods to cover the part of the day of interest, and at least two flood magnitudes
would be required. It is not just flood hazards which this framework could be applied to, other

hazards like landslides, tree falls, and bridge collapses could also be investigated.

Secondly, population data could be integrated into hazard risk assessments. This research has
shown that time of onset is important because of the demands on the road network and the
variable location of the in-travel population. The interest in monitoring flood events and other
hazards is due to the impact on humans, therefore spatiotemporal population data should be
included with flood risk assessments. Scenario planning is already a well-used tool in risk and
hazard mitigation, so incorporating temporally specific population data and journeys is
achievable. The combination of near-real time population, traffic and flood data are achievable
and would create an almost dynamic picture of risk. Temporally specific population in travel data
could also be integrated into risk assessments for other hazard assessments, for example

landslides and disease vector mapping.

Looking ahead, it seems likely that pluvial flash flood events will become more common, with
increasing intensity in the UK (Boeing et al., 2019) without action to reduce the effect of climate
change. Therefore, the country will have to adapt and prepare for pluvial flood events reducing
travel by targeting resources to pinch points in the road system where flooding causes the largest
disruption. With improvements in the data collected in all aspects of life, better datasets and
approaches for modelling the spatiotemporal dynamics of the population in travel will be created.
The framework developed here can be adapted to accommodate new data as the core issue will

remain for our urban areas.
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Chapter9 Conclusions

This thesis has explored the problem of pluvial floods disrupting travel in an urban area and the
subsequent effect on travel times and time spent at workplaces and schools. A crucial element of
this research has been understanding the interactions of spatial and temporal properties of the
hazard, exposure and vulnerability elements which make up the risk. This research has also
required an interdisciplinary approach combining theory and methods from population
geography, transport planning, and natural hazards science. This interdisciplinary approach has
led to novel methodologies being developed to enable spatiotemporal analysis of the effect of

flooding on the population in travel.

This chapter summarises the findings of the thesis and their applicability beyond the case study
example chosen and is structured as follows. The first section presents the main findings, the
second highlights the research contribution before the transferability of this research is

summarised. Finally, the third section recommend further research which could be explored.

9.1 Assessment of Thesis Aim and Main Contributions

The overall goal of the thesis was to determine how daily variation in the urban population in
travel interacts with the time of pluvial flood onset and magnitude to influence spatial and
temporal disruptions to journey times and destinations. This goal has been achieved through the
work set out in the three results chapters (5,6 and 7). It has been shown that the time of pluvial
flood onset does have a substantial effect on disruption to travel time and time spent at

destinations, as there are fluctuations in the number of people in travel.
From the analysis conducted in this thesis, the following contributions have been presented:

e Reconciling administrative and census data from different sources and years can cause
issues parameterising the SurfaceBuilder247 model.

e The development of a spatially weighted Monte Carlo simulation tool for modelling
origin-destination flows through time.

e The total amount of road flooded in an urban area does not need to be large for
substantial disruption to occur.

e Destination susceptibility to disruption from flooding can be assessed based on workforce
or pupil travel, not just workplace or school site characteristics.

e Floods disrupt travel of York’s commuters more than travel by its primary school children,

due to length of journey time and number of commuters.
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e  (Critical links can be defined locally by examining which closures lead to the most
disruption to the destinations of specific population groups.

e The time of flood onset is more important than flood magnitude for rapid onset pluvial
flood events.

e Extending the risk conceptual framework beyond static populations to cover travellers
should be incorporated into transport-based flood risk assessments

e Including spatiotemporal population data and examining a fine temporal scale of flood

onset enhances the temporal aspects of transport-based flood risk analysis

This research has provided knowledge contributions to the three disciplines from which the
theory and methods underpinning the analysis were derived. It has also provided an example
framework for tackling an applied research problem; travel disruption due to the presence of

hazards on a road network.

9.2 Transferability of methods and findings

The methodology developed in this thesis could be transferred and scaled up to other geographic
areas, population groups and hazards. The methodological framework, as shown in Chapter 7, is
transferable to other local authorities in the UK, both urban and rural, and could be conducted at
a larger scale than in this research if the computational power is available. The effect of other
natural hazards on road travel could also be examined using the framework outlined, as events
like landslides, earthquakes and fallen trees could be incorporated into the network analysis as
barriers. Spatiotemporal flow data, as presented in chapters 5 and 6, could be applied to research
areas beyond natural hazards. For example, for measuring access to health care services. At
present there is a lack of spatiotemporal data for journeys of various different groups of the
population, like tourists and the elderly, which restricts the applicability of these methods to the
entire population. However, this is likely to improve over the next decade as more data is

collected on movement around cities.

9.3 Recommendations for Further Research

Three key recommendations have been identified for future research projects examining the
effects of flooding on travel and workplaces. Firstly, there are options for extending the work
presented in this thesis by using the existing framework to model other time periods. Useful time
periods to explore include the normal evening commute, Saturday and Sunday traffic and school
holidays. By evaluating more time periods, a broader understanding of how change in the time of

flood onset affects travel time would be achieved.
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Second, developing alternative approaches for spatiotemporal flow data and calculating
disruption from flooding to road travel. In this thesis, census data were used in a spatiotemporal
population model and adapted to create spatiotemporal flow data of likely origin-destination
journeys. There are alternative data sets and methods which could be used for this purpose, such
as agent-based models, call detail records and smartphone GPS data and open source road
network and traffic tools. For future research directions, incorporating agent-based models into
the semi-dynamic analysis framework outlined in Chapter 7 for the purpose of determining the

disruption to travellers from flooding could be explored.

Finally, future research should aim to include more population sub-groups into the analysis in
order to understand where the focus of mitigation actions should lie. Due to time and
spatiotemporal data constraints, only commuters and primary school children were able to be
included in the analysis conducted for this thesis. With more time to develop the spatiotemporal
flow data, other groups of the population could be modelled and the effect of flooding on their

travel assessed.
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Appendix A  Population Data Sources

This appendix describes the data which were used in the SurfaceBuilder247 model for creating
spatiotemporal gridded population data for the study site of the City of York. As a 20km buffer
area around the study area is required, data for areas beyond the York local authority were
included. The area which the study area and the buffer zone encapsulate is referred to as the

analysis area in this appendix.
All data sets

Data for the following district authorities in Yorkshire and the Humber were used as inputs into
the SurfaceBuilder247 model: East Riding of Yorkshire, Hambleton, Harrogate, Leeds, Ryedale,
Selby, Wakefield and York. These are the authorities which fall within the analysis area. Microsoft
access was used to extract the output area/workplace zones in the analysis area from the larger

census data sets of these 8 district authorities.
Output areas

Population weighted centroids were used to calculate which output areas are within the analysis
area. Output area is used as the basis for analysis as this is the finest spatial scale which the

required census data is available. The source of these data was the 2011 census.
Residential Population

There are two aspects of the residential population data, the term time and non-term time
population, as large numbers of students move around the country between their term and non-
term time addresses. Therefore, two population data sets are needed to reflect this internal
population shift. York itself is a prominent university city, hence it is particularly important to
consider the movements of the student population. The term time population will be dealt with

first.

The number of people in each age bracket is a main requirement for running the
SurfaceBuilder247 model. The data table QS103EW, age by individual year, from

www.nomisweb.co.uk, was chosen to enable the number of people in each population sub-group

could be calculated. The population subgroups chosen were: 0-4 years, 5-10 years, 11-17 years,
18-64 years (university students), 18-64 years (non-students), 65-79 years, over 80 year. These
population groups equate to the main school age groups, and now 16 and 17 year olds must be in
full time education or training, the minimum age of the working population has been increased to

age 18. There are two groups for the retired population, as the ‘oldest old’ are identified as one of

205


http://www.nomisweb.co.uk/

Appendix A

the most vulnerable groups in natural hazard events. As it is gathered as single year of age, these
data are easy to consolidate into groups of the users choosing. These groups represent mutually

exclusive groups whose daily movements can be assumed to follow similar patterns.

These data are for 2011, however they can be extrapolated to the target year of 2016 through
using mid-year estimates (MYE). MYE are calculated each year, however this is done for lower
super output area level, one spatial level higher than the 2011 single year of age data. Therefore,
it is not directly transferable and requires reweighting. The total population for the LSOA MYE was
taken and proportionally split amongst the output areas within in it, assuming that the relative
proportion of the population of each output area within an LSOA remained unchanged. This gave
a new total population for each output area. This then required dividing between each population
sub-group, and it was assumed the age structure of the population remained the same between
2011 and 2015. This produced a data set of term time population, divided into age categories, for

the year 2016.

Data for out of term time population is provided for output area in five-year age categories,
rather than single year of age like term time population. This gives an added complication as the
five-year age categories do not match those chosen for analysis, or the English education system.
The out of term time data was divided into the analysis age categories by assuming there were
equal numbers of each age within a category and reassigning the population appropriately. This
provides a reasonable estimate of the number of people in each of the analysis age categories for

2011.

MVYE are not available for out of term time populations. In order to produce a reasonable estimate
of the population, the percentage change for each output area between term time and out of
term time total population was calculated for the 2011 data. This percentage difference was then
applied to the term time totals to estimate what the out of term time population would be in

2016.
Immobile population

This is the percentage of people in each output area who can be considered to be immobile due
to the communal establishment they live in, for example prisons or long-term care facilities.
QS420EW (communal establishment management and type) and DC4210EWIla (communal
establishment management and type by sex and age) accessed via the Nomis website were used

to calculate the percentage of each of the population age categories who were immobile.
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The age breakdown in each type of communal establishment is available as an average for a
unitary authority. So, the data for York unitary authority was used and it was assumed that this

could be applied to each occurrence of an establishment type.

A threshold of 10 people was used as the minimum number of people in a communal
establishment who would be considered. This is because any smaller population will blend into
the general population and be difficult to distinguish. The types of communal establishments

considered were Prisons, detention centres, care homes and secure mental health units.

These data are for 2011 and were not scaled up using MYE as there is not data available for
communal establishments outside of the census year. It was assumed that the percentages of
immobile population would still be applicable, in the same way the proportional split of the

population into age categories remained the same for the general population.
Workplace zone data

Workplace zones were created for the 2011 census to provide a census geography for the working
destinations of the population. Workplace zones are used to define workplace destinations within
this model. The age breakdown of the workers in each workplace zone were as well as the
number of people were required, and this was taken from the sex by single year of age
(workplace population) census data. The majority were in the 18-64 category, with a small
percentage 64-79. The number of 16/17 year olds for each workplace zone were removed from
the total, as those in this age group are now included in the education data set as the minimum
age at which full time employment (without training) is permitted is now 18. This gave a total

number of people in each industry cluster for each workplace zone.
The following data sets were utilised:
WP605EW — Industry (workplace population)

https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construc

t&dataset=1314&version=0&anal=1&initsel=

Data capture year: 2011

WP702EW - Sex by single year of age (workplace population)

https://www.nomisweb.co.uk/query/construct/summary.asp?reset=yes&mode=construc

t&dataset=1320&version=0&anal=1&initsel=

Data capture year: 2011
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Time profiles for each industry type were required to specify temporal commuting patterns in the
model. Each industry type has different work patterns so require a different time profile. The time
profiles used were ones created by Smith et al., (2015) in their work. There are 6 clusters of
industries in total, covering all the industries listed in the census, and are categorised by those
workplaces with similar working patterns e.g. a hospitability cluster, a retail cluster, an office-

based cluster etc.
Travel to work data

Census table WP702EW — Distance travelled to work (workplace population) was used to calculate
how far people travel into York’s workplace zones. This data was captured in the 2011 census.
This is for all usual residents aged 16-74 who work, and it is measured by Euclidean distance. This
data is used in the model as a unique wide area dispersion radius for each workplace zone. The
majority of workers were in the 18-64 age group. Those workers who were 16 or 17 were

discounted as 16- and 17-year olds will no longer be in full time employment.

The distance travelled to work, through the dataset WU02UK — Location of Usual Residence and
Place of Work by Age, was also used to understand the proportion of people who lived and

worked in York in order to base decisions on the size of buffer area.
Care Homes

The communal establishment data set includes care homes (see immobile population section),
and this was used to give an initial estimate of the population in the analysis area residing in
them. The data year is 2011. The types of care homes included were those under local authority
control with and without nursing, and private care homes with and without nursing. This data was
supplemented with York city council data

(https://www.york.gov.uk/info/20135/residential care/1462/residential care ) which lists the

five council run care homes in York and the data listed on care homes.co.uk which lists the
locations and maximum number of residents a facility can have

(https://www.carehome.co.uk/care search results.cfm/searchtown/York). Both of these data

were captured in 2017.
Hospitals and Health care facilities

For inclusion in the spatiotemporal population model, the number of patients, age breakdown of
patients and the location of the hospitals is needed. The number of patients needs to be split into
inpatients, outpatients and A&E admissions, as these all have different time profiles, and broken

down into an expected daily number. NHS digital has data for hospital episode statistics, which
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provide the number of patients admitted and the admission category. These data also contain
broad age categories. These data are at the resolution of healthcare provider, which can be an
NHS hospitals trust, or for some private health care facilities a single hospital. The data for the
2015-16 hospital episode statistics was used. For NHS trusts with multiple hospitals, the number
of admitted patients were divided proportionally by the size of the hospital. Hospital size was
considered to relate to the number of beds it contains for inpatient care. These data were found
from hospital websites and CQC reports. In the analysis area, there is only one large hospital (The
York Hospital) so this receives the majority of inpatients. It is also the only A&E facility, so all
emergency admissions would be at the York Hospital. To supplement this data, the NHS choices
website to search for hospitals, urgent care, minor injury centres and rehabilitation hospitals to

get the number of beds at a facility and the services provided. The data capture year was 2017.
Schools

For schools in the buffer area, data from edubase was used. This includes the establishment’s
details, number of pupils, location etc. This provided destination data for school age children. The
age range for each school is given, and the majority fit within the population subgroups chosen
for this analysis. However, some Junior schools, infant schools and nursery have an age range
which overlaps the 0-4 and 5-11 categories. In these cases, the number of pupil’s was assumed to

be the same for each age group, and thus divided into the analysis age categories appropriately.

For schools in York, data from York City Council was used to give a more accurate representation
of the number of pupils at a school. This data was from the following sources and was for the year

2017:
York City Council

https://www.york.gov.uk/directory/3/schools directory/category/4

https://www.york.gov.uk/directory/3/schools directory/category/5

https://www.york.gov.uk/directory/3/schools directory/category/6

Information provided: Name, Address, Postcode, Age Range, Admissions Policy, Opening

Hours, Pupil Count

Data capture year: May 2017

Independent schools were taken from the independent schools council as these are not

listed in York council data. This data was also for 2017.
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Independent School’s Council

https://www.isc.co.uk/schools/england/yorkshire-area-north/york/

Information Provided: Name, Address, Postcode, Age Range, Number of Pupils

(borders and day)

210


https://www.isc.co.uk/schools/england/yorkshire-area-north/york/

Appendix B

Appendix B Conference papers
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Integrating spatiotemporal dynamics for modelling disruption to

road travel in flood events
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3 January 2019
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Abstract

Flooding can significantly disrupt road networks and the time of day or week in which a flood
event happens has a large effect on how disruptive it is. For example, a flood event during the
morning rush hour will likely affect more people than one which occurs on a Sunday morning as
demand on the road network is greater. Previous GIS-based research has introduced disruptive
hazard events to road network models, but have not considered the temporal nature of how risk
arises from the interaction of population movement with flooding. This research examines how
standard GIS methods compare to an enhanced method for assessing the effect of a storm event on

the travel of two population groups, primary school children and commuters, in York, UK.

Figure 1 outlines the methods compared in this work. The standard method (1a) uses school
catchment areas and origin-destination travel to work data to determine the output areas associated

with a destination (school or workplace zone). These origin-destination pairs are used in ArcGIS
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2 j.a.wright@soton.ac.uk

3 alan.smith@plymouth.ac.uk
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network analyst to generate routes as a measure of travel function. The enhanced method (1b)
utilises spatiotemporal population data generated using the Population 24/7 model (Martin et al.,
2015), which uses census data and other administrative information to create gridded estimates of
the number of people in an area at a given point in time. For example, in this work gridded
population estimates are produced for a Tuesday morning in term time and out of term time.
Origins are assigned a destination using an R code that statistically calculates the grid cells from
which people most likely travel to a destination. Finally, routes are generated using ArcGIS
network analyst. Both methods will compare routes generated in a non-flood baseline scenario to
the same flood scenario, generated using the Flowroute-i™ flood model from Ambiental Risk
Analytics, in order to quantify the disruption to road travel from the flood. It also ensures any

variation in results between the methods is due to their differences rather than the flood simulation.

It is expected that the enhanced method’s use of temporally specific population estimates will
provide more detailed information on the disruption to road travel than the standard method. This
data could be used to create flood risk assessments tailored to specific day times of interest. These
findings will be useful to those working in the field of spatiotemporal population data, but also

those working on assessing disruption to road travel, particularly from natural hazards.

a b . )
Gridded population data
Origins Destinations
(output (schools or v
areas from workplace Destination
census zone) assignment code
\ 4 \ 4 l
Flood Elood
----- »| Network Analyst 00
extent layer y extent layer [~ 7" »| Network Analyst
A l
Route data Route data

Figure 1: Standard method (a) and enhanced method (b) for assessing the impact of flooding on
travel function. Dotted arrow indicates data which is included in the workflow when a flood
scenario is considered.
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Spatiotemporal modelling of flood-related impacts on daily
population movement
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Summary

This paper presents research combining spatiotemporal population flow data, flood modelling and
network analysis to examine the effect of time of flood onset and flood magnitude on travel across
a city for commuters and primary school children. Findings quantify that flood onset time has an
effect on the disruption to travel comparable to flood event magnitude.

KEYWORDS: Spatiotemporal modelling, Network Analysis, Risk Analysis

1. Introduction and Background

The majority of fatalities caused by pluvial flash-floods in post-industrial countries concern those
travelling in a vehicle (Debionne et al., 2016; Arrighi et al., 2019). The number of people travelling
varies greatly over the course of the day, week or year, however mobility aspects are not frequently
considered in flood exposure and risk assessments (Debionne et al., 2016; Dawson et al., 2011).
This lack of dynamic population consideration means an important aspect of risk is missing when
planning for flood events.

Risk is a dynamic phenomenon and varies over both space and time (Mechler & Bouwer, 2014).
The ‘risk equation’ is a common conceptualisation of risk but rarely includes time or space (Hu et
al., 2017). Therefore, in this paper it is adapted to include both (Equation 1).

Risk = f{Hazardy,Exposurey, Vulnerabilitys) (1)

When studying the effect of floods on human populations, the time of flood onset is important as
the same hazard event could have different effects due to variation in the exposure and
vulnerability components of the risk equation (Freire et al., 2013; Dawson et al., 2011). Exposure is
highly time dependent (Aubrecht et al., 2012), for example, a flood occurring during the Monday
morning rush hour would mean more people are exposed on the roads than a Sunday morning.
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There are also differences in vulnerability as certain groups of the population are less able to react
swiftly to floods, for example young children and the elderly (Smith et al., 2015).

This paper presents a proof of concept for combining spatiotemporal population flow data with
flood data and network analysis to quantify the effect of time of flood onset versus size of flood
hazard. The hypothesis is that the time of flood onset has an effect on travel disruption comparable
to flood event magnitude. Commuters and primary school children are the population groups
selected for analysis using a case study for York, UK.

2. Methods

Spatiotemporal population origins were produced in two different ways. (i) For commuters, census
data describing output area to workplace zone commutes were combined with Labour Force Survey
data to create temporal profiles of numbers of people travelling at a given time. (ii) The origin data
for schoolchildren were generated through a spatially weighted Monte Carlo process converting
spatiotemporal gridded population data into a set of likely origin centroids. The destinations were
the population weighted centroids for the workplace zones and the point location of the primary
schools. Inundated areas were delineated through pluvial flood modelling of York using the
Flowroute-i™ model (Ambiental Risk Analytics). These data were analysed using ESRI’s ‘closest
facility’ algorithm and traffic data from HERE to model driving routes for a specific time of day.

A scenario-based approach was taken to test the hypothesis (Table 1). First a ‘baseline’ set of data
were created to be a control comparison to the flood scenarios. Two factors, time of flood onset and
size of flood event, were varied in turn. Three times of flood onset were picked to cover the
morning commute, 6am (flood time 1, FT1), 7am (flood time 2, FT2) and 8am (flood time 3, FT3).
1 in 30 and 1 in 100 year flood layers formed barriers to travel at each of these onset times and the
output routes saved for comparison to each other and the baseline. The network analysis was
conducted at set points during the morning commute (7am, 7:30am, 8am, 8:30am and 9am) to
capture variation. The analytical overview for this paper is presented in Figure 1. The origin,
destination and flood layer (if applicable) were used in the network analysis, producing shapefiles
of the routes taken between each origin-destination pair with distance and travel time. This
procedure was repeated for each time step in the scenario.

Table 1 Scenarios run during the analysis

Scenario Name Description
Non-flood Baseline Network analysis with no flood layer included as a baseline.
Flood time 1, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood

onset at 6am.

Flood time 2, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood
onset at 7am.

Flood time 3, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood
onset at 8am.

Network analysis with flood layer for a 1 in 100 year event, flood
Flood time 1, 100yr flood onset at 6am.

Flood time 2, 100yr flood Network analysis with flood layer for a 1 in 100 year event, flood
onset at 7am.

Flood time 3, 100yr flood Network analysis with flood layer for a 1 in 100 year event, flood
onset at 8am.
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Figure 1 Diagram of analysis workflow. Black boxes indicate inputs and outputs, the
blue box optional flood data, the yellow boxes processes and the dashed arrows steps
included for flood scenario analysis.

3. Results and Discussion

Three examples of the results from the analysis are given. Firstly, Figure 2 compares road travel
between the baseline and a flood scenario, the FT1 1 in 30yr scenario. Whilst there are similarities
in road usage volumes, with the city centre and ring road most used, a northern part of the ring road
is flooded in Figure 2b and longer routes are taken outside of the city to avoid flooding.

Secondly, Figure 3 compares the average travel time to an example destination between all
scenarios. FT1 has the highest average travel times, higher than the baseline at all given time
points, with FT2 rising above the baseline after 7:30am. In Figure 3a the increase in travel time for
FT2 is similar to FT1 from 8:30am, and in Figure 3b average travel time rises but not enough to
reach FT1. In both Figure 3a and 3b, the results for FT3 match the baseline until 9:00am where
there is a slight increase from the baseline. The pattern of results is similar between Figure 3a and
3b, but with a greater increase in travel time seen in 3b as the flood magnitude has increased.

Finally Figure 4 is a summary of the effect of each disruption scenario on the city. The time lost
was calculated by aggregating the additional travel time per origin-destination pair and, if a journey
to a destination was not possible, the time for a full work/school day. This gives the total time lost
at workplaces and schools due to flood disruptions. Commuters have more time lost partly due to
higher numbers of commuters and workplaces meaning more journeys take place. It shows that the
disruption is greater from FT1 for both magnitudes, and the decrease in time lost is greater when
changing the time of flood onset than changes in the flood magnitude. This therefore provides
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evidence to support the hypothesis that flood onset time has a comparable effect to flood
magnitude.
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onset time 1 (FT1) (6am).
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Figure 3 Average travel time of origins to an example destination (Workplace zone E33010098) for

each flood magnitude a) 1 in 30 b) 1 in 100. The three flood onset scenarios plus the baseline are
shown in each.
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Figure 4 The total time lost (hours) at all destinations in each flood scenario in York. Dark grey
represents the time lost by commuters at workplaces and the light grey the time lost by school
children at schools.

4. Conclusion

These results show that there are spatial and temporal differences in the impact of flooding on road
travel, with time of flood onset and magnitude affecting the average travel time to a destination.
This workflow could be applied to other cities and types of hazard for risk assessments including
spatiotemporal population data.
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Appendix C Additional Figures for Chapter 6

Figure A.1 presents the 215 workplace zone destinations, categorised into quintiles based on the average travel time increase experienced to reach them during the
flood event. The red destinations denote where no travel to this point was possible during the flood event, and these were broadly similar between the two sets of data
with spatial clustering primarily in the city centre and a couple of places in the suburbs. In both data sets there is spatial clustering of destinations which were more

affected by the flood event and those which were least affected.

Figure A.2. To identify spatial patterns in the flood scenario data, again the average travel time were mapped for each WPZ. This again showed spatial correlation in

where the destinations in each quartile were distributed. There were broad similarities between the data for Method A and Method B.
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Glossary of Terms

Glossary of Terms

Exposure: The scope of population, infrastructure and other assets located in a potential hazard
area (Hirabayashi et al., 2013)

Flood: Flood defined in insurance contracts as “temporary covering of land by water as a result of
surface waters escaping from their normal confines or as a result of heavy precipitation” (Kron,

2005)
Fluvial: Water whose source is a river

Hazard: A threatening event which has the potential to cause harm and has a calculated

probability of occurrence (Kron, 2005).

Natural Hazard: Any natural process which can result in harm to society e.g. volcanic eruption,

earthquake, flood, wild fire, drought
Network: A series of links and nodes which combine to form a network

Network science: The study of network representations of physical, biological and social
phenomena leading to predictive models of these phenomena (National Research Council, 2006).
Ones involving roads must have the topology of the transport network and the location of people

who are evacuating/moving (Brachman & Dragicevic, 2014)
Pluvial: Water accumulated on the surface through rainfall

Risk: Dynamic function of hazard, vulnerability and exposure (Mechler & Bouwer, 2014) which
fluctuates over space and time. The function of hazard, vulnerability and exposure over space
and time.

Spatiotemporal: Looking at both the spatial and temporal factors/dynamics of a phenomenon
Vulnerability: The degree a person is able to help themselves during a hazard event, influenced
by the presence, or lack of, resources to cope with a hazard (Civil Contingencies Secretariat, 2008;

McFadden et al., 2006) Everyone who is exposed is vulnerable to flooding, but some are more

susceptible due to social factors, therefore the risk is greater (Rogelis, 2015).
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