UNIVERSITY OF SOUTHAMPTON

DOCTORAL THESIS

A Cost-Driven Process Planning

Framework for Selective Laser Melting

Author: Supervisory Team:
Valeriya Griffiths Prof. James P. Scanlan,
Dr. Murat H. Eres,

Dr. A. Martinez-Sykora,

Dr. Phani Chinchapatnam

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Engineering

i the

Computational Engineering and Design Group
Faculty of Engineering and the Environment

August 13, 2018


http://www.soton.ac.uk
vg2g10@soton.ac.uk
J.P.Scanlan@soton.ac.uk
J.P.Scanlan@soton.ac.uk
J.P.Scanlan@soton.ac.uk
J.P.Scanlan@soton.ac.uk




iii

Declaration of Authorship

I, Valeriya Griffiths, declare that this thesis titled, “A Cost-Driven Process Planning

Framework for Selective Laser Melting” and the work presented in it are my own. I

confirm that:

This work was done wholly or mainly while in candidature for a research degree

at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been

clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

An article has been revised and submitted to the European Journal of Oper-
ational Research. The paper covers the Iterative Tabu Search Procedure pre-

sented in Chapter 6.

Signed:

Date:







Abstract

Valeriya Griffiths

A Cost-Driven Process Planning Framework for Selective

Laser Melting

Selective Laser Melting (SLM) is an additive manufacturing (AM) method, capa-
ble of producing end-use metal parts by selectively melting layers of powder with
a moving laser. The process can create complex lightweight geometries in a single
build, and offers an opportunity to improve product value through greater design
freedom, part consolidation, reduced tooling and reduced supply chain complexity
for a range of different industries. However, SLM also poses a number of material-
and process-related challenges, which prevent wider adoption of this process for end-
use part production. Due to high residual stresses characteristic of this process, build
failure and poor part quality are still common issues. The cost of this process is also
relatively high, while the need for post-processing leads to additional, and sometimes
unexpected, costs. Effective process planning can mitigate these problems, however,
this is not an easy task due to the large number of interdependent process parameters
and their combined effects on the process cost, time and quality. Part build orienta-
tion is one such important parameter, which affects the surface roughness, build cost
and time, as well as the need for support structure. Due to the anisotropic material
properties produced by SLM and the effects of part geometry on the residual stress
profile, there is also a complex relationship between build orientation, part quality
and the risk of build failure. Moreover, the build orientations of multiple parts deter-
mine how many SLM machines are required to build all those parts. The placement
of parts inside AM machines is known as a bin packing problem, and its link to build
orientation has been acknowledged throughout the literature. Existing approaches
have optimised build orientation and bin packing as two separate problems, limiting
the optimality of the overall solution.

Thus, this thesis provides a cost-driven framework for optimising build orienta-
tion and bin packing of multiple parts in SLM, and provides two heuristics for solving
these two problems simultaneously. The cost model used to drive the framework is
developed based on a thorough literature review, and incorporates build cost and
post-processing cost. Additionally, by considering SLM in the context of lean manu-
facturing two distinct production scenarios are identified, and referred to as Identical
Batch Production (IBP) and Mixed Batch Production (MBP). Thus, each heuristic
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is aimed at a specific production scenario. For IBP, a Tabu search procedure is devel-
oped by solving the build orientation problem along with a cutting-stock problem, as
bins are assumed to be identical. To improve the efficiency of this search heuristic an
area-based approximation strategy is proposed, which can reduce the solution time
by as much as 50%, as indicated by the computational results.

The effect of build orientation on residual stresses is also considered, by extending
the above Tabu search to address the multi-objective problem of cost and residual
stresses in the context of IBP. Due to the high computational cost of this problem,
two alternative approximation strategies are proposed, and coupled with the multi-
objective Tabu search. The two strategies are demonstrated on a single test part of
medium complexity; the results demonstrate the validity of this approach, as better,
albeit less obvious trade-off solutions were found by the proposed Tabu search than
by an experienced SLM operator.

Finally, an Iterative Tabu Search Procedure (ITSP) is developed for the MBP
scenario. Because the solution space of this problem is much larger and more complex
than the IBP, the ITSP consists of six distinct stages, where each stage is aimed
at exploring a different area of the solution space. The procedure is benchmarked
against commercial software, indicating an average cost improvement of 14.6% for 27

test instances.
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Chapter 1

Introduction

Additive Manufacturing (AM) is a recently emerged group of methods, which has
been formally defined as the process of joining materials to make objects from three-
dimensional (3D) model data, usually layer upon layer, as opposed to subtractive
manufacturing fabrication methodologies (Wohlers, 2014). In contrast to traditional
subtractive methods, AM offers greater freedom of geometry, less material waste and
less tooling, thereby, AM is able to produce highly complex parts, which would have
been infeasible or cost-prohibitive in the past, relatively cheaply. This also means
that fewer process steps are required in AM and lead times can be reduced from
months to weeks and from weeks to days (Williams et al., 2016). These benefits are
now being recognised by global market leaders such as BAE Systems, GE Aviation
and Rolls-Royce plc.

However, despite the large and rapidly growing body of research relating to this
technology there are still a number of gaps that need to be addressed. Some of
the key challenges are outlined in Section 1.3 and Section 1.4 of this chapter, while
the corresponding research objectives and contributions are outlined in Section 1.3
and Section 1.4, respectively. To provide some context to the chosen problem, a
brief history and outline of different AM methods is provided in Section 1.1, and an

overview of AM process steps is provided in Section 1.2.

1.1 Emergence of Additive Manufacturing

The origins of AM can be traced back to Rapid Prototyping (RP). A process known
as Stereolithography (SLA) was the first commercial RP technology, developed and
patented by Hull (1986), who later founded 3D Systems. The method works by curing
UV-reactive resins in a layer-by-layer fashion, as shown schematically in Figure 1.1.
A layer of liquid resin is spread evenly along the build plate, an ultra-violet (UV)
laser then selectively scans the resin, creating a solid slice of the geometry. Following
this the build plate shifts down by a distance equivalent to the resin layer thickness
and a new layer of liquid resin is spread over the top. The process repeats until the
3D geometry is finished.

The most significant part of this technology was the creation of the Stereolithogra-

phy (STL) file format, which remains the standard geometry format for AM machines
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F1cURE 1.1: Summary and classification of AM processes.

today (Ma et al., 2001). The method continues to enjoy a wide range of uses such as
medical models and moulds for investment-casting, as well as commercial uses such
as jewellery. However, due to its restriction in material range and the development
of other competing AM methods its unit sales have steadily declined in the last two
decades (Wohlers, 2014). Selective Laser Sintering (SLS), a method which fuses poly-
mer powders on a bed of powder using a carbon dioxide (CO2) laser, was patented
soon after, by researchers at the University of Texas at Austin (Deckard, 1989). This
marked the birth of powder-bed fusion methods, which today have the potential to
create functional end-use metal parts, as will be discussed in the following section.
Many other polymer-based methods and variants have been developed since,
such as Fused Deposition Modelling (FDM), binder jetting and 3D printing. These

methods enjoy a wide range of applications today such as prototyping and tooling,
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consumer goods, medical implants, automotive and aircraft parts, and even multi-
material parts (Goh et al., 2017).

1.1.1 Metal AM Processes

Following the success of SLS using polymer powders, attempts to apply the process
to metal powders quickly followed. Early machines could not provide sufficient power
or building conditions to produce high quality metal parts, and thus indirect methods
were initially developed which rely on mixing (or coating) of metal powders with a
polymer (Agarwala et al., 1995). The polymer binder melts much more readily and
spreads in between the metal powder particles, acting as a binder. A post-processing
sintering treatment removes the binder and the remaining highly porous structure
can be infiltrated with a molten material, such as bronze.

In 1995 a company called EOS released the first commercial Direct Metal Laser
Sintering (DMLS) machine, able to sinter metallic mixtures of steel-based and bronze-
based powders, with a CO4 laser (Khaing et al., 2001). While this was still a sintering
process, which produced fragile and porous parts (30-45% porosity), the M250 was a
crucial technological leap and the forerunner of todays Selective Laser Melting (SLM)

machines.

?

(:e Laser beam Moving mirror
/
,/

Recoater blade
Metal powder

il

x o)
Powder delivery ‘ Build platform

platform

FIGURE 1.2: A schematic description of the Selective Laser Melting (SLM) process, where
the build direction is defined by the z-axis.

Like DMLS, SLM is the process of selectively fusing powder by a moving laser in
a layer-by-layer fashion, as shown in Figure 1.2, but this fusion is achieved through
fully melting the powder (as opposed to sintering) resulting in densities of over 99%
(Sames et al., 2016). This has become possible due to better alloy powder mixtures,
better controlled build chambers filled with inert gas and improved laser technology,
by replacing COs lasers with Nd:YAG! and fiber lasers, which are much more readily
absorbed by metals (Vandenbroucke and Kruth, 2007).

neodymium-doped yttrium aluminum garnet.
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In 2000 another powder-bed process, known as Electron Beam Melting (EBM),
was developed in Sweden and licensed by Arcam AB, which remains the main EBM
machine supplier today (Sames et al., 2016). The process is similar to SLM in many
respects, however, instead of using a laser, it relies on an electron beam as its energy
source, and thus, requires vacuum conditions inside the build chamber. The process
is faster than SLM, due to the larger power input and larger spot diameter of the elec-
tron beam; however, this also leads to poorer surface quality and feature resolution.
Furthermore, in EBM each layer of powder must be pre-scanned to a sintered state
before it is melted, to prevent powder particles from being repelled and dispersed
by the electron beam. The build-up of charge in the part requires helium gas to be
added into the chamber while the higher process temperature requires significantly
longer cooling times than SLM (Gong et al., 2014).

Another key metal AM process is Direct Energy Deposition (DED) which traces
its history to welding. Rather than using mirrors (as in SLM) or magnets (as in EBM)
to control the beam, DED effectively uses a welding torch mounted on a robotic arm
and incorporates a wire or powder feed nozzle, which deposits material directly into
the path of the welding torch. Thus, DED does not require a powder-bed and offers
greater flexibility in terms of build size and platform; new parts can be built on a
substrate or as additional features on an existing part. Although DED is faster and
more flexible than the powder-bed processes, it offers the worst surface quality and
dimensional accuracy, making it more suitable for repairs and production of large

parts of low-to-medium complexity (Vayre et al., 2012).

SLM EBM DED
Power (kW) 01-1 1-3 0.5-4
Building speed (cm?/h) 5-170 55 - 80 2500
Surface roughness Ra (pm) 9-16 25 - 35 200
Layer thickness (pm) 20 - 100 50 - 200 200 - 300 (powder)
3000 (wire)
Dimensional accuracy (pm) 75 - 100 100 - 200 200 - 380 (powder)
16000 (wire)
Maximum build dimensions (mm) 800 x 400 x 500 350 x 380 4000 x 1981 x 1778
(r-4-2) (o-H) (z-3-2)
Material delivery system Powder feeder Powder feeder Nozzle-fed wire
and re-coater and re-coater or powder

Referenced manufacturers

EOS, Concept Laser

Arcam

Sciaky, Optomec

TABLE 1.1: Summary and comparison of metal AM processes.

Table 1.1 summarises the key properties and trade-offs of the three main metal AM
methods; DED offers faster build times and greater flexibility in terms of part size and
material, but is limited in the relatively accuracy and geometry it can achieve; SLM
offers the highest resolution and build accuracy out of the three but is slightly slower;
both processes suffer from high residual stresses due to large thermal gradients during
the build cycle. EBM falls in between the two in terms of building speed and accuracy,

and does not suffer from residual stresses as significantly, but offers a limited choice
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of materials and incurs high running costs due to the vacuum and heating conditions,

as well as material waste.

1.2 General Process Steps

All AM and RP processes follow the same basic steps, consisting of file preparation,
part building and post-processing. The process begins with creating a 3D computer-
aided design (CAD) file of the part geometry. The majority of designs are now
created using CAD software packages, of which there are many. Most CAD systems
are also capable of converting the geometry into STL file format, which defines the
external closed surfaces of the CAD geometry, using a mesh of tiny triangles (no other
information about the solid geometry or features is stored). Before being transferred
to the machine, the STL file must be positioned and oriented in the build environment;
the rotational position of the part geometry with respect to the z-axis (as shown in
Figure 1.2) is called the build orientation. Selecting a suitable build orientation is an
important decision as it has a direct effect on the production cost, time and quality,
as well as the required post-processing. Additionally, for processes such as SLM and
FDM, sacrificial support structures must be generated to prevent part distortion and
failure during the build. As shown in Figure 1.3, the shape and volume of support

structure is also closely related to the build orientation.

F1GURE 1.3: Example of different build orientations and resulting support structure for two
different part geometries built via SLM (taken from Waterman (2017)).

Next, the oriented part geometry and support structures must be sliced into hor-
izontal cross-sectional layers, the thickness of which is predetermined by the process,
typically within a range of 20 — 100 pm for most SLM machines (Vayre et al., 2012),
and selected by the user to meet the optimal input energy requirements for the given
material (Kempen et al., 2015). Commercial software packages such as Magics (pro-
duced by Materialise) and Nefabb (produced by Autodesk) can be used to slice the

file, generating the sliced data in a new file format which stores the thickness and
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surface area of each layer. The sliced file format is dependent on the system manu-
facturer, for instance, 3D Systems use System Layer Interface (SLI), while Common
Layer Interface (CLI) is compatible with EOS machines. The next stage involves
determining a scan strategy and generating a tool-path for each layer, which is of-
ten done by the same software as the slicing. The standard output format for this
is written in the computer numerical control (CNC) language called G-code which
contains ordered vectors of the tool-path. Some important decisions have to be made
at this point such as selecting the scan pattern and hatch spacing (spacing between
the vectors). Finally, the G-code file and machine build parameters are uploaded to
the AM machine and the part is built. Choosing the correct build parameter values
is vital for building a part of sufficient quality and accuracy, as well as minimising
production time and cost. During the build, commercial powder-bed machines will
typically provide the operator with in-process monitoring data, such as the melt-pool
temperature signature and melt-pool dimensions, using a high frame-rate camera
and photodiode, respectively (Berumen et al., 2010). This allows for post-build error
examination and fine-tuning of the process parameters.

After the build chamber has cooled, the parts are extracted from the machine and
cleaned of any loose material. Parts produced by metal powder-bed processes are
often cut away from the substrate using wire Electric Discharge Machining (EDM),
though other tools such as a hacksaw can be used, depending on part specifications,
geometry and ease of removal (Atzeni and Salmi, 2012). Current metal parts pro-
duced by SLM typically require post heat treatments to alleviate residual stresses
and improve part ductility; Hot Isostatic Pressing (HIP) may also be used to re-
duce porosity and seal micro-cracks (Vrancken et al., 2012). The final stage includes

support structure removal and surface finishing.

1.3 Project Background and Motivation

1.3.1 Design Benefits of AM

In current aerospace manufacturing, Buy-to-Fly ratios as high as 20 : 1 (i.e. with 95%
of material turned into scrap) are not uncommon when using subtractive methods,
where the weight of a part is inversely proportional to the volume of scrap. This poses
a particular challenge for the aerospace industry, which relies on high-value alloys,
like nickel and titanium, and is under constant pressure to produce lighter and more
efficient aircraft with lower emissions (Huang et al., 2016). In contrast, AM methods
can yield Buy-to-Fly ratios of 2 : 1 or less (English et al., 2010; Horn and Harrysson,
2012), as these methods only add material where it is needed rather than removing
unwanted material from a billet.

Furthermore, the additive “tool-less” nature of AM processes eliminates many

of the conventional manufacturing constraints of both subtractive methods such as
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machining (e.g. fixtures, tool access) and formative ones such as casting (e.g. uni-
form wall thickness, split line location) (Yang and Zhao, 2015). Complex lightweight
geometries can be created using topology optimisation, which is a computational
method of distributing material economically within a predefined design space (Watts
and Hague, 2006).

g
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FIGURE 1.4: Concept heat exchanger design build in one piece via SLM (taken from 3T RPD
(2018))

Part consolidation can also reduce labour and tooling costs, assembly time, as well
as improve the overall part quality, as demonstrated by General Electric (Kellner,
2014) who used AM to create a single-part fuel injector nozzle, which previously
consisted of 18 components. The new design reduced the number of welds from 25
to just five, and is two thirds lighter and five times more durable than the original
assembly. Other examples of how AM can be used to improve design functionality
include complex heat exchange systems (as shown in Figure 1.4), parts with conformal
cooling channels and integrated oil delivery systems, all built in a single process (Horn
and Harrysson, 2012).

1.3.2 Supply Chain Benefits of AM

The above design benefits also lead to two key supply chain benefits. Firstly, without
the need for tooling, on demand production of customised parts is no more costly
than mass production, and perhaps even cheaper, via AM (Garrett, 2014). This
in turn enables AM production to be driven by demand, rather than the need to
justify tooling costs, reducing the costs and risks associated with large inventories
and overproduction. Secondly, due to its geometric flexibility AM can produce a wide
range of geometries simultaneously in a single build; this is referred to as Mixed Batch
Production (MBP) throughout this thesis, and can be used to maximise machine
utilisation and produce small quantities of parts efficiently. According to Ruffo et al.
(2006) MBP is already common practice employed by RP bureaus and specialised AM
service providers, who often receive small orders for parts of various sizes, functions

and complexities from a number of different customers.
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Both the design and the supply chain benefits make AM especially promising for
the aerospace industry, which is characterised by relatively low production volumes,

high part variety and highly complex systems (Webb et al., 2015).

1.3.3 AM Process Planning

Process planning is an important and currently time consuming step in SLM. Suit-
able laser parameters and thermal conditions are critical for robust and high quality
production; meanwhile alloy properties, powder quality, part geometry and part posi-
tioning in the SLM build chamber all have a significant and combined effect on build
quality, cost and time. Commercial software like Magics and Netfabb, as well as a
number of academic models offer process planning support, however, these tools are
limited to one process parameter at a time and typically require the user to provide
suitable weights or an order of priority for a number of competing objectives.

Thus, existing tools can only provide limited decision support, instead of fully
automated process planning. This means that process parameters are often selected
manually by experienced users, making the process planning step significantly more
time consuming and labour intensive, while also making the quality and productivity
of SLM highly dependent on the level of skill and experience of individual designers
and manufacturing engineers. Poorly informed decisions can lead to time consuming
and costly trial-and-error during the development of a product; Sames et al. (2016)
termed this the “rule of 4”7, meaning it can take up to four iterations to achieve a
successful part and reliable build process. Furthermore, these decisions affect not
only the SLM process but also the subsequent post-processing stage, which can have
a significant effect on the final unit cost and lead time of a part and thus must be
considered as part of process planning (Mellor et al., 2014). The risks of build failure
and significant post-processing raise the current barrier to the adoption of SLM and
other AM processes, especially in industries such as aerospace, where quality control
and certification requirements are particularly stringent.

One of the key process parameters, as mentioned in Section 1.2, is the part build
orientation, which affects many aspects of SLM (and other AM methods), including
machine run time and cost; part surface roughness, accuracy and required post pro-
cessing; material anisotropy, support structures and residual stresses in the parts; and
finally batch size, which is a driving factor of machine productivity and overall man-
ufacturing cost. This clearly presents a large number of trade-offs making it difficult,
not only to locate optimal build orientations, but to define a measure of “optimality”
to evaluate these build orientations in the first place, especially when dealing with
MBP.

Furthermore, the high residual stresses in SLM are currently one of the biggest
challenges of this process, adding significant build failure risk and limiting its suit-
ability for end-use structural parts. The need for additional sacrificial support struc-
tures and their subsequent removal results in additional material waste, build time

and time-consuming manual finishing operations, while the need for stress relief heat
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treatments further increases the lead time and cost. Although numerous simulation
models have been proposed (Roberts, 2012; Megahed et al., 2016; Peng et al., 2017)
for predicting residual stresses and distortion during SLM, they share two major
limitations: firstly, simulations of realistic parts are extremely time consuming and
computationally expensive; secondly, these simulations can only provide a simpli-
fied approximation of the real process, as numerous assumptions must be made to
make them tractable. For this reason, applying process modelling and optimisation
heuristics to minimising residual stresses is a particularly difficult task, and existing

research relating to this problem is limited (Megahed et al., 2016).

1.3.4 SLM in Rolls-Royce

The potential benefits of metal AM processes have been recognised and already ex-
ploited to some degree by Rolls-Royce. For instance, the lead-time of the XWB-97
front bearing housing (FBH) was reduced by more than 30%, by manufacturing the
FBH vanes via EBM (Stuart, 2015); while, DED is a well-established method of Blisk
repair used by a number of aero-engine manufacturers (Hellemann et al., 2003; Ford
and Despeisse, 2016). However, based on the trade-offs discussed in Section 1.1.1,
the focus of this thesis is on the SLM process, due to its particular suitability for the
production of intricate medium-sized aero-engine parts.

To use SLM effectively and to be able to assess its suitability against other methods
of manufacture, Rolls-Royce must be able to accurately predict and minimise the cost
of the entire production process. Rolls-Royce has already developed a holistic cost
model of SLM, but currently has no tool to optimise the process or minimise the
cost; as discussed above, this leads to a lot of manual effort going into the design and

process planning steps, which lack a clear and consistent procedure.

1.4 Challenges

Based on the above discussion, the challenges addressed in this thesis are summarised

in the following four points:

Automated process planning in a realistic production context: Despite the
existence of commercial software tools such as Magics and Netfabb, as well as a
number of academic methodologies, fully automated process planning is yet to be
achieved. Additionally, the role and benefits of AM methods in the supply chain
of adopting companies such as Rolls-Royce are currently not fully appreciated or
understood. Thus, to encourage mainstream adoption of AM, process planning must
be not only robust and fully automated, but must also address different, realistic

supply chain and production scenarios.
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Holistic objective function for build orientation optimisation: Part build
orientation affects a number of important factors such as build cost, build time, sup-
port structure and build surface roughness. Consequently, existing literature offers
numerous competing objective functions, but lacks agreement on which is the most
suitable one, while existing multi-objective functions require the user to provide ap-

propriate weight coefficients or target values, which is a difficult task in practice.

Consideration of residual stresses and post-processing: Other important
challenges in SLM include high residual stresses and poor surface finish, both of
which have an adverse effect on the part fatigue life, and thus, necessitate additional
post-processing steps following SLM, which in turn increase lead time and cost. Fur-
thermore, high residual stresses can lead to build failure, microcracking and deteri-
oration of build accuracy during the SLM build process. As suggested by a number
of works (Mercelis and Kruth, 2006; Protasov et al., 2016; Peng et al., 2017) there is
a non-trivial relationship between the part geometry, build orientation and residual

stress profile; however, this relationship is yet to be fully explored and exploited.

Simultaneous parameter optimisation for more optimal solutions: While
build orientation and bin packing are two important and strongly interdependent
parameters in AM, there is currently no approach which addresses the two parameters
simultaneously. Existing works address the two parameters as two separate problems,
typically with limited movements in the bin packing problem, thus, limiting the scope

of the optimisation search and missing out many potentially good solutions.

1.5 Research Objectives

To address the four challenges outlined above, this thesis proposes an automated
process planning framework to minimise the overall production cost, which includes
SLM build cost and post-processing cost. In this way, the framework should unite
the competing decision criteria for build orientation and bin packing into a single
objective function, making the problem simpler and more intuitive to solve, with
only a few inputs and no supervision required from the user. The framework should
also include the effects of residual stresses and should be applied in the context of
realistic supply chain scenarios. Thus, the research entails meeting the following five

objectives:

1. Develop an automated cost-driven process planning framework, which simulta-

neously optimises build orientation and bin packing for SLM.

2. Develop suitable optimisation models that apply the framework to the IBP and

MBP scenarios, respectively.

3. For IBP, the optimisation model should incorporate both build cost and post-

processing cost.
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4. For MBP, the optimisation model should consider the bin assignment of parts,

as well as build orientations and bin packing.

5. Finally, develop a model which uses finite element analysis (FEA) of SLM to

optimise both the unit cost and residual stresses in the context of IBP.

1.6 Contributions

The contributions made by this thesis are summarised as follows:

1. A process planning optimisation framework has been developed, which considers
production cost as a function of part build orientation and 2D bin packing
inside identical SLM machines. This approach unites a number of competing
objectives, such as surface roughness, support structure and projected area of
the part, into a single objective, and removes the need for guessing appropriate
objective weights by assigning realistic cost coefficients to the different objective

criteria.

2. A simple approach has been proposed, which enables target surface roughness
to be provided as a design requirement by the user and treated as a hard con-
straint; in this way, the build surface roughness of SLM parts can be considered
as a post-processing cost, rather than a separate objective. The benefits of this
are two-fold: firstly, this approach supports contribution 1 above, in unifying
different build orientation criteria into a single objective function; secondly, it
includes post-processing costs into the process planning stage, which reduces
the risk of hidden or unforeseen additional costs at the later stages of the man-

ufacturing process.

3. In order to effectively deal with different demand patterns, the framework has
been applied to two different production scenarios, namely IBP and MBP, as
discussed in Section 3.1.1. The two production scenarios are addressed in Chap-
ter 4 and Chapter 6, respectively. Since the framework has been developed in
the context of the aerospace industry, the presence of safety-critical parts has
been considered and a consequent build orientation constraint has been pro-

posed, which is discussed in Section 3.1.2.

4. For the IBP scenario, the cost model includes both build cost and post-processing
cost as a function of build orientation and 2D bin packing. Similar works by
Alexander et al. (1998) and Byun and Lee (2006) propose holistic cost models
to compare different build orientations in AM processes such as FDM and SLA;
however, these models only consider single prototype production and do not
include batch packing. No existing works have addressed the issue of modelling
total production cost as a function of build orientation and 2D bin packing in

the context of large-scale, end-use parts produced via SLM. Moreover, Chapter
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5 extends the framework, by considering the multi-objective problem of min-
imising total cost and residual stresses in SLM. Two methodologies have been
explored, and the resulting Pareto sets have been compared for a single geome-
try of medium complexity. The results indicate that the best build orientation
may not necessarily be the most obvious one, even for an experienced SLM user,

which demonstrates the usefulness of solving this problem.

5. For the MBP scenario, a novel Iterative Tabu Search Procedure (ITSP) has been
proposed to solve the combined problem of build orientation and 2D bin packing
of mixed geometries in a coupled way. To reduce the complexity of the problem
the I'TSP uses build cost to drive the search, without including post-processing,
which is highly dependent on target surface roughness and surface finishing
method chosen for each part. The ITSP works by iterating between the two
problems, aiming to improve the bin packing solution, while also incrementally
improving the build orientations of individual parts in each bin. This coupled
approach is benchmarked against a de-coupled approach, equivalent to a single
iteration of the ITSP (i.e. where the build orientation and bin packing problems
are solved separately and only once) using the commercial software Magics. The
results show a significant improvement in build cost (14.6% average), supporting
the above hypothesis that optimising build orientation and bin packing in a
coupled manner is more advantageous than solving the two problems separately.

This work has been submitted to the European Journal of Operational Research.

1.7 Thesis Structure

This thesis consists of seven chapters, the contents of which are summarised as follows:

e Chapter 2 provides a literature review of key process challenges and costs in

SLM, as well as the main process planning parameters affecting them.

e Chapter 3 covers the methodology of the proposed process planning framework,
and provides further context and practical applications of the IBP and MBP

scenarios.

e Chapter 4 describes the Tabu search (TS) procedure developed to optimise the
unit cost of IBP.

e Chapter 5 extends the TS strategy of Chapter 4 and provides a methodology

for finding trade-off solutions for unit cost and thermal residual stresses.

e Chapter 6 describes the Iterative Tabu Search Procedure (ITSP) developed to
minimise the build cost of MBP.

e Chapter 7 summarises the research findings and drawn conclusions, and suggests

potential directions for future research.
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Chapter 2

Literature Review

Careful process planning is a crucial step in the SLM process as it affects part surface
quality, dimensional accuracy, material microstructure and mechanical properties, as
well as production cost and lead time. Selecting optimal parameters can produce
cost-effective and high quality functional parts, while a poorly planned process is
likely to result in build failure and waste (Berumen et al., 2010).

Thus, this chapter consists of three parts. The first provides an overview of the
key characteristics and challenges related to part quality and process parameters.
The second provides an overview of key process parameters relevant to this thesis,
providing a critical literature review regarding modelling and optimisation of build
orientation, support structure and batch packing. The third and final part looks at the
key drivers and the overall nature of AM cost. Build time is covered in this section,
since it is both a driver of cost and an important objective in its own right, and
existing modelling approaches and current challenges with respect to manufacturing

time and cost are discussed.

2.1 SLM Process Characteristics and Challenges

2.1.1 Material Porosity

Material porosity is a key challenge in SLM, as it has a detrimental effect on frac-
ture toughness, fatigue performance and overall mechanical strength of the produced
material. Figure 2.1 shows two types of pores commonly found in SLM materials
— spherical and irregular. Spherical pores typically form due to gas bubbles getting
trapped in a pool of locally melted powder, which cools before the gas has a chance
to escape; these gas bubbles may simply be inert gas from the build chamber at-
mosphere or gas bubbles released by the porous powder particles as they turn into
molten metal. Irregularly-shaped pores usually occur as a result of process-specific
phenomena, namely balling and key-holing (Townsend et al., 2016).

Balling and key-holing are two persistent challenges in laser-related processes and
are commonly observed in welding (Madison and Aagesen, 2012). Each track of newly
melted powder is subjected to very high thermal stresses, which create local gradients
in the surface tension of the molten metal (known as Marangoni effect) and cause it

to break up into balls of liquid; this is known as balling (Strano et al., 2013b).
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Spherical pores

Irregular pores

FIGURE 2.1: Electron microscope image showing different types of pores. Image taken from
Song et al. (2015).

On the other hand, key-holing occurs when sparks from the laser beam hit the
melt-pool, ejecting droplets of liquid metal onto the surrounding surface (this is known
as spatter). Key-holing can also occur as a result of metal vapour which may exert a
pressure on the melt-pool, high enough to expel the liquid from the melt-pool cavity
(Shifeng et al., 2014). Collapse of this cavity can leave voids in the wake of the laser
beam (Madison and Aagesen, 2012; Kamath et al., 2014), and is often associated with
the presence of un-melted powder particles in parts built via SLM (Olakanmi et al.,
2015).

SLM porosity is still an ongoing research problem, since it is highly sensitive to
alloy properties, powder quality and process parameters, and must be considered
alongside other important factors such as microstructure. However, with the right
combination of laser and scan parameters (please refer to Figure 2.8), densities of
over 99% can be achieved for many industrial alloys, including those of aluminium
(Rao et al., 2016; Tang and Pistorius, 2017), nickel (Carter et al., 2012; Dub et al.,
2016) and titanium (Ali et al., 2017; Alfaify et al., 2018). The density can be further
improved through a post-SLM HIP treatment, however, it should be noted that HIP
also reduces material strength and hardness through coarsened microstructure; adds
significant cost and time to the production process (Lewandowski and Seifi, 2016);
and may not eliminate the presence of pores completely, particularly surface pores
(Leuders et al., 2013).

2.1.2 Thermal Residual Stresses and Cracking

Arguably, an even more critical limitation of SLM is the occurrence of high residual
stresses, due to their complex interaction with process parameters and microstruc-
ture. Even moderate residual tensile stresses can result in local micro-cracks and
a significantly reduced fatigue life and toughness of the part (Leuders et al., 2013),
while severe stresses can lead to complete build failure during SLM, due to severe
cracking and distortion of the part (Yadroitsava et al., 2015).

The large input of thermal energy, combined with the relatively low conductivity
of the cooling material underneath, causes a steep thermal gradient and heat accu-

mulation in the top surface of the part. Due to this accumulated heat, the top of
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the part tries to expand, while being restricted and subsequently compressed by the
underlying solid material, resulting in a tensile stress field in the top surface as it
cools. This process is shown in Figure 2.2. Additionally, each time a new melt-track
is created by the laser, the molten metal shrinks as it cools, causing a more localised
tensile stress field for each track (Mercelis and Kruth, 2006). Consequently, the resid-
ual stress profile is determined by a complex combination of thermal process settings,
such as build chamber temperature and laser beam parameters; material properties,
such as thermal expansion coefficient and elastic modulus; and the built geometry,

which includes support structure.

Heating

Cooling

FIGURE 2.2: Residual stress fields caused by the thermal gradient. Image taken from Mercelis
and Kruth (2006).

Preheating the powder bed can alleviate a significant portion of the residual
stresses by reducing the thermal gradient. However, it also incurs an additional
energy cost and can affect the properties of different materials in a number of ways,
for instance, reducing the strength of tool steel and aluminium alloy (Kempen et al.,
2014; Buchbinder et al., 2014), while reducing ductility in titanium alloy due to in-
creased oxidation (Vrancken et al., 2016) and an undesirable microstructure (Ali et al.,
2017).

The laser path can further influence residual stresses — the “chequerboard” or
“island” scan strategy, shown in Figure 2.3, is a popular approach since it reduces
the build-up of heat by shortening the scan vectors and distributing the heat input
more evenly across each layer. Rotating the scan pattern for each layer, usually by
60° — 90°, has also been shown to improve the overall distribution of heat, thus,
further reducing the accumulation of residual stresses (Gusarov et al., 2011; Carter
et al., 2014; Ali et al., 2018). Other proposed strategies include the use of a pulsed
laser (Mumtaz and Hopkinson, 2010), layer re-melting (Yasa and Kruth, 2011; Ali
et al., 2018) and laser shock peening (Kalentics et al., 2017).

Heat treatment after SLM can effectively alleviate residual stresses, while HIP
can also seal the majority of micro-cracks. However, as already mentioned in Section
2.1.1, both methods add cost and time, and may not fully eliminate all stresses, while
in some cases the heat-induced stress relaxation can actually produce new cracks and
severely damage the part (Patterson et al., 2017). As with porosities, HIP is only
able to seal internal cracks that do not reach the part’s surface (Carter et al., 2012).
Furthermore, the part must also be fixed to the build plate with support structure to

prevent it from distorting before it can be post-processed, as well as to help dissipate



16 Chapter 2. Literature Review

5mm (/sland Size)

—_—

Byl s e LA X o BB e — A& ]
e !
£ |
v} 1

1

\ 1

| U

! |
_wlv_: "
£ | | |
8| | | I
oM | | [
o |l I \ |
(D| | ‘ ]

1 | 1

e e

FIGURE 2.3: Schematic example of the island scan strategy. Image taken from Carter et al.
(2014).

heat away from the part. As discussed in Section 2.2.1, support structure is a source
of material waste and additional post-processing.

An interesting material-based approach has been proposed for building parts with-
out the need for supports, known as anchorless SLM (ASLM) (Mumtaz et al., 2011;
Vora et al., 2015, 2017). This approach blends powders in specific proportions, so
that when these powders are melted together they form a eutectic alloy, which has
a significantly lower melting temperature than its original constituents. By keeping
the powder bed temperature raised above this new melting point the part can be
maintained in a semi-solid state, thus, avoiding the onset of severe thermal gradients,
residual stresses and resulting distortion. Despite its potential, this method has only
been applied to a few alloys such as bismuth-zinc (Mumtaz et al., 2011) and alu-
minium (Vora et al., 2015, 2017), and therefore, requires further research to expand
its scope. Furthermore, the ASLM approach does not account for other problems
such as the effects of gravity on large overhangs.

Finally, the combined geometry of the part and the support structure clearly has
a strong, albeit complicated relationship with the residual stress profile (Mercelis and
Kruth, 2006; Zaeh and Branner, 2010; Keller et al., 2013). By extension, the influence
of build orientation on residual stresses is twofold, since it determines not only the
geometry of layers and height of the part, but also the location of support structures,
as discussed in Section 2.2.1. The only known work to exploit this relationship is
that of Peng et al. (2017), who optimise the build orientation for minimum thermal

distortion, based on a simulated residual stress profile.

2.1.3 Microstructure and Mechanical Properties

Figure 2.4 shows the typical alloy microstructure produced by SLM, with largely
equiaxial grain structure in the z-y plane and strongly elongated columnar grains in
the z direction. This grain structure can be explained by the accumulation of heat

in the top surface of the part, and the relatively low conductivity of the surrounding
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unfused powder, causing a strong thermal gradient in the z direction, thus, encour-
aging columnar grain growth as the molten metal cools and as heat diffuses through
the layers of material down into the substrate. Columnar grain structure has been
observed in most commonly studied SLM metals, including alloys of titanium (Chle-
bus et al., 2011; Murr et al., 2012), nickel (Amato et al., 2012; Harrison et al., 2015),
aluminium (Olakanmi et al., 2015) and stainless steel (Niendorf et al., 2013; Shifeng
et al., 2014). In general, the fast cooling rates of SLM cause a fine martensitic crystal
structure with subsequently high tensile strength and hardness, but poor ductility,
when compared to wrought and cast alloys (Gorsse et al., 2017; Kok et al., 2018).

(A) Ti-6Al-4V columnar microstructure. (B) CM247LC microstructure in 3D.

FIGURE 2.4: Anisotropic microstructure of SLM alloys. Images taken from Cain et al. (2015)
and Carter et al. (2014), respectively.

Most literature also reports anisotropic behaviour in SLM alloys, although the
exact nature of this behaviour varies significantly between different materials and
even between studies of the same alloy (Kok et al., 2018). For instance, Simonelli
et al. (2014) reported Ti-6Al-4V to have the lowest strength in the z direction due
to porosity between layers, compared to  and y directions; meanwhile Riemer et al.
(2014) showed fatigue life of 316L stainless steel to be much better in the z direction
due to a more tortuous crack path, as shown in Figure 2.5. Furthermore, the former
reports poor ductility in all directions and reduced performance in the z direction due
to tensile residual stresses, while the results of the latter indicate a relatively high
ductility and minimal impact from residual stresses. Conversely, Cain et al. (2015)
reported the tensile strength of Ti-6Al1-4V to be highest in the z direction, in contrast
to Simonelli et al. (2014).

Material anisotropy is generally believed to be the result of columnar grain struc-
ture, though other factors such as the residual stress profile, surface roughness, poros-
ity and defects clearly play an important role as well (Rafi et al., 2013). Thus, the
variation in existing literature on this topic can be explained by the fact that mechan-

ical and anisotropic behaviour is caused by a combination of several complex factors,
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build direction
-

build direction

(A) Tortuous crack path perpendicular to (B) Non-tortuous crack path parallel to
build direction. build direction.

FIGURE 2.5: Crack propagation perpendicular (A) and parallel (B) to the z direction (i.e.
build direction); taken from Riemer et al. (2014)

where the dominance of each factor is determined by specific process parameters and

alloy composition.

2.1.4 Dimensional Error and Surface Roughness

Irregularities in the surface offer natural crack initiation sites, making the part vul-
nerable to local loads and premature part failure due to fatigue. The local arithmetic
mean surface roughness (Ra) of parts produced via SLM can range between 5 um and
50 um, depending on a number of process parameters such as build orientation, laser

power, powder quality and layer thickness (Delgado et al., 2012; Snyder et al., 2015).
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FIGURE 2.6: Schematic description of the stair-stepping effect, where l; denotes the layer
thickness and g denotes the original CAD geometry.

A common source of surface roughness and dimensional error shared by all AM
processes, is the discretisation of the part into a finite number of layers, causing
what is knowns as the “stair-stepping effect” (Pandey et al., 2004). This effect is
strongly dependent on the layer thickness, as shown in Figure 2.6, and the part build
orientation. An additional effect in the case of SLM (and other metal powder-bed
processes), is the thermal diffusion from the heated sections during build into the
adjacent and underlying loose powder, causing some of the loose powder particles
to fuse to the surface of the part. This effect is dominant on near-vertical surfaces

where the stair-step cusp becomes smaller than the size of adhering powder particles
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(e.g. bottom section of the dome in Figure 2.6); the opposite is true for more sloped
surfaces where the stair-stepping is more pronounced (e.g. middle and top sections
of the dome) (Strano et al., 2013b). In the case of severe local heat build-up, part
failure can occur as shown in Figure 2.7.

As mentioned in Section 2.1.2, support structure must be placed in such areas to
reduce the risk of heat build-up, as well as to prevent distortion from residual stress
relaxation. On the flip side, the removal of support structure leaves small protrusions
on the surface of the part. These protrusions are reported to increase the surface
roughness by up to an order of magnitude when compared with surfaces that do not
require support (Snyder et al., 2015; Cooper et al., 2012).

Finally, flat top-facing surfaces are not affected by stair-stepping, powder adhe-
sion or support structure. Nevertheless, even these surfaces exhibit a relatively poor
surface finish (e.g. compared to machining) due to a rippling effect caused by the
moving laser on the melt-pool surface, which cools and solidifies before it is able to
settle back to its original state (Mumtaz and Hopkinson, 2009; Kruth et al., 2010).

F1GURE 2.7: Example of specimen failure due to heat build-up in an unsupported overhanging
section. Taken from Mertens et al. (2014).

As can be seen, the surface finish produced by SLM is the result of several differ-
ent phenomena acting on different local surfaces. As a result, improving the surface
finish of the as-built part is very difficult and often infeasible, instead requiring a
compromise between SLM process parameters, and additional surface finishing oper-
ations post SLM. For example, a study by Mumtaz and Hopkinson (2009) compared
the effects of different pulsed laser strategies on the Ra of top-facing and side-facing
surfaces of a nickel alloy. While high peak power of the pulsed laser was found to
improve the Ra of both surfaces, other parameters such as scan overlap, scan speed
and pulse frequency were not able to reduce the Ra of one surface without increasing
the Ra of the other. Therefore, the trade-off between the roughness of different local
surfaces must be considered when selecting build orientation, as done by a number
of researchers (Alexander et al., 1998; Hur and Lee, 1998; Masood et al., 2003; Ahn
et al., 2007; Canellidis et al., 2009; Leary, 2016). A detailed review of these works is

presented in Section 2.2.2.
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2.2 Process Parameters Modelling and Optimisation

It is clear from the above discussion that SLM process planning is a difficult decision-
making process, as numerous inputs and objectives must be considered. Section 2.1
is mainly concerned with material properties and build quality; however, the cost and
time of production, which are discussed in detail in Section 2.3, are equally important
and add further complexity and trade-offs to the problem. For instance, reducing the
layer thickness can improve the surface roughness, which in turn can reduce the
post-processing time; however, this can also increase the production time and the
indirect cost of SLM. Moreover, thinner layers may affect the anisotropic material
behaviour (for example, by introducing more porosity between layers (Savalani and
Pizarro, 2016)), and require other parameters such as laser speed and power to be
adjusted accordingly to avoid overheating and extensive fusion of loose particles on

down-facing surfaces.

Process Parameters
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FIGURE 2.8: Key process parameters in SLM. Adapted from Aboulkhair et al. (2014).

Figure 2.8 provides a summary of key parameters grouped into five categories.
It should be noted that while this diagram provides the most influential parameters
with respect to build quality, cost and time, it is by no means exhaustive — according
to Thomas (2009) there are at least 50 different parameters that could affect the
final outcome of the build. As outlined in Section 2.1, laser-, scan- and temperature-
related parameters are predominant drivers of build quality, and thus, must be tuned
to minimise the presence of porosities, defects and residual stresses. While these
parameters also influence cost (for example, due to energy consumption and build
time) the costs of build failure, poor part quality or extensive post-processing that
can result from inappropriate laser, scan and temperature settings are more than
likely to outweigh any moderate savings these settings could produce during the SLM
build.

On the other hand, selecting suitable optimisation criteria for geometry-related

parameters is a challenge in itself, as they have a direct effect on production cost
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and time, as well as a somewhat less transparent effect on build quality. This is
reflected by the large number of different objective functions and criteria that have
been proposed in literature and lack of agreement on the most suitable one. The
problem is made worse by the fact that these parameters are not independent of each
other; for instance, build orientation has an influence on both the packing solution
and the support structure. To further demonstrate these challenges, each geometry-

related parameter and relevant literature are discussed in detail below.

2.2.1 Support Structure

Support structure is a source of additional build time and cost, material scrap and
post-processing. As a result of the latter, support structures also restrict the geometry
freedom of SLM, as tool access for their removal and subsequent surface finishing must
be factored into the design. However, support structure is often necessary in SLM,

as it performs the following key functions:

e Preventing the part from moving or distorting, either by sinking due to grav-
itational forces (i.e. in overhanging sections) or warping due to high thermal

gradients and residual stresses;
e Dissipating heat away from the part;

e Providing extra support especially for thin and delicate features, and preventing

lateral distortion of layers caused by the powder re-coater;

e Anchoring the part to the build plate and facilitating its removal post-production

(i.e. base support structure).

In addition to providing sufficient strength and stiffness to carry out these func-
tions, support structure must also be relatively easy to remove in order to reduce
the time, cost and risk of part damage during finishing operations. For this reason,
support attachments on the part are often designed as tapered “teeth”, as can be

seen in Figure 2.9.

FIGURE 2.9: Support structure (red) with teeth attachments, automatically generated by
Magics software for an end cap geometry (orange).



22 Chapter 2. Literature Review

It is common to consider any overhanging surface of the part below a certain angle,
typically between 30° and 45° (Thomas, 2009; Jarvinen et al., 2014; Calignano, 2014;
Levatti et al., 2014), as requiring support to prevent its distortion or collapse. Delicate
features, such as thin walls and protrusions may also be supported. This is the logic
used by the commercial software Magics, which is currently the industry standard
process planning software for AM. The software contains a database of specifications
for a number of existing AM machines provided by different manufacturers (e.g.
EOS, Concept Laser, etc.), including manufacturer-specified overhang limits, which
the software can use to automatically generate support structure for a given part
geometry (2.9). As shown in Figure 2.10, Magics also offers several types of support
geometries, which can be selected automatically based on the geometry of the surface
to be supported, or can be chosen by the user. While the automatic support structure
generated by Magics provides a good starting point, especially for an inexperienced
user, it is not a definitive solution; for example, the software does not optimise support

structure with respect to cost or its thermal profile, thus, providing scope for further
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research and improvement.

FIGURE 2.10: Types of generic support geometries provided by Magics software. Taken from
Thomas (2009).

A number of researchers have investigated the trade-off between the functional-
ity, volume and ease of removal of different support structure geometries. Poyraz
et al. (2015) and Calignano (2014) tested the effects of overhang geometry and teeth
dimensions on part distortion and ease of support removal for simple block support
geometries. Similarly, Cloots et al. (2013) studied the effects of overhang angle and
scan parameters on the accuracy and quality of overhanging sections, proposing a
localised scanning strategy and optimised support structure geometry to reduce the
unsupported overhang angle and minimise the need for post-processing. Jéarvinen
et al. (2014) proposed the use of a pulsed laser strategy to built less dense supports
which are easier to remove; they also found web supports (Figure 2.10) much easer to
remove than solid struts (Figure 2.13), with less damage on the part’s surface during
removal.

More complex lattice topologies have also been considered, to further reduce sup-

port structure volume and facilitate its removal. For instance, researchers at the



2.2. Process Parameters Modelling and Optimisation 23

(A) Schwarz primitive. (B) Schwarz diamond. (¢) Schoen gyroid.

FIGURE 2.11: Three types of triply periodic minimal surface cells proposed for lattice support
structure. Taken from Hussein et al. (2013).

FIGURE 2.12: Graded lattice support structure using Schwarz primitive cells. Taken from
Strano et al. (2013a).

University of Exeter have proposed triply periodic minimal surface (TPMS) cells,
shown in Figure 2.11, as potential building blocks for lighter and easier to remove
lattice support structures. Hussein et al. (2013) compared Gyroid and Diamond sup-
port lattices, studied the effects of different cell configurations (e.g. cell size, cell
orientation etc.) and proposed a graded support structure strategy for improved heat
dissipation and ease of removal. Strano et al. (2013a) proposed a similar graded lat-
tice strategy based on the vertical load on the lattice using the Schwarz primitive unit
cell, as shown in Figure 2.12. Despite the use of these advanced lattice structures in
academic works, it is still common practice in industry to use solid support structures
in SLM (Morgan et al., 2017), as shown in Figure 2.13.

An interesting method of creating dissolvable support structure for SLM has been
proposed by Lefky et al. (2017). The method was applied to a 17-4 PH stainless
steel part, which was coated with a sensitizing agent and heat treated. This process
modified the chemical composition of the part’s surface to a depth of 100 pm — 200 um,
while completely penetrating the lattice support structure. Subsequently, the part
surface layer and the entire support structure was removed at an accelerated rate
using chemical etching. Despite its potential, the scope of this method, its effects
on surface roughness and material properties, as well as its implications on overall
production cost, require further examination and development.

A number of researchers have also attempted to reduce or even eliminate the
need for support structure by modifying the part geometry, for instance, by making
tear-shaped holes (Thomas, 2009) and by modifying overhanging surfaces to be self-
supporting (Hu et al., 2015). More recently, topology optimisation with additional
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FIGURE 2.13: Mountain bike frame built by Renishaw, with custom-designed solid support

structures, as indicated by yellow arrows: 1. Thin struts used to support relatively gentle

overhang; 2. Thicker struts used to support the base of the part and facilitate part removal

from the plate 3. The hole is a critical feature with severe vertical overhang at the top, thus
solid supports are used to preserve its dimensional accuracy.

considerations of AM manufacturability, such as overhanging surfaces and minimum
feature size, has become a popular area of research (Leary et al., 2014; Gaynor and
Guest, 2016; Allaire et al., 2017; Zhang and Zhou, 2018; Langelaar, 2018). How-
ever, this paradigm comes with its own set of trade-offs, for example, self-supporting
surfaces usually come at the expense of reduced stiffness or additional volume and
weight in the re-designed part (Leary et al., 2014; Allaire et al., 2017; Zhang and
Zhou, 2018). In addition to functional requirements, most parts (especially assembly
parts) come with a set of geometric constraints, presenting another trade-off between
design requirements and manufacturability. Furthermore, most of these methods are
tested on 2D cases (Leary et al., 2014; Gaynor and Guest, 2016; Zhang and Zhou,
2018; Langelaar, 2018), and thus require further work to reduce their computational
expense and make them applicable to more complex 3D geometries. Due to compu-
tational expense, current models are not able to consider thermal effects such as local
heat build-up, residual stresses and distortion (Langelaar, 2018).

Finally, it is important to consider the build orientation before optimising the
part or support structure, since an optimised design would become meaningless and
would have to be repeated if the build orientation is changed. Several researchers
(Alexander et al., 1998; Schwerdt et al., 2000; Strano et al., 2013a; Das et al., 2015,
2017) have used build orientation to minimise the presence of overhanging surfaces
and thus minimise support structure, as discussed in the following section. Ideally,
build orientation should be considered simultaneously alongside part design and sup-
port structure geometry, in order to minimise or eliminate the latter; however, this
problem is currently computationally infeasible and only approximate solutions exist
(Langelaar, 2018).
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2.2.2 Build Orientation

The need for a decision support tool when selecting the build orientation was first
identified by Frank and Fadel (1995), who proposed an interactive rule-based system,
which suggests a favourable orientation based on the surface quality of up to two
user-selected part features for Stereolithography (SLA). The tool can also provide
estimates of supported part area and build time, however, only the surface quality
was used as a selection criterion. Several other researchers have addressed surface
finish: Schwerdt et al. (2000) proposed an analytical solution to minimise the part
surface area requiring support; Masood et al. (2000); Hur et al. (2001); Chowdhury
et al. (2017); Jaiswal et al. (2018) considered the surface error due to the stair-stepping
effect; while Alexander et al. (1998) and Byun and Lee (2006) considered the sum
of both. The method used by Masood et al. (2000) for measuring the stair-stepping
effect involves slicing the STL geometry and measuring the volumetric deviation of
individual slices, providing an accurate but time consuming solution. A much simpler
and more common approach is to measure the stair-stepping error in 2D using the

trigonometric function shown in Equation 2.1, as done by Alexander et al. (1998).

B, — { lf|cos(a)| if |cos(a)| #1 (2.1)

0 otherwise

where h. is the cusp height between two layers, [; is the layer thickness and « is
the overhang angle of the surface. Typically the stair-stepping error alone does not
provide an accurate prediction of the actual surface roughness of the built part, as it
neglects other thermal effects, which are discussed in Section 2.1.4. Thus, modelling
surface roughness based on practical data is a more suitable approach, as done by Ahn
et al. (2007); Strano et al. (2011) who interpolated surface roughness data provided
for SLS; Leary (2016) who fit a logarithmic curve to a larger and more scattered data
set gathered for titanium alloy; and Strano et al. (2013b) who proposed an analytical
function based on an idealised model of spherical particles attaching to the stair-
steps during SLM of stainless steel, although this model only considers the top-facing
surfaces.

As discussed in Section 2.1.4, it is impossible to optimise the entire part surface,
as there are trade-offs between different local surfaces. Thus, many existing methods
consider the average surface roughness of the part as the objective (Masood et al.,
2003; Byun and Lee, 2006; Delfs et al., 2016; Leary, 2016); however, a more suitable
approach is to prioritise or weight different local surfaces based on their functional and
geometric requirements. This is acknowledged by Ahn et al. (2007), who minimised
the total difference between build surface roughness and target surface roughness of
local surfaces. Leary (2016) also made a distinction between functionally “relevant”

”

and “irrelevant” surfaces, and only considered the former in his objective function,
however, this binary approach is less flexible. It should also be noted that all of the

above approaches assume a local post-processing method such as manual polishing or
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FIGURE 2.14: Example of predicted support volume, shown in green. Taken from (Strano
et al., 2013a).

machining, whereas in many cases parts produced via SLM are finished using global
methods such as barrel tumbling (Schmid and Levy, 2012; Gordon et al., 2016). In
the latter case, optimising the build orientation for surface roughness is likely to have
a minimal impact on the final cost and quality of the part.

Build time is another parameter that has been addressed by a number of re-
searchers. Most existing models (Alexander et al., 1998; Canellidis et al., 2009; Sing-
hal et al., 2009; Delfs et al., 2016) assume a constant layer thickness and use build
height to estimate build time, as this is much faster and cheaper than computing the
actual build time of each layer, as discussed in Section 2.3.3. Combined optimisation
of build orientation and layer thickness has also been proposed to improve both the
surface finish and build time (Hur and Lee, 1998; Masood et al., 2003). While this is
reasonable in the context of RP, where dimensional accuracy, finish and build speed
of prototypes can take priority over their mechanical strength, such an approach is
not suitable for SLM of end-use parts, where challenges such as porosity and material
properties must be considered first.

While the importance of cost is acknowledge throughout AM literature (Baumers
et al., 2017; Laureijs et al., 2017; Fera et al., 2017), only the works of Alexander
et al. (1998) and Byun and Lee (2006) were found to address cost directly as an
objective of build orientation, while several others (Xu et al., 1999; Ahn et al., 2007;
Zhang et al., 2017) alluded to cost but did not model it fully or explicitly. Moreover,
Alexander et al. (1998) only used cost to break tie between build orientations of
similar surface quality, while Byun and Lee (2006) considered cost, time and surface
roughness as competing objectives. Conversely, many more works have focused on
build time (Frank and Fadel, 1995; Hur and Lee, 1998; Lan et al., 1997; Byun and Lee,
2006; Canellidis et al., 2009; Delfs et al., 2016), surface roughness Frank and Fadel
(1995); Alexander et al. (1998); Masood et al. (2000); Hur et al. (2001); Chowdhury
et al. (2017); Delfs et al. (2016); Jaiswal et al. (2018) and support structure volume
(Lan et al., 1997; Hur and Lee, 1998; Schwerdt et al., 2000; Strano et al., 2013a;
Zhang et al., 2016; Das et al., 2015, 2017), which is typically calculated as the volume
underneath the supported area as shown in Figure 2.14. Although both build time

and support structure have a direct effect on cost, they do not provide the full picture,
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especially since they are often optimised implicitly by minimising build height (for
build time) and supported surface area (for support structure volume).

A number of works have also addressed the dependence of material properties and
build quality on build orientation. The work of Thompson and Crawford (1997) was
one of the first, using analysis of variance (ANOVA) to produce response surfaces
relating ultimate tensile strength (UTS), build time and surface roughness to build
orientation, laser power and layer thickness. Their experiments showed polymer parts
built via SLS to be weaker in the z direction due to the relatively weaker bonding
between layers. More recently, Ulu et al. (2015) used a combination of experimen-
tal data and finite element analysis (FEA) to predict the mechanical properties of
a case study part as a function of build orientation. The latter proposed using a
factor of safety based on the modelled part properties and design requirements to
optimise the build orientation for best part performance. Peng et al. (2017) also used
FEA to predict part distortion as a function of build orientation, while Jaiswal et al.
(2018) developed a layer-by-layer model for evaluating the material composition error
for functionally graded material (FGM) extruded via FDM. Although the layer-wise
approach offers an accurate prediction, it is also very time consuming and compu-
tationally expensive; to deal with this Jaiswal et al. (2018) used a surrogate model
to approximate the output of the expensive model. Similarly, both Ulu et al. (2015)
and Thompson and Crawford (1997) used surrogate modelling and data fitting to
deal with the large computational burden of FEA and time-consuming experiments,
respectively. Meanwhile, Peng et al. (2017) used the dividing rectangles (DIRECT)
optimisation approach, which avoids exploring large areas of the solution space by di-
viding it into rectangles at each iteration and only evaluating the centre point of each
rectangle. At each iteration the best rectangle is divided into smaller rectangles and
the process is repeated until convergence or until a termination criterion is satisfied.

Table 2.1 presents a summary of reviewed literature. When searching for an op-
timal build orientation, two types of approaches have been proposed in literature:
continuous rotation and discrete. One common discrete method, is to consider each
flat surface of the part as a potential base, corresponding to a candidate build ori-
entation. However, this method is only suitable for relatively simple geometries. If
the part geometry is relatively complex, a “gift-wrap” approach can be used, where
a 3D convex hull is generated and each flat surface of the hull is considered as a can-
didate base of the part. Another method is to isolate important surfaces and design
features (e.g. a hole) and generate the most favourable build orientation based on
these critical features, as done by Frank and Fadel (1995) and Zhang et al. (2017).
This method makes the optimisation search more “intelligent” but can also be quite
restrictive and requires either a very large database or manual interaction from the
user in order to identify relevant design features. Since discrete approaches produce a
relatively small set of candidate solutions, these solutions can normally be evaluated

via simple exhaustive methods.
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Authors

BT BC SR SA SV Other

Method

AM Process

Frank and Fadel *
(1995)

Thompson and X
Crawford (1997)

X

Lan et al. (1997)
Alexander et al. *
(1998)

Hur and Lee X
(1998)

Schwerdt et al.
(2000)

Masood et al.
(2003)

Byun and Lee X
(2006)

Ahn et al. (2007)
Canellidis et al. X
(2009)

Strano et al.
(2011)

Ulu et al. (2015)

Das et al. (2015,
2017)

Peng et al.
(2017)

Jaiswal et al.

(2018)

Interactive decision support, can position up to two

user-selected surfaces to be top- or side-facing.

Uses ANOVA to create response surfaces of BT, SR
and UTS as functions of laser power, layer thickness
and build orientation.

Uses user-specified primary objective, with secondary
objective to break ties. Discrete rotation.

Selects orientation with smallest SR, using cost to
break ties. Discrete rotation.

User must rank objectives or use a WSM. Continuous

rotation.

Uses ray intersection calculations to prevent supports

on a user-specified facet.

Uses slicing approach to get accurate stair-step error.
Incremental rotation using 45° and 5° steps about

two axes, respectively.

Solutions placed in a decision matrix and scored using
WSM function. Discrete rotation.

Uses GA to minimise total difference between target
SR and as-built SR. Continuous rotation.

Uses GA and WSM function to indicate fitness. Con-
tinuous rotation.

Uses GA to find Pareto front between energy con-

sumption and SR. Incremental rotation with 5° steps.

Uses FEA and surrogate modelling to minimise a pre-

dicted factor of safety.

Uses interior point method and WSM of SR and BT
with additional tolerance constraints. Continuous ro-

tation.

Minimises average thermal distortion using FEA and
DIRECT optimisation approach.

Uses surrogate modelling to optimise WSM of SR and
material composition error for FGM.

SLA

SLS

SLA

SLA, FDM

SLA, FDM

Generic

FDM,
SLA, SLS

FDM,
SLA,
LOM, SLS
SLS

SLA

SLS

Inkjet

printing

SLS

SLS

FDM

TABLE 2.1: Summary of key literature on build orientation, where BT = build time; BC =
build cost; SR = surface roughness; SA = supported surface area; SV = support structure
volume. Primary and secondary objectives are marked with x and %, respectively.

On the other hand, continuous methods are much more flexible and generally

more automated, but come at the expense of a much larger solution space. Conse-

quently, such methods must rely on more complex search heuristics, such as Genetic

Algorithm (GA), which is a popular choice in literature as shown in Table 2.1. Many

works use a weighted sum model (WSM) to solve multi-objective problems, as this

is a simple and straightforward method. However, it cannot distinguish between dif-

ferent Pareto solutions with identical WSM scores and requires the user to provide
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appropriate weights for different objectives, which can be difficult in practice and
particularly misleading for objectives which are already interdependent (for instance,
support structure volume and cost). Furthermore, in the case of discrete rotation,
the problem is made more tractable by the limited number of candidate solutions,
while using continuous rotation to optimise build orientation for multiple objectives
presents a much bigger challenge, requiring a careful balance of solution space explo-

ration against computational feasibility and solution time.

2.2.3 Batch Packing

Despite the absence of tooling costs, cost amortisation can still be achieved in AM
through efficient machine utilisation, as demonstrated in Section 2.3. The need for
an optimal arrangement of parts to maximise machine utilisation or minimise the
number of used machines, presents what is known as a bin packing problem. This
is a combinatorial problem belonging to a wider class of problems known as Cutting
& Packing (C&P), which is a well-established field of research dating back to the
1960s (Gilmore and Gomory, 1961). The following section provides a brief overview
of C&P, while the focus of Section 2.2.3 is specifically on bin packing in the context
of AM. The focus of this review is on 2D methods, although 1D and 3D approaches

are also mentioned where relevant.

The Bin Packing Problem

The generalised bin packing problem can be formally defined as follows: given a set
of large objects and a set of small objects (i.e. pieces or parts!), assign all or some
of the small objects to one or more of the large objects (i.e. bins), to optimise some
given objective function. The placement of small objects must meet the geometric

condition, which states that:
1. small objects may not intersect each other; and
2. small objects must lie entirely within the large object to which they are assigned.

This problem is known to be NP-hard, meaning that currently it cannot be solved in
an exact or exhaustive way in reasonable time; instead, heuristic approaches must be
used to find a “good enough” approximation (Whitwell, 2004).

Some of the earliest and simplest heuristics used for assigning pieces to bins in-
clude next-fit (NF), first-fit (FF) and best-fit (BF) algorithms (Coffman et al., 1999).
NF opens a bin and places each piece in that bin sequentially. If the bin cannot
accommodate the piece, NF closes that bin and opens a new one, where it places the
piece. Each following piece is placed in the most recently-opened bin and once a bin
is closed it cannot be used again.

In contrast, FF packs each piece in the lowest indexed bin that can accommodate

the piece, and all partially filled bins are kept open until all pieces have been placed.

'The terms “piece” and “part” are used interchangeably from this point on.
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Similarly to FF, BF keeps all partially filled bins open until the end, but instead of
stopping at the first bin that can accommodate the piece, BF will check all available
bins and select the one with the least available free space in which that piece can still
fit. These heuristics were originally used to solve 1D bin packing problems, and were
later extended to 2D packing, where pieces are typically ordered by decreasing height
and placed in the lowest possible gap inside the rectangular bin (Burke et al., 2006).

A popular 2D packing method is the bottom-left (BL) heuristic, which seeks to
sequentially place each object in a bottom left stable position. Figure 2.15 shows an
example of this method, as implemented by Jakobs (1996), which first slides the object

downwards, followed by a slide to the left until no further moves can be achieved.

] Ll aml

FIGURE 2.15: Bottom-left 2D bin packing heuristic. Taken from Jakobs (1996).

Packing of Irregular Shapes

Intersection checks in rectangular packing problems are relatively easy to compute,
as only four orthogonal edges need to be considered for each piece. This task becomes
much more challenging and computationally expensive when dealing with polygonal
(i.e. irregular) objects, particularly when these objects are non-convex. Pixel-raster
scanning, trigonometric functions, no-fit polygon and phi-functions are the most well-
known and well-documented approaches of checking for intersections between irregu-
lar shapes (Bennell and Oliveira, 2008).
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FIGURE 2.16: Example of a binary pixel-raster representation of an irregular object. Taken
from Bennell and Oliveira (2008).

The basic idea behind the pixel-raster method is to discretise the 2D bin space
into a grid, where each cell contains information about whether it is full or empty.
Similarly, each irregular shape is represented by a discrete group of cells (i.e. pixels)
as shown in Figure 2.16, and a raster scan through the bin is performed to determine
an appropriate region of empty cells for that shape to be placed into. This method

is reasonably fast at finding feasible piece placements, are simple to code and can
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represent any irregular and non-convex shape. However, the storage of pixel informa-
tion requires a lot of memory resources and can become prohibitive for very complex
geometries or geometries which require very high resolution.

Trigonometric methods use vectors to represent piece topology and detect col-
lisions between pieces. This approach provides much more accurate rendering of
irregular geometries than the raster method, with the only source of error being in
the rounding of float numbers by the computer (Whitwell, 2004), however, they are
also very computationally expensive. In the past decade, the no-fit polygon (NFP)
has become a very popular approach for intersection checking, the concept for which
was first introduced by Art (1966). The basic idea is demonstrated in Figure 2.17:
the reference point of polygon j is traced around the boundary of polygon ¢ until it
reaches its original starting point; the resulting traced polygon is the NFP, as shown
in bold.

Rj

FIGURE 2.17: No-fit polygonNF P;; of two convex polygons ¢ and j. Taken from Imahori
et al. (2006).

By determining the NFP of each pair of polygons prior to placing them in the
bin, the intersection check becomes a relatively simple operation of checking whether
the reference point of the current polygon lies inside the NFP boundary (i.e. the
polygons intersect), outside (i.e. no intersection) or exactly on the NFP boundary
(i.e. polygons are just touching) with regard to the one or more polygons that have
already been placed in the bin. The main downside of this approach is when dealing
with non-convex shapes, the NFP may result in degenerate cases or may miss internal
cavities in the stationary polygon if the sliding polygon has no way to slide into that
cavity (e.g. a hole or C-shaped cavity). While some researchers have addressed these
cases, a robust method for dealing with degenerate NFPs is yet to be established
(Burke et al., 2007; Dean et al., 2006).

Finally, the phi-function is a technique developed by Stoyan et al. (2004), which
represents all mutual positions of two shapes through mathematical expressions: two
objects are in contact if the phi-function value is exactly zero, intersect if the value
is less than zero and are separated if the value is greater than zero. This approach
could prove a very powerful tool able to deal with a large number of irregular shapes,
however, currently its adoption is limited by the lack of a robust algorithmic procedure

for arbitrary shapes (Bennell and Oliveira, 2008).
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Bin Packing in AM

Both 2D and 3D bin packing problems have been solved in the context of AM. The
former is aimed at processes such as FDM, SLA and particularly SLM, where the
presence of high residual stresses, the need for support structures and the subsequently
raised risk of build failure currently limits the possibility of stacking parts on top
of one another, thus, reducing the problem to 2D. On the other hand, with some
AM methods it is possible to avoid the need for support structures, for example
in the case of SLS where parts may be sufficiently supported by the surrounding
powder (although care should be taken when generalising this assumption for different
geometries) (Zhang et al., 2016; Baumers et al., 2011), and therefore 3D bin packing
is preferable in this case to make full use of the machine capacity.

Several approaches have used the BL placement heuristic to generate candidate
packing solutions in 2D (Canellidis et al., 2010, 2013) and an equivalent heuristic
in 3D, which places pieces as close to the bottom-left-front (BLF) corner of the bin
as possible (Baumers et al., 2013; Gogate and Pande, 2008; Hur et al., 2001; Wu
et al., 2014). Common criticisms of such sequential methods include limited solution
exploration and inability of placing pieces inside large closed concavities of other pieces
(Zhang et al., 2016), as shown in Figure 2.18. As an alternative, Zhang et al. (2016)
proposed a parallel packing approach where a GA is used to drive the translation and
rotation of pieces simultaneously, starting from an initial naive layout and searching
for a solution with minimal piece overlap. However, this approach allows the overlap
of pieces during the search and thus cannot guarantee that the final solution will be

feasible. It is also unclear how the authors performed overlap checks.

Build orientation

I Build orientatioove into the hole

m/

FIGURE 2.18: Example of how a smaller piece can be placed within the closed concavity of
a larger piece. Taken from Zhang et al. (2016).

The overlap checks that must be carried out in packing problems, especially in
3D, are typically the most computationally expensive part of the algorithm. For this
reason, many of the earlier works have used bounding boxes of pieces, both in 3D
(Wodziak et al., 1994; Zhang et al., 2002) and in 2D (Canellidis et al., 2009). In
a follow-up paper, Canellidis et al. (2013) also proposed a method which used the
NFP approach to detect intersections between convex shapes, and used ray casting

to extend this approach to non-convex shapes.
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(A) Original STL (B) Depth map
(76,000 facets). (1,000 facets).

FIGURE 2.19: Method of reducing the number of facets representing the STL geometry.
Taken from Dickinson and Knopf (1998).

Several methods used voxels to represent 3D pieces (Hur et al., 2001; Gogate and
Pande, 2008; Wu et al., 2014). This is a computationally expensive approach, which
often requires a compromise between the resolution of voxels and running time of the
algorithm — as shown by Gogate and Pande (2008) who used very low resolution of
voxels early on in the algorithm, reducing the size of voxels later on, as the algorithm
would start to converge on a final solution. Dickinson and Knopf (1998) took a
slightly different approach by deriving six depth maps using the bounding box of the
part geometry, and replacing the triangulated facets of the STL file with a reduced
number of planar facets with six degrees of freedom as shown in Figure 2.19.

It can be seen that build orientation and bin packing are two closely related
parameters in AM and should be considered as two parts of a single optimisation
problem, since the former cannot be changed without updating the latter. While
this fact is acknowledged by several researchers, existing literature addresses the two
parameters in two separate stages and no works have been found to address the two
parameters simultaneously. Furthermore, no works have considered the effects of the
bin packing solution on AM-related objectives, such as surface roughness and build
time; though a number of researchers consider these objectives implicitly through
build orientation. For example, Ikonen et al. (1997) assumed parts to be provided with
adequate build orientations and solved a 3D bin packing problem, using a Simulated
Annealing (SA) algorithm to minimise overlap between pieces; Gogate and Pande
(2008) provided an algorithm to rank candidate build orientations based on stair-
step error and allowed the user to interactively select a build orientation, packing
the resulting pieces in a separate stage; while Canellidis et al. (2006) provided a
separate optimisation algorithm to generate build orientations based on optimum
surface quality, support structure and build time (see Section 2.3) before applying a
bin packing algorithm with the objective of maximising utilisation. A more recent
work by Wu et al. (2014) used a BLF placement heuristic, along with a GA to
generate a Pareto front of the maximum build height, surface roughness and the
support volume of the batch. However, in their approach the build orientations of

parts are not optimised and kept fixed throughout.
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Problem Piece Build AM
Authors . Heuristic & Objective ) w .
Type Representation Orientation Process

Wodziak et al. 2D & 3D Bounding box GA; max. percentage of placed pieces or Considered SLA

(1994) max. bin utilisation. fixed

Nyaluke et al. 3D Bounding box GA; max. number and size of placed Considered SLS
(1996) pieces. fixed

Ikonen et al. 3D Bounding box GA; min. distance from origin and Not SLS
(1997) & STL facets percentage overlap between pieces. considered
Dickinson and 3D Depth map SA; max. bin utilisation and compactness Not Generic
Knopf (1998) based on point moment of pieces. considered

Hur et al. 3D Voxels GA; max. bin utilisation and min. build Considered SLS
(2001) height. fixed

Gogate and 3D Voxels GA; min. build height, stair-step error and  Considered SLS
Pande (2008) supported area. fixed

Canellidis et al. 2D Bounding box GA; max. bin utilisation. Considered SLA
(2009) fixed

Baumers et al. 3D Voxels Min. distance from bin centre & max. bin Not SLM,
(2013) utilisation. considered EBM
Canellidis et al. 2D Polygon GA; max. bin utilisation. Considered SLA
(2013) fixed

Wu et al. 3D Voxels GA; Support volume, height, surface Considered  Generic
(2014) roughness. fixed

Zhang et al. 2D Polygon GA; min. percentage overlap between Considered ~ SLA,
(2016) polygons. fixed SLM

TABLE 2.2: Summary of key literature on bin packing in AM.

Only the work of Zhang et al. (2017) has addressed the build orientation of more
than one part at a time, by considering a limited set of candidate build orientations
for a group of parts and using a GA to find a set of build orientations, where the
fitness function is based on the closeness of the solution to a predefined aspiration
criterion. In an earlier work, Zhang and Bernard (2014) also proposed a batch group-
ing methodology for multiple parts with fixed build orientations, based on similarity
criteria such as part height and size. As can be seen, Zhang et al. consider different
aspects of the problem in separate stages and as a result present a number of limi-
tations, such as assuming similarity between pieces to be the best indicator of good
bin assignment (which may not always be the case)?; and only dealing with a small
enough set of pieces to fit into a single bin.

Finally, no works have been found to truly consider a multi-bin packing prob-
lem in AM and as a result, such approaches give no guarantee of a full placement
of pieces; instead either assuming a sufficiently small group of pieces (Gogate and
Pande, 2008; Hur et al., 2001), or designing the algorithm to select the best subset of

2For instance, separating large and small pieces is likely to result in a packing solution with much
lower bin utilisation, than a solution where pieces of different sizes are mixed together.
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pieces to maximise bin utilisation (Ikonen et al., 1997; Wodziak et al., 1994; Nyaluke
et al., 1996; Dickinson and Knopf, 1998; Canellidis et al., 2009).For this reason, bin
utilisation (i.e. proportion of bin capacity occupied by pieces) is the most commonly
used objective in these packing algorithms, although other metrics such as piece com-
pactness (Canellidis et al., 2009) and the combined centre-of-mass of packed pieces
(Baumers et al., 2013) have also been used. The reviewed literature is summarised
in Table 2.2.

2.2.4 Summary of Search Heuristics

As can be seen from tables 2.1 and 2.2, the majority of reviewed optimisation problems
make use of GA. Simulated annealing (SA) is another popular and effective search
heuristic (Szykman and Cagan, 1997; Dickinson and Knopf, 1998), which is based
on the process of heat diffusion in metals. The movement of atoms from a less
favourable state to a more favourable state in the metal crystal lattice is used as
an analogy for the movement of an algorithm through solution space. Similarly, the
algorithm is given a temperature schedule which determines the starting point, step
size and termination point of the algorithm. The favourability of each new solution
is evaluated based on the change in the value of the objective function, which in turn
determines the probability of the algorithm moving on to this solution or staying with

the current one. The general equation is given below:
Pye=e™T (2.2)

where P,.. is the probability of accepting the new solution, AC is the change in
objective function value and T is the temperature of the current solution.

Both SA and GA are meta-heuristics, meaning they are not problem-specific, and
consequently, can address problems where relatively little is known about the solution
space. However, unlike SA which moves iteratively from one solution to another, the
GA search evaluates a population of solutions at each step (i.e. generation), where
each solution is represented by a chromosome. Natural selection is the driving princi-
ple behind GA, thus each chromosome in a population is assigned a fitness value based
on the objective function, which determines the probability of that chromosome mat-
ing and passing on its genes to the next generation. The apparent preference for GA
in the literature could be due to the population-based nature of this heuristic, making
it more suitable for parallelisation and potentially leading to faster exploration and
more agressive convergence compared to the more gradual sequential search via SA.
However, GA population size is also a sensitive factor which must be chosen carefully
to ensure sufficient solution space exploration, which bearing in mind any computa-
tional and solution time constraints. Finally, for either SA or GA to work effectively
the objective function must be computationally fast and efficient; on the other hand,
if candidate solutions are computationally expensive (for instance, when using FEA)

the chosen search heuristic can be coupled with a surrogate or approximation model,
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otherwise, a different approach must be taken, for instance, the DIRECT method
described in Section 2.2.2.

2.3 Cost Modelling

Cost is usually a key decision factor in selecting and planning a suitable manufacturing
route; it is therefore critical to base such decisions on a realistic estimate of cost. The
accuracy of predicted cost largely depends on the complexity and structure of the
cost model, as well as data availability, which is often limited or incomplete. Existing

cost modelling approaches can be grouped into the following categories (Dodd, 2015):

e Parametric methods search for statistical correlation between product cost and
potential cost-driving variables, such as product geometry. The cost is expressed
as an analytical function of the variables. Typically, the selection of relevant
variables and their role in the function are determined based on expert judge-
ment, while the function coefficients are determined through linear regression.
An alternative to parametric modelling was first proposed by Cavalieri et al.
(2004) in the form of artificial neural networks (ANN), a pattern recognition
heuristic inspired by the human brain. Both methods can provide useful esti-
mates of cost based on relatively limited knowledge of the product, particularly
the ANN approach, which treats the cost function as a ‘black box’. However,
the results can be difficult to validate and can suffer from a large error margin,

while statistically significant relationships do not necessarily indicate causality.

o Analogy-based methods estimate the cost of the target product based on a similar
known product, adjusting for differences between the two. As with data-based
approaches, analogy-based models require a degree of expert judgement, but

tend to provide a slightly more reliable estimate (Myrtveit and Stensrud, 1999).

e Detailed approaches provide the most accurate estimation of cost, and include
any method that tries to establish an analytical relationship between the prod-
uct and the resources used in each step of the production process. According
to Dodd (2015), activity based costing (ABC), bottom-up and feature-based
methods all fall under this category.

2.3.1 AM Cost Modelling

A seminal model of AM build cost was produced by Hopkinson and Dicknes (2003),
who used it to provide a first approximation break-even analysis of high volume
production via FDM, SLA and SLS compared to injection moulding. This model
considers labour, machine and material costs, while neglecting overheads and an-
cillary costs. The authors also make some limiting assumptions, namely, using an
unrealistically high machine utilisation value of 90% and extrapolating unit cost at

relatively high volumes with no direct consideration of low volume production.
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These limitations were overcome by Ruffo et al. (2006) with a full cost model that
includes administration, hardware and software overheads, and assumes an annual
machine utilisation of 57%, which is regarded as typical in the industry. The authors
propose Equation 2.3, which represents the cost of each AM build as a sum of direct

and indirect costs.

Couita = CaM + C;T (2.3)

where Cy is the direct cost coefficient (£/kg), C; is the indirect cost coefficient (£/h),
and M and T denote material (kg) and build time (h), respectively. The direct
cost of Equation 2.3 only considers material consumption, while all other costs which
cannot be measured directly based on the product (e.g. machine value absorption,
administration etc.), are grouped into C; and allocated to each build based on the
time it takes to complete. Baumers et al. (2013) expanded Equation 2.3 to include
energy consumption as another direct cost, calculated as a function of time and the
part geometries in the build; however, their results indicate that energy consumption
accounts for less than 1% of the total build cost.

It is widely acknowledged (Alexander et al., 1998; Lindemann et al., 2012; Rick-
enbacher et al., 2013) that certain pre- and post-processing activities tend to be an
integral part of any AM process, thus, a true cost model is incomplete without these
activities. Pre-processing activities mainly include file preparation (as mentioned in
Section 1.2) and machine set-up. The cost and time of these activities are particularly
difficult to quantify, as these can vary significantly between different AM methods,
systems, software packages, and operators. Alexander et al. (1998) estimated these
activities to account for roughly 10% of overall unit cost in the case of FDM and
SLA, while Atzeni and Salmi (2012) estimated the cost of machine set-up to be 1.5%
of overall SLM unit cost.

Post-processing activities typically include part extraction and cleaning, separa-
tion of parts from the substrate, removal of support structure and surface polishing.
While post heat treatment is often required to mitigate the thermal residual stresses in
parts produced via SLM, its cost is normally omitted, as it is considered to be a sepa-
rate process. Arguably, the most detailed and complete model of SLM post-processing
cost was provided by Rickenbacher et al. (2013). This ABC model considers the cost
of part extraction from the machine; the cost of wire EDM allocated to each part
based on its area of contact with the substrate; and the cost of support structure

removal and surface finishing, as shown in Equation 2.4.

sznzsh(Pz) = Tfim'sh(Gi)(Cop + Ctool) (24)

where Cinisn is the total cost of support structure removal and finishing of part F;
with geometry G;; Tfinisn is the total time spent on these activities, and C,, and
Choor are operator and tool cost rates, respectively. The same model also includes the

pre-processing and build cost of SLM, and considers the presence of inert gas inside



38 Chapter 2. Literature Review

the SLM build chamber; the latter is translated into a direct cost rate incurred during
the build, and an additional effort factor included into the operator cost of material
change and part extraction.

Finally, the costs associated with inventory, machine set-up and downtime, and
build failure are typically significant but ill-structured making them very difficult
to optimise and model accurately; according to Schmid and Levy (2012) such costs
account for up to 20% of the overall production, while Baumers and Holweg (2016)
estimates this figure to be as high as 38%. Specifically, Baumers and Holweg (2016)
proposed a probability-based model to predict the cost associated with the risk of
part failure in SLS. This model was used to evaluate the trade-off between vertically
stacking a large number of parts to improve machine utilisation, and the increased
risk of failure accompanying it. Literature on this topic was found to be very limited,
likely due to the difficulty of defining and modelling ill-structured costs, and the

relative novelty of this problem.

2.3.2 Economies of Scale

Unlike Hopkinson and Dicknes (2003), Ruffo et al. (2006) considered the cost per part
as a function of demand, showing that economies of scale — the inverse relationship
between production volume and the average part cost — which is typically present in
traditional manufacturing, is also relevant to AM methods. This is indicated by the
unit cost curve in Figure 2.20, which reduces dramatically and eventually plateaus
as the optimal production volume is reached (i.e. machine utilisation is maximised).
Each local peak in the curve represents a newly added part resulting in additional
layers or an additional machine being used, followed by the subsequent cost decrease

as more parts are added and the overall build cost is amortized.
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FIGURE 2.20: Unit cost vs. production volume. Taken from Ruffo et al. (2006).

Throughout the literature there is a consensus that machine cost tends to be the
largest cost component; although the exact allocation varies significantly it can be
as high as 90% (Atzeni and Salmi, 2012). This observation explains why machine
utilisation and economies of scale play such a significant role in AM, as demonstrated

by the findings of Ruffo et al. (2006), as well as other more recent research; a study by
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Baumers et al. (2013) shows the unit cost of a partially full machine can be reduced by
25% by increasing machine utility to 92.6%; Rickenbacher et al. (2013) demonstrates
unit cost a reduction of up to 90% for medium-size parts by replacing a single part
with a batch size of five; Lindemann et al. (2012) observes a reduction in the unit
cost of an automotive component from about 125 euros for a single part, down to
about 10 euros for a batch of 190 parts.

However, it should be noted that most of the above results were accomplished
with relatively small parts, while increasing the production volume of large parts
via AM has very little effect on unit cost (Schroder et al., 2015). Schroder et al.
(2015) suggests a way to overcome this is to fill machines with different components
of various sizes, as done by Rickenbacher et al. (2013) and Baumers et al. (2013).
This is also a common practice used by RP and AM service providers to maximise

machine utilisation for low volumes of parts (Ruffo et al., 2006).

2.3.3 AM Build Time

It is evident that AM build time is both a driver of cost and an important objective
in its own right. In general, AM build time is the sum of material scanning time, tool
repositioning time and delay time in-between the deposition of each layer. Since the
structural quality of support structure is less critical than that of the part, the scan
rate of support structure can be increased to reduce build time. Thus, the scan time
of the part and its support structure are often calculated separately. Di Angelo and

Di Stefano (2011) proposed the following generic equation for AM build time:

Tbuild = Tc—pm‘t + Thfpart + Trep—part + Tc—sup + Thfsup + Trep—sup + Tdelay (25)

where T._pq,¢ is the total time to scan the contour of each layer in the part, Tj,—pqr¢ is
the total time to hatch each layer in the part and Tpq,t—rep is the time to reposition the
tool in between scanning. T._sup, Th—sup and Trep—sup denote contour scan, hatching
and repositioning time for support structure, respectively, and T},, denotes the total
unproductive time in between layers. In the case of SLM, T4, represents the time
taken to distribute a fresh layer of powder before it is scanned and T}e¢p—pare and
Tyep—sup can be considered negligible.

While a number of build time models have been proposed for different AM pro-
cesses, the methods behind these models are generally similar and can be classified as
either parametric or detailed analysis approaches (Di Angelo and Di Stefano, 2011).

The detailed model approach calculates the build time as an analytical function
of the total distance travelled by the laser and the idling time during layer deposi-
tion. The laser path can be calculated by slicing the STL geometry and determining
the topology of each layer, from which the contouring and hatching laser path and
time can be deduced. Thus, such approaches must be able to accurately slice and

compute the topology of each layer, or alternatively must rely on commercial slicing
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and scan-path software that usually comes with AM machines. These approaches
typically provides very detailed and accurate estimates of build time, but are much
more cumbersome and computationally expensive than parametric methods. Also,
most such methods assume a simple raster hatching pattern, and are not directly
applicable to other scan patterns, such as the island scan strategy shown in Section
2.1.2. Examples of detailed build time models include Chen and Sullivan (1996); Gi-
annatsis et al. (2001); Choi and Samavedam (2002) who provided detailed build time
estimators for SLA.

Conversely, the parametric approach is generally lower in accuracy but offers a
simpler and much faster solution. One of the simplest parametric relationships has
been proposed by Cheng et al. (1995), who modelled the build time of SLA as a
linear function of part height. Xu et al. (1999) proposed a slightly more sophisticated
approach, which considers the average area of layers in the part as well as part height.
To account for geometric complexity, Ruffo et al. (2007) considered the dimensions
of the part’s bounding box, in addition to height and volume. The model estimates
the build time of SLS as the sum of total laser scanning time, total powder recoating
time and total warm-up and cooling time before and after the build, respectively.
Each of these three elements were linked to the input parameters using a statistical
curve-fit approach, achieving an average predictive error of 15%. An alternative
empirical approach was proposed by Zhang et al. (2015), who attempted to find a
direct relationship between bounding box dimensions, volume and height of a part
and its build time via linear regression. To improve the fidelity of this model its
output is integrated with that of a differential model. The outputs of the two models
are weighted based on their respective values of standard deviation and error.

Finally, several studies have proposed the use of ANN. Munguia et al. (2009) used
part height, part volume and bounding box volume as inputs, though their findings
indicated very low correlation with the latter. Di Angelo and Di Stefano (2011) used a
number of geometry-based measures such as part volume, support structure volume,
build height and layer thickness as ANN inputs. While these models were able to
achieve reasonable predictive errors for their tested data sets (maximum errors of
10% and 16%, respectively), the main downsides of using ANN include the need for
large data sets and a lack of transparency, as well as the need to re-train the model

for different data sets.

2.4 Conclusion

This chapter provides a critical review of existing literature relevant to this the-
sis. Common SLM material and build quality challenges are discussed and include
porosity; residual stresses which can lead to cracking and distortion; mechanical and
microstructural anisotropy; surface roughness and dimensional error. High poros-
ity and surface roughness result in poor fatigue performance, while anisotropy and

residual stresses can lead to non-uniform mechanical properties, further deteriorating
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mechanical performance in a particular direction. The exact nature of this anisotropy
depends strongly on a combination of material properties, powder quality, laser- and
scan-related parameters.

For most industrial alloys it is currently impossible to eliminate residual stresses
completely, meaning that support structure is required not only to support overhangs
but also to prevent thermal distortion, Meanwhile, some variable roughness is also
bound to be present due to a number of geometrical (e.g. stair-step error) and thermal
effects (e.g. melt-pool rippling) as discussed in Section 2.1.4. Consequently, post-
processing operations, such as support structure removal, surface finishing and heat
treatment are typically inevitable. All of these operations add significant cost and
time, as a well as additional risk of part damage.

The problem is made worse by the fact that many of the above defects depend
on the same process parameters such as laser power and scan velocity, scan pattern
and layer thickness, and thus, act as competing objectives. For example, many alloys
can now be produced with over 99% density, however, this requires high laser power
and scan speed, which comes at the cost of even greater residual stresses and surface
roughness.

Furthermore, optimising process parameters separately is likely to produce sub-
optimal results, as they have a combined effect on SLM and are often interdependent.
For example, reducing layer thickness can reduce the stair-step error, however, laser
power and speed must be adjusted accordingly in order to prevent heat build-up and
severe distortion, while the increased number of layers may also increase porosity and
production time. Similarly, placing more support structure on the part can improve
heat dissipation and reduce risk of distortion; however, it also increases cost, surface
roughness and required post-processing. In addition, both support structure and the
bin packing solution are strongly dependent on build orientation; thus, if the build
orientation is changed both the bin packing solution and support structure geometry
must be updated.

As shown in the literature, build orientation is closely related to build cost and
time, surface roughness and post-processing, anisotropy and the residual stress profile.
While build orientation in itself cannot change the inherent properties of SLM, it can
be optimised for a specific part and its design requirements in a way that minimises
any adverse effects of these properties (e.g. by placing critical surfaces and features
in a favourable position, or by reducing the total number of layers in the part). As
discussed in Section 2.1.2, the cross-sectional area, build height, support structure,
and thus, the build orientation of a part have a significant effect on its residual stress
profile. This is further supported by the work of Peng et al. (2017), who showed
that thermal distortion can be reduced significantly with the right build orientation.
Despite this, further research is required to explore and exploit this relationship in
further detail.

Cost is clearly a key driver in manufacturing. However, as shown in Section 2.2.2,

existing methods for optimising build orientation focus predominantly on surface
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roughness, support structure and build time. Many of these works aim to reduce cost
indirectly (e.g. by reducing post-processing and waste material), but relatively few
researchers address cost explicitly.

This has several downsides. Firstly, minimising parameters such as build time or
support structure alone, particularly in a simplified model of height and supported
surface area, does not provide the full picture. For example, a solution optimised
for support structure may minimise the cost of waste material, but result in greater
production cost overall, due to longer build time, or vice versa.

Secondly, most of the proposed multi-objective approaches rely on the user to
rank or weight the criteria, which can be misleading and difficult to do in practice.
For example, when considering build cost and support structure volume as competing
objectives, it is not intuitive or immediately obvious how they should be weighted,
since build cost is also a function of support structure volume. Moreover, support
structure volume and support structure removal are two different sources of build and
post-processing cost, respectively; this is difficult to represent through a user-specified
weighting of cost and support structure. Another approach is to use a utopian or goal
solution, however, a problem formulated in this way can be very difficult to solve in
practice, as it relies on a “sensible” set of goals, which are difficult to know in advance.

Thirdly, optimising the build orientation for surface roughness can reduce the
cost and time of post-processing, but only for a local finishing process such as manual
polishing or machining. If on the other hand, parts are finished via a global method
such as barrel tumbling, the optimised build orientation becomes redundant, since
the time and cost of global surface finishing is independent of local surface roughness
variations.

Finally, as discussed in Section 2.3, machine utilisation is also strongly related to
the cost-effectiveness and productivity of SLM. Since this parameter cannot be solved
without first solving build orientation, many works discussed in Section 2.2.3 consider
the two parameters in two separate stages. This is a very restrictive approach, since
build orientations cannot be changed once they have been selected. However, allowing
build orientations to be updated during bin packing may significantly improve the
overall solution. For instance, if a set of parts, where the build orientation of each
part is optimised for minimum build height, cannot be placed into a single bin, it
is logical to rotate one or several of the parts in a way that increases their height
but allows sufficient space for all parts to be packed. Furthermore, only the tallest
part determines the overall build height (and thus build time) of the whole batch,
regardless of other parts in that batch.

It is clear that reducing the number of bins is another important objective in
cost driver in the bin packing problem. Since existing methods only consider a small
enough set of parts or a subset of parts to fit into a single bin, this problem is yet to
be addressed. Although Zhang et al. (2015) have alluded to this problem, by grouping
a large set of parts into several subsets based on similarity attributes such as height

and size, this method has two key limitations. Firstly, similarity may not be the best
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criterion, as it can have an adverse effect on bin utilisation and cost; secondly, this
approach does not solve the actual bin packing problem; thus, assuming that each
subset can fit into a single bin without checking this assumption. Moreover, their
approach aims to select an optimal build orientation for each part in the set (also
based on similarity), but as with other works, these build orientations are fixed in
the final solution, with no way to update them during the subsequent bin packing

problem.
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Chapter 3

Methodology

This chapter proposes a cost-driven modelling framework for optimising process pa-
rameters in SLM, namely build orientation and bin packing. Figure 3.1 also provides
a more detailed overview of the rest of this thesis.

As shown in Chapter 2, selecting a good part build orientation for AM is an
important and complex multi-criteria decision problem. Consequently, existing liter-
ature offers numerous competing objective functions, but lacks agreement on which
is the most suitable one. Many existing approaches, as well as commercial software
tools such as Magics, require the user to provide appropriate relative weights for the
different objectives, which can be difficult to do in practice and can be misleading
since many of the objectives are interdependent (e.g. cost, time, support structure).

Therefore, a key contribution of this chapter lies in proposing a single objective
function for build orientation optimisation, which unifies various competing objec-
tives, such as support structure, surface roughness and build height. Unlike the
previously proposed WSM methods, this approach offers realistic coefficients of build
and post-processing cost, thus, removing the need to “guess” objective weights and
instead providing the most cost-effective trade-off solutions.

Additionally, no works have been found to solve the build orientation and bin pack-
ing problem simultaneously. Thus, the framework presented in this chapter addresses
both of these parameters and shows how they are linked through cost. Moreover,
Section 3.1.1 presents two different production scenarios for SLM, hence two distinct
optimisation methodologies are proposed in chapters 4 and 6, respectively, in order

to apply the framework to each respective scenario.

3.1 Process Planning Framework

The proposed process planning framework is described schematically in Figure 3.1.
The diagram shows key steps and parameters in the framework, and provides section
and chapter references throughout this thesis. First, the user must specify the part
demand and provide a STL file in ASCII format. In order for the framework can
calculate the post-processing cost resulting from surface finishing in IBP, the user
must also specify a desired target surface finish, as shown in Figure 3.1. Section

3.3.1 and Appendix B outline a simple preliminary procedure, which enables the user
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to define the target surface finish of local faces and features in the part. This step

requires a CAD file and outputs a modified STL file, to be input into the framework.

Input:
modified STL, demand,

target surface finish

Input: I

Rotate 3D geometry

Chapter 3

Build orientation
angles (0.) (Section 3.4)

!a -—)
s - - Support structure

Build height R Surface roughness
1 (Section 3.4.1)

Project 2D piece
(Section 3.4.3)

Top-view

21~
¢ [/
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Input: l (Section 3.2.1) @E (Section 3.4.2) Predict residual stresses
Pack 2D pieces
(Section 3.5)
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no-build zones
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I -

Batch size, SLM build cost Post-processing cost

packing solution (Section 3.2) (Section 3.3)
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Tterative Tabu Search Tabu search with Multi-objective
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Output: Output: Output:
Minimum build cost solution for Minimum unit cost solution for Unit cost-residual stress

Mixed Batch Production (MBP) Identical Batch Production (IBP) trade-off solutions
Chapter 6 Chapter 4 Chapter 5

F1GURE 3.1: Flowchart of proposed cost-driven process planning framework. Key steps and
sub-models are shown in blue boxes, while model inputs, outputs and key parameters are
shown in white boxes. Grey boxes indicate how the framework is divided between chapters.

As discussed in Chapter 2, both discrete and continuous approaches have been
proposed when searching for an optimal build orientation. Since the discrete approach
is much more restrictive, the latter method is chosen in the proposed framework.
Thus, part build orientation is treated as a continuous function of two angles of
rotation, denoted by 6 and ¢.

Similarly to Zhang et al. (2016), vertical stacking and overlapping of parts is
forbidden in the proposed framework, since it is likely to increase the complexity

of support structure and the risk of damage to built parts due to residual stresses
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and difficulty of part removal. This results in a 2D irregular bin packing problem
(2DIBPP), where each part is represented by a 2D piece and the build plate of each
machine is represented by a rectangular 2D bin (since most popular SLM machines
feature a rectangular build plate). The 2D piece is a vertically projected bounding
polygon of the part geometry, as shown by the box labelled “Project 2D piece” in
Figure 3.1. It can be seen that the area and shape of the piece are determined by
the build orientation, so both the piece and the packing solution must be updated for
each new build orientation.

To prevent the build plate from moving or distorting during the SLM process, it
is fixed down with bolts, typically in each corner of the build plate, as can be seen in
Figure 3.3. These bolts are represented by four no-build zones in each 2D bin, where
the size and position of each bolt can be specified by the user. Finally, to simplify the
problem it is assumed that all bins are identical and that enough bins are available to
accommodate the specified production demand. An optimal 2DIBPP solution places
all required pieces into a minimum number of bins, where the number of pieces in
each bin (i.e. batch size) is used to determine the SLM build cost associated with
that bin.

3.1.1 Two Production Scenarios

The concept of “runners, repeaters and strangers” is a well-known lean manufacturing
technique, where parts (or activities) are grouped into three categories based on
their demand patterns (Reed, 2010). As shown in Figure 3.2, parts with low-variety
high-volume (LVHV) demand are classed as “runners”; parts with high-variety low-
volume (HVLV) demand are classed as “strangers”; while parts that fall in between
LVHV and HVLV, with periodic or seasonal demands, are classed as “repeaters”.
Due to these demand characteristics, it is typical for runners to account for 80% of
production volume and only 20% of manufacturing effort (i.e. jobs); while repeaters
and strangers comprise the remaining 20% of production output and account for 80%
of manufacturing jobs, due to their volatile demands and geometric oddities.

Custom implants and prosthetics in the medical industry, and replacement parts
(including legacy components) in the transportation and defence industries, are typ-
ical examples of repeaters and strangers. In practice, the demand for aircraft spare
parts is particularly difficult to forecast (Ghobbar, 2004; Liu et al., 2014), which of-
ten leads to overstocking, high inventory costs and risk of delays. As proposed by a
number of researchers (Holmstrom et al., 2010; Khajavi et al., 2014; Thomas, 2016),
SLM has the potential of significantly reducing the costs and effort expended on such
parts, by producing them on demand relatively quickly and with minimal tooling.
Moreover, as discussed in Chapter 1, mixed batch production (MBP) offers an eco-
nomical way of meeting the low-volume, short-term demands of stranger and repeater
parts, as demonstrated by most AM and RP specialists (Ruffo et al., 2006). Figure
3.3a provides an example of a MBP set-up.
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FIGURE 3.2: Product categorisation based on demand patterns.

Conversely, while MBP has obvious benefits for repeaters and strangers, these
benefits do not necessarily apply to runners. Since the demand of runners is typi-
cally steady and predictable, mixing such parts with other heterogeneous geometries
only increases the complexity and difficulty of planning and overseeing the produc-
tion schedule, as well as tracking individual parts. For this reason, identical batch
production (IBP) is suggested for building runner parts via SLM (Figure 3.3b). Ex-
isting literature (Atzeni and Salmi, 2012; Lépez-Castro et al., 2017) suggests that
the most suitable runners for IBP are high-complexity and high-value parts, which
are redesigned to improve operational life and functionality or reduce manufacturing
complexity, for instance, by reducing the part count of an assembly. The redesigned
GE fuel injector nozzle is a good example, offering both a reduction in part count

and improved performance (Kellner, 2014).

(A) Mixed batch production. Image taken (B) Identical batch production. Image taken from
from Farinia Group (2018). WJW Waterjet GmbH (2018).

F1cUre 3.3: Two production scenarios in SLM.
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In summary, the proposed framework is applied to two different production sce-
narios: Identical Batch Production (IBP), which addresses steady, long-term demand
of identical runner parts, and Mixed Batch Production (MBP), which addresses short-
term, HVLV demand of different stranger and repeater parts. As shown in Figure
3.1, in Chapter 4 the IBP problem is optimised for total unit cost, which includes
build and post-processing costs; while Chapter 5 extends this optimisation problem
to include both unit cost and residual stress criteria. Similarly, the MBP optimisation
problem is solved in Chapter 6. Because the MBP scenario presents a significantly
more complex combinatorial problem than IBP, the proposed solution is based solely

on build cost; this is explained further in the introduction of Chapter 6.

3.1.2 Build Orientation Constraint

When considering safety-critical parts the issue of certification must be considered.
If two identical parts are built in two different build orientations, each part can be
expected to exhibit different surface qualities, dimensional accuracy and mechanical
properties (Ahn et al., 2007; Chlebus et al., 2011). Critical aircraft parts must go
through a time-consuming and expensive certification process and meet stringent
airworthiness requirements (Saha et al., 2013). If a change in the manufacturing
process leads to different part properties, that part must be re-certified. Thus, even if
the additional manufacturing variability is deemed acceptable by the user, the cost of
certifying a part for each different build orientation is likely to outweigh any benefits.

Similarly, additional variability introduced during the production of instruments
and tools (e.g. two moulds produced in two different build orientations), will translate
into additional variability in the subsequent process that uses these tools, and thus,
have an undesirable effect on the accuracy and performance of the final process.

It is also worth considering the possible benefits that may be gained from placing
identical parts in different build orientations, provided these parts are non-critical.
In the context of IBP, these benefits are likely to be negligible; assuming an optimal
packing solution where all parts and all build orientations are identical, a single part
cannot be rotated without either increasing the overall build height or decreasing the
number of parts in the batch. Meanwhile, the additional manufacturing variability
and complexity is still likely to be undesirable, even for non-critical parts.

This is not the case with MBP, where bins are allowed to contain various geome-
tries of various sizes and so identical parts may be placed in different build orien-
tations to improve machine utilisation, without increasing the build height or cost.
By default, the proposed MBP optimisation heuristic imposes the build orientation
constraint on all identical geometries; however, it can be easily bypassed by the user
if needed as discussed in Chapter 6.

Finally, it should be noted that to fully meet this constraint, critical repeater
parts which have been produced via SLM in the past, must be fixed in the build

orientation that was used for the original order.
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3.1.3 Limitations and Assumptions

Simplifying assumption, which have not already been mentioned, are outlined below:

1.

Both IBP and MBP assume identical SLM machines and any variations between

production time and quality of individual machines are considered negligible.

. Material properties produced by each machine are consistent across the build

plate and are not affected by the 2DIBPP solution.

. Build quality is independent of the horizontal orientation of parts, hence, identi-

cal 2D pieces can be rotated in the horizontal plane during the 2DIBPP search.

A steady and consistent production flow is assumed. Only one order is dealt

with at a time, and other orders which may compete with it are not considered.

. Since delivery time constraints are outside the scope of this thesis, an infinite

number of available bins can be assumed (in practice, each batch is built on the

next machine that becomes available).

. Powder can be fully recycled, and powder losses during extraction and cleaning

are neglected.
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3.2 SLM Build Cost Model

As discussed in Chapter 2, a number of models have been proposed to capture the
build cost of ALM. This thesis uses the model proposed by Ruffo et al. (2006), as
it provides a detailed outline of indirect costs and is suitable for capturing the cost
of large scale production. Since support structure volume is a function of build
orientation, the original equation is adapted to show support structure and part
volume as two distinct material costs, as shown in Equation 3.1. Equation 3.1 outputs

the cost of a single SLM build, ¢, assuming the machine is filled with n identical parts.

cp = 1ty + c2p(Stot + Viot) (3.1)

where ¢ and co are coefficients of indirect cost and material cost, respectively; ¢ is
the build time; p is the material density; and v and s denote the part volume and

support structure volume, respectively.

3.2.1 SLM Build Time

To calculate the build time for a single bin, a linear regression model is proposed,
which considers three components of build time, namely, total scan time of the part
tv, total scan time of the support structure t,' and total powder recoat time t,., as

shown in Equation 3.2.

ty=1t, +t, +ts+ b1 (3.2)
where t, = Ooh ty, = [B3vier ts = BaStot

As can be seen, t,, t; and t, are approximated as linear functions of total part volume
Vtot, total support structure volume sy build height h, respectively, where Bs - B4
are linear regression coefficients. To account for additional build time independent
of the parts, for example, machine set-up, warm-up and cool-down time the constant
coefficient B is also introduced into Equation 3.2. The above equation can be re-

written to provide Equation 3.3, which is used throughout this thesis.

ty = B+ B2l + Baviot + Bastot (3.3)

Two sets of data were used to calculate 5o, B3 and (B4 for two different alloys — Ti-
6A1-4V and CoCr, which are used in Chapter 4 and Chapter 6, respectively. The
data has been provided by Rolls Royce plc and is presented in full in Appendix A.

!Support structure can be scanned more quickly since its quality is less critical than that of the
part.
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3.3 Post-Processing Cost Model

As outlined in Chapter 2, SLM post-processing typically consists of a number of steps,
including the cleaning and separation of parts from the build plate, heat treatment,
support structure removal and surface treatment.

While heat treatment is often necessary to relieve residual stresses and improve
the ductility of parts produced via SLM, its cost is assumed to be largely indepen-
dent of build orientation and batch packing?. Moreover, the cost of part cleaning is
predominantly determined by user preferences, part geometry and functional require-
ments; therefore, it is not considered as a variable in this model. Finally, build plate
removal time and cost is strongly dependent on the choice of removal method, and a
multitude of process parameters, as well as the part’s material properties. Thus, this
cost is not modelled explicitly as a function of build orientation; instead a constant
cost plate removal cost is estimated, based on wire-EDM cutting, and included into
the indirect cost coefficient, c1, as proposed by Baumers et al. (2013).

Consequently, the post-processing cost, shown in Equation 3.4, is treated as a
function of support structure removal and required surface polishing. As discussed
in Chapter 2, both of these factors have a clear functional relationship with build

orientation (Townsend et al., 2016; Calignano, 2014).

cpp = C3ts + caty (3.4)

where t; denotes surface finishing time and ¢, denotes support structure removal time;
cs and ¢4 are time-dependent cost coefficients, which are determined by labour costs,
chosen finishing and material removal methods, as well as the process parameters

selected for those methods.

3.3.1 Defining Target Surface Roughness

Surface roughness is a complex parameter, which is typically defined by a combination
of metrics, such as the size and distribution of microscopic peaks and troughs, surface
waviness, and lay, which describes the patterns and direction of grains or cuts (in
the case of subtractive methods) on the surface. By far the most common metric
studied in SLM literature is the arithmetic mean roughness, or Ra, which is the
arithmetic average of the absolute ordinate measurements of microscopic peaks and
troughs within a given sampling length (Townsend et al., 2016). The main downside
of this metric is that it is two-dimensional, and thus, may provide an incomplete
or misleading representation of the surface topology. To address this, Ra should be
measured several times, in different locations and orientations relative to the surface.
By comparison, there is a lack of clear definition and available data for other metrics
in SLM, such as area-based (i.e. 3D) roughness, waviness and lay. For this reason,

only the Ra metric is used to define surface roughness throughout this thesis.

2However, the need for heat treatment may be reduced by minimising residual stresses which are
addressed in Chapter 6.
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The finishing time t; in Equation 3.4 is assumed to be a function of the total
difference between the target part surface roughness and the as-built surface roughness
produced by SLM. The latter can be defined as a function of build orientation, as
described in detail in Section 3.4.2.

The target surface roughness, denoted by Ra;, must be provided by the user.

Thus, the framework requires the user to choose one of the following options:
e Specify a local target value Rat, for each facet f in the part’s surface;
e Input a single global value of Ra; directly into the model; or

e Omit Ra; (for instance, if a global finishing method is being used), in which

case the framework will only calculate the build cost.

In the case of the first option, a simple application has been developed using a CAD
Application Programming Interface (API), which enables the user to conveniently and
quickly input desired values of Ra; for local faces and features of the CAD geometry.

This application is described in more detail in Appendix B.

3.3.2 Surface Finishing Method and Time

As demonstrated by Gordon et al. (2016), there is a wide range of methods available
for surface treatment. As mentioned in Chapter 2, these methods can be divided into
two broad categories: global treatments and local treatments. The former category
includes batch processes such as barrel tumbling and vibratory finishing, where the
entire surface of each part in the batch is treated simultaneously and the relationship
between the post-processing time and local variations in surface roughness produced
by SLM can be considered negligible. The benefit of such approaches is relative
speed and low cost, however, the shared downsides of these methods is the relative
lack of control and resulting unwanted erosion of certain areas and features (e.g.
corners and sharp features), limited media access to internal features and concavities,
especially of complex parts. Also methods such as tumbling may not be suitable for
fragile parts. Another global method is electrochemical polishing which can achieve
a superior surface finish, but may produce a poorer, non-uniform finish inside deep
concavities.

Common local approaches include manual or robotic grinding and Computer Nu-
merical Control (CNC) machining. These are often slower than batch processes and
unsuitable for complex internal structures, but offer a lot more precision and control
over the resulting surface quality and dimensional accuracy of the part. Laser pol-
ishing is another promising local finishing approach, but is still relatively immature
and difficult to control (Marimuthu et al., 2015).

Selecting the most effective post-processing method is a complex decision based on
the part’s geometry, requirements and cost. Currently, it is common practice to use
several finishing steps, for instance, grit blasting followed by tumbling. If the entire

surface of the part requires post-processing and the part does not contain any delicate
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features, a global tumbling method may be used; while a part that contains complex
internal concavities, may be more suitable for electrochemical polishing. However,
for parts where only certain surfaces require finishing, or where a global method can
have a negative impact on the mechanical performance and dimensional accuracy (for
example, for a part with delicate features) of the part, a local method is more suitable.
For the purpose of demonstrating the proposed framework, part surface finishing is
assumed to be carried out in a single step using a medium-sized 5-axis CNC milling
centre, since it is a local process capable of achieving Ra < 1pm.

The total time of CNC milling is modelled in Equation 3.5. Other local finishing
processes can be substituted for CNC machining, by adjusting Equation 3.5 accord-
ingly. As mentioned above, the post-processing time of global methods is not affected
by local variations in surface roughness, and thus, can be considered unrelated to
SLM build orientation. Therefore, while the cost of different global post-processing
methods can be used to select the cheapest one, it will have no effect on the solution

produced by the framework and optimisation heuristics described in this thesis.

v, v,
ts = = + ’V Sq—‘ tload (35)

where ¢ is the process material removal rate for surface finishing; vs is the total
volume of material removed during this step; ty is the expected tool life and tj,qq is
the tool loading time, where the number of tool changes must be rounded up before
multiplying by t;,q4- As can be seen, the above equation is a simplification of the real
process, that assumes constant cutting speed, fixed tool life and fixed tool change

time, and ignores all other factors such as machine set-up time and swarf removal.

3.3.3 Support Structure Removal

Support structures are typically removed manually, thus, the process is highly depen-
dent on the skill and experience of the operator, as well as the size and complexity of
the part geometry. A model of support structure removal time is proposed by Alexan-
der et al. (1998), who argue that support struts that are attached to the part at both
ends are more difficult to remove than struts that are attached to the build plate.
This principle applies to all AM processes, thus, their model is adapted in Equation

3.6 to describe the time of manual support structure removal for SLM parts.
t, = w1 Ag +wo Ay (3.6)

where A, denotes the total area of down-facing part surfaces in contact with support
structure; A, denotes the total area of upward-facing part surfaces in contact with
support structure; and w; and w; are material removal coefficients. Ay and A, are

calculated in Section 3.4.1.
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3.4 Build Orientation Generation

As already mentioned, the STL file defines the surface of the 3D geometry using a set
of triangular facets, denoted by F'. Each facet f € F' can be defined as f(v1,va,vs, 1)
where v1, v9 and wvg are three distinct vertices, and 7 is the unit normal vector of the
facet pointing outward from the solid geometry; vy, v2, v3 and 7 are each defined in 3D
Cartesian coordinates. In the proposed model each build orientation is achieved by
two consecutive rotations about the geometry’s body-centric axes, as demonstrated
in Figure 3.4, where the body-centric coordinates of the geometry are denoted by x,
yp and zp, respectively. The first rotation is shown in Figure 3.4a, where the geometry
is rotated about xp; the second rotation is shown in Figure 3.4b, where the geometry
is rotated about z;. The global axes are shown for reference and denoted by zg4, v,

and z,, respectively.

Zg Zg

Yg Yg
Tg Tg

(A) Ry rotates geometry about z; axis. (B) Ry rotates geometry about z;, axis.

FIGURE 3.4: Schematic description of build orientation generation.

Therefore, each build orientation can be defined as p(6, ¢), where 6 and ¢ are
two rotation angles, and the rotated geometry is defined by a set of facets F’. Each
rotated facet f’ € F’ is produced by applying the R, transformation to the three
vertices v1, vo and vz, and the normal vector n of the original facet f, as shown in

Equation 3.7.

f'(v1, v, v3,7") = Ry f(v1,va,03,70) (3.7)

where v}, v, v} and 7/ denote the rotated vertices and rotated normal vector of f,

respectively. The matrix R, is defined in Equation 3.8.

R,. = RyRy (3.8)



56 Chapter 3. Methodology

1 0 0 cos¢ —sing 0
where Rp= |0 cosf —sin6 and Ry = |sing cos¢ O
0 sinf cosé 0 0 1

Using this transformation, all unique build orientations can be produced within
input boundaries of # € [0,180] and ¢ € [0,360). It should be noted, that if a part
geometry is rotated about the global z-axis, its key geometric properties, such as
height and supported area, and therefore its cost, will remain unchanged. Thus,
build orientations achieved by such rotations are considered to be duplicates of one
another. For example, when using Equation 3.8 for any geometry, all build orienta-
tions corresponding to p(0°,* ) and p(180°,* ) can be considered duplicates of p(0°,0°)
and p(180°,0°), respectively, where * denotes any arbitrary value of ¢.

Once the geometry has been rotated, a number of variables, which are driven
by the build orientation, are calculated and passed into the cost equation. These
variables include support structure volume and contact-area, geometry height, and
surface roughness. Additionally, the area and shape of the 2D piece is required to
determine the batch size and number of bins required to meet the demand. Given
a set of unique vertices V', which can be easily derived from F', the height of the
geometry can be easily calculated by sorting the vertices in V' by non-increasing z-
coordinate and taking the difference of 2,4, and z,;,. Support structure, surface

roughness and 2D piece generation are discussed in the following sections.

3.4.1 Support Structure Prediction

Predicting support structure volume is a difficult task for a number of reasons. Firstly,
determining the volumes created between the surfaces of the STL geometry is a non-
trivial computational task. Secondly, there is no definitive set of guidelines and rules
for designing support structures. Current commercial software relies on broad generic
rules to generate support structure automatically, for instance, using an overhang
threshold below which surfaces are supported; meanwhile, experienced users often
resort to manually modelling a support structure which is tailored to a specific part.

For the purpose of demonstrating the proposed cost model, a simple rule is
adopted for calculating the volume of support structure. As discussed in Chapter
2, this rule is commonly used in literature and states that any surface with a build
angle of less than ag,, must be supported, where o, is a threshold value that typ-
ically lies between 30° and 45°. Figure 3.5 provides a 2D example for this support
structure generation approach. The build angle of each facet f € F' is calculated

using Equation 3.9.

ap =cos (-2 iyp) (3.9)

where ay and fy denote the build angle and unit normal vector of f, respectively;

and -Z is a unit vector with coordinates (0, 0, -1) .
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! build plate

FIGURE 3.5: Example of support structure (red dots) for an arbitrary geometry (blue).

Thus, let f be defined as a supported facet with ay < auyp, and let Fg denote
a list of all supported facets in the part geometry, where Fg C F. Also, let f be
defined as an upward-facing facet if oy > 90°, and let Iy denote a list of all upward-
facing facets, where Fyy C F. It is assumed that the top surface of the build plate
is represented by a horizontal plane at z,,;,, where z,;, is the z-coordinate of the
lowest vertex in V.

It can be imagined that each facet f € Fyg is supported by a prism-shaped strut,
and the total support structure volume is the sum of the volume of these struts. Each
support strut is formed by three vertical line segments, where each line segment is
drawn along the -Z direction between a vertex of f and the surface of the build plate.
Since these line segments may intersect the part geometry, an additional intersection
check must be carried out between each edge of the support strut and each facet
fekly.

Given a vertex vy, belonging to a supported facet fg, and an upward-facing facet,
fu, the intersection check consists of two steps. First, it determines whether a vertical
line segment projected from vy, intersects the plane containing fi; if this condition
is true, the second step determines if the point of the line-plane intersection, denoted
by p, lies inside fy. If the latter is true, the edge of the support strut is updated to
p; otherwise, the edge is extended all the way to the build plate.

Model Efficiency and Validation

It can be seen that the worst-case time complexity of the above support structure
prediction approach is O(3SU), where S denotes the size of Fg and U denotes the
size of Fyy. To improve the computational time, Fy; is ordered into a tree structure,

based on the location and bounding box of each facet, so that for a given vertex vy
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and facet f € Fy, the intersection check is performed only if vy, lies inside the z-y
bounding box of f, and f does not lie above vy,. To further improve the solution
time, a simplified, low fidelity approach is proposed, which checks only the centre
point of each supported facet, instead of its three vertices; this reduces the worst-case
time complexity to O(SU). The original high fidelity (HF) approach and the low

fidelity (LF) version are summarised schematically in Figure 3.6.

Vi(fs)

Lo P
p1' fu I

(A) High fidelity approach. (B) Low fidelity approach.

—

FIGURE 3.6: Schematic comparison of high fidelity and low fidelity modelling of a single

support strut in 2D (red dots). fg denotes the supported facet; fy denotes an upward-facing

facet; viyg, vars and cyy denote two vertices and the centre point of fg, respectively; p1, p2
and p. denote intersection points corresponding to vy, var, and cyg, respectively.

The LF and HF approaches were tested on 68 geometries of various sizes, where
each geometry was placed in a randomly selected build orientation, and o, was set
to 45°. Figure 3.7 shows a comparison of the computational time and accuracy of
each approach. The two worst errors produced by the low fidelity model had values of
38% and -24%, respectively, and are marked by red circles in Figure 3.7b. However,
62 of the 68 data points had errors below 10%, while the whole data set yielded a
root-mean-square error (RMSE) of 5% (normalised over the range of data). Moreover,
the low fidelity model showed an average reduction in computational time by a factor
of 3 (taken from the gradient of the line of best fit), as expected.

It should also be noted that the high fidelity approach can only return the correct
support strut, if all three edges of the strut intersect the same upward-facing facet,
as shown in Figure 3.6a; if this is not the case the model will also introduce some
error, despite the additional computations, as shown in Figure 3.8. Based on these
observations, the low fidelity model is chosen over the high fidelity model and used
throughout this thesis.

The support structure volume predicted by the adopted low fidelity model has
been validated against support structure produced by a commercial software, Magics
v20.03. The same 68 test instances and settings were used to compare the proposed
model and Magics; the results are shown in Figure 3.9. Despite producing an over

30% error in three test instances, with 48% being the worst, the model produced an
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FI1GURE 3.7: Performance comparison between the low fidelity and high fidelity models of
support structure, shown on a logarithmic scale.

Vi(fs)

i V2(fs)

FIGURE 3.8: Example of support strut error (grey lines) produced by the HF approach.

average error of 7% and RSME of 3% for the whole data set, indicating generally
good predictive accuracy in the majority of cases. The occasionally large errors are

likely a result of the intersection error discussed above, and demonstrated in Figure

3.8.
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FI1GURE 3.9: Comparison of support structure volume predicted by the low fidelity model vs.
Magics software, shown on a logarithmic scale.

Finally, it should be noted that the proposed model assumes fully solid support
structure, whereas hollow and lattice-shaped support structures are often used in
practice to reduce waste material. Other features, such as contact teeth and offsets
around edges, are also not considered. A simple and quick way to approximate
lattice-shaped support structure is to apply a density fraction to the calculated solid
support volume. This idea was tested by creating and comparing both hollow and
solid support structures in Magics, using the same 68 geometries and the same build
orientations, as above. Figure 3.10a shows a regression line for the two types of
support structure, with a R? of 0.93, RMSE of 5.47%, and a gradient of 0.28. Figure
3.10b shows the support structure volume predicted by the LF model and scaled by a
factor of 0.28, compared against hollow support structure created by Magics. Due to
its simplicity, this approach can only provide an approximation of hollow supports;
the maximum predictive error of data shown in Figure 3.10b is 61.0%, with a RMSE
and mean absolute error of 5.96% and 16.5%, respectively. Despite these errors, the
proposed LF model of support structure volume is still a useful tool for comparing
and selecting different build orientations, while the suggested scaling factor of 0.28
provides a more realistic weighting of support structure volume in the proposed cost

equation, and resulting objective functions presented in chapters 4 and 5.

Support Structure Removal

To find the time of support structure removal, the contact area between the support
structure and the upward-facing and downward-facing facets, denoted by A, and Ay,
respectively, must be known. Following the procedure described above, A4 and A,
can be easily calculated by summing up the areas of relevant facets, as shown in

equations 3.10 and 3.11, respectively.
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FIGURE 3.10: Prediction of hollow support structure volume, shown on a logarithmic scale.

1

where oy —{ 0

Fs

Ad:Zaf

f=1

Fy
A, = Zofaf
f=1

if f is intersected by a projected support strut

otherwise

(3.10)

(3.11)

where Fg denotes a list of supported facets; Fiy denotes a list of upward-facing facets

and ay is the area of facet f.

For clarity, Figure 3.11 provides a simplified 2D example, where the total support

structure contact area is calculated as the sum of the supported facet fg and its

underlying upward-facing facet fy7, which have areas A; and A, respectively. As can

be seen, a tiny offset is assumed between the support strut and the adjacent vertical

surface of the part, which is assumed to be support-free.
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Area of fs denoted by Ag4
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FIGURE 3.11: Schematic example of supported facet, fg, its underlying upward-facing facet,
fu, and their corresponding areas (highlighted by thick blue lines), A; and A,, respectively.

3.4.2 Removed Material Prediction

As described in Section 3.3, the post-processing time and cost of SLM is modelled as
a function of total volume of removed material, vgr. In order to calculate vgp, the
original surface roughness, denoted by Ray, for each facet f € F' of the part geometry
must be known. Several works in literature (Cooper et al., 2012; Strano et al., 2013b;
Triantaphyllou et al., 2015) have reported experimental data that relates the surface
build angle, denoted by «, and surface roughness, Ra. These data vary significantly
due to differences in laser parameters, layer thickness, materials, powder properties
and SLM machines. A thorough investigation of surface roughness produced for Ti-
6A1-4V alloy was carried out by Vandenbroucke and Kruth (2007); their results are
shown in Figure 3.12. Unlike most of the above studies which provide only a few
sampling points (e.g. at 45° increments), Vandenbroucke and Kruth (2007) cover
the whole range of o and provide a relatively large data set of 18 sampling points
(within 15° increments or less). For this reason, the data in Figure 3.12 are used to
interpolate surface roughness in this thesis.

As proposed by Ahn et al. (2007), for a build angle o* that falls in between the
sampling points, the surface roughness value, denoted by Ra*, can be interpolated

using Equation 3.12.

oa*(Ra® — Ral)

* _ pof
Ra™ = Ra’ + o —of

(3.12)

3

A layer thickness of 30 pm is assumed for Ti-6Al-4V throughout this thesis. The sharp peak in Ra
on the top-facing surface (i.e. a > 150°) can be reduced significantly (to below 20 pm) by using a
layer thickness of 20 um, leading to smaller and more stable melt pools (Vandenbroucke and Kruth,
2007).
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FIGURE 3.12: Surface roughness of Ti-6Al-4V alloy produced by an M3 Concept Laser
machine with a layer thickness of 30 pm?; adapted from Vandenbroucke and Kruth (2007).

where of and a¢ are the floor and ceiling values of the interval containing o*, re-
spectively; and Ra/ and Ra® are the roughness values corresponding to of and o,
respectively.

The data in Figure 3.12 accounts for process characteristics such as the stair-
stepping effect, melt-pool rippling and additional powder particles fusing to downward-
facing surfaces. However, another key source of surface roughness is support structure,
which leaves marks and protrusions after it is removed. As can be seen, the roughness
of supported surfaces (where o < 30°) was not reported.

As discussed in the previous section, the threshold build angle for support-free
surfaces, denoted by oy, typically lies between 30° and 45°. Although it is still
possible to successfully build support-free surfaces within this range, a significant
deterioration in the build accuracy and surface finish can be expected, as indicated
by the sharp rise in Ra for a < 45° shown in Figure 3.12. Conversely, supporting these
surfaces can actually improve the overall surface finish and build accuracy, despite
the residual marks and protrusions, due to the additional structural support and heat
dissipation (Calignano, 2014).

Thus, for each support-free facet f € F, where o,y < ay < 180°, the surface
roughness of f, denoted by Ray, is determined using Equation 3.12 and the data
in Figure 3.12. Meanwhile, for each supported facet fg, where 0 < ay, < Qgup,
the surface roughness Rayg is set to Rasyy,, which is a constant value denoting the
roughness of supported surfaces.

It is assumed that all parts are placed directly onto the build plate (i.e. without
base support structure?), and that the parts are removed from the build plate using
wire-EDM (Section 3.3). Thus, for any facet f € F, where ay = 0°, f is considered
to be in full contact with the build plate, and Ray is set to Rayepm, which denotes a

constant surface roughness resulting from part removal via wire-EDM.

4Additional support structure placed between the base of the part and the build plate, in order
to improve build quality and facilitate part separation from the build plate.
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Values of Rasyp, and Raye, can be specified by the user. The roughness of sup-
ported surfaces produced in Ti-6Al-4V alloy has been reported (Cooper et al., 2012;
Triantaphyllou et al., 2015) to range between 15 pm and 32 pm; while typical surface
roughness produced by wire-EDM falls between 1 pm and 5 pm.

Once the roughness Ray of each facet f € F'is known, the total removed material,

vg, can be calculated using Equation 3.13.

Vs :Z/mf(Raf—Ratf) (3.13)
f
1 if R
where &k = { ! af > Ray,
0 otherwise

where Ra; denotes the SLM surface roughness of facet f, ay is the area of f and
Ray, is the target surface roughness of f, which is defined by the user as described
in Section 3.3.1.

3.4.3 2D Piece Generation

The 2D piece represents the 3D part geometry in the 2D bin packing problem. Since
overlapping and stacking of parts is avoided in this model, the piece can be though
of as a shadow of the part on the build plate. In this model, the 2D piece is created
in four stages, which are outlined in Figure 3.13.

Using the set of unique vertices V', each vertex v € V is projected vertically onto
the z-y plane, such that vsp(z,y, z)  vap(x,y). The resulting set of 2D points is
pruned for duplicates, and a Delaunay triangulation is performed (Shewchuck, 2002).

Each edge in the resulting triangular mesh can either be defined as an internal
edge, if it is shared by two triangles, or an outer edge, if the edge belongs to only one
triangle. The convex hull of the projected points is defined by these outer edges. In
some cases the convex hull can be significantly larger than the actual outline of the
geometry, as demonstrated by the example in Figure 3.13. To get the concave hull, a
boundary digging procedure is adopted from Duckham et al. (2008), which removes
outer edges exceeding a specified maximum length. The procedure is described as
‘digging’, because it can be imagined to physically remove an outer edge from the
mesh, leaving a small concavity and two exposed internal edges. Figure 3.14 provides
a pseudo-code of this procedure, where List,. denotes the list of outer edges and
Lynq. denotes the maximum edge length.

When using this procedure, care must be taken to avoid removing too many
edges and creating a degenerate or discontinuous polygon. To do this, the algorithm
in Figure 3.14 checks the status of the newly exposed pair of edges, e; and es; if one of
these edges is already classed as an outer edge, the process stops and returns the most
recent iteration of the list of polygon vertices, List,.. Furthermore, a suitable value
of Lyner must be used. Preliminary testing showed this value to be around 20 mm,

where the algorithm managed to sufficiently capture large concavities without digging
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(A) STL file of bracket.

( )

1. STL vertices pro- 2. Delauney mesh (black) [ 3. Concave hull (red) result- ) 4. Final inflated polygon )
jected onto z-y plane. and convex hull (red). ing from digging procedure. (red) represents 2D piece.

(B) Stages in the 2D piece generation procedure.

F1GURE 3.13: The 2D piece generation procedure tested on a bracket, with a maximum edge
limit of 20 mm (stage 3), and an inflation offset of 4mm (stage 4).

too far. Removing edges below this limit increases the risk of creating degenerate or
multiple disconnected polygons, and causing numerical errors in the no-fit polygon
procedure during bin packing (Lindmark, 2013), as well as increasing computational
cost. More importantly, capturing very small concavities is unlikely to provide a
significant improvement in the 2DBPP solution, as very few parts would fit in such
a small space.

It should be noted that closed internal cavities are not captured by this procedure.
While internal cavities can affect the 2DBPP solution in certain cases (for instance,
if very small parts can be successfully placed inside a large annulus), such cases are
considered rare, and thus, are left for future research.

Finally, to avoid part damage during the SLM process and to facilitate removal of
built parts from the SLM build substrate, a small gap must be maintained between
the parts when they are placed on the build plate. To maintain a minimum distance
d, between parts packed in SLM, the 2D piece of each part can be inflated by %do.

The process is shown schematically in Figure 3.15. Vertices in the concave polygon
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Input: Listee, Limax

Result: updated Listoe
1 Sort List,e by non-increasing length;
2 Set eo <+ first edge in Liste;

3 while e.Length > Ly,qs do

4 Find triangle T', which contains the edges eg, e1 and eg;
5 if e1,e2 = inner_edge then

6 ‘ Remove eg from List,e and add e1, ez to Listee;

7 end

8 else

9 ‘ Terminate procedure;

10 end

11 Sort List,e by non-increasing length;

12 Set e < first edge in Listoe;

13 end

FIGURE 3.14: Pseudo-code of polygon boundary digging procedure.

(produced in stage 3) are ordered in an anti-clockwise order, thus, the polygon can
be described by a set of edges, where each edge contains two vertices and a direction.
To inflate the polygon, the vertices of each edge can be translated by a vector, with
magnitude %do and direction perpendicular to the edge. The resulting polygon is
likely to contain edges which intersect or form a gap. To fix this, the vertex shared
by each pair of edges is replaced with an intersection point, computed for the two

vectors corresponding to these edges, as shown in Figure 3.15.

3.5 2D Irregular Bin Packing Problem (2DIBPP)

From the above procedure, it follows that the resulting 2DIBPP is likely to contain
highly irregular pieces, often with concavities. In order to exploit these concavities
and find high quality bin packing solutions, continuous and unrestricted rotation of
pieces in the z — y plane should be permitted. Moreover, as discussed in Section 3.1
the framework assumes an infinite number of available machines, containing identical
rectangular build platforms. Thus, the method of Martinez-Sykora et al. (2017) is
used in this thesis, which addresses the 2DIBPP, characterised by irregular concave
pieces, continuous piece rotation and the presence of multiple bins.

The aim of this procedure is to pack a given set of 2D irregular pieces, denoted by
P, into a set of bins, such that the utilisation of each bin is maximised. In the case
of MBP, the algorithm consists of the following three steps. The first step tries to
assign all pieces to a minimum number of bins by solving a 1D bin packing problem,

where each piece is represented by its area only.
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FIGURE 3.15: Schematic description of polygon inflation.

The second step tries to place each potential subset of pieces into its corresponding
bin. In this step, the subset of pieces is sorted by non-increasing area and each piece
is placed sequentially into the bin. A mixed integer programming (MIP) model is
used to evaluate different rotational positions of each piece, by selecting a rotation
which minimises the overall bounding box dimensions of all placed pieces in the bin,
as shown in Figure 3.16. If all pieces in the current subset are packed successfully,
the subset is removed from P, the successful bin is saved to the final solution and
the algorithm moves onto the next subset of pieces until all pieces in P have been

packed. Otherwise, the algorithm proceeds to the third step.

(A) Rotation 1 (B) Rotation 2 (¢) Rotation 3

FIGURE 3.16: Three potential rotations for the first piece in the bin, where Rotation 3 is
considered the most favourable. Taken from Martinez-Sykora et al. (2017).

It is clear that the first step in the procedure is likely to produce very ambitious
and sometimes infeasible piece subsets. Thus, the third and final step is designed to
mend the assignment of pieces to bins, should the second step fail to place one of the
pieces in a given subset. This is done by sorting all remaining untried pieces in P
and attempting to place each piece sequentially into the partially packed current bin.
Once all pieces have been tried, the bin is saved to the final solution and the packed
pieces are removed from P. Because this step disrupts the original bin assignment,
the procedure must go back to the first step and solve the 1D bin packing problem

again for all remaining pieces in P.
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In the case of IBP, the problem is much simpler, since all pieces are identical and
bin assignment is not required. As discussed in Chapter 4, only the batch size is
required to find the unit cost of identical pieces, which can be found using only the
second step of the procedure described above.

Finally, as described in Section 3.1, each bin must have four no-build zones which
represent the bolts fixing the build plate to the SLM machine platform. As shown
in Figure 3.17, these no-build zones are represented by four rectangular “dummy”

pieces, which may not be overlapped by any of the real pieces placed inside the bin.

3.6 Implementation

The framework is implemented in C# using the Visual Studio 2012 development
environment, and parallelised where appropriate. To solve the MIP problem for the
2DIBPP the commercial solver Gurobi (version 6.5.2) is used. All experimental tests
throughout this thesis are done on the same 17-3820 four core machine, with 2.70 GHz
maximum frequency, eight logical processors and 16GB of RAM.

Throughout this thesis, the SLM build envelope (i.e. viable building space inside
the build chamber) is assumed to have 240 mm width, 240 mm length and 275 mm
height. Thus, the 2D bin dimensions used in the 2DIBPP are shown schematically
in Figure 3.17, where W and L denote bin width and length, respectively; d; and
dy denote the location and dimensions of four symmetrical squares representing the
no-build zones, as shown; and d, denotes the minimum allowable distance between
the SLM parts (as discussed in Section 3.4.3).

] []

FIGURE 3.17: Bin dimensions used in the 2DIBPP. The diagram shows a 2D bin packed with
two inflated pieces, shown in blue, and no-build zones shown in red.
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3.7 Conclusion

This chapter describes a cost-driven process planning framework for SLM. Section
3.1.1 outlines two SLM production scenarios, IBP and MBP, and discusses the suit-
ability of each scenario in the context of lean manufacturing and different demand
patterns which are commonly seen in many industries, including aerospace, automo-
tive and the medical sector. The presence of safety critical parts is also considered
and a new build orientation constraint is proposed.

Sections 3.2 and 3.3 cover the cost modelling methodology, which includes both
SLM build cost and post-processing cost. The build cost is an adaptation of Ruffo
et al. (2006), where the coefficient values are taken from Baumers et al. (2016) who
adapt the same model in their work. To predict the build time of SLM, a simple
linear regression model is proposed, based on build height, part volume and support
structure volume, where the latter two parameters are driven by build orientation.
While this method is less accurate than an analytic approach, it offers a fast and
sufficient approximation of build time, by bypassing the need to compute the exact
laser path, which is too time consuming and computationally expensive for the op-
timisation models proposed in this thesis. Furthermore, given the limited training
data, the fitted regression model is considered to be acceptable for the purpose of
demonstrating the methodology proposed in this thesis; however, future work should
aim to build a larger set of data to properly train and validate this model.

As discussed in Chapter 1, to avoid unexpected additional costs and risks of delay
at the later stages of the manufacturing process, post-processing costs should be taken
into consideration as early as possible i.e. at the process planning stage. As discussed
in Section 3.3, the key post-processing costs associated with build orientation are
surface finishing and support structure removal. This thesis argues target surface
finish should be treated as a constraint and Section 3.3.1 describes a simple application
designed to enable the user to include local target roughness into a standard STL file.

Section 3.3 also outlines different surface finishing methods available for SLM,
which can be classified as either global or local methods. Following the above logic, the
framework assumes a local surface finishing method, where the difference between the
target surface roughness and build surface roughness produced by SLM has a direct
effect on the post-processing time and cost. Conversely, a global surface finishing
method treats the entire surface simultaneously, thereby, de-coupling the build surface
roughness (and hence the build orientation) from the resulting post-processing cost,
and negating the effects of surface finishing on the optimisation problem. It should
be noted that this model considers only the operating costs and tool costs, based
on Ti-6Al-4V and a medium-sized 5-axis milling machine®, while other costs such as
tool-path planning by a skilled operator and machine set-up are not considered.

The support structure removal model assumes a manual process and is based on

Smilling data provided by Rolls-Royce plec.
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the assumption of Alexander et al. (1998), who suggest that removing support struc-
ture attached to the part at both ends is more difficult and time consuming than
removing support structure attached at only one end. To reflect this, the model pro-
poses two different weighting factors for downward-facing and upward-facing surfaces,
respectively, which are in contact with support structure.

Section 3.4 outlines in detail the build orientation generation procedure, which
assumes continuous rotation about two perpendicular axes. Continuous rotation is
proposed as a way of exploring more potential (and less obvious) solutions in the de-
sign space. Methods of calculating support structure, surface roughness and 2D piece
generation are discussed in detail in this section. The support structure prediction
was found to be the most time consuming aspect of this part of the framework, so a
simplifying technique is proposed in Section 3.4.1 and validated against the commer-
cial software Magics, producing a RMSE of 5.47% for a set of 68 test geometries, with
a maximum absolute error of 48%. It was found that, combined with a density frac-
tion of 0.28 (for the same 68 test geometries), the model can also be used to predict
hollow support structure, although this increases the maximum error to 61.0% when
compared to Magics. In both cases, despite the large maximum errors, most of the
predicted data points were found to be reasonably accurate. As part of future work,
a surrogate modelling or machine learning approach could be used to predict support
structure more quickly and accurately, although such a method would require a very
large and robust data set, based on a variety of parts of different sizes and geometric

complexities.
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Chapter 4

Cost Optimisation for Identical
Batch Production

The first part of this chapter outlines a formal problem description for process plan-
ning in the IBP scenario. Next, the Tabu search heuristic is proposed to solve the
problem, due to its explorational attributes and ability to escape local minima. Fi-
nally, Tabu search parameters, such as the size of local neighbourhoods, are tested
on three different realistic part geometries.

A key contribution of this chapter is a new objective function for the combined
build orientation and bin packing problem, which includes both build and post pro-
cessing cost, derived from equations described in Chapter 3.

Moreover, manufactured parts often contain geometric symmetries, which typi-
cally lead to symmetries in the build orientation solution space. This is acknowledged
in relevant literature (Peng et al., 2017), but no works explicitly address this challenge.
Therefore, a second contribution of this chapter is a thorough discussion of solution
space symmetry, its effects on optimisation performance, and ways of addressing it.
Following on from this discussion, a new approximation strategy is proposed to reduce
the frequency of time-consuming, and potentially redundant, bin packing solutions.
The test results indicate that the approximation strategy reduces solution time of the
Tabu search by at least 50%.

4.1 Problem Description

Consider N identical geometries, which are to be placed into identical bins of width
W, length L and height H. The geometry is denoted by g, and its surface is defined
by a set of facets F, where each facet f € F' has a target surface roughness denoted
by Ray,.

The objective is to find a build orientation of g with the minimum unit cost. In
order to calculate the unit cost the batch size must be known, thus, a bin packing
problem must be solved for each new build orientation of g. As discussed in Chapter
3, vertical stacking of parts is not allowed, therefore, the bin packing problem is

modelled in 2D, where each new build orientation of ¢ is represented by a 2D piece.
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Thus, let p denote the 2D piece representing ¢ in its current build orientation, and
let h, denote the current build height of p; s, denotes the current support structure
volume of p; n, denotes the batch size resulting from p; vs(p) denotes the resulting
volume of material removed during surface polishing; and A4(p) and A,(p) denote
the total downward-facing and upward-facing areas, respectively, which are in contact
with support structure resulting for p.

It should be noted that h, may not exceed the bin height H. Furthermore, as
discussed in Section 3.1.2, a solution to the IBP problem must place all instances
of g in the same build orientation to avoid any additional process complexities and
variations. In other words, the bin packing solution must place N identical instances
of p into M bins, where n,M > N.

This presents a simple version of the cutting stock problem, which can be solved
by placing n,, instances of p into a single unique bin and duplicating this bin M times
to meet the demand N. Since the process planning framework assumes an unlimited
number of available bins (Section 3.1.3), a packing solution for a single bin is sufficient
to determine the unit cost corresponding to piece p, without considering the n,M > N

condition. Thus, the objective function of this problem can be summarised as follows:

min C 4.1
nin (p) (4.1)

for 6 €[0°,180°], ¢ € [0° 360°)

where C(p) = Cl;fp) + cpp(p) (4.2)

where ¢;(p) denotes the SLM build cost of a batch of n, identical instances of piece p,
and ¢y (p) denotes the post processing cost of p. Definitions of ¢, and ¢, are provided
in Equation 3.1 and Equation 3.4, respectively, and substituting these two equations
into Equation 4.2 results in Equation 4.3.
h 1
C(p) = w1 + wasp + wsts(p) + wat, (p) + w5n—z + w6n—p (4.3)

w1 =vg(cop+c183), wa=c1fBy+cap, wz=c3, wi=c4, wWs=cif, ws=ciP

where s, ts(p), tr(p), hp and ny, are the decision criteria, which are driven by the build
orientation and resulting packing solution; and wq,...,wg are constant coefficients,
which determine the weight of each criterion in the objective function. For the reader’s
convenience, equations 3.5 and 3.6 which define support structure removal time, t4(p),

and surface finishing time, t5(p), in Chapter 3, are shown below:

vs(p) PS (p)

q tuq

ts(p) =

]twad (35,  0(p) = wida(p) + wadu(p)  (3.6)

where ¢ is the material removal rate of the surface polishing method, t; is the tool
life, tj54q is the tool loading time, and wy and ws are time coefficients associated with

manual support structure removal. The detailed methodologies for calculating A4(p)
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and A, (p), and vs(p) are provided in Section 3.4.1 and Section 3.4.2, respectively.
The method for determining n,, is discussed in Section 3.5, which tries to place
as many instances of p as possible into a 2D bin of width W and length L, and
produces a bin solution that can be denoted by b(n,O, X,Y’), where n denotes the
batch size. During the search the pieces are allowed to rotate continuously about
the vertical z-axis, hence, O = {o1,...,0,} defines the 2D orientation of each piece.
Finally, X = {z1,...,2,} and Y = {y1,...,yn} define the x and y coordinates of the
reference point of each piece, respectively. The reference point of a piece is the bottom
left corner of its enclosing rectangle, corresponding to its 2D orientation. Every piece
must be placed completely inside the bin and may not overlap with any other pieces

or the no-build zones (shown in Figure 3.17).

4.2 Tabu Search Procedure

It can be seen that the above problem is highly non-linear, not only as a result of
Equation 4.3, but also due to the complex relationships between the criteria and
the different surfaces in the part geometry. To deal with the presence of multiple
local minima, this section proposes the use of Tabu search (TS) (Glover, 1989, 1990),
which is a well-known meta-heuristic used to guide a local search procedure and aid
it in exploring the solution space beyond local minima. The effectiveness of T'S stems
from its two defining principles; firstly, it can move from a better solution to a worse
solution to escape a local minimum; secondly, previously visited solutions are marked
as “taboo”, which means the search is forbidden from re-visiting these solutions', and
gives the algorithm its name.

The pseudo-code of the proposed algorithm is presented in Figure 4.1. At each it-
eration, the TS must evaluate the local neighbourhood P (p.) of the current solution
pe and move to the most favourable neighbour p’ € PV (p.), which becomes the new
current solution. Equation 4.3 is used to evaluate each solution p in the neighbour-
hood, such that C(p’) < C(p) for all p € P¥(p.). This process is repeated until the

termination criterion of I,, > I, is satisfied, where I, is the number of consecutive

max

non-improvement iterations and I, . is a threshold value set by the user. Since p’ is

not necessarily better than p., the procedure must also track the overall best solution
encountered at each iteration, which is denoted by p, and must be updated each time
the condition C(pp) > C(p.) is met.

As shown in Figure 4.1, each visited solution (p.) is marked as “taboo” and stored
in a Tabu list, preventing it from being selected in the following iterations. To avoid
exceeding the computational memory budget and to avoid the search cornering itself

into a dead-end, the maximum number of entries in the Tabu list is limited to a fixed

Variants of the TS procedure may incur a penalty for, or reduce the probability of, moving to a
marked solution (instead of forbidding it), and can also mark unexplored solutions with potentially
undesirable attributes as “taboo” (in addition to visited solutions).
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Input: pin, &, Lgize, Inma,Jr

Result: py
Pc < Din;
Pb ¢ Pc;
Iy <+ O;
TabuList + 0;
while I, < In,,,, do
Construct neighbourhood P¥ (p.) for p. using step size &;
Return best solution p’ € P (p.);
if TabuList.Size > Lg;,. then
Remove oldest entry in T'abuList;
end
Add p. to TabuList;
Set pe + p';
if C(pp) > C(pc) then
Iy < O
Pb < Pc;
end
else
| LI+ 1
end
end

FIGURE 4.1: Tabu search procedure, where p;,, p. and pp denote the initial, current and best
solution, respectively; and C(p,) and C(p..) denote the unit cost of p, and p., respectively.

size, denoted by Lg;..; when this size is reached, the oldest entry must be removed

from the list before a new entry can be added.

FIGURE 4.2: Structure of local neighbourhood P™ (p.) = {p1, ...
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,Ps }, where p. denotes the

current solution, £ denotes the step size and 6 and ¢ are two angles of rotation.

The structure of the local neighbourhood P (p.), is a fundamental element of

TS, and has a significant effect on the algorithm’s performance. In the proposed

procedure, the neighbourhood has a fixed size and a simple structure, as shown in

Figure 4.2. For each piece p., the local neighbourhood P™(p.) consists of a total

of eight neighbouring solutions, where each neighbour is produced by taking a step
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of size £ away from p., in any direction in 6, in ¢, or in both dimensions. This
simple structure allows each neighbourhood to be constructed and evaluated quickly,
with a relatively small computational expense, while the step size £ can be changed
between iterations to encourage the procedure to either explore the solution space,

or to converge on a minimum.

4.2.1 Solution Space Symmetry

As stated in Section 3.4, sampling points along = 0° and 0 = 180° result in duplicate
build orientations. If one of these build orientations happens to be a local minimum
the Tabu search is likely to get stuck. To deal with this issue, once a solution at
6 = 0° has been visited, a new entry denoted by p(0°,*) is added to the Tabu list,
where * represents any arbitrary value of ¢. This marks all solutions at # = 0° as
“taboo” and prevents the search from moving to another solution located at 8 = 0°;
the same is done for solutions at 8 = 180°.

Furthermore, any symmetries in the geometry can be expected to produce corre-
sponding symmetries in the solution space. This is likely to have a detrimental effect
on the efficiency of the optimisation search and quality of the resulting solution. To
ensure that only unique areas of the solution space are explored in the presence of re-
flectional symmetries, it is suggested that the initial build orientation of the geometry

is calibrated in one of two ways:

e by aligning the plane of symmetry to the global x-y plane, in which case the
input range of 6 can be bisected, as shown in Figure 4.3a, or;

e by aligning the plane of symmetry to the global y-z plane, in which case the

input range of ¢ can be bisected, as shown in Figure 4.3b.

(A) Bisect interval 6 € [0,180] «+ [0, 90]. (B) Bisect interval ¢ € [0,360) < [0, 180].

FIGURE 4.3: Two possible initial build orientations and resulting input intervals for a geom-
etry containing a single plane of reflectional symmetry.
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Alternatively, if the geometry contains a plane with multiple lines of rotational
symmetry, the same principle can be applied by aligning one of the axes of rotation
to the normal vector of that plane and dividing the corresponding input range by the

degree of rotational symmetry, as shown in Figure 4.4.

- ¢ € [0°,360°) + [0°,90°]

FIGURE 4.4: Example of rotational symmetry in the cross-section of a prism. Since the z-y
plane contains four degrees of rotational symmetry (dashed red lines) the interval of ¢ can
be reduced from [0°,360°) to [0°,90°].

Finally, it should be noted that even if the geometry contains no symmetries,
the build height and piece area can be expected to follow a recurring pattern with
respect to 0 and ¢, due to the periodic nature of the build orientation problem. This is
demonstrated in Figure 4.5b, which shows the a, solution space for a non-symmetrical
turbine blade geometry. It can be seen that the yellow region in the lower part of the
figure can be mapped onto the top yellow region with two reflection transformations,
one in the # axis and another in the ¢ axis. It can be easily deduced that such
repetitive behaviour in the a, domain is highly likely to be present in the n, domain
as well. Since the 2D bin packing solution makes n, significantly more expensive
to compute than all the other piece attributes, this behaviour of the solution space
should be used to avoid duplicate bin packing solutions where possible during the

Tabu search.
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(A) Turbine blade geometry. (B) Solution space of piece area a, (mm?).

FIGURE 4.5: Solution space of a, shown for a non-symmetrical turbine blade geometry.
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4.2.2 Efficient Search Strategy

Following the above discussion, this section proposes a strategy that aims to reduce
the number of times the bin packing problem is solved, especially for pieces of similar
area. This is achieved by comparing the projected area a, of a current piece p to the
areas of previously visited pieces, and either solving the bin packing problem to find
the exact value of n,, or approximating n, based on an existing solution with an area
similar to a,.

More precisely, each exact solutions must be stored in a separate list denoted by
SolutionList, and each new solution p must be compared against all solutions in
SolutionList. If SolutionList contains a piece pg with area a,, such that a, ~ a,,
then set n,, < n,4; otherwise, if a,, is significantly different from all existing solutions
in SolutionList, the bin packing problem must be solved to find n,, and p must
be added to SolutionList. The difference between a, and a,g is considered small,
if \a%;zpsl < Ayim, where Ay, is an approximation parameter specified by the user.
Figure 4.6 provides pseudo-code of the local neighbourhood construction procedure,

which uses this strategy.

Input: pc, €, Ajim, SolutionList
Result: updated p., updated SolutionList

1 Create an empty list PN (p.) which denotes the neighbourhood of p., using step size &;
2 foreach p € PN do
3 Find build height hy of p;
4 Find support structure volume s, of p;
5 Find area a; of p;
6 foreach pg € SolutionList do
7 ba(ps) = 22 2esl;
8 end
9 Take solution pg € SolutionList with minimum da;
10 if da < Ay, then
11 set np < Npg;
12 Calculate cost C(p) of p;
13 end
14 else
15 Solve 2DBPP to find np;
16 Calculate cost C(p) of p;
17 Add p to SolutionList;
18 end
19 end

20 Order all p € PN by non-decreasing C(p), and set p. < PN[1];

FI1GURE 4.6: Neighbourhood construction procedure, where Ay, is a hyper-parameter pro-
vided by the user and SolutionList denotes a list which stores all solutions, for which the
exact value of n, is known.

Finally, let C,(p) denote the approximated cost of a solution p, and C(pp) denote
the cost of the current best solution py. If C,(p) < C(pp), then the exact cost of
p, denoted by C(p), must be computed and p must be added to SolutionList. If
C(p) < C(pp), update the best solution p, < p, otherwise continue to the next
iteration. It should be noted that to find the approximated cost C,(p) only the
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number of pieces in the bin n, is approximated, while the bin height h, and support
structure volume s, are still calculated exactly, since these values are relatively cheap

to compute when compared to the bin packing problem.

4.3 Implementation

Table 4.1 provides a summary of all parameters, settings and cost modelling coeffi-
cients used in the computational results provided in Section 4.4. For surfaces which
are not supported or in contact with the build plate, the SLM surface roughness is
predicted using the method and data provided in Section 3.4.2, where the latter is
taken from Vandenbroucke and Kruth (2007). The model assumes that all parts are
built directly on the SLM build plate without any base support structure.

Parameter Value Units Definition

¢ 26.64 £/h Indirect cost coefficient

Co 258.2  £/ke? Material cost rate

c3 20.0 £/h Labour rate

¢y 60.0 £/h Machining cost coefficient

P 441 gem™3 Ti-6A1-4V density produced by SLM

1 3.00 h SLM constant time coefficient

B2 1.03 x 107! hmm~!  SLM recoat time coefficient

3 1.81 x 10™* hmm™2  SLM part exposure time coefficient

Ba 7.50 x 10° hmm™3  SLM support structure time coefficient

w1 4x107* hmm™2  Support removal coefficient for downward-facing surfaces
wWay 8x 10 hmm™2  Support removal coefficient for upward-facing surfaces
q 1x10° mm®h~! Machining material removal rate

ty 40.0 min Tool life

tioad 0.25 min Tool loading time

Rasup 27.0 pm Surface roughness after support structure removal
Rarem 5.00 pm Surface roughness after wire-EDM

Qsup 40.0 ° Minimum unsupported build angle

Psup 28 % Density fraction for lattice support structure

do 10.0 mm Minimum distance between pieces in 2DIBPP

L 50.0 mm Maximum edge length in 2D piece polygon

TABLE 4.1: Summary of cost coefficients and modelling parameters.

The TS procedure is implemented in C# using the Visual Studio 2012 develop-
ment environment. The code is parallelised on four i7-3820 cores, with 2.70 GHz
maximum frequency. In order to allow for more thorough exploration of the design
space, the TS is set to terminate after 30 non-improvement iterations. The length of
the Tabu list, denoted by Lg;.., is also set to a relatively large value of 100 to fur-
ther encourage exploration. Finally, when varying the size of local neighbourhoods,
the minimum value of £ is restricted to 1°, as cost changes below this step size are

expected to be negligible.

4.3.1 Test Geometries

The above TS procedure is implemented on three test geometries, shown in Figure

4.7 below. As can be seen, different target surface roughness values are assigned to
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different local surfaces of each geometry. For simplicity, each local surface of each
geometry is assigned one of two different target roughness values. High tolerance or
critical surfaces (e.g. mating faces and gas-washed surfaces) are assigned a low target
roughness value, denoted by Ra;(1), while all other surfaces are allowed a higher

target roughness, denoted by Ra;(2) and ranging between 4 pm and 8 pm.

Volume (mm?) 40,806

Surface area (mm?) 20,037

No. of facets 32,686
Aero bracket

No. of holes 6
(AB)

Rat(l) (pm) 1

Ra:(2) (pm) 8

Volume (mm?®) 30,540

Surface area (mm?) 13,682

No. of facet 75,982
Space bracket O- O Tacels
(SB) No. of holes 6

Raq(1) (um) 1

Ra(2) (ym) 5

Volume (mm?) 13,216

Surface area (mm?) 10,478

. No. of facets 31,230

Turbine blade

No. of holes 0
(TB)

Rai(1) (pm) 1

Ray(2) (um) 1

FIGURE 4.7: Test geometries and their properties. Ra(1) and Ra:(2) denote the target
surface roughness values associated with local surfaces labelled 1 (highlighted in orange) and
2 (grey), respectively.

It can be seen that the AB and SB geometries both contain a single plane of sym-
metry. As discussed in Section 4.2.1, each geometry is positioned such that its plane
of symmetry is aligned with the global y-z plane and all unique solutions lie within
0 € [0°,180°] and ¢ € [0°,180°]. Since the TB geometry contains no symmetries, its
solution space is bounded by the intervals 6 € [0°,180°] and ¢ € [0, 360°).
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4.4 Computational Results

This section consists of two parts. The first part evaluates the effects of the approxi-
mation strategy on the speed and accuracy of the TS, and proposes the most suitable
value of Ay, based on the above test geometries. The second part considers the
effects of the local neighbourhood size on the TS, considering four different strategies

with both fixed and varying values of £.

4.4.1 Approximation Parameter Study

As shown in Table 4.2, four values of Ay, are tested for each geometry, where the
step size &£ is fixed at 10° throughout all tests. Figures 4.8 - 4.10 provide plots of
the TS procedure for each test; where the solution cost at each iteration is denoted
by C(p); the cost of approximated solutions is denoted by C,(p); and the exact cost
computed for every other approximated solution is denoted by C(p).

The latter is used only for calculating the error in cost that results from using
the area-based approximation method discussed in Section 4.2.2 (thus, the solution
time of C¥(p) is not recorded); the cost error for an approximated solution p is
calculated as the difference between the approximated cost C,(p) and exact cost
C#(p). This cost approximation error is recorded throughout each test and used
to calculate statistical measurements, namely, RMSE, mean error, denoted by E,
and maximum error, denoted by F,... These measurements of error are used along
with solution time and the number of iterations before convergence to evaluate the
performance of each test. These data are summarised in Table 4.2. For a consistent
comparison, RMSE is calculated as a percentage with respect to the initial solution

of each geometry.

Geometry  Aum (%)  C(pin) (£) C(py) (£) Solution Time (s) Tterations FE (%) Emae (%) RMSE (%)

AB 0.01 696 641 4,301 55 -0.35 -3.43 1.54
AB 0.05 696 641 2,185 64 0.17 3.42 1.33
AB 0.1 696 641 1,797 53 0.55 3.59 1.64
AB 0.2 696 650 1,244 49 0.84 3.65 1.48
SB 0.01 417 369 3,736 39 -0.26 2.60 1.40
SB 0.05 417 369 1,987 39 -0.69 -3.56 1.34
SB 0.1 417 369 1,719 39 -1.07 -3.59 1.67
SB 0.2 417 369 1,358 39 -1.22 -3.59 1.78
B 0.01 967 834 6,793 71 -1.03 3.56 2.35
TB 0.05 967 834 2,837 54 -0.54 4.14 2.11
B 0.1 967 834 2,287 57 -1.07 -4.11 2.13
TB 0.2 967 834 2,217 46 -0.42 4.14 2.39

TABLE 4.2: Overview of results, where Aj;,, denotes the approximation parameter; and
C(pin) and C(pp) denote the initial and best unit cost, respectively.

While there appears to be a very slight increase in the magnitude of E with
increasing Ay, no clear correlation can be seen between the other two measures of
error and the approximation parameter. Moreover, the results indicate no particular
bias towards either overestimating or underestimating solutions, as both positive and

negative values of £ and F,,q, can be seen in Table 4.2 and in figures 4.8 - 4.10.
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Therefore, it is important to note the different effect each type of error has on the TS

performance.
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FIGURE 4.8: Tabu search results for aero bracket (AB) geometry.
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FIGURE 4.10: Tabu search results for turbine blade (TB) geometry.
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Clearly, the TS must accumulate a sufficiently large and diverse list of exact
solutions, before this list can be used to approximate similar solutions encountered
later on in the procedure. Furthermore, as outlined in Section 4.2.2, the strategy is
forced to calculate the exact cost for every cost-improvement solution, regardless of
its similarity to other recorded solutions. Consequently, the proposed approximation
strategy tends to provide accurate solutions in the beginning of the TS and during
its convergence to a local minimum, but as the search starts to diverge away from
this point, the frequency of approximations rises and the accuracy declines, as shown
in figures 4.8 - 4.10.

It follows that whenever the cost of p is underestimated, such that C%(p) < C(pp),
the exact solution of p must be computed by solving the bin packing problem. In
this way, negative errors can increase the solution time by forcing the T'S to solve the
bin packing problem more frequently, even for solutions which are not in fact better
than the best solution. Positive errors pose an arguably bigger risk. If the real cost
of C(p) is an undiscovered local minimum, such that C'(p) < C(pp), but the cost of p
is overestimated, such that C*(p) > C(pp), the T'S will miss the solution and return
a sub-optimal pp. Examples of this can be seen in Figure 4.8 for Aj;,, = 0.02, and
Figure 4.10 for Ay, = 0.01 and Ay, = 0.2.

In addition, both positive and negative approximation errors pose the risk of mis-
guiding the TS, either away from potentially good solutions (in case of the former),
or towards inferior ones (in case of the latter). Conversely, it is also possible for these
errors to guide the TS towards a better solution “by chance”. The AB geometry
provides examples of both scenarios; as shown in Figure 4.8, A = 0.2 produced a
relatively poor result, as the TS was guided towards a sub-optimal solution; mean-
while in the case of A = 0.1, the TS was guided towards the same best solution in
fewer iterations than A = 0.01 and A = 0.05. Thus, the risk of errors misguiding the
TS is counteracted by the possibility of these errors guiding the TS towards better
solutions.

Furthermore, the main advantage of the approximation procedure is the saving of
computational time and resources, particularly on duplicate solutions and solutions
which yield no significant cost improvement, as shown in Figure 4.9. The tests indi-
cate that up to 56% of solutions are approximated in the case of Ay, = 0.01; this
percentage goes up to 79% for Ay, = 0.05 and up to 87% when Ay, > 0.1. This

has two implications:

e Since an approximated solution is typically computed within milliseconds, while
the bin packing problem is solved on the order of 100 seconds, it can be inferred
that using the approximation strategy with Aj;,, = 0.01 reduces the solution
time of the regular TS procedure (i.e. where the bin packing problem is solved

for each solution) by at least 50%.

e The reduction in solution time becomes smaller as A;;,, is increased. This can

be seen in Figure 4.11, where the solution time is halved when A;;,, is increased
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from 0.01 to 0.05, but does not change significantly for Ay, > 0.1.

Based on these observations, it is suggested that the value of Aj;,, is kept in the
range 0.01 - 0.05. This conclusion can only be applied with certainty to the three
geometries tested in this thesis; to apply the procedure to other geometries, such

geometries should be tested first, using the approach described in this section.
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FI1GURE 4.11: Reduction in solution time with respect to the approximation parameter Ay, .

Finally, as can be seen from figures 4.8 - 4.10, the search converged quickly (within
10-30 iterations) in all three test cases despite the relatively large size of the Tabu
list, suggesting that the starting point of each test was within close proximity of
a very good local minimum solution. One way of addressing this is to expand the
Tabu list to include not only previously visited solutions, but also unvisited solutions
with characteristics that are undesirable or very similar to those of previously visited
solutions. However, to minimise the risk of adding good solutions to the Tabu list,
such an approach would require very careful parameter tuning, using a larger set of

test geometries.

4.4.2 Local Neighbourhood Size Study

To test the effects of the neighbourhood size, the TS is performed with three con-
stant step sizes, 5, 10° and 15°, and compared against two variable step strategies,
namely, random step, denoted by R, and decreasing step, denoted by D. The above
approximation procedure is used in all tests, with A;;,, set to 0.05.

In the R strategy the value of £ is allowed to range between 0° and 180°, enabling
the TS to cover potentially large regions of the solution space, but also significantly
reducing the likelihood of converging on a local minimum. This is indicated by the
scattered appearance of the R sampling points in figures 4.12a - 4.12¢. Figure 4.12a
also provides an example of how the R strategy can miss good quality solutions. As
can be seen, one of the R solutions lies very close (within ~ 5°) to the best local
minimum found by the 15° step strategy; however, despite their proximity, the cost

of the R solution exceeds the cost of the local minimum by almost 5%. Since the R
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solution is approximated, it is possible that the significant cost difference is actually
caused by the approximation strategy overestimating the cost of the R solution, as
discussed above. However, in this case the approximation error makes little difference,
as the cost of solutions does not have a strong guiding effect on the random step TS

(unlike the other step strategies).

Geometry & (°) C(pin) (£) C(pp) (£) Improvement (%) Solution Time (s) Iterations
AB R 696 651 6.5 2,104 41
AB 5 696 663 4.7 1,967 52
AB 10 696 641 7.9 2,185 64
AB 15 696 640 8.0 1,715 46
AB D 696 632 9.2 2,177 59
SB R 417 368 11.8 2,300 41
SB 5 417 369 11.5 1,247 48
SB 10 417 369 11.5 1,987 39
SB 15 417 369 11.5 1,847 36
SB D 417 369 11.5 2,337 46
B R 967 846 12.5 3,052 62
TB 5 967 886 8.4 1,664 48
TB 10 967 834 13.8 2,780 54
B 15 967 829 14.3 1,522 44
TB D 967 827 14.5 3,289 60

TABLE 4.3: Overview of results, where £ denotes the step size, R denotes random step size,
D denotes decreasing step size, C(p;,) denotes the initial unit cost and C(py) denotes the
best unit cost.

Conversely, in the case of the SB geometry, the R strategy found a slightly better
solution, with a 0.3% greater cost improvement than the fixed step strategies. As
can be seen from Figure 4.12b, this solution is located in the top right region of the
solution space, which none of the fixed step strategies managed to explore before
terminating.

From Table 4.3, it can be seen that the 5° step strategy has the worst performance,
in terms of both cost improvement (relative to C(p;,)) and number of iterations. As
shown in Figure 4.12 this strategy explored only a very small region of the solution
space in all three test cases, and found only one very good local minimum (Figure
4.12b), which happens to lie very close to the starting point of the search. This is not
unexpected, as a small value of £ has the following two effects on the TS performance:
firstly, the local neighbourhoods are much smaller, so it takes longer to explore the
solution space; secondly, as shown clearly in 4.12a, the search path tends to make a
lot of U-turns and circle back on itself as it struggles to escape the local minimum.

On the other hand, the 15° step strategy has the best performance out of the three
fixed step strategies, followed closely by the 10° step strategy (Table 4.3). As can be
seen from Figure 4.12, both strategies managed to explore a substantial portion of
the solution space; and in the case of the SB geometry, the 10° step strategy came

relatively close to the best local minimum found by the R strategy.
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FIGURE 4.12: Solution space exploration by different step strategies. The best solution is
shown for each strategy and is denoted by py; the best local minimum found for each geometry
is highlighted on each graph in red.

Decreasing Step Strategy

The main downside of using a fixed step size lies in discretising the solution space
and consequently missing potentially good solutions located in between the TS steps;
this problem is clearly worse for large values of £. Conversely, constantly varying the
step size can result in the search moving in a zigzag or circling pattern in between
“taboo” solutions, making it much more difficult to drive the TS to escape local
minima. With this in mind, the decreasing step strategy, denoted by D, is designed
with the following steps:

1. Perform the TS with £ fixed at 15°, until the maximum non-improvement limit,
1

Nmax

is exceeded;
2. Update the current solution to the best solution found so far, p. < pp;
3. Reset I, + @, and reduce & by a factor €,;

4. Continue the TS, reducing the step size at each iteration, such that & + ¢,.&,

and terminate when I is exceeded.

Nmax



4.5. Conclusion 87

As can be seen, the first stage of the D strategy is identical to the 15° step strategy;
the key difference is that after this stage is completed, the D strategy attempts to
improve p;, by further exploring its vicinity and by reducing the step size as the search
converges. Since the two strategies follow a similar search path, and for the purpose
of clarity, only the final best solution of D is shown for each geometry in Figure 4.12.
Since the aim of this strategy is to improve a local solution, rather than explore the

whole solution space, the value of I, is reduced to 10, after the first stage. The

reduction factor €, is set to 0.95.

As shown in Table 4.3, the D strategy improved the best solution for two of
the three geometries, AB and TB, although the latter improvement is very small —
outperforming the 15° step solution by 0.2%. As shown in Figure 4.12, the slightly
better SB solution provided by the R strategy is out of reach of the D strategy and
no further improvement over the 15° step strategy was achieved. It can also be seen
that the solution time of the D strategy is longer than R in all three test cases, and
the worst on average. This downside can be addressed by further reducing I, .
in the latter stage, but at the risk of reducing the likelihood of finding a local cost
improvement, which is the main purpose of the D strategy.

Arguably, even the longest D solution time in Table 4.3 is not particularly long
(just under an hour for TB), since the TS runs automatically and does not require
any supervision. Furthermore, even the small unit cost reduction of £2 over the 15
step strategy (for TB geometry) is a worthwhile trade-off, when considered in the

context of IBP of several thousand parts.

4.5 Conclusion

The problem of process planning in the IBP scenario is outlined in this chapter
and solved using the Tabu search (TS) heuristic. Since realistic part geometries
often contain symmetries, which lead to symmetries in the solution space, a build
orientation calibration method is proposed to minimise the effects of these symmetries
on the TS performance. Furthermore, a new area-based approximation strategy is
proposed to reduce the number of bin packing solutions and improve TS efficiency.
This strategy is driven by an approximation parameter, Aj;,; thus, three different
values of Ay, are tested on three different geometries. The results indicate that even
the lowest tested value of Ay, = 0.01 speeds up the TS by as much as 50%. To
be able to approximate solutions, the strategy must first build up a sufficiently large
and diverse pool of exact solutions, on which each approximation is based. For this
reason, the improvement in solution time increases with A, but starts to plateau
after Ay, > 0.1. Thus, it is suggested that the value of Ay, should lie between 0.01
and 0.05. The results show that even small values of A;;,, pose a risk of missing good
local solutions, because of approximation errors introduced into the search. However,
as demonstrated by Ay, = 0.1 in Figure 4.8, these errors can equally lead the search

to better solutions, thus, mitigating this risk.
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To explore the effects of local neighbourhood size, the TS is tested with five
different step strategies, including random step, R, decreasing step, D and three
fixed step strategies. For all three test geometries, the 15° step strategy outperformed
the other fixed step strategies. Meanwhile, for one of the geometries the R strategy
happened to find a slightly better solution, which lies outside the solution space region
explored by the other four strategies. To tackle this, one of the other strategies can
be run multiple times, from different starting points, at the expense of longer solution
time.

As discussed, a key downside of a fixed step strategy is the risk of missing good
solutions that lie in between the TS steps. Meanwhile, varying the step size too
much or too early enables the TS to move in between “taboo” solutions, significantly
decreasing the effectiveness of the TS. The purpose of the D strategy is to mitigate
both of these problems; first, by using a fixed step size to explore the solution space;
and, second, by looking for a further cost improvement in the local vicinity of the
best found solution with a gradually decreasing step size. The D strategy improves
the cost of two of the three test geometries, at the expense of increasing the solution
time by up to 30 min (in the case of the TB geometry). However, since the procedure
runs automatically without the need for any supervision, the additional solution time

can be considered an acceptable price to pay for a potential increase in cost savings.
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Chapter 5

Optimisation of Cost and

Residual Stresses

5.1 Introduction

As discussed in Chapter 2, there exists a clear and complex relationship between the
build orientation and the residual stress profile of a part. Despite this, very limited
work has been done in this area and no works have explicitly addressed the problem
of residual stress minimisation as a function of build orientation. Moreover, cost is
another equally important objective, as discussed throughout this thesis. Therefore,
a multi-objective optimisation problem is addressed in this chapter, the aim of which
is to find a set of trade-off solutions based on residual stresses and unit cost in the
context of IBP.

The reason this problem has received so little attention is likely due to the pro-
hibitive computational expense of FEA, which is typically required to predict the
residual stress profile (Peng et al., 2017). To deal with this issue a number of al-
ternative approximation approaches are explored, namely, a linear interpolation (LI)
approach and a nearest-neighbour (NN) approach. As expected, the LI approach
predicts the results with less variability than NN, as well as providing a more diverse
Pareto set. However, the NN method is relatively fast and simple, and provides a
useful benchmark for the LI results. Attempts were also made to create a more so-
phisticated Kriging model of build orientation and residual stresses. Although this
approach did not produce successful results, it provides a number of useful insights

into the problem, as discussed in Appendix C.

5.2 Problem Description

As in Chapter 4, this problem considers N identical geometries, which are to be
placed into identical bins of width W, length L and height H. The surface of the
geometry is defined by a set of facets F', where each facet f € F has a target surface
roughness denoted by Raz,. As before, let p denote the geometry in its current build

orientation, and let C'(p) denote the unit cost of the geometry resulting from p.
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In addition to the unit cost, the presence of residual stresses must also be consid-
ered. It is well known that tensile residual stresses reduce the mechanical performance
and fatigue life of metals, as they tend to further open cracks, while compressive
stresses have the opposite effect (Leuders et al., 2013; Simonelli et al., 2014). It fol-
lows that a reduced overall tensile stress in the part is desirable. Thus, two additional
optimisation criteria are introduced, namely, mean tensile stress, denoted by &, and
maximum tensile stress, denoted by 0,4, While 6, and 0,4, are clearly related,
each criterion provides different information about the magnitude and distribution of
the residual stress profile and are therefore treated as separate competing objectives.
Additionally, since 6; and 0,4, are independent of geometry, they can be calculated
easily for a variety of parts regardless of their geometric complexities. The resulting
objective function F'(p) (which is a vector of the three competing objectives) is shown

in Equation 5.1.

pr(réi,g) F(p) = [C(p),5:(p), omaz(p)] (5.1)

for 6 €[0°,180°], ¢ € [0°,360°)

where 74(p) and oq(p) denote the mean residual tensile stress and the maximum
residual tensile stress corresponding to p, respectively.

Given two feasible solutions p; and pg, p; is said to dominate po if F(p1) < F(p2)
and at least one of the following is true: C'(p1) < C(p2), 7¢(p1) < 7¢(p2), Omaz(p1) <
Omaz(p2). If the solution space contains no other solutions that dominate pj, then
p1 is considered a non-dominated (also known as Pareto-optimal) solution. Following
these definitions, the aim of this problem is to provide a set of non-dominated feasible
solutions, which is known as a Pareto set.

The values of 74(p) and ope,(p)) are calculated using a Finite Element Anal-
ysis (FEA) approach, which is described in Section 5.3. Because SLM metals are
particularly prone to brittle fracture (Rafi et al., 2013; Carter et al., 2014), the two
proposed objectives, d¢(p) and oy, (p) are calculated using the maximum principal
stress (MPS) of each discrete element in the FEA solution. It should be noted that
only elements belonging to the part geometry (i.e. excluding build plate and sup-
port structure elements are considered in these calculations. The FEA is performed
separately for each solution p, and thus, it is important to note two key assumptions
in this problem. Firstly, it is assumed that the FEA model is a sufficiently accurate
representation of the “real” residual stress profile of p. Secondly, it is assumed that
the residual stress profile is identical for all instances of p and is independent of the

bin packing solution (e.g. neighbouring pieces do not affect one another).

5.3 Thermo-Mechanical FEA Model

FEA is a popular numerical method for solving complex problems and performing

complex process simulations. This approach is able to simulate the temperature and
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residual stresses in the SLM process by discretising the part geometry (and a section
of the build plate) into small mesh elements, as discussed in Section 5.3.1, and solving
a system of equations to determine the local temperature and stress corresponding
to each individual element.

The simulation model assumes that the part geometry has a strong influence on
the residual stress profile, as proposed by Keller et al. (2013), and consists of two
stages. Firstly, a transient thermal analysis is performed to obtain the temperature
distribution profile in the part geometry; secondly, a transient stress analysis is per-
formed using the temperature profile determined in the previous stage to define the
loading conditions. This two-stage thermo-mechanical analysis is known as loosely-
coupled, since data only flows in one direction.

Although it is technically possible to simulate the laser path on each individual
layer of powder, this is not computationally tractable for a real-size part. Thus, during
the thermal analysis a whole layer of mesh elements is activated simultaneously and
a heat flux of constant density is applied instantly to the whole layer. The heat
flux density and exposure time are based on a number of parameters such as mesh
element size, laser settings and cross-sectional area of the layer, and chosen so that
the temperature in the current top layer of elements just exceeds the material melting
temperature (to avoid convergence issues). Once the heat flux has been applied to
an element, the material properties of that element are changed from “loose powder
material” to “solid bulk material”.

To represent the idling time in between laser scanning (e.g. during powder re-
coating and repositioning of the laser), the heating step described above is followed
by a cooling step. The cooling time during step is determined as a function of the
layer cross-sectional area, laser scan speed and scan spacing. The heating and cooling
steps are repeated for each layer of elements, until all layers have been activated. It
should be noted that modelling the actual layer thickness used in SLM (e.g. 0.3 pum)
would result in a prohibitive number of mesh elements and layers. Thus, to make the
model feasible, each layer in the FEA represents a group of 10 - 30 layers in the actual
SLM process. To account for convection heat losses during the thermal analysis, a
heat transfer coefficient is applied to each activated layer of elements, while assuming
ambient temperature inside the build chamber.

The stress analysis follows a very similar procedure to the thermal analysis. The
same grouping of layers is used, and the same heating and cooling steps are applied to
each layer of elements. The results of the thermal analysis are stored in a database,
so the temperature of each element can be applied as a load on that element during
the stress analysis. To prevent rigid body motion during the simulation, the part is
assumed to be fixed to a section of the build plate, which in turn, is fully constrained
throughout the process. A more detailed description of the full FEA model can be
found in Palumbo and Granville (2016).
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5.3.1 Mesh Generation

While a traditional tetrahedral mesh retains the most geometric detail and accuracy,
it can also result in a very large number of elements when dealing with real-life
components (i.e. > 10%), making the FEA model computationally infeasible. This
type of mesh also increases the risk of non-convergence due to its unstructured nature.
A swept hexahedral mesh can significantly improve the tractability and robustness of
the FEA model, however, it can be difficult to generate for very complex geometries
(Wu et al., 2017). Consequently, a regular “voxel” mesh is used in this thesis, which
approximates the geometry using identical cuboid elements. This provides a robust
and simple mesh generation approach, and reduces the risk of non-convergence and
intractability in the FEA, at the cost of some geometric error. This error is considered
to be acceptable, as it is relatively small compared to the errors introduced by the
assumptions discussed in Section 5.3.

The voxel mesh is generated in two stages: firstly, the part geometry must be
rotated and meshed (the latter is done using a commercial meshing software called
Harpoon); secondly, the steps shown in Figure 5.3 are used to generate additional
mesh elements which represent the support structure and a section of the build plate.
To create the additional mesh elements, the method generates a regular 2D grid in
the horizontal plane, denoted by C, where each 2D cell ¢ € C contains a “column”
of all 3D elements in F whose z-y coordinates correspond to the centre point of c,
as shown in Figure 5.3a-5.3b. The second step marks the bottom element of each
column as supported, e, or unsupported, e,, and generates nodes in the empty space
underneath each e, element as shown in Figure 5.3b. These nodes are then connected
to create a set of vertically stacked 3D elements that form a support strut, denoted
by s, as shown in red in Figure 5.3c.

To determine whether an element is supported or unsupported, the part mesh is
compared to the STL geometry of the rotated part. As described in Section 3.4.1, each
facet in the STL file is defined as supported if its build angle oy exceeds c,p,. Thus,
any element e € F that lies in close proximity of a supported facet is considered to
be supported. The “close proximity” condition is considered to be true if the element
e lies inside the bounding box of the supported facet fs;, and only applies to the
bottom element (i.e. with minimum z-coordinate) of each column ¢, regardless of
any concavities or “gaps” that may be present in ¢, as shown in Figure 5.1. In this
way, the support structure mesh is prevented from obscuring the part geometry in
the FEA model (e.g. by closing up holes and concavities). Elements which are very
close to the build plate (e.g. < 2mm) are supported regardless of the surface angle.

As discussed in Section 3.4.1, performing an exact distance or intersection check
a large number of times is computationally expensive and time consuming; while the
above approach can occasionally result in additional support structure, as in the case
of the two elements highlighted in red in Figure 5.1, it is fast and simple to implement,

and provides sufficient contact between the part and the build plate, which is required
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for a successful FEA solution.
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FIGURE 5.1: Schematic example of voxel mesh elements (blue) compared against the STL

surface (orange). Each bottom element in the part mesh is classified as supported, eg, or

unsupported, e,, based on the bounding box (dashed purple line) of the supported facet fs.
The two elements which are incorrectly associated with facet fs are highlighted in red.

The third and final step generates the mesh representing a small section of the
build plate, beneath the part and support structure. As shown in Figure 5.3d, this
is done by generating a uniform 2D grid of nodes within user-specified dimensions,
namely, an offset d around the horizontal bounding box of the part mesh. Since there
cannot be two nodes in the same location, each node location in the 2D grid must
be cross-referenced with the bottom nodes in the support structure. If a location
already contains a support structure node, that node is marked as the top node in
the build plate; otherwise, if the location is empty, a new node is generated to fill it,
as shown in Figure 5.3e. As before, mesh elements are generated from each column
of neighbouring nodes in the grid, where the height of each column is determined by
the user-specified build plate thickness ¢, as shown in Figure 5.3f. An example of the

final resulting 3D mesh can be seen in Figure 5.2.

(A) Stage 1: Mesh of rotated part (B) Stage 2: Additional support

generated by Harpoon software. structure and build plate mesh.

FI1GURE 5.2: Example of the two-stage meshing procedure applied to a Venturi pipe geometry.
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(E) Bottom support structure nodes (red) are (¥) Columns of build plate elements (green) are
marked as top build plate nodes. A 3D node generated from the 3D grid of new nodes.
grid is generated with height ¢.

FIGURE 5.3: Schematic description of support structure and build plate mesh generation.
For simplicity, the part is shown as a single row of elements.
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5.4 Approximated Search Strategies

As shown in Chapter 4, Tabu search is an effective and flexible approach for optimising
the build orientation of identical parts in SLM. TS is also a popular choice in the
wider literature for addressing single-objective optimisation problems (Hajji et al.,
2004, 2005; Karimi et al., 2010; Basu, 2012; Saka et al., 2016). In contrast, relatively
few works (Baykasoglu, 2006; Jaeggi et al., 2008; Yang et al., 2013) have considered TS
in the context of multi-objective optimisation (MOO), where evolutionary algorithms
such as the non-dominated sorting genetic algorithm IT (NSGAII), are often preferred.
However, to work effectively GAs require a relatively large and diverse population,
which comes at the expense of reduced computational efficiency (for example, the
time complexity of NSGAII is O(M N?), where M is the number of objectives and
N is the population size). Meanwhile, TS also explores several solutions (i.e. local
neighbourhood) at each iteration, but is not limited by population size in the same
way as GAs. Moreover, TS has the potential of finding good Pareto solutions in the
highly non-linear build orientation solution space due to its intensified exploration
of local neighbourhoods (Yang et al., 2013). Thus, this chapter builds upon the TS
procedure described in Chapter 4, proposing two modified versions to deal with the
MOO problem, as discussed below.

Despite the simplifying assumptions discussed in Section 5.3, the FEA model is
still very expensive in terms of computational memory and time. This means that
only a very limited number of solutions can be explored in a reasonable computa-
tional budget. To address this limitation, two alternative approximation-based search
strategies are explored; namely, a nearest-neighbour Tabu search (NNTS) strategy,
discussed in Section 5.4.3, and a linear interpolation (LITS) strategy, discussed in
Section 5.4.2. A third approach based on a Kriging surrogate model has also been
considered, however, this approach was not successful as discussed in Appendix C.

Each approximation strategy starts by computing a small preliminary sample of
exact solutions P, which is evenly distributed across the solution space and can be
used to predict other unknown solutions during the optimisation search. The sampling

method, known as design of experiments (DOE), is discussed next.

5.4.1 Design of Experiments

An optimal DOE is one that captures as much information as possible with as few
sampling points as possible. One of the most popular and flexible DOE strategies is
the Latin Hypercube (LH) method proposed by McKay et al. (1979).

To produce N sampling points, the LH approach equally divides the design range
of each input parameter into N levels and ensures that only one point can be placed
in each level. Because levels are seeded and combined randomly, a good design is not
guaranteed. Consequently, numerous strategies have been proposed (Ye, 1998; Shields
and Zhang, 2016) to optimise the initial LH point distribution based on some given

criteria (e.g. space-filling, distance between points, etc.), leading to what is known
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as the Optimal Latin Hypercube (OLH) approach. This approach can produce an
effective sampling plan relatively quickly and cheaply when generating a small DOE
(for instance, up to 100 points and fewer than 10 input parameters (Liefvendahl
and Stocki, 2006)), making it suitable for the problem described in this chapter.
For the build orientation solution domain, the OLH approach provides an additional
advantage since it avoids placing multiple redundant points along the lines of 8 = 0°
and 6 = 180°, where all solutions are identical as discussed in Section 3.4. As shown

in Figure 5.4, the DOE procedure is parallelised to further save time on the FEA.

Use OLH to generate a set of
initial solutions P = {p1,...,pn}-

!

Calculate unit cost of each p € P.

Parallelised Steps
Generate mesh of p;.

!

E — Run FEA and calculate
5 [i=i+1] Gmas(ps) a0 5u(p)

Yes

FIGURE 5.4: Flow diagram of DOE procedure.

Finally, the solution space symmetry discussed in Section 4.2.1 is particularly
important to consider when generating the DOE and performing the optimisation
search, since duplicated solutions can waste a lot of time and computational effort.
To avoid this, the initial orientation of the part geometry and the input ranges of 6

and ¢ should be adjusted following the approach discussed in Section 4.2.1.

5.4.2 Nearest-Neighbour Tabu Search

The NNTS algorithm and its neighbourhood construction procedure are shown in
figures 5.5 and 5.6, respectively. As shown in Figure 5.5, the first step of the procedure
is to generate an initial set of exact solutions P using the DOE procedure discussed
in Section 5.4.1. The second step is to find an initial Pareto set denoted by P*, where
P* C P. As can be seen in line 3 of Figure 5.5, the TS is performed multiple times,
starting from each initial non-dominated solution p* € P*. This helps to diversify

the search and makes it suitable for parallelisation. The termination condition is met
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when the number of consecutive no-improvement iterations I,, exceeds I, __ : a no-

mazx?

improvement iteration is one where not a single non-dominated solution was found
in the local neighbourhood PV .

Input: &, Lsize, Inan
Result: Final Pareto set P*

1 Generate a set of exact solutions P using DOE procedure in Figure 5.4;
2 Find initial non-dominated Pareto set P*;
3 foreach p* € P* do
4 Pe P
5 Iy, < O,
6 TabuList <+ (;
7 AddSol List < (;
8 k <+ @;
9 while I, < In,,,, do
10 Construct neighbourhood P (pe) for pe using procedure in Figure 5.6;
11 Order PV by non-decreasing cost C(p) and return first solution p{v € PV with minimum C;
12 Set pe p{v;
13 if TabuList.Size > Lg;,. then
14 ‘ Remove oldest entry in T'abulList;
15 end
16 Add p. to TabulList;
17 if PN contains non-dominated solutions then
18 ‘ I, <+
19 end
20 else
21 ‘ In +— In +1;
22 end
23 k< k+1;
24 if k > K then
25 Add p. to AddSolList;
26 k + o;
27 end
28 end
29 end
30 foreach p* € P* do
31 if p* ¢ P then
32 Run FEA and update 6(p*) and omaz(p*);
33 Add p* to P;
34 end
35 end
36 foreach p € AddSolList do
37 if p ¢ P then
38 Run FEA and update (p) and omaz (p);
39 Add p to P;
40 end
41 Compare p against P* and add p to P* if p is non-dominated;
42 end

FI1GURE 5.5: Pseudo-code of NNTS procedure, where p. denotes the current solution and p*
denotes a non-dominated solution.

To determine if a solution p~ in the current local neighbourhood P is non-
dominated, p" must be checked against each current non-dominated solution p* € P*.
This non-dominance check is described by lines 11-18 in Figure 5.6. If the condition

in line 12 is true for any solution p* then PV is non-dominated and must be added
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Input: Y 57 éc’rit: P7 p*
Result: PV, updated P*

1 Create an empty list PN (p.) which denotes the neighbourhood of p., using step size &;
2 foreach p™ € PN do
3 Calculate the unit cost C(p™);
4 foreach p € P do
5 Find distance § < \/(9;, —0,n)2 + (dp — PN )2
6 end
7 Order P by non-decreasing §(p) and take the first solution p; € P with minimum §;
8 Set omaz(PN) + Omaz(P1);
9 Set (p™V) « &(p1);
10 foreach p* € P* do
11 if C(p*) > C(®N) or 3(p*) > 7(PY) or Omaz(P*) > Tmaz(®Y) then
12 if pN ¢ P* and ¥(p") < €crir then
13 | Add p"N to P*;
14 end
15 if C(p*) > C(®Y) and Tmaz(P*) > Omaz(PY) and &(p*) > &(p~) then
16 ‘ Remove p* from P*;
17 end
18 end
19 end
20 end

21 Return PV and updated P*;

FIGURE 5.6: NNTS neighbourhood construction procedure, where p. denotes the current
solution, P denotes a set of exact solutions and P* denotes a set of non-dominated solutions.

to P*. Additionally, if any solution p* € P* is dominated completely by p”, that
solution must be removed from the list as shown in lines 15-17.

The local neighbourhood structure used by NNTS is the same as in Chapter 4
and can be found in Figure 4.2. It should be noted that the area-based approxima-
tion strategy discussed in Chapter 4 is also incorporated into the NNTS procedure,
although it is not shown in Figure 5.5 for the sake of clarity. As in Chapter 4, the
cost of a solution p may be approximated based on the difference in area between p
and a previous exact solution. However, if an approximated solution p appears to be
non-dominated, its cost must be calculated exactly (i.e. by solving the 2DIBPP) and
p must be checked for non-dominance once again.

For an unknown solution p, the stress criteria (p) and 0,4, (p) are approximated
based on the nearest known solution p € P in the solution space (i.e. nearest neigh-
bour). As shown in Figure 5.6, the distance 6 between an unknown solution pV in the
local neighbourhood P, and each known solution p is denoted by §, and calculated
as a function of the respective § and ¢ coordinates of the two solutions. Since no
new values of ¢ and 0,4, can be introduced during the NNTS procedure (other than
those already contained in P), only the unit cost C' is used to direct the movements
of the search, as shown in line 11 of Figure 5.5. In order to diversify the search,
the NNTS also records the current solution p. at every K iteration in a separate
list, denoted by AddSolList. At the end of the procedure, the FEA is solved for each
solution p € AddSolList, along with the Pareto set P*. Any non-dominated solutions
in AddSolList are then added to P*.
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The errors in & and o0y, produced by this approach can be expected to be
relatively large due to its oversimplification of the solution space. Therefore, as
shown in Figure 5.5, the final stage of the NNTS solves the FEA model to obtain

exact values of @ and o0,,4, for each approximated solution in the new Pareto set P*.

5.4.3 Linear Interpolation Tabu Search

Due to the high predictive error of the NN approach, the LITS method is considered
as an alternative. Similarly to NNTS, LITS starts with a set of exact solutions P
generated by the DOE, from which an initial Pareto set P* is derived. Once again,
a multi-start Tabu search is performed starting from each non-dominated solution
p* € P* as shown in Figure 5.7, and each search is terminated after I, consecu-
tive iterations fail to find a non-dominated solution. LITS also uses the area-based
approximation strategy proposed in Chapter 4, with the exception of non-dominated
solutions for which the exact cost equation must be solved.

To approximate the stress criteria, the LITS model uses the set of exact solutions
P to create two triangulated surfaces — one corresponding to ¢ and the other to
Omaz- Bach vertex of the triangulated surface corresponds to a solution p € P; thus,
an unknown solution p? is assumed to lie on the same plane as the three solutions in
P, which make up the vertices of the triangular facet containing p™.

In addition to the different approximation strategies, a key difference between
LITS and NNTS is the evaluation function used to drive the movements of the two
searches. Because LITS is able to introduce new values of ¢ and 0,4, during the
optimisation stage, the evaluation function of each neighbour pV € P¥ is determined
by the change in all three optimisation criteria, denoted by 6 F', as shown in line 9 of

Figure 5.7 and defined in Equation 5.2.
SF(p™) = 0C + 66 + 60 max (5.2)

Omax (pN) — Omax (pc)
Omazx (pc)

cM) - Clpe)
C(pe)

where p, is the current solution and p” is a neighbouring solution of p., and C, &

0C =

, 00 = , 00maz =

and 0,4, denote the three optimisation criteria corresponding to each solution.
Although the estimation errors introduced by LITS are expected to be smaller
than NNTS, the FEA model must still be solved for all new solutions in the updated

Pareto set P* after the optimisation stage, as shown in Figure 5.7.

5.5 Implementation

The FEA model was provided by the Process Modelling Group within Rolls-Royce
plc and was coded in ANSYS Mechanical APDL (version 14). All FEA results were
computed using a mesh size of 0.5 mm and a layer thickness of 1 mm. For the meshing

procedure described in Section 5.3.1, the software Harpoon (version 5.6) was used.
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Input: &€, Lgize, Inpma.
Result: Final Pareto set P*

1 Generate a set of exact solutions P using DOE procedure in Figure 5.4;
2 Find initial non-dominated Pareto set P*;
3 foreach p* € P* do
4 Pe < p*;
5 In +— @;
6 TabuList + 0;
7 while I, < I,,,, do
8 Construct neighbourhood PV (pe) for pe using procedure in Figure 5.6;
9 Order PV by non-decreasing § F(p™V) and return the first solution p{v € PN with min. §F;
10 Set pe p{v;
11 if TabuList.Size > Lg;,. then
12 ‘ Remove oldest entry in T'abuList;
13 end
14 Add p. to TabulList;
15 if PV contains non-dominated solutions then
16 ‘ I, < @,
17 end
18 else
19 ‘ In +— In +1;
20 end
21 end
22 end
23 foreach p* € P* do
24 if p* ¢ P then
25 Run FEA and update 5(p*) and omaqz(p*);
26 Add p* to P;
27 end
28 end

FIGURE 5.7: Pseudo-code of NNTS procedure, where p. denotes the current solution and p*
denotes a non-dominated solution.

When creating the build plate mesh, the offset d and thickness ¢ (defined in Figure
5.3d) were both set to 3mm. All meshing and FEA solutions were computed in
parallel using 15 nodes on a Windows HPC cluster, with 16 cores in each node.

The LITS and NNTS models were applied to a single test geometry of medium
complexity, which is shown in Figure 5.8. For both procedures, the step size £ was set
to 5° and the non-improvement termination condition I, , was set to 5 iterations.
Since both LITS and NNTS are run from multiple starting solutions, a more thorough
and shorter local search can be performed around each starting solution. Thus, each
procedure was performed with a step size of £, and each search was terminated after
5 consecutive no-improvement iterations. The Tabu list size Lg;.. was set to 100 in
both cases. Additionally, in the case of NNTS the counter K was set to 5, meaning

5t current solution in NNTS was recorded and checked for non-dominance at

every
the end of the procedure.

Both procedures were ran with the same initial set P, which was generated with
50 solutions, shown in Figure 5.9, using the OLH method provided by the commercial
software Isight (version 5.6). Due to the symmetry of the curved plate geometry, the

solution space was limited to the ranges 6 € [0°,180°] and ¢ € [0°,180°].
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F1GURE 5.8: Curved plate test geometry containing two bosses and two holes.
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FIGURE 5.9: Set P produced by the DOE with 50 points.

The mesh generation and TS optimisation models were all coded in C# using

the Visual Studio 2012 development environment, and were parallelised where appro-

priate. The linear interpolation surfaces were created using an in-built function in

MATLAB (version 9.3). All optimisation results (excluding FEA) were performed on

a four i7-3820 core machine, with 2.70 GHz maximum frequency. All cost modelling

coefficients are the same as in Chapter 4 and can be found in Table 4.1. Based on
the results in Chapter 4, the value of Ay, is set to 0.05.
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5.6 Computational Results

The set of solutions P and the two resulting linear interpolation surfaces for ¢ and
Omaz can be seen in Figure 5.10. An initial Pareto set, denoted by P*, was obtained
from P with 13 non-dominated solutions. KEach of these solutions was used as a
starting point in both search strategies, resulting in 13 local searches during each
strategy. NNTS terminated after a total of 94 iterations, taking 4.5h to perform
the search, while LITS terminated after 171 iterations and 6.5h. At the end of each
strategy, 32 FEA instances were solved for NNTS and 50 FEA instances were solved
for LITS (in addition to P).
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(A) Plot of 6, in MPa. (B) Plot of oymaz in MPa.

FIGURE 5.10: Linear interpolation surfaces produced using P (black points).

The initial approximated Pareto set produced during LITS contained 58 solutions;
this set was reduced to 18 solutions after solving the FEA and updating the results.
In the case of NNTS a much smaller Pareto set of 10 solutions was produced during
the search. However, as discussed in the previous section, NNTS also recorded every
5% current solution, producing an additional list of 23 solutions. After solving the
FEA for all recorded solutions, the updated NNTS Pareto set contained a total of 13
solutions. It is interesting to note that only two solutions remained from the original
Pareto set, and another two solutions were added from P* back into the updated

NNTS Pareto set, which were initially discarded due to predictive errors in & and

Omazx-

LITS NNTS
o2 Omax o Omax
E (%) 3.8 1.7 -1.5 -2.5
ME (%) 3.9 153 243 116

RMSE (MPa) 16.42 78.43 20.26 80.25

TABLE 5.1: Comparison of predictive errors for NNTS and LITS, where E is the mean error,
ME is the maximum error and RMSE is the root-mean-square error.
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Table 5.1 provides a summary of predictive errors produced by NNTS and LITS.
As can be seen, LITS resulted in higher maximum errors and & mean error; conversely,
the 0,4 mean error and the RMSE values are lower for LITS than for NNTS. This
shows the variability in predictions provided by LITS is lower than those provided by
NNTS, although high errors can result from both strategies.

The predictive accuracy of both strategies can be improved by repeating each
strategy multiple times, particularly NNTS, which is a more naive approach than
LITS. At the end of each repetition, the updated exact solutions should be added to
P, thus, increasing the pool of known solutions. This is also expected to encourage
the approximated Pareto sets produced by NNTS and LITS to converge to the true
global Pareto set. However, such repetitions come at the expense of significantly
increased solution time.
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(A) Initial Pareto set.
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FI1GURE 5.11: 3D Pareto plots of the initial, NNTS and LITS Pareto sets. For comparison,
figures (B) and (C) also show the initial Pareto set (opaque marks), and the same colour map
is used to indicate the unit cost C' in all three plots.

The final Pareto sets produced by NNTS, denoted by P, and LITS, denoted by

are shown in Figure 5.11. which includes the initial Pareto set P* for comparison.

n?
B
As can be seen, the majority of solutions from P* were discarded by both strategies,
with the exception of two relatively strong solutions, which are highlighted in Figure

5.12 and discussed later. It can also be seen that LITS produced slightly stronger and
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more diverse solutions in comparison to NNTS. This is not surprising, since LITS used
all three criteria to drive the search, while NNTS relied solely on cost and random
sampling. Figure 5.11 also indicates some clustering of solutions in both Pareto sets.
This is generally undesirable, but can be addressed easily by discarding very similar
solutions in Fj; or by introducing an additional function during the LITS strategy
to penalise any non-dominated solution that does not add significant diversity to the

existing Pareto set.

Combined Pareto Set (P; U Py))
LITS Pareto Set (F};)

0 ¢ &  Omae
NNTS Pareto Set (P, pr | 0 124 240 1,127 6 ¢ & Omae C

p: | 3 180 235 1,006 0 124 240 1,127 1417
= P3 4 8 239 1,192 3 175 236 1,037 1,446
i ﬁ |’f4 2170 T"I“;; i i 7 Pa 413238 1209 4 8 239 1,192 1443
) 180 235 1006 1446 Ps 4 23 237 1,126 413 238 1,209 1,444
3 4 23 237 1126 1lads pe | 8 180 231 1,025 8 180 231 1,025 1,450
4l 10 163 232 1016 1474 pr | 10 163 232 1,016 15 149 234 982 1,474
s | 15 123 236 997 1491 ps | 15 149 234 982 23 180 236 971 1485
6 | 35 128 256 o012 1634 pe | 23 180 236 971 40 123 264 937 1,525
2100 193 a04 037 1nos | == | P | 40 123 264 937 45 119 221 942 1,528
8 | 49 119 297 928 1627 pu | 45 119 221 942 51 115 223 912 15530
o | 70 88 265 964 1519 pi2 | 51 115 223 912 54 109 226 911 1,532
0] 85 03 265 o1 1802 pis | 54 109 226 911 55 103 213 922 1535
11| 86 180 156 979 2063 pua | 55 103 213 922 56 100 218 902 1,536
12| 114 117 215 1083 1627 pis | 56 100 218 902 59 95 263 947 1486
: oy ; e pi | 59 95 263 947 86 180 156 979 2,063

13 119 122 209 948 1,632 - .
pir | 86 180 156 979 90 178 173 923 2,113
pis | 90 178 173 923 91 180 152 962 2,129
pio | 91 180 152 962 119 122 209 948 1,632

pao | 119 122 209 948

FIGURE 5.12: Schematic comparison of Pareto sets produced by NNTS and LITS. The

combined Pareto set resulting from the union P;;UP} is shown in the middle, where solutions

belonging to P}, and P}; are colour-coded in red and blue, respectively, and solutions shared
by Py, and Fj; are shown in black.
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FIGURE 5.13: 3D plot of the combined NNTS and LITS Pareto set, where P denotes the
LITS Pareto set, P, denotes the NNTS Pareto set, and P* is the initial Pareto set.

To compare the LITS and NNTS strategies directly, the union F;; U P, of the
respective Pareto sets was considered, where all dominated solutions in ;U Py, were
discarded. The resulting combined Pareto set can be seen in Figure 5.12, where each
solution p is colour-coded blue if p € P;, or red if p € P},,. Figure 5.13 provides a 3D
plot of all non-dominated solutions found in the union F;; U P}, . As can be seen, 15
of the 20 non-dominated solutions in Fj; U P, were produced by the LITS strategy.

Moreover, two of the solutions in P} U P, were found in the initial Pareto set P*,
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and another two were found by both strategies. The two surviving solutions from P*
are highlighted in Figure 5.12; one of these solutions provides the lowest value of unit
cost in PfU Py (p1 in Figure 5.13), while the other provides well-rounded scores for
all three criteria (pgo in Figure 5.13). As can be seen from Figure 5.12, two very good
solutions of & and ¢,4; Were produced by LITS, and another one is shared by both
strategies (p17 in Figure 5.13). However, it can be seen that these three solutions also
have the highest values of C.

- |

(A) p1 build orientation. (B) p15 build orientation. (¢) p1o build orientation.
s
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(D) P1 FEA. (E) P15 FEA. (F) P19 FEA.

FIGURE 5.14: Visual comparison of solutions p1, p15 and pig in Fj; U Py, , which are the best

nn’
found solutions in terms of C, 044, 7, respectively.

Figure 5.14 provides a visual comparison of the best solutions in terms of C,
Omaz, 0. As can be seen, Solution p; allows more parts to be placed in a single SLM
machine, and thus, provides the best cost for this geometry; however, as shown by
the FEA contour plot in Figure 5.14d, the flat top-facing edge contains a relatively
high concentration of residual stresses, as can be expected. Conversely, making the

concave face of the geometry top-facing, as done by pig results in a smaller and
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more gradual input of heat in each layer of material during SLM. As can be seen,
this solution also produces regions of tensile stress in the top layers of the geometry,
however, these regions are smaller and more distributed than in p;. Solution pig also
has the added benefit of inducing compressive residual stresses in the convex surface
of the geometry, as shown in Figure 5.14f; however, pi19 can only fit two parts in a
single build, making it relatively uneconomical. Meanwhile, it can be seen in Figure
5.14b that pi5 provides the lowest value of 0,4, and a good overall residual stress
profile, with the majority of tensile stresses not exceeding 400 MPa. This solution
also provides a good value of C' (£ 1,536), which is only moderately higher than the
cost of p; (£ 1,417).

It is interesting to note that several; solutions in P U Py, (e.g. pi5), provide
a better residual stress profile with only a moderate increase in cost over solution
p1, which was the “obvious” choice for a number of experienced SLM users in Rolls-
Royce. This demonstrates the importance of considering the residual stress profile
when selecting part build orientation in SLM, as well as considering a continuous
build orientation solution space, since the best solution may not necessarily be the
most obvious one.

Finally, it should be noted that o,,4, alone may not be the best indicator of build
failure risk for two reasons. Firstly, as shown in Figure 5.14 local concentrations of
stress should also be taken into consideration, along with stress magnitude. Secondly,
values of 0,4, predicted by the FEA range between 900 MPa and 1200 MPa, which
closely overlaps with the yield strength of Ti-6A1-4V (Kok et al., 2018) making it
difficult to distinguish between high quality and low quality solutions. Thus, a more
informative criterion could be based on the volume fraction of the part exceeding a
critical stress value (e.g. yield stress or UTS). However, it is not known what this
critical stress value should be exactly and what the acceptable fraction exceeding it
should be; the former is strongly dependent on specific build and material conditions
and so varies significantly in the literature, while the latter must be low enough to
avoid build failure but high enough to avoid over-constraining the problem. Further
experimental research is required to answer these questions, which is outside the scope
of this thesis.

5.7 Conclusion

The multi-objective optimisation problem of unit cost and residual stresses in SLM is
presented in this chapter. Since tensile stresses are known to be particularly damaging
in metals, two simple measures are used to evaluate residual stresses based on the
maximum principal stress criterion: mean tensile stress ¢ and maximum tensile stress
Omaz-

Due to the prohibitive computational cost of the FEA used to predict residual
stresses, two well-known approximation methods are applied to the problem, namely,

a nearest-neighbour model and a linear interpolation model, based on an initial DOE.
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The two approximation strategies are coupled with a multi-start Tabu search, which is
based on the work presented in Chapter 4 and is extended to solve the multi-objective
problem. The nearest-neighbour Tabu search (NNTS) provides a simple and fast
albeit naive method for finding a Pareto set. Because this approach is unable find
new values of stress (other than those already provided by the DOE) NNTS uses unit
cost only to drive the movements of the search. Conversely, the linear interpolation
Tabu search (LITS), which can interpolate new values of 6 and 0,44, uses all three
objective criteria simultaneously to select movements at each iteration.

Both strategies were demonstrated on a single geometry of medium complexity,
and candidate solutions were discussed. It was shown that very good solutions (in
terms of residual stresses and cost) may not be the most obvious ones, even to an
experienced AM user. Thus, it is important to consider the residual stress profile
when selecting a build orientation for SLM; moreover, it is suggested that continu-
ous rotation should be selected over discrete methods (such as the 3D convex hull
approach discussed in Chapter 2), as the latter risks discarding good solutions.

Despite slightly higher maximum errors, LITS showed lower variability in the pre-
dicted results compared to NNTS, as can be expected. LITS also explored almost
twice as many candidate solutions as NN'TS, and produced a more diverse Pareto set
with more non-dominated solutions than NNTS, which can be explained by the more
balanced movement strategy used by LITS. However, as mentioned previously, the di-
versity of both strategies could be improved further with an additional diversification
function that penalises very similar non-dominated solutions.

Finally, it is suggested that a more informative stress criterion could be based on
the volume fraction of the part exceeding a critical stress value, which could be the

subject of future research.
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Chapter 6

Cost Optimisation for Mixed
Batch Production

This chapter outlines the problem of cost-driven process planning for the MBP sce-
nario. The problem consists of three sub-problems: build orientation of multiple
parts, bin assignment and bin packing of pieces. As discussed in Chapter 2, existing
literature has addressed the build orientation of individual parts and bin packing
(into a single bin) as two separate problems, while bin assignment in AM is yet to be
addressed properly. Furthermore, there is currently no method to address all three
aspects of this problem simultaneously.

Thus, the main contribution of this chapter lies in formalising the above problem
and providing an iterative heuristic to optimise build orientation and bin packing in
a coupled way. The results of the proposed iterative heuristic are compared against
benchmark results provided by a commercial software, which solves the build orienta-
tion and bin packing problems separately. The heuristic outperformed the benchmark
by an average of 14.6%, in terms of build cost improvement, based on 27 test instances.

It should be noted that since the MBP problem is much more complex than
the IBP problem (addressed in Chapter 4), post-processing cost is not considered in
this chapter to avoid adding further complexity to the MBP problem. However, the
proposed heuristic can be easily extended to include post-processing as part of future
work. The work presented in this chapter has been converted into an article and

submitted to the European Journal of Operational Research.

6.1 Problem Description

Let G = {g1,...,9n} be a set of N unique 3D geometries, which are to be placed
into identical bins; it is assumed that enough bins are available to accommodate all
provided geometries, and the width, length and height of each bin are denoted by W,
L and H, respectively. To account for multiple instances of identical geometries, each
g € G corresponds to a quantity ¢, in Q = {q1,...,qn}. Because G contains different
unique geometries, the algorithm solving the MBP problem, must not only consider

the combined build orientation and bin packing problem, as in Chapter 4, but also
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the bin assignment of different geometries. Thus, the MBP problem is addressed in
the following two stages.

In the first stage, a favourable build orientation must be selected for each g € G.
Each build orientation of g is represented by a 2D piece, denoted by p,. The quality
of each piece p, is determined based on its area a,, build height h, and total support
structure volume s,. As before, h, may not exceed H. A solution to this stage
produces a set of unique pieces P = {p1,...,pn}, where each piece p; € P corresponds
to a geometry g € G.

The second stage must solve a 2D bin packing problem (2DBPP) for the set of
pieces P, by assigning and packing all pieces into a minimum number of identical
bins of width W and length L. Since each unique geometry g has a quantity g4, the
2DBPP must pack g, copies of each piece p, € P. This means that, by default, the
solution will place all instances of g in the same build orientation, which addresses
the build orientation constraint for critical parts discussed in Section 3.1.2. To allow
multiple instances of a non-critical geometry g to have different build orientations in
the same solution, each instance of g may be added separately to the set G if this is
done, the quantity g, must also be updated. For example, if g has a quantity ¢, = 4,
then it can be added as four separate geometries in G, where each geometry has a
quantity gg = 1.

A solution to the second stage is given by a set of bins B = {b1,...,ba}, where M
is the total number of bins. Each bin is denoted by b;(P;, Qs, pi, Xi, Y;), where P; C P
and the vector @); lists the quantity of each piece in P;. During the search for a packing
solution (described in Section 3.5) the pieces are allowed to rotate continuously about
the vertical z-axis, hence, p; = {p1,...,pn} defines the 2D orientation of each piece.
As before, X; = {z1,...,2,} and Y; = {y1,...,y,} define the x and y coordinates
of the reference point of each piece, respectively. The reference point of a piece is
the bottom left corner of its enclosing rectangle, corresponding to its 2D orientation.
Every piece in P must be placed completely inside the bins and may not overlap with
any other pieces or the no-build zones'.

The objective is to find a solution with M bins which yields the minimum total
production cost, as shown in Equation 6.1, where ¢; denotes the cost of bin 7. Equation
3.1, which defines SLM build cost in Chapter 3, is adapted for the MPB problem and
provided in Equation 6.2.

M
min Z ci (6.1)
1=1

n;
¢ =c1t; + CQpZ qr (v + sk) (6.2)
k=1

where ¢; and co are coefficients corresponding to indirect cost and material cost,

respectively; ¢; is the build time of bin ¢; and p is the material density. The number

'Please refer to Figure 3.17 in Chapter 3)
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of pieces in bin ¢ is denoted by n;, where each piece k has a geometry volume vy,
support structure volume s, and corresponds to a quantity gx. Similarly, Equation

6.3 provides an adapted version of build time taken from Equation 3.3.

ti =B+ Bohi + B3 Y qrve + Ba Y qrsk (6.3)

k=1 k=1
where By - 4 are regression model coefficients and h; is the build height of bin 4.

Combining equations 6.2 and 6.3 provides the following definition of ¢; for the MBP

problem:
n;
¢ = wy + woh; + w3 Z qrSk (6.4)
k=1
n;
wi = 1B+ (13 +c2p) Y qkvr, w2 =c1fa, ws=ciBitcop  (6.5)
k=1
where wq, ...,ws are objective function coefficients. As before each piece in the so-

lution is defined by the angles 6 and ¢, such that 6 € [0°,180°] and ¢ € [0°,360°).
For any geometry g € G which contains symmetries, the initial build orientation and

input ranges of 6 and ¢ should be modified as discussed in Section 4.2.1.

6.2 Iterative Tabu Search Procedure (ITSP)

From equations 6.1 and 6.4, it can be observed that the total build cost for a MBP
order is driven by the number of bins, the build height, and the total support structure
volume of each bin. As mentioned above, the problem must consider not only the
build orientation of each unique geometry g € G, but also the bin assignment and
bin packing solution of their corresponding pieces. This results in a very large and
complex solution space, and what is known as an NP-hard problem. Currently, it is
infeasible to solve NP-hard problems in reasonable time by any exhaustive approaches,
and so a carefully designed heuristic approach is required.

makes the solution space much larger and more complex than in the case of the
IBP problem. Consequently, the Tabu search heuristic, which is proposed in Chapter
3, is unlikely to be able to explore the solution space sufficiently in reasonable time.
Thus, a new heuristic approach is developed in this chapter, which aims to guide the
TS to different promising regions of the solution space. This approach is called the
Iterative Tabu Search Procedure (ITSP) and consists of six distinct stages, where
each stage focuses on a different component of SLM build cost (Equation 6.4).

In the first stage, the ITSP generates an initial solution and establishes a lower
bound for the number of bins. This is achieved in the following steps. Firstly, an
initial set of 2D pieces P is generated for the input set of geometries G. The local
Tabu search is performed on each piece p € P, to find an improved piece p* with

the minimum piece area a*. Secondly, a 2DIBPP is solved for the resulting set P*,
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producing a solution with the smallest set of bins B. The remaining five stages
attempt to improve the cost of each bin b € B, as follows:

Stage 2, the Single Bin Build Height Reduction (SHR) strategy aims to reduce
the build height of partially full bins, without disrupting the piece assignment.

Stage 3, the Single Bin Support Structure Volume Reduction (SSVR) strategy
reduces the support structure volume of each piece inside each partially full bin,
without disrupting the piece assignment.

Stage 4, the Pairwise Bin Build Height Reduction (PHR) strategy reduces the
build height of bins in pairs, allowing pieces to move between paired bins, in the hope
of improving the bin assignment.

Stage 5, the Pairwise Bin Support Structure Volume Reduction (PSVR) strategy
reduces the support structure volume of bins in pairs; once again, allowing pieces to
move between paired bins to further improve bin assignment.

Stage 6, the Bin Addition and Random Reassignment (BARR) strategy opens
a new empty bin and moves pieces selected randomly from existing bins into the
new bin. The remaining pieces in each disrupted bin are re-oriented and repacked to
reduce its cost.

Figure 6.1 provides a schematic summary of key steps in each of the six stages;
where G denotes a set of geometries with a corresponding set of quantities Q; P
denotes a set of pieces, where each piece p has a corresponding area a,, height h, and
support structure volume s,; and B is a set of bins in the solution, which is updated
at each stage of the procedure. A detailed description of each stage is provided in
the remainder of this section. As referenced in Figure 6.1, Section 6.2.1 provides a
detailed methodology for SHR; Section 6.2.2 describes SSVR; Section 6.2.3 describes
PHR; Section 6.2.4 describes PSVR; and Section 6.2.5 describes BARR. As indicted
in Figure 6.1, each stage uses a local Tabu search to update pieces, as discussed in
Section 6.3. Whenever pieces are updated a new 2DIBPP must be solved; to do this

the algorithm discussed in Section 3.5 is used.

6.2.1 Single Bin Build Height Reduction (SHR)

A typical initial solution can be expected to contain at least one “weak” partially full
bin, as demonstrated in Figure 6.2. Unlike in many traditional cutting and packing
(C&P) problem applications, such as the ceramic tile and sheet metal industries,
minimising the utilised space inside the weak bin does not offer any benefit in the
context of SLM, since the wasted machine space cannot be recycled after the build.
Instead, the build orientation of each piece in Figure 6.2a can be changed in a way
that reduces the build cost of the bin, as shown in figures 6.2b and 6.2c. Modifying
the build orientation of the two pieces will change their shape and likely increase their
area, however, the chances of successfully repacking these two pieces into a single bin
are high given the very low bin utilisation. The SHR strategy exploits this scenario.
As shown in Figure 6.1, the set of bins B = {b1,...,by} given by the initial

solution is sorted by non-increasing utilisation and only bins with U; < Uyeqr are
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Tabu Search 2DIBPP Algorithm
(Section 6.3) (Section 3.5)

Stage 1: Initial Solution with Minimum Bins

. For each g in G For each Py, in . ; "
G,Q —> generate piece P, P P minimise Qp, P Pack all pieces in P

B ={bi,...,bm}

Stage 2: Single Bin Build Height Reduction (SHR) (Section 6.2.1)

SortA B by utilisatic?n; P Sort ?11 Pk i}ﬂ P;ll by I Minirfﬂse hpl ot Set P1 (— p{;
take pieces P; from bin b; non-increasing Ay, of piece P1 repack P; into b;
[
updated B
Stage 3: Single Bin Support Structure Volume Reduction (SSVR) (Section 6.2.2)
Sort. B by utilisati({n; P — Sort 2?11 Pk i}] R by PE MiniltziiSe Spy. o Set P < pz;
take pieces P; from bin b; ‘ non-increasing Sp, of piece P, repack P; into b;
I
updated B

Stage 4: Pairwise Bin Build Height Reduction (PHR) (Section 6.2.3)

Sort B by build cost; Sort all Py in Pi]- by Set p1 < pi‘; repack

Minimise h;ln

— P, — M ——]
take Pi]- from b; and bj K non-increasing th n of piece P1 P P,-]- into b; and b]-
!
updated B
Stage 5: Pairwise Bin Support Structure Volume Reduction (PSVR) (Section 6.2.4)
Sort B by build cost; y Sort all Py in Pi]- by . Minimise Sp, " Set P < p;; repack
take F’ij from bl and bj — Pij — non-increasing Sp, Pk of piece Pi, Pi 13,']' into bl and b]-
!
updated B

Stage 6: Bin Addition and Random Reassignment (BARR) (Section 6.2.5)

Select random Po— Select, random P {py} Minimise cost P {na))"
bin b, from B r piece Pg from P, TA\Wa =M of P\ {Pq} (B \ A{pg})"

[

Pq

¥

Open new empty .
Ne Pack Pq into bM+1
updated b, and bys41

Update and repack
(B \ {Pg})" into by

Return best solution

Yes

FIGURE 6.1: Schematic overview of the ITSP; for the sake of readability, only a single

iteration of each stage is shown. Key steps in each stage are shown in blue boxes, while grey

boxes indicate which steps use the Tabu search and the 2DIBPP algorithm in each stage,
respectively.

considered, where yeqr denotes the threshold for weak bins. For each bin b;, the set
of pieces P; = {1,2,...,n} is sorted by non-increasing height. The tallest piece p; is
selected and a local Tabu search is performed to minimise the height of p;, where the
resulting piece is denoted by p]. If the height of p} is lower than the height of p;, P
is updated, such that p; < pj, and repacked using the 2DIBPP algorithm. Since the
number of bin in P is kept fixed during this stage, the bin assignment in the 2DIBPP
is skipped and the problem is reduced to a single-bin packing problem.

If b; contains multiple instances of p1, those instances must also be updated. For
this reason P; contains only unique pieces, and has a corresponding set of quantities
Q: = {1,2,...,n}, thus, p; only needs to be updated once in P;. However, if a
bin other than b; contains an instance of p; that bin must also be updated, so an

additional check is performed on all bins in B\ b;*.

2Set B excluding b;.
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FIGURE 6.2: Initial solution produced by the first stage in the ITSP, with average bin
height of 116.5mm. Improved solution produced by SHR, with average bin height reduced
to 103.5 mm.

If all bins containing p; are repacked successfully, the solution is updated and
the process repeats, until no further height reduction can be achieved in b;. If the
SHR strategy fails to achieve a height improvement, either during the Tabu search
or during repacking, the strategy will move on to the next bin in B. The strategy
terminates when all bins b € B with Uy < uyeqr have been addressed. It should be
noted that any solution which successfully reduces build height is accepted by the
SHR strategy, so it is possible for the current solution cost to temporarily increase
during this stage in the ITSP.

6.2.2 Single Bin Support Structure Volume Reduction (SSVR)

SSVR follows a very similar procedure to SHR; the only differences being the iteration
of pieces in P;, and the Tabu search objective, where height is replaced with support
volume structure. Because the build height of b; is determined by the tallest piece in
P;, each iteration of SHR sorts P; by non-decreasing height and only applies the T'S
to the first piece in P;, denoted by p;. In contrast, the support structure volume of
each piece can be reduced independently of other pieces. Hence, the SSVR strategy
sorts P; only once, in order of non-decreasing support structure volume, and iterates
through each piece pg, until £ = n, where n is the length of P;. Similarly to SHR,
the SSVR strategy accepts any solution which reduces the support structure volume,

including solutions with increased build cost.

6.2.3 Pairwise Bin Build Height Reduction (PHR)

In addition to improving individual pieces in each bin, the bin assignment can also be
improved. To do this the PHR and PSVR stages address bins in pairs. As before, the
former addresses the height and the latter addresses the support structure volume
of pieces. Unlike SHR and SSVR, PHR and PSVR address every possible pair of
bins regardless of their utilisation. By pairing strong bins with weaker ones and

by allowing the pieces to move between them, the PHR and PSVR strategies aim
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to further utilise empty spaces within the weak bins and increase the freedom of
movement inside strong bins.

As shown in Figure 6.1, the first step in PHR sorts the current set of bins B by
non-increasing build cost. The second step takes a set of pieces P;; = P; U P; from a
pair of bins b; and b; in B, where ¢ < j. The third step orders P;; by non-increasing
height and the fourth step performs a Tabu search to minimise the height of the
tallest piece p;. If this search is successful, the resulting piece pj is accepted, so that
p1 < p] in Pj;, and the final step in PHR solves a 2DIBPP for P;;. Additionally, if
any bin b, in B\ b;, b; contains a duplicate of pi, that bin must also be repacked,
by solving a Knapsack problem for the updated set of pieces P,. If the resulting
Knapsack solution fails to place all pieces in P,, the whole solution is rejected.

Finally, if P;; is successtully packed into a maximum of two bins b; and b7, where
the combined cost of b} and b; is lower than the cost of b; and b;, the new solution
is accepted and B is updated. Following this, F;; is sorted by non-increasing height
again and the process repeats until no further cost improvement can be made to b;
and b;; at which point PHR updates ¢ <— i+ 1 and j < j + 1, and the above steps
are repeated for the next pair of bins. PHR terminates when all pairs in B have been

permuted.

6.2.4 Pairwise Bin Support Structure Volume Reduction (PSVR)

The PSVR strategy closely mirrors the steps in PHR, substituting support structure
volume for height as the Tabu search objective. The main difference between these
two strategies is that PSVR sorts P;; by non-increasing support structure volume,
once for every pair of bins, then performs a Tabu search to minimise the support
structure volume of every piece p; in P;;, as opposed to only the tallest piece p; as
done in PHR. The reason for this is explained in Section 6.2.2. After every successful
Tabu search, all bins containing p;, must be repacked and the updated P;; is repacked
into a maximum of two bins. If the repacked solution is both feasible and lower in
cost than the current solution, this solution is accepted as the current solution and
B is updated.

6.2.5 Bin Addition and Random Reassignment (BARR)

Each of the four strategies described above tries to reduce the cost of the solution
without increasing the overall number of bins. In contrast, this final stage of the I'TSP
explores the possibility of reducing the overall cost of the solution at the expense of
adding an extra bin.

Following the improvement of individual bins in SHR and SSVR, and the bin
assignment improvement in PHR and PSVR, it is going to be increasingly difficult
for the I'TSP procedure to find further feasible movements in the solution. Thus,
the solution must be disrupted slightly in order to create addition free space in the

current set of bins B. The BARR strategy does this by introducing a new empty



116 Chapter 6. Cost Optimisation for Mixed Batch Production

bin, denoted by bps+1, and by reassigning pieces from the original bins in B to basy1.
This leaves additional free space in the disrupted bins, which can be used to further
improve the build orientations of remaining pieces.

To encourage solution space exploration, pieces to be moved are selected randomly.
Thus, to select a piece for reassignment, the BARR strategy selects a random bin
b, € B, then a random piece p, € P, where P, is a set of pieces corresponding to b;.
To avoid re-visiting previously attempted pieces, p, is stored in a “Tabu list” (which
is unrelated to the actual Tabu search). If p, is placed into bps41 successfully, the
overall cost of the remaining set of pieces in b, is minimised using the local Tabu
search. This is done iteratively for each piece in P, \ {p,}, using the change in cost
to drive the search. For clarity, the details of this search are explained separately in
Section 6.3.

If the Tabu search is successful, the next step is to repack the updated pieces,
denoted by (P \{pq})*, into b,.. If the packing is unsuccessful, a piece p* € (P.\{ps})*
with the smallest reduction in cost is reverted back to its original build orientation,
such that p* < p, and the packing is attempted again. This process is repeated
until all pieces are successfully packed or until all pieces have been reverted to their
original state. In the latter case, the solution yields no cost improvement and is
therefore rejected. The procedure terminates either when a maximum number of

no-improvement iterations is reached or when by is full — whichever occurs first.

6.3 Local Tabu Search

The Tabu search heuristic has already been introduced and discussed in detail in
Section 4.2. In addition to its simplicity and its ability to escape local minima,
it is also more greedy than other popular heuristics (e.g. Simulated Annealing),
since it must always move to the best available neighbour of the current solution.
Furthermore, by adding visited solutions to the Tabu list, the TS is able to explore
the solution space more effectively in a short amount of time, than a heuristic which
is allowed to return to visited solutions.

As indicated in Section 6.2, each stage in the ITSP is required to perform a local
search for numerous pieces in reasonable solution time, making TS a suitable local
search heuristic due to its greedy nature. The local TS search used in the I'TSP, has
the same basic steps and local neighbourhood structure as those used in Chapter 4.
For clarity, the updated pseudo-code is shown in Figure 6.3; where £ denotes the local
neighbourhood step size; Ls;ize denotes the size of the Tabu list; and I,,,,,, denotes
the maximum number of consecutive non-improvement iterations. As outlined above,

the attribute Obj(p) used to evaluate piece p depend varies with each ITSP stage:

e For the initial solution Obj(p) < a,, where a, is the area of p;

e For SHR and PHR Obj(p) < hy, where h), is the height of p;
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e For SSVR and PSVR Obj(p) < s,, where s, is the support structure volume
of p;

e Finally, for BARR Obj(p) < Acy, where Acy is the change in cost of bin b,

which contains p.

Input: pin, &, Lsize, Inmaz

Result: py
1 Pc < Pin;
2 Pb < Pc;
3 Iy +— O
4 TabuList < 0;
5 while I,, < I,,,, do
6 Construct neighbourhood PV (pe) for pe using step size &;
7 Return best solution p’ € PN (pc);
8 if TabuList.Size > Lg;,. then
9 Remove oldest entry in TabuList;
10 end
11 Add pc to T'abuList;
12 Set pe + p';
13 if Obj(py) > Obj(pc) then
14 I <+ O
15 Pb < Pc;
16 end
17 else
18 ‘ Iy« In +1;
19 end
20 end

FIGURE 6.3: Pseudo-code of local TS used in the ITSP, where p;,, p. and p, denote the
initial, current and best solution, respectively; and Obj(p) denotes the piece attribute used
to evaluate piece p.

To reduce the overall cost of bin b, the TS must consider the set of bin pieces
P, collectively. Prior to the search, the pieces in P, are sorted by non-increasing
height. Starting from the tallest piece, the algorithm attempts to improve the build
orientation of each consecutive piece p € P, with the objective of minimising the
negative cost difference Acy, of bin b. To calculate Ac Equation 6.6 is used at each

iteration.

Acp = c1Ah + c2As (6.6)
where Ah = hy — h;, and As = s, — s;p

where Ah denotes the change in build height, As denotes the change in support
structure volume, and c¢; and cg are their respective cost coefficients; h;, and s;,
are the build height and support structure volume, respectively, corresponding to
the initial piece in the local TS; while hy and s, are the build height and support
structure, respectively, corresponding to the k" iteration of the local TS. It follows

that all pieces in P, must be updated and sorted by non-increasing height after each
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iteration of the T'S. As can be seen from the above equations, negative values of Ac
indicate a cost improvement, while positive values indicate a cost increase.

Because all pieces in P, are updated simultaneously, the increase in area of each
piece p € P, must be moderated, so as to maximise the likelihood of b being repacked
successfully after P, is updated. Therefore, only a limited increase in area is permitted
for each p € P, as shown in line 16 of Figure 6.4, where a4, is an additional
hyperparameter. The pseudo-code of this updated Tabu search is shown in Figure
6.4.

Input: P, &, Lgjze, Inmam s Amazx
Result: Updated P,

1 Sort P, by non-increasing height;
2 foreach p € P, do
3 Set T'abuList < 0;
4 Set n < O;
5 Set current bin height hy to height of tallest piece in Py;
6 Set initial area a;n < ap, where ay is the area of p;
7 Set current piece pc < p;
8 while I, < Ip,,,, do
9 if TabuList.Size > Lg;.. then
10 Remove oldest entry in T'abuList;
11 end
12 Add p. to TabuList;
13 Construct neighbourhood P¥ (p.) for p. using step size &;
14 Return best neighbour p’ € PV (p.) with minimum Acp;
15 Set pe < p';
16 if % < @maz then
17 if Acp, <0 then
18 I, < ;
19 Replace p with p. in P, and sort P, by non-increasing height;
20 Update current bin height hy, to height of tallest piece in Pp;
21 end
22 else
23 ‘ In <~ In +1;
24 end
25 end
26 else
27 ‘ Exit while loop;
28 end
29 end
30 end

FIGURE 6.4: Pseudo-code of local TS used in the BARR strategy, where P, denotes the set
of pieces belonging to bin b and p. denotes the current piece.

6.4 Implementation

The ITSP is implemented in C# using the Visual Studio 2012 development environ-
ment, and parallelised where appropriate. To solve the MIP problem for the 2DIBPP
the commercial solver Gurobi (version 6.5.2) is used. Tests were performed on a i7-

3820 four core machine, with 2.70 GHz maximum frequency, eight logical processors
and 16GB of RAM.
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To ensure good performance of the I'TSP, a number of parameters needed to be
tuned. Firstly, a utilisation of 0.85 was considered to be the threshold between strong
and weak bins. Secondly, the acceptance condition for each new build orientation was
set to a minimum reduction of 1 mm when improving build height (i.e. 50 layers),
and minimum reduction of 100 mm? for support structure volume (i.e. just under a
gram of material). Movements below these thresholds were not considered worthwhile
since they would yield negligible cost improvements. In the SHR and SSVR stages,
solutions are allowed to temporarily increase the cost up to a limit of 1%, in the hopes
of finding a better solution by delaying convergence. Finally, the maximum piece area
increase in the Tabu search is constrained to 30% during the BARR stage. This value
was selected after constraint values of 15% and 20% proved to be too stringent in the
preliminary results.

The Tabu search parameters are perhaps the most crucial in determining the
success of this procedure. Namely, these are the size of the Tabu list; the step size in
each local neighbourhood; the maximum area constraint where applicable; and the

number of no-improvement iterations before termination.

6.4.1 Tabu Search Parameters

As can be seen, the ITSP is designed to iterate between modifying build orientations
and repacking numerous times throughout the search, where many repacking attempts
can be expected to fail. Therefore, the aim should be to try out many promising build
orientations relatively quickly, rather than spending a long time on searching for a
very good build orientation that may ultimately lead to an infeasible bin packing
solution. Following this logic, the TS step size and termination condition are selected
to encourage the local search to find “good enough” build orientations quickly, rather
than attempting a more prolonged search for a better build orientation.

Thus, the following three strategies were considered: Decreasing Step (DS), Ran-
dom Step (RS) and Fixed Step (FS). At each iteration of the Tabu search, RS sets
the step size to a random integer value between 1° and 30°, while F'S keeps the step
size fixed at 5° throughout the search. The DS strategy starts with an initial step
of 15°, which is then multiplied by a reduction factor of 0.85 at each iteration. In
all cases the search is terminated after eight iterations without improvement and the
Tabu list stores 10 most recent build orientations.

Following the results of Chapter 4, the rationale behind the DS strategy is to
quickly cover the solution space with a relatively large initial step and compare a
number of potential local minima, before converging on the best local minimum with
a decreasing step size. This is similar to the strategy discussed in Section 4.4.2, expect
that the DS strategy does not wait for an initial convergence, instead, the step size is
kept constant for the first three iterations before applying the reduction factor. This
prevents the search from getting stuck if the initial solution happens to fall in a local

minimum.
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Test Piecos Objective Improvement (%)  No. of Iterations Solution Time (s)
DS RS FS DS RS FS DS RS FS
Aero housing 1 11.8 11.8 12.7 12 20 12 72 93 74
Aero housing 2 274 284 14.4 26 25 12 57 27 27
Alcoa bracket 41.2 524 48.1 11 24 32 37 61 107
Bearing block 52.9 51.2 51.5 32 14 12 24 15 10
Combustor plate 1 45.6  41.2 41.8 13 19 15 23 60 25
Combustor plate 2 85.8 84.4 84.4 11 13 11 312 326 340
Control arm 56.8  58.9 62.8 11 17 12 5 7 6
Engine block 0.9 0 1.3 16 8 9 4 2 2
GE bracket 26.5 21.6 20.0 25 16 26 378 458 441
Gear 0 0 0 8 8 8 0.4 0.6 0.4
Impeller 71.0  69.0 69.2 14 11 19 4,989 7,900 6,325
RC Jet bracket 347 327 31.6 18 19 28 1,996 3,325 3,112
RC Jet NGV ring 53.6  52.6 49.0 10 10 12 92 193 69
Seal segment 70.6  76.7 72.3 10 37 12 69 148 84
Sector 82,5  80.0 79.5 10 11 19 11 48 19
Swivel hinge 0 0 0 8 8 8 2 2 2
Turbine blade 40.7  40.8 40.2 12 20 19 245 607 367
Turbine wheel (Baumers) 0 0 0.6 8 8 10 23 41 31
Turbine wheel (turbocharger) 67.5  66.3 28.7 26 15 14 264 456 173
ULA bracket 50.2  39.7 13.4 20 18 25 105 105 116
Average 41.0 40.4 36.1 15.5 17.2 15.7 576 901 759

TABLE 6.1: Results for DS, RS and FS tested on 20 pieces.
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FIGURE 6.5: Comparison of DS, RS and FS performance, based on objective improvement
and number of iterations to final solution.

The three strategies were tested on 20 different pieces with the objective of re-
ducing the area of each piece. Table 6.1 presents the results using three measures of
performance: objective improvement, which is the difference in piece area between
the initial and best solutions; number of iterations before termination; and the total
solution time for each piece. Both DS and RS outperform FS in terms of objective
improvement, while FS and DS outperform RS in terms of iterations and solution
time.

In general, DS outperforms both RS and FS for the majority of tested pieces.
This is demonstrated by the two graphs shown in Figure 6.5. For each tested piece,
the three strategies were ranked as ’'Largest Improvement’ (LI), 'Medium Improve-
ment’ (MI) and ’Smallest Improvement’ (SI) based on the objective improvement, as
shown in Figure 6.5a; and similarly ranked based on the number of iterations to final
solution, as shown in Figure 6.5b. Two out of the 20 tested pieces ("Gear’ and ’Swivel
hinge’) were ranked as 'Draw’ (D), as all three strategies yielded no improvement and

terminated after eight iterations. Based on these results, we employ the DS strategy
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in the Tabu search throughout the I'TSP.

6.4.2 Test Data

The bin geometry and dimensions are the same as in other experiments, and can
be found in Figure 3.17, with bin width W and length L set to 240 mm, and height
H set to 275mm. As before, the indirect cost rate is set to 26.64 £/h, while the
material cost calculation is based on CoCr, a high-performance alloy commonly used
in gas turbine applications, with a density of 8.3 gcm ™3 and cost rate of 237.95 £ /kg3.
Similarly, the regression coefficients used in the build time model are based on CoCr
alloy data, which is shown in Appendix A. All parameters settings are summarised
in Table 6.2. It is assumed that all parts are built directly on the SLM build plate
without any base support structure, and support structure density is set to 100% (i.e.

assumed fully solid).

Parameter Value Units Definition

1 26.64 £/h Indirect cost coefficient

co 237.95 £/ ke? Material cost rate

p 8.3 gem™3  Co-Cr density produced by SLM

51 0.5 h SLM constant time coefficient

B 1.16 x 107! hmm~' SLM recoat time coefficient

B3 2.04 x 107*  hmm™2 SLM part exposure time coefficient

B4 8.33 x 107> hmm™2 SLM support structure time coefficient

sup 45.0 °© Minimum unsupported build angle

Psup 100 % Density fraction for lattice support structure
do 10.0 mm Minimum distance between pieces in 2DIBPP
L 50.0 mm Maximum edge length in 2D piece polygon

TABLE 6.2: Summary of cost coefficients and modelling parameters.

To test the ITSP, a total of 27 instances have been generated manually using the
geometries listed in Appendix D. Out of 68 geometries, 24 were taken from literature,
41 were taken from GrabCAD, an online open-source community for sharing 3D ge-
ometry files, and three geometries were provided by Rolls-Royce plc. Additionally,
three of the components taken from GrabCAD were specifically designed for SLM and
were produced by three real-case design challenges sponsored by Alcoa, General Elec-
tric (GE) and United Launch Alliance (ULA), respectively. The generated instances
are shown in Table 6.3.

The first six instances in Table 6.3 vary the number of pieces — where "SI’, "MI’ and
LI’ are used to denote small, medium and large instances, respectively. Geometries
were selected randomly to generate two instances of each size: SI1 and SI2 containing
10 geometries; MI1 and MI2 containing 25 geometries; and LI1 and LI2 containing
40 geometries. To limit computational expense, the remaining instances are fixed
at a size of 25 geometries; this is also deemed a reasonable value for a low volume
on-demand production scenario.

Instances containing geometries of low (LAV1), medium (MAV1) and high (HAV1)
average volume were generated. Based on the available 68 test geometries, these in-

stances are designed to approximately correspond to 4,500 mm?® for LAV1, 20,000
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Instance N D Avg. Vol. (mm®) Vol Std. Dev. (mm?®) Avrg. VR Avrg. SA (mm?) Avrg. MLR  Avrg. no. of Facets

SI1 10 0 37,078 32,232 21,870 0.19 0.22 46,893
S12 10 0 60,412 81,256 22,665 0.24 0.28 27,198
MI1 25 0 35,551 35,232 21,372 0.19 0.22 55,921
MI2 25 0 42,980 56,650 24,099 0.20 0.27 42,290
LI1 40 0 32,687 49,707 21,257 0.21 0.23 56,657
LI2 40 0 38,652 48,822 20,992 0.20 0.25 51,622
LAV1 25 0 4,791 3,912 7,413 0.22 0.13 39,344
LAV2 25 5 4,794 3,819 7,686 0.22 0.12 41,084
LAV3 25 12 4,500 4,064 7,658 0.24 0.13 51,138
MAV1 25 0 20,290 8,205 15,822 0.22 0.24 56,218
MAV2 25 5 19,938 8,275 15,517 0.23 0.24 57,756
MMV3 25 12 20,475 6,932 15,528 0.21 0.23 56,311
HAV1 25 0 70,152 50,441 36,265 0.18 0.32 101,244
HAV2 25 5 70,709 49,632 36,877 0.18 0.29 97,053
HAV3 25 12 70,412 49,159 36,331 0.18 0.29 71,158
LSDV 25 3 17,283 6,073 15,735 0.21 0.23 35,338
MSDV 25 3 29,718 21,747 20,692 0.18 0.22 96,728
HSDV 25 4 47,536 65,326 20,718 0.25 0.20 54,903
LVR 25 4 27,746 26,368 28,078 0.07 0.28 71,167
MVR 25 4 39,306 34,097 20,413 0.16 0.23 115,934
HVR 25 4 57,222 90,786 16,928 0.29 0.20 51,093
LMLR 25 4 7,922 9,679 5,624 0.31 0.09 32,722
MMLR 25 4 34,837 27,383 20,585 0.14 0.22 104,884
HMLR 25 4 48,226 55,593 30,169 0.13 0.33 124,617
LSA 25 3 6,786 8,707 4,250 0.31 0.14 19,561
MSA 25 4 19,487 15,310 15,107 0.15 0.23 50,277
HSA 25 3 63,952 53,593 39,780 0.12 0.31 82,144

TABLE 6.3: ITSP test instances. N is the total number of geometries and D is the number
of duplicate geometries. SA is the surface area, VR is the volume ratio and MLR is the
maximum length ratio.

mm? for MAV1 and 70,000 mm? for HAV1. Duplicate geometries were also consid-
ered by generating two more instances of each type, with 20% (LAV2, MAV2, HAV2)
and 50% (LAV3, MAV3, HAV3) of the total geometries being replaced with dupli-
cates, respectively, while keeping all other variables at approximately the same values.
Realistically, a few duplicates can be expected in a typical batch of parts, hence, this
value is set to 12-16% of the total geometries for all remaining instances.

In addition to the size of pieces, the distribution of piece size has an equally
direct effect on the success of the packing solution. For this reason, instances with
low (LSDV), medium (MSDV) and high (HSDV) standard deviation of volume are
also presented in Table 6.3.

The LSA, MSA and HSA instances correspond to low, medium and high average
surface area of geometries, respectively, which has been suggested to have a correlation
with the build time of SLM (Rickenbacher et al., 2013; Zhang et al., 2015).

Finally, the concavity and compactness of geometries can determine how well the
pieces might fit together inside the bin, as well as how much support structure may
be required. To quantify these two properties, two additional parameters have been
introduced, namely, maximum length ratio (MLR) and volume ratio (VR). MLR is
measured by taking the longest vector that fits inside the geometry and dividing its
magnitude by the longest vector which fits inside the machine build envelope (i.e. a
diagonal line between the front-bottom-left corner and the back-top-right corner of
the bin). The VR is a ratio of the geometry volume divided by the volume of its
bounding box. Instances of low, medium and large values were generated for both
MLR and VR resulting in LMLR, MMLR and HMLR and LVR, MVR and HVR,

respectively.
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6.5 Computational Results

6.5.1 Analysis of ITSP Strategies

To analyse the effectiveness of the ITSP the cost improvement for each of the five
stages in the procedure is compared relative to the initial solution. For clarity, the
cost improvement, denoted by C1I, is defined by Equation 6.7 for the overall ITSP,

and Equation 6.8 for each stage in the procedure.

Smin

ClI=5;—- S,

(6.7)

where S; is the cost of the initial solution and S;,;, is the cost of the best solution at
the end of the ITSP. .

CI=8;— —min 6.8

-z (63

where S; is the cost of the initial solution in the ITSP; S is the cost at the beginning

*
min

of each stage; and is the cost of the best solution found during that stage.
It should be noted that a negative value of CI indicates an increase in the overall
solution cost (i.e. negative improvement), and vice versa. Table 6.4 shows the average,
best and worst C'I produced by each stage and the overall ITSP, for the 27 tested
instances; while Figure 6.6 shows the distribution of C'I for each stage. As indicated
by Table 6.4, SHR yielded mixed results, producing the single largest improvement
(25.1% for the LSA instance) out of all the stages, but failing to reduce the cost for
more than half of the tested instances, two of which resulted in a slight cost increase
of 0.2%. On the other hand, SSVR produced the best results on average, followed
closely by PSVR, as can be seen in Figure 6.6. The PHR and BARR stages yielded
the least cost improvement, averaging 0.4% and 1.5%, respectively, and resulted in

no improvement for majority of instances.

Average CT (%) Best CI (%) Worst CI (%) Average T (s)

SHR 2.6 25.1 -0.2 994
SSVR 6.7 22.6 0.2 7,758
PHR 0.4 4.0 0.0 668
PSVR 4.9 22.1 0.0 10,910
BARR 1.5 8.9 0.0 5,750
ITSP 16.0 31.0 4.0 29,092

TABLE 6.4: Summary of computational results showing average, best and worst cost im-
provement and average solution time for each stage in the procedure, as well as the overall
ITSP. Cost improvement and solution time are denoted by CI and T, respectively.

There are a number of possible reasons why SHR and PHR performed worse than
SSVR and PSVR. Firstly, this could be a natural outcome of the objective function,
which is driven by support structure volume both through build time and material
cost, while the build height parameter only influences the former. Consequently, the
weight of support structure is likely to be higher than the weight of build height
in the cost function, and since these two objectives are often conflicting, reducing

build height may result in a higher overall cost, as in the case of the worst solution
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FIGURE 6.6: Histogram of cost improvement shown for each stage in the ITSP. Cost im-
provement is denoted by CT (%).

in Table 6.4. This is further supported by Figure 6.7, which compares the average
variation in height (hg), support structure volume (sg), bin utilisation (ug), and cost
(cr) during each stage in the ITSP. It can be observed that the variations in hp are
much smaller than sg, with the cost reduction trend closely following that of sp. In
fact the hr gradient shows a slight increase during SSVR and PSVR, indicating that
cost improvements were gained by reducing support structure at the expense of build
height. The dominance of support structure volume is also likely due to the fact that
support structure density has been kept at 100% for these experiments, as indicated

in Table 6.2; this value can be easily changed by the user.
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FIGURE 6.7: A comparison of the change in total support structure volume sg, average build

height of bins hg, average bin utilisation ugr and total build cost cr through the different

stages of the ITSP, relative to the initial solution (IS). The values of sg, hg, ug and cg are

calculated as a percentage difference between the initial solution and the best solution at the
end of each stage, averaged across all test instances.

Another reason is that the SHR and PHR stages fail more often than SSVR, and
PSVR. This is partly due to the inverse correlation between the height and base
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area of the geometries; for example, when a tall prism with a small cross-section is
moved from an upright position to resting on its side, the height of the piece decreases
while piece area is increased. On the other hand, the relationship between support
structure volume and piece area is weaker, since support structure is more dependent
on the complexity and overhanging surface area of the geometry, than its aspect ratio.
Furthermore, since build height can only be reduced by repositioning the tallest piece
in the bin, SHR and PHR are only guaranteed as many iterations as there are bins
(or pairs of bins) in the solution. Since most test instances in this paper were packed
into a maximum of four bins, the SHR often failed after only four iterations, or less.
In contrast, the SVR and PSVR stages iterate through every piece in the solution,
regardless of the previous iteration — thus having greater chances of success. The
upside of this is that both SHR and PHR terminated relatively quickly compared to
SSVR and PSVR, as shown in Table 6.4.

Finally, the cost reduction yielded by SHR and PHR, is not dependent on the
height of the tallest piece, but rather on the height difference between the two tallest
pieces; this is in contrast to SSVR and PSVR, where pieces are independent of each
other. This explains why SHR occasionally produces significant cost improvements for
instances such as LSA, shown in Figure 6.8, which consists of mostly small geometries
and a few larger rod-shaped geometries, while failing to produce a large enough height

decrease in most other instances.
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(A) 1% iteration. U = 0.14, H (B) 4" iteration. U = 0.25, H (c) 7" iteration. U = 0.41, H
= 177.8mm. = 82.3mm. = 65.4mm.

FIGURE 6.8: Solution steps for the LSA instance; (a) shows the initial solution, (b) shows
an intermediate SHR solution and (c¢) show the final best solution produced by SHR. U and
H denote bin utilisation (based on uninflated pieces) and build height, respectively.

Similarly, the poor results produced by PHR could be explained by a large increase
in piece area after the Tabu search, and consequent failure of the 2DIBPP algorithm
to find a feasible solution; Figure 6.7 shows that only a moderate increase in bin
utilisation was achieved after PHR, compared to the subsequent PSVR stage.

As described in Section 6.2.3, PHR addresses bins in pairs in order to further utilise
empty bin space in the solution. However, a successful iteration only guarantees a
reduction in the height of the taller of the two bins; the height of the second bin is
determined arbitrarily by the bin assignment during repacking. Thus, the PHR stage

may be improved by considering the build height of the second bin as a constraint
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in the 1D bin packing model and the assignment mending strategy in the 2DIBPP
algorithm.

BARR is quite different to the other four stages in the ITSP. The purpose of this
final stage in the procedure is to jump to an unexplored area in the solution space by
adding an extra bin to the more-or-less converged solution at the end of PSVR. For
18 test cases no cost improvement was found and the number of bins remained the
same, while in the other ten instances a cost reduction of up to 8.9% was gained by
adding an extra bin, increasing the average number of bins from 2.2 to 2.6, as shown
in Table 6.5. At this point it could be argued that in cases where BARR produced
only a negligible cost improvement (e.g. < 1%) the solution should be reverted to
the best found solution at the end of PSVR, as the very small cost improvement does
not justify the use of an additional bin. The best improvement (8.9%) produced by
BARR was for the MMLR instance, which is shown in Figure 6.9 and Figure 6.10.

(A) Bin 1 (B) Bin 2

FIGURE 6.9: Solution for the MMLR test instance at the end of PSVR.
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(A) Bin 1 (B) Bin 2 ) Bin 3

FIGURE 6.10: Solution for the MMLR test instance at the end of BARR.

6.5.2 Benchmarking

Due to the novelty of the problem, the ITSP procedure cannot be reproduced exactly
by any currently existing method or software; instead, the initial solution of the ITSP
is benchmarked against the commercial software Magics (version 20.03). The bench-

mark results were produced in the following two steps, keeping manual intervention
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to a minimum. Firstly, the build orientation of each geometry was optimised for
minimum projected 2D area (i.e. piece area); secondly, all parts were placed into the
minimum number of bins while keeping the build orientations fixed. As in the ITSP,

a minimum distance of 5mm was maintained between all packed parts.

Initial ITSP Final ITSP Magics D (%) Dr (%)
C (£) Tth) M C (£) T(h) M C (£) Th) M
SI1 4,893.5 124.4 1 4,142.8 109.5 1 6,203.6 154.4 1 -21.1 -33.2
SI2 6,310.8 167.7 1 6,056.5 166.7 2 7,302.1 187.4 1 -13.6 -17.1
MI1 13,994.0 3453 2 12,759.2 3252 3 13,969.6  348.0 2 0.2 -8.7
MI2 15,434.2 386.6 2 13,718.7  357.0 2 14,407.6  366.6 2 7.1 -4.8
LI1 19,548.3 4939 3 18,182.3  470.7 4 18,863.6  476.4 3 3.6 -3.6
LI2 21,481.3 541.9 3 19,092.2 493.6 3 22,005.2 554.5 3 -24 -13.2
LAV1 2,668.6 65.4 1 1,955.3 50.8 1 2,543.0 63.0 1 4.9 -23.1
LAV2 2,529.1 61.8 1 1,951.3 51.3 2 2,645.6 64.2 1 -4.4 -26.2
LAV3 2,798.1 71.4 2 2,116.6 56.5 2 3,090.3 73.5 1 -9.5 -31.5
MAV1 9,051.6 2278 2 6,716.8 179.6 2 8,340.7  207.6 2 8.5 -19.5
MAV2 8,657.4 2202 2 6,322.1 167.2 2 7,833.6 194.1 1 10.5 -19.3
MAV3 6,621.9 1786 2 5,826.5 158.8 2 7,564.9 196.6 2 -12.5 -23.0
HAV1 25,595.6 648.0 4 22,293.0 5877 5 24,289.6 6142 3 5.4 -8.2
HAV2 25,561.2 6439 4 22922.1 5909 4 25,209.6 633.3 3 1.4 -9.1
HAV3 25,525.3  639.1 4 22,3829 5778 4 22,908.0 5777 3 11.4 -2.3
LSDV 7,303.2 186.1 2 5,501.0 1479 2 7,234.9 1777 1 0.9 -24.0
MSDV 10,474.9 267.3 2 9,468.3 249.2 3 10,134.1 260.7 2 3.4 -6.6
HSDV 16,730.5  419.6 2 14,7940 3873 3 16,647.6 4204 2 0.5 -11.1
LVR 14,6156  360.7 3 10,579.9  287.0 4 13,020.0 322.0 3 12.3 -18.7
MVR 13,376.5 3384 2 11,479.7 3042 3 12,190.7  315.1 2 9.7 -5.8
HVR 18,8272 4724 2 17,188.2 4359 2 17,690.7  446.7 2 6.4 -2.8
LMLR 2,415.9 63.1 1 1,975.3 53.8 1 2,462.7 64.1 1 -1.9 -19.8
MMLR 13,039.3 3202 2 10,927.3  284.6 3 11,735.6  295.0 2 11.1 -6.9
HMLR 17,551.5  443.0 3 16,412.9 4205 4 16,609.6 4184 3 5.7 -1.2
LSA 2,559.0 70.4 1 1,766.6 48.5 1 2,418.2 67.6 1 5.8 -26.9
MSA 7,746.6 195.7 2 5,971.2 159.2 2 7,426.6 189.8 2 4.3 -19.6
HSA 25,095.8  628.3 4 22,6429 5771 4 24,390.3  603.0 3 2.9 -7.2
Average 12,607.7 317.8 2.2 10,931.3 285.1 2.6 12,190.3 307.1 2.0 1.9 -14.6

TABLE 6.5: Comparison of ITSP initial and final solutions with Magics results. C denotes
solution cost, M denotes the number of bins, H denotes average build height and SV denotes
the total support structure volume.

Table 6.5 provides a comparison of Magics and ITSP results for the 27 test in-
stances. It can be seen that the average initial cost of ITSP was marginally higher
than the Magics benchmark, while the final ITSP solution outperformed the bench-
mark by an average of 14.5%. The difference between the benchmark and initial
ITSP solution can be attributed to two factors; firstly, the support structure volume
is higher than the benchmark by an average of 14%; secondly, seven of the 27 test
cases produced one more bin than the benchmark, resulting in the average difference
of 0.2 bins seen in Table 6.5.

As can be seen in Figure 6.11, the Tabu search was not able to find the minimum
area solution for every piece, as in some cases it got stuck in a local minimum early
on. Furthermore, in order to solve the problem in reasonable time, the Tabu search
was allowed a maximum run time of 5min per piece; as a result it was occasionally
terminated early, usually in the case of large complex geometries (e.g. > 500,000
STL facets), such as piece 5 in Figure 6.11a. This explains why some ITSP initial
solutions had more bins, and accounts for some of the difference in support structure

volume.
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A) Initial ITSP solution (Bin 1). (B) Initial ITSP solution (Bin 2).

(¢) Benchmark solution.

FIGURE 6.11: Comparisons of the benchmark and initial ITSP solution for the MAV?2 test
instance. Pieces where the Tabu search performed worse than the benchmark are numbered
in red.

It should be noted that, since there is no strong correlation between the support
structure volume and piece area, the poor Tabu search solutions can sometimes work
in favour of the ITSP, as in the case of SI1 and SI2, where the ITSP incidentally
outperformed the benchmark due to lower support structure, while the number of
bins remained the same due to the small size of the instances.

Moreover, two build orientations with the same optimal piece area and height, can
result in different volume of support structure, as shown in Figure 6.12. Although
support structure and height are already used to break tie in the piece area Tabu
search, the current heuristic is most likely to converge on whichever position is closest
to the initial build orientation. The above shortcomings can be improved by tuning
hyperparameters in the local TS (e.g. Tabu list size) to encourage further solution
space exploration, however, this is likely to significantly increase solution time. Since
the overall solution time of the ITSP is already quite long, averaging 7.8 h, the focus of
the local T'S should be on a fast solution rather than a very good solution is discussed

in Section 6.4.
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As described in Section 3.4, the intersection checking performed in the support
structure volume calculation, is by far the most time-consuming and computationally
expensive aspect of the Tabu search, accounting for more than 80% of the time taken
to generate each build orientation. Thus, improving the efficiency of this method or
replacing it with an alternative, for example, a machine learning approach based on
support structures designed by an expert user or Magics, could significantly improve
the solution time of the ITSP (although other challenges would have to be considered,

such as acquiring sufficient training data).

(A) Build orientation 1 (B) Build orientation 2

FIGURE 6.12: An example of two build orientations, which result in the same height, 60 mm,
and piece area, 6699 mm?, with support structure volume of 246 134 mm? and 105 645 mm?
for (a) and (b), respectively.

6.6 Conclusion

This chapter addresses the combined problem of multi-part build orientation, bin
assignment and irregular bin packing in the context of SLM. The proposed ITSP
heuristic is driven by build cost and is aimed at the MBP scenario, which is helpful
for dealing with HVLV demands that often arise in industry. The I'TSP consists of six
different stages; in each stage a local Tabu search is used to find or modify the build
orientation of individual parts and the resulting 2DIBPP is solved using the method
of Martinez-Sykora et al. (2017), discussed in Section 3.5. Each stage explores a
different area of the solution space by varying the bin assignment of pieces and by
addressing a different aspect of the cost objective function in the TS; namely, the
number of bins, the build height of each bin and the total support structure volume.

The ITSP was tested on 27 different test instances, consisting of various geometries
ranging in size and complexity. The two most successful stages in the ITSP, SSVR
and PSVR, were driven by reducing support structure volume in the Tabu search, and
produced average cost improvements of 6.7% and 4.9%, respectively; while the build
height-driven stages, SHR and PHR, produced average cost improvements of 2.6% and
0.4%, respectively. The BARR stage produced non-trivial improvements of 2.4-8.9%

for seven of the 27 test cases. On average, the initial bin utilisation was increased
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by over 40% at the end of the ITSP (after a slight reduction in the BARR stage)
indicating that the proposed procedure was quite successful in effectively utilising
machine space. The relative success of the BARR stage suggests that increasing
the number of bins can improve the cost, even for relatively small instances, provided
that the additional machine space is utilised to improve the build orientation of parts.
Additionally, using more bins allows the parts to be built in parallel; this presents
an interesting trade-off between build cost, time and the number of machines, which
could be addressed as part of future work.

The initial solution of the ITSP produced a marginally higher average cost and
number of bins, as well as a considerably longer solution time when compared to a
commercial benchmark; thus, a number of possible future improvements to the ITSP
are proposed in Section 6.5. Despite its long running time, the final ITSP solution
yielded a cost improvement over the benchmark in all 27 test cases, with an average
of 14.5% and ranging up to 33.2%. Furthermore, the ITSP does not require any
supervision once it is running. Most importantly, the cost improvements provided
by the ITSP demonstrate the benefit of combining build orientation and bin packing
into a single problem, instead of addressing these two parameters in separate stages

as done in literature and in current commercial software.
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Chapter 7

Conclusions and Future Work

Process planning is a key step of product development and has a significant effect on
the cost, lead time and quality of manufactured parts. While the close link between
build orientation and bin packing in AM has been acknowledge in literature, no
previous works have been found to provide a satisfactory solution to the combined
problem of these two parameters. As discussed in Chapter 2, many models have been
proposed for optimising the build orientation, with the most popular criteria including
surface roughness, the presence of support structure and build time. Surprisingly few
works have addressed cost, and only Alexander et al. (1998) was found to consider
the cost of post-processing; no works have been found to address the full cost of SLM
as a function of build orientation and bin packing.

Thus, Chapter 3 proposes a framework for optimising the build orientation and bin
packing of parts simultaneously in SLM, as a function of total production cost. Since
the framework is aimed at the production of end-use parts, the desired surface finish
of the part is treated as a hard constraint (as opposed to an optimisation criterion),
thus, the surface finish produced by SLM is treated as a post-processing cost, rather
than a competing objective. It should also be noted that the surface finishing cost
is strongly dependent on the choice of finishing method; as discussed in Section 3.3,
surface finishing should only be included in the optimisation if a local finishing method
is used, since using a global method makes this aspect of cost independent of the build
orientation.

Chapter 3 also considers lean manufacturing principles in the context of SLM,
thus, proposing two alternative production scenarios — Mixed Batch Production
(MBP) and Identical Batch Production (IBP). The former scenario is most suit-
able for meeting High Variety Low Volume (HVLV) demands, which are commonly
encountered in the aerospace industry, in particular, in the context of spare parts.
The latter scenario is suitable for the production of identical parts to meet steady
and predictable, medium-to-large demands. The presence of identical safety-critical
parts is also considered.

Chapter 4 proposes a Tabu search strategy for optimising the build orientation
and bin packing of parts in the IBP scenario. Due to the relatively high computational
expense of the bin packing problem, the Tabu search is coupled with an area-based

approximation strategy, which reduced the solution time by as much as 50% when
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applied to three different test geometries. The presence of symmetries, which is a
common occurrence in many industrial parts, is also discussed in detail in this chapter
and a generic method for dealing with these symmetries is proposed.

Chapter 5 extends the Tabu search to address the multi-objective problem of cost
and residual stresses predicted via FEA. Due to the computational expense of the
FEA, it is only solved for a limited number of initial sampling solutions and potential
non-dominated solutions found by the Tabu search, which are based on approxima-
tions of the residual stress solution space. Two alternative approximation strategies
are considered and compared — nearest-neighbour (NNTS) and linear interpolation
(LITS). As expected, the more naive NNTS approach produced a less diverse Pareto
set with weaker solutions that LITS. This is mainly due to the fact that NNTS only
uses cost to drive movements, since it cannot introduce new values of stress into the
pool of known solutions. The results produced by both strategies demonstrate that
residual stresses can be reduced significantly with the right build orientation. The
results also indicate that the best build orientation may not necessarily be the most
obvious one, even for an experienced SLM user, thus, it is suggested that the full
range of continuous rotations should be allowed in this optimisation problem.

Finally, Chapter 6 addresses the problem of build orientation and bin packing in
the context of MBP. Because this problem deals with multiple heterogeneous parts, it
is much more complex than the IBP version as three sub-problems must be solved si-
multaneously; namely, the build orientation of multiple parts and the 2DIBPP, which
consists of bin assignment and 2D bin packing. To address all three problems in a
coupled way an Iterative Tabu Search Procedure (ITSP) is developed, which consists
of six stages. The aim of the different stages is to explore different neighbourhoods in
the highly complex solution space of this problem; the first stage focuses on establish-
ing the minimum possible number of bins in the solution; the second and third stages
attempt to iteratively improve each bin in the resulting solution; the fourth and fifth
stages attempt to further improve bins, as well as the bin assignment (i.e. by creating
additional room for further improving build orientations); finally, the last stage of the
ITSP introduces an additional empty bin into the solution, allowing further freedom
to move and rotate parts and, thus, to further reduce the overall cost.

The ITSP has been tested on 27 manually created instances with different geomet-
ric proprieties, and was benchmarked against a commercial decision-support software.
The benchmark results demonstrate the validity of the proposed approach, since so-
lutions produced by ITSP were on average 14.5% cheaper than those produced by
the commercial tool. These results also confirm that solving the two problems of
build orientation and 2DIBPP in a coupled way, can indeed produce a significantly
cheaper solution than solving the two problems independently as done throughout

the literature.
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7.1 Future Work

The proposed framework can be improved in a number of ways. Firstly, modelling 2D
pieces with closed concavities can potentially lead to better bin packing solutions, by
allowing tiny pieces to be placed inside large concavities, as discussed in Section 3.4.3.
This only applies to specific geometries in specific build orientations (for instance, a
large hollow cylinder built upright) and assumes the presence of tiny and very large
geometries in the batch.

As mentioned in Section 3.1.3, the proposed framework assumes the horizontal
orientation of parts to have no effect on build quality, allowing for full free rotation
of 2D pieces within the 2D bin packing problem. In reality this is not the case as
the angle of the powder-spreading rake has a significant effect on the build quality
and risk of build failure of parts, particularly with respect to delicate features and
thin walls. Therefore, future work should consider the rake angle as an additional
optimisation criterion or build quality constraint when rotating and placing parts in
the bin packing problem.

The post-processing cost model could also be made more realistic by considering
the different available post-processing methods and their applicability to different
production scenarios. Incorporating process- and part-specific rules into the frame-
work (e.g. in the form of a decision tree, as done by Gordon et al. (2016)) could be
particularly helpful, as this would not only improve the accuracy of the cost optimi-
sation model, but would also allow the user to compare the cost and suitability of
different post-processing methods. The build time modelling accuracy could also be
improved with additional data. A database of build times for different materials and
SLM machines would be particularly useful in this regard.

As discussed in Chapter 6, the solution time of the ITSP could be improved by
reducing the computational time of the support structure volume, since this is the
most time-consuming aspect of the model. It is suggested that a machine learning
approach such as an artificial neural network algorithm, could be used to develop a
faster prediction model of support structure volume based on part geometry param-
eters, such as part height, supported area and the number of protruding features.
However, such a model would require a substantial amount of data and is likely to
introduce some error into the model. A major limitation of this concept is the current
lack of standardised design rules for support structure, which is another area that re-
quires further research. The ITSP could also be extended to consider post-processing
cost and residual stresses, although the latter would significantly increase the solution
and pre-processing time of the model, and would require further automation of the
model presented in Chapter 5.

To the best of the author’s knowledge, experimental data directly linking residual
stresses and the density of defects in a part is currently lacking and thus could be
a useful contribution of future research. Such data could be used to develop an

explicit probabilistic model linking part quality or build failure to the build orientation
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through residual stresses. It could also be used to develop more informative residual
stress criteria, as suggested in Chapter 5. For instance, the data could be used to
provide a threshold stress for a given material and SLM machine, and a new objective
could be introduced which minimises the volume fraction of the part exceeding the
threshold stress; alternatively, a constraint could be developed where the allowable
volume fraction and the threshold stress must be determined from experimental data.
Moreover, if the risk of build failure or poor build quality can be quantified, it could
also be translated into an ill-conditioned cost (Baumers and Holweg, 2016), in the
form of rework or scrap (Dodd, 2015).

Finally, while unit cost is a critical decision factor in production, the production
time is equality important, as delays lead to penalties and loss of business. There-
fore, it would be particularly useful to extend the proposed framework to consider
the multi-objective optimisation of unit cost and production time. Since production
time is not considered in this thesis, it is possible to assume an infinite number of
available SLM machines, as discussed in Chapter 3. Conversely, it is impossible to
produce a meaningful optimisation solution for production time without considering
the number of available machines. Moreover, in a realistic production scenario dead-
lines and different levels of priority can be expected for different part orders. This
presents an interesting and very challenging multi-disciplinary optimisation problem,
as it combines the engineering problem of SLM process planning with 2DIBPP and
scheduling, which are two common problems studied by the Operational Research

community.
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Build Time Regression Models

Two linear regression models of build time were created, using the data provided

in tables A.1 and A.2', respectively; where n denotes the number of parts in the

build; ¢, denotes total recoating time; ¢, denotes total part exposure time; t5 denotes

total support structure exposure time; vy and si¢ denote total part volume and

support structure volume, respectively; and h denotes build height. Table A.1 shows

a total of seven builds, which contained only identical parts and were built on an EOS

M270 machine using Ti64 powder. Table A.2 shows six builds produced on the same

machine using CoCr powder. The two sets of results were produced using a constant
layer thickness of 30 pm for Ti64 and 20 pm for CoCr.

Build n w4 (cm3)  sgor (cm3®) b (mm) ¢, (h) ¢, (h) t4 (h)
1 1 287.4 301.1 177.0 18.5 59.5 22.7
2 1 30.8 0.8 11.1 1.1 3.9 0.0
3 2 61.2 41.4 78.2 7.7 9.3 2.9
4 1 32.0 0.7 17.8 1.8 9.9 0.1
5 6 176.2 4.9 73.8 6.0 19.4 0.3
6 1 57.3 1.0 91.2 10.0 11.1 0.1
7 1 33.0 2.2 12.5 2.2 8.5 0.2

TABLE A.1: Regression model input data for Ti64 alloy.

Build 7 v (em®)  sp0¢ (cm3) b (mm) ¢ (h) ¢, (h) tg (h)
1 81 67.1 0 12.4 1.6 0 1.6
2 3 99.2 145.6 34.1 23.2 20.9 4.2
3 2 80.8 394.7 39.0 18.5 33.7 4.6
4 3 595.6 0 53.0 119.9 0 6.5
5 6 63.7 173.4 28.8 14.4 8.6 4.5
6 1 167.2 119.9 131.0 34.9 13.2 15.6

TABLE A.2: Regression model input data for CoCr alloy.

The coefficients of h, v, and s, are determined via the linear fit models shown

in Figure A.1, Figure A.2 and Figure A.3, respectively.

LAll data was provided by Rolls Royce plec.
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F1GURE A.3: Support structure exposure time vs. support structure volume.

The resulting model parameters are summarised in Table A.3. It can be seen
that the above models do not account for part cool-down, extraction and machine
set-up time, since the intercept of each linear function is set to zero. These aspects

of build time are highly variable and are difficult to predict accurately; however, it
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is suggested that f; should be set to a value between 0.5h and 3h (Baumers et al.,
2017), to reduce the risk of under-predicting the build time and to encourage the
model to reduce the number of bins in the optimisation search. Due to the limited
amount of available data, the same data sets are used to both train and validate each
model. The resulting maximum errors (ME) and root mean square errors (RMSE)
are shown in Table A.3.

A particularly high error of 78.5% was obtained for Build 1 in the CoCr data
set, as a result of the outlier highlighted in red in Figure A.2b. As can be seen,
the total part exposure time is much lower than expected in this case, resulting in
an over-prediction. However, since the total part volume wv;,; is constant and has
no effect on the build orientation or bin packing solutions, it can be assumed that
any error in predicting the part exposure time ¢, will have a negligible effect on the
optimisation models proposed in this thesis. Overall, a clear linear fit can be observed
between the parameters in figures A.1 - A.3; the correlation in Figure A.3b is slightly
weaker; however, no definitive conclusions can be made without more data. Thus, the
proposed build time regression models are considered acceptable for the purpose of
demonstrating the optimisation models in chapters 4 - 6, but larger data sets should

be obtained and used to properly validate this approach as part of future research.

Parameters Ti64 CoCr Units
B 1.03 x 107" 1.16 x 107 hmm™!
Bs 1.81 x 107* 2.04 x107* hmm™
B4 750x 1075 8.33x 107 hmm™3
R? 99.3 96.1 %
ME 20.4 78.5 %
RMSE 7.3 18.0 h

TABLE A.3: Regression model coefficients and errors shown for the two models.
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FIGURE A.4: Measured vs. predicted total build time calculated for the training data.






139

Appendix B

Input Target Surface Roughness
via CAD

As discussed in Chapter 3, an additional preliminary step is required in order to
calculate the build orientation-driven post-processing cost, in which the user must
specify local values of the target surface roughness, Ray, for different local surfaces and
features. For the purpose of this step, a custom application has been developed using
NXOpen version 9.0, which is a CAD API in Siemens NX. The application asks the
user a number of simple questions via the NX graphical user interface (GUI). Firstly,
the user is asked to provide a baseline value of Ra; for all surfaces in the geometry
file. Secondly, the user may select individual faces in the CAD file and provide a
local value of Ra; for that specific surface, as shown in Figure B.1. This function is
placed in side a while-loop, allowing the user to iterate through as many surfaces as
needed. Finally, the user may terminate the process once all target roughness values

have been specified.

¥ TargetRaof Selected Face — O

Input target Ra:

Cancel

(A) Select a face. (B) Input target Ra for selected face.

F1GURE B.1: Defining local target Ra of individual faces in NX GUI.

Following this, the application will output a modified STL file, which contains the
target surface roughness of each facet f, denoted by Rat,, in addition to the usual
information about the facet normal vector s and its vertices vq 5 V2 and v3 ;e Figure

B.2 provides a schematic representation of the resulting modified STL file.
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solid
fi — facet normal 7, 7, 7, Ra

outer loop
vertex vy, v, U1,
vertex v, wv1, U1,
vertex w3, vi, U1,

endloop

endfacet

fo — facet normal 7, 7, 7., Ra
outer loop

vertex v, v, U1,

vertex v, w1, U1,
vertex w3, vi, U1,
endloop
endfacet

fzs — facet normal 7, 7, 7., Ra

endsolid

FIGURE B.2: Schematic description of the modified STL file, where Ray; is included in addition
to the normal and vertex 3D coordinates of each facet f.



141

Appendix C

Surrogate Modelling Approach

Several attempts were made to create a Kriging surrogate model relating residual
stresses to the part build orientation in SLM. This work was carried out using OP-
TIMAT (version 2), which is a modelling and optimisation tool developed at the
University of Southampton. All models were created using the test geometry shown
in Figure 5.8 and the DOE points shown in Figure 5.9, both of which can be found
in Section 5.5.

The first version of this surrogate model was created using the mean tensile resid-
ual stress criterion, &, as described in Chapter 5. The resulting response surface is
shown in Figure C.1; as can be seen the model is over-smoothed, resulting in a max-
imum error of 55.3% (with respect to the range of stress values for the whole DOE)

and a very low R? value of 0.2.
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FiGURE C.1: Response surface for mean tensile residual stress, &, with respect to build
orientation.

The use of a mean stress criterion was the assumed cause of this over-smoothing,
since @ only captures the magnitude but not the location of stresses in the geometry.
For example, if the geometry is rotated from one build orientation to another (e.g.
from p; to py as shown in Figure C.2), a local high tensile stress spot can “move”
from one region of the geometry to another, and thus can result in two very different
residual stress profiles and build orientations having similar values of . This results
in an apparent lack of strong correlation in the DOE data set, leading to the Kriging

model producing an over-smoothed response surface, as can be seen in Figure C.1.
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(A) Build orientation p; (45°, 0°). (B) Build orientation ps (0°, 45°).

F1cUrRE C.2: Comparison of two build orientations p; and py, with relatively similar stress
magnitudes, but very different residual stress profiles and local high-stress regions.

C.1 Geometry Sectioning Approach

Based on the above assumption an alternative approach was considered, where the
geometry was divided into sections, as shown in Figure C.3, and a separate surrogate
model was created for each section, resulting in a total of ten response surfaces.
As can be seen in Figure C.3 this sectioning method ignores some regions of the
test geometry — this is considered acceptable as the named sections capture those
regions where spots of high tensile stresses are most likely to occur (in different
build orientations). It should also be noted that some of the named sections are
geometric reflections of each other (e.g. EDGE1 and EDGES3), meaning that their
corresponding response surfaces can also be expected to show reflectional symmetry

with respect to one another.

EDGE4

FiGURE C.3: Sectioned test geometry, where each section is outlined by a red dashed box.
The CONVEX_SIDE and CONCAVE_SIDE sections include only visible mesh elements on
the surface of the geometry.

The resulting response surfaces are shown in Figure C.4 and Figure C.5, while
the errors and regression coefficients can be seen in Table C.1. As can be seen,
the CONCAVE_SIDE, CONVEX_SIDE and the hole sections produced particularly
low-accuracy response surfaces with very high regression, while the edge and boss
sections produced slightly lower errors with some acceptable levels of regressions (e.g.
R2 of 0.8). Nevertheless, in all 10 cases the maximum errors exceed 30% and RMSE
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values exceed 10% (with respect to the range of stress values for the whole DOE), so
these models are considered to be of insufficient quality. It is also interesting to note
the absence of any significant reflectional symmetry between the different response
surfaces (e.g. between BOSS1 and B0OSS2), which were expected based on the test

part symmetry as mentioned above.

Section name R? RMSE (%) Max Error (%)
EDGE1 0.8 12.2 38.4
EDGE?2 0.8 14.0 46.7
EDGES3 0.8 12.9 42.7
EDGE/ 0.8 11.5 38.9
CONCAVE_SIDE 0.1 21.9 51.6
CONVEX_SIDE 0.6 13.1 42.2
BOSS1 0.8 10.8 31.1
BOSS2 0.6 10.4 30.2
HOLE1 0.1 20.2 68.9
HOLE2 0.3 13.6 47.8

TABLE C.1: Regression coefficients and surface fitting errors shown for each named section
of the test geometry.

Similarly to the previous surrogate model for the whole test geometry, the high
errors and regression produced by the geometry sectioning approach are thought to
be the result of averaging of tensile stresses without consideration of the location and

distribution of stresses within each section.
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FIGURE C.5: Response surfaces shown for each section (continued).

C.2 High-Stress Points Approach

Following the above results, a third approach was considered. For each of the 50
build orientations in the DOE, the location of the maximum tensile stress element
in the part mesh was recorded. The recorded location was then fixed and the stress
value in that location on the part geometry was then recorded for the remaining 49
points. This process was repeated for each point in the DOE, resulting in a total of
50 recorded “high-stress points” on the part as shown in Figure C.6.

It can be seen from Figure C.6 a number of the high-stress points lie very close

to each other on the part and thus can be expected to produce very similar response
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/hxr hy, hy

XC

YC

F1GURE C.6: Locations of 50 high stress mesh elements (recorded for each build orientation
in the DOE) marked in red on the test geometry.

surfaces; moreover, evaluating 50 surrogate models is not computationally practical,
so it is suggested that the number of high-stress points should be reduced to no more
than 15. This can be done using a cluster analysis method (e.g. k-means clustering)
to represent several high-stress points shown in Figure C.6 (for instance, the clusters
of points around the bosses can be replaced with two or three points around each
boss of the test geometry).
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Ficure C.7: Comparison of response surfaces of nearby high-stress points hi, hy and hs.
However, before applying a cluster analysis method, the response surfaces of three

closely positioned high-stress points, denoted by hi, ho and hsz, were compared for

consistency; these response surfaces are shown in Figure C.7 and their positions are
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indicated in Figure C.6. As can be seen, the three high-stress points, which all lie
within a maximum distance of 1.3 mm of one another, have very different response
surfaces. Moreover, all three response surfaces have values of R? ranging between 0.51
and 0.69; RMSE ranging between 14% and 15% and maximum errors ranging between
33.7% and 46.2%. Consequently, the produced response surfaces were considered too
inaccurate and no further work was done in this direction. Additionally, the significant
variation within each response surface (i.e. large number of peaks and valleys) and
the inconsistencies between very closely positioned high-stress points indicate that

there may be a high level of noise in the FEA solutions.

C.3 FEA Noise Study

Following the above results, the FEA model was studied more closely to find the source
of the apparent noise. FEA convergence was found to be sufficient with negligible
variations in stress (< 1%) between multiple runs of the same mesh. Additionally,
the variation of stress for a fixed point in the geometry was studied over a very small
range of rotations, where § € (0°,4°) and ¢ = 0°. Figure C.8 shows the first (S1),
second (S2) and third (S3) principal stresses, as well as stress intensity Sj,: for the
fixed point over the range of rotations. As can be seen there are large and arguably
unrealistic variations in all three components of principal stress. Furthermore, the
stress intensity, which is expected to smooth out the noise, still indicates relatively

large variations, even over 0.5 degree increments.
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Ficure C.8: Change in principal stresses and overall stress intensity over a range of
6 € (0°,4°).

As discussed in Section 5.3, one of the simplifying assumptions in the FEA is the
grouping of layers in order to make the model tractable at the expense of some loss
in accuracy. Section 5.3 also explains that a voxel mesh is most likely to produce a
successfully converged FEA solution while producing the least accurate representation

of the part geometry, particularly at the surface where most tensile stress spots are
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expected to occur. Furthermore, due to the layer-by-layer nature of the FEA the
geometry is re-meshed for each new build orientation (as opposed to rotating the
same mesh, which would result in irregular layers). This means that the location of
each high-stress point is not fixed between different build orientation, but rather,
this location is approximated as the centre point of the nearest element in each
mesh. Therefore, it is expected that the FEA and geometric errors can be reduced
significantly by reducing both the layer thickness and mesh element size; however,
this is also expected to substantially increase the solution time. For this reason, it
was decided to maintain the current mesh size of 0.5 mm and layer thickness of 1 mm.

Because of the high local variation of stresses in the mesh, the above high-stress
point approach was not pursued further. Moreover, while it is possible to manu-
ally tune the level of data-fitting and regression of the Kriging models this was also
avoided for two reasons; firstly, such manual tuning can lead to numerical problems
(e.g. ill-conditioned matrices); secondly, these problems can be avoided by substi-
tuting Kriging with another less sophisticated approach (e.g. linear interpolation via
triangulation), which can still provide a sufficient surrogate model for optimisation

as demonstrated in Chapter 5.
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Test Geometries

149

All test geometries used in Chapter 6 are listed in Table D.1 and Table D.2, where V
denotes the geometry volume; S A denotes the surface area; V R and M LR denote the

volume ratio and the maximum length ratio, respectively; and F' denotes the number

of facets in the STL file. Where applicable, source links are provided in the footnotes

below. Additionally, images corresponding to each numbered geometry in Table D.1

can be found in figures D.1 and D.2.

Group & Source No. Geometry Name V (mm®) SA (mm?) VR MLR F
RC Jet Assembly 1 Tube 19,870 16,184 0.14 0.25 247,318
(GrabCAD?) 2 Axle 18,750 6,078 0.44  0.39 1,296
3 Bearing 1,920 1,489 0.57  0.05 2,516
4  Bracket 6,900 14,739 0.02 0.39 308,318
5  Compressor bearing 2,770 2,504 0.32  0.07 34,424
6 Compressor housing 48,970 30,367 0.11  0.27 77,780
7  RC compressor wheel 8,760 11,461 0.13 0.13 15,640
8 Diffuser 34,770 31,326 0.09 0.25 554,636
9 Exhaust inner cone 3,280 9,492 0.05 0.11 44,816
10  Exhaust nozzle 8,240 28,327 0.02 0.21 71,812
11 Front bolt 880 710 0.47  0.04 1,852
12 Front casing 11,960 40,358 0.02 0.27 127,916
13 Jet Turbine bearing 305 435 042  0.03 1,374
14 NGV ring 10,520 17,836 0.08 0.17 60,350
15  Rear bolt 477 504 0.56  0.03 1,012
16 Rear casing 57,230 82,533 0.04 0.35 170,028
17 Spark plug 569 487 0.33  0.05 1,750
18 Spring 767 2,131 0.16 0.06 192,536
19  Starter 56,830 9,866 0.20 0.23 620,764
20 Turbine casing 4,633 4,792 0.23  0.19 9,328
21 RC turbine wheel 15,560 14,763 0.06 0.24 9,386
Turbocharger Assembly 22 Clamp 9,780 7,977 0.15 0.19 8,218
(GrabCAD?) 23  Compressor flow 69,234 43,022 0.15 0.31 22,236
24  TC compressor wheel 8,761 11,464 0.13 0.13 23,316
25 TC housing 121,353 33,752 023 0.24 9,336
26 Socket & cap screw 20,529 5,668 0.46  0.13 3,100
27 Turbine flow 81,678 55,912 0.11 0.34 16,548
28 TC turbine wheel 15,664 14,769 0.06 0.24 12,578

TABLE D.1: Test geometries and their properties.

"mttps://grabcad.com/library/rc-jet-engine-3
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FIGURE D.1: Test geometries in the RC Jet Assembly (taken from GrabCAD).
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FIGURE D.2: Test geometries in the Turbocharger Assembly (taken from GrabCAD).
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Group € Source Geometry Name V (mm®) SA (mm?) VR MLR F
Araujo et al. (2015) Bearing block 96,646 28,939 0.19 0.32 12,846

Belt link 16,595 8,057 0.55  0.15 16,148
End cap 1,766 2,217 023 009 26,892
Turbine 20,618 11,625 0.25  0.13 107,806
Venturi tube 960 1,042 0.40  0.07 59,294
Canellidis et al. (2006, 2009)  Caliper 51,601 23,483 0.17  0.21 43,154
Card slot cover 11,759 14,710 0.09 0.23 12,498
Cover 19,162 17,478 0.25  0.26 12,300
Distributor 7,149 13,189 0.10 0.14 4,028
Engine block 38,595 28,112 0.18 0.21 4,924
Flip-top 2,073 4,427 007 015 6,552
Gear 540 659 0.39  0.04 1,420
Handle 28,250 29,844 0.08 0.27 9,698
Impeller 80,661 40,349 017 028 474,222
Insect trap 5,631 16,474 0.07  0.17 50,910
Jawbone 73,270 22,190 0.08  0.31 100,948
Phone cover 53,704 57,385 0.08  0.45 30,004
Pipe support 2,296 2,959 0.24  0.09 620
Sector 90,050 52,234 0.10  0.50 14,574
Swivel hinge 10,952 7,647 0.22 0.15 4,860
Washing machine arm (centre section) 28,552 29,441 0.14  0.30 17,718
Washing machine arm (left section) 20,550 20,624 0.17  0.30 10,394
Washing machine arm (right section) 20,551 20,624 0.17  0.30 10,370
Gearbox Assembly Cover plate 27,134 13,880 0.38 0.28 19,972
(GrabCAD?) GB housing 282,507 69,052 0.28  0.42 66,658
Offset shaft 31,520 8,798 0.78  0.42 6,596
Plate lug 78,908 20,952 0.28 0.23 19,294
Worm gear 37,698 14,996 0.39  0.15 16,262
‘Worm gear shaft 23,995 7,243 0.26 0.34 5,502
Rolls Royce Combustor section 1 46,455 44,154 0.06 0.43 20,648
Combustor section 2 64,000 48,494 0.15  0.53 8,186
Seal segment 14,544 25798 014 025 51,376
Miscellaneous Parts Aero-bearing bracket* 40,806 20,037 0.12  0.30 32,686
(GrabCAD) Control arm 90,512 33,471 0.13  0.42 7,654
Fuel injector® 8,077 7,644 0.13 0.16 39,272
GE bracket® 76,857 78,004 0.06 0.44 84,468
Housing1” 40,840 26,450 0.13  0.21 48,586
Housing2® 65,620 31,605 0.14 024 25702
Space bracket? 30,540 13,682 0.14  0.25 75,982
Turbine blade!’ 13,216 10,478 0.11  0.22 31,230
TABLE D.2: Test geometries and their properties (continued).
3https://grabcad.com/library/gear-box-assembly-1
‘https://grabcad.com/challenges/airplane-bearing-bracket-challenge
Shttps://grabcad.com/library/fuel-injector--2
6https://grabcad.com/challenges/ge-jet-engine—bracket—challenge
"https://grabcad.com/library/crankcase--4
8https://grabcad.com/library/aero-engine-housing/details?folder_id=52721
“https://grabcad.com/challenges/3-2-1-1iftoff-ula-rocket-hardware-challenge
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