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Abstract

Valeriya Griffiths

A Cost-Driven Process Planning Framework for Selective

Laser Melting

Selective Laser Melting (SLM) is an additive manufacturing (AM) method, capa-

ble of producing end-use metal parts by selectively melting layers of powder with

a moving laser. The process can create complex lightweight geometries in a single

build, and offers an opportunity to improve product value through greater design

freedom, part consolidation, reduced tooling and reduced supply chain complexity

for a range of different industries. However, SLM also poses a number of material-

and process-related challenges, which prevent wider adoption of this process for end-

use part production. Due to high residual stresses characteristic of this process, build

failure and poor part quality are still common issues. The cost of this process is also

relatively high, while the need for post-processing leads to additional, and sometimes

unexpected, costs. Effective process planning can mitigate these problems, however,

this is not an easy task due to the large number of interdependent process parameters

and their combined effects on the process cost, time and quality. Part build orienta-

tion is one such important parameter, which affects the surface roughness, build cost

and time, as well as the need for support structure. Due to the anisotropic material

properties produced by SLM and the effects of part geometry on the residual stress

profile, there is also a complex relationship between build orientation, part quality

and the risk of build failure. Moreover, the build orientations of multiple parts deter-

mine how many SLM machines are required to build all those parts. The placement

of parts inside AM machines is known as a bin packing problem, and its link to build

orientation has been acknowledged throughout the literature. Existing approaches

have optimised build orientation and bin packing as two separate problems, limiting

the optimality of the overall solution.

Thus, this thesis provides a cost-driven framework for optimising build orienta-

tion and bin packing of multiple parts in SLM, and provides two heuristics for solving

these two problems simultaneously. The cost model used to drive the framework is

developed based on a thorough literature review, and incorporates build cost and

post-processing cost. Additionally, by considering SLM in the context of lean manu-

facturing two distinct production scenarios are identified, and referred to as Identical

Batch Production (IBP) and Mixed Batch Production (MBP). Thus, each heuristic
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is aimed at a specific production scenario. For IBP, a Tabu search procedure is devel-

oped by solving the build orientation problem along with a cutting-stock problem, as

bins are assumed to be identical. To improve the efficiency of this search heuristic an

area-based approximation strategy is proposed, which can reduce the solution time

by as much as 50%, as indicated by the computational results.

The effect of build orientation on residual stresses is also considered, by extending

the above Tabu search to address the multi-objective problem of cost and residual

stresses in the context of IBP. Due to the high computational cost of this problem,

two alternative approximation strategies are proposed, and coupled with the multi-

objective Tabu search. The two strategies are demonstrated on a single test part of

medium complexity; the results demonstrate the validity of this approach, as better,

albeit less obvious trade-off solutions were found by the proposed Tabu search than

by an experienced SLM operator.

Finally, an Iterative Tabu Search Procedure (ITSP) is developed for the MBP

scenario. Because the solution space of this problem is much larger and more complex

than the IBP, the ITSP consists of six distinct stages, where each stage is aimed

at exploring a different area of the solution space. The procedure is benchmarked

against commercial software, indicating an average cost improvement of 14.6% for 27

test instances.
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Chapter 1

Introduction

Additive Manufacturing (AM) is a recently emerged group of methods, which has

been formally defined as the process of joining materials to make objects from three-

dimensional (3D) model data, usually layer upon layer, as opposed to subtractive

manufacturing fabrication methodologies (Wohlers, 2014). In contrast to traditional

subtractive methods, AM offers greater freedom of geometry, less material waste and

less tooling, thereby, AM is able to produce highly complex parts, which would have

been infeasible or cost-prohibitive in the past, relatively cheaply. This also means

that fewer process steps are required in AM and lead times can be reduced from

months to weeks and from weeks to days (Williams et al., 2016). These benefits are

now being recognised by global market leaders such as BAE Systems, GE Aviation

and Rolls-Royce plc.

However, despite the large and rapidly growing body of research relating to this

technology there are still a number of gaps that need to be addressed. Some of

the key challenges are outlined in Section 1.3 and Section 1.4 of this chapter, while

the corresponding research objectives and contributions are outlined in Section 1.3

and Section 1.4, respectively. To provide some context to the chosen problem, a

brief history and outline of different AM methods is provided in Section 1.1, and an

overview of AM process steps is provided in Section 1.2.

1.1 Emergence of Additive Manufacturing

The origins of AM can be traced back to Rapid Prototyping (RP). A process known

as Stereolithography (SLA) was the first commercial RP technology, developed and

patented by Hull (1986), who later founded 3D Systems. The method works by curing

UV-reactive resins in a layer-by-layer fashion, as shown schematically in Figure 1.1.

A layer of liquid resin is spread evenly along the build plate, an ultra-violet (UV)

laser then selectively scans the resin, creating a solid slice of the geometry. Following

this the build plate shifts down by a distance equivalent to the resin layer thickness

and a new layer of liquid resin is spread over the top. The process repeats until the

3D geometry is finished.

The most significant part of this technology was the creation of the Stereolithogra-

phy (STL) file format, which remains the standard geometry format for AM machines
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Figure 1.1: Summary and classification of AM processes.

today (Ma et al., 2001). The method continues to enjoy a wide range of uses such as

medical models and moulds for investment-casting, as well as commercial uses such

as jewellery. However, due to its restriction in material range and the development

of other competing AM methods its unit sales have steadily declined in the last two

decades (Wohlers, 2014). Selective Laser Sintering (SLS), a method which fuses poly-

mer powders on a bed of powder using a carbon dioxide (CO2) laser, was patented

soon after, by researchers at the University of Texas at Austin (Deckard, 1989). This

marked the birth of powder-bed fusion methods, which today have the potential to

create functional end-use metal parts, as will be discussed in the following section.

Many other polymer-based methods and variants have been developed since,

such as Fused Deposition Modelling (FDM), binder jetting and 3D printing. These

methods enjoy a wide range of applications today such as prototyping and tooling,
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consumer goods, medical implants, automotive and aircraft parts, and even multi-

material parts (Goh et al., 2017).

1.1.1 Metal AM Processes

Following the success of SLS using polymer powders, attempts to apply the process

to metal powders quickly followed. Early machines could not provide sufficient power

or building conditions to produce high quality metal parts, and thus indirect methods

were initially developed which rely on mixing (or coating) of metal powders with a

polymer (Agarwala et al., 1995). The polymer binder melts much more readily and

spreads in between the metal powder particles, acting as a binder. A post-processing

sintering treatment removes the binder and the remaining highly porous structure

can be infiltrated with a molten material, such as bronze.

In 1995 a company called EOS released the first commercial Direct Metal Laser

Sintering (DMLS) machine, able to sinter metallic mixtures of steel-based and bronze-

based powders, with a CO2 laser (Khaing et al., 2001). While this was still a sintering

process, which produced fragile and porous parts (30-45% porosity), the M250 was a

crucial technological leap and the forerunner of todays Selective Laser Melting (SLM)

machines.

3D geometry 

being built

Powder delivery 

platform Build platform

Laser beam

Metal powder

Recoater blade

Moving mirror

y

z

x

Powder delivery 

platform 
Build platform

Figure 1.2: A schematic description of the Selective Laser Melting (SLM) process, where
the build direction is defined by the z-axis.

Like DMLS, SLM is the process of selectively fusing powder by a moving laser in

a layer-by-layer fashion, as shown in Figure 1.2, but this fusion is achieved through

fully melting the powder (as opposed to sintering) resulting in densities of over 99%

(Sames et al., 2016). This has become possible due to better alloy powder mixtures,

better controlled build chambers filled with inert gas and improved laser technology,

by replacing CO2 lasers with Nd:YAG1 and fiber lasers, which are much more readily

absorbed by metals (Vandenbroucke and Kruth, 2007).

1neodymium-doped yttrium aluminum garnet.
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In 2000 another powder-bed process, known as Electron Beam Melting (EBM),

was developed in Sweden and licensed by Arcam AB, which remains the main EBM

machine supplier today (Sames et al., 2016). The process is similar to SLM in many

respects, however, instead of using a laser, it relies on an electron beam as its energy

source, and thus, requires vacuum conditions inside the build chamber. The process

is faster than SLM, due to the larger power input and larger spot diameter of the elec-

tron beam; however, this also leads to poorer surface quality and feature resolution.

Furthermore, in EBM each layer of powder must be pre-scanned to a sintered state

before it is melted, to prevent powder particles from being repelled and dispersed

by the electron beam. The build-up of charge in the part requires helium gas to be

added into the chamber while the higher process temperature requires significantly

longer cooling times than SLM (Gong et al., 2014).

Another key metal AM process is Direct Energy Deposition (DED) which traces

its history to welding. Rather than using mirrors (as in SLM) or magnets (as in EBM)

to control the beam, DED effectively uses a welding torch mounted on a robotic arm

and incorporates a wire or powder feed nozzle, which deposits material directly into

the path of the welding torch. Thus, DED does not require a powder-bed and offers

greater flexibility in terms of build size and platform; new parts can be built on a

substrate or as additional features on an existing part. Although DED is faster and

more flexible than the powder-bed processes, it offers the worst surface quality and

dimensional accuracy, making it more suitable for repairs and production of large

parts of low-to-medium complexity (Vayre et al., 2012).

SLM EBM DED

Power (kW) 0.1 - 1 1 - 3 0.5 - 4

Building speed (cm3/h) 5 - 70 55 - 80 2500

Surface roughness Ra (µm) 9 - 16 25 - 35 200

Layer thickness (µm) 20 - 100 50 - 200 200 - 300 (powder)
3000 (wire)

Dimensional accuracy (µm) 75 - 100 100 - 200 200 - 380 (powder)
16000 (wire)

Maximum build dimensions (mm) 800 x 400 x 500 350 x 380 4000 x 1981 x 1778
(x-y-z) (∅-H) (x-y-z)

Material delivery system Powder feeder Powder feeder Nozzle-fed wire
and re-coater and re-coater or powder

Referenced manufacturers EOS, Concept Laser Arcam Sciaky, Optomec

Table 1.1: Summary and comparison of metal AM processes.

Table 1.1 summarises the key properties and trade-offs of the three main metal AM

methods; DED offers faster build times and greater flexibility in terms of part size and

material, but is limited in the relatively accuracy and geometry it can achieve; SLM

offers the highest resolution and build accuracy out of the three but is slightly slower;

both processes suffer from high residual stresses due to large thermal gradients during

the build cycle. EBM falls in between the two in terms of building speed and accuracy,

and does not suffer from residual stresses as significantly, but offers a limited choice
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of materials and incurs high running costs due to the vacuum and heating conditions,

as well as material waste.

1.2 General Process Steps

All AM and RP processes follow the same basic steps, consisting of file preparation,

part building and post-processing. The process begins with creating a 3D computer-

aided design (CAD) file of the part geometry. The majority of designs are now

created using CAD software packages, of which there are many. Most CAD systems

are also capable of converting the geometry into STL file format, which defines the

external closed surfaces of the CAD geometry, using a mesh of tiny triangles (no other

information about the solid geometry or features is stored). Before being transferred

to the machine, the STL file must be positioned and oriented in the build environment;

the rotational position of the part geometry with respect to the z-axis (as shown in

Figure 1.2) is called the build orientation. Selecting a suitable build orientation is an

important decision as it has a direct effect on the production cost, time and quality,

as well as the required post-processing. Additionally, for processes such as SLM and

FDM, sacrificial support structures must be generated to prevent part distortion and

failure during the build. As shown in Figure 1.3, the shape and volume of support

structure is also closely related to the build orientation.

Figure 1.3: Example of different build orientations and resulting support structure for two
different part geometries built via SLM (taken from Waterman (2017)).

Next, the oriented part geometry and support structures must be sliced into hor-

izontal cross-sectional layers, the thickness of which is predetermined by the process,

typically within a range of 20− 100 µm for most SLM machines (Vayre et al., 2012),

and selected by the user to meet the optimal input energy requirements for the given

material (Kempen et al., 2015). Commercial software packages such as Magics (pro-

duced by Materialise) and Nefabb (produced by Autodesk) can be used to slice the

file, generating the sliced data in a new file format which stores the thickness and
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surface area of each layer. The sliced file format is dependent on the system manu-

facturer, for instance, 3D Systems use System Layer Interface (SLI), while Common

Layer Interface (CLI) is compatible with EOS machines. The next stage involves

determining a scan strategy and generating a tool-path for each layer, which is of-

ten done by the same software as the slicing. The standard output format for this

is written in the computer numerical control (CNC) language called G-code which

contains ordered vectors of the tool-path. Some important decisions have to be made

at this point such as selecting the scan pattern and hatch spacing (spacing between

the vectors). Finally, the G-code file and machine build parameters are uploaded to

the AM machine and the part is built. Choosing the correct build parameter values

is vital for building a part of sufficient quality and accuracy, as well as minimising

production time and cost. During the build, commercial powder-bed machines will

typically provide the operator with in-process monitoring data, such as the melt-pool

temperature signature and melt-pool dimensions, using a high frame-rate camera

and photodiode, respectively (Berumen et al., 2010). This allows for post-build error

examination and fine-tuning of the process parameters.

After the build chamber has cooled, the parts are extracted from the machine and

cleaned of any loose material. Parts produced by metal powder-bed processes are

often cut away from the substrate using wire Electric Discharge Machining (EDM),

though other tools such as a hacksaw can be used, depending on part specifications,

geometry and ease of removal (Atzeni and Salmi, 2012). Current metal parts pro-

duced by SLM typically require post heat treatments to alleviate residual stresses

and improve part ductility; Hot Isostatic Pressing (HIP) may also be used to re-

duce porosity and seal micro-cracks (Vrancken et al., 2012). The final stage includes

support structure removal and surface finishing.

1.3 Project Background and Motivation

1.3.1 Design Benefits of AM

In current aerospace manufacturing, Buy-to-Fly ratios as high as 20 : 1 (i.e. with 95%

of material turned into scrap) are not uncommon when using subtractive methods,

where the weight of a part is inversely proportional to the volume of scrap. This poses

a particular challenge for the aerospace industry, which relies on high-value alloys,

like nickel and titanium, and is under constant pressure to produce lighter and more

efficient aircraft with lower emissions (Huang et al., 2016). In contrast, AM methods

can yield Buy-to-Fly ratios of 2 : 1 or less (English et al., 2010; Horn and Harrysson,

2012), as these methods only add material where it is needed rather than removing

unwanted material from a billet.

Furthermore, the additive “tool-less” nature of AM processes eliminates many

of the conventional manufacturing constraints of both subtractive methods such as
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machining (e.g. fixtures, tool access) and formative ones such as casting (e.g. uni-

form wall thickness, split line location) (Yang and Zhao, 2015). Complex lightweight

geometries can be created using topology optimisation, which is a computational

method of distributing material economically within a predefined design space (Watts

and Hague, 2006).

Figure 1.4: Concept heat exchanger design build in one piece via SLM (taken from 3T RPD
(2018))

Part consolidation can also reduce labour and tooling costs, assembly time, as well

as improve the overall part quality, as demonstrated by General Electric (Kellner,

2014) who used AM to create a single-part fuel injector nozzle, which previously

consisted of 18 components. The new design reduced the number of welds from 25

to just five, and is two thirds lighter and five times more durable than the original

assembly. Other examples of how AM can be used to improve design functionality

include complex heat exchange systems (as shown in Figure 1.4), parts with conformal

cooling channels and integrated oil delivery systems, all built in a single process (Horn

and Harrysson, 2012).

1.3.2 Supply Chain Benefits of AM

The above design benefits also lead to two key supply chain benefits. Firstly, without

the need for tooling, on demand production of customised parts is no more costly

than mass production, and perhaps even cheaper, via AM (Garrett, 2014). This

in turn enables AM production to be driven by demand, rather than the need to

justify tooling costs, reducing the costs and risks associated with large inventories

and overproduction. Secondly, due to its geometric flexibility AM can produce a wide

range of geometries simultaneously in a single build; this is referred to as Mixed Batch

Production (MBP) throughout this thesis, and can be used to maximise machine

utilisation and produce small quantities of parts efficiently. According to Ruffo et al.

(2006) MBP is already common practice employed by RP bureaus and specialised AM

service providers, who often receive small orders for parts of various sizes, functions

and complexities from a number of different customers.
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Both the design and the supply chain benefits make AM especially promising for

the aerospace industry, which is characterised by relatively low production volumes,

high part variety and highly complex systems (Webb et al., 2015).

1.3.3 AM Process Planning

Process planning is an important and currently time consuming step in SLM. Suit-

able laser parameters and thermal conditions are critical for robust and high quality

production; meanwhile alloy properties, powder quality, part geometry and part posi-

tioning in the SLM build chamber all have a significant and combined effect on build

quality, cost and time. Commercial software like Magics and Netfabb, as well as a

number of academic models offer process planning support, however, these tools are

limited to one process parameter at a time and typically require the user to provide

suitable weights or an order of priority for a number of competing objectives.

Thus, existing tools can only provide limited decision support, instead of fully

automated process planning. This means that process parameters are often selected

manually by experienced users, making the process planning step significantly more

time consuming and labour intensive, while also making the quality and productivity

of SLM highly dependent on the level of skill and experience of individual designers

and manufacturing engineers. Poorly informed decisions can lead to time consuming

and costly trial-and-error during the development of a product; Sames et al. (2016)

termed this the “rule of 4”, meaning it can take up to four iterations to achieve a

successful part and reliable build process. Furthermore, these decisions affect not

only the SLM process but also the subsequent post-processing stage, which can have

a significant effect on the final unit cost and lead time of a part and thus must be

considered as part of process planning (Mellor et al., 2014). The risks of build failure

and significant post-processing raise the current barrier to the adoption of SLM and

other AM processes, especially in industries such as aerospace, where quality control

and certification requirements are particularly stringent.

One of the key process parameters, as mentioned in Section 1.2, is the part build

orientation, which affects many aspects of SLM (and other AM methods), including

machine run time and cost; part surface roughness, accuracy and required post pro-

cessing; material anisotropy, support structures and residual stresses in the parts; and

finally batch size, which is a driving factor of machine productivity and overall man-

ufacturing cost. This clearly presents a large number of trade-offs making it difficult,

not only to locate optimal build orientations, but to define a measure of “optimality”

to evaluate these build orientations in the first place, especially when dealing with

MBP.

Furthermore, the high residual stresses in SLM are currently one of the biggest

challenges of this process, adding significant build failure risk and limiting its suit-

ability for end-use structural parts. The need for additional sacrificial support struc-

tures and their subsequent removal results in additional material waste, build time

and time-consuming manual finishing operations, while the need for stress relief heat
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treatments further increases the lead time and cost. Although numerous simulation

models have been proposed (Roberts, 2012; Megahed et al., 2016; Peng et al., 2017)

for predicting residual stresses and distortion during SLM, they share two major

limitations: firstly, simulations of realistic parts are extremely time consuming and

computationally expensive; secondly, these simulations can only provide a simpli-

fied approximation of the real process, as numerous assumptions must be made to

make them tractable. For this reason, applying process modelling and optimisation

heuristics to minimising residual stresses is a particularly difficult task, and existing

research relating to this problem is limited (Megahed et al., 2016).

1.3.4 SLM in Rolls-Royce

The potential benefits of metal AM processes have been recognised and already ex-

ploited to some degree by Rolls-Royce. For instance, the lead-time of the XWB-97

front bearing housing (FBH) was reduced by more than 30%, by manufacturing the

FBH vanes via EBM (Stuart, 2015); while, DED is a well-established method of Blisk

repair used by a number of aero-engine manufacturers (Hellemann et al., 2003; Ford

and Despeisse, 2016). However, based on the trade-offs discussed in Section 1.1.1,

the focus of this thesis is on the SLM process, due to its particular suitability for the

production of intricate medium-sized aero-engine parts.

To use SLM effectively and to be able to assess its suitability against other methods

of manufacture, Rolls-Royce must be able to accurately predict and minimise the cost

of the entire production process. Rolls-Royce has already developed a holistic cost

model of SLM, but currently has no tool to optimise the process or minimise the

cost; as discussed above, this leads to a lot of manual effort going into the design and

process planning steps, which lack a clear and consistent procedure.

1.4 Challenges

Based on the above discussion, the challenges addressed in this thesis are summarised

in the following four points:

Automated process planning in a realistic production context: Despite the

existence of commercial software tools such as Magics and Netfabb, as well as a

number of academic methodologies, fully automated process planning is yet to be

achieved. Additionally, the role and benefits of AM methods in the supply chain

of adopting companies such as Rolls-Royce are currently not fully appreciated or

understood. Thus, to encourage mainstream adoption of AM, process planning must

be not only robust and fully automated, but must also address different, realistic

supply chain and production scenarios.
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Holistic objective function for build orientation optimisation: Part build

orientation affects a number of important factors such as build cost, build time, sup-

port structure and build surface roughness. Consequently, existing literature offers

numerous competing objective functions, but lacks agreement on which is the most

suitable one, while existing multi-objective functions require the user to provide ap-

propriate weight coefficients or target values, which is a difficult task in practice.

Consideration of residual stresses and post-processing: Other important

challenges in SLM include high residual stresses and poor surface finish, both of

which have an adverse effect on the part fatigue life, and thus, necessitate additional

post-processing steps following SLM, which in turn increase lead time and cost. Fur-

thermore, high residual stresses can lead to build failure, microcracking and deteri-

oration of build accuracy during the SLM build process. As suggested by a number

of works (Mercelis and Kruth, 2006; Protasov et al., 2016; Peng et al., 2017) there is

a non-trivial relationship between the part geometry, build orientation and residual

stress profile; however, this relationship is yet to be fully explored and exploited.

Simultaneous parameter optimisation for more optimal solutions: While

build orientation and bin packing are two important and strongly interdependent

parameters in AM, there is currently no approach which addresses the two parameters

simultaneously. Existing works address the two parameters as two separate problems,

typically with limited movements in the bin packing problem, thus, limiting the scope

of the optimisation search and missing out many potentially good solutions.

1.5 Research Objectives

To address the four challenges outlined above, this thesis proposes an automated

process planning framework to minimise the overall production cost, which includes

SLM build cost and post-processing cost. In this way, the framework should unite

the competing decision criteria for build orientation and bin packing into a single

objective function, making the problem simpler and more intuitive to solve, with

only a few inputs and no supervision required from the user. The framework should

also include the effects of residual stresses and should be applied in the context of

realistic supply chain scenarios. Thus, the research entails meeting the following five

objectives:

1. Develop an automated cost-driven process planning framework, which simulta-

neously optimises build orientation and bin packing for SLM.

2. Develop suitable optimisation models that apply the framework to the IBP and

MBP scenarios, respectively.

3. For IBP, the optimisation model should incorporate both build cost and post-

processing cost.
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4. For MBP, the optimisation model should consider the bin assignment of parts,

as well as build orientations and bin packing.

5. Finally, develop a model which uses finite element analysis (FEA) of SLM to

optimise both the unit cost and residual stresses in the context of IBP.

1.6 Contributions

The contributions made by this thesis are summarised as follows:

1. A process planning optimisation framework has been developed, which considers

production cost as a function of part build orientation and 2D bin packing

inside identical SLM machines. This approach unites a number of competing

objectives, such as surface roughness, support structure and projected area of

the part, into a single objective, and removes the need for guessing appropriate

objective weights by assigning realistic cost coefficients to the different objective

criteria.

2. A simple approach has been proposed, which enables target surface roughness

to be provided as a design requirement by the user and treated as a hard con-

straint; in this way, the build surface roughness of SLM parts can be considered

as a post-processing cost, rather than a separate objective. The benefits of this

are two-fold: firstly, this approach supports contribution 1 above, in unifying

different build orientation criteria into a single objective function; secondly, it

includes post-processing costs into the process planning stage, which reduces

the risk of hidden or unforeseen additional costs at the later stages of the man-

ufacturing process.

3. In order to effectively deal with different demand patterns, the framework has

been applied to two different production scenarios, namely IBP and MBP, as

discussed in Section 3.1.1. The two production scenarios are addressed in Chap-

ter 4 and Chapter 6, respectively. Since the framework has been developed in

the context of the aerospace industry, the presence of safety-critical parts has

been considered and a consequent build orientation constraint has been pro-

posed, which is discussed in Section 3.1.2.

4. For the IBP scenario, the cost model includes both build cost and post-processing

cost as a function of build orientation and 2D bin packing. Similar works by

Alexander et al. (1998) and Byun and Lee (2006) propose holistic cost models

to compare different build orientations in AM processes such as FDM and SLA;

however, these models only consider single prototype production and do not

include batch packing. No existing works have addressed the issue of modelling

total production cost as a function of build orientation and 2D bin packing in

the context of large-scale, end-use parts produced via SLM. Moreover, Chapter
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5 extends the framework, by considering the multi-objective problem of min-

imising total cost and residual stresses in SLM. Two methodologies have been

explored, and the resulting Pareto sets have been compared for a single geome-

try of medium complexity. The results indicate that the best build orientation

may not necessarily be the most obvious one, even for an experienced SLM user,

which demonstrates the usefulness of solving this problem.

5. For the MBP scenario, a novel Iterative Tabu Search Procedure (ITSP) has been

proposed to solve the combined problem of build orientation and 2D bin packing

of mixed geometries in a coupled way. To reduce the complexity of the problem

the ITSP uses build cost to drive the search, without including post-processing,

which is highly dependent on target surface roughness and surface finishing

method chosen for each part. The ITSP works by iterating between the two

problems, aiming to improve the bin packing solution, while also incrementally

improving the build orientations of individual parts in each bin. This coupled

approach is benchmarked against a de-coupled approach, equivalent to a single

iteration of the ITSP (i.e. where the build orientation and bin packing problems

are solved separately and only once) using the commercial software Magics. The

results show a significant improvement in build cost (14.6% average), supporting

the above hypothesis that optimising build orientation and bin packing in a

coupled manner is more advantageous than solving the two problems separately.

This work has been submitted to the European Journal of Operational Research.

1.7 Thesis Structure

This thesis consists of seven chapters, the contents of which are summarised as follows:

• Chapter 2 provides a literature review of key process challenges and costs in

SLM, as well as the main process planning parameters affecting them.

• Chapter 3 covers the methodology of the proposed process planning framework,

and provides further context and practical applications of the IBP and MBP

scenarios.

• Chapter 4 describes the Tabu search (TS) procedure developed to optimise the

unit cost of IBP.

• Chapter 5 extends the TS strategy of Chapter 4 and provides a methodology

for finding trade-off solutions for unit cost and thermal residual stresses.

• Chapter 6 describes the Iterative Tabu Search Procedure (ITSP) developed to

minimise the build cost of MBP.

• Chapter 7 summarises the research findings and drawn conclusions, and suggests

potential directions for future research.
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Chapter 2

Literature Review

Careful process planning is a crucial step in the SLM process as it affects part surface

quality, dimensional accuracy, material microstructure and mechanical properties, as

well as production cost and lead time. Selecting optimal parameters can produce

cost-effective and high quality functional parts, while a poorly planned process is

likely to result in build failure and waste (Berumen et al., 2010).

Thus, this chapter consists of three parts. The first provides an overview of the

key characteristics and challenges related to part quality and process parameters.

The second provides an overview of key process parameters relevant to this thesis,

providing a critical literature review regarding modelling and optimisation of build

orientation, support structure and batch packing. The third and final part looks at the

key drivers and the overall nature of AM cost. Build time is covered in this section,

since it is both a driver of cost and an important objective in its own right, and

existing modelling approaches and current challenges with respect to manufacturing

time and cost are discussed.

2.1 SLM Process Characteristics and Challenges

2.1.1 Material Porosity

Material porosity is a key challenge in SLM, as it has a detrimental effect on frac-

ture toughness, fatigue performance and overall mechanical strength of the produced

material. Figure 2.1 shows two types of pores commonly found in SLM materials

– spherical and irregular. Spherical pores typically form due to gas bubbles getting

trapped in a pool of locally melted powder, which cools before the gas has a chance

to escape; these gas bubbles may simply be inert gas from the build chamber at-

mosphere or gas bubbles released by the porous powder particles as they turn into

molten metal. Irregularly-shaped pores usually occur as a result of process-specific

phenomena, namely balling and key-holing (Townsend et al., 2016).

Balling and key-holing are two persistent challenges in laser-related processes and

are commonly observed in welding (Madison and Aagesen, 2012). Each track of newly

melted powder is subjected to very high thermal stresses, which create local gradients

in the surface tension of the molten metal (known as Marangoni effect) and cause it

to break up into balls of liquid; this is known as balling (Strano et al., 2013b).
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Figure 2.1: Electron microscope image showing different types of pores. Image taken from
Song et al. (2015).

On the other hand, key-holing occurs when sparks from the laser beam hit the

melt-pool, ejecting droplets of liquid metal onto the surrounding surface (this is known

as spatter). Key-holing can also occur as a result of metal vapour which may exert a

pressure on the melt-pool, high enough to expel the liquid from the melt-pool cavity

(Shifeng et al., 2014). Collapse of this cavity can leave voids in the wake of the laser

beam (Madison and Aagesen, 2012; Kamath et al., 2014), and is often associated with

the presence of un-melted powder particles in parts built via SLM (Olakanmi et al.,

2015).

SLM porosity is still an ongoing research problem, since it is highly sensitive to

alloy properties, powder quality and process parameters, and must be considered

alongside other important factors such as microstructure. However, with the right

combination of laser and scan parameters (please refer to Figure 2.8), densities of

over 99% can be achieved for many industrial alloys, including those of aluminium

(Rao et al., 2016; Tang and Pistorius, 2017), nickel (Carter et al., 2012; Dub et al.,

2016) and titanium (Ali et al., 2017; Alfaify et al., 2018). The density can be further

improved through a post-SLM HIP treatment, however, it should be noted that HIP

also reduces material strength and hardness through coarsened microstructure; adds

significant cost and time to the production process (Lewandowski and Seifi, 2016);

and may not eliminate the presence of pores completely, particularly surface pores

(Leuders et al., 2013).

2.1.2 Thermal Residual Stresses and Cracking

Arguably, an even more critical limitation of SLM is the occurrence of high residual

stresses, due to their complex interaction with process parameters and microstruc-

ture. Even moderate residual tensile stresses can result in local micro-cracks and

a significantly reduced fatigue life and toughness of the part (Leuders et al., 2013),

while severe stresses can lead to complete build failure during SLM, due to severe

cracking and distortion of the part (Yadroitsava et al., 2015).

The large input of thermal energy, combined with the relatively low conductivity

of the cooling material underneath, causes a steep thermal gradient and heat accu-

mulation in the top surface of the part. Due to this accumulated heat, the top of
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the part tries to expand, while being restricted and subsequently compressed by the

underlying solid material, resulting in a tensile stress field in the top surface as it

cools. This process is shown in Figure 2.2. Additionally, each time a new melt-track

is created by the laser, the molten metal shrinks as it cools, causing a more localised

tensile stress field for each track (Mercelis and Kruth, 2006). Consequently, the resid-

ual stress profile is determined by a complex combination of thermal process settings,

such as build chamber temperature and laser beam parameters; material properties,

such as thermal expansion coefficient and elastic modulus; and the built geometry,

which includes support structure.

Figure 2.2: Residual stress fields caused by the thermal gradient. Image taken from Mercelis
and Kruth (2006).

Preheating the powder bed can alleviate a significant portion of the residual

stresses by reducing the thermal gradient. However, it also incurs an additional

energy cost and can affect the properties of different materials in a number of ways,

for instance, reducing the strength of tool steel and aluminium alloy (Kempen et al.,

2014; Buchbinder et al., 2014), while reducing ductility in titanium alloy due to in-

creased oxidation (Vrancken et al., 2016) and an undesirable microstructure (Ali et al.,

2017).

The laser path can further influence residual stresses – the “chequerboard” or

“island” scan strategy, shown in Figure 2.3, is a popular approach since it reduces

the build-up of heat by shortening the scan vectors and distributing the heat input

more evenly across each layer. Rotating the scan pattern for each layer, usually by

60o − 90o, has also been shown to improve the overall distribution of heat, thus,

further reducing the accumulation of residual stresses (Gusarov et al., 2011; Carter

et al., 2014; Ali et al., 2018). Other proposed strategies include the use of a pulsed

laser (Mumtaz and Hopkinson, 2010), layer re-melting (Yasa and Kruth, 2011; Ali

et al., 2018) and laser shock peening (Kalentics et al., 2017).

Heat treatment after SLM can effectively alleviate residual stresses, while HIP

can also seal the majority of micro-cracks. However, as already mentioned in Section

2.1.1, both methods add cost and time, and may not fully eliminate all stresses, while

in some cases the heat-induced stress relaxation can actually produce new cracks and

severely damage the part (Patterson et al., 2017). As with porosities, HIP is only

able to seal internal cracks that do not reach the part’s surface (Carter et al., 2012).

Furthermore, the part must also be fixed to the build plate with support structure to

prevent it from distorting before it can be post-processed, as well as to help dissipate
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Figure 2.3: Schematic example of the island scan strategy. Image taken from Carter et al.
(2014).

heat away from the part. As discussed in Section 2.2.1, support structure is a source

of material waste and additional post-processing.

An interesting material-based approach has been proposed for building parts with-

out the need for supports, known as anchorless SLM (ASLM) (Mumtaz et al., 2011;

Vora et al., 2015, 2017). This approach blends powders in specific proportions, so

that when these powders are melted together they form a eutectic alloy, which has

a significantly lower melting temperature than its original constituents. By keeping

the powder bed temperature raised above this new melting point the part can be

maintained in a semi-solid state, thus, avoiding the onset of severe thermal gradients,

residual stresses and resulting distortion. Despite its potential, this method has only

been applied to a few alloys such as bismuth-zinc (Mumtaz et al., 2011) and alu-

minium (Vora et al., 2015, 2017), and therefore, requires further research to expand

its scope. Furthermore, the ASLM approach does not account for other problems

such as the effects of gravity on large overhangs.

Finally, the combined geometry of the part and the support structure clearly has

a strong, albeit complicated relationship with the residual stress profile (Mercelis and

Kruth, 2006; Zaeh and Branner, 2010; Keller et al., 2013). By extension, the influence

of build orientation on residual stresses is twofold, since it determines not only the

geometry of layers and height of the part, but also the location of support structures,

as discussed in Section 2.2.1. The only known work to exploit this relationship is

that of Peng et al. (2017), who optimise the build orientation for minimum thermal

distortion, based on a simulated residual stress profile.

2.1.3 Microstructure and Mechanical Properties

Figure 2.4 shows the typical alloy microstructure produced by SLM, with largely

equiaxial grain structure in the x-y plane and strongly elongated columnar grains in

the z direction. This grain structure can be explained by the accumulation of heat

in the top surface of the part, and the relatively low conductivity of the surrounding
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unfused powder, causing a strong thermal gradient in the z direction, thus, encour-

aging columnar grain growth as the molten metal cools and as heat diffuses through

the layers of material down into the substrate. Columnar grain structure has been

observed in most commonly studied SLM metals, including alloys of titanium (Chle-

bus et al., 2011; Murr et al., 2012), nickel (Amato et al., 2012; Harrison et al., 2015),

aluminium (Olakanmi et al., 2015) and stainless steel (Niendorf et al., 2013; Shifeng

et al., 2014). In general, the fast cooling rates of SLM cause a fine martensitic crystal

structure with subsequently high tensile strength and hardness, but poor ductility,

when compared to wrought and cast alloys (Gorsse et al., 2017; Kok et al., 2018).

z

(a) Ti-6Al-4V columnar microstructure. (b) CM247LC microstructure in 3D.

Figure 2.4: Anisotropic microstructure of SLM alloys. Images taken from Cain et al. (2015)
and Carter et al. (2014), respectively.

Most literature also reports anisotropic behaviour in SLM alloys, although the

exact nature of this behaviour varies significantly between different materials and

even between studies of the same alloy (Kok et al., 2018). For instance, Simonelli

et al. (2014) reported Ti-6Al-4V to have the lowest strength in the z direction due

to porosity between layers, compared to x and y directions; meanwhile Riemer et al.

(2014) showed fatigue life of 316L stainless steel to be much better in the z direction

due to a more tortuous crack path, as shown in Figure 2.5. Furthermore, the former

reports poor ductility in all directions and reduced performance in the z direction due

to tensile residual stresses, while the results of the latter indicate a relatively high

ductility and minimal impact from residual stresses. Conversely, Cain et al. (2015)

reported the tensile strength of Ti-6Al-4V to be highest in the z direction, in contrast

to Simonelli et al. (2014).

Material anisotropy is generally believed to be the result of columnar grain struc-

ture, though other factors such as the residual stress profile, surface roughness, poros-

ity and defects clearly play an important role as well (Rafi et al., 2013). Thus, the

variation in existing literature on this topic can be explained by the fact that mechan-

ical and anisotropic behaviour is caused by a combination of several complex factors,
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(a) Tortuous crack path perpendicular to
build direction.

(b) Non-tortuous crack path parallel to
build direction.

Figure 2.5: Crack propagation perpendicular (A) and parallel (B) to the z direction (i.e.
build direction); taken from Riemer et al. (2014)

where the dominance of each factor is determined by specific process parameters and

alloy composition.

2.1.4 Dimensional Error and Surface Roughness

Irregularities in the surface offer natural crack initiation sites, making the part vul-

nerable to local loads and premature part failure due to fatigue. The local arithmetic

mean surface roughness (Ra) of parts produced via SLM can range between 5 µm and

50 µm, depending on a number of process parameters such as build orientation, laser

power, powder quality and layer thickness (Delgado et al., 2012; Snyder et al., 2015).

g
lt{

g1
2
lt{

Figure 2.6: Schematic description of the stair-stepping effect, where lt denotes the layer
thickness and g denotes the original CAD geometry.

A common source of surface roughness and dimensional error shared by all AM

processes, is the discretisation of the part into a finite number of layers, causing

what is knowns as the “stair-stepping effect” (Pandey et al., 2004). This effect is

strongly dependent on the layer thickness, as shown in Figure 2.6, and the part build

orientation. An additional effect in the case of SLM (and other metal powder-bed

processes), is the thermal diffusion from the heated sections during build into the

adjacent and underlying loose powder, causing some of the loose powder particles

to fuse to the surface of the part. This effect is dominant on near-vertical surfaces

where the stair-step cusp becomes smaller than the size of adhering powder particles
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(e.g. bottom section of the dome in Figure 2.6); the opposite is true for more sloped

surfaces where the stair-stepping is more pronounced (e.g. middle and top sections

of the dome) (Strano et al., 2013b). In the case of severe local heat build-up, part

failure can occur as shown in Figure 2.7.

As mentioned in Section 2.1.2, support structure must be placed in such areas to

reduce the risk of heat build-up, as well as to prevent distortion from residual stress

relaxation. On the flip side, the removal of support structure leaves small protrusions

on the surface of the part. These protrusions are reported to increase the surface

roughness by up to an order of magnitude when compared with surfaces that do not

require support (Snyder et al., 2015; Cooper et al., 2012).

Finally, flat top-facing surfaces are not affected by stair-stepping, powder adhe-

sion or support structure. Nevertheless, even these surfaces exhibit a relatively poor

surface finish (e.g. compared to machining) due to a rippling effect caused by the

moving laser on the melt-pool surface, which cools and solidifies before it is able to

settle back to its original state (Mumtaz and Hopkinson, 2009; Kruth et al., 2010).

Figure 2.7: Example of specimen failure due to heat build-up in an unsupported overhanging
section. Taken from Mertens et al. (2014).

As can be seen, the surface finish produced by SLM is the result of several differ-

ent phenomena acting on different local surfaces. As a result, improving the surface

finish of the as-built part is very difficult and often infeasible, instead requiring a

compromise between SLM process parameters, and additional surface finishing oper-

ations post SLM. For example, a study by Mumtaz and Hopkinson (2009) compared

the effects of different pulsed laser strategies on the Ra of top-facing and side-facing

surfaces of a nickel alloy. While high peak power of the pulsed laser was found to

improve the Ra of both surfaces, other parameters such as scan overlap, scan speed

and pulse frequency were not able to reduce the Ra of one surface without increasing

the Ra of the other. Therefore, the trade-off between the roughness of different local

surfaces must be considered when selecting build orientation, as done by a number

of researchers (Alexander et al., 1998; Hur and Lee, 1998; Masood et al., 2003; Ahn

et al., 2007; Canellidis et al., 2009; Leary, 2016). A detailed review of these works is

presented in Section 2.2.2.
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2.2 Process Parameters Modelling and Optimisation

It is clear from the above discussion that SLM process planning is a difficult decision-

making process, as numerous inputs and objectives must be considered. Section 2.1

is mainly concerned with material properties and build quality; however, the cost and

time of production, which are discussed in detail in Section 2.3, are equally important

and add further complexity and trade-offs to the problem. For instance, reducing the

layer thickness can improve the surface roughness, which in turn can reduce the

post-processing time; however, this can also increase the production time and the

indirect cost of SLM. Moreover, thinner layers may affect the anisotropic material

behaviour (for example, by introducing more porosity between layers (Savalani and

Pizarro, 2016)), and require other parameters such as laser speed and power to be

adjusted accordingly to avoid overheating and extensive fusion of loose particles on

down-facing surfaces.

Process Parameters

Scan-related
Temperature-

related
Geometry-relatedLaser-relatedPowder-related

Particle size

Particle shape
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Figure 2.8: Key process parameters in SLM. Adapted from Aboulkhair et al. (2014).

Figure 2.8 provides a summary of key parameters grouped into five categories.

It should be noted that while this diagram provides the most influential parameters

with respect to build quality, cost and time, it is by no means exhaustive – according

to Thomas (2009) there are at least 50 different parameters that could affect the

final outcome of the build. As outlined in Section 2.1, laser-, scan- and temperature-

related parameters are predominant drivers of build quality, and thus, must be tuned

to minimise the presence of porosities, defects and residual stresses. While these

parameters also influence cost (for example, due to energy consumption and build

time) the costs of build failure, poor part quality or extensive post-processing that

can result from inappropriate laser, scan and temperature settings are more than

likely to outweigh any moderate savings these settings could produce during the SLM

build.

On the other hand, selecting suitable optimisation criteria for geometry-related

parameters is a challenge in itself, as they have a direct effect on production cost
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and time, as well as a somewhat less transparent effect on build quality. This is

reflected by the large number of different objective functions and criteria that have

been proposed in literature and lack of agreement on the most suitable one. The

problem is made worse by the fact that these parameters are not independent of each

other; for instance, build orientation has an influence on both the packing solution

and the support structure. To further demonstrate these challenges, each geometry-

related parameter and relevant literature are discussed in detail below.

2.2.1 Support Structure

Support structure is a source of additional build time and cost, material scrap and

post-processing. As a result of the latter, support structures also restrict the geometry

freedom of SLM, as tool access for their removal and subsequent surface finishing must

be factored into the design. However, support structure is often necessary in SLM,

as it performs the following key functions:

• Preventing the part from moving or distorting, either by sinking due to grav-

itational forces (i.e. in overhanging sections) or warping due to high thermal

gradients and residual stresses;

• Dissipating heat away from the part;

• Providing extra support especially for thin and delicate features, and preventing

lateral distortion of layers caused by the powder re-coater;

• Anchoring the part to the build plate and facilitating its removal post-production

(i.e. base support structure).

In addition to providing sufficient strength and stiffness to carry out these func-

tions, support structure must also be relatively easy to remove in order to reduce

the time, cost and risk of part damage during finishing operations. For this reason,

support attachments on the part are often designed as tapered “teeth”, as can be

seen in Figure 2.9.

Figure 2.9: Support structure (red) with teeth attachments, automatically generated by
Magics software for an end cap geometry (orange).
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It is common to consider any overhanging surface of the part below a certain angle,

typically between 30o and 45o (Thomas, 2009; Järvinen et al., 2014; Calignano, 2014;

Levatti et al., 2014), as requiring support to prevent its distortion or collapse. Delicate

features, such as thin walls and protrusions may also be supported. This is the logic

used by the commercial software Magics, which is currently the industry standard

process planning software for AM. The software contains a database of specifications

for a number of existing AM machines provided by different manufacturers (e.g.

EOS, Concept Laser, etc.), including manufacturer-specified overhang limits, which

the software can use to automatically generate support structure for a given part

geometry (2.9). As shown in Figure 2.10, Magics also offers several types of support

geometries, which can be selected automatically based on the geometry of the surface

to be supported, or can be chosen by the user. While the automatic support structure

generated by Magics provides a good starting point, especially for an inexperienced

user, it is not a definitive solution; for example, the software does not optimise support

structure with respect to cost or its thermal profile, thus, providing scope for further

research and improvement.

Figure 2.10: Types of generic support geometries provided by Magics software. Taken from
Thomas (2009).

A number of researchers have investigated the trade-off between the functional-

ity, volume and ease of removal of different support structure geometries. Poyraz

et al. (2015) and Calignano (2014) tested the effects of overhang geometry and teeth

dimensions on part distortion and ease of support removal for simple block support

geometries. Similarly, Cloots et al. (2013) studied the effects of overhang angle and

scan parameters on the accuracy and quality of overhanging sections, proposing a

localised scanning strategy and optimised support structure geometry to reduce the

unsupported overhang angle and minimise the need for post-processing. Järvinen

et al. (2014) proposed the use of a pulsed laser strategy to built less dense supports

which are easier to remove; they also found web supports (Figure 2.10) much easer to

remove than solid struts (Figure 2.13), with less damage on the part’s surface during

removal.

More complex lattice topologies have also been considered, to further reduce sup-

port structure volume and facilitate its removal. For instance, researchers at the
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(a) Schwarz primitive. (b) Schwarz diamond. (c) Schoen gyroid.

Figure 2.11: Three types of triply periodic minimal surface cells proposed for lattice support
structure. Taken from Hussein et al. (2013).

Figure 2.12: Graded lattice support structure using Schwarz primitive cells. Taken from
Strano et al. (2013a).

University of Exeter have proposed triply periodic minimal surface (TPMS) cells,

shown in Figure 2.11, as potential building blocks for lighter and easier to remove

lattice support structures. Hussein et al. (2013) compared Gyroid and Diamond sup-

port lattices, studied the effects of different cell configurations (e.g. cell size, cell

orientation etc.) and proposed a graded support structure strategy for improved heat

dissipation and ease of removal. Strano et al. (2013a) proposed a similar graded lat-

tice strategy based on the vertical load on the lattice using the Schwarz primitive unit

cell, as shown in Figure 2.12. Despite the use of these advanced lattice structures in

academic works, it is still common practice in industry to use solid support structures

in SLM (Morgan et al., 2017), as shown in Figure 2.13.

An interesting method of creating dissolvable support structure for SLM has been

proposed by Lefky et al. (2017). The method was applied to a 17-4 PH stainless

steel part, which was coated with a sensitizing agent and heat treated. This process

modified the chemical composition of the part’s surface to a depth of 100 µm – 200 µm,

while completely penetrating the lattice support structure. Subsequently, the part

surface layer and the entire support structure was removed at an accelerated rate

using chemical etching. Despite its potential, the scope of this method, its effects

on surface roughness and material properties, as well as its implications on overall

production cost, require further examination and development.

A number of researchers have also attempted to reduce or even eliminate the

need for support structure by modifying the part geometry, for instance, by making

tear-shaped holes (Thomas, 2009) and by modifying overhanging surfaces to be self-

supporting (Hu et al., 2015). More recently, topology optimisation with additional
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3 2

1

Figure 2.13: Mountain bike frame built by Renishaw, with custom-designed solid support
structures, as indicated by yellow arrows: 1. Thin struts used to support relatively gentle
overhang; 2. Thicker struts used to support the base of the part and facilitate part removal
from the plate 3. The hole is a critical feature with severe vertical overhang at the top, thus

solid supports are used to preserve its dimensional accuracy.

considerations of AM manufacturability, such as overhanging surfaces and minimum

feature size, has become a popular area of research (Leary et al., 2014; Gaynor and

Guest, 2016; Allaire et al., 2017; Zhang and Zhou, 2018; Langelaar, 2018). How-

ever, this paradigm comes with its own set of trade-offs, for example, self-supporting

surfaces usually come at the expense of reduced stiffness or additional volume and

weight in the re-designed part (Leary et al., 2014; Allaire et al., 2017; Zhang and

Zhou, 2018). In addition to functional requirements, most parts (especially assembly

parts) come with a set of geometric constraints, presenting another trade-off between

design requirements and manufacturability. Furthermore, most of these methods are

tested on 2D cases (Leary et al., 2014; Gaynor and Guest, 2016; Zhang and Zhou,

2018; Langelaar, 2018), and thus require further work to reduce their computational

expense and make them applicable to more complex 3D geometries. Due to compu-

tational expense, current models are not able to consider thermal effects such as local

heat build-up, residual stresses and distortion (Langelaar, 2018).

Finally, it is important to consider the build orientation before optimising the

part or support structure, since an optimised design would become meaningless and

would have to be repeated if the build orientation is changed. Several researchers

(Alexander et al., 1998; Schwerdt et al., 2000; Strano et al., 2013a; Das et al., 2015,

2017) have used build orientation to minimise the presence of overhanging surfaces

and thus minimise support structure, as discussed in the following section. Ideally,

build orientation should be considered simultaneously alongside part design and sup-

port structure geometry, in order to minimise or eliminate the latter; however, this

problem is currently computationally infeasible and only approximate solutions exist

(Langelaar, 2018).
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2.2.2 Build Orientation

The need for a decision support tool when selecting the build orientation was first

identified by Frank and Fadel (1995), who proposed an interactive rule-based system,

which suggests a favourable orientation based on the surface quality of up to two

user-selected part features for Stereolithography (SLA). The tool can also provide

estimates of supported part area and build time, however, only the surface quality

was used as a selection criterion. Several other researchers have addressed surface

finish: Schwerdt et al. (2000) proposed an analytical solution to minimise the part

surface area requiring support; Masood et al. (2000); Hur et al. (2001); Chowdhury

et al. (2017); Jaiswal et al. (2018) considered the surface error due to the stair-stepping

effect; while Alexander et al. (1998) and Byun and Lee (2006) considered the sum

of both. The method used by Masood et al. (2000) for measuring the stair-stepping

effect involves slicing the STL geometry and measuring the volumetric deviation of

individual slices, providing an accurate but time consuming solution. A much simpler

and more common approach is to measure the stair-stepping error in 2D using the

trigonometric function shown in Equation 2.1, as done by Alexander et al. (1998).

hc =

{
lt| cos(α)| if | cos(α)| 6= 1

0 otherwise
(2.1)

where hc is the cusp height between two layers, lt is the layer thickness and α is

the overhang angle of the surface. Typically the stair-stepping error alone does not

provide an accurate prediction of the actual surface roughness of the built part, as it

neglects other thermal effects, which are discussed in Section 2.1.4. Thus, modelling

surface roughness based on practical data is a more suitable approach, as done by Ahn

et al. (2007); Strano et al. (2011) who interpolated surface roughness data provided

for SLS; Leary (2016) who fit a logarithmic curve to a larger and more scattered data

set gathered for titanium alloy; and Strano et al. (2013b) who proposed an analytical

function based on an idealised model of spherical particles attaching to the stair-

steps during SLM of stainless steel, although this model only considers the top-facing

surfaces.

As discussed in Section 2.1.4, it is impossible to optimise the entire part surface,

as there are trade-offs between different local surfaces. Thus, many existing methods

consider the average surface roughness of the part as the objective (Masood et al.,

2003; Byun and Lee, 2006; Delfs et al., 2016; Leary, 2016); however, a more suitable

approach is to prioritise or weight different local surfaces based on their functional and

geometric requirements. This is acknowledged by Ahn et al. (2007), who minimised

the total difference between build surface roughness and target surface roughness of

local surfaces. Leary (2016) also made a distinction between functionally “relevant”

and “irrelevant” surfaces, and only considered the former in his objective function,

however, this binary approach is less flexible. It should also be noted that all of the

above approaches assume a local post-processing method such as manual polishing or
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Figure 2.14: Example of predicted support volume, shown in green. Taken from (Strano
et al., 2013a).

machining, whereas in many cases parts produced via SLM are finished using global

methods such as barrel tumbling (Schmid and Levy, 2012; Gordon et al., 2016). In

the latter case, optimising the build orientation for surface roughness is likely to have

a minimal impact on the final cost and quality of the part.

Build time is another parameter that has been addressed by a number of re-

searchers. Most existing models (Alexander et al., 1998; Canellidis et al., 2009; Sing-

hal et al., 2009; Delfs et al., 2016) assume a constant layer thickness and use build

height to estimate build time, as this is much faster and cheaper than computing the

actual build time of each layer, as discussed in Section 2.3.3. Combined optimisation

of build orientation and layer thickness has also been proposed to improve both the

surface finish and build time (Hur and Lee, 1998; Masood et al., 2003). While this is

reasonable in the context of RP, where dimensional accuracy, finish and build speed

of prototypes can take priority over their mechanical strength, such an approach is

not suitable for SLM of end-use parts, where challenges such as porosity and material

properties must be considered first.

While the importance of cost is acknowledge throughout AM literature (Baumers

et al., 2017; Laureijs et al., 2017; Fera et al., 2017), only the works of Alexander

et al. (1998) and Byun and Lee (2006) were found to address cost directly as an

objective of build orientation, while several others (Xu et al., 1999; Ahn et al., 2007;

Zhang et al., 2017) alluded to cost but did not model it fully or explicitly. Moreover,

Alexander et al. (1998) only used cost to break tie between build orientations of

similar surface quality, while Byun and Lee (2006) considered cost, time and surface

roughness as competing objectives. Conversely, many more works have focused on

build time (Frank and Fadel, 1995; Hur and Lee, 1998; Lan et al., 1997; Byun and Lee,

2006; Canellidis et al., 2009; Delfs et al., 2016), surface roughness Frank and Fadel

(1995); Alexander et al. (1998); Masood et al. (2000); Hur et al. (2001); Chowdhury

et al. (2017); Delfs et al. (2016); Jaiswal et al. (2018) and support structure volume

(Lan et al., 1997; Hur and Lee, 1998; Schwerdt et al., 2000; Strano et al., 2013a;

Zhang et al., 2016; Das et al., 2015, 2017), which is typically calculated as the volume

underneath the supported area as shown in Figure 2.14. Although both build time

and support structure have a direct effect on cost, they do not provide the full picture,
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especially since they are often optimised implicitly by minimising build height (for

build time) and supported surface area (for support structure volume).

A number of works have also addressed the dependence of material properties and

build quality on build orientation. The work of Thompson and Crawford (1997) was

one of the first, using analysis of variance (ANOVA) to produce response surfaces

relating ultimate tensile strength (UTS), build time and surface roughness to build

orientation, laser power and layer thickness. Their experiments showed polymer parts

built via SLS to be weaker in the z direction due to the relatively weaker bonding

between layers. More recently, Ulu et al. (2015) used a combination of experimen-

tal data and finite element analysis (FEA) to predict the mechanical properties of

a case study part as a function of build orientation. The latter proposed using a

factor of safety based on the modelled part properties and design requirements to

optimise the build orientation for best part performance. Peng et al. (2017) also used

FEA to predict part distortion as a function of build orientation, while Jaiswal et al.

(2018) developed a layer-by-layer model for evaluating the material composition error

for functionally graded material (FGM) extruded via FDM. Although the layer-wise

approach offers an accurate prediction, it is also very time consuming and compu-

tationally expensive; to deal with this Jaiswal et al. (2018) used a surrogate model

to approximate the output of the expensive model. Similarly, both Ulu et al. (2015)

and Thompson and Crawford (1997) used surrogate modelling and data fitting to

deal with the large computational burden of FEA and time-consuming experiments,

respectively. Meanwhile, Peng et al. (2017) used the dividing rectangles (DIRECT)

optimisation approach, which avoids exploring large areas of the solution space by di-

viding it into rectangles at each iteration and only evaluating the centre point of each

rectangle. At each iteration the best rectangle is divided into smaller rectangles and

the process is repeated until convergence or until a termination criterion is satisfied.

Table 2.1 presents a summary of reviewed literature. When searching for an op-

timal build orientation, two types of approaches have been proposed in literature:

continuous rotation and discrete. One common discrete method, is to consider each

flat surface of the part as a potential base, corresponding to a candidate build ori-

entation. However, this method is only suitable for relatively simple geometries. If

the part geometry is relatively complex, a “gift-wrap” approach can be used, where

a 3D convex hull is generated and each flat surface of the hull is considered as a can-

didate base of the part. Another method is to isolate important surfaces and design

features (e.g. a hole) and generate the most favourable build orientation based on

these critical features, as done by Frank and Fadel (1995) and Zhang et al. (2017).

This method makes the optimisation search more “intelligent” but can also be quite

restrictive and requires either a very large database or manual interaction from the

user in order to identify relevant design features. Since discrete approaches produce a

relatively small set of candidate solutions, these solutions can normally be evaluated

via simple exhaustive methods.
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Authors
Objectives

Method AM Process

BT BC SR SA SV Other

Frank and Fadel

(1995)

? × ? Interactive decision support, can position up to two

user-selected surfaces to be top- or side-facing.

SLA

Thompson and

Crawford (1997)

× × × Uses ANOVA to create response surfaces of BT, SR

and UTS as functions of laser power, layer thickness

and build orientation.

SLS

Lan et al. (1997) × × × Uses user-specified primary objective, with secondary

objective to break ties. Discrete rotation.

SLA

Alexander et al.

(1998)

? ? × ? ? Selects orientation with smallest SR, using cost to

break ties. Discrete rotation.

SLA, FDM

Hur and Lee

(1998)

× × × User must rank objectives or use a WSM. Continuous

rotation.

SLA, FDM

Schwerdt et al.

(2000)

× Uses ray intersection calculations to prevent supports

on a user-specified facet.

Generic

Masood et al.

(2003)

× Uses slicing approach to get accurate stair-step error.

Incremental rotation using 45o and 5o steps about

two axes, respectively.

FDM,

SLA, SLS

Byun and Lee

(2006)

× × × Solutions placed in a decision matrix and scored using

WSM function. Discrete rotation.

FDM,

SLA,

LOM, SLS

Ahn et al. (2007) × Uses GA to minimise total difference between target

SR and as-built SR. Continuous rotation.

SLS

Canellidis et al.

(2009)

× × × Uses GA and WSM function to indicate fitness. Con-

tinuous rotation.

SLA

Strano et al.

(2011)

× × Uses GA to find Pareto front between energy con-

sumption and SR. Incremental rotation with 5o steps.

SLS

Ulu et al. (2015) × Uses FEA and surrogate modelling to minimise a pre-

dicted factor of safety.

Inkjet

printing

Das et al. (2015,

2017)

× × × Uses interior point method and WSM of SR and BT

with additional tolerance constraints. Continuous ro-

tation.

SLS

Peng et al.

(2017)

× Minimises average thermal distortion using FEA and

DIRECT optimisation approach.

SLS

Jaiswal et al.

(2018)

× × × Uses surrogate modelling to optimise WSM of SR and

material composition error for FGM.

FDM

Table 2.1: Summary of key literature on build orientation, where BT = build time; BC =
build cost; SR = surface roughness; SA = supported surface area; SV = support structure

volume. Primary and secondary objectives are marked with × and ?, respectively.

On the other hand, continuous methods are much more flexible and generally

more automated, but come at the expense of a much larger solution space. Conse-

quently, such methods must rely on more complex search heuristics, such as Genetic

Algorithm (GA), which is a popular choice in literature as shown in Table 2.1. Many

works use a weighted sum model (WSM) to solve multi-objective problems, as this

is a simple and straightforward method. However, it cannot distinguish between dif-

ferent Pareto solutions with identical WSM scores and requires the user to provide
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appropriate weights for different objectives, which can be difficult in practice and

particularly misleading for objectives which are already interdependent (for instance,

support structure volume and cost). Furthermore, in the case of discrete rotation,

the problem is made more tractable by the limited number of candidate solutions,

while using continuous rotation to optimise build orientation for multiple objectives

presents a much bigger challenge, requiring a careful balance of solution space explo-

ration against computational feasibility and solution time.

2.2.3 Batch Packing

Despite the absence of tooling costs, cost amortisation can still be achieved in AM

through efficient machine utilisation, as demonstrated in Section 2.3. The need for

an optimal arrangement of parts to maximise machine utilisation or minimise the

number of used machines, presents what is known as a bin packing problem. This

is a combinatorial problem belonging to a wider class of problems known as Cutting

& Packing (C&P), which is a well-established field of research dating back to the

1960s (Gilmore and Gomory, 1961). The following section provides a brief overview

of C&P, while the focus of Section 2.2.3 is specifically on bin packing in the context

of AM. The focus of this review is on 2D methods, although 1D and 3D approaches

are also mentioned where relevant.

The Bin Packing Problem

The generalised bin packing problem can be formally defined as follows: given a set

of large objects and a set of small objects (i.e. pieces or parts1), assign all or some

of the small objects to one or more of the large objects (i.e. bins), to optimise some

given objective function. The placement of small objects must meet the geometric

condition, which states that:

1. small objects may not intersect each other; and

2. small objects must lie entirely within the large object to which they are assigned.

This problem is known to be NP-hard, meaning that currently it cannot be solved in

an exact or exhaustive way in reasonable time; instead, heuristic approaches must be

used to find a “good enough” approximation (Whitwell, 2004).

Some of the earliest and simplest heuristics used for assigning pieces to bins in-

clude next-fit (NF), first-fit (FF) and best-fit (BF) algorithms (Coffman et al., 1999).

NF opens a bin and places each piece in that bin sequentially. If the bin cannot

accommodate the piece, NF closes that bin and opens a new one, where it places the

piece. Each following piece is placed in the most recently-opened bin and once a bin

is closed it cannot be used again.

In contrast, FF packs each piece in the lowest indexed bin that can accommodate

the piece, and all partially filled bins are kept open until all pieces have been placed.

1The terms “piece” and “part” are used interchangeably from this point on.
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Similarly to FF, BF keeps all partially filled bins open until the end, but instead of

stopping at the first bin that can accommodate the piece, BF will check all available

bins and select the one with the least available free space in which that piece can still

fit. These heuristics were originally used to solve 1D bin packing problems, and were

later extended to 2D packing, where pieces are typically ordered by decreasing height

and placed in the lowest possible gap inside the rectangular bin (Burke et al., 2006).

A popular 2D packing method is the bottom-left (BL) heuristic, which seeks to

sequentially place each object in a bottom left stable position. Figure 2.15 shows an

example of this method, as implemented by Jakobs (1996), which first slides the object

downwards, followed by a slide to the left until no further moves can be achieved.

Figure 2.15: Bottom-left 2D bin packing heuristic. Taken from Jakobs (1996).

Packing of Irregular Shapes

Intersection checks in rectangular packing problems are relatively easy to compute,

as only four orthogonal edges need to be considered for each piece. This task becomes

much more challenging and computationally expensive when dealing with polygonal

(i.e. irregular) objects, particularly when these objects are non-convex. Pixel-raster

scanning, trigonometric functions, no-fit polygon and phi-functions are the most well-

known and well-documented approaches of checking for intersections between irregu-

lar shapes (Bennell and Oliveira, 2008).

Figure 2.16: Example of a binary pixel-raster representation of an irregular object. Taken
from Bennell and Oliveira (2008).

The basic idea behind the pixel-raster method is to discretise the 2D bin space

into a grid, where each cell contains information about whether it is full or empty.

Similarly, each irregular shape is represented by a discrete group of cells (i.e. pixels)

as shown in Figure 2.16, and a raster scan through the bin is performed to determine

an appropriate region of empty cells for that shape to be placed into. This method

is reasonably fast at finding feasible piece placements, are simple to code and can
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represent any irregular and non-convex shape. However, the storage of pixel informa-

tion requires a lot of memory resources and can become prohibitive for very complex

geometries or geometries which require very high resolution.

Trigonometric methods use vectors to represent piece topology and detect col-

lisions between pieces. This approach provides much more accurate rendering of

irregular geometries than the raster method, with the only source of error being in

the rounding of float numbers by the computer (Whitwell, 2004), however, they are

also very computationally expensive. In the past decade, the no-fit polygon (NFP)

has become a very popular approach for intersection checking, the concept for which

was first introduced by Art (1966). The basic idea is demonstrated in Figure 2.17:

the reference point of polygon j is traced around the boundary of polygon i until it

reaches its original starting point; the resulting traced polygon is the NFP, as shown

in bold.

Figure 2.17: No-fit polygonNFPij of two convex polygons i and j. Taken from Imahori
et al. (2006).

By determining the NFP of each pair of polygons prior to placing them in the

bin, the intersection check becomes a relatively simple operation of checking whether

the reference point of the current polygon lies inside the NFP boundary (i.e. the

polygons intersect), outside (i.e. no intersection) or exactly on the NFP boundary

(i.e. polygons are just touching) with regard to the one or more polygons that have

already been placed in the bin. The main downside of this approach is when dealing

with non-convex shapes, the NFP may result in degenerate cases or may miss internal

cavities in the stationary polygon if the sliding polygon has no way to slide into that

cavity (e.g. a hole or C-shaped cavity). While some researchers have addressed these

cases, a robust method for dealing with degenerate NFPs is yet to be established

(Burke et al., 2007; Dean et al., 2006).

Finally, the phi-function is a technique developed by Stoyan et al. (2004), which

represents all mutual positions of two shapes through mathematical expressions: two

objects are in contact if the phi-function value is exactly zero, intersect if the value

is less than zero and are separated if the value is greater than zero. This approach

could prove a very powerful tool able to deal with a large number of irregular shapes,

however, currently its adoption is limited by the lack of a robust algorithmic procedure

for arbitrary shapes (Bennell and Oliveira, 2008).
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Bin Packing in AM

Both 2D and 3D bin packing problems have been solved in the context of AM. The

former is aimed at processes such as FDM, SLA and particularly SLM, where the

presence of high residual stresses, the need for support structures and the subsequently

raised risk of build failure currently limits the possibility of stacking parts on top

of one another, thus, reducing the problem to 2D. On the other hand, with some

AM methods it is possible to avoid the need for support structures, for example

in the case of SLS where parts may be sufficiently supported by the surrounding

powder (although care should be taken when generalising this assumption for different

geometries) (Zhang et al., 2016; Baumers et al., 2011), and therefore 3D bin packing

is preferable in this case to make full use of the machine capacity.

Several approaches have used the BL placement heuristic to generate candidate

packing solutions in 2D (Canellidis et al., 2010, 2013) and an equivalent heuristic

in 3D, which places pieces as close to the bottom-left-front (BLF) corner of the bin

as possible (Baumers et al., 2013; Gogate and Pande, 2008; Hur et al., 2001; Wu

et al., 2014). Common criticisms of such sequential methods include limited solution

exploration and inability of placing pieces inside large closed concavities of other pieces

(Zhang et al., 2016), as shown in Figure 2.18. As an alternative, Zhang et al. (2016)

proposed a parallel packing approach where a GA is used to drive the translation and

rotation of pieces simultaneously, starting from an initial naive layout and searching

for a solution with minimal piece overlap. However, this approach allows the overlap

of pieces during the search and thus cannot guarantee that the final solution will be

feasible. It is also unclear how the authors performed overlap checks.

Figure 2.18: Example of how a smaller piece can be placed within the closed concavity of
a larger piece. Taken from Zhang et al. (2016).

The overlap checks that must be carried out in packing problems, especially in

3D, are typically the most computationally expensive part of the algorithm. For this

reason, many of the earlier works have used bounding boxes of pieces, both in 3D

(Wodziak et al., 1994; Zhang et al., 2002) and in 2D (Canellidis et al., 2009). In

a follow-up paper, Canellidis et al. (2013) also proposed a method which used the

NFP approach to detect intersections between convex shapes, and used ray casting

to extend this approach to non-convex shapes.
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(a) Original STL
(≈76,000 facets).

(b) Depth map
(≈1,000 facets).

Figure 2.19: Method of reducing the number of facets representing the STL geometry.
Taken from Dickinson and Knopf (1998).

Several methods used voxels to represent 3D pieces (Hur et al., 2001; Gogate and

Pande, 2008; Wu et al., 2014). This is a computationally expensive approach, which

often requires a compromise between the resolution of voxels and running time of the

algorithm – as shown by Gogate and Pande (2008) who used very low resolution of

voxels early on in the algorithm, reducing the size of voxels later on, as the algorithm

would start to converge on a final solution. Dickinson and Knopf (1998) took a

slightly different approach by deriving six depth maps using the bounding box of the

part geometry, and replacing the triangulated facets of the STL file with a reduced

number of planar facets with six degrees of freedom as shown in Figure 2.19.

It can be seen that build orientation and bin packing are two closely related

parameters in AM and should be considered as two parts of a single optimisation

problem, since the former cannot be changed without updating the latter. While

this fact is acknowledged by several researchers, existing literature addresses the two

parameters in two separate stages and no works have been found to address the two

parameters simultaneously. Furthermore, no works have considered the effects of the

bin packing solution on AM-related objectives, such as surface roughness and build

time; though a number of researchers consider these objectives implicitly through

build orientation. For example, Ikonen et al. (1997) assumed parts to be provided with

adequate build orientations and solved a 3D bin packing problem, using a Simulated

Annealing (SA) algorithm to minimise overlap between pieces; Gogate and Pande

(2008) provided an algorithm to rank candidate build orientations based on stair-

step error and allowed the user to interactively select a build orientation, packing

the resulting pieces in a separate stage; while Canellidis et al. (2006) provided a

separate optimisation algorithm to generate build orientations based on optimum

surface quality, support structure and build time (see Section 2.3) before applying a

bin packing algorithm with the objective of maximising utilisation. A more recent

work by Wu et al. (2014) used a BLF placement heuristic, along with a GA to

generate a Pareto front of the maximum build height, surface roughness and the

support volume of the batch. However, in their approach the build orientations of

parts are not optimised and kept fixed throughout.
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Authors
Problem

Type

Piece

Representation
Heuristic & Objective

Build

Orientation

AM

Process

Wodziak et al.

(1994)

2D & 3D Bounding box GA; max. percentage of placed pieces or

max. bin utilisation.

Considered

fixed

SLA

Nyaluke et al.

(1996)

3D Bounding box GA; max. number and size of placed

pieces.

Considered

fixed

SLS

Ikonen et al.

(1997)

3D Bounding box

& STL facets

GA; min. distance from origin and

percentage overlap between pieces.

Not

considered

SLS

Dickinson and

Knopf (1998)

3D Depth map SA; max. bin utilisation and compactness

based on point moment of pieces.

Not

considered

Generic

Hur et al.

(2001)

3D Voxels GA; max. bin utilisation and min. build

height.

Considered

fixed

SLS

Gogate and

Pande (2008)

3D Voxels GA; min. build height, stair-step error and

supported area.

Considered

fixed

SLS

Canellidis et al.

(2009)

2D Bounding box GA; max. bin utilisation. Considered

fixed

SLA

Baumers et al.

(2013)

3D Voxels Min. distance from bin centre & max. bin

utilisation.

Not

considered

SLM,

EBM

Canellidis et al.

(2013)

2D Polygon GA; max. bin utilisation. Considered

fixed

SLA

Wu et al.

(2014)

3D Voxels GA; Support volume, height, surface

roughness.

Considered

fixed

Generic

Zhang et al.

(2016)

2D Polygon GA; min. percentage overlap between

polygons.

Considered

fixed

SLA,

SLM

Table 2.2: Summary of key literature on bin packing in AM.

Only the work of Zhang et al. (2017) has addressed the build orientation of more

than one part at a time, by considering a limited set of candidate build orientations

for a group of parts and using a GA to find a set of build orientations, where the

fitness function is based on the closeness of the solution to a predefined aspiration

criterion. In an earlier work, Zhang and Bernard (2014) also proposed a batch group-

ing methodology for multiple parts with fixed build orientations, based on similarity

criteria such as part height and size. As can be seen, Zhang et al. consider different

aspects of the problem in separate stages and as a result present a number of limi-

tations, such as assuming similarity between pieces to be the best indicator of good

bin assignment (which may not always be the case)2; and only dealing with a small

enough set of pieces to fit into a single bin.

Finally, no works have been found to truly consider a multi-bin packing prob-

lem in AM and as a result, such approaches give no guarantee of a full placement

of pieces; instead either assuming a sufficiently small group of pieces (Gogate and

Pande, 2008; Hur et al., 2001), or designing the algorithm to select the best subset of

2For instance, separating large and small pieces is likely to result in a packing solution with much
lower bin utilisation, than a solution where pieces of different sizes are mixed together.
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pieces to maximise bin utilisation (Ikonen et al., 1997; Wodziak et al., 1994; Nyaluke

et al., 1996; Dickinson and Knopf, 1998; Canellidis et al., 2009).For this reason, bin

utilisation (i.e. proportion of bin capacity occupied by pieces) is the most commonly

used objective in these packing algorithms, although other metrics such as piece com-

pactness (Canellidis et al., 2009) and the combined centre-of-mass of packed pieces

(Baumers et al., 2013) have also been used. The reviewed literature is summarised

in Table 2.2.

2.2.4 Summary of Search Heuristics

As can be seen from tables 2.1 and 2.2, the majority of reviewed optimisation problems

make use of GA. Simulated annealing (SA) is another popular and effective search

heuristic (Szykman and Cagan, 1997; Dickinson and Knopf, 1998), which is based

on the process of heat diffusion in metals. The movement of atoms from a less

favourable state to a more favourable state in the metal crystal lattice is used as

an analogy for the movement of an algorithm through solution space. Similarly, the

algorithm is given a temperature schedule which determines the starting point, step

size and termination point of the algorithm. The favourability of each new solution

is evaluated based on the change in the value of the objective function, which in turn

determines the probability of the algorithm moving on to this solution or staying with

the current one. The general equation is given below:

Pacc = e
−4C
T (2.2)

where Pacc is the probability of accepting the new solution, 4C is the change in

objective function value and T is the temperature of the current solution.

Both SA and GA are meta-heuristics, meaning they are not problem-specific, and

consequently, can address problems where relatively little is known about the solution

space. However, unlike SA which moves iteratively from one solution to another, the

GA search evaluates a population of solutions at each step (i.e. generation), where

each solution is represented by a chromosome. Natural selection is the driving princi-

ple behind GA, thus each chromosome in a population is assigned a fitness value based

on the objective function, which determines the probability of that chromosome mat-

ing and passing on its genes to the next generation. The apparent preference for GA

in the literature could be due to the population-based nature of this heuristic, making

it more suitable for parallelisation and potentially leading to faster exploration and

more agressive convergence compared to the more gradual sequential search via SA.

However, GA population size is also a sensitive factor which must be chosen carefully

to ensure sufficient solution space exploration, which bearing in mind any computa-

tional and solution time constraints. Finally, for either SA or GA to work effectively

the objective function must be computationally fast and efficient; on the other hand,

if candidate solutions are computationally expensive (for instance, when using FEA)

the chosen search heuristic can be coupled with a surrogate or approximation model,
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otherwise, a different approach must be taken, for instance, the DIRECT method

described in Section 2.2.2.

2.3 Cost Modelling

Cost is usually a key decision factor in selecting and planning a suitable manufacturing

route; it is therefore critical to base such decisions on a realistic estimate of cost. The

accuracy of predicted cost largely depends on the complexity and structure of the

cost model, as well as data availability, which is often limited or incomplete. Existing

cost modelling approaches can be grouped into the following categories (Dodd, 2015):

• Parametric methods search for statistical correlation between product cost and

potential cost-driving variables, such as product geometry. The cost is expressed

as an analytical function of the variables. Typically, the selection of relevant

variables and their role in the function are determined based on expert judge-

ment, while the function coefficients are determined through linear regression.

An alternative to parametric modelling was first proposed by Cavalieri et al.

(2004) in the form of artificial neural networks (ANN), a pattern recognition

heuristic inspired by the human brain. Both methods can provide useful esti-

mates of cost based on relatively limited knowledge of the product, particularly

the ANN approach, which treats the cost function as a ‘black box’. However,

the results can be difficult to validate and can suffer from a large error margin,

while statistically significant relationships do not necessarily indicate causality.

• Analogy-based methods estimate the cost of the target product based on a similar

known product, adjusting for differences between the two. As with data-based

approaches, analogy-based models require a degree of expert judgement, but

tend to provide a slightly more reliable estimate (Myrtveit and Stensrud, 1999).

• Detailed approaches provide the most accurate estimation of cost, and include

any method that tries to establish an analytical relationship between the prod-

uct and the resources used in each step of the production process. According

to Dodd (2015), activity based costing (ABC), bottom-up and feature-based

methods all fall under this category.

2.3.1 AM Cost Modelling

A seminal model of AM build cost was produced by Hopkinson and Dicknes (2003),

who used it to provide a first approximation break-even analysis of high volume

production via FDM, SLA and SLS compared to injection moulding. This model

considers labour, machine and material costs, while neglecting overheads and an-

cillary costs. The authors also make some limiting assumptions, namely, using an

unrealistically high machine utilisation value of 90% and extrapolating unit cost at

relatively high volumes with no direct consideration of low volume production.
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These limitations were overcome by Ruffo et al. (2006) with a full cost model that

includes administration, hardware and software overheads, and assumes an annual

machine utilisation of 57%, which is regarded as typical in the industry. The authors

propose Equation 2.3, which represents the cost of each AM build as a sum of direct

and indirect costs.

Cbuild = CdM + CiT (2.3)

where Cd is the direct cost coefficient (£/kg), Ci is the indirect cost coefficient (£/h),

and M and T denote material (kg) and build time (h), respectively. The direct

cost of Equation 2.3 only considers material consumption, while all other costs which

cannot be measured directly based on the product (e.g. machine value absorption,

administration etc.), are grouped into Ci and allocated to each build based on the

time it takes to complete. Baumers et al. (2013) expanded Equation 2.3 to include

energy consumption as another direct cost, calculated as a function of time and the

part geometries in the build; however, their results indicate that energy consumption

accounts for less than 1% of the total build cost.

It is widely acknowledged (Alexander et al., 1998; Lindemann et al., 2012; Rick-

enbacher et al., 2013) that certain pre- and post-processing activities tend to be an

integral part of any AM process, thus, a true cost model is incomplete without these

activities. Pre-processing activities mainly include file preparation (as mentioned in

Section 1.2) and machine set-up. The cost and time of these activities are particularly

difficult to quantify, as these can vary significantly between different AM methods,

systems, software packages, and operators. Alexander et al. (1998) estimated these

activities to account for roughly 10% of overall unit cost in the case of FDM and

SLA, while Atzeni and Salmi (2012) estimated the cost of machine set-up to be 1.5%

of overall SLM unit cost.

Post-processing activities typically include part extraction and cleaning, separa-

tion of parts from the substrate, removal of support structure and surface polishing.

While post heat treatment is often required to mitigate the thermal residual stresses in

parts produced via SLM, its cost is normally omitted, as it is considered to be a sepa-

rate process. Arguably, the most detailed and complete model of SLM post-processing

cost was provided by Rickenbacher et al. (2013). This ABC model considers the cost

of part extraction from the machine; the cost of wire EDM allocated to each part

based on its area of contact with the substrate; and the cost of support structure

removal and surface finishing, as shown in Equation 2.4.

Cfinish(Pi) = Tfinish(Gi)(Cop + Ctool) (2.4)

where Cfinish is the total cost of support structure removal and finishing of part Pi

with geometry Gi; Tfinish is the total time spent on these activities, and Cop and

Ctool are operator and tool cost rates, respectively. The same model also includes the

pre-processing and build cost of SLM, and considers the presence of inert gas inside
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the SLM build chamber; the latter is translated into a direct cost rate incurred during

the build, and an additional effort factor included into the operator cost of material

change and part extraction.

Finally, the costs associated with inventory, machine set-up and downtime, and

build failure are typically significant but ill-structured making them very difficult

to optimise and model accurately; according to Schmid and Levy (2012) such costs

account for up to 20% of the overall production, while Baumers and Holweg (2016)

estimates this figure to be as high as 38%. Specifically, Baumers and Holweg (2016)

proposed a probability-based model to predict the cost associated with the risk of

part failure in SLS. This model was used to evaluate the trade-off between vertically

stacking a large number of parts to improve machine utilisation, and the increased

risk of failure accompanying it. Literature on this topic was found to be very limited,

likely due to the difficulty of defining and modelling ill-structured costs, and the

relative novelty of this problem.

2.3.2 Economies of Scale

Unlike Hopkinson and Dicknes (2003), Ruffo et al. (2006) considered the cost per part

as a function of demand, showing that economies of scale – the inverse relationship

between production volume and the average part cost – which is typically present in

traditional manufacturing, is also relevant to AM methods. This is indicated by the

unit cost curve in Figure 2.20, which reduces dramatically and eventually plateaus

as the optimal production volume is reached (i.e. machine utilisation is maximised).

Each local peak in the curve represents a newly added part resulting in additional

layers or an additional machine being used, followed by the subsequent cost decrease

as more parts are added and the overall build cost is amortized.

Figure 2.20: Unit cost vs. production volume. Taken from Ruffo et al. (2006).

Throughout the literature there is a consensus that machine cost tends to be the

largest cost component; although the exact allocation varies significantly it can be

as high as 90% (Atzeni and Salmi, 2012). This observation explains why machine

utilisation and economies of scale play such a significant role in AM, as demonstrated

by the findings of Ruffo et al. (2006), as well as other more recent research; a study by
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Baumers et al. (2013) shows the unit cost of a partially full machine can be reduced by

25% by increasing machine utility to 92.6%; Rickenbacher et al. (2013) demonstrates

unit cost a reduction of up to 90% for medium-size parts by replacing a single part

with a batch size of five; Lindemann et al. (2012) observes a reduction in the unit

cost of an automotive component from about 125 euros for a single part, down to

about 10 euros for a batch of 190 parts.

However, it should be noted that most of the above results were accomplished

with relatively small parts, while increasing the production volume of large parts

via AM has very little effect on unit cost (Schröder et al., 2015). Schröder et al.

(2015) suggests a way to overcome this is to fill machines with different components

of various sizes, as done by Rickenbacher et al. (2013) and Baumers et al. (2013).

This is also a common practice used by RP and AM service providers to maximise

machine utilisation for low volumes of parts (Ruffo et al., 2006).

2.3.3 AM Build Time

It is evident that AM build time is both a driver of cost and an important objective

in its own right. In general, AM build time is the sum of material scanning time, tool

repositioning time and delay time in-between the deposition of each layer. Since the

structural quality of support structure is less critical than that of the part, the scan

rate of support structure can be increased to reduce build time. Thus, the scan time

of the part and its support structure are often calculated separately. Di Angelo and

Di Stefano (2011) proposed the following generic equation for AM build time:

Tbuild = Tc−part + Th−part + Trep−part + Tc−sup + Th−sup + Trep−sup + Tdelay (2.5)

where Tc−part is the total time to scan the contour of each layer in the part, Th−part is

the total time to hatch each layer in the part and Tpart−rep is the time to reposition the

tool in between scanning. Tc−sup, Th−sup and Trep−sup denote contour scan, hatching

and repositioning time for support structure, respectively, and Tdelay denotes the total

unproductive time in between layers. In the case of SLM, Tdelay represents the time

taken to distribute a fresh layer of powder before it is scanned and Trep−part and

Trep−sup can be considered negligible.

While a number of build time models have been proposed for different AM pro-

cesses, the methods behind these models are generally similar and can be classified as

either parametric or detailed analysis approaches (Di Angelo and Di Stefano, 2011).

The detailed model approach calculates the build time as an analytical function

of the total distance travelled by the laser and the idling time during layer deposi-

tion. The laser path can be calculated by slicing the STL geometry and determining

the topology of each layer, from which the contouring and hatching laser path and

time can be deduced. Thus, such approaches must be able to accurately slice and

compute the topology of each layer, or alternatively must rely on commercial slicing



40 Chapter 2. Literature Review

and scan-path software that usually comes with AM machines. These approaches

typically provides very detailed and accurate estimates of build time, but are much

more cumbersome and computationally expensive than parametric methods. Also,

most such methods assume a simple raster hatching pattern, and are not directly

applicable to other scan patterns, such as the island scan strategy shown in Section

2.1.2. Examples of detailed build time models include Chen and Sullivan (1996); Gi-

annatsis et al. (2001); Choi and Samavedam (2002) who provided detailed build time

estimators for SLA.

Conversely, the parametric approach is generally lower in accuracy but offers a

simpler and much faster solution. One of the simplest parametric relationships has

been proposed by Cheng et al. (1995), who modelled the build time of SLA as a

linear function of part height. Xu et al. (1999) proposed a slightly more sophisticated

approach, which considers the average area of layers in the part as well as part height.

To account for geometric complexity, Ruffo et al. (2007) considered the dimensions

of the part’s bounding box, in addition to height and volume. The model estimates

the build time of SLS as the sum of total laser scanning time, total powder recoating

time and total warm-up and cooling time before and after the build, respectively.

Each of these three elements were linked to the input parameters using a statistical

curve-fit approach, achieving an average predictive error of 15%. An alternative

empirical approach was proposed by Zhang et al. (2015), who attempted to find a

direct relationship between bounding box dimensions, volume and height of a part

and its build time via linear regression. To improve the fidelity of this model its

output is integrated with that of a differential model. The outputs of the two models

are weighted based on their respective values of standard deviation and error.

Finally, several studies have proposed the use of ANN. Mungúıa et al. (2009) used

part height, part volume and bounding box volume as inputs, though their findings

indicated very low correlation with the latter. Di Angelo and Di Stefano (2011) used a

number of geometry-based measures such as part volume, support structure volume,

build height and layer thickness as ANN inputs. While these models were able to

achieve reasonable predictive errors for their tested data sets (maximum errors of

10% and 16%, respectively), the main downsides of using ANN include the need for

large data sets and a lack of transparency, as well as the need to re-train the model

for different data sets.

2.4 Conclusion

This chapter provides a critical review of existing literature relevant to this the-

sis. Common SLM material and build quality challenges are discussed and include

porosity; residual stresses which can lead to cracking and distortion; mechanical and

microstructural anisotropy; surface roughness and dimensional error. High poros-

ity and surface roughness result in poor fatigue performance, while anisotropy and

residual stresses can lead to non-uniform mechanical properties, further deteriorating
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mechanical performance in a particular direction. The exact nature of this anisotropy

depends strongly on a combination of material properties, powder quality, laser- and

scan-related parameters.

For most industrial alloys it is currently impossible to eliminate residual stresses

completely, meaning that support structure is required not only to support overhangs

but also to prevent thermal distortion, Meanwhile, some variable roughness is also

bound to be present due to a number of geometrical (e.g. stair-step error) and thermal

effects (e.g. melt-pool rippling) as discussed in Section 2.1.4. Consequently, post-

processing operations, such as support structure removal, surface finishing and heat

treatment are typically inevitable. All of these operations add significant cost and

time, as a well as additional risk of part damage.

The problem is made worse by the fact that many of the above defects depend

on the same process parameters such as laser power and scan velocity, scan pattern

and layer thickness, and thus, act as competing objectives. For example, many alloys

can now be produced with over 99% density, however, this requires high laser power

and scan speed, which comes at the cost of even greater residual stresses and surface

roughness.

Furthermore, optimising process parameters separately is likely to produce sub-

optimal results, as they have a combined effect on SLM and are often interdependent.

For example, reducing layer thickness can reduce the stair-step error, however, laser

power and speed must be adjusted accordingly in order to prevent heat build-up and

severe distortion, while the increased number of layers may also increase porosity and

production time. Similarly, placing more support structure on the part can improve

heat dissipation and reduce risk of distortion; however, it also increases cost, surface

roughness and required post-processing. In addition, both support structure and the

bin packing solution are strongly dependent on build orientation; thus, if the build

orientation is changed both the bin packing solution and support structure geometry

must be updated.

As shown in the literature, build orientation is closely related to build cost and

time, surface roughness and post-processing, anisotropy and the residual stress profile.

While build orientation in itself cannot change the inherent properties of SLM, it can

be optimised for a specific part and its design requirements in a way that minimises

any adverse effects of these properties (e.g. by placing critical surfaces and features

in a favourable position, or by reducing the total number of layers in the part). As

discussed in Section 2.1.2, the cross-sectional area, build height, support structure,

and thus, the build orientation of a part have a significant effect on its residual stress

profile. This is further supported by the work of Peng et al. (2017), who showed

that thermal distortion can be reduced significantly with the right build orientation.

Despite this, further research is required to explore and exploit this relationship in

further detail.

Cost is clearly a key driver in manufacturing. However, as shown in Section 2.2.2,

existing methods for optimising build orientation focus predominantly on surface
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roughness, support structure and build time. Many of these works aim to reduce cost

indirectly (e.g. by reducing post-processing and waste material), but relatively few

researchers address cost explicitly.

This has several downsides. Firstly, minimising parameters such as build time or

support structure alone, particularly in a simplified model of height and supported

surface area, does not provide the full picture. For example, a solution optimised

for support structure may minimise the cost of waste material, but result in greater

production cost overall, due to longer build time, or vice versa.

Secondly, most of the proposed multi-objective approaches rely on the user to

rank or weight the criteria, which can be misleading and difficult to do in practice.

For example, when considering build cost and support structure volume as competing

objectives, it is not intuitive or immediately obvious how they should be weighted,

since build cost is also a function of support structure volume. Moreover, support

structure volume and support structure removal are two different sources of build and

post-processing cost, respectively; this is difficult to represent through a user-specified

weighting of cost and support structure. Another approach is to use a utopian or goal

solution, however, a problem formulated in this way can be very difficult to solve in

practice, as it relies on a “sensible” set of goals, which are difficult to know in advance.

Thirdly, optimising the build orientation for surface roughness can reduce the

cost and time of post-processing, but only for a local finishing process such as manual

polishing or machining. If on the other hand, parts are finished via a global method

such as barrel tumbling, the optimised build orientation becomes redundant, since

the time and cost of global surface finishing is independent of local surface roughness

variations.

Finally, as discussed in Section 2.3, machine utilisation is also strongly related to

the cost-effectiveness and productivity of SLM. Since this parameter cannot be solved

without first solving build orientation, many works discussed in Section 2.2.3 consider

the two parameters in two separate stages. This is a very restrictive approach, since

build orientations cannot be changed once they have been selected. However, allowing

build orientations to be updated during bin packing may significantly improve the

overall solution. For instance, if a set of parts, where the build orientation of each

part is optimised for minimum build height, cannot be placed into a single bin, it

is logical to rotate one or several of the parts in a way that increases their height

but allows sufficient space for all parts to be packed. Furthermore, only the tallest

part determines the overall build height (and thus build time) of the whole batch,

regardless of other parts in that batch.

It is clear that reducing the number of bins is another important objective in

cost driver in the bin packing problem. Since existing methods only consider a small

enough set of parts or a subset of parts to fit into a single bin, this problem is yet to

be addressed. Although Zhang et al. (2015) have alluded to this problem, by grouping

a large set of parts into several subsets based on similarity attributes such as height

and size, this method has two key limitations. Firstly, similarity may not be the best
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criterion, as it can have an adverse effect on bin utilisation and cost; secondly, this

approach does not solve the actual bin packing problem; thus, assuming that each

subset can fit into a single bin without checking this assumption. Moreover, their

approach aims to select an optimal build orientation for each part in the set (also

based on similarity), but as with other works, these build orientations are fixed in

the final solution, with no way to update them during the subsequent bin packing

problem.
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Chapter 3

Methodology

This chapter proposes a cost-driven modelling framework for optimising process pa-

rameters in SLM, namely build orientation and bin packing. Figure 3.1 also provides

a more detailed overview of the rest of this thesis.

As shown in Chapter 2, selecting a good part build orientation for AM is an

important and complex multi-criteria decision problem. Consequently, existing liter-

ature offers numerous competing objective functions, but lacks agreement on which

is the most suitable one. Many existing approaches, as well as commercial software

tools such as Magics, require the user to provide appropriate relative weights for the

different objectives, which can be difficult to do in practice and can be misleading

since many of the objectives are interdependent (e.g. cost, time, support structure).

Therefore, a key contribution of this chapter lies in proposing a single objective

function for build orientation optimisation, which unifies various competing objec-

tives, such as support structure, surface roughness and build height. Unlike the

previously proposed WSM methods, this approach offers realistic coefficients of build

and post-processing cost, thus, removing the need to “guess” objective weights and

instead providing the most cost-effective trade-off solutions.

Additionally, no works have been found to solve the build orientation and bin pack-

ing problem simultaneously. Thus, the framework presented in this chapter addresses

both of these parameters and shows how they are linked through cost. Moreover,

Section 3.1.1 presents two different production scenarios for SLM, hence two distinct

optimisation methodologies are proposed in chapters 4 and 6, respectively, in order

to apply the framework to each respective scenario.

3.1 Process Planning Framework

The proposed process planning framework is described schematically in Figure 3.1.

The diagram shows key steps and parameters in the framework, and provides section

and chapter references throughout this thesis. First, the user must specify the part

demand and provide a STL file in ASCII format. In order for the framework can

calculate the post-processing cost resulting from surface finishing in IBP, the user

must also specify a desired target surface finish, as shown in Figure 3.1. Section

3.3.1 and Appendix B outline a simple preliminary procedure, which enables the user
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to define the target surface finish of local faces and features in the part. This step

requires a CAD file and outputs a modified STL file, to be input into the framework.

Chapter 3

Chapter 6 Chapter 4 Chapter 5

Input:

modified STL, demand,

target surface finish

Rotate 3D geometry

(Section 3.4)

Project 2D piece

(Section 3.4.3)

Pack 2D pieces

(Section 3.5)

Predict residual stresses

Batch size,

packing solution

Input:

Build orientation

angles (θ,φ)

Input:

bin dimensions,

no-build zones

Build height
Support structure

(Section 3.4.1)
Surface roughness

SLM build time

(Section 3.2.1)
Material cost

Removed material

(Section 3.4.2)

SLM build cost

(Section 3.2)

Post-processing cost

(Section 3.3)

Residual stress

objective criteria
Total unit cost

Iterative Tabu Search

Procedure (ITSP)
Tabu search with

area-based approximation

Multi-objective

Tabu search

Output:

Minimum build cost solution for

Mixed Batch Production (MBP)

Output:

Minimum unit cost solution for

Identical Batch Production (IBP)

Output:

Unit cost-residual stress

trade-off solutions

Figure 3.1: Flowchart of proposed cost-driven process planning framework. Key steps and
sub-models are shown in blue boxes, while model inputs, outputs and key parameters are
shown in white boxes. Grey boxes indicate how the framework is divided between chapters.

As discussed in Chapter 2, both discrete and continuous approaches have been

proposed when searching for an optimal build orientation. Since the discrete approach

is much more restrictive, the latter method is chosen in the proposed framework.

Thus, part build orientation is treated as a continuous function of two angles of

rotation, denoted by θ and φ.

Similarly to Zhang et al. (2016), vertical stacking and overlapping of parts is

forbidden in the proposed framework, since it is likely to increase the complexity

of support structure and the risk of damage to built parts due to residual stresses
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and difficulty of part removal. This results in a 2D irregular bin packing problem

(2DIBPP), where each part is represented by a 2D piece and the build plate of each

machine is represented by a rectangular 2D bin (since most popular SLM machines

feature a rectangular build plate). The 2D piece is a vertically projected bounding

polygon of the part geometry, as shown by the box labelled “Project 2D piece” in

Figure 3.1. It can be seen that the area and shape of the piece are determined by

the build orientation, so both the piece and the packing solution must be updated for

each new build orientation.

To prevent the build plate from moving or distorting during the SLM process, it

is fixed down with bolts, typically in each corner of the build plate, as can be seen in

Figure 3.3. These bolts are represented by four no-build zones in each 2D bin, where

the size and position of each bolt can be specified by the user. Finally, to simplify the

problem it is assumed that all bins are identical and that enough bins are available to

accommodate the specified production demand. An optimal 2DIBPP solution places

all required pieces into a minimum number of bins, where the number of pieces in

each bin (i.e. batch size) is used to determine the SLM build cost associated with

that bin.

3.1.1 Two Production Scenarios

The concept of “runners, repeaters and strangers” is a well-known lean manufacturing

technique, where parts (or activities) are grouped into three categories based on

their demand patterns (Reed, 2010). As shown in Figure 3.2, parts with low-variety

high-volume (LVHV) demand are classed as “runners”; parts with high-variety low-

volume (HVLV) demand are classed as “strangers”; while parts that fall in between

LVHV and HVLV, with periodic or seasonal demands, are classed as “repeaters”.

Due to these demand characteristics, it is typical for runners to account for 80% of

production volume and only 20% of manufacturing effort (i.e. jobs); while repeaters

and strangers comprise the remaining 20% of production output and account for 80%

of manufacturing jobs, due to their volatile demands and geometric oddities.

Custom implants and prosthetics in the medical industry, and replacement parts

(including legacy components) in the transportation and defence industries, are typ-

ical examples of repeaters and strangers. In practice, the demand for aircraft spare

parts is particularly difficult to forecast (Ghobbar, 2004; Liu et al., 2014), which of-

ten leads to overstocking, high inventory costs and risk of delays. As proposed by a

number of researchers (Holmström et al., 2010; Khajavi et al., 2014; Thomas, 2016),

SLM has the potential of significantly reducing the costs and effort expended on such

parts, by producing them on demand relatively quickly and with minimal tooling.

Moreover, as discussed in Chapter 1, mixed batch production (MBP) offers an eco-

nomical way of meeting the low-volume, short-term demands of stranger and repeater

parts, as demonstrated by most AM and RP specialists (Ruffo et al., 2006). Figure

3.3a provides an example of a MBP set-up.



48 Chapter 3. Methodology

L
o
w

V
a
ri

et
y

H
ig

h
V

a
ri

et
y

Low Volume High Volume

Strangers

Repeaters

Runners

Figure 3.2: Product categorisation based on demand patterns.

Conversely, while MBP has obvious benefits for repeaters and strangers, these

benefits do not necessarily apply to runners. Since the demand of runners is typi-

cally steady and predictable, mixing such parts with other heterogeneous geometries

only increases the complexity and difficulty of planning and overseeing the produc-

tion schedule, as well as tracking individual parts. For this reason, identical batch

production (IBP) is suggested for building runner parts via SLM (Figure 3.3b). Ex-

isting literature (Atzeni and Salmi, 2012; López-Castro et al., 2017) suggests that

the most suitable runners for IBP are high-complexity and high-value parts, which

are redesigned to improve operational life and functionality or reduce manufacturing

complexity, for instance, by reducing the part count of an assembly. The redesigned

GE fuel injector nozzle is a good example, offering both a reduction in part count

and improved performance (Kellner, 2014).

(a) Mixed batch production. Image taken
from Farinia Group (2018).

(b) Identical batch production. Image taken from
WJW Waterjet GmbH (2018).

Figure 3.3: Two production scenarios in SLM.
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In summary, the proposed framework is applied to two different production sce-

narios: Identical Batch Production (IBP), which addresses steady, long-term demand

of identical runner parts, and Mixed Batch Production (MBP), which addresses short-

term, HVLV demand of different stranger and repeater parts. As shown in Figure

3.1, in Chapter 4 the IBP problem is optimised for total unit cost, which includes

build and post-processing costs; while Chapter 5 extends this optimisation problem

to include both unit cost and residual stress criteria. Similarly, the MBP optimisation

problem is solved in Chapter 6. Because the MBP scenario presents a significantly

more complex combinatorial problem than IBP, the proposed solution is based solely

on build cost; this is explained further in the introduction of Chapter 6.

3.1.2 Build Orientation Constraint

When considering safety-critical parts the issue of certification must be considered.

If two identical parts are built in two different build orientations, each part can be

expected to exhibit different surface qualities, dimensional accuracy and mechanical

properties (Ahn et al., 2007; Chlebus et al., 2011). Critical aircraft parts must go

through a time-consuming and expensive certification process and meet stringent

airworthiness requirements (Saha et al., 2013). If a change in the manufacturing

process leads to different part properties, that part must be re-certified. Thus, even if

the additional manufacturing variability is deemed acceptable by the user, the cost of

certifying a part for each different build orientation is likely to outweigh any benefits.

Similarly, additional variability introduced during the production of instruments

and tools (e.g. two moulds produced in two different build orientations), will translate

into additional variability in the subsequent process that uses these tools, and thus,

have an undesirable effect on the accuracy and performance of the final process.

It is also worth considering the possible benefits that may be gained from placing

identical parts in different build orientations, provided these parts are non-critical.

In the context of IBP, these benefits are likely to be negligible; assuming an optimal

packing solution where all parts and all build orientations are identical, a single part

cannot be rotated without either increasing the overall build height or decreasing the

number of parts in the batch. Meanwhile, the additional manufacturing variability

and complexity is still likely to be undesirable, even for non-critical parts.

This is not the case with MBP, where bins are allowed to contain various geome-

tries of various sizes and so identical parts may be placed in different build orien-

tations to improve machine utilisation, without increasing the build height or cost.

By default, the proposed MBP optimisation heuristic imposes the build orientation

constraint on all identical geometries; however, it can be easily bypassed by the user

if needed as discussed in Chapter 6.

Finally, it should be noted that to fully meet this constraint, critical repeater

parts which have been produced via SLM in the past, must be fixed in the build

orientation that was used for the original order.
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3.1.3 Limitations and Assumptions

Simplifying assumption, which have not already been mentioned, are outlined below:

1. Both IBP and MBP assume identical SLM machines and any variations between

production time and quality of individual machines are considered negligible.

2. Material properties produced by each machine are consistent across the build

plate and are not affected by the 2DIBPP solution.

3. Build quality is independent of the horizontal orientation of parts, hence, identi-

cal 2D pieces can be rotated in the horizontal plane during the 2DIBPP search.

4. A steady and consistent production flow is assumed. Only one order is dealt

with at a time, and other orders which may compete with it are not considered.

5. Since delivery time constraints are outside the scope of this thesis, an infinite

number of available bins can be assumed (in practice, each batch is built on the

next machine that becomes available).

6. Powder can be fully recycled, and powder losses during extraction and cleaning

are neglected.
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3.2 SLM Build Cost Model

As discussed in Chapter 2, a number of models have been proposed to capture the

build cost of ALM. This thesis uses the model proposed by Ruffo et al. (2006), as

it provides a detailed outline of indirect costs and is suitable for capturing the cost

of large scale production. Since support structure volume is a function of build

orientation, the original equation is adapted to show support structure and part

volume as two distinct material costs, as shown in Equation 3.1. Equation 3.1 outputs

the cost of a single SLM build, cb, assuming the machine is filled with n identical parts.

cb = c1tb + c2ρ(stot + vtot) (3.1)

where c1 and c2 are coefficients of indirect cost and material cost, respectively; tb is

the build time; ρ is the material density; and v and s denote the part volume and

support structure volume, respectively.

3.2.1 SLM Build Time

To calculate the build time for a single bin, a linear regression model is proposed,

which considers three components of build time, namely, total scan time of the part

tv, total scan time of the support structure ts
1 and total powder recoat time tr, as

shown in Equation 3.2.

tb = tr + tv + ts + β1 (3.2)

where tr = β2h tv = β3vtot ts = β4stot

As can be seen, tv, ts and tr are approximated as linear functions of total part volume

vtot, total support structure volume stot build height h, respectively, where β2 - β4

are linear regression coefficients. To account for additional build time independent

of the parts, for example, machine set-up, warm-up and cool-down time the constant

coefficient β1 is also introduced into Equation 3.2. The above equation can be re-

written to provide Equation 3.3, which is used throughout this thesis.

tb = β1 + β2h+ β3vtot + β4stot (3.3)

Two sets of data were used to calculate β2, β3 and β4 for two different alloys – Ti-

6Al-4V and CoCr, which are used in Chapter 4 and Chapter 6, respectively. The

data has been provided by Rolls Royce plc and is presented in full in Appendix A.

1Support structure can be scanned more quickly since its quality is less critical than that of the
part.
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3.3 Post-Processing Cost Model

As outlined in Chapter 2, SLM post-processing typically consists of a number of steps,

including the cleaning and separation of parts from the build plate, heat treatment,

support structure removal and surface treatment.

While heat treatment is often necessary to relieve residual stresses and improve

the ductility of parts produced via SLM, its cost is assumed to be largely indepen-

dent of build orientation and batch packing2. Moreover, the cost of part cleaning is

predominantly determined by user preferences, part geometry and functional require-

ments; therefore, it is not considered as a variable in this model. Finally, build plate

removal time and cost is strongly dependent on the choice of removal method, and a

multitude of process parameters, as well as the part’s material properties. Thus, this

cost is not modelled explicitly as a function of build orientation; instead a constant

cost plate removal cost is estimated, based on wire-EDM cutting, and included into

the indirect cost coefficient, c1, as proposed by Baumers et al. (2013).

Consequently, the post-processing cost, shown in Equation 3.4, is treated as a

function of support structure removal and required surface polishing. As discussed

in Chapter 2, both of these factors have a clear functional relationship with build

orientation (Townsend et al., 2016; Calignano, 2014).

cpp = c3ts + c4tr (3.4)

where ts denotes surface finishing time and tr denotes support structure removal time;

c3 and c4 are time-dependent cost coefficients, which are determined by labour costs,

chosen finishing and material removal methods, as well as the process parameters

selected for those methods.

3.3.1 Defining Target Surface Roughness

Surface roughness is a complex parameter, which is typically defined by a combination

of metrics, such as the size and distribution of microscopic peaks and troughs, surface

waviness, and lay, which describes the patterns and direction of grains or cuts (in

the case of subtractive methods) on the surface. By far the most common metric

studied in SLM literature is the arithmetic mean roughness, or Ra, which is the

arithmetic average of the absolute ordinate measurements of microscopic peaks and

troughs within a given sampling length (Townsend et al., 2016). The main downside

of this metric is that it is two-dimensional, and thus, may provide an incomplete

or misleading representation of the surface topology. To address this, Ra should be

measured several times, in different locations and orientations relative to the surface.

By comparison, there is a lack of clear definition and available data for other metrics

in SLM, such as area-based (i.e. 3D) roughness, waviness and lay. For this reason,

only the Ra metric is used to define surface roughness throughout this thesis.

2However, the need for heat treatment may be reduced by minimising residual stresses which are
addressed in Chapter 6.
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The finishing time ts in Equation 3.4 is assumed to be a function of the total

difference between the target part surface roughness and the as-built surface roughness

produced by SLM. The latter can be defined as a function of build orientation, as

described in detail in Section 3.4.2.

The target surface roughness, denoted by Rat, must be provided by the user.

Thus, the framework requires the user to choose one of the following options:

• Specify a local target value Ratf for each facet f in the part’s surface;

• Input a single global value of Rat directly into the model; or

• Omit Rat (for instance, if a global finishing method is being used), in which

case the framework will only calculate the build cost.

In the case of the first option, a simple application has been developed using a CAD

Application Programming Interface (API), which enables the user to conveniently and

quickly input desired values of Rat for local faces and features of the CAD geometry.

This application is described in more detail in Appendix B.

3.3.2 Surface Finishing Method and Time

As demonstrated by Gordon et al. (2016), there is a wide range of methods available

for surface treatment. As mentioned in Chapter 2, these methods can be divided into

two broad categories: global treatments and local treatments. The former category

includes batch processes such as barrel tumbling and vibratory finishing, where the

entire surface of each part in the batch is treated simultaneously and the relationship

between the post-processing time and local variations in surface roughness produced

by SLM can be considered negligible. The benefit of such approaches is relative

speed and low cost, however, the shared downsides of these methods is the relative

lack of control and resulting unwanted erosion of certain areas and features (e.g.

corners and sharp features), limited media access to internal features and concavities,

especially of complex parts. Also methods such as tumbling may not be suitable for

fragile parts. Another global method is electrochemical polishing which can achieve

a superior surface finish, but may produce a poorer, non-uniform finish inside deep

concavities.

Common local approaches include manual or robotic grinding and Computer Nu-

merical Control (CNC) machining. These are often slower than batch processes and

unsuitable for complex internal structures, but offer a lot more precision and control

over the resulting surface quality and dimensional accuracy of the part. Laser pol-

ishing is another promising local finishing approach, but is still relatively immature

and difficult to control (Marimuthu et al., 2015).

Selecting the most effective post-processing method is a complex decision based on

the part’s geometry, requirements and cost. Currently, it is common practice to use

several finishing steps, for instance, grit blasting followed by tumbling. If the entire

surface of the part requires post-processing and the part does not contain any delicate
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features, a global tumbling method may be used; while a part that contains complex

internal concavities, may be more suitable for electrochemical polishing. However,

for parts where only certain surfaces require finishing, or where a global method can

have a negative impact on the mechanical performance and dimensional accuracy (for

example, for a part with delicate features) of the part, a local method is more suitable.

For the purpose of demonstrating the proposed framework, part surface finishing is

assumed to be carried out in a single step using a medium-sized 5-axis CNC milling

centre, since it is a local process capable of achieving Ra < 1 µm.

The total time of CNC milling is modelled in Equation 3.5. Other local finishing

processes can be substituted for CNC machining, by adjusting Equation 3.5 accord-

ingly. As mentioned above, the post-processing time of global methods is not affected

by local variations in surface roughness, and thus, can be considered unrelated to

SLM build orientation. Therefore, while the cost of different global post-processing

methods can be used to select the cheapest one, it will have no effect on the solution

produced by the framework and optimisation heuristics described in this thesis.

ts =
vs
q

+

⌈
vs
ttlq

⌉
tload (3.5)

where q is the process material removal rate for surface finishing; vs is the total

volume of material removed during this step; ttl is the expected tool life and tload is

the tool loading time, where the number of tool changes must be rounded up before

multiplying by tload. As can be seen, the above equation is a simplification of the real

process, that assumes constant cutting speed, fixed tool life and fixed tool change

time, and ignores all other factors such as machine set-up time and swarf removal.

3.3.3 Support Structure Removal

Support structures are typically removed manually, thus, the process is highly depen-

dent on the skill and experience of the operator, as well as the size and complexity of

the part geometry. A model of support structure removal time is proposed by Alexan-

der et al. (1998), who argue that support struts that are attached to the part at both

ends are more difficult to remove than struts that are attached to the build plate.

This principle applies to all AM processes, thus, their model is adapted in Equation

3.6 to describe the time of manual support structure removal for SLM parts.

tr = w1Ad + w2Au (3.6)

where Ad denotes the total area of down-facing part surfaces in contact with support

structure; Au denotes the total area of upward-facing part surfaces in contact with

support structure; and w1 and w1 are material removal coefficients. Ad and Au are

calculated in Section 3.4.1.
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3.4 Build Orientation Generation

As already mentioned, the STL file defines the surface of the 3D geometry using a set

of triangular facets, denoted by F . Each facet f ∈ F can be defined as f(v1, v2, v3, n̂)

where v1, v2 and v3 are three distinct vertices, and n̂ is the unit normal vector of the

facet pointing outward from the solid geometry; v1, v2, v3 and n̂ are each defined in 3D

Cartesian coordinates. In the proposed model each build orientation is achieved by

two consecutive rotations about the geometry’s body-centric axes, as demonstrated

in Figure 3.4, where the body-centric coordinates of the geometry are denoted by xb,

yb and zb, respectively. The first rotation is shown in Figure 3.4a, where the geometry

is rotated about xb; the second rotation is shown in Figure 3.4b, where the geometry

is rotated about z′b. The global axes are shown for reference and denoted by xg, yg

and zg, respectively.

y′b

z′b

xb

yb

zb

xg

yg

zg

(a) Rθ rotates geometry about xb axis.

x′′b

y′′b

x′b

y′b

z′b

xg

yg

zg

(b) Rφ rotates geometry about z′b axis.

Figure 3.4: Schematic description of build orientation generation.

Therefore, each build orientation can be defined as p(θ, φ), where θ and φ are

two rotation angles, and the rotated geometry is defined by a set of facets F ′. Each

rotated facet f ′ ∈ F ′ is produced by applying the Rxz transformation to the three

vertices v1, v2 and v3, and the normal vector n̂ of the original facet f , as shown in

Equation 3.7.

f ′(v′1, v
′
2, v
′
3, n̂
′) = Rθφf(v1, v2, v3, n̂) (3.7)

where v′1, v′2, v′3 and n̂′ denote the rotated vertices and rotated normal vector of f ,

respectively. The matrix Rxz is defined in Equation 3.8.

Rxz = RφRθ (3.8)
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where Rθ =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 and Rφ =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1


Using this transformation, all unique build orientations can be produced within

input boundaries of θ ∈ [0, 180] and φ ∈ [0, 360). It should be noted, that if a part

geometry is rotated about the global z-axis, its key geometric properties, such as

height and supported area, and therefore its cost, will remain unchanged. Thus,

build orientations achieved by such rotations are considered to be duplicates of one

another. For example, when using Equation 3.8 for any geometry, all build orienta-

tions corresponding to p(0o,∗ ) and p(180o,∗ ) can be considered duplicates of p(0o, 0o)

and p(180o, 0o), respectively, where ∗ denotes any arbitrary value of φ.

Once the geometry has been rotated, a number of variables, which are driven

by the build orientation, are calculated and passed into the cost equation. These

variables include support structure volume and contact-area, geometry height, and

surface roughness. Additionally, the area and shape of the 2D piece is required to

determine the batch size and number of bins required to meet the demand. Given

a set of unique vertices V , which can be easily derived from F , the height of the

geometry can be easily calculated by sorting the vertices in V by non-increasing z-

coordinate and taking the difference of zmax and zmin. Support structure, surface

roughness and 2D piece generation are discussed in the following sections.

3.4.1 Support Structure Prediction

Predicting support structure volume is a difficult task for a number of reasons. Firstly,

determining the volumes created between the surfaces of the STL geometry is a non-

trivial computational task. Secondly, there is no definitive set of guidelines and rules

for designing support structures. Current commercial software relies on broad generic

rules to generate support structure automatically, for instance, using an overhang

threshold below which surfaces are supported; meanwhile, experienced users often

resort to manually modelling a support structure which is tailored to a specific part.

For the purpose of demonstrating the proposed cost model, a simple rule is

adopted for calculating the volume of support structure. As discussed in Chapter

2, this rule is commonly used in literature and states that any surface with a build

angle of less than αsup must be supported, where αsup is a threshold value that typ-

ically lies between 30o and 45o. Figure 3.5 provides a 2D example for this support

structure generation approach. The build angle of each facet f ∈ F is calculated

using Equation 3.9.

αf = cos−1(-ẑ · n̂f ) (3.9)

where αf and n̂f denote the build angle and unit normal vector of f , respectively;

and -ẑ is a unit vector with coordinates (0, 0, -1) .
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Figure 3.5: Example of support structure (red dots) for an arbitrary geometry (blue).

Thus, let f be defined as a supported facet with αf < αsup, and let FS denote

a list of all supported facets in the part geometry, where FS ⊂ F . Also, let f be

defined as an upward-facing facet if αf > 90o, and let FU denote a list of all upward-

facing facets, where FU ⊂ F . It is assumed that the top surface of the build plate

is represented by a horizontal plane at zmin, where zmin is the z-coordinate of the

lowest vertex in V .

It can be imagined that each facet f ∈ FS is supported by a prism-shaped strut,

and the total support structure volume is the sum of the volume of these struts. Each

support strut is formed by three vertical line segments, where each line segment is

drawn along the -ẑ direction between a vertex of f and the surface of the build plate.

Since these line segments may intersect the part geometry, an additional intersection

check must be carried out between each edge of the support strut and each facet

f ∈ FU .

Given a vertex vfS belonging to a supported facet fS , and an upward-facing facet,

fU , the intersection check consists of two steps. First, it determines whether a vertical

line segment projected from vfS intersects the plane containing fU ; if this condition

is true, the second step determines if the point of the line-plane intersection, denoted

by p, lies inside fU . If the latter is true, the edge of the support strut is updated to

p; otherwise, the edge is extended all the way to the build plate.

Model Efficiency and Validation

It can be seen that the worst-case time complexity of the above support structure

prediction approach is O(3SU), where S denotes the size of FS and U denotes the

size of FU . To improve the computational time, FU is ordered into a tree structure,

based on the location and bounding box of each facet, so that for a given vertex vfS
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and facet f ∈ FU , the intersection check is performed only if vfS lies inside the x-y

bounding box of f , and f does not lie above vfS . To further improve the solution

time, a simplified, low fidelity approach is proposed, which checks only the centre

point of each supported facet, instead of its three vertices; this reduces the worst-case

time complexity to O(SU). The original high fidelity (HF) approach and the low

fidelity (LF) version are summarised schematically in Figure 3.6.

z

fS

v1(fS)

v2(fS)

fUp1

p2

(a) High fidelity approach.

z

fS

v1(fS)

v2(fS)

c2(fS)

fU
pc

(b) Low fidelity approach.

Figure 3.6: Schematic comparison of high fidelity and low fidelity modelling of a single
support strut in 2D (red dots). fS denotes the supported facet; fU denotes an upward-facing
facet; v1fS , v2fS and cfS denote two vertices and the centre point of fS , respectively; p1, p2

and pc denote intersection points corresponding to v1fS , v2fS and cfS , respectively.

The LF and HF approaches were tested on 68 geometries of various sizes, where

each geometry was placed in a randomly selected build orientation, and αsup was set

to 45o. Figure 3.7 shows a comparison of the computational time and accuracy of

each approach. The two worst errors produced by the low fidelity model had values of

38% and -24%, respectively, and are marked by red circles in Figure 3.7b. However,

62 of the 68 data points had errors below 10%, while the whole data set yielded a

root-mean-square error (RMSE) of 5% (normalised over the range of data). Moreover,

the low fidelity model showed an average reduction in computational time by a factor

of 3 (taken from the gradient of the line of best fit), as expected.

It should also be noted that the high fidelity approach can only return the correct

support strut, if all three edges of the strut intersect the same upward-facing facet,

as shown in Figure 3.6a; if this is not the case the model will also introduce some

error, despite the additional computations, as shown in Figure 3.8. Based on these

observations, the low fidelity model is chosen over the high fidelity model and used

throughout this thesis.

The support structure volume predicted by the adopted low fidelity model has

been validated against support structure produced by a commercial software, Magics

v20.03. The same 68 test instances and settings were used to compare the proposed

model and Magics; the results are shown in Figure 3.9. Despite producing an over

30% error in three test instances, with 48% being the worst, the model produced an
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(b) Support structure volume predicted by low
fidelity (LF) vs. high fidelity (HF) approach.

Figure 3.7: Performance comparison between the low fidelity and high fidelity models of
support structure, shown on a logarithmic scale.
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Figure 3.8: Example of support strut error (grey lines) produced by the HF approach.

average error of 7% and RSME of 3% for the whole data set, indicating generally

good predictive accuracy in the majority of cases. The occasionally large errors are

likely a result of the intersection error discussed above, and demonstrated in Figure

3.8.
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Figure 3.9: Comparison of support structure volume predicted by the low fidelity model vs.
Magics software, shown on a logarithmic scale.

Finally, it should be noted that the proposed model assumes fully solid support

structure, whereas hollow and lattice-shaped support structures are often used in

practice to reduce waste material. Other features, such as contact teeth and offsets

around edges, are also not considered. A simple and quick way to approximate

lattice-shaped support structure is to apply a density fraction to the calculated solid

support volume. This idea was tested by creating and comparing both hollow and

solid support structures in Magics, using the same 68 geometries and the same build

orientations, as above. Figure 3.10a shows a regression line for the two types of

support structure, with a R2 of 0.93, RMSE of 5.47%, and a gradient of 0.28. Figure

3.10b shows the support structure volume predicted by the LF model and scaled by a

factor of 0.28, compared against hollow support structure created by Magics. Due to

its simplicity, this approach can only provide an approximation of hollow supports;

the maximum predictive error of data shown in Figure 3.10b is 61.0%, with a RMSE

and mean absolute error of 5.96% and 16.5%, respectively. Despite these errors, the

proposed LF model of support structure volume is still a useful tool for comparing

and selecting different build orientations, while the suggested scaling factor of 0.28

provides a more realistic weighting of support structure volume in the proposed cost

equation, and resulting objective functions presented in chapters 4 and 5.

Support Structure Removal

To find the time of support structure removal, the contact area between the support

structure and the upward-facing and downward-facing facets, denoted by Au and Ad,

respectively, must be known. Following the procedure described above, Ad and Au

can be easily calculated by summing up the areas of relevant facets, as shown in

equations 3.10 and 3.11, respectively.
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(b) Magics hollow support structure volume vs.
scaled volume predicted by LF model.

Figure 3.10: Prediction of hollow support structure volume, shown on a logarithmic scale.

Ad =

FS∑
f=1

af (3.10)

Au =

FU∑
f=1

σfaf (3.11)

where σf =

{
1 if f is intersected by a projected support strut

0 otherwise

where FS denotes a list of supported facets; FU denotes a list of upward-facing facets

and af is the area of facet f .

For clarity, Figure 3.11 provides a simplified 2D example, where the total support

structure contact area is calculated as the sum of the supported facet fS and its

underlying upward-facing facet fU , which have areas Ad and Au, respectively. As can

be seen, a tiny offset is assumed between the support strut and the adjacent vertical

surface of the part, which is assumed to be support-free.
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Part Support structure

Figure 3.11: Schematic example of supported facet, fS , its underlying upward-facing facet,
fU , and their corresponding areas (highlighted by thick blue lines), Ad and Au, respectively.

3.4.2 Removed Material Prediction

As described in Section 3.3, the post-processing time and cost of SLM is modelled as

a function of total volume of removed material, vSF . In order to calculate vSF , the

original surface roughness, denoted by Raf , for each facet f ∈ F of the part geometry

must be known. Several works in literature (Cooper et al., 2012; Strano et al., 2013b;

Triantaphyllou et al., 2015) have reported experimental data that relates the surface

build angle, denoted by α, and surface roughness, Ra. These data vary significantly

due to differences in laser parameters, layer thickness, materials, powder properties

and SLM machines. A thorough investigation of surface roughness produced for Ti-

6Al-4V alloy was carried out by Vandenbroucke and Kruth (2007); their results are

shown in Figure 3.12. Unlike most of the above studies which provide only a few

sampling points (e.g. at 45o increments), Vandenbroucke and Kruth (2007) cover

the whole range of α and provide a relatively large data set of 18 sampling points

(within 15o increments or less). For this reason, the data in Figure 3.12 are used to

interpolate surface roughness in this thesis.

As proposed by Ahn et al. (2007), for a build angle α∗ that falls in between the

sampling points, the surface roughness value, denoted by Ra∗, can be interpolated

using Equation 3.12.

Ra∗ = Raf +
α∗(Rac −Raf )

αc − αf
(3.12)

3

A layer thickness of 30 µm is assumed for Ti-6Al-4V throughout this thesis. The sharp peak in Ra
on the top-facing surface (i.e. α > 150o) can be reduced significantly (to below 20 µm) by using a
layer thickness of 20 µm, leading to smaller and more stable melt pools (Vandenbroucke and Kruth,
2007).
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Figure 3.12: Surface roughness of Ti-6Al-4V alloy produced by an M3 Concept Laser
machine with a layer thickness of 30 µm3; adapted from Vandenbroucke and Kruth (2007).

where αf and αc are the floor and ceiling values of the interval containing α∗, re-

spectively; and Raf and Rac are the roughness values corresponding to αf and αc,

respectively.

The data in Figure 3.12 accounts for process characteristics such as the stair-

stepping effect, melt-pool rippling and additional powder particles fusing to downward-

facing surfaces. However, another key source of surface roughness is support structure,

which leaves marks and protrusions after it is removed. As can be seen, the roughness

of supported surfaces (where α < 30o) was not reported.

As discussed in the previous section, the threshold build angle for support-free

surfaces, denoted by αsup, typically lies between 30o and 45o. Although it is still

possible to successfully build support-free surfaces within this range, a significant

deterioration in the build accuracy and surface finish can be expected, as indicated

by the sharp rise in Ra for α < 45o shown in Figure 3.12. Conversely, supporting these

surfaces can actually improve the overall surface finish and build accuracy, despite

the residual marks and protrusions, due to the additional structural support and heat

dissipation (Calignano, 2014).

Thus, for each support-free facet f ∈ F , where αsup ≤ αf ≤ 180o, the surface

roughness of f , denoted by Raf , is determined using Equation 3.12 and the data

in Figure 3.12. Meanwhile, for each supported facet fS , where 0 < αfS < αsup,

the surface roughness RafS is set to Rasup, which is a constant value denoting the

roughness of supported surfaces.

It is assumed that all parts are placed directly onto the build plate (i.e. without

base support structure4), and that the parts are removed from the build plate using

wire-EDM (Section 3.3). Thus, for any facet f ∈ F , where αf = 0o, f is considered

to be in full contact with the build plate, and Raf is set to Rarem, which denotes a

constant surface roughness resulting from part removal via wire-EDM.

4Additional support structure placed between the base of the part and the build plate, in order
to improve build quality and facilitate part separation from the build plate.



64 Chapter 3. Methodology

Values of Rasup and Rarem can be specified by the user. The roughness of sup-

ported surfaces produced in Ti-6Al-4V alloy has been reported (Cooper et al., 2012;

Triantaphyllou et al., 2015) to range between 15 µm and 32 µm; while typical surface

roughness produced by wire-EDM falls between 1 µm and 5 µm.

Once the roughness Raf of each facet f ∈ F is known, the total removed material,

vs, can be calculated using Equation 3.13.

vs =
∑
f

κaf (Raf −Ratf ) (3.13)

where κ =

{
1 if Raf > Ratf
0 otherwise

where Raf denotes the SLM surface roughness of facet f , af is the area of f and

Ratf is the target surface roughness of f , which is defined by the user as described

in Section 3.3.1.

3.4.3 2D Piece Generation

The 2D piece represents the 3D part geometry in the 2D bin packing problem. Since

overlapping and stacking of parts is avoided in this model, the piece can be though

of as a shadow of the part on the build plate. In this model, the 2D piece is created

in four stages, which are outlined in Figure 3.13.

Using the set of unique vertices V , each vertex v ∈ V is projected vertically onto

the x-y plane, such that v3D(x, y, z) ← v2D(x, y). The resulting set of 2D points is

pruned for duplicates, and a Delaunay triangulation is performed (Shewchuck, 2002).

Each edge in the resulting triangular mesh can either be defined as an internal

edge, if it is shared by two triangles, or an outer edge, if the edge belongs to only one

triangle. The convex hull of the projected points is defined by these outer edges. In

some cases the convex hull can be significantly larger than the actual outline of the

geometry, as demonstrated by the example in Figure 3.13. To get the concave hull, a

boundary digging procedure is adopted from Duckham et al. (2008), which removes

outer edges exceeding a specified maximum length. The procedure is described as

’digging’, because it can be imagined to physically remove an outer edge from the

mesh, leaving a small concavity and two exposed internal edges. Figure 3.14 provides

a pseudo-code of this procedure, where Listoe denotes the list of outer edges and

Lmax denotes the maximum edge length.

When using this procedure, care must be taken to avoid removing too many

edges and creating a degenerate or discontinuous polygon. To do this, the algorithm

in Figure 3.14 checks the status of the newly exposed pair of edges, e1 and e2; if one of

these edges is already classed as an outer edge, the process stops and returns the most

recent iteration of the list of polygon vertices, Listoe. Furthermore, a suitable value

of Lmax must be used. Preliminary testing showed this value to be around 20 mm,

where the algorithm managed to sufficiently capture large concavities without digging



3.4. Build Orientation Generation 65

z

x

y
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jected onto x-y plane.

2. Delauney mesh (black)
and convex hull (red).

3. Concave hull (red) result-
ing from digging procedure.
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(b) Stages in the 2D piece generation procedure.

Figure 3.13: The 2D piece generation procedure tested on a bracket, with a maximum edge
limit of 20 mm (stage 3), and an inflation offset of 4 mm (stage 4).

too far. Removing edges below this limit increases the risk of creating degenerate or

multiple disconnected polygons, and causing numerical errors in the no-fit polygon

procedure during bin packing (Lindmark, 2013), as well as increasing computational

cost. More importantly, capturing very small concavities is unlikely to provide a

significant improvement in the 2DBPP solution, as very few parts would fit in such

a small space.

It should be noted that closed internal cavities are not captured by this procedure.

While internal cavities can affect the 2DBPP solution in certain cases (for instance,

if very small parts can be successfully placed inside a large annulus), such cases are

considered rare, and thus, are left for future research.

Finally, to avoid part damage during the SLM process and to facilitate removal of

built parts from the SLM build substrate, a small gap must be maintained between

the parts when they are placed on the build plate. To maintain a minimum distance

do between parts packed in SLM, the 2D piece of each part can be inflated by 1
2do.

The process is shown schematically in Figure 3.15. Vertices in the concave polygon
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Input: Listoe, Lmax

Result: updated Listoe

1 Sort Listoe by non-increasing length;

2 Set e0 ← first edge in Listoe;

3 while e.Length > Lmax do

4 Find triangle T , which contains the edges e0, e1 and e2;

5 if e1, e2 = inner edge then

6 Remove e0 from Listoe and add e1, e2 to Listoe;

7 end

8 else

9 Terminate procedure;

10 end

11 Sort Listoe by non-increasing length;

12 Set e← first edge in Listoe;

13 end

Figure 3.14: Pseudo-code of polygon boundary digging procedure.

(produced in stage 3) are ordered in an anti-clockwise order, thus, the polygon can

be described by a set of edges, where each edge contains two vertices and a direction.

To inflate the polygon, the vertices of each edge can be translated by a vector, with

magnitude 1
2do and direction perpendicular to the edge. The resulting polygon is

likely to contain edges which intersect or form a gap. To fix this, the vertex shared

by each pair of edges is replaced with an intersection point, computed for the two

vectors corresponding to these edges, as shown in Figure 3.15.

3.5 2D Irregular Bin Packing Problem (2DIBPP)

From the above procedure, it follows that the resulting 2DIBPP is likely to contain

highly irregular pieces, often with concavities. In order to exploit these concavities

and find high quality bin packing solutions, continuous and unrestricted rotation of

pieces in the x− y plane should be permitted. Moreover, as discussed in Section 3.1

the framework assumes an infinite number of available machines, containing identical

rectangular build platforms. Thus, the method of Martinez-Sykora et al. (2017) is

used in this thesis, which addresses the 2DIBPP, characterised by irregular concave

pieces, continuous piece rotation and the presence of multiple bins.

The aim of this procedure is to pack a given set of 2D irregular pieces, denoted by

P , into a set of bins, such that the utilisation of each bin is maximised. In the case

of MBP, the algorithm consists of the following three steps. The first step tries to

assign all pieces to a minimum number of bins by solving a 1D bin packing problem,

where each piece is represented by its area only.



3.5. 2D Irregular Bin Packing Problem (2DIBPP) 67

1
2
do

p0 p1

p2

p3p4

p5

p′3p′4

p′0 p′1

p′2p′5

original edge

translated edge

extended edge segment

trimmed edge segment

Figure 3.15: Schematic description of polygon inflation.

The second step tries to place each potential subset of pieces into its corresponding

bin. In this step, the subset of pieces is sorted by non-increasing area and each piece

is placed sequentially into the bin. A mixed integer programming (MIP) model is

used to evaluate different rotational positions of each piece, by selecting a rotation

which minimises the overall bounding box dimensions of all placed pieces in the bin,

as shown in Figure 3.16. If all pieces in the current subset are packed successfully,

the subset is removed from P , the successful bin is saved to the final solution and

the algorithm moves onto the next subset of pieces until all pieces in P have been

packed. Otherwise, the algorithm proceeds to the third step.

1

(a) Rotation 1

1

(b) Rotation 2

1

(c) Rotation 3

Figure 3.16: Three potential rotations for the first piece in the bin, where Rotation 3 is
considered the most favourable. Taken from Martinez-Sykora et al. (2017).

It is clear that the first step in the procedure is likely to produce very ambitious

and sometimes infeasible piece subsets. Thus, the third and final step is designed to

mend the assignment of pieces to bins, should the second step fail to place one of the

pieces in a given subset. This is done by sorting all remaining untried pieces in P

and attempting to place each piece sequentially into the partially packed current bin.

Once all pieces have been tried, the bin is saved to the final solution and the packed

pieces are removed from P . Because this step disrupts the original bin assignment,

the procedure must go back to the first step and solve the 1D bin packing problem

again for all remaining pieces in P .
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In the case of IBP, the problem is much simpler, since all pieces are identical and

bin assignment is not required. As discussed in Chapter 4, only the batch size is

required to find the unit cost of identical pieces, which can be found using only the

second step of the procedure described above.

Finally, as described in Section 3.1, each bin must have four no-build zones which

represent the bolts fixing the build plate to the SLM machine platform. As shown

in Figure 3.17, these no-build zones are represented by four rectangular “dummy”

pieces, which may not be overlapped by any of the real pieces placed inside the bin.

3.6 Implementation

The framework is implemented in C# using the Visual Studio 2012 development

environment, and parallelised where appropriate. To solve the MIP problem for the

2DIBPP the commercial solver Gurobi (version 6.5.2) is used. All experimental tests

throughout this thesis are done on the same i7-3820 four core machine, with 2.70 GHz

maximum frequency, eight logical processors and 16GB of RAM.

Throughout this thesis, the SLM build envelope (i.e. viable building space inside

the build chamber) is assumed to have 240 mm width, 240 mm length and 275 mm

height. Thus, the 2D bin dimensions used in the 2DIBPP are shown schematically

in Figure 3.17, where W and L denote bin width and length, respectively; d1 and

d2 denote the location and dimensions of four symmetrical squares representing the

no-build zones, as shown; and do denotes the minimum allowable distance between

the SLM parts (as discussed in Section 3.4.3).

do

d1

d1

d2

d2

L

W

Figure 3.17: Bin dimensions used in the 2DIBPP. The diagram shows a 2D bin packed with
two inflated pieces, shown in blue, and no-build zones shown in red.
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3.7 Conclusion

This chapter describes a cost-driven process planning framework for SLM. Section

3.1.1 outlines two SLM production scenarios, IBP and MBP, and discusses the suit-

ability of each scenario in the context of lean manufacturing and different demand

patterns which are commonly seen in many industries, including aerospace, automo-

tive and the medical sector. The presence of safety critical parts is also considered

and a new build orientation constraint is proposed.

Sections 3.2 and 3.3 cover the cost modelling methodology, which includes both

SLM build cost and post-processing cost. The build cost is an adaptation of Ruffo

et al. (2006), where the coefficient values are taken from Baumers et al. (2016) who

adapt the same model in their work. To predict the build time of SLM, a simple

linear regression model is proposed, based on build height, part volume and support

structure volume, where the latter two parameters are driven by build orientation.

While this method is less accurate than an analytic approach, it offers a fast and

sufficient approximation of build time, by bypassing the need to compute the exact

laser path, which is too time consuming and computationally expensive for the op-

timisation models proposed in this thesis. Furthermore, given the limited training

data, the fitted regression model is considered to be acceptable for the purpose of

demonstrating the methodology proposed in this thesis; however, future work should

aim to build a larger set of data to properly train and validate this model.

As discussed in Chapter 1, to avoid unexpected additional costs and risks of delay

at the later stages of the manufacturing process, post-processing costs should be taken

into consideration as early as possible i.e. at the process planning stage. As discussed

in Section 3.3, the key post-processing costs associated with build orientation are

surface finishing and support structure removal. This thesis argues target surface

finish should be treated as a constraint and Section 3.3.1 describes a simple application

designed to enable the user to include local target roughness into a standard STL file.

Section 3.3 also outlines different surface finishing methods available for SLM,

which can be classified as either global or local methods. Following the above logic, the

framework assumes a local surface finishing method, where the difference between the

target surface roughness and build surface roughness produced by SLM has a direct

effect on the post-processing time and cost. Conversely, a global surface finishing

method treats the entire surface simultaneously, thereby, de-coupling the build surface

roughness (and hence the build orientation) from the resulting post-processing cost,

and negating the effects of surface finishing on the optimisation problem. It should

be noted that this model considers only the operating costs and tool costs, based

on Ti-6Al-4V and a medium-sized 5-axis milling machine5, while other costs such as

tool-path planning by a skilled operator and machine set-up are not considered.

The support structure removal model assumes a manual process and is based on

5milling data provided by Rolls-Royce plc.
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the assumption of Alexander et al. (1998), who suggest that removing support struc-

ture attached to the part at both ends is more difficult and time consuming than

removing support structure attached at only one end. To reflect this, the model pro-

poses two different weighting factors for downward-facing and upward-facing surfaces,

respectively, which are in contact with support structure.

Section 3.4 outlines in detail the build orientation generation procedure, which

assumes continuous rotation about two perpendicular axes. Continuous rotation is

proposed as a way of exploring more potential (and less obvious) solutions in the de-

sign space. Methods of calculating support structure, surface roughness and 2D piece

generation are discussed in detail in this section. The support structure prediction

was found to be the most time consuming aspect of this part of the framework, so a

simplifying technique is proposed in Section 3.4.1 and validated against the commer-

cial software Magics, producing a RMSE of 5.47% for a set of 68 test geometries, with

a maximum absolute error of 48%. It was found that, combined with a density frac-

tion of 0.28 (for the same 68 test geometries), the model can also be used to predict

hollow support structure, although this increases the maximum error to 61.0% when

compared to Magics. In both cases, despite the large maximum errors, most of the

predicted data points were found to be reasonably accurate. As part of future work,

a surrogate modelling or machine learning approach could be used to predict support

structure more quickly and accurately, although such a method would require a very

large and robust data set, based on a variety of parts of different sizes and geometric

complexities.
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Chapter 4

Cost Optimisation for Identical

Batch Production

The first part of this chapter outlines a formal problem description for process plan-

ning in the IBP scenario. Next, the Tabu search heuristic is proposed to solve the

problem, due to its explorational attributes and ability to escape local minima. Fi-

nally, Tabu search parameters, such as the size of local neighbourhoods, are tested

on three different realistic part geometries.

A key contribution of this chapter is a new objective function for the combined

build orientation and bin packing problem, which includes both build and post pro-

cessing cost, derived from equations described in Chapter 3.

Moreover, manufactured parts often contain geometric symmetries, which typi-

cally lead to symmetries in the build orientation solution space. This is acknowledged

in relevant literature (Peng et al., 2017), but no works explicitly address this challenge.

Therefore, a second contribution of this chapter is a thorough discussion of solution

space symmetry, its effects on optimisation performance, and ways of addressing it.

Following on from this discussion, a new approximation strategy is proposed to reduce

the frequency of time-consuming, and potentially redundant, bin packing solutions.

The test results indicate that the approximation strategy reduces solution time of the

Tabu search by at least 50%.

4.1 Problem Description

Consider N identical geometries, which are to be placed into identical bins of width

W , length L and height H. The geometry is denoted by g, and its surface is defined

by a set of facets F , where each facet f ∈ F has a target surface roughness denoted

by Ratf .

The objective is to find a build orientation of g with the minimum unit cost. In

order to calculate the unit cost the batch size must be known, thus, a bin packing

problem must be solved for each new build orientation of g. As discussed in Chapter

3, vertical stacking of parts is not allowed, therefore, the bin packing problem is

modelled in 2D, where each new build orientation of g is represented by a 2D piece.
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Thus, let p denote the 2D piece representing g in its current build orientation, and

let hp denote the current build height of p; sp denotes the current support structure

volume of p; np denotes the batch size resulting from p; vs(p) denotes the resulting

volume of material removed during surface polishing; and Ad(p) and Au(p) denote

the total downward-facing and upward-facing areas, respectively, which are in contact

with support structure resulting for p.

It should be noted that hp may not exceed the bin height H. Furthermore, as

discussed in Section 3.1.2, a solution to the IBP problem must place all instances

of g in the same build orientation to avoid any additional process complexities and

variations. In other words, the bin packing solution must place N identical instances

of p into M bins, where npM ≥ N .

This presents a simple version of the cutting stock problem, which can be solved

by placing np instances of p into a single unique bin and duplicating this bin M times

to meet the demand N . Since the process planning framework assumes an unlimited

number of available bins (Section 3.1.3), a packing solution for a single bin is sufficient

to determine the unit cost corresponding to piece p, without considering the npM ≥ N
condition. Thus, the objective function of this problem can be summarised as follows:

min
p(θ,φ)

C(p) (4.1)

for θ ∈ [0o, 180o], φ ∈ [0o, 360o)

where C(p) =
cb(p)

np
+ cpp(p) (4.2)

where cb(p) denotes the SLM build cost of a batch of np identical instances of piece p,

and cpp(p) denotes the post processing cost of p. Definitions of cb and cpp are provided

in Equation 3.1 and Equation 3.4, respectively, and substituting these two equations

into Equation 4.2 results in Equation 4.3.

C(p) = ω1 + ω2sp + ω3ts(p) + ω4tr(p) + ω5
hp
np

+ ω6
1

np
(4.3)

ω1 = vg(c2ρ+ c1β3), ω2 = c1β4 + c2ρ, ω3 = c3, ω4 = c4, ω5 = c1β2, ω6 = c1β1

where sp, ts(p), tr(p), hp and np are the decision criteria, which are driven by the build

orientation and resulting packing solution; and ω1, . . . , ω6 are constant coefficients,

which determine the weight of each criterion in the objective function. For the reader’s

convenience, equations 3.5 and 3.6 which define support structure removal time, ts(p),

and surface finishing time, ts(p), in Chapter 3, are shown below:

ts(p) =
vs(p)

q
+

⌈
vs(p)

ttlq

⌉
tload (3.5) , tr(p) = w1Ad(p) + w2Au(p) (3.6)

where q is the material removal rate of the surface polishing method, ttl is the tool

life, tload is the tool loading time, and w1 and w2 are time coefficients associated with

manual support structure removal. The detailed methodologies for calculating Ad(p)
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and Au(p), and vs(p) are provided in Section 3.4.1 and Section 3.4.2, respectively.

The method for determining np is discussed in Section 3.5, which tries to place

as many instances of p as possible into a 2D bin of width W and length L, and

produces a bin solution that can be denoted by b(n,O,X, Y ), where n denotes the

batch size. During the search the pieces are allowed to rotate continuously about

the vertical z-axis, hence, O = {o1, . . . , on} defines the 2D orientation of each piece.

Finally, X = {x1, . . . , xn} and Y = {y1, . . . , yn} define the x and y coordinates of the

reference point of each piece, respectively. The reference point of a piece is the bottom

left corner of its enclosing rectangle, corresponding to its 2D orientation. Every piece

must be placed completely inside the bin and may not overlap with any other pieces

or the no-build zones (shown in Figure 3.17).

4.2 Tabu Search Procedure

It can be seen that the above problem is highly non-linear, not only as a result of

Equation 4.3, but also due to the complex relationships between the criteria and

the different surfaces in the part geometry. To deal with the presence of multiple

local minima, this section proposes the use of Tabu search (TS) (Glover, 1989, 1990),

which is a well-known meta-heuristic used to guide a local search procedure and aid

it in exploring the solution space beyond local minima. The effectiveness of TS stems

from its two defining principles; firstly, it can move from a better solution to a worse

solution to escape a local minimum; secondly, previously visited solutions are marked

as “taboo”, which means the search is forbidden from re-visiting these solutions1, and

gives the algorithm its name.

The pseudo-code of the proposed algorithm is presented in Figure 4.1. At each it-

eration, the TS must evaluate the local neighbourhood PN (pc) of the current solution

pc and move to the most favourable neighbour p′ ∈ PN (pc), which becomes the new

current solution. Equation 4.3 is used to evaluate each solution p in the neighbour-

hood, such that C(p′) ≤ C(p) for all p ∈ PN (pc). This process is repeated until the

termination criterion of In ≥ Inmax is satisfied, where In is the number of consecutive

non-improvement iterations and Inmax is a threshold value set by the user. Since p′ is

not necessarily better than pc, the procedure must also track the overall best solution

encountered at each iteration, which is denoted by pb and must be updated each time

the condition C(pb) > C(pc) is met.

As shown in Figure 4.1, each visited solution (pc) is marked as “taboo” and stored

in a Tabu list, preventing it from being selected in the following iterations. To avoid

exceeding the computational memory budget and to avoid the search cornering itself

into a dead-end, the maximum number of entries in the Tabu list is limited to a fixed

1Variants of the TS procedure may incur a penalty for, or reduce the probability of, moving to a
marked solution (instead of forbidding it), and can also mark unexplored solutions with potentially
undesirable attributes as “taboo” (in addition to visited solutions).
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Input: pin, E, Lsize, Inmax

Result: pb

1 pc ← pin;

2 pb ← pc;

3 In ← ∅;

4 TabuList← ∅;
5 while In < Inmax do

6 Construct neighbourhood PN (pc) for pc using step size E;

7 Return best solution p′ ∈ PN (pc);

8 if TabuList.Size > Lsize then

9 Remove oldest entry in TabuList;

10 end

11 Add pc to TabuList;

12 Set pc ← p′;

13 if C(pb) > C(pc) then

14 In ← ∅;

15 pb ← pc;

16 end

17 else

18 In ← In + 1;

19 end

20 end

Figure 4.1: Tabu search procedure, where pin, pc and pb denote the initial, current and best
solution, respectively; and C(pb) and C(pc) denote the unit cost of pb and pc, respectively.

size, denoted by Lsize; when this size is reached, the oldest entry must be removed

from the list before a new entry can be added.

θ

φ

θpc − E θpc
θpc + E

φpc − E

φpc
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p1 p2 p3

p4

p5p6p7

p8

Figure 4.2: Structure of local neighbourhood PN (pc) = {p1, . . . , p8}, where pc denotes the
current solution, E denotes the step size and θ and φ are two angles of rotation.

The structure of the local neighbourhood PN (pc), is a fundamental element of

TS, and has a significant effect on the algorithm’s performance. In the proposed

procedure, the neighbourhood has a fixed size and a simple structure, as shown in

Figure 4.2. For each piece pc, the local neighbourhood PN (pc) consists of a total

of eight neighbouring solutions, where each neighbour is produced by taking a step
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of size E away from pc, in any direction in θ, in φ, or in both dimensions. This

simple structure allows each neighbourhood to be constructed and evaluated quickly,

with a relatively small computational expense, while the step size E can be changed

between iterations to encourage the procedure to either explore the solution space,

or to converge on a minimum.

4.2.1 Solution Space Symmetry

As stated in Section 3.4, sampling points along θ = 0o and θ = 180o result in duplicate

build orientations. If one of these build orientations happens to be a local minimum

the Tabu search is likely to get stuck. To deal with this issue, once a solution at

θ = 0o has been visited, a new entry denoted by p(0o,∗ ) is added to the Tabu list,

where ∗ represents any arbitrary value of φ. This marks all solutions at θ = 0o as

“taboo” and prevents the search from moving to another solution located at θ = 0o;

the same is done for solutions at θ = 180o.

Furthermore, any symmetries in the geometry can be expected to produce corre-

sponding symmetries in the solution space. This is likely to have a detrimental effect

on the efficiency of the optimisation search and quality of the resulting solution. To

ensure that only unique areas of the solution space are explored in the presence of re-

flectional symmetries, it is suggested that the initial build orientation of the geometry

is calibrated in one of two ways:

• by aligning the plane of symmetry to the global x-y plane, in which case the

input range of θ can be bisected, as shown in Figure 4.3a, or;

• by aligning the plane of symmetry to the global y-z plane, in which case the

input range of φ can be bisected, as shown in Figure 4.3b.

(a) Bisect interval θ ∈ [0, 180]← [0, 90]. (b) Bisect interval φ ∈ [0, 360)← [0, 180].

Figure 4.3: Two possible initial build orientations and resulting input intervals for a geom-
etry containing a single plane of reflectional symmetry.
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Alternatively, if the geometry contains a plane with multiple lines of rotational

symmetry, the same principle can be applied by aligning one of the axes of rotation

to the normal vector of that plane and dividing the corresponding input range by the

degree of rotational symmetry, as shown in Figure 4.4.

x

y

φ ∈ [0o, 360o)← [0o, 90o]

Figure 4.4: Example of rotational symmetry in the cross-section of a prism. Since the x-y
plane contains four degrees of rotational symmetry (dashed red lines) the interval of φ can

be reduced from [0o, 360o) to [0o, 90o].

Finally, it should be noted that even if the geometry contains no symmetries,

the build height and piece area can be expected to follow a recurring pattern with

respect to θ and φ, due to the periodic nature of the build orientation problem. This is

demonstrated in Figure 4.5b, which shows the ap solution space for a non-symmetrical

turbine blade geometry. It can be seen that the yellow region in the lower part of the

figure can be mapped onto the top yellow region with two reflection transformations,

one in the θ axis and another in the φ axis. It can be easily deduced that such

repetitive behaviour in the ap domain is highly likely to be present in the np domain

as well. Since the 2D bin packing solution makes np significantly more expensive

to compute than all the other piece attributes, this behaviour of the solution space

should be used to avoid duplicate bin packing solutions where possible during the

Tabu search.

(a) Turbine blade geometry.

θ (deg)

φ
(d

eg
)

(b) Solution space of piece area ap (mm2).

Figure 4.5: Solution space of ap shown for a non-symmetrical turbine blade geometry.
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4.2.2 Efficient Search Strategy

Following the above discussion, this section proposes a strategy that aims to reduce

the number of times the bin packing problem is solved, especially for pieces of similar

area. This is achieved by comparing the projected area ap of a current piece p to the

areas of previously visited pieces, and either solving the bin packing problem to find

the exact value of np, or approximating np based on an existing solution with an area

similar to ap.

More precisely, each exact solutions must be stored in a separate list denoted by

SolutionList, and each new solution p must be compared against all solutions in

SolutionList. If SolutionList contains a piece pS with area apS , such that ap ≈ apS ,

then set np ← npS ; otherwise, if ap is significantly different from all existing solutions

in SolutionList, the bin packing problem must be solved to find np, and p must

be added to SolutionList. The difference between ap and apS is considered small,

if
|ap−apS |

ap
≤ Alim, where Alim is an approximation parameter specified by the user.

Figure 4.6 provides pseudo-code of the local neighbourhood construction procedure,

which uses this strategy.

Input: pc, E, Alim, SolutionList

Result: updated pc, updated SolutionList

1 Create an empty list PN (pc) which denotes the neighbourhood of pc, using step size E;

2 foreach p ∈ PN do

3 Find build height hp of p;

4 Find support structure volume sp of p;

5 Find area ap of p;

6 foreach pS ∈ SolutionList do

7 δa(pS) =
|ap−apS |

ap
;

8 end

9 Take solution pS ∈ SolutionList with minimum δa;

10 if δa ≤ Alim then

11 set np ← npS ;

12 Calculate cost C(p) of p;

13 end

14 else

15 Solve 2DBPP to find np;

16 Calculate cost C(p) of p;

17 Add p to SolutionList;

18 end

19 end

20 Order all p ∈ PN by non-decreasing C(p), and set pc ← PN [1];

Figure 4.6: Neighbourhood construction procedure, where Alim is a hyper-parameter pro-
vided by the user and SolutionList denotes a list which stores all solutions, for which the

exact value of np is known.

Finally, let Ca(p) denote the approximated cost of a solution p, and C(pb) denote

the cost of the current best solution pb. If Ca(p) < C(pb), then the exact cost of

p, denoted by C(p), must be computed and p must be added to SolutionList. If

C(p) < C(pb), update the best solution pb ← p, otherwise continue to the next

iteration. It should be noted that to find the approximated cost Ca(p) only the
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number of pieces in the bin np is approximated, while the bin height hp and support

structure volume sp are still calculated exactly, since these values are relatively cheap

to compute when compared to the bin packing problem.

4.3 Implementation

Table 4.1 provides a summary of all parameters, settings and cost modelling coeffi-

cients used in the computational results provided in Section 4.4. For surfaces which

are not supported or in contact with the build plate, the SLM surface roughness is

predicted using the method and data provided in Section 3.4.2, where the latter is

taken from Vandenbroucke and Kruth (2007). The model assumes that all parts are

built directly on the SLM build plate without any base support structure.

Parameter Value Units Definition

c1 26.64 £/h Indirect cost coefficient

c2 258.2 £/kg3 Material cost rate

c3 20.0 £/h Labour rate

c4 60.0 £/h Machining cost coefficient

ρ 4.41 g cm−3 Ti-6Al-4V density produced by SLM

β1 3.00 h SLM constant time coefficient

β2 1.03× 10−1 h mm−1 SLM recoat time coefficient

β3 1.81× 10−4 h mm−3 SLM part exposure time coefficient

β4 7.50× 10−5 h mm−3 SLM support structure time coefficient

w1 4× 10−4 h mm−2 Support removal coefficient for downward-facing surfaces

w2 8× 10−4 h mm−2 Support removal coefficient for upward-facing surfaces

q 1× 105 mm3 h−1 Machining material removal rate

ttl 40.0 min Tool life

tload 0.25 min Tool loading time

Rasup 27.0 µm Surface roughness after support structure removal

Rarem 5.00 µm Surface roughness after wire-EDM

αsup 40.0 o Minimum unsupported build angle

ρsup 28 % Density fraction for lattice support structure

d0 10.0 mm Minimum distance between pieces in 2DIBPP

L 50.0 mm Maximum edge length in 2D piece polygon

Table 4.1: Summary of cost coefficients and modelling parameters.

The TS procedure is implemented in C# using the Visual Studio 2012 develop-

ment environment. The code is parallelised on four i7-3820 cores, with 2.70 GHz

maximum frequency. In order to allow for more thorough exploration of the design

space, the TS is set to terminate after 30 non-improvement iterations. The length of

the Tabu list, denoted by Lsize, is also set to a relatively large value of 100 to fur-

ther encourage exploration. Finally, when varying the size of local neighbourhoods,

the minimum value of E is restricted to 1o, as cost changes below this step size are

expected to be negligible.

4.3.1 Test Geometries

The above TS procedure is implemented on three test geometries, shown in Figure

4.7 below. As can be seen, different target surface roughness values are assigned to
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different local surfaces of each geometry. For simplicity, each local surface of each

geometry is assigned one of two different target roughness values. High tolerance or

critical surfaces (e.g. mating faces and gas-washed surfaces) are assigned a low target

roughness value, denoted by Rat(1), while all other surfaces are allowed a higher

target roughness, denoted by Rat(2) and ranging between 4 µm and 8 µm.

Aero bracket

(AB)

Volume (mm3) 40,806

Surface area (mm2) 20,037

No. of facets 32,686

No. of holes 6

Rat(1) (µm) 1

Rat(2) (µm) 8

Space bracket

(SB)

Volume (mm3) 30,540

Surface area (mm2) 13,682

No. of facets 75,982

No. of holes 6

Rat(1) (µm) 1

Rat(2) (µm) 5

Turbine blade

(TB)

Volume (mm3) 13,216

Surface area (mm2) 10,478

No. of facets 31,230

No. of holes 0

Rat(1) (µm) 1

Rat(2) (µm) 4

Figure 4.7: Test geometries and their properties. Rat(1) and Rat(2) denote the target
surface roughness values associated with local surfaces labelled 1 (highlighted in orange) and

2 (grey), respectively.

It can be seen that the AB and SB geometries both contain a single plane of sym-

metry. As discussed in Section 4.2.1, each geometry is positioned such that its plane

of symmetry is aligned with the global y-z plane and all unique solutions lie within

θ ∈ [0o, 180o] and φ ∈ [0o, 180o]. Since the TB geometry contains no symmetries, its

solution space is bounded by the intervals θ ∈ [0o, 180o] and φ ∈ [0o, 360o).
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4.4 Computational Results

This section consists of two parts. The first part evaluates the effects of the approxi-

mation strategy on the speed and accuracy of the TS, and proposes the most suitable

value of Alim based on the above test geometries. The second part considers the

effects of the local neighbourhood size on the TS, considering four different strategies

with both fixed and varying values of E .

4.4.1 Approximation Parameter Study

As shown in Table 4.2, four values of Alim are tested for each geometry, where the

step size E is fixed at 10o throughout all tests. Figures 4.8 - 4.10 provide plots of

the TS procedure for each test; where the solution cost at each iteration is denoted

by C(p); the cost of approximated solutions is denoted by Ca(p); and the exact cost

computed for every other approximated solution is denoted by C∗a(p).

The latter is used only for calculating the error in cost that results from using

the area-based approximation method discussed in Section 4.2.2 (thus, the solution

time of C∗a(p) is not recorded); the cost error for an approximated solution p is

calculated as the difference between the approximated cost Ca(p) and exact cost

C∗a(p). This cost approximation error is recorded throughout each test and used

to calculate statistical measurements, namely, RMSE, mean error, denoted by E,

and maximum error, denoted by Emax. These measurements of error are used along

with solution time and the number of iterations before convergence to evaluate the

performance of each test. These data are summarised in Table 4.2. For a consistent

comparison, RMSE is calculated as a percentage with respect to the initial solution

of each geometry.

Geometry Alim (%) C(pin) (£) C(pb) (£) Solution Time (s) Iterations E (%) Emax (%) RMSE (%)

AB 0.01 696 641 4,301 55 -0.35 -3.43 1.54
AB 0.05 696 641 2,185 64 0.17 3.42 1.33
AB 0.1 696 641 1,797 53 0.55 3.59 1.64
AB 0.2 696 650 1,244 49 0.84 3.65 1.48

SB 0.01 417 369 3,736 39 -0.26 2.60 1.40
SB 0.05 417 369 1,987 39 -0.69 -3.56 1.34
SB 0.1 417 369 1,719 39 -1.07 -3.59 1.67
SB 0.2 417 369 1,358 39 -1.22 -3.59 1.78

TB 0.01 967 834 6,793 71 -1.03 3.56 2.35
TB 0.05 967 834 2,837 54 -0.54 4.14 2.11
TB 0.1 967 834 2,287 57 -1.07 -4.11 2.13
TB 0.2 967 834 2,217 46 -0.42 4.14 2.39

Table 4.2: Overview of results, where Alim denotes the approximation parameter; and
C(pin) and C(pb) denote the initial and best unit cost, respectively.

While there appears to be a very slight increase in the magnitude of E with

increasing Alim, no clear correlation can be seen between the other two measures of

error and the approximation parameter. Moreover, the results indicate no particular

bias towards either overestimating or underestimating solutions, as both positive and

negative values of E and Emax can be seen in Table 4.2 and in figures 4.8 - 4.10.
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Therefore, it is important to note the different effect each type of error has on the TS

performance.
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Figure 4.8: Tabu search results for aero bracket (AB) geometry.
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Figure 4.9: Tabu search results for space bracket (SB) geometry.
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Figure 4.10: Tabu search results for turbine blade (TB) geometry.
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Clearly, the TS must accumulate a sufficiently large and diverse list of exact

solutions, before this list can be used to approximate similar solutions encountered

later on in the procedure. Furthermore, as outlined in Section 4.2.2, the strategy is

forced to calculate the exact cost for every cost-improvement solution, regardless of

its similarity to other recorded solutions. Consequently, the proposed approximation

strategy tends to provide accurate solutions in the beginning of the TS and during

its convergence to a local minimum, but as the search starts to diverge away from

this point, the frequency of approximations rises and the accuracy declines, as shown

in figures 4.8 - 4.10.

It follows that whenever the cost of p is underestimated, such that Ca(p) < C(pb),

the exact solution of p must be computed by solving the bin packing problem. In

this way, negative errors can increase the solution time by forcing the TS to solve the

bin packing problem more frequently, even for solutions which are not in fact better

than the best solution. Positive errors pose an arguably bigger risk. If the real cost

of C(p) is an undiscovered local minimum, such that C(p) < C(pb), but the cost of p

is overestimated, such that Ca(p) > C(pb), the TS will miss the solution and return

a sub-optimal pb. Examples of this can be seen in Figure 4.8 for Alim = 0.02, and

Figure 4.10 for Alim = 0.01 and Alim = 0.2.

In addition, both positive and negative approximation errors pose the risk of mis-

guiding the TS, either away from potentially good solutions (in case of the former),

or towards inferior ones (in case of the latter). Conversely, it is also possible for these

errors to guide the TS towards a better solution “by chance”. The AB geometry

provides examples of both scenarios; as shown in Figure 4.8, A = 0.2 produced a

relatively poor result, as the TS was guided towards a sub-optimal solution; mean-

while in the case of A = 0.1, the TS was guided towards the same best solution in

fewer iterations than A = 0.01 and A = 0.05. Thus, the risk of errors misguiding the

TS is counteracted by the possibility of these errors guiding the TS towards better

solutions.

Furthermore, the main advantage of the approximation procedure is the saving of

computational time and resources, particularly on duplicate solutions and solutions

which yield no significant cost improvement, as shown in Figure 4.9. The tests indi-

cate that up to 56% of solutions are approximated in the case of Alim = 0.01; this

percentage goes up to 79% for Alim = 0.05 and up to 87% when Alim ≥ 0.1. This

has two implications:

• Since an approximated solution is typically computed within milliseconds, while

the bin packing problem is solved on the order of 100 seconds, it can be inferred

that using the approximation strategy with Alim = 0.01 reduces the solution

time of the regular TS procedure (i.e. where the bin packing problem is solved

for each solution) by at least 50%.

• The reduction in solution time becomes smaller as Alim is increased. This can

be seen in Figure 4.11, where the solution time is halved when Alim is increased
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from 0.01 to 0.05, but does not change significantly for Alim ≥ 0.1.

Based on these observations, it is suggested that the value of Alim is kept in the

range 0.01 - 0.05. This conclusion can only be applied with certainty to the three

geometries tested in this thesis; to apply the procedure to other geometries, such

geometries should be tested first, using the approach described in this section.
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Figure 4.11: Reduction in solution time with respect to the approximation parameter Alim.

Finally, as can be seen from figures 4.8 - 4.10, the search converged quickly (within

10-30 iterations) in all three test cases despite the relatively large size of the Tabu

list, suggesting that the starting point of each test was within close proximity of

a very good local minimum solution. One way of addressing this is to expand the

Tabu list to include not only previously visited solutions, but also unvisited solutions

with characteristics that are undesirable or very similar to those of previously visited

solutions. However, to minimise the risk of adding good solutions to the Tabu list,

such an approach would require very careful parameter tuning, using a larger set of

test geometries.

4.4.2 Local Neighbourhood Size Study

To test the effects of the neighbourhood size, the TS is performed with three con-

stant step sizes, 5o, 10o and 15o, and compared against two variable step strategies,

namely, random step, denoted by R, and decreasing step, denoted by D. The above

approximation procedure is used in all tests, with Alim set to 0.05.

In the R strategy the value of E is allowed to range between 0o and 180o, enabling

the TS to cover potentially large regions of the solution space, but also significantly

reducing the likelihood of converging on a local minimum. This is indicated by the

scattered appearance of the R sampling points in figures 4.12a - 4.12c. Figure 4.12a

also provides an example of how the R strategy can miss good quality solutions. As

can be seen, one of the R solutions lies very close (within ∼ 5o) to the best local

minimum found by the 15o step strategy; however, despite their proximity, the cost

of the R solution exceeds the cost of the local minimum by almost 5%. Since the R
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solution is approximated, it is possible that the significant cost difference is actually

caused by the approximation strategy overestimating the cost of the R solution, as

discussed above. However, in this case the approximation error makes little difference,

as the cost of solutions does not have a strong guiding effect on the random step TS

(unlike the other step strategies).

Geometry E (o) C(pin) (£) C(pb) (£) Improvement (%) Solution Time (s) Iterations

AB R 696 651 6.5 2,104 41
AB 5 696 663 4.7 1,967 52
AB 10 696 641 7.9 2,185 64
AB 15 696 640 8.0 1,715 46
AB D 696 632 9.2 2,177 59

SB R 417 368 11.8 2,300 41
SB 5 417 369 11.5 1,247 48
SB 10 417 369 11.5 1,987 39
SB 15 417 369 11.5 1,847 36
SB D 417 369 11.5 2,337 46

TB R 967 846 12.5 3,052 62
TB 5 967 886 8.4 1,664 48
TB 10 967 834 13.8 2,780 54
TB 15 967 829 14.3 1,522 44
TB D 967 827 14.5 3,289 60

Table 4.3: Overview of results, where E denotes the step size, R denotes random step size,
D denotes decreasing step size, C(pin) denotes the initial unit cost and C(pb) denotes the

best unit cost.

Conversely, in the case of the SB geometry, the R strategy found a slightly better

solution, with a 0.3% greater cost improvement than the fixed step strategies. As

can be seen from Figure 4.12b, this solution is located in the top right region of the

solution space, which none of the fixed step strategies managed to explore before

terminating.

From Table 4.3, it can be seen that the 5o step strategy has the worst performance,

in terms of both cost improvement (relative to C(pin)) and number of iterations. As

shown in Figure 4.12 this strategy explored only a very small region of the solution

space in all three test cases, and found only one very good local minimum (Figure

4.12b), which happens to lie very close to the starting point of the search. This is not

unexpected, as a small value of E has the following two effects on the TS performance:

firstly, the local neighbourhoods are much smaller, so it takes longer to explore the

solution space; secondly, as shown clearly in 4.12a, the search path tends to make a

lot of U-turns and circle back on itself as it struggles to escape the local minimum.

On the other hand, the 15o step strategy has the best performance out of the three

fixed step strategies, followed closely by the 10o step strategy (Table 4.3). As can be

seen from Figure 4.12, both strategies managed to explore a substantial portion of

the solution space; and in the case of the SB geometry, the 10o step strategy came

relatively close to the best local minimum found by the R strategy.
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(b) Space bracket (SB) geometry.
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Figure 4.12: Solution space exploration by different step strategies. The best solution is
shown for each strategy and is denoted by pb; the best local minimum found for each geometry

is highlighted on each graph in red.

Decreasing Step Strategy

The main downside of using a fixed step size lies in discretising the solution space

and consequently missing potentially good solutions located in between the TS steps;

this problem is clearly worse for large values of E . Conversely, constantly varying the

step size can result in the search moving in a zigzag or circling pattern in between

“taboo” solutions, making it much more difficult to drive the TS to escape local

minima. With this in mind, the decreasing step strategy, denoted by D, is designed

with the following steps:

1. Perform the TS with E fixed at 15o, until the maximum non-improvement limit,

Inmax , is exceeded;

2. Update the current solution to the best solution found so far, pc ← pb;

3. Reset In ← ∅ , and reduce E by a factor εr;

4. Continue the TS, reducing the step size at each iteration, such that E ← εrE ,

and terminate when Inmax is exceeded.
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As can be seen, the first stage of theD strategy is identical to the 15o step strategy;

the key difference is that after this stage is completed, the D strategy attempts to

improve pb by further exploring its vicinity and by reducing the step size as the search

converges. Since the two strategies follow a similar search path, and for the purpose

of clarity, only the final best solution of D is shown for each geometry in Figure 4.12.

Since the aim of this strategy is to improve a local solution, rather than explore the

whole solution space, the value of Inmax is reduced to 10, after the first stage. The

reduction factor εr is set to 0.95.

As shown in Table 4.3, the D strategy improved the best solution for two of

the three geometries, AB and TB, although the latter improvement is very small –

outperforming the 15o step solution by 0.2%. As shown in Figure 4.12, the slightly

better SB solution provided by the R strategy is out of reach of the D strategy and

no further improvement over the 15o step strategy was achieved. It can also be seen

that the solution time of the D strategy is longer than R in all three test cases, and

the worst on average. This downside can be addressed by further reducing Inmax

in the latter stage, but at the risk of reducing the likelihood of finding a local cost

improvement, which is the main purpose of the D strategy.

Arguably, even the longest D solution time in Table 4.3 is not particularly long

(just under an hour for TB), since the TS runs automatically and does not require

any supervision. Furthermore, even the small unit cost reduction of £2 over the 15o

step strategy (for TB geometry) is a worthwhile trade-off, when considered in the

context of IBP of several thousand parts.

4.5 Conclusion

The problem of process planning in the IBP scenario is outlined in this chapter

and solved using the Tabu search (TS) heuristic. Since realistic part geometries

often contain symmetries, which lead to symmetries in the solution space, a build

orientation calibration method is proposed to minimise the effects of these symmetries

on the TS performance. Furthermore, a new area-based approximation strategy is

proposed to reduce the number of bin packing solutions and improve TS efficiency.

This strategy is driven by an approximation parameter, Alim; thus, three different

values of Alim are tested on three different geometries. The results indicate that even

the lowest tested value of Alim = 0.01 speeds up the TS by as much as 50%. To

be able to approximate solutions, the strategy must first build up a sufficiently large

and diverse pool of exact solutions, on which each approximation is based. For this

reason, the improvement in solution time increases with Alim, but starts to plateau

after Alim ≥ 0.1. Thus, it is suggested that the value of Alim should lie between 0.01

and 0.05. The results show that even small values of Alim pose a risk of missing good

local solutions, because of approximation errors introduced into the search. However,

as demonstrated by Alim = 0.1 in Figure 4.8, these errors can equally lead the search

to better solutions, thus, mitigating this risk.
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To explore the effects of local neighbourhood size, the TS is tested with five

different step strategies, including random step, R, decreasing step, D and three

fixed step strategies. For all three test geometries, the 15o step strategy outperformed

the other fixed step strategies. Meanwhile, for one of the geometries the R strategy

happened to find a slightly better solution, which lies outside the solution space region

explored by the other four strategies. To tackle this, one of the other strategies can

be run multiple times, from different starting points, at the expense of longer solution

time.

As discussed, a key downside of a fixed step strategy is the risk of missing good

solutions that lie in between the TS steps. Meanwhile, varying the step size too

much or too early enables the TS to move in between “taboo” solutions, significantly

decreasing the effectiveness of the TS. The purpose of the D strategy is to mitigate

both of these problems; first, by using a fixed step size to explore the solution space;

and, second, by looking for a further cost improvement in the local vicinity of the

best found solution with a gradually decreasing step size. The D strategy improves

the cost of two of the three test geometries, at the expense of increasing the solution

time by up to 30 min (in the case of the TB geometry). However, since the procedure

runs automatically without the need for any supervision, the additional solution time

can be considered an acceptable price to pay for a potential increase in cost savings.
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Chapter 5

Optimisation of Cost and

Residual Stresses

5.1 Introduction

As discussed in Chapter 2, there exists a clear and complex relationship between the

build orientation and the residual stress profile of a part. Despite this, very limited

work has been done in this area and no works have explicitly addressed the problem

of residual stress minimisation as a function of build orientation. Moreover, cost is

another equally important objective, as discussed throughout this thesis. Therefore,

a multi-objective optimisation problem is addressed in this chapter, the aim of which

is to find a set of trade-off solutions based on residual stresses and unit cost in the

context of IBP.

The reason this problem has received so little attention is likely due to the pro-

hibitive computational expense of FEA, which is typically required to predict the

residual stress profile (Peng et al., 2017). To deal with this issue a number of al-

ternative approximation approaches are explored, namely, a linear interpolation (LI)

approach and a nearest-neighbour (NN) approach. As expected, the LI approach

predicts the results with less variability than NN, as well as providing a more diverse

Pareto set. However, the NN method is relatively fast and simple, and provides a

useful benchmark for the LI results. Attempts were also made to create a more so-

phisticated Kriging model of build orientation and residual stresses. Although this

approach did not produce successful results, it provides a number of useful insights

into the problem, as discussed in Appendix C.

5.2 Problem Description

As in Chapter 4, this problem considers N identical geometries, which are to be

placed into identical bins of width W , length L and height H. The surface of the

geometry is defined by a set of facets F , where each facet f ∈ F has a target surface

roughness denoted by Ratf . As before, let p denote the geometry in its current build

orientation, and let C(p) denote the unit cost of the geometry resulting from p.
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In addition to the unit cost, the presence of residual stresses must also be consid-

ered. It is well known that tensile residual stresses reduce the mechanical performance

and fatigue life of metals, as they tend to further open cracks, while compressive

stresses have the opposite effect (Leuders et al., 2013; Simonelli et al., 2014). It fol-

lows that a reduced overall tensile stress in the part is desirable. Thus, two additional

optimisation criteria are introduced, namely, mean tensile stress, denoted by σ̄t, and

maximum tensile stress, denoted by σmax. While σ̄t and σmax are clearly related,

each criterion provides different information about the magnitude and distribution of

the residual stress profile and are therefore treated as separate competing objectives.

Additionally, since σ̄t and σmax are independent of geometry, they can be calculated

easily for a variety of parts regardless of their geometric complexities. The resulting

objective function F (p) (which is a vector of the three competing objectives) is shown

in Equation 5.1.

min
p(θ,φ)

F (p) = [C(p), σ̄t(p), σmax(p)] (5.1)

for θ ∈ [0o, 180o], φ ∈ [0o, 360o)

where σ̄t(p) and σmax(p) denote the mean residual tensile stress and the maximum

residual tensile stress corresponding to p, respectively.

Given two feasible solutions p1 and p2, p1 is said to dominate p2 if F (p1) ≤ F (p2)

and at least one of the following is true: C(p1) < C(p2), σ̄t(p1) < σ̄t(p2), σmax(p1) <

σmax(p2). If the solution space contains no other solutions that dominate p1, then

p1 is considered a non-dominated (also known as Pareto-optimal) solution. Following

these definitions, the aim of this problem is to provide a set of non-dominated feasible

solutions, which is known as a Pareto set.

The values of σ̄t(p) and σmax(p)) are calculated using a Finite Element Anal-

ysis (FEA) approach, which is described in Section 5.3. Because SLM metals are

particularly prone to brittle fracture (Rafi et al., 2013; Carter et al., 2014), the two

proposed objectives, σ̄t(p) and σmax(p) are calculated using the maximum principal

stress (MPS) of each discrete element in the FEA solution. It should be noted that

only elements belonging to the part geometry (i.e. excluding build plate and sup-

port structure elements are considered in these calculations. The FEA is performed

separately for each solution p, and thus, it is important to note two key assumptions

in this problem. Firstly, it is assumed that the FEA model is a sufficiently accurate

representation of the “real” residual stress profile of p. Secondly, it is assumed that

the residual stress profile is identical for all instances of p and is independent of the

bin packing solution (e.g. neighbouring pieces do not affect one another).

5.3 Thermo-Mechanical FEA Model

FEA is a popular numerical method for solving complex problems and performing

complex process simulations. This approach is able to simulate the temperature and
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residual stresses in the SLM process by discretising the part geometry (and a section

of the build plate) into small mesh elements, as discussed in Section 5.3.1, and solving

a system of equations to determine the local temperature and stress corresponding

to each individual element.

The simulation model assumes that the part geometry has a strong influence on

the residual stress profile, as proposed by Keller et al. (2013), and consists of two

stages. Firstly, a transient thermal analysis is performed to obtain the temperature

distribution profile in the part geometry; secondly, a transient stress analysis is per-

formed using the temperature profile determined in the previous stage to define the

loading conditions. This two-stage thermo-mechanical analysis is known as loosely-

coupled, since data only flows in one direction.

Although it is technically possible to simulate the laser path on each individual

layer of powder, this is not computationally tractable for a real-size part. Thus, during

the thermal analysis a whole layer of mesh elements is activated simultaneously and

a heat flux of constant density is applied instantly to the whole layer. The heat

flux density and exposure time are based on a number of parameters such as mesh

element size, laser settings and cross-sectional area of the layer, and chosen so that

the temperature in the current top layer of elements just exceeds the material melting

temperature (to avoid convergence issues). Once the heat flux has been applied to

an element, the material properties of that element are changed from “loose powder

material” to “solid bulk material”.

To represent the idling time in between laser scanning (e.g. during powder re-

coating and repositioning of the laser), the heating step described above is followed

by a cooling step. The cooling time during step is determined as a function of the

layer cross-sectional area, laser scan speed and scan spacing. The heating and cooling

steps are repeated for each layer of elements, until all layers have been activated. It

should be noted that modelling the actual layer thickness used in SLM (e.g. 0.3 µm)

would result in a prohibitive number of mesh elements and layers. Thus, to make the

model feasible, each layer in the FEA represents a group of 10 - 30 layers in the actual

SLM process. To account for convection heat losses during the thermal analysis, a

heat transfer coefficient is applied to each activated layer of elements, while assuming

ambient temperature inside the build chamber.

The stress analysis follows a very similar procedure to the thermal analysis. The

same grouping of layers is used, and the same heating and cooling steps are applied to

each layer of elements. The results of the thermal analysis are stored in a database,

so the temperature of each element can be applied as a load on that element during

the stress analysis. To prevent rigid body motion during the simulation, the part is

assumed to be fixed to a section of the build plate, which in turn, is fully constrained

throughout the process. A more detailed description of the full FEA model can be

found in Palumbo and Granville (2016).
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5.3.1 Mesh Generation

While a traditional tetrahedral mesh retains the most geometric detail and accuracy,

it can also result in a very large number of elements when dealing with real-life

components (i.e. � 106), making the FEA model computationally infeasible. This

type of mesh also increases the risk of non-convergence due to its unstructured nature.

A swept hexahedral mesh can significantly improve the tractability and robustness of

the FEA model, however, it can be difficult to generate for very complex geometries

(Wu et al., 2017). Consequently, a regular “voxel” mesh is used in this thesis, which

approximates the geometry using identical cuboid elements. This provides a robust

and simple mesh generation approach, and reduces the risk of non-convergence and

intractability in the FEA, at the cost of some geometric error. This error is considered

to be acceptable, as it is relatively small compared to the errors introduced by the

assumptions discussed in Section 5.3.

The voxel mesh is generated in two stages: firstly, the part geometry must be

rotated and meshed (the latter is done using a commercial meshing software called

Harpoon); secondly, the steps shown in Figure 5.3 are used to generate additional

mesh elements which represent the support structure and a section of the build plate.

To create the additional mesh elements, the method generates a regular 2D grid in

the horizontal plane, denoted by C, where each 2D cell c ∈ C contains a “column”

of all 3D elements in E whose x-y coordinates correspond to the centre point of c,

as shown in Figure 5.3a-5.3b. The second step marks the bottom element of each

column as supported, es, or unsupported, eu, and generates nodes in the empty space

underneath each es element as shown in Figure 5.3b. These nodes are then connected

to create a set of vertically stacked 3D elements that form a support strut, denoted

by sc, as shown in red in Figure 5.3c.

To determine whether an element is supported or unsupported, the part mesh is

compared to the STL geometry of the rotated part. As described in Section 3.4.1, each

facet in the STL file is defined as supported if its build angle αf exceeds αsup. Thus,

any element e ∈ E that lies in close proximity of a supported facet is considered to

be supported. The “close proximity” condition is considered to be true if the element

e lies inside the bounding box of the supported facet fs, and only applies to the

bottom element (i.e. with minimum z-coordinate) of each column c, regardless of

any concavities or “gaps” that may be present in c, as shown in Figure 5.1. In this

way, the support structure mesh is prevented from obscuring the part geometry in

the FEA model (e.g. by closing up holes and concavities). Elements which are very

close to the build plate (e.g. 6 2 mm) are supported regardless of the surface angle.

As discussed in Section 3.4.1, performing an exact distance or intersection check

a large number of times is computationally expensive and time consuming; while the

above approach can occasionally result in additional support structure, as in the case

of the two elements highlighted in red in Figure 5.1, it is fast and simple to implement,

and provides sufficient contact between the part and the build plate, which is required
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for a successful FEA solution.

es
es

es es
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c

Figure 5.1: Schematic example of voxel mesh elements (blue) compared against the STL
surface (orange). Each bottom element in the part mesh is classified as supported, es, or
unsupported, eu, based on the bounding box (dashed purple line) of the supported facet fs.

The two elements which are incorrectly associated with facet fs are highlighted in red.

The third and final step generates the mesh representing a small section of the

build plate, beneath the part and support structure. As shown in Figure 5.3d, this

is done by generating a uniform 2D grid of nodes within user-specified dimensions,

namely, an offset d around the horizontal bounding box of the part mesh. Since there

cannot be two nodes in the same location, each node location in the 2D grid must

be cross-referenced with the bottom nodes in the support structure. If a location

already contains a support structure node, that node is marked as the top node in

the build plate; otherwise, if the location is empty, a new node is generated to fill it,

as shown in Figure 5.3e. As before, mesh elements are generated from each column

of neighbouring nodes in the grid, where the height of each column is determined by

the user-specified build plate thickness t, as shown in Figure 5.3f. An example of the

final resulting 3D mesh can be seen in Figure 5.2.

(a) Stage 1: Mesh of rotated part

generated by Harpoon software.

(b) Stage 2: Additional support

structure and build plate mesh.

Figure 5.2: Example of the two-stage meshing procedure applied to a Venturi pipe geometry.
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(a) Part mesh elements (blue) are sorted into a

2D grid, with columns denoted by c1, . . . , c5.
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(b) Support structure nodes (red) are created

below each supported element, denoted by es.
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(c) A column of support structure elements, de-

noted by sc, is generated for each column c.
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(d) A 2D grid of build plate nodes (green) is

created with an offset d around the part.
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(e) Bottom support structure nodes (red) are

marked as top build plate nodes. A 3D node

grid is generated with height t.
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eu

t

(f) Columns of build plate elements (green) are

generated from the 3D grid of new nodes.

Figure 5.3: Schematic description of support structure and build plate mesh generation.
For simplicity, the part is shown as a single row of elements.
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5.4 Approximated Search Strategies

As shown in Chapter 4, Tabu search is an effective and flexible approach for optimising

the build orientation of identical parts in SLM. TS is also a popular choice in the

wider literature for addressing single-objective optimisation problems (Hajji et al.,

2004, 2005; Karimi et al., 2010; Basu, 2012; Saka et al., 2016). In contrast, relatively

few works (Baykasoglu, 2006; Jaeggi et al., 2008; Yang et al., 2013) have considered TS

in the context of multi-objective optimisation (MOO), where evolutionary algorithms

such as the non-dominated sorting genetic algorithm II (NSGAII), are often preferred.

However, to work effectively GAs require a relatively large and diverse population,

which comes at the expense of reduced computational efficiency (for example, the

time complexity of NSGAII is O(MN2), where M is the number of objectives and

N is the population size). Meanwhile, TS also explores several solutions (i.e. local

neighbourhood) at each iteration, but is not limited by population size in the same

way as GAs. Moreover, TS has the potential of finding good Pareto solutions in the

highly non-linear build orientation solution space due to its intensified exploration

of local neighbourhoods (Yang et al., 2013). Thus, this chapter builds upon the TS

procedure described in Chapter 4, proposing two modified versions to deal with the

MOO problem, as discussed below.

Despite the simplifying assumptions discussed in Section 5.3, the FEA model is

still very expensive in terms of computational memory and time. This means that

only a very limited number of solutions can be explored in a reasonable computa-

tional budget. To address this limitation, two alternative approximation-based search

strategies are explored; namely, a nearest-neighbour Tabu search (NNTS) strategy,

discussed in Section 5.4.3, and a linear interpolation (LITS) strategy, discussed in

Section 5.4.2. A third approach based on a Kriging surrogate model has also been

considered, however, this approach was not successful as discussed in Appendix C.

Each approximation strategy starts by computing a small preliminary sample of

exact solutions P , which is evenly distributed across the solution space and can be

used to predict other unknown solutions during the optimisation search. The sampling

method, known as design of experiments (DOE), is discussed next.

5.4.1 Design of Experiments

An optimal DOE is one that captures as much information as possible with as few

sampling points as possible. One of the most popular and flexible DOE strategies is

the Latin Hypercube (LH) method proposed by McKay et al. (1979).

To produce N sampling points, the LH approach equally divides the design range

of each input parameter into N levels and ensures that only one point can be placed

in each level. Because levels are seeded and combined randomly, a good design is not

guaranteed. Consequently, numerous strategies have been proposed (Ye, 1998; Shields

and Zhang, 2016) to optimise the initial LH point distribution based on some given

criteria (e.g. space-filling, distance between points, etc.), leading to what is known
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as the Optimal Latin Hypercube (OLH) approach. This approach can produce an

effective sampling plan relatively quickly and cheaply when generating a small DOE

(for instance, up to 100 points and fewer than 10 input parameters (Liefvendahl

and Stocki, 2006)), making it suitable for the problem described in this chapter.

For the build orientation solution domain, the OLH approach provides an additional

advantage since it avoids placing multiple redundant points along the lines of θ = 0o

and θ = 180o, where all solutions are identical as discussed in Section 3.4. As shown

in Figure 5.4, the DOE procedure is parallelised to further save time on the FEA.

Parallelised Steps

Start

Use OLH to generate a set of
initial solutions P = {p1, . . . , pN}.

Calculate unit cost of each p ∈ P .

i = 1

Generate mesh of pi.

Run FEA and calculate
σmax(pi) and σ̄t(pi)

i = N?No

Yes

i = i+ 1

Output P

Figure 5.4: Flow diagram of DOE procedure.

Finally, the solution space symmetry discussed in Section 4.2.1 is particularly

important to consider when generating the DOE and performing the optimisation

search, since duplicated solutions can waste a lot of time and computational effort.

To avoid this, the initial orientation of the part geometry and the input ranges of θ

and φ should be adjusted following the approach discussed in Section 4.2.1.

5.4.2 Nearest-Neighbour Tabu Search

The NNTS algorithm and its neighbourhood construction procedure are shown in

figures 5.5 and 5.6, respectively. As shown in Figure 5.5, the first step of the procedure

is to generate an initial set of exact solutions P using the DOE procedure discussed

in Section 5.4.1. The second step is to find an initial Pareto set denoted by P ∗, where

P ∗ ⊆ P . As can be seen in line 3 of Figure 5.5, the TS is performed multiple times,

starting from each initial non-dominated solution p∗ ∈ P ∗. This helps to diversify

the search and makes it suitable for parallelisation. The termination condition is met
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when the number of consecutive no-improvement iterations In exceeds Inmax ; a no-

improvement iteration is one where not a single non-dominated solution was found

in the local neighbourhood PN .

Input: E, Lsize, Inmax

Result: Final Pareto set P ∗

1 Generate a set of exact solutions P using DOE procedure in Figure 5.4;

2 Find initial non-dominated Pareto set P ∗;

3 foreach p∗ ∈ P ∗ do

4 pc ← p∗;

5 In ← ∅;

6 TabuList← ∅;
7 AddSolList← ∅;
8 k ← ∅;

9 while In < Inmax do

10 Construct neighbourhood PN (pc) for pc using procedure in Figure 5.6;

11 Order PN by non-decreasing cost C(p) and return first solution pN1 ∈ PN with minimum C;

12 Set pc ← pN1 ;

13 if TabuList.Size > Lsize then

14 Remove oldest entry in TabuList;

15 end

16 Add pc to TabuList;

17 if PN contains non-dominated solutions then

18 In ← ∅;

19 end

20 else

21 In ← In + 1;

22 end

23 k ← k + 1;

24 if k ≥ K then

25 Add pc to AddSolList;

26 k ← ∅;

27 end

28 end

29 end

30 foreach p∗ ∈ P ∗ do

31 if p∗ 6∈ P then

32 Run FEA and update σ̄(p∗) and σmax(p∗);

33 Add p∗ to P ;

34 end

35 end

36 foreach p ∈ AddSolList do

37 if p 6∈ P then

38 Run FEA and update σ̄(p) and σmax(p);

39 Add p to P ;

40 end

41 Compare p against P ∗ and add p to P ∗ if p is non-dominated;

42 end

Figure 5.5: Pseudo-code of NNTS procedure, where pc denotes the current solution and p∗

denotes a non-dominated solution.

To determine if a solution pN in the current local neighbourhood PN is non-

dominated, pN must be checked against each current non-dominated solution p∗ ∈ P ∗.
This non-dominance check is described by lines 11-18 in Figure 5.6. If the condition

in line 12 is true for any solution p∗ then PN is non-dominated and must be added
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Input: pc, E, ξcrit, P , P ∗

Result: PN , updated P ∗

1 Create an empty list PN (pc) which denotes the neighbourhood of pc, using step size E;

2 foreach pN ∈ PN do

3 Calculate the unit cost C(pN );

4 foreach p ∈ P do

5 Find distance δ ←
√

(θp − θpN )2 + (φp − φpN )2;

6 end

7 Order P by non-decreasing δ(p) and take the first solution p1 ∈ P with minimum δ;

8 Set σmax(pN )← σmax(p1);

9 Set σ̄(pN )← σ̄(p1);

10 foreach p∗ ∈ P ∗ do

11 if C(p∗) > C(pN ) or σ̄(p∗) > σ̄(pN ) or σmax(p∗) > σmax(pN ) then

12 if pN 6∈ P ∗ and ψ(pN ) < ξcrit then

13 Add pN to P ∗;

14 end

15 if C(p∗) ≥ C(pN ) and σmax(p∗) ≥ σmax(pN ) and σ̄(p∗) ≥ σ̄(pN ) then

16 Remove p∗ from P ∗;

17 end

18 end

19 end

20 end

21 Return PN and updated P ∗;

Figure 5.6: NNTS neighbourhood construction procedure, where pc denotes the current
solution, P denotes a set of exact solutions and P ∗ denotes a set of non-dominated solutions.

to P ∗. Additionally, if any solution p∗ ∈ P ∗ is dominated completely by pN , that

solution must be removed from the list as shown in lines 15-17.

The local neighbourhood structure used by NNTS is the same as in Chapter 4

and can be found in Figure 4.2. It should be noted that the area-based approxima-

tion strategy discussed in Chapter 4 is also incorporated into the NNTS procedure,

although it is not shown in Figure 5.5 for the sake of clarity. As in Chapter 4, the

cost of a solution p may be approximated based on the difference in area between p

and a previous exact solution. However, if an approximated solution p appears to be

non-dominated, its cost must be calculated exactly (i.e. by solving the 2DIBPP) and

p must be checked for non-dominance once again.

For an unknown solution p, the stress criteria σ̄(p) and σmax(p) are approximated

based on the nearest known solution p ∈ P in the solution space (i.e. nearest neigh-

bour). As shown in Figure 5.6, the distance δ between an unknown solution pN in the

local neighbourhood PN , and each known solution p is denoted by δ, and calculated

as a function of the respective θ and φ coordinates of the two solutions. Since no

new values of σ̄ and σmax can be introduced during the NNTS procedure (other than

those already contained in P ), only the unit cost C is used to direct the movements

of the search, as shown in line 11 of Figure 5.5. In order to diversify the search,

the NNTS also records the current solution pc at every Kth iteration in a separate

list, denoted by AddSolList. At the end of the procedure, the FEA is solved for each

solution p ∈ AddSolList, along with the Pareto set P ∗. Any non-dominated solutions

in AddSolList are then added to P ∗.
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The errors in σ̄ and σmax produced by this approach can be expected to be

relatively large due to its oversimplification of the solution space. Therefore, as

shown in Figure 5.5, the final stage of the NNTS solves the FEA model to obtain

exact values of σ̄ and σmax for each approximated solution in the new Pareto set P ∗.

5.4.3 Linear Interpolation Tabu Search

Due to the high predictive error of the NN approach, the LITS method is considered

as an alternative. Similarly to NNTS, LITS starts with a set of exact solutions P

generated by the DOE, from which an initial Pareto set P ∗ is derived. Once again,

a multi-start Tabu search is performed starting from each non-dominated solution

p∗ ∈ P ∗, as shown in Figure 5.7, and each search is terminated after Inmax consecu-

tive iterations fail to find a non-dominated solution. LITS also uses the area-based

approximation strategy proposed in Chapter 4, with the exception of non-dominated

solutions for which the exact cost equation must be solved.

To approximate the stress criteria, the LITS model uses the set of exact solutions

P to create two triangulated surfaces – one corresponding to σ̄ and the other to

σmax. Each vertex of the triangulated surface corresponds to a solution p ∈ P ; thus,

an unknown solution pN is assumed to lie on the same plane as the three solutions in

P , which make up the vertices of the triangular facet containing pN .

In addition to the different approximation strategies, a key difference between

LITS and NNTS is the evaluation function used to drive the movements of the two

searches. Because LITS is able to introduce new values of σ̄ and σmax during the

optimisation stage, the evaluation function of each neighbour pN ∈ PN is determined

by the change in all three optimisation criteria, denoted by δF , as shown in line 9 of

Figure 5.7 and defined in Equation 5.2.

δF (pN ) = δC + δσ̄ + δσmax (5.2)

δC =
C(pN )− C(pc)

C(pc)
, δσ̄ =

σ̄(pN )− σ̄(pc)

σ̄(pc)
, δσmax =

σmax(pN )− σmax(pc)

σmax(pc)

where pc is the current solution and pN is a neighbouring solution of pc, and C, σ̄

and σmax denote the three optimisation criteria corresponding to each solution.

Although the estimation errors introduced by LITS are expected to be smaller

than NNTS, the FEA model must still be solved for all new solutions in the updated

Pareto set P ∗ after the optimisation stage, as shown in Figure 5.7.

5.5 Implementation

The FEA model was provided by the Process Modelling Group within Rolls-Royce

plc and was coded in ANSYS Mechanical APDL (version 14). All FEA results were

computed using a mesh size of 0.5 mm and a layer thickness of 1 mm. For the meshing

procedure described in Section 5.3.1, the software Harpoon (version 5.6) was used.
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Input: E, Lsize, Inmax

Result: Final Pareto set P ∗

1 Generate a set of exact solutions P using DOE procedure in Figure 5.4;

2 Find initial non-dominated Pareto set P ∗;

3 foreach p∗ ∈ P ∗ do

4 pc ← p∗;

5 In ← ∅;

6 TabuList← ∅;
7 while In < Inmax do

8 Construct neighbourhood PN (pc) for pc using procedure in Figure 5.6;

9 Order PN by non-decreasing δF (pN ) and return the first solution pN1 ∈ PN with min. δF ;

10 Set pc ← pN1 ;

11 if TabuList.Size > Lsize then

12 Remove oldest entry in TabuList;

13 end

14 Add pc to TabuList;

15 if PN contains non-dominated solutions then

16 In ← ∅;

17 end

18 else

19 In ← In + 1;

20 end

21 end

22 end

23 foreach p∗ ∈ P ∗ do

24 if p∗ 6∈ P then

25 Run FEA and update σ̄(p∗) and σmax(p∗);

26 Add p∗ to P ;

27 end

28 end

Figure 5.7: Pseudo-code of NNTS procedure, where pc denotes the current solution and p∗

denotes a non-dominated solution.

When creating the build plate mesh, the offset d and thickness t (defined in Figure

5.3d) were both set to 3 mm. All meshing and FEA solutions were computed in

parallel using 15 nodes on a Windows HPC cluster, with 16 cores in each node.

The LITS and NNTS models were applied to a single test geometry of medium

complexity, which is shown in Figure 5.8. For both procedures, the step size E was set

to 5o and the non-improvement termination condition Inmax was set to 5 iterations.

Since both LITS and NNTS are run from multiple starting solutions, a more thorough

and shorter local search can be performed around each starting solution. Thus, each

procedure was performed with a step size of E , and each search was terminated after

5 consecutive no-improvement iterations. The Tabu list size Lsize was set to 100 in

both cases. Additionally, in the case of NNTS the counter K was set to 5, meaning

every 5th current solution in NNTS was recorded and checked for non-dominance at

the end of the procedure.

Both procedures were ran with the same initial set P , which was generated with

50 solutions, shown in Figure 5.9, using the OLH method provided by the commercial

software Isight (version 5.6). Due to the symmetry of the curved plate geometry, the

solution space was limited to the ranges θ ∈ [0o, 180o] and φ ∈ [0o, 180o].
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Figure 5.8: Curved plate test geometry containing two bosses and two holes.
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Figure 5.9: Set P produced by the DOE with 50 points.

The mesh generation and TS optimisation models were all coded in C# using

the Visual Studio 2012 development environment, and were parallelised where appro-

priate. The linear interpolation surfaces were created using an in-built function in

MATLAB (version 9.3). All optimisation results (excluding FEA) were performed on

a four i7-3820 core machine, with 2.70 GHz maximum frequency. All cost modelling

coefficients are the same as in Chapter 4 and can be found in Table 4.1. Based on

the results in Chapter 4, the value of Alim is set to 0.05.



102 Chapter 5. Optimisation of Cost and Residual Stresses

5.6 Computational Results

The set of solutions P and the two resulting linear interpolation surfaces for σ̄ and

σmax can be seen in Figure 5.10. An initial Pareto set, denoted by P ∗, was obtained

from P with 13 non-dominated solutions. Each of these solutions was used as a

starting point in both search strategies, resulting in 13 local searches during each

strategy. NNTS terminated after a total of 94 iterations, taking 4.5 h to perform

the search, while LITS terminated after 171 iterations and 6.5 h. At the end of each

strategy, 32 FEA instances were solved for NNTS and 50 FEA instances were solved

for LITS (in addition to P ).

100
150

150
100

100

200

5050

00

300

400

200 250 300 350

φ (o) θ (o)

σ̄t (MPa)

(a) Plot of σ̄t in MPa.

500
150

150
100

100

1000

5050

00

1500

2000

900 1000 1100 1200 1300 1400 1500 1600

φ (o) θ (o)

σmax (MPa)

(b) Plot of σmax in MPa.

Figure 5.10: Linear interpolation surfaces produced using P (black points).

The initial approximated Pareto set produced during LITS contained 58 solutions;

this set was reduced to 18 solutions after solving the FEA and updating the results.

In the case of NNTS a much smaller Pareto set of 10 solutions was produced during

the search. However, as discussed in the previous section, NNTS also recorded every

5th current solution, producing an additional list of 23 solutions. After solving the

FEA for all recorded solutions, the updated NNTS Pareto set contained a total of 13

solutions. It is interesting to note that only two solutions remained from the original

Pareto set, and another two solutions were added from P ∗ back into the updated

NNTS Pareto set, which were initially discarded due to predictive errors in σ̄ and

σmax.

LITS NNTS

σ̄ σmax σ̄ σmax

Ē (%) 3.8 1.7 -1.5 -2.5
ME (%) 31.9 15.3 24.3 11.6
RMSE (MPa) 16.42 78.43 20.26 80.25

Table 5.1: Comparison of predictive errors for NNTS and LITS, where Ē is the mean error,
ME is the maximum error and RMSE is the root-mean-square error.
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Table 5.1 provides a summary of predictive errors produced by NNTS and LITS.

As can be seen, LITS resulted in higher maximum errors and σ̄ mean error; conversely,

the σmax mean error and the RMSE values are lower for LITS than for NNTS. This

shows the variability in predictions provided by LITS is lower than those provided by

NNTS, although high errors can result from both strategies.

The predictive accuracy of both strategies can be improved by repeating each

strategy multiple times, particularly NNTS, which is a more naive approach than

LITS. At the end of each repetition, the updated exact solutions should be added to

P , thus, increasing the pool of known solutions. This is also expected to encourage

the approximated Pareto sets produced by NNTS and LITS to converge to the true

global Pareto set. However, such repetitions come at the expense of significantly

increased solution time.
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Figure 5.11: 3D Pareto plots of the initial, NNTS and LITS Pareto sets. For comparison,
figures (B) and (C) also show the initial Pareto set (opaque marks), and the same colour map

is used to indicate the unit cost C in all three plots.

The final Pareto sets produced by NNTS, denoted by P ∗nn, and LITS, denoted by

P ∗li, are shown in Figure 5.11. which includes the initial Pareto set P ∗ for comparison.

As can be seen, the majority of solutions from P ∗ were discarded by both strategies,

with the exception of two relatively strong solutions, which are highlighted in Figure

5.12 and discussed later. It can also be seen that LITS produced slightly stronger and
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more diverse solutions in comparison to NNTS. This is not surprising, since LITS used

all three criteria to drive the search, while NNTS relied solely on cost and random

sampling. Figure 5.11 also indicates some clustering of solutions in both Pareto sets.

This is generally undesirable, but can be addressed easily by discarding very similar

solutions in P ∗li or by introducing an additional function during the LITS strategy

to penalise any non-dominated solution that does not add significant diversity to the

existing Pareto set.

θ φ σ̄ σmax C

1 0 124 240 1,127 1,417
2 3 180 235 1,006 1,446
3 4 23 237 1,126 1,445
4 10 163 232 1,016 1,474
5 15 128 236 997 1,491
6 35 128 256 912 1,634
7 40 123 264 937 1,525
8 49 119 227 928 1,627
9 70 88 265 964 1,519
10 85 93 265 971 1,502
11 86 180 156 979 2,063
12 114 117 215 1,083 1,627
13 119 122 209 948 1,632

θ φ σ̄ σmax C

p1 0 124 240 1,127 1,417
p2 3 180 235 1,006 1,446
p3 4 8 239 1,192 1,443
p4 4 13 238 1,209 1,444
p5 4 23 237 1,126 1,445
p6 8 180 231 1,025 1,450
p7 10 163 232 1,016 1,474
p8 15 149 234 982 1,474
p9 23 180 236 971 1,485
p10 40 123 264 937 1,525
p11 45 119 221 942 1,528
p12 51 115 223 912 1,530
p13 54 109 226 911 1,532
p14 55 103 213 922 1,535
p15 56 100 218 902 1,536
p16 59 95 263 947 1,486
p17 86 180 156 979 2,063
p18 90 178 173 923 2,113
p19 91 180 152 962 2,129
p20 119 122 209 948 1,632

θ φ σ̄ σmax C

1 0 124 240 1,127 1,417
2 3 175 236 1,037 1,446
3 4 8 239 1,192 1,443
4 4 13 238 1,209 1,444
5 8 180 231 1,025 1,450
6 15 149 234 982 1,474
7 23 180 236 971 1,485
8 40 123 264 937 1,525
9 45 119 221 942 1,528
10 51 115 223 912 1,530
11 54 109 226 911 1,532
12 55 103 213 922 1,535
13 56 100 218 902 1,536
14 59 95 263 947 1,486
15 86 180 156 979 2,063
16 90 178 173 923 2,113
17 91 180 152 962 2,129
18 119 122 209 948 1,632

NNTS Pareto Set (P ∗nn)

LITS Pareto Set (P ∗li)
Combined Pareto Set (P ∗li ∪ P ∗nn)

Figure 5.12: Schematic comparison of Pareto sets produced by NNTS and LITS. The
combined Pareto set resulting from the union P ∗

li∪P ∗
nn is shown in the middle, where solutions

belonging to P ∗
nn and P ∗

li are colour-coded in red and blue, respectively, and solutions shared
by P ∗

nn and P ∗
li are shown in black.
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Figure 5.13: 3D plot of the combined NNTS and LITS Pareto set, where P ∗
li denotes the

LITS Pareto set, P ∗
nn denotes the NNTS Pareto set, and P ∗ is the initial Pareto set.

To compare the LITS and NNTS strategies directly, the union P ∗li ∪ P ∗nn of the

respective Pareto sets was considered, where all dominated solutions in P ∗li∪P ∗nn were

discarded. The resulting combined Pareto set can be seen in Figure 5.12, where each

solution p is colour-coded blue if p ∈ P ∗li, or red if p ∈ P ∗nn. Figure 5.13 provides a 3D

plot of all non-dominated solutions found in the union P ∗li ∪ P ∗nn. As can be seen, 15

of the 20 non-dominated solutions in P ∗li ∪ P ∗nn were produced by the LITS strategy.

Moreover, two of the solutions in P ∗li ∪ P ∗nn were found in the initial Pareto set P ∗,
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and another two were found by both strategies. The two surviving solutions from P ∗

are highlighted in Figure 5.12; one of these solutions provides the lowest value of unit

cost in P ∗li ∪P ∗nn (p1 in Figure 5.13), while the other provides well-rounded scores for

all three criteria (p20 in Figure 5.13). As can be seen from Figure 5.12, two very good

solutions of σ̄ and σmax were produced by LITS, and another one is shared by both

strategies (p17 in Figure 5.13). However, it can be seen that these three solutions also

have the highest values of C.
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(d) p1 FEA. (e) p15 FEA. (f) p19 FEA.

Figure 5.14: Visual comparison of solutions p1, p15 and p19 in P ∗
li ∪P ∗

nn, which are the best
found solutions in terms of C, σmax, σ̄, respectively.

Figure 5.14 provides a visual comparison of the best solutions in terms of C,

σmax, σ̄. As can be seen, Solution p1 allows more parts to be placed in a single SLM

machine, and thus, provides the best cost for this geometry; however, as shown by

the FEA contour plot in Figure 5.14d, the flat top-facing edge contains a relatively

high concentration of residual stresses, as can be expected. Conversely, making the

concave face of the geometry top-facing, as done by p19 results in a smaller and
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more gradual input of heat in each layer of material during SLM. As can be seen,

this solution also produces regions of tensile stress in the top layers of the geometry,

however, these regions are smaller and more distributed than in p1. Solution p19 also

has the added benefit of inducing compressive residual stresses in the convex surface

of the geometry, as shown in Figure 5.14f; however, p19 can only fit two parts in a

single build, making it relatively uneconomical. Meanwhile, it can be seen in Figure

5.14b that p15 provides the lowest value of σmax, and a good overall residual stress

profile, with the majority of tensile stresses not exceeding 400 MPa. This solution

also provides a good value of C (£ 1,536), which is only moderately higher than the

cost of p1 (£ 1,417).

It is interesting to note that several; solutions in P ∗li ∪ P ∗nn (e.g. p15), provide

a better residual stress profile with only a moderate increase in cost over solution

p1, which was the “obvious” choice for a number of experienced SLM users in Rolls-

Royce. This demonstrates the importance of considering the residual stress profile

when selecting part build orientation in SLM, as well as considering a continuous

build orientation solution space, since the best solution may not necessarily be the

most obvious one.

Finally, it should be noted that σmax alone may not be the best indicator of build

failure risk for two reasons. Firstly, as shown in Figure 5.14 local concentrations of

stress should also be taken into consideration, along with stress magnitude. Secondly,

values of σmax predicted by the FEA range between 900 MPa and 1200 MPa, which

closely overlaps with the yield strength of Ti-6Al-4V (Kok et al., 2018) making it

difficult to distinguish between high quality and low quality solutions. Thus, a more

informative criterion could be based on the volume fraction of the part exceeding a

critical stress value (e.g. yield stress or UTS). However, it is not known what this

critical stress value should be exactly and what the acceptable fraction exceeding it

should be; the former is strongly dependent on specific build and material conditions

and so varies significantly in the literature, while the latter must be low enough to

avoid build failure but high enough to avoid over-constraining the problem. Further

experimental research is required to answer these questions, which is outside the scope

of this thesis.

5.7 Conclusion

The multi-objective optimisation problem of unit cost and residual stresses in SLM is

presented in this chapter. Since tensile stresses are known to be particularly damaging

in metals, two simple measures are used to evaluate residual stresses based on the

maximum principal stress criterion: mean tensile stress σ̄ and maximum tensile stress

σmax.

Due to the prohibitive computational cost of the FEA used to predict residual

stresses, two well-known approximation methods are applied to the problem, namely,

a nearest-neighbour model and a linear interpolation model, based on an initial DOE.
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The two approximation strategies are coupled with a multi-start Tabu search, which is

based on the work presented in Chapter 4 and is extended to solve the multi-objective

problem. The nearest-neighbour Tabu search (NNTS) provides a simple and fast

albeit naive method for finding a Pareto set. Because this approach is unable find

new values of stress (other than those already provided by the DOE) NNTS uses unit

cost only to drive the movements of the search. Conversely, the linear interpolation

Tabu search (LITS), which can interpolate new values of σ̄ and σmax, uses all three

objective criteria simultaneously to select movements at each iteration.

Both strategies were demonstrated on a single geometry of medium complexity,

and candidate solutions were discussed. It was shown that very good solutions (in

terms of residual stresses and cost) may not be the most obvious ones, even to an

experienced AM user. Thus, it is important to consider the residual stress profile

when selecting a build orientation for SLM; moreover, it is suggested that continu-

ous rotation should be selected over discrete methods (such as the 3D convex hull

approach discussed in Chapter 2), as the latter risks discarding good solutions.

Despite slightly higher maximum errors, LITS showed lower variability in the pre-

dicted results compared to NNTS, as can be expected. LITS also explored almost

twice as many candidate solutions as NNTS, and produced a more diverse Pareto set

with more non-dominated solutions than NNTS, which can be explained by the more

balanced movement strategy used by LITS. However, as mentioned previously, the di-

versity of both strategies could be improved further with an additional diversification

function that penalises very similar non-dominated solutions.

Finally, it is suggested that a more informative stress criterion could be based on

the volume fraction of the part exceeding a critical stress value, which could be the

subject of future research.
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Chapter 6

Cost Optimisation for Mixed

Batch Production

This chapter outlines the problem of cost-driven process planning for the MBP sce-

nario. The problem consists of three sub-problems: build orientation of multiple

parts, bin assignment and bin packing of pieces. As discussed in Chapter 2, existing

literature has addressed the build orientation of individual parts and bin packing

(into a single bin) as two separate problems, while bin assignment in AM is yet to be

addressed properly. Furthermore, there is currently no method to address all three

aspects of this problem simultaneously.

Thus, the main contribution of this chapter lies in formalising the above problem

and providing an iterative heuristic to optimise build orientation and bin packing in

a coupled way. The results of the proposed iterative heuristic are compared against

benchmark results provided by a commercial software, which solves the build orienta-

tion and bin packing problems separately. The heuristic outperformed the benchmark

by an average of 14.6%, in terms of build cost improvement, based on 27 test instances.

It should be noted that since the MBP problem is much more complex than

the IBP problem (addressed in Chapter 4), post-processing cost is not considered in

this chapter to avoid adding further complexity to the MBP problem. However, the

proposed heuristic can be easily extended to include post-processing as part of future

work. The work presented in this chapter has been converted into an article and

submitted to the European Journal of Operational Research.

6.1 Problem Description

Let G = {g1, . . . , gN} be a set of N unique 3D geometries, which are to be placed

into identical bins; it is assumed that enough bins are available to accommodate all

provided geometries, and the width, length and height of each bin are denoted by W ,

L and H, respectively. To account for multiple instances of identical geometries, each

g ∈ G corresponds to a quantity qg in Q = {q1, . . . , qN}. Because G contains different

unique geometries, the algorithm solving the MBP problem, must not only consider

the combined build orientation and bin packing problem, as in Chapter 4, but also
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the bin assignment of different geometries. Thus, the MBP problem is addressed in

the following two stages.

In the first stage, a favourable build orientation must be selected for each g ∈ G.

Each build orientation of g is represented by a 2D piece, denoted by pg. The quality

of each piece pg is determined based on its area ap, build height hp and total support

structure volume sp. As before, hp may not exceed H. A solution to this stage

produces a set of unique pieces P = {p1, . . . , pN}, where each piece pg ∈ P corresponds

to a geometry g ∈ G.

The second stage must solve a 2D bin packing problem (2DBPP) for the set of

pieces P , by assigning and packing all pieces into a minimum number of identical

bins of width W and length L. Since each unique geometry g has a quantity qg, the

2DBPP must pack qg copies of each piece pg ∈ P . This means that, by default, the

solution will place all instances of g in the same build orientation, which addresses

the build orientation constraint for critical parts discussed in Section 3.1.2. To allow

multiple instances of a non-critical geometry g to have different build orientations in

the same solution, each instance of g may be added separately to the set G; if this is

done, the quantity qg must also be updated. For example, if g has a quantity qg = 4,

then it can be added as four separate geometries in G, where each geometry has a

quantity qg = 1.

A solution to the second stage is given by a set of bins B = {b1, . . . , bM}, where M

is the total number of bins. Each bin is denoted by bi(Pi, Qi, pi, Xi, Yi), where Pi ⊆ P
and the vector Qi lists the quantity of each piece in Pi. During the search for a packing

solution (described in Section 3.5) the pieces are allowed to rotate continuously about

the vertical z-axis, hence, pi = {p1, . . . , pn} defines the 2D orientation of each piece.

As before, Xi = {x1, . . . , xn} and Yi = {y1, . . . , yn} define the x and y coordinates

of the reference point of each piece, respectively. The reference point of a piece is

the bottom left corner of its enclosing rectangle, corresponding to its 2D orientation.

Every piece in P must be placed completely inside the bins and may not overlap with

any other pieces or the no-build zones1.

The objective is to find a solution with M bins which yields the minimum total

production cost, as shown in Equation 6.1, where ci denotes the cost of bin i. Equation

3.1, which defines SLM build cost in Chapter 3, is adapted for the MPB problem and

provided in Equation 6.2.

min
M∑
i=1

ci (6.1)

ci = c1ti + c2ρ

ni∑
k=1

qk(vk + sk) (6.2)

where c1 and c2 are coefficients corresponding to indirect cost and material cost,

respectively; ti is the build time of bin i; and ρ is the material density. The number

1Please refer to Figure 3.17 in Chapter 3)
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of pieces in bin i is denoted by ni, where each piece k has a geometry volume vk,

support structure volume sk, and corresponds to a quantity qk. Similarly, Equation

6.3 provides an adapted version of build time taken from Equation 3.3.

ti = β1 + β2hi + β3

ni∑
k=1

qkvk + β4

ni∑
k=1

qksk (6.3)

where β1 - β4 are regression model coefficients and hi is the build height of bin i.

Combining equations 6.2 and 6.3 provides the following definition of ci for the MBP

problem:

ci = ω1 + ω2hi + ω3

ni∑
k=1

qksk (6.4)

ω1 = c1β1 + (c1β3 + c2ρ)

ni∑
k=1

qkvk, ω2 = c1β2, ω3 = c1β4 + c2ρ (6.5)

where ω1, . . . , ω3 are objective function coefficients. As before each piece in the so-

lution is defined by the angles θ and φ, such that θ ∈ [0o, 180o] and φ ∈ [0o, 360o).

For any geometry g ∈ G which contains symmetries, the initial build orientation and

input ranges of θ and φ should be modified as discussed in Section 4.2.1.

6.2 Iterative Tabu Search Procedure (ITSP)

From equations 6.1 and 6.4, it can be observed that the total build cost for a MBP

order is driven by the number of bins, the build height, and the total support structure

volume of each bin. As mentioned above, the problem must consider not only the

build orientation of each unique geometry g ∈ G, but also the bin assignment and

bin packing solution of their corresponding pieces. This results in a very large and

complex solution space, and what is known as an NP-hard problem. Currently, it is

infeasible to solve NP-hard problems in reasonable time by any exhaustive approaches,

and so a carefully designed heuristic approach is required.

makes the solution space much larger and more complex than in the case of the

IBP problem. Consequently, the Tabu search heuristic, which is proposed in Chapter

3, is unlikely to be able to explore the solution space sufficiently in reasonable time.

Thus, a new heuristic approach is developed in this chapter, which aims to guide the

TS to different promising regions of the solution space. This approach is called the

Iterative Tabu Search Procedure (ITSP) and consists of six distinct stages, where

each stage focuses on a different component of SLM build cost (Equation 6.4).

In the first stage, the ITSP generates an initial solution and establishes a lower

bound for the number of bins. This is achieved in the following steps. Firstly, an

initial set of 2D pieces P is generated for the input set of geometries G. The local

Tabu search is performed on each piece p ∈ P , to find an improved piece p∗ with

the minimum piece area a∗. Secondly, a 2DIBPP is solved for the resulting set P ∗,
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producing a solution with the smallest set of bins B. The remaining five stages

attempt to improve the cost of each bin b ∈ B, as follows:

Stage 2, the Single Bin Build Height Reduction (SHR) strategy aims to reduce

the build height of partially full bins, without disrupting the piece assignment.

Stage 3, the Single Bin Support Structure Volume Reduction (SSVR) strategy

reduces the support structure volume of each piece inside each partially full bin,

without disrupting the piece assignment.

Stage 4, the Pairwise Bin Build Height Reduction (PHR) strategy reduces the

build height of bins in pairs, allowing pieces to move between paired bins, in the hope

of improving the bin assignment.

Stage 5, the Pairwise Bin Support Structure Volume Reduction (PSVR) strategy

reduces the support structure volume of bins in pairs; once again, allowing pieces to

move between paired bins to further improve bin assignment.

Stage 6, the Bin Addition and Random Reassignment (BARR) strategy opens

a new empty bin and moves pieces selected randomly from existing bins into the

new bin. The remaining pieces in each disrupted bin are re-oriented and repacked to

reduce its cost.

Figure 6.1 provides a schematic summary of key steps in each of the six stages;

where G denotes a set of geometries with a corresponding set of quantities Q; P

denotes a set of pieces, where each piece p has a corresponding area ap, height hp and

support structure volume sp; and B is a set of bins in the solution, which is updated

at each stage of the procedure. A detailed description of each stage is provided in

the remainder of this section. As referenced in Figure 6.1, Section 6.2.1 provides a

detailed methodology for SHR; Section 6.2.2 describes SSVR; Section 6.2.3 describes

PHR; Section 6.2.4 describes PSVR; and Section 6.2.5 describes BARR. As indicted

in Figure 6.1, each stage uses a local Tabu search to update pieces, as discussed in

Section 6.3. Whenever pieces are updated a new 2DIBPP must be solved; to do this

the algorithm discussed in Section 3.5 is used.

6.2.1 Single Bin Build Height Reduction (SHR)

A typical initial solution can be expected to contain at least one “weak” partially full

bin, as demonstrated in Figure 6.2. Unlike in many traditional cutting and packing

(C&P) problem applications, such as the ceramic tile and sheet metal industries,

minimising the utilised space inside the weak bin does not offer any benefit in the

context of SLM, since the wasted machine space cannot be recycled after the build.

Instead, the build orientation of each piece in Figure 6.2a can be changed in a way

that reduces the build cost of the bin, as shown in figures 6.2b and 6.2c. Modifying

the build orientation of the two pieces will change their shape and likely increase their

area, however, the chances of successfully repacking these two pieces into a single bin

are high given the very low bin utilisation. The SHR strategy exploits this scenario.

As shown in Figure 6.1, the set of bins B = {b1, . . . , bM} given by the initial

solution is sorted by non-increasing utilisation and only bins with Ui < uweak are
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Tabu Search
(Section 6.3)

2DIBPP Algorithm
(Section 3.5)

Stage 1: Initial Solution with Minimum Bins

Stage 2: Single Bin Build Height Reduction (SHR) (Section 6.2.1)

Stage 3: Single Bin Support Structure Volume Reduction (SSVR) (Section 6.2.2)

Stage 4: Pairwise Bin Build Height Reduction (PHR) (Section 6.2.3)

Stage 5: Pairwise Bin Support Structure Volume Reduction (PSVR) (Section 6.2.4)

Stage 6: Bin Addition and Random Reassignment (BARR) (Section 6.2.5)

Start
For each gk in G
generate piece pk

For each pk in
P minimise apk

Pack all pieces in P ∗

Sort B by utilisation;
take pieces Pi from bin bi

Sort all pk in Pi by
non-increasing hpk

Minimise hp1
of piece p1

Set p1 ← p∗1;

repack Pi into bi

Sort B by utilisation;
take pieces Pi from bin bi

Sort all pk in Pi by
non-increasing spk

Minimise spk
of piece pk

Set pk ← p∗k;

repack Pi into bi

Sort B by build cost;
take Pij from bi and bj

Sort all pk in Pij by

non-increasing hpk
Minimise hp1

of piece p1

Set p1 ← p∗1; repack

Pij into bi and bj

Sort B by build cost;
take Pij from bi and bj

Sort all pk in Pij by
non-increasing spk

Minimise spk
of piece pk

Set pk ← p∗k; repack

Pij into bi and bj

Select random
bin br from B

Select random
piece pq from Pr

Minimise cost
of Pr \ {pq}

Update and repack
(Pr \ {pq})∗ into br

Open new empty
bin bM+1

bM+1 full? Pack pq into bM+1

Return best solution

G,Q P P ∗

B = {b1, . . . , bM}
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updated B
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updated B

Pij p1 p∗1

updated B
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updated B

Pr
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Yes
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Figure 6.1: Schematic overview of the ITSP; for the sake of readability, only a single
iteration of each stage is shown. Key steps in each stage are shown in blue boxes, while grey
boxes indicate which steps use the Tabu search and the 2DIBPP algorithm in each stage,

respectively.

considered, where uweak denotes the threshold for weak bins. For each bin bi, the set

of pieces Pi = {1, 2, . . . , n} is sorted by non-increasing height. The tallest piece p1 is

selected and a local Tabu search is performed to minimise the height of p1, where the

resulting piece is denoted by p∗1. If the height of p∗1 is lower than the height of p1, P

is updated, such that p1 ← p∗1, and repacked using the 2DIBPP algorithm. Since the

number of bin in P is kept fixed during this stage, the bin assignment in the 2DIBPP

is skipped and the problem is reduced to a single-bin packing problem.

If bi contains multiple instances of p1, those instances must also be updated. For

this reason Pi contains only unique pieces, and has a corresponding set of quantities

Qi = {1, 2, . . . , n}, thus, p1 only needs to be updated once in Pi. However, if a

bin other than bi contains an instance of p1 that bin must also be updated, so an

additional check is performed on all bins in B \ bi2.

2Set B excluding bi.
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Figure 6.2: Initial solution produced by the first stage in the ITSP, with average bin
height of 116.5 mm. Improved solution produced by SHR, with average bin height reduced

to 103.5 mm.

If all bins containing p1 are repacked successfully, the solution is updated and

the process repeats, until no further height reduction can be achieved in bi. If the

SHR strategy fails to achieve a height improvement, either during the Tabu search

or during repacking, the strategy will move on to the next bin in B. The strategy

terminates when all bins b ∈ B with Ub < uweak have been addressed. It should be

noted that any solution which successfully reduces build height is accepted by the

SHR strategy, so it is possible for the current solution cost to temporarily increase

during this stage in the ITSP.

6.2.2 Single Bin Support Structure Volume Reduction (SSVR)

SSVR follows a very similar procedure to SHR; the only differences being the iteration

of pieces in Pi, and the Tabu search objective, where height is replaced with support

volume structure. Because the build height of bi is determined by the tallest piece in

Pi, each iteration of SHR sorts Pi by non-decreasing height and only applies the TS

to the first piece in Pi, denoted by p1. In contrast, the support structure volume of

each piece can be reduced independently of other pieces. Hence, the SSVR strategy

sorts Pi only once, in order of non-decreasing support structure volume, and iterates

through each piece pk, until k = n, where n is the length of Pi. Similarly to SHR,

the SSVR strategy accepts any solution which reduces the support structure volume,

including solutions with increased build cost.

6.2.3 Pairwise Bin Build Height Reduction (PHR)

In addition to improving individual pieces in each bin, the bin assignment can also be

improved. To do this the PHR and PSVR stages address bins in pairs. As before, the

former addresses the height and the latter addresses the support structure volume

of pieces. Unlike SHR and SSVR, PHR and PSVR address every possible pair of

bins regardless of their utilisation. By pairing strong bins with weaker ones and

by allowing the pieces to move between them, the PHR and PSVR strategies aim
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to further utilise empty spaces within the weak bins and increase the freedom of

movement inside strong bins.

As shown in Figure 6.1, the first step in PHR sorts the current set of bins B by

non-increasing build cost. The second step takes a set of pieces Pij = Pi ∪ Pj from a

pair of bins bi and bj in B, where i < j. The third step orders Pij by non-increasing

height and the fourth step performs a Tabu search to minimise the height of the

tallest piece p1. If this search is successful, the resulting piece p∗1 is accepted, so that

p1 ← p∗1 in Pij , and the final step in PHR solves a 2DIBPP for Pij . Additionally, if

any bin ba in B \ bi, bj contains a duplicate of p1, that bin must also be repacked,

by solving a Knapsack problem for the updated set of pieces Pa. If the resulting

Knapsack solution fails to place all pieces in Pa, the whole solution is rejected.

Finally, if Pij is successfully packed into a maximum of two bins b∗i and b∗j , where

the combined cost of b∗i and b∗j is lower than the cost of bi and bj , the new solution

is accepted and B is updated. Following this, Pij is sorted by non-increasing height

again and the process repeats until no further cost improvement can be made to bi

and bj ; at which point PHR updates i ← i + 1 and j ← j + 1, and the above steps

are repeated for the next pair of bins. PHR terminates when all pairs in B have been

permuted.

6.2.4 Pairwise Bin Support Structure Volume Reduction (PSVR)

The PSVR strategy closely mirrors the steps in PHR, substituting support structure

volume for height as the Tabu search objective. The main difference between these

two strategies is that PSVR sorts Pij by non-increasing support structure volume,

once for every pair of bins, then performs a Tabu search to minimise the support

structure volume of every piece pk in Pij , as opposed to only the tallest piece p1 as

done in PHR. The reason for this is explained in Section 6.2.2. After every successful

Tabu search, all bins containing pk must be repacked and the updated Pij is repacked

into a maximum of two bins. If the repacked solution is both feasible and lower in

cost than the current solution, this solution is accepted as the current solution and

B is updated.

6.2.5 Bin Addition and Random Reassignment (BARR)

Each of the four strategies described above tries to reduce the cost of the solution

without increasing the overall number of bins. In contrast, this final stage of the ITSP

explores the possibility of reducing the overall cost of the solution at the expense of

adding an extra bin.

Following the improvement of individual bins in SHR and SSVR, and the bin

assignment improvement in PHR and PSVR, it is going to be increasingly difficult

for the ITSP procedure to find further feasible movements in the solution. Thus,

the solution must be disrupted slightly in order to create addition free space in the

current set of bins B. The BARR strategy does this by introducing a new empty
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bin, denoted by bM+1, and by reassigning pieces from the original bins in B to bM+1.

This leaves additional free space in the disrupted bins, which can be used to further

improve the build orientations of remaining pieces.

To encourage solution space exploration, pieces to be moved are selected randomly.

Thus, to select a piece for reassignment, the BARR strategy selects a random bin

br ∈ B, then a random piece pq ∈ Pr, where Pr is a set of pieces corresponding to br.

To avoid re-visiting previously attempted pieces, pq is stored in a “Tabu list” (which

is unrelated to the actual Tabu search). If pq is placed into bM+1 successfully, the

overall cost of the remaining set of pieces in br is minimised using the local Tabu

search. This is done iteratively for each piece in Pr \ {pq}, using the change in cost

to drive the search. For clarity, the details of this search are explained separately in

Section 6.3.

If the Tabu search is successful, the next step is to repack the updated pieces,

denoted by (Pr\{pq})∗, into br. If the packing is unsuccessful, a piece p∗ ∈ (Pr\{pq})∗

with the smallest reduction in cost is reverted back to its original build orientation,

such that p∗ ← p, and the packing is attempted again. This process is repeated

until all pieces are successfully packed or until all pieces have been reverted to their

original state. In the latter case, the solution yields no cost improvement and is

therefore rejected. The procedure terminates either when a maximum number of

no-improvement iterations is reached or when bM+1 is full – whichever occurs first.

6.3 Local Tabu Search

The Tabu search heuristic has already been introduced and discussed in detail in

Section 4.2. In addition to its simplicity and its ability to escape local minima,

it is also more greedy than other popular heuristics (e.g. Simulated Annealing),

since it must always move to the best available neighbour of the current solution.

Furthermore, by adding visited solutions to the Tabu list, the TS is able to explore

the solution space more effectively in a short amount of time, than a heuristic which

is allowed to return to visited solutions.

As indicated in Section 6.2, each stage in the ITSP is required to perform a local

search for numerous pieces in reasonable solution time, making TS a suitable local

search heuristic due to its greedy nature. The local TS search used in the ITSP, has

the same basic steps and local neighbourhood structure as those used in Chapter 4.

For clarity, the updated pseudo-code is shown in Figure 6.3; where E denotes the local

neighbourhood step size; Lsize denotes the size of the Tabu list; and Inmax denotes

the maximum number of consecutive non-improvement iterations. As outlined above,

the attribute Obj(p) used to evaluate piece p depend varies with each ITSP stage:

• For the initial solution Obj(p)← ap, where ap is the area of p;

• For SHR and PHR Obj(p)← hp, where hp is the height of p;
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• For SSVR and PSVR Obj(p) ← sp, where sp is the support structure volume

of p;

• Finally, for BARR Obj(p) ← ∆cb, where ∆cb is the change in cost of bin b,

which contains p.

Input: pin, E, Lsize, Inmax

Result: pb

1 pc ← pin;

2 pb ← pc;

3 In ← ∅;

4 TabuList← ∅;
5 while In < Inmax do

6 Construct neighbourhood PN (pc) for pc using step size E;

7 Return best solution p′ ∈ PN (pc);

8 if TabuList.Size > Lsize then

9 Remove oldest entry in TabuList;

10 end

11 Add pc to TabuList;

12 Set pc ← p′;

13 if Obj(pb) > Obj(pc) then

14 In ← ∅;

15 pb ← pc;

16 end

17 else

18 In ← In + 1;

19 end

20 end

Figure 6.3: Pseudo-code of local TS used in the ITSP, where pin, pc and pb denote the
initial, current and best solution, respectively; and Obj(p) denotes the piece attribute used

to evaluate piece p.

To reduce the overall cost of bin b, the TS must consider the set of bin pieces

Pb collectively. Prior to the search, the pieces in Pb are sorted by non-increasing

height. Starting from the tallest piece, the algorithm attempts to improve the build

orientation of each consecutive piece p ∈ P , with the objective of minimising the

negative cost difference ∆cb of bin b. To calculate ∆c Equation 6.6 is used at each

iteration.

∆cb = c1∆h+ c2∆s (6.6)

where ∆h = hk − hin and ∆s = sk − sin

where ∆h denotes the change in build height, ∆s denotes the change in support

structure volume, and c1 and c2 are their respective cost coefficients; hin and sin

are the build height and support structure volume, respectively, corresponding to

the initial piece in the local TS; while hk and sk are the build height and support

structure, respectively, corresponding to the kth iteration of the local TS. It follows

that all pieces in Pb must be updated and sorted by non-increasing height after each
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iteration of the TS. As can be seen from the above equations, negative values of ∆c

indicate a cost improvement, while positive values indicate a cost increase.

Because all pieces in Pb are updated simultaneously, the increase in area of each

piece p ∈ Pb must be moderated, so as to maximise the likelihood of b being repacked

successfully after Pb is updated. Therefore, only a limited increase in area is permitted

for each p ∈ Pb as shown in line 16 of Figure 6.4, where amax is an additional

hyperparameter. The pseudo-code of this updated Tabu search is shown in Figure

6.4.

Input: Pb, E, Lsize, Inmax , amax

Result: Updated Pb

1 Sort Pb by non-increasing height;

2 foreach p ∈ Pb do

3 Set TabuList← ∅;
4 Set n← ∅;

5 Set current bin height hb to height of tallest piece in Pb;

6 Set initial area ain ← ap, where ap is the area of p;

7 Set current piece pc ← p;

8 while In < Inmax do

9 if TabuList.Size > Lsize then

10 Remove oldest entry in TabuList;

11 end

12 Add pc to TabuList;

13 Construct neighbourhood PN (pc) for pc using step size E;

14 Return best neighbour p′ ∈ PN (pc) with minimum ∆cp;

15 Set pc ← p′;

16 if
apc−ain
ain

≤ amax then

17 if ∆cpc < 0 then

18 In ← ∅;

19 Replace p with pc in Pb and sort Pb by non-increasing height;

20 Update current bin height hb to height of tallest piece in Pb;

21 end

22 else

23 In ← In + 1;

24 end

25 end

26 else

27 Exit while loop;

28 end

29 end

30 end

Figure 6.4: Pseudo-code of local TS used in the BARR strategy, where Pb denotes the set
of pieces belonging to bin b and pc denotes the current piece.

6.4 Implementation

The ITSP is implemented in C# using the Visual Studio 2012 development environ-

ment, and parallelised where appropriate. To solve the MIP problem for the 2DIBPP

the commercial solver Gurobi (version 6.5.2) is used. Tests were performed on a i7-

3820 four core machine, with 2.70 GHz maximum frequency, eight logical processors

and 16GB of RAM.
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To ensure good performance of the ITSP, a number of parameters needed to be

tuned. Firstly, a utilisation of 0.85 was considered to be the threshold between strong

and weak bins. Secondly, the acceptance condition for each new build orientation was

set to a minimum reduction of 1 mm when improving build height (i.e. 50 layers),

and minimum reduction of 100 mm3 for support structure volume (i.e. just under a

gram of material). Movements below these thresholds were not considered worthwhile

since they would yield negligible cost improvements. In the SHR and SSVR stages,

solutions are allowed to temporarily increase the cost up to a limit of 1%, in the hopes

of finding a better solution by delaying convergence. Finally, the maximum piece area

increase in the Tabu search is constrained to 30% during the BARR stage. This value

was selected after constraint values of 15% and 20% proved to be too stringent in the

preliminary results.

The Tabu search parameters are perhaps the most crucial in determining the

success of this procedure. Namely, these are the size of the Tabu list; the step size in

each local neighbourhood; the maximum area constraint where applicable; and the

number of no-improvement iterations before termination.

6.4.1 Tabu Search Parameters

As can be seen, the ITSP is designed to iterate between modifying build orientations

and repacking numerous times throughout the search, where many repacking attempts

can be expected to fail. Therefore, the aim should be to try out many promising build

orientations relatively quickly, rather than spending a long time on searching for a

very good build orientation that may ultimately lead to an infeasible bin packing

solution. Following this logic, the TS step size and termination condition are selected

to encourage the local search to find “good enough” build orientations quickly, rather

than attempting a more prolonged search for a better build orientation.

Thus, the following three strategies were considered: Decreasing Step (DS), Ran-

dom Step (RS) and Fixed Step (FS). At each iteration of the Tabu search, RS sets

the step size to a random integer value between 1o and 30o, while FS keeps the step

size fixed at 5o throughout the search. The DS strategy starts with an initial step

of 15o, which is then multiplied by a reduction factor of 0.85 at each iteration. In

all cases the search is terminated after eight iterations without improvement and the

Tabu list stores 10 most recent build orientations.

Following the results of Chapter 4, the rationale behind the DS strategy is to

quickly cover the solution space with a relatively large initial step and compare a

number of potential local minima, before converging on the best local minimum with

a decreasing step size. This is similar to the strategy discussed in Section 4.4.2, expect

that the DS strategy does not wait for an initial convergence, instead, the step size is

kept constant for the first three iterations before applying the reduction factor. This

prevents the search from getting stuck if the initial solution happens to fall in a local

minimum.
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Test Pieces
Objective Improvement (%) No. of Iterations Solution Time (s)

DS RS FS DS RS FS DS RS FS

Aero housing 1 11.8 11.8 12.7 12 20 12 72 93 74
Aero housing 2 27.4 28.4 14.4 26 25 12 57 27 27
Alcoa bracket 41.2 52.4 48.1 11 24 32 37 61 107
Bearing block 52.9 51.2 51.5 32 14 12 24 15 10
Combustor plate 1 45.6 41.2 41.8 13 19 15 23 60 25
Combustor plate 2 85.8 84.4 84.4 11 13 11 312 326 340
Control arm 56.8 58.9 62.8 11 17 12 5 7 6
Engine block 0.9 0 1.3 16 8 9 4 2 2
GE bracket 26.5 21.6 20.0 25 16 26 378 458 441
Gear 0 0 0 8 8 8 0.4 0.6 0.4
Impeller 71.0 69.0 69.2 14 11 19 4, 989 7, 900 6, 325
RC Jet bracket 34.7 32.7 31.6 18 19 28 1, 996 3, 325 3, 112
RC Jet NGV ring 53.6 52.6 49.0 10 10 12 92 193 69
Seal segment 70.6 76.7 72.3 10 37 12 69 148 84
Sector 82.5 80.0 79.5 10 11 19 11 48 19
Swivel hinge 0 0 0 8 8 8 2 2 2
Turbine blade 40.7 40.8 40.2 12 20 19 245 607 367
Turbine wheel (Baumers) 0 0 0.6 8 8 10 23 41 31
Turbine wheel (turbocharger) 67.5 66.3 28.7 26 15 14 264 456 173
ULA bracket 50.2 39.7 13.4 20 18 25 105 105 116

Average 41.0 40.4 36.1 15.5 17.2 15.7 576 901 759

Table 6.1: Results for DS, RS and FS tested on 20 pieces.
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Figure 6.5: Comparison of DS, RS and FS performance, based on objective improvement
and number of iterations to final solution.

The three strategies were tested on 20 different pieces with the objective of re-

ducing the area of each piece. Table 6.1 presents the results using three measures of

performance: objective improvement, which is the difference in piece area between

the initial and best solutions; number of iterations before termination; and the total

solution time for each piece. Both DS and RS outperform FS in terms of objective

improvement, while FS and DS outperform RS in terms of iterations and solution

time.

In general, DS outperforms both RS and FS for the majority of tested pieces.

This is demonstrated by the two graphs shown in Figure 6.5. For each tested piece,

the three strategies were ranked as ’Largest Improvement’ (LI), ’Medium Improve-

ment’ (MI) and ’Smallest Improvement’ (SI) based on the objective improvement, as

shown in Figure 6.5a; and similarly ranked based on the number of iterations to final

solution, as shown in Figure 6.5b. Two out of the 20 tested pieces (’Gear’ and ’Swivel

hinge’) were ranked as ’Draw’ (D), as all three strategies yielded no improvement and

terminated after eight iterations. Based on these results, we employ the DS strategy
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in the Tabu search throughout the ITSP.

6.4.2 Test Data

The bin geometry and dimensions are the same as in other experiments, and can

be found in Figure 3.17, with bin width W and length L set to 240 mm, and height

H set to 275 mm. As before, the indirect cost rate is set to 26.64£/h, while the

material cost calculation is based on CoCr, a high-performance alloy commonly used

in gas turbine applications, with a density of 8.3 g cm−3 and cost rate of 237.95£/kg3.

Similarly, the regression coefficients used in the build time model are based on CoCr

alloy data, which is shown in Appendix A. All parameters settings are summarised

in Table 6.2. It is assumed that all parts are built directly on the SLM build plate

without any base support structure, and support structure density is set to 100% (i.e.

assumed fully solid).

Parameter Value Units Definition

c1 26.64 £/h Indirect cost coefficient

c2 237.95 £/kg3 Material cost rate

ρ 8.3 g cm−3 Co-Cr density produced by SLM

β1 0.5 h SLM constant time coefficient

β2 1.16× 10−1 h mm−1 SLM recoat time coefficient

β3 2.04× 10−4 h mm−3 SLM part exposure time coefficient

β4 8.33× 10−5 h mm−3 SLM support structure time coefficient

αsup 45.0 o Minimum unsupported build angle

ρsup 100 % Density fraction for lattice support structure

d0 10.0 mm Minimum distance between pieces in 2DIBPP

L 50.0 mm Maximum edge length in 2D piece polygon

Table 6.2: Summary of cost coefficients and modelling parameters.

To test the ITSP, a total of 27 instances have been generated manually using the

geometries listed in Appendix D. Out of 68 geometries, 24 were taken from literature,

41 were taken from GrabCAD, an online open-source community for sharing 3D ge-

ometry files, and three geometries were provided by Rolls-Royce plc. Additionally,

three of the components taken from GrabCAD were specifically designed for SLM and

were produced by three real-case design challenges sponsored by Alcoa, General Elec-

tric (GE) and United Launch Alliance (ULA), respectively. The generated instances

are shown in Table 6.3.

The first six instances in Table 6.3 vary the number of pieces – where ’SI’, ’MI’ and

’LI’ are used to denote small, medium and large instances, respectively. Geometries

were selected randomly to generate two instances of each size: SI1 and SI2 containing

10 geometries; MI1 and MI2 containing 25 geometries; and LI1 and LI2 containing

40 geometries. To limit computational expense, the remaining instances are fixed

at a size of 25 geometries; this is also deemed a reasonable value for a low volume

on-demand production scenario.

Instances containing geometries of low (LAV1), medium (MAV1) and high (HAV1)

average volume were generated. Based on the available 68 test geometries, these in-

stances are designed to approximately correspond to 4,500 mm3 for LAV1, 20,000
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Instance N D Avg. Vol. (mm3) Vol. Std. Dev. (mm3) Avrg. VR Avrg. SA (mm2) Avrg. MLR Avrg. no. of Facets

SI1 10 0 37,078 32,232 21,870 0.19 0.22 46,893
SI2 10 0 60,412 81,256 22,665 0.24 0.28 27,198
MI1 25 0 35,551 35,232 21,372 0.19 0.22 55,921
MI2 25 0 42,980 56,650 24,099 0.20 0.27 42,290
LI1 40 0 32,687 49,707 21,257 0.21 0.23 56,657
LI2 40 0 38,652 48,822 20,992 0.20 0.25 51,622
LAV1 25 0 4,791 3,912 7,413 0.22 0.13 39,344
LAV2 25 5 4,794 3,819 7,686 0.22 0.12 41,084
LAV3 25 12 4,500 4,064 7,658 0.24 0.13 51,138
MAV1 25 0 20,290 8,205 15,822 0.22 0.24 56,218
MAV2 25 5 19,938 8,275 15,517 0.23 0.24 57,756
MMV3 25 12 20,475 6,932 15,528 0.21 0.23 56,311
HAV1 25 0 70,152 50,441 36,265 0.18 0.32 101,244
HAV2 25 5 70,709 49,632 36,877 0.18 0.29 97,053
HAV3 25 12 70,412 49,159 36,331 0.18 0.29 71,158
LSDV 25 3 17,283 6,073 15,735 0.21 0.23 35,338
MSDV 25 3 29,718 21,747 20,692 0.18 0.22 96,728
HSDV 25 4 47,536 65,326 20,718 0.25 0.20 54,903
LVR 25 4 27,746 26,368 28,078 0.07 0.28 71,167
MVR 25 4 39,306 34,097 20,413 0.16 0.23 115,934
HVR 25 4 57,222 90,786 16,928 0.29 0.20 51,093
LMLR 25 4 7,922 9,679 5,624 0.31 0.09 32,722
MMLR 25 4 34,837 27,383 20,585 0.14 0.22 104,884
HMLR 25 4 48,226 55,593 30,169 0.13 0.33 124,617
LSA 25 3 6,786 8,707 4,250 0.31 0.14 19,561
MSA 25 4 19,487 15,310 15,107 0.15 0.23 50,277
HSA 25 3 63,952 53,593 39,780 0.12 0.31 82,144

Table 6.3: ITSP test instances. N is the total number of geometries and D is the number
of duplicate geometries. SA is the surface area, VR is the volume ratio and MLR is the

maximum length ratio.

mm3 for MAV1 and 70,000 mm3 for HAV1. Duplicate geometries were also consid-

ered by generating two more instances of each type, with 20% (LAV2, MAV2, HAV2)

and 50% (LAV3, MAV3, HAV3) of the total geometries being replaced with dupli-

cates, respectively, while keeping all other variables at approximately the same values.

Realistically, a few duplicates can be expected in a typical batch of parts, hence, this

value is set to 12-16% of the total geometries for all remaining instances.

In addition to the size of pieces, the distribution of piece size has an equally

direct effect on the success of the packing solution. For this reason, instances with

low (LSDV), medium (MSDV) and high (HSDV) standard deviation of volume are

also presented in Table 6.3.

The LSA, MSA and HSA instances correspond to low, medium and high average

surface area of geometries, respectively, which has been suggested to have a correlation

with the build time of SLM (Rickenbacher et al., 2013; Zhang et al., 2015).

Finally, the concavity and compactness of geometries can determine how well the

pieces might fit together inside the bin, as well as how much support structure may

be required. To quantify these two properties, two additional parameters have been

introduced, namely, maximum length ratio (MLR) and volume ratio (VR). MLR is

measured by taking the longest vector that fits inside the geometry and dividing its

magnitude by the longest vector which fits inside the machine build envelope (i.e. a

diagonal line between the front-bottom-left corner and the back-top-right corner of

the bin). The VR is a ratio of the geometry volume divided by the volume of its

bounding box. Instances of low, medium and large values were generated for both

MLR and VR resulting in LMLR, MMLR and HMLR and LVR, MVR and HVR,

respectively.
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6.5 Computational Results

6.5.1 Analysis of ITSP Strategies

To analyse the effectiveness of the ITSP the cost improvement for each of the five

stages in the procedure is compared relative to the initial solution. For clarity, the

cost improvement, denoted by CI, is defined by Equation 6.7 for the overall ITSP,

and Equation 6.8 for each stage in the procedure.

CI = Si −
Smin
Si

(6.7)

where Si is the cost of the initial solution and Smin is the cost of the best solution at

the end of the ITSP.

CI = S∗i −
S∗min
Si

(6.8)

where Si is the cost of the initial solution in the ITSP; S∗i is the cost at the beginning

of each stage; and S∗min is the cost of the best solution found during that stage.

It should be noted that a negative value of CI indicates an increase in the overall

solution cost (i.e. negative improvement), and vice versa. Table 6.4 shows the average,

best and worst CI produced by each stage and the overall ITSP, for the 27 tested

instances; while Figure 6.6 shows the distribution of CI for each stage. As indicated

by Table 6.4, SHR yielded mixed results, producing the single largest improvement

(25.1% for the LSA instance) out of all the stages, but failing to reduce the cost for

more than half of the tested instances, two of which resulted in a slight cost increase

of 0.2%. On the other hand, SSVR produced the best results on average, followed

closely by PSVR, as can be seen in Figure 6.6. The PHR and BARR stages yielded

the least cost improvement, averaging 0.4% and 1.5%, respectively, and resulted in

no improvement for majority of instances.

Average CI (%) Best CI (%) Worst CI (%) Average T (s)

SHR 2.6 25.1 -0.2 994
SSVR 6.7 22.6 0.2 7,758
PHR 0.4 4.0 0.0 668
PSVR 4.9 22.1 0.0 10,910
BARR 1.5 8.9 0.0 5,750
ITSP 16.0 31.0 4.0 29,092

Table 6.4: Summary of computational results showing average, best and worst cost im-
provement and average solution time for each stage in the procedure, as well as the overall

ITSP. Cost improvement and solution time are denoted by CI and T , respectively.

There are a number of possible reasons why SHR and PHR performed worse than

SSVR and PSVR. Firstly, this could be a natural outcome of the objective function,

which is driven by support structure volume both through build time and material

cost, while the build height parameter only influences the former. Consequently, the

weight of support structure is likely to be higher than the weight of build height

in the cost function, and since these two objectives are often conflicting, reducing

build height may result in a higher overall cost, as in the case of the worst solution
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Figure 6.6: Histogram of cost improvement shown for each stage in the ITSP. Cost im-
provement is denoted by CI (%).

in Table 6.4. This is further supported by Figure 6.7, which compares the average

variation in height (hR), support structure volume (sR), bin utilisation (uR), and cost

(cR) during each stage in the ITSP. It can be observed that the variations in hR are

much smaller than sR, with the cost reduction trend closely following that of sR. In

fact the hR gradient shows a slight increase during SSVR and PSVR, indicating that

cost improvements were gained by reducing support structure at the expense of build

height. The dominance of support structure volume is also likely due to the fact that

support structure density has been kept at 100% for these experiments, as indicated

in Table 6.2; this value can be easily changed by the user.
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Figure 6.7: A comparison of the change in total support structure volume sR, average build
height of bins hR, average bin utilisation uR and total build cost cR through the different
stages of the ITSP, relative to the initial solution (IS). The values of sR, hR, uR and cR are
calculated as a percentage difference between the initial solution and the best solution at the

end of each stage, averaged across all test instances.

Another reason is that the SHR and PHR stages fail more often than SSVR and

PSVR. This is partly due to the inverse correlation between the height and base
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area of the geometries; for example, when a tall prism with a small cross-section is

moved from an upright position to resting on its side, the height of the piece decreases

while piece area is increased. On the other hand, the relationship between support

structure volume and piece area is weaker, since support structure is more dependent

on the complexity and overhanging surface area of the geometry, than its aspect ratio.

Furthermore, since build height can only be reduced by repositioning the tallest piece

in the bin, SHR and PHR are only guaranteed as many iterations as there are bins

(or pairs of bins) in the solution. Since most test instances in this paper were packed

into a maximum of four bins, the SHR often failed after only four iterations, or less.

In contrast, the SVR and PSVR stages iterate through every piece in the solution,

regardless of the previous iteration – thus having greater chances of success. The

upside of this is that both SHR and PHR terminated relatively quickly compared to

SSVR and PSVR, as shown in Table 6.4.

Finally, the cost reduction yielded by SHR and PHR, is not dependent on the

height of the tallest piece, but rather on the height difference between the two tallest

pieces; this is in contrast to SSVR and PSVR, where pieces are independent of each

other. This explains why SHR occasionally produces significant cost improvements for

instances such as LSA, shown in Figure 6.8, which consists of mostly small geometries

and a few larger rod-shaped geometries, while failing to produce a large enough height

decrease in most other instances.
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(a) 1st iteration. U = 0.14, H
= 177.8mm.
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(c) 7th iteration. U = 0.41, H
= 65.4mm.

Figure 6.8: Solution steps for the LSA instance; (a) shows the initial solution, (b) shows
an intermediate SHR solution and (c) show the final best solution produced by SHR. U and

H denote bin utilisation (based on uninflated pieces) and build height, respectively.

Similarly, the poor results produced by PHR could be explained by a large increase

in piece area after the Tabu search, and consequent failure of the 2DIBPP algorithm

to find a feasible solution; Figure 6.7 shows that only a moderate increase in bin

utilisation was achieved after PHR, compared to the subsequent PSVR stage.

As described in Section 6.2.3, PHR addresses bins in pairs in order to further utilise

empty bin space in the solution. However, a successful iteration only guarantees a

reduction in the height of the taller of the two bins; the height of the second bin is

determined arbitrarily by the bin assignment during repacking. Thus, the PHR stage

may be improved by considering the build height of the second bin as a constraint
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in the 1D bin packing model and the assignment mending strategy in the 2DIBPP

algorithm.

BARR is quite different to the other four stages in the ITSP. The purpose of this

final stage in the procedure is to jump to an unexplored area in the solution space by

adding an extra bin to the more-or-less converged solution at the end of PSVR. For

18 test cases no cost improvement was found and the number of bins remained the

same, while in the other ten instances a cost reduction of up to 8.9% was gained by

adding an extra bin, increasing the average number of bins from 2.2 to 2.6, as shown

in Table 6.5. At this point it could be argued that in cases where BARR produced

only a negligible cost improvement (e.g. < 1%) the solution should be reverted to

the best found solution at the end of PSVR, as the very small cost improvement does

not justify the use of an additional bin. The best improvement (8.9%) produced by

BARR was for the MMLR instance, which is shown in Figure 6.9 and Figure 6.10.
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Figure 6.9: Solution for the MMLR test instance at the end of PSVR.
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Figure 6.10: Solution for the MMLR test instance at the end of BARR.

6.5.2 Benchmarking

Due to the novelty of the problem, the ITSP procedure cannot be reproduced exactly

by any currently existing method or software; instead, the initial solution of the ITSP

is benchmarked against the commercial software Magics (version 20.03). The bench-

mark results were produced in the following two steps, keeping manual intervention
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to a minimum. Firstly, the build orientation of each geometry was optimised for

minimum projected 2D area (i.e. piece area); secondly, all parts were placed into the

minimum number of bins while keeping the build orientations fixed. As in the ITSP,

a minimum distance of 5mm was maintained between all packed parts.

Initial ITSP Final ITSP Magics
DI (%) DF (%)

C (£) T (h) M C (£) T (h) M C (£) T (h) M

SI1 4,893.5 124.4 1 4,142.8 109.5 1 6,203.6 154.4 1 -21.1 -33.2
SI2 6,310.8 167.7 1 6,056.5 166.7 2 7,302.1 187.4 1 -13.6 -17.1
MI1 13,994.0 345.3 2 12,759.2 325.2 3 13,969.6 348.0 2 0.2 -8.7
MI2 15,434.2 386.6 2 13,718.7 357.0 2 14,407.6 366.6 2 7.1 -4.8
LI1 19,548.3 493.9 3 18,182.3 470.7 4 18,863.6 476.4 3 3.6 -3.6
LI2 21,481.3 541.9 3 19,092.2 493.6 3 22,005.2 554.5 3 -2.4 -13.2
LAV1 2,668.6 65.4 1 1,955.3 50.8 1 2,543.0 63.0 1 4.9 -23.1
LAV2 2,529.1 61.8 1 1,951.3 51.3 2 2,645.6 64.2 1 -4.4 -26.2
LAV3 2,798.1 71.4 2 2,116.6 56.5 2 3,090.3 73.5 1 -9.5 -31.5
MAV1 9,051.6 227.8 2 6,716.8 179.6 2 8,340.7 207.6 2 8.5 -19.5
MAV2 8,657.4 220.2 2 6,322.1 167.2 2 7,833.6 194.1 1 10.5 -19.3
MAV3 6,621.9 178.6 2 5,826.5 158.8 2 7,564.9 196.6 2 -12.5 -23.0
HAV1 25,595.6 648.0 4 22,293.0 587.7 5 24,289.6 614.2 3 5.4 -8.2
HAV2 25,561.2 643.9 4 22,922.1 590.9 4 25,209.6 633.3 3 1.4 -9.1
HAV3 25,525.3 639.1 4 22,382.9 577.8 4 22,908.0 577.7 3 11.4 -2.3
LSDV 7,303.2 186.1 2 5,501.0 147.9 2 7,234.9 177.7 1 0.9 -24.0
MSDV 10,474.9 267.3 2 9,468.3 249.2 3 10,134.1 260.7 2 3.4 -6.6
HSDV 16,730.5 419.6 2 14,794.0 387.3 3 16,647.6 420.4 2 0.5 -11.1
LVR 14,615.6 360.7 3 10,579.9 287.0 4 13,020.0 322.0 3 12.3 -18.7
MVR 13,376.5 338.4 2 11,479.7 304.2 3 12,190.7 315.1 2 9.7 -5.8
HVR 18,827.2 472.4 2 17,188.2 435.9 2 17,690.7 446.7 2 6.4 -2.8
LMLR 2,415.9 63.1 1 1,975.3 53.8 1 2,462.7 64.1 1 -1.9 -19.8
MMLR 13,039.3 320.2 2 10,927.3 284.6 3 11,735.6 295.0 2 11.1 -6.9
HMLR 17,551.5 443.0 3 16,412.9 420.5 4 16,609.6 418.4 3 5.7 -1.2
LSA 2,559.0 70.4 1 1,766.6 48.5 1 2,418.2 67.6 1 5.8 -26.9
MSA 7,746.6 195.7 2 5,971.2 159.2 2 7,426.6 189.8 2 4.3 -19.6
HSA 25,095.8 628.3 4 22,642.9 577.1 4 24,390.3 603.0 3 2.9 -7.2

Average 12,607.7 317.8 2.2 10,931.3 285.1 2.6 12,190.3 307.1 2.0 1.9 -14.6

Table 6.5: Comparison of ITSP initial and final solutions with Magics results. C denotes
solution cost, M denotes the number of bins, H denotes average build height and SV denotes

the total support structure volume.

Table 6.5 provides a comparison of Magics and ITSP results for the 27 test in-

stances. It can be seen that the average initial cost of ITSP was marginally higher

than the Magics benchmark, while the final ITSP solution outperformed the bench-

mark by an average of 14.5%. The difference between the benchmark and initial

ITSP solution can be attributed to two factors; firstly, the support structure volume

is higher than the benchmark by an average of 14%; secondly, seven of the 27 test

cases produced one more bin than the benchmark, resulting in the average difference

of 0.2 bins seen in Table 6.5.

As can be seen in Figure 6.11, the Tabu search was not able to find the minimum

area solution for every piece, as in some cases it got stuck in a local minimum early

on. Furthermore, in order to solve the problem in reasonable time, the Tabu search

was allowed a maximum run time of 5 min per piece; as a result it was occasionally

terminated early, usually in the case of large complex geometries (e.g. ≥ 500, 000

STL facets), such as piece 5 in Figure 6.11a. This explains why some ITSP initial

solutions had more bins, and accounts for some of the difference in support structure

volume.
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(a) Initial ITSP solution (Bin 1). (b) Initial ITSP solution (Bin 2).

(c) Benchmark solution.

Figure 6.11: Comparisons of the benchmark and initial ITSP solution for the MAV2 test
instance. Pieces where the Tabu search performed worse than the benchmark are numbered

in red.

It should be noted that, since there is no strong correlation between the support

structure volume and piece area, the poor Tabu search solutions can sometimes work

in favour of the ITSP, as in the case of SI1 and SI2, where the ITSP incidentally

outperformed the benchmark due to lower support structure, while the number of

bins remained the same due to the small size of the instances.

Moreover, two build orientations with the same optimal piece area and height, can

result in different volume of support structure, as shown in Figure 6.12. Although

support structure and height are already used to break tie in the piece area Tabu

search, the current heuristic is most likely to converge on whichever position is closest

to the initial build orientation. The above shortcomings can be improved by tuning

hyperparameters in the local TS (e.g. Tabu list size) to encourage further solution

space exploration, however, this is likely to significantly increase solution time. Since

the overall solution time of the ITSP is already quite long, averaging 7.8 h, the focus of

the local TS should be on a fast solution rather than a very good solution is discussed

in Section 6.4.
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As described in Section 3.4, the intersection checking performed in the support

structure volume calculation, is by far the most time-consuming and computationally

expensive aspect of the Tabu search, accounting for more than 80% of the time taken

to generate each build orientation. Thus, improving the efficiency of this method or

replacing it with an alternative, for example, a machine learning approach based on

support structures designed by an expert user or Magics, could significantly improve

the solution time of the ITSP (although other challenges would have to be considered,

such as acquiring sufficient training data).

(a) Build orientation 1 (b) Build orientation 2

Figure 6.12: An example of two build orientations, which result in the same height, 60 mm,
and piece area, 6699 mm2, with support structure volume of 246 134 mm3 and 105 645 mm3

for (a) and (b), respectively.

6.6 Conclusion

This chapter addresses the combined problem of multi-part build orientation, bin

assignment and irregular bin packing in the context of SLM. The proposed ITSP

heuristic is driven by build cost and is aimed at the MBP scenario, which is helpful

for dealing with HVLV demands that often arise in industry. The ITSP consists of six

different stages; in each stage a local Tabu search is used to find or modify the build

orientation of individual parts and the resulting 2DIBPP is solved using the method

of Martinez-Sykora et al. (2017), discussed in Section 3.5. Each stage explores a

different area of the solution space by varying the bin assignment of pieces and by

addressing a different aspect of the cost objective function in the TS; namely, the

number of bins, the build height of each bin and the total support structure volume.

The ITSP was tested on 27 different test instances, consisting of various geometries

ranging in size and complexity. The two most successful stages in the ITSP, SSVR

and PSVR, were driven by reducing support structure volume in the Tabu search, and

produced average cost improvements of 6.7% and 4.9%, respectively; while the build

height-driven stages, SHR and PHR, produced average cost improvements of 2.6% and

0.4%, respectively. The BARR stage produced non-trivial improvements of 2.4-8.9%

for seven of the 27 test cases. On average, the initial bin utilisation was increased
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by over 40% at the end of the ITSP (after a slight reduction in the BARR stage)

indicating that the proposed procedure was quite successful in effectively utilising

machine space. The relative success of the BARR stage suggests that increasing

the number of bins can improve the cost, even for relatively small instances, provided

that the additional machine space is utilised to improve the build orientation of parts.

Additionally, using more bins allows the parts to be built in parallel; this presents

an interesting trade-off between build cost, time and the number of machines, which

could be addressed as part of future work.

The initial solution of the ITSP produced a marginally higher average cost and

number of bins, as well as a considerably longer solution time when compared to a

commercial benchmark; thus, a number of possible future improvements to the ITSP

are proposed in Section 6.5. Despite its long running time, the final ITSP solution

yielded a cost improvement over the benchmark in all 27 test cases, with an average

of 14.5% and ranging up to 33.2%. Furthermore, the ITSP does not require any

supervision once it is running. Most importantly, the cost improvements provided

by the ITSP demonstrate the benefit of combining build orientation and bin packing

into a single problem, instead of addressing these two parameters in separate stages

as done in literature and in current commercial software.
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Chapter 7

Conclusions and Future Work

Process planning is a key step of product development and has a significant effect on

the cost, lead time and quality of manufactured parts. While the close link between

build orientation and bin packing in AM has been acknowledge in literature, no

previous works have been found to provide a satisfactory solution to the combined

problem of these two parameters. As discussed in Chapter 2, many models have been

proposed for optimising the build orientation, with the most popular criteria including

surface roughness, the presence of support structure and build time. Surprisingly few

works have addressed cost, and only Alexander et al. (1998) was found to consider

the cost of post-processing; no works have been found to address the full cost of SLM

as a function of build orientation and bin packing.

Thus, Chapter 3 proposes a framework for optimising the build orientation and bin

packing of parts simultaneously in SLM, as a function of total production cost. Since

the framework is aimed at the production of end-use parts, the desired surface finish

of the part is treated as a hard constraint (as opposed to an optimisation criterion),

thus, the surface finish produced by SLM is treated as a post-processing cost, rather

than a competing objective. It should also be noted that the surface finishing cost

is strongly dependent on the choice of finishing method; as discussed in Section 3.3,

surface finishing should only be included in the optimisation if a local finishing method

is used, since using a global method makes this aspect of cost independent of the build

orientation.

Chapter 3 also considers lean manufacturing principles in the context of SLM,

thus, proposing two alternative production scenarios – Mixed Batch Production

(MBP) and Identical Batch Production (IBP). The former scenario is most suit-

able for meeting High Variety Low Volume (HVLV) demands, which are commonly

encountered in the aerospace industry, in particular, in the context of spare parts.

The latter scenario is suitable for the production of identical parts to meet steady

and predictable, medium-to-large demands. The presence of identical safety-critical

parts is also considered.

Chapter 4 proposes a Tabu search strategy for optimising the build orientation

and bin packing of parts in the IBP scenario. Due to the relatively high computational

expense of the bin packing problem, the Tabu search is coupled with an area-based

approximation strategy, which reduced the solution time by as much as 50% when
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applied to three different test geometries. The presence of symmetries, which is a

common occurrence in many industrial parts, is also discussed in detail in this chapter

and a generic method for dealing with these symmetries is proposed.

Chapter 5 extends the Tabu search to address the multi-objective problem of cost

and residual stresses predicted via FEA. Due to the computational expense of the

FEA, it is only solved for a limited number of initial sampling solutions and potential

non-dominated solutions found by the Tabu search, which are based on approxima-

tions of the residual stress solution space. Two alternative approximation strategies

are considered and compared – nearest-neighbour (NNTS) and linear interpolation

(LITS). As expected, the more naive NNTS approach produced a less diverse Pareto

set with weaker solutions that LITS. This is mainly due to the fact that NNTS only

uses cost to drive movements, since it cannot introduce new values of stress into the

pool of known solutions. The results produced by both strategies demonstrate that

residual stresses can be reduced significantly with the right build orientation. The

results also indicate that the best build orientation may not necessarily be the most

obvious one, even for an experienced SLM user, thus, it is suggested that the full

range of continuous rotations should be allowed in this optimisation problem.

Finally, Chapter 6 addresses the problem of build orientation and bin packing in

the context of MBP. Because this problem deals with multiple heterogeneous parts, it

is much more complex than the IBP version as three sub-problems must be solved si-

multaneously; namely, the build orientation of multiple parts and the 2DIBPP, which

consists of bin assignment and 2D bin packing. To address all three problems in a

coupled way an Iterative Tabu Search Procedure (ITSP) is developed, which consists

of six stages. The aim of the different stages is to explore different neighbourhoods in

the highly complex solution space of this problem; the first stage focuses on establish-

ing the minimum possible number of bins in the solution; the second and third stages

attempt to iteratively improve each bin in the resulting solution; the fourth and fifth

stages attempt to further improve bins, as well as the bin assignment (i.e. by creating

additional room for further improving build orientations); finally, the last stage of the

ITSP introduces an additional empty bin into the solution, allowing further freedom

to move and rotate parts and, thus, to further reduce the overall cost.

The ITSP has been tested on 27 manually created instances with different geomet-

ric proprieties, and was benchmarked against a commercial decision-support software.

The benchmark results demonstrate the validity of the proposed approach, since so-

lutions produced by ITSP were on average 14.5% cheaper than those produced by

the commercial tool. These results also confirm that solving the two problems of

build orientation and 2DIBPP in a coupled way, can indeed produce a significantly

cheaper solution than solving the two problems independently as done throughout

the literature.
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7.1 Future Work

The proposed framework can be improved in a number of ways. Firstly, modelling 2D

pieces with closed concavities can potentially lead to better bin packing solutions, by

allowing tiny pieces to be placed inside large concavities, as discussed in Section 3.4.3.

This only applies to specific geometries in specific build orientations (for instance, a

large hollow cylinder built upright) and assumes the presence of tiny and very large

geometries in the batch.

As mentioned in Section 3.1.3, the proposed framework assumes the horizontal

orientation of parts to have no effect on build quality, allowing for full free rotation

of 2D pieces within the 2D bin packing problem. In reality this is not the case as

the angle of the powder-spreading rake has a significant effect on the build quality

and risk of build failure of parts, particularly with respect to delicate features and

thin walls. Therefore, future work should consider the rake angle as an additional

optimisation criterion or build quality constraint when rotating and placing parts in

the bin packing problem.

The post-processing cost model could also be made more realistic by considering

the different available post-processing methods and their applicability to different

production scenarios. Incorporating process- and part-specific rules into the frame-

work (e.g. in the form of a decision tree, as done by Gordon et al. (2016)) could be

particularly helpful, as this would not only improve the accuracy of the cost optimi-

sation model, but would also allow the user to compare the cost and suitability of

different post-processing methods. The build time modelling accuracy could also be

improved with additional data. A database of build times for different materials and

SLM machines would be particularly useful in this regard.

As discussed in Chapter 6, the solution time of the ITSP could be improved by

reducing the computational time of the support structure volume, since this is the

most time-consuming aspect of the model. It is suggested that a machine learning

approach such as an artificial neural network algorithm, could be used to develop a

faster prediction model of support structure volume based on part geometry param-

eters, such as part height, supported area and the number of protruding features.

However, such a model would require a substantial amount of data and is likely to

introduce some error into the model. A major limitation of this concept is the current

lack of standardised design rules for support structure, which is another area that re-

quires further research. The ITSP could also be extended to consider post-processing

cost and residual stresses, although the latter would significantly increase the solution

and pre-processing time of the model, and would require further automation of the

model presented in Chapter 5.

To the best of the author’s knowledge, experimental data directly linking residual

stresses and the density of defects in a part is currently lacking and thus could be

a useful contribution of future research. Such data could be used to develop an

explicit probabilistic model linking part quality or build failure to the build orientation
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through residual stresses. It could also be used to develop more informative residual

stress criteria, as suggested in Chapter 5. For instance, the data could be used to

provide a threshold stress for a given material and SLM machine, and a new objective

could be introduced which minimises the volume fraction of the part exceeding the

threshold stress; alternatively, a constraint could be developed where the allowable

volume fraction and the threshold stress must be determined from experimental data.

Moreover, if the risk of build failure or poor build quality can be quantified, it could

also be translated into an ill-conditioned cost (Baumers and Holweg, 2016), in the

form of rework or scrap (Dodd, 2015).

Finally, while unit cost is a critical decision factor in production, the production

time is equality important, as delays lead to penalties and loss of business. There-

fore, it would be particularly useful to extend the proposed framework to consider

the multi-objective optimisation of unit cost and production time. Since production

time is not considered in this thesis, it is possible to assume an infinite number of

available SLM machines, as discussed in Chapter 3. Conversely, it is impossible to

produce a meaningful optimisation solution for production time without considering

the number of available machines. Moreover, in a realistic production scenario dead-

lines and different levels of priority can be expected for different part orders. This

presents an interesting and very challenging multi-disciplinary optimisation problem,

as it combines the engineering problem of SLM process planning with 2DIBPP and

scheduling, which are two common problems studied by the Operational Research

community.
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Appendix A

Build Time Regression Models

Two linear regression models of build time were created, using the data provided

in tables A.1 and A.21, respectively; where n denotes the number of parts in the

build; tr denotes total recoating time; tv denotes total part exposure time; ts denotes

total support structure exposure time; vtot and stot denote total part volume and

support structure volume, respectively; and h denotes build height. Table A.1 shows

a total of seven builds, which contained only identical parts and were built on an EOS

M270 machine using Ti64 powder. Table A.2 shows six builds produced on the same

machine using CoCr powder. The two sets of results were produced using a constant

layer thickness of 30 µm for Ti64 and 20 µm for CoCr.

Build n vtot (cm3) stot (cm3) h (mm) tr (h) tv (h) ts (h)

1 1 287.4 301.1 177.0 18.5 59.5 22.7
2 1 30.8 0.8 11.1 1.1 3.9 0.0
3 2 61.2 41.4 78.2 7.7 9.3 2.9
4 1 32.0 0.7 17.8 1.8 9.9 0.1
5 6 176.2 4.9 73.8 6.0 19.4 0.3
6 1 57.3 1.0 91.2 10.0 11.1 0.1
7 1 33.0 2.2 12.5 2.2 8.5 0.2

Table A.1: Regression model input data for Ti64 alloy.

Build n vtot (cm3) stot (cm3) h (mm) tr (h) tv (h) ts (h)

1 81 67.1 0 12.4 1.6 0 1.6
2 3 99.2 145.6 34.1 23.2 20.9 4.2
3 2 80.8 394.7 39.0 18.5 33.7 4.6
4 3 595.6 0 53.0 119.9 0 6.5
5 6 63.7 173.4 28.8 14.4 8.6 4.5
6 1 167.2 119.9 131.0 34.9 13.2 15.6

Table A.2: Regression model input data for CoCr alloy.

The coefficients of h, vtot and stot are determined via the linear fit models shown

in Figure A.1, Figure A.2 and Figure A.3, respectively.

1All data was provided by Rolls Royce plc.
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Figure A.1: Recoat time vs. build height.
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Figure A.2: Part exposure time vs. part volume.
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Figure A.3: Support structure exposure time vs. support structure volume.

The resulting model parameters are summarised in Table A.3. It can be seen

that the above models do not account for part cool-down, extraction and machine

set-up time, since the intercept of each linear function is set to zero. These aspects

of build time are highly variable and are difficult to predict accurately; however, it
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is suggested that β1 should be set to a value between 0.5 h and 3 h (Baumers et al.,

2017), to reduce the risk of under-predicting the build time and to encourage the

model to reduce the number of bins in the optimisation search. Due to the limited

amount of available data, the same data sets are used to both train and validate each

model. The resulting maximum errors (ME) and root mean square errors (RMSE)

are shown in Table A.3.

A particularly high error of 78.5% was obtained for Build 1 in the CoCr data

set, as a result of the outlier highlighted in red in Figure A.2b. As can be seen,

the total part exposure time is much lower than expected in this case, resulting in

an over-prediction. However, since the total part volume vtot is constant and has

no effect on the build orientation or bin packing solutions, it can be assumed that

any error in predicting the part exposure time tv will have a negligible effect on the

optimisation models proposed in this thesis. Overall, a clear linear fit can be observed

between the parameters in figures A.1 - A.3; the correlation in Figure A.3b is slightly

weaker; however, no definitive conclusions can be made without more data. Thus, the

proposed build time regression models are considered acceptable for the purpose of

demonstrating the optimisation models in chapters 4 - 6, but larger data sets should

be obtained and used to properly validate this approach as part of future research.

Parameters Ti64 CoCr Units

β2 1.03× 10−1 1.16× 10−1 h mm−1

β3 1.81× 10−4 2.04× 10−4 h mm−3

β4 7.50× 10−5 8.33× 10−5 h mm−3

R2 99.3 96.1 %
ME 20.4 78.5 %
RMSE 7.3 18.0 h

Table A.3: Regression model coefficients and errors shown for the two models.
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Figure A.4: Measured vs. predicted total build time calculated for the training data.
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Appendix B

Input Target Surface Roughness

via CAD

As discussed in Chapter 3, an additional preliminary step is required in order to

calculate the build orientation-driven post-processing cost, in which the user must

specify local values of the target surface roughness, Rat, for different local surfaces and

features. For the purpose of this step, a custom application has been developed using

NXOpen version 9.0, which is a CAD API in Siemens NX. The application asks the

user a number of simple questions via the NX graphical user interface (GUI). Firstly,

the user is asked to provide a baseline value of Rat for all surfaces in the geometry

file. Secondly, the user may select individual faces in the CAD file and provide a

local value of Rat for that specific surface, as shown in Figure B.1. This function is

placed in side a while-loop, allowing the user to iterate through as many surfaces as

needed. Finally, the user may terminate the process once all target roughness values

have been specified.

(a) Select a face. (b) Input target Ra for selected face.

Figure B.1: Defining local target Ra of individual faces in NX GUI.

Following this, the application will output a modified STL file, which contains the

target surface roughness of each facet f , denoted by Ratf , in addition to the usual

information about the facet normal vector n̂f and its vertices v1f , v2f and v3f . Figure

B.2 provides a schematic representation of the resulting modified STL file.
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solid

f1 → facet normal n̂x n̂y n̂z Rat

outer loop

vertex v1x v1y v1z
vertex v2x v1y v1z
vertex v3x v1y v1z

endloop

endfacet

f2 → facet normal n̂x n̂y n̂z Rat

outer loop

vertex v1x v1y v1z
vertex v2x v1y v1z
vertex v3x v1y v1z

endloop

endfacet

f3 → facet normal n̂x n̂y n̂z Rat

. . .

endsolid

Figure B.2: Schematic description of the modified STL file, whereRat is included in addition
to the normal and vertex 3D coordinates of each facet f .
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Appendix C

Surrogate Modelling Approach

Several attempts were made to create a Kriging surrogate model relating residual

stresses to the part build orientation in SLM. This work was carried out using OP-

TIMAT (version 2), which is a modelling and optimisation tool developed at the

University of Southampton. All models were created using the test geometry shown

in Figure 5.8 and the DOE points shown in Figure 5.9, both of which can be found

in Section 5.5.

The first version of this surrogate model was created using the mean tensile resid-

ual stress criterion, σ̄, as described in Chapter 5. The resulting response surface is

shown in Figure C.1; as can be seen the model is over-smoothed, resulting in a max-

imum error of 55.3% (with respect to the range of stress values for the whole DOE)

and a very low R2 value of 0.2.
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Figure C.1: Response surface for mean tensile residual stress, σ̄, with respect to build
orientation.

The use of a mean stress criterion was the assumed cause of this over-smoothing,

since σ̄ only captures the magnitude but not the location of stresses in the geometry.

For example, if the geometry is rotated from one build orientation to another (e.g.

from p1 to p2 as shown in Figure C.2), a local high tensile stress spot can “move”

from one region of the geometry to another, and thus can result in two very different

residual stress profiles and build orientations having similar values of σ̄. This results

in an apparent lack of strong correlation in the DOE data set, leading to the Kriging

model producing an over-smoothed response surface, as can be seen in Figure C.1.
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(a) Build orientation p1 (45o, 0o). (b) Build orientation p2 (0o, 45o).

Figure C.2: Comparison of two build orientations p1 and p2, with relatively similar stress
magnitudes, but very different residual stress profiles and local high-stress regions.

C.1 Geometry Sectioning Approach

Based on the above assumption an alternative approach was considered, where the

geometry was divided into sections, as shown in Figure C.3, and a separate surrogate

model was created for each section, resulting in a total of ten response surfaces.

As can be seen in Figure C.3 this sectioning method ignores some regions of the

test geometry – this is considered acceptable as the named sections capture those

regions where spots of high tensile stresses are most likely to occur (in different

build orientations). It should also be noted that some of the named sections are

geometric reflections of each other (e.g. EDGE1 and EDGE3 ), meaning that their

corresponding response surfaces can also be expected to show reflectional symmetry

with respect to one another.

EDGE1

EDGE2

EDGE3

EDGE4

BOSS1 BOSS2

HOLE1 HOLE2

CONVEX_SIDE

CONCAVE_SIDE

CONVEX_SIDE

CONCAVE_SIDE

Figure C.3: Sectioned test geometry, where each section is outlined by a red dashed box.
The CONVEX SIDE and CONCAVE SIDE sections include only visible mesh elements on

the surface of the geometry.

The resulting response surfaces are shown in Figure C.4 and Figure C.5, while

the errors and regression coefficients can be seen in Table C.1. As can be seen,

the CONCAVE SIDE, CONVEX SIDE and the hole sections produced particularly

low-accuracy response surfaces with very high regression, while the edge and boss

sections produced slightly lower errors with some acceptable levels of regressions (e.g.

R2 of 0.8). Nevertheless, in all 10 cases the maximum errors exceed 30% and RMSE
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values exceed 10% (with respect to the range of stress values for the whole DOE), so

these models are considered to be of insufficient quality. It is also interesting to note

the absence of any significant reflectional symmetry between the different response

surfaces (e.g. between BOSS1 and BOSS2 ), which were expected based on the test

part symmetry as mentioned above.

Section name R2 RMSE (%) Max Error (%)

EDGE1 0.8 12.2 38.4
EDGE2 0.8 14.0 46.7
EDGE3 0.8 12.9 42.7
EDGE4 0.8 11.5 38.9
CONCAVE SIDE 0.1 21.9 51.6
CONVEX SIDE 0.6 13.1 42.2
BOSS1 0.8 10.8 31.1
BOSS2 0.6 10.4 30.2
HOLE1 0.1 20.2 68.9
HOLE2 0.3 13.6 47.8

Table C.1: Regression coefficients and surface fitting errors shown for each named section
of the test geometry.

Similarly to the previous surrogate model for the whole test geometry, the high

errors and regression produced by the geometry sectioning approach are thought to

be the result of averaging of tensile stresses without consideration of the location and

distribution of stresses within each section.
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(a) Response surface for EDGE1.
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(b) Response surface for EDGE2.
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(c) Response surface for EDGE3.
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(d) Response surface for EDGE4.

Figure C.4: Response surfaces shown for each section.
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(a) Response surface for CONCAVE SIDE.
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(b) Response surface for CONVEX SIDE.
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(c) Response surface for BOSS1.
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(d) Response surface for BOSS2.
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(e) Response surface for HOLE1.
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(f) Response surface for HOLE2.

Figure C.5: Response surfaces shown for each section (continued).

C.2 High-Stress Points Approach

Following the above results, a third approach was considered. For each of the 50

build orientations in the DOE, the location of the maximum tensile stress element

in the part mesh was recorded. The recorded location was then fixed and the stress

value in that location on the part geometry was then recorded for the remaining 49

points. This process was repeated for each point in the DOE, resulting in a total of

50 recorded “high-stress points” on the part as shown in Figure C.6.

It can be seen from Figure C.6 a number of the high-stress points lie very close

to each other on the part and thus can be expected to produce very similar response
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h1 , h2 , h3 h1 , h2 , h3

Figure C.6: Locations of 50 high stress mesh elements (recorded for each build orientation
in the DOE) marked in red on the test geometry.

surfaces; moreover, evaluating 50 surrogate models is not computationally practical,

so it is suggested that the number of high-stress points should be reduced to no more

than 15. This can be done using a cluster analysis method (e.g. k-means clustering)

to represent several high-stress points shown in Figure C.6 (for instance, the clusters

of points around the bosses can be replaced with two or three points around each

boss of the test geometry).
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(a) Response surface at h1

180
150-500

0 120

0

30

Phi (deg)

90

500

R
es

id
ua

l S
tr

es
s 

(M
P

a)

60

Theta (deg)

1000

6090
120

1500

30150 0180

-500

0

500

1000

(b) Response surface at h2
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(c) Response surface at h3

Figure C.7: Comparison of response surfaces of nearby high-stress points h1, h2 and h3.

However, before applying a cluster analysis method, the response surfaces of three

closely positioned high-stress points, denoted by h1, h2 and h3, were compared for

consistency; these response surfaces are shown in Figure C.7 and their positions are



146 Appendix C. Surrogate Modelling Approach

indicated in Figure C.6. As can be seen, the three high-stress points, which all lie

within a maximum distance of 1.3 mm of one another, have very different response

surfaces. Moreover, all three response surfaces have values of R2 ranging between 0.51

and 0.69; RMSE ranging between 14% and 15% and maximum errors ranging between

33.7% and 46.2%. Consequently, the produced response surfaces were considered too

inaccurate and no further work was done in this direction. Additionally, the significant

variation within each response surface (i.e. large number of peaks and valleys) and

the inconsistencies between very closely positioned high-stress points indicate that

there may be a high level of noise in the FEA solutions.

C.3 FEA Noise Study

Following the above results, the FEA model was studied more closely to find the source

of the apparent noise. FEA convergence was found to be sufficient with negligible

variations in stress (< 1%) between multiple runs of the same mesh. Additionally,

the variation of stress for a fixed point in the geometry was studied over a very small

range of rotations, where θ ∈ (0o, 4o) and φ = 0o. Figure C.8 shows the first (S1),

second (S2) and third (S3) principal stresses, as well as stress intensity Sint for the

fixed point over the range of rotations. As can be seen there are large and arguably

unrealistic variations in all three components of principal stress. Furthermore, the

stress intensity, which is expected to smooth out the noise, still indicates relatively

large variations, even over 0.5 degree increments.
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Figure C.8: Change in principal stresses and overall stress intensity over a range of
θ ∈ (0o, 4o).

As discussed in Section 5.3, one of the simplifying assumptions in the FEA is the

grouping of layers in order to make the model tractable at the expense of some loss

in accuracy. Section 5.3 also explains that a voxel mesh is most likely to produce a

successfully converged FEA solution while producing the least accurate representation

of the part geometry, particularly at the surface where most tensile stress spots are
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expected to occur. Furthermore, due to the layer-by-layer nature of the FEA the

geometry is re-meshed for each new build orientation (as opposed to rotating the

same mesh, which would result in irregular layers). This means that the location of

each high-stress point is not fixed between different build orientation, but rather,

this location is approximated as the centre point of the nearest element in each

mesh. Therefore, it is expected that the FEA and geometric errors can be reduced

significantly by reducing both the layer thickness and mesh element size; however,

this is also expected to substantially increase the solution time. For this reason, it

was decided to maintain the current mesh size of 0.5 mm and layer thickness of 1 mm.

Because of the high local variation of stresses in the mesh, the above high-stress

point approach was not pursued further. Moreover, while it is possible to manu-

ally tune the level of data-fitting and regression of the Kriging models this was also

avoided for two reasons; firstly, such manual tuning can lead to numerical problems

(e.g. ill-conditioned matrices); secondly, these problems can be avoided by substi-

tuting Kriging with another less sophisticated approach (e.g. linear interpolation via

triangulation), which can still provide a sufficient surrogate model for optimisation

as demonstrated in Chapter 5.
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Appendix D

Test Geometries

All test geometries used in Chapter 6 are listed in Table D.1 and Table D.2, where V

denotes the geometry volume; SA denotes the surface area; V R and MLR denote the

volume ratio and the maximum length ratio, respectively; and F denotes the number

of facets in the STL file. Where applicable, source links are provided in the footnotes

below. Additionally, images corresponding to each numbered geometry in Table D.1

can be found in figures D.1 and D.2.

Group & Source No. Geometry Name V (mm3) SA (mm2) VR MLR F

RC Jet Assembly 1 Tube 19,870 16,184 0.14 0.25 247,318

(GrabCAD1) 2 Axle 18,750 6,078 0.44 0.39 1,296

3 Bearing 1,920 1,489 0.57 0.05 2,516

4 Bracket 6,900 14,739 0.02 0.39 308,318

5 Compressor bearing 2,770 2,504 0.32 0.07 34,424

6 Compressor housing 48,970 30,367 0.11 0.27 77,780

7 RC compressor wheel 8,760 11,461 0.13 0.13 15,640

8 Diffuser 34,770 31,326 0.09 0.25 554,636

9 Exhaust inner cone 3,280 9,492 0.05 0.11 44,816

10 Exhaust nozzle 8,240 28,327 0.02 0.21 71,812

11 Front bolt 880 710 0.47 0.04 1,852

12 Front casing 11,960 40,358 0.02 0.27 127,916

13 Jet Turbine bearing 305 435 0.42 0.03 1,374

14 NGV ring 10,520 17,836 0.08 0.17 60,350

15 Rear bolt 477 504 0.56 0.03 1,012

16 Rear casing 57,230 82,533 0.04 0.35 170,028

17 Spark plug 569 487 0.33 0.05 1,750

18 Spring 767 2,131 0.16 0.06 192,536

19 Starter 56,830 9,866 0.20 0.23 620,764

20 Turbine casing 4,633 4,792 0.23 0.19 9,328

21 RC turbine wheel 15,560 14,763 0.06 0.24 9,386

Turbocharger Assembly 22 Clamp 9,780 7,977 0.15 0.19 8,218

(GrabCAD2) 23 Compressor flow 69,234 43,022 0.15 0.31 22,236

24 TC compressor wheel 8,761 11,464 0.13 0.13 23,316

25 TC housing 121,353 33,752 0.23 0.24 9,336

26 Socket & cap screw 20,529 5,668 0.46 0.13 3,100

27 Turbine flow 81,678 55,912 0.11 0.34 16,548

28 TC turbine wheel 15,664 14,769 0.06 0.24 12,578

Table D.1: Test geometries and their properties.

1https://grabcad.com/library/rc-jet-engine-3
2https://grabcad.com/library/turbocharger-24

https://grabcad.com/library/rc-jet-engine-3
https://grabcad.com/library/turbocharger-24
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Figure D.1: Test geometries in the RC Jet Assembly (taken from GrabCAD).
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Figure D.2: Test geometries in the Turbocharger Assembly (taken from GrabCAD).
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Group & Source Geometry Name V (mm3) SA (mm2) VR MLR F

Araujo et al. (2015) Bearing block 96,646 28,939 0.19 0.32 12,846

Belt link 16,595 8,057 0.55 0.15 16,148

End cap 1,766 2,217 0.23 0.09 26,892

Turbine 20,618 11,625 0.25 0.13 107,806

Venturi tube 960 1,042 0.40 0.07 59,294

Canellidis et al. (2006, 2009) Caliper 51,601 23,483 0.17 0.21 43,154

Card slot cover 11,759 14,710 0.09 0.23 12,498

Cover 19,162 17,478 0.25 0.26 12,300

Distributor 7,149 13,189 0.10 0.14 4,028

Engine block 38,595 28,112 0.18 0.21 4,924

Flip-top 2,073 4,427 0.07 0.15 6,552

Gear 540 659 0.39 0.04 1,420

Handle 28,250 29,844 0.08 0.27 9,698

Impeller 80,661 40,349 0.17 0.28 474,222

Insect trap 5,631 16,474 0.07 0.17 50,910

Jawbone 73,270 22,190 0.08 0.31 100,948

Phone cover 53,704 57,385 0.08 0.45 30,004

Pipe support 2,296 2,959 0.24 0.09 620

Sector 90,050 52,234 0.10 0.50 14,574

Swivel hinge 10,952 7,647 0.22 0.15 4,860

Washing machine arm (centre section) 28,552 29,441 0.14 0.30 17,718

Washing machine arm (left section) 20,550 20,624 0.17 0.30 10,394

Washing machine arm (right section) 20,551 20,624 0.17 0.30 10,370

Gearbox Assembly Cover plate 27,134 13,880 0.38 0.28 19,972

(GrabCAD3) GB housing 282,507 69,052 0.28 0.42 66,658

Offset shaft 31,520 8,798 0.78 0.42 6,596

Plate lug 78,908 20,952 0.28 0.23 19,294

Worm gear 37,698 14,996 0.39 0.15 16,262

Worm gear shaft 23,995 7,243 0.26 0.34 5,502

Rolls Royce Combustor section 1 46,455 44,154 0.06 0.43 20,648

Combustor section 2 64,000 48,494 0.15 0.53 8,186

Seal segment 14,544 25,798 0.14 0.25 51,376

Miscellaneous Parts Aero-bearing bracket4 40,806 20,037 0.12 0.30 32,686

(GrabCAD) Control arm 90,512 33,471 0.13 0.42 7,654

Fuel injector5 8,077 7,644 0.13 0.16 39,272

GE bracket6 76,857 78,004 0.06 0.44 84,468

Housing17 40,840 26,450 0.13 0.21 48,586

Housing28 65,620 31,605 0.14 0.24 25,702

Space bracket9 30,540 13,682 0.14 0.25 75,982

Turbine blade10 13,216 10,478 0.11 0.22 31,230

Table D.2: Test geometries and their properties (continued).

3https://grabcad.com/library/gear-box-assembly-1
4https://grabcad.com/challenges/airplane-bearing-bracket-challenge
5https://grabcad.com/library/fuel-injector--2
6https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
7https://grabcad.com/library/crankcase--4
8https://grabcad.com/library/aero-engine-housing/details?folder_id=52721
9https://grabcad.com/challenges/3-2-1-liftoff-ula-rocket-hardware-challenge

10https://grabcad.com/library/turbine-blade--4

https://grabcad.com/library/gear-box-assembly-1
https://grabcad.com/challenges/airplane-bearing-bracket-challenge
https://grabcad.com/library/fuel-injector--2
https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
https://grabcad.com/library/crankcase--4
https://grabcad.com/library/aero-engine-housing/details?folder_id=52721
https://grabcad.com/challenges/3-2-1-liftoff-ula-rocket-hardware-challenge
https://grabcad.com/library/turbine-blade--4
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(2014). On the fatigue crack growth behavior in 316L stainless steel manufactured

by selective laser melting. Engineering Fracture Mechanics, 120:15–25.



REFERENCES 165

Roberts, I. A. (2012). Investigation of residual stresses in the laser melting of powders

in additive layer manufacturing. PhD thesis, University of Wolverhampton.

Ruffo, M., Tuck, C., and Hague, R. (2006). Cost estimation for rapid manufacturing

- Simultaneous production of mixed components using laser sintering. Proceedings

of the Institution of Mechanical Engineers, Part B, 221(11):1585–1591.

Ruffo, M., Tuck, C., and Hague, R. (2007). Make or buy analysis for rapid manufac-

turing. Rapid Prototyping Journal, 13(1):23–29.

Saha, B., Wanhill, R. J., Eswara Prasad, N., Gouda, G., and Tamilmani, K. (2013).

Airworthiness Certification of Metallic Materials. In Aluminum-Lithium Alloys:

Processing, Properties, and Applications, pages 537–554.
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