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Silicon-germanium (Si1.xGex) and Ge are widely used in optoelectronics. It is fully miscible
across the whole composition range, which allows for the whole spectrum of the band gap
to be tuned between the values of pure Si and pure Ge. This versatility is extremely
important for photonics applications such as electro-absorption modulators and
photodetectors, where the operating wavelength is strongly dependent on the Si content.
Traditional SiGe growth allows only a single SiGe composition to be grown across the wafer.
On the contrary, Rapid Melt Growth (RMG) offers the opportunity of multiple compositions
of SiGe by using just a single Ge deposition step and a single anneal step, as previously
demonstrated on the silicon platform. This is made possible by engineering the structural
parameters of the RMG structures to enable multiple uniform composition strips of SiGe
across the wafer, each with a different, tuneable composition. Furthermore, RMG can be
used for the growth of high-quality SiGe material with a smaller number of defects than
other growth techniques, which can lead to the fabrication of higher performance active
devices. Finally, the simplicity of the fabrication process provides a cost-effective growth
method making this concept very attractive.

In this thesis, for the first time, RMG processing was successfully used to demonstrate
constant composition SiGe and Ge structures (in range between 65 and 100% Ge)
embedded within Silicon-on-Insulator (SOI) substrates. The structures embedded in the SOI
platform enable integration to waveguides for the creation of both passive and active
waveguide-based devices to form complex Photonic Integrated Circuits (PIC). This first
demonstration promises to allow the development of new devices and associated
applications with high performance and low cost. The findings of the research will lead to

waveguide integration and work on active devices.
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Introduction

Chapter1 Introduction

The rapid technological development of electronic devices and communication networks witnessed
in the last few decades has been driven by the increasing number of digital devices and the raising
expectations for telecommunication and computing capabilities. We are currently living in the
Information Age [1], where technology has grown following the predictions of Moore’s law. This
law describes an observation of increased (doubled) number of transistors per Integrated Circuit
(IC) every two years as illustrated in Figure 1. Moreover, additional exponential formulations often
considered derivatives of Moore’s law have been used to describe the technological development
witnessed over the past few decades in different areas [2]; like for optical fibres which have become
a crucial part of telecommunication. Butters’ Law expresses an exponential growth in their data
transmission speed every nine months which makes the cost of transmitting data exponentially
lower [2][3]. Another example of rapid development of computational technology are quantum
annealers with doubled number of qubits throughout every year over ten years period as predicted
with ‘Rose’s law’- an example of the 4-qubit is Calypso from 2005 and the 2048-qubit Washington
machine in 2015 [3][4].
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Figure 1 The visualisation of the Moore’s Law being an observation about the number of

transistors across the integrated circuit (IC) from [3].



The new technological developments have led to an ever-increasing need for data transfer, whilst
transferring information at a low cost and retaining high processing speed and transmission rate.
Electronic connections based on copper limit the performance of high-speed computers and
interconnects, giving space for dramatic improvement through the use of optical connections. The
replacement of traditional copper interconnects has proven to be crucial for the efficiency of high-
speed data communication for both long and short distances, reducing heat dissipation and losses.
A big part of the research on photonics has focused on developing higher data transmission rates,
higher processing speed and higher bandwidth for telecommunication and computing systems
respectively. A typical target application of silicon photonics has been the data links within data
centres operating at 100Gbit/s or 400Gbit/s [5]. Turning point of this research was presented in
2004 as a metal-oxide—semiconductor (MOS) capacitor structure embedded in a silicon waveguide
acting as a fast Si-based modulator exceeding 1 GHz [6].This research started a discussion about

new possibilities for exceeding the speed of interconnects inside the computer [7].

The next chapter will introduce silicon photonics as a platform of choice for novel optoelectronics
solutions highlighting silicon-germanium (SiGe) as a material suitable for high performance
integrated devices. It discusses the focus of this project on the development and integration of
crystalline SiGe and germanium (Ge) material on the silicon-on-insulator (SOI) platform. The
integration is based on a technique called Rapid Melt Growth (RMG)/ Liquid Phase Epitaxy (LPE)
[8][9] providing a means to integrate passive and active devices for silicon photonics applications,

including high speed optical modulators and detectors, across a small area at a minimal cost.

1.1 Silicon Photonics

Silicon photonics is an evolving technology leading the way for low-cost, high performance
applications bringing together the advantages of both photonics and electronics through
integration onto the same substrate. Commonly used traditional silicon integrated circuits (IC)
industry solutions can be easily adapted for the fabrication of optical interconnects at the chip level.
Additionally, the compatibility with CMOS technology allows the integration of electronics and

photonics on the same substrate.

Another factor leading to the success of silicon photonics is a high refractive index ratio of vital
elements like e.g. silicon waveguide and silicon dioxide cladding (refractive index ratio for Si and
SiO2 is 3.5/1.443) leading to smaller device footprint, more chips per wafer and to the realisation
of sub-wavelength-sized cavities for photonic crystal structures, high-efficiency grating couplers [5]
etc. Silicon technology also allows carrying more data with less power, avoiding the heating

problems usually faced by traditional copper-based technology [5]. In addition, Silicon’s
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transparency at 1550 nm and compatibility with Ge optical modulators and photodetectors make
this platform highly suitable for multiple optoelectronics applications and components [1],
examples to be listed are optical transceivers [65], sensing applications [11] or LIDAR technolog}/

[12].

In 1988 the first company to commercialize silicon photonics was founded, Bookham Technology.
The first product was introduced in 2000; it was an arrayed waveguide grating (AWG) multiplexer,
integrated with variable optical attenuators (VOA) [13]. A great amount of research on silicon
photonics has been conducted since than by international companies such as Melanox [14], HP [15],
Luxtera [16] with Cisco [17], Intel [18][19], IBM [20][21], Huawei/ Caliopa [22][23] or Rockley
Photonics [24]. The interest of these companies has led to the development of silicon photonics

products that are commercially available, including products like transceivers and sensors [24].

1.2 Silicon germanium applications

Germanium (Ge) is an example of a well-established material in electronics, compatible with CMOS
technology [11]. Ge and SiGe are highly important materials of silicon photonics especially for the
receiving element of the photonic circuits, as they are materials that absorb in the entire
telecommunication window from the O (1310nm) to the L (1595nm) wavelength bands.
Photodetectors based on Ge materials have high responsivity up to 1550 nm [1][25][26]. Alloys of
Si and Ge described as Sii«Gey, where the varied composition of Si is denoted by x, have been part
of the mainstream CMOS production since 1989, when IBM introduced SiGe as a material of choice
for their products to increase computer performance by enhancing speed, simultaneously reducing

the power consumption [27].

However, although Ge and Si are compatible materials, the lattice constant difference produces a
mismatch of 4.2% that causes problems for fabrication of defect free interfaces between the two
materials. The lattice mismatch issues can be partially overcome by implementing buffer layers with
a graded composition (from pure Si through multiple compositions of Si1.«Gexup to pure Ge) during
the growth of the materials [28][29], but the technique is complex, expensive and challenging to
implement. As a result, the development of a novel technology that can be used to integrate
crystalline Ge/SiGe and silicon with an improved layer quality while minimising the cost and

fabrication time is still desirable.



13 Rapid Melt Growth for silicon germanium and germanium on Silicon-

on-insulator platform

Silicon-germanium (Si1xGey) is fully miscible across the whole composition range, which allows for
the whole spectrum of both the lattice constant and the band gap to be tuned between the values
of pure Si and pure Ge [1][30]. The versatility of SiGe alloys is extremely important for photonics
applications such as electro-absorption modulators and photodetectors, where the operating

wavelength is strongly dependent on the Si content.

Moreover, Si1xGex is a material of interest for high-performance modulator devices working in the
C band such as electro absorption modulators (EAM) based on the Franz-Keldysh effect [30][31].
The maintained constant composition and the quality of the Sii.xGey alloys are crucial to determine
the energy of the band gap and therefore the operating wavelength of said modulators. Previously
reported results for SiGe EAM confirm lower power consumption (calculated modulator power 44
fJ/bit), and increased speed (data rate of 56 Gb/s at 1566 nm), making these devices attractive as

building blocks for silicon photonics [31].

Traditional growth methods including various kinds of chemical vapour deposition (CVD) and
epitaxy (e.g. Molecular Beam Epitaxy MBE) allow the growth of only a single SiGe composition
across the wafer. Therefore, the devices that can be fabricated with these layers are strongly limited
to a narrowband wavelength operation, while the simultaneous modulation of multiple
wavelengths on a chip is desirable. Hence, the Rapid Melt Growth (RMG) technique has been
proposed as a way to achieve the growth of multiple compositions at once with only one non-
selective growth step and one anneal step. RMG is a technique, where the SiGe or Ge structures
are grown as single crystalline material using the Si seed as a lattice template and a source of Si
diffusing into Ge tailored structures embedded into an insulator. The composition of the Sii«Gex
alloys can be tuned by combining RMG with especially designed structures due to mentioned full
miscibility of these two elements [8]. After the RMG process, trenches with the shape of strips have
shown a graded composition with decreasing Si concentration as their length increases away from
the seed. However, a constant composition can be obtained when branches are added along the
strips. This modified RMG technique has allowed the creation of strips with multiple constant
compositions across silicon substrates with a negligible number of defects [9]. The engineering
challenges of this process are linked to the precise control of the composition along structures and

removing defects within the area designated for the devices.

The silicon-on-insulator (SOI) platform has become the platform of choice for silicon photonics as

the fabrication of structures embedded in the silicon overlayer of the wafers enable seamless
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waveguide integration between both passive and active devices that can be fabricated

simultaneously [26].

The novelty and aim of this work are to fabricate tailored SiGe structures on the SOI platform which,
contrary to the silicon platform, are suitable for the integration of passive and active photonic

devices. The engineering challenges are described in detailed in Chapter 5, process development.

1.4 Thesis outline

After a brief introduction to the work follows a discussion of background theory with special
emphasis on silicon photonics and notable developments in the field. The thesis aims to
demonstrate the importance of SiGe and Ge based photonics and the contribution this new
work makes, which involves developing the integration of the RMG based Ge and Si1-xGex

growth technology on the SOI platform.

Chapter 2 provides a theoretical background about Si, Ge and Si1-xGex properties along
with applications of these materials. Additionally, a literature review of relevant techniques
suitable for the material growth is presented. This leads to justification of the RMG

technique development being the scope of this work.

Chapter 3 contains an overview of methods used for fabrication and characterisation of the
RMG integration work and process development. Understanding of advantages and
disadvantages of those is essential to explain choices made for the fabrication of RMG

structures on SOI.

Chapter 4 explains motivation of the project with a special focus on waveguide integration.
Further part provides masks and experiments design for RMG tailored structures on the

SOl platform.

Chapter 5 contains description of work done on the process development for the
experiments necessary for SOl integration. This chapter also contains the characterisation

and discussion on results obtained for RMG structures embedded within the SOI platform.

Chapter 6 summarizes the PhD thesis with discussion and conclusions on the results of all
work carried out. This chapter also contains the possible applications and future work

based on findings explained in previous chapters.






Chapter 2  Theoretical background and literature review

This chapter contains theoretical background regarding a subset of semiconductors (Si, SiGe and
Ge), which are crucial for this thesis, in Section 2.1. Understanding the theoretical background
behind the growth process at a fundamental level will allow planning of processing for optimal
photonic devices and therefore Section 2.2 is describing it. Section 2.3 introduces Rapid Melt
Growth (RMG) background with an overview of materials deposition and growth methods
traditionally used for fabrication of silicon photonics or electronic devices. Section 2.4 describes the

hydrogen role in the grown film. Finally, Section 2.5 covers the surface tension topic.

2.1 Properties of Silicon, Germanium and Si1«Gey alloys

Si and Ge are group IV elemental semiconductors with the electron structure as shown in Figure 2.
Si is the chemical element with atomic number 14, whereas the Ge atomic number is 32, with
electron configurations: 1s2 2s2 2pé 3s2 3pz and 1s2 2s2 2ps 3s2 3ps 4s2 3dw° 4p?, respectively. The
higher number of electrons and filled d-orbital result in a larger atomic radius of the Ge atom and
smaller band gap than Si. Additionally, Ge possesses both higher electron and hole mobility than Si
[1]12].

® ®
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Figure 2 Si and Ge are group IV elements with atomic numbers of 14 and 32 respectively, with

4 valence electrons.

The most significant properties of Si and Ge for this thesis are gathered in Table 1 for a clear
comparison between these two materials. The band_gap and lattice constant can be tuneable b}/
the RMG process which will be detailed in later parts of this thesis. The difference in melting point

of these two materials allows RMG to occur, which will be expanded in later parts of this Chapter.
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Finally, the hole mobility and electron mobility influence applications of semiconductors and have
an impact on their success in electronics, e.g. by affecting operation speed or the circuit operating

frequency [1].

Table 1 Important properties of Si and Ge reproduced from [3].
Property Si Ge
Band gap (eV) 1.12 0.66
Lattice constant (A) 5.43 5.66
Melting point (°C) 1415 937
Hole mobility (cm? (V- s)™) 450 1900
Electron mobility (cm? (V- s)™) 1400 3900

For the fabrication of Si, Ge or SiGe based devices, the compatibility with the CMOS production line
results in a major advantage over IlI-V group semiconductors, traditionally used in electronics but
difficult to integrate with the Si platform [4]. Additionally, the higher carrier mobilities of Ge
compared to Si could be given as a major advantage; however, the lack of a stable germanium oxide
(Ge0,) is the main reason for the prevalence of Si as the prominent semiconducting material (Si
forms a very stable native oxide, SiO,). As mentioned in Chapter 1, the difference in refractive index
of materials and their oxides is crucial for multiple applications including the waveguide fabrication,
and Si has a strong refractive index contrast with its native oxide. Refractive index of SiGe alloys is
highly dependent on the composition, although it will not be described in more detail as not being

the main objective of research described within this thesis.

All of these properties are supporting the suitability of Si for photonics, however this material has
much more to offer, including high thermal conductivity and high optical damage threshold, where

both values are around 10 times higher than for GaAs, a commonly used IlI-V semiconductor [5].

211 Energy band gap

The energy band gap represents the minimum energy needed for an electron to move from the
valance band to the conduction band. Semiconductor materials can be divided into direct and

indirect band gap materials, as is shown in

Figure 3Figure-3. In direct band gap materials, the bottom of the conduction band and the top of

the valance band correspond to the same value of electron momentum. However, in indirect band
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gap materials, an additional change of momentum is required to achieve the transition from the
valence band to the conduction band, thus resulting in a two-step phenomenon linked to a lower

probability of occurrence compared to direct band gap materials.

ey e —

lech
Conduction Band Minimum  ©oc"o" Energy

Above Valence Band Maximum Electon quy
Conduction Band
(a ) Direct Bandgap I Photon (c)
Momentum ()
Valence Band,
Direct Bandgop
Electron Energy Indirect Bondgop
Conduction Band Minimum Nof
Above Valence Band Maximum il n &
Momentum Momentum (k)
photon # % Indirect Bandgap

Momentum (k)

Valence Band

Figure 3 The band diagram for semiconductors: (a) direct band gap semiconductor diagram
with the conduction minimum aligned in k-space with the valence band maximum, (b)
indirect band gap semiconductor diagram with conduction band minimum shifted in
k-space with respect to the valence band maximum, (c) Ge band diagram; reproduced

from [6].

Si and Ge are indirect band gap materials, where the indirect band gap is equal to 1.11 eV for Si and
0.66 eV for Ge (at 300 K). Close to this indirect band gap, Ge possesses a direct band gap with slightly
higher value of 0.8 eV. Examples of direct band gap materials like GaAs or InAs [7] are shown next
to Si and Ge in Figure 4. In Figure 4, the absorption coefficient, a, of common semiconductorIs
(including Si and Ge and those from the IlI-V group) is plotted as a function of Photon energy

(corresponding to the wavelength).
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~— Photon energy (eV)

St . ! 0.9 0.8 0.7
l‘m.«illnlunl L1 L | L L
1107 3 Ing 7Gag 3A5,64P0.36

3
1 Si
“106 =
1x10 3
a(ml) 3
1x10° 2
3 '
1 1
1 H
'
Ix104 = '
E '
b= »
] \
] '
v
1x103 +———"—T—TTT T T
02 0.4 06 0.8 1.0 1.2 1.4 16 L8

Wavelength (um)

Figure 4 Absorption coefficient and band gap of different semiconductors for a range of wave-
lengths [8]. This plot is revealing the nature of their band-structure and band gap

energy.

As shown in Figure 4, the value of the direct band gap of Ge corresponds to the telecommunication
wavelength of 1550 nm, resulting in it being a suitable material for Electro-absorption Modulators
(EAM) [5] and photodetectors. The band gap of Si (mentioned 1.1 eV) [8] corresponds to the optical
absorption band edge at a wavelength of 1120 nm. Therefore, for A > 1120 nm Si is transparent
(applied e.g. for Si waveguides) in contrast to the range of A < 1120 nm, where Si is highly absorbing
(used e.g. in photodetectors). The window of low-loss wavelength (when Si is transparent) is
expanded up to 7000 nm making Si a material of choice also for mid-infrared (MIR) applications [9].
The addition of Ge to Si and formation of the range of Sii.«Gey alloys, shifts the absorption edge
from A = 1120 nm to 1300 nm, or even to 1550 nm. The full miscibility of Si and Ge allows the
tunability of the band gap between that of pure Si and that of pure Ge. The theoretical study of the
band gap of these alloys was conducted as early as 1958 [10]. Afterwards, experimental results for
low temperature band gap were fitted with analytical equations [11]. Equations 1 and 2 describe
the value of band gap for varied compositions of Sii.«Gey, where the critical content of Ge is x=0.85.
For the Ge content x lower than 0.85 as described in Equation 1, the band gap is closer to the Si
band gap value whereas with increasing value of x, the conduction-band is more like that of pure

Ge and is even called “Ge-like” and described as in Equation 2 [12, 13].
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E(x) = 1.155 — 0.43x + 0.206x2 eV (Equation 1)

E(x)=2.010-1.270x eV (Equation 21)

Based on equations 1 and 2, the graph for the SiGe alloy band gap can be drawn, as shown in Figure
5. The shape of a band gap curve for Ge content under x=0.85 is parabolic for unstrained SiGe,
whereas for the Ge content above x=0.85 the energy band gap is linearly dependent on the
composition. The band bad curve for strained SiGe with the Ge fraction x < 0.3, by contrast, is

linearly dependent on the SiGe composition.

1.2
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Figure 5 The band gap for the spectrum of Sii.«Gey alloys based on calculations expressed in

equations 1 and 2 [12].

The valleys shown in Figure 5 correspond to the Brillouin zones for Si and Ge unit cells and will be

further explained in 2.1.2.
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2.1.2 Lattice constant

The lattice constant defines the distance between the units of a crystal lattice cell in three-
dimensional space and depending on the shape of the cell, it can have either one, two or three
different values. Similarly to many IlI-V group materials, structures of Si and Ge are defined as the
face centred cubic (fcc) unit cell, also known as a diamond structure as shown in Figure 6. For the

fcc structure, all dimensions of the lattice constant are equal and described as a.

‘ Lattice point

Figure 6 The diagram of fcc crystal structure, where the lattice points are located in the corners

of a cube and in the centre of each face; a is a lattice constant.

The fcc structure can be represented in the k-wave vector coordinates which is called the Brillouin
zone. As shown in Figure 7, the main symmetry points of the Brillouin zone are relevant for the
shape of a band gap curve for Si1«Gey alloys. This representation is shown in Figure 7 with the main
symmetry points defined across the Brillouin zone. The conduction-band minimum (CBM) occurs at

the L-point in the Brillouin zone in Ge and near the X-point in Si [14].

Symmetry points (u,v,w) [kqky, k]

r:(0,0,0) [0,0,0]
X: (0,1/2,1/2) [0,2r/a,0]
L: (1/2,1/2,1/2) [/a,n/a,n/a]
W: (1/4,3/4,1/2) [n/a,2n/a,0]

U: (1/4,5/8,5/8) [/2a,21/a,1/2a]

K: (3/8,3/4,3/8) [31/2a,31/2a,0]
Figure 7 The Brillouin zone for the fcc unit cell with the characteristic symmetry points and their
wave vectors [15].

The difference of lattice constant between Siand Ge, 0.5431 nm and 0.5658 nm respectively, causes
a lattice mismatch with calculated value of 4.2% on the interface. For Sii«Gey alloys, the lattice

constant depends on the Ge composition with values obtained between those for pure Si and pure
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Ge. The lattice constant of Si1-xGe xalloys can be calculated using Vegard’s rule [16] described with

Equation 3:

Asi1aGex = Asi T X(Age — Asi) (Equation 3)
where a is the lattice constant for Si, Ge or Si;—«Ge yand x describes the Ge content.

The lattice constant parameters for varied Ge content, x, are included in Table 2, showing

proportional trend across the whole range of the Ge content.

Table 2 The Ge content x in Si1xGex alloys and corresponding values of the lattice parameter
[17,18]. A proportional relationship as predicted from Vegard's rule is observed for the

whole range of x values.

Ge content, x Lattice constant Si1—xGey, a (hnm)
0 0.5431
0.25 0.54825
0.5 0.55373
0.75 0.5596
1 0.56575

The lattice mismatch strongly enhances the probability of crystal defects in Ge layers grown on Si
[17], which typically inhibit the resulting device properties such as dark current and responsivity.
Nevertheless, a great number of high-performance active devices based on Ge have been

developed using epitaxial Ge grown directly on Si, which will be explained in detail in 2.2.

2.2 Ge and Si1xGexgrowth on Si

The lattice mismatch between Ge and Si is considered as a source of strain energy which causes
deformation of the film and leads to the formation of several defects, especially on the interface
between these materials [19]. As shown in Table 2, the lattice constant is varied for different SiGe
composition which is also causing defects on the interface between SiGe and the Si substrate. For
the simplicity of this Chapter, only growth will be described in detail on the example of pure Ge as
the principle analogical to SiGe growth. Values of the SiGe lattice constant closer to the one of Si
are used to minimised undesirable lattice mismatch e.g. as buffer layers which will be mention
further on. Dislocations and twinning defects have an impact on the smoothness of the surface or

the continuity of the layer, especially in the form of threading dislocations terminated at the
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surface. Moreover, the further fabrication process e.g. wafer bonding [1] or selective etching can
be interrupted if the number of defects is higher than the tolerance of the process; therefore,
defects can impact the yield of the fabrication process [2]. The performance of photonics devices is
also related to the number of defects including the lifetime of devices which has been shown to be
extended with a decreased number of defects in the device material [1][3][20]. During the growth
of Ge on Si, its lattice spacing will keep changing to conform to the Si lattice constant, however, a
defect-free strained Ge on Si was demonstrated only for thickness in a range of 4-10 nm [19]. Above
this value, the lattice mismatch causes increased stress within the grown layer and more defects.

The defects are a mechanism for relieving the accumulated strain energy.

The fundamental modes of film growth can be distinguished as shown in Figure 8.

Figure 8 Basic modes of film growth: (a) Volmer—Weber mode; (b) Frank—van-der Merwe mode;

(c) Stranski—Krastanov mode.

The Volmer-Weber mode corresponds to the situation where 3D islands of the material are formed
directly on the substrate without any 2D layer underneath [20]. The Frank-van-der Merwe mode is
a mode of the film growth layer by layer without island formation. This mode is typical for materials
with perfectly matching lattices which is mostly relevant to homoepitaxy [21]. The Stranski-
Krastanov mode corresponds to the two-step growth when 2D layers are formed up to certain
critical thickness subsequently followed by formation 3D islands [22]. Firstly, to initiate the growth,
a source of atoms or molecules in either liquid, solid or gaseous state is required. To build up a
layer, a condition of lower chemical potential of the desired film in relation to the particles of the
substrate must be conserved. The chemical potential describes how much energy is needed to join
single particles to the material layer. In the situation with two materials of the same chemical

potential, nothing would grow.

The strain energy can be determined by using Equation 4, where the strain energy increases

proportionally to the thickness (t) of the Ge growth,
. Aay? .
Estrain = AAt(;) (Equation 4)

where A is the biaxial elastic modulus, Aa is the forced change in lattice constant, a is the unstrained

lattice constant, A is the area and t is the thickness of the film.
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Over the critical thickness mentioned for Ge on Si growth, the probability of dislocations formed at
the interface increases. This is leading to the formation of Ge islands and the reduction of the elastic
energy of the surface as shown in Figure 9. The shown growth system is typical for Ge-on-Si thin

heteroepitaxy, with the transition between 2D layer growth and 3D island growth [22, 23].

Figure 9 Transmission electron microscope cross-sections of Ge-on-Si layers for Ge epitaxial
growth at different temperatures, Stransky—Krastanov growth of Ge-on-Si in an ultra-
high vacuum CVD reactor at 550°C and 350°C (a, b respectively), reproduced from [24].

The thickness of the Ge layer shown here is 60 nm.

The mode of the crystal growth is dependent on the wetting mechanism and the surface strain

energy [25]. The mechanism of growing Ge layers is shown in Figure 10.

The first monolayer of Ge on the top of Si (Figure 10a) and several further monolayers (Figure 10b)
are characterised with the strain associated to the 4.2% lattice mismatch between Ge and Si. A
wetting layer is firstly created on the surface of the substrate. As the film grows above the critical
thickness, the strain energy becomes too large for the Ge to maintain its compressed form and
therefore defects form to relieve the strain, supporting the growth of islands instead of smooth

layers [26].
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Figure 10  Cross-section atomic view of stages of the Ge-on-Si growth; a) the wetting layer, b)
growth below the critical thickness, c) thickness over the critical thickness when

dislocations and other defects occur.

The stress caused by the lattice mismatch between Si and Ge releases lattice dislocations which
propagate throughout the Ge film in the form of threading dislocations. It is desirable to reduce the
Threading Dislocation Density (TDD) in order to reduce the device dark current, the main source of
noise in the resulting devices [27]. Furthermore, defects act as generation and recombination
centres for carriers, and therefore acceptor-like dislocations in the Ge layer will form band barriers
and reduce the responsivity of photodetectors [27]. The most widely used methods for measuring
TDD are plan- view TEM and selective defect etching [12]. Reported typical values for Ge on Si are

in the range from 2x10° to 10*°cm [19].

23 Ge and Si1«Gexon Si growth techniques

A variety of crystalline Ge/SiGe-on-Silicon and Ge/SiGe-on-insulator (GOI/SGOI) fabrication
techniques have been investigated for photonics devices in order to reduce material defects and
improve the performance of the final device. The fabrication of high-quality and large-scale SGOI
and GOl is also highly desirable for CMOS integrated circuits to alleviate some of the limitations of
Si only based devices due to its wide band gap, especially important for wavelengths above 1.1 um
[28]. The addition of Ge to Si allows decreased size or lower power consumption of devices. Ge also
creates a bridge between silicon photonics and IlI-V materials [29]. The quality of an interface
between layers can vary with the method used for material growth, so in this section the main SiGe
and Ge growth techniques are introduced with a focus on the well-established epitaxy and Chemical

Vapour Deposition (CVD) methods.
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231 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is one of the well-established methods widely used for depositing
layers or multilayers of semiconductors including complex structures like multilayer quantum wells
[30]. The MBE technique grows material films by heating a solid crystalline source which will firstly
sublimate and later condense on a substrate. This technique provides a high-quality film with the
highest achievable purity over other methods, but the growth rate is slower due to an ultra-high
vacuum (UHV) of the order of 10 Pa needed to obtain growth. Moreover, SiGe growth with a
constant composition is more complicated because of a melting temperature difference between
Si and Ge [31]. Well controlled MBE techniques can be used for reducing the threading dislocation
density (TDD) in Ge layers, which was reported as early as 1984 with a graded SiGe buffer bet