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ABSTRACT

Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The
agreement between the morphology of simulated and real galaxies, and the way the morphological types are distributed across
galaxy scaling relations are important probes of our knowledge of galaxy formation physics. Here we propose an unsupervised
deep learning approach to perform a stringent test of the fine morphological structure of galaxies coming from the Illustris
and HustrisTNG (TNG100 and TNG50) simulations against observations from a subsample of the Sloan Digital Sky Survey.
Our framework is based on PixelCNN, an autoregressive model for image generation with an explicit likelihood. We adopt a
strategy that combines the output of two PixelCNN networks in a metric that isolates the small-scale morphological details of
galaxies from the sky background. We are able to quantitatively identify the improvements of IllustrisTNG, particularly in the
high-resolution TNGS50 run, over the original Illustris. However, we find that the fine details of galaxy structure are still different
between observed and simulated galaxies. This difference is mostly driven by small, more spheroidal, and quenched galaxies
which are globally less accurate regardless of resolution and which have experienced little improvement between the three
simulations explored. We speculate that this disagreement, that is less severe for quenched disky galaxies, may stem from a still
too coarse numerical resolution, which struggles to properly capture the inner, dense regions of quenched spheroidal galaxies.

Key words: galaxies: evolution— galaxies: fundamental parameters — galaxies: star formation — galaxies: structure — methods:
miscellaneous — methods: numerical

1 INTRODUCTION The resemblance of the simulated galaxies to real ones may be

considered an important hallmark of the quality of simulations and

In the recent years, cosmological hydrodynamical simulations of hence a crucial assessment of our knowledge of the relevant physical

galaxy formation and evolution have reached unprecedented accu-
racy. Early efforts (e.g. Croft et al. 2009, Crain et al. 2009, Schaye
et al. 2010, Nuza et al. 2010, Di Matteo et al. 2012) have paved the
way to state-of-the art simulations (Vogelsberger et al. 2014a,Schaye
et al. 2015, Dubois et al. 2014,Davé et al. 2019, Pillepich et al.
2018a), which broadly agree with a number of observations.

© 2019 The Authors

processes implemented therein. Indeed, one of the major successes
of simulations is the ability to produce galaxies with a wide variety
of morphologies, something that was not possible until only a few
years ago (Vogelsberger et al. 2014b; Schaye et al. 2015; Dubois
et al. 2014). Furthermore, most simulations are now able to generate
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galaxies whose physical properties are in the ballpark of observa-
tions, such as the galaxy stellar mass function (Furlong et al. 2015;
Pillepich et al. 2018b), the size-mass relation (R, — Mstar) and its evo-
lution (Genel et al. 2018; Furlong et al. 2017), the color bimodality
(Trayford et al. 2017; Nelson et al. 2018) and the star formation ac-
tivity (Donnari et al. 2019, though in this last instance some tensions
may still be present, especially at z > 1).

A key challenge for simulations is to try to reproduce the well
known correlation between galaxy morphology and star formation
activity (e.g., Eales et al. 2017), and how it propagates onto the
galaxy scaling relations, which are observed to be different in the
two cases (e.g., Shen et al. 2003, Wuyts et al. 2011,Bell et al. 2012)
. As shown in some works (Huertas-Company et al. 2016), this goes
beyond the simplistic late type-early type dichotomy, since these two
broad morphological types include a wide variety of subclasses.

Assessing the level of agreement between the morphologies of the
full populations of observed and simulated galaxies is a hard task, due
to the intrinsic complexity of galaxy shapes. The approach followed
by some authors (Snyder et al. 2015, Bottrell et al. 2017b, Bottrell
et al. 2017a, Rodriguez-Gomez et al. 2019, Bignone et al. 2019,
Baes et al. 2020) consisted in making use of integrated, paramet-
ric and nonparametric quantities as diagnostics (such as the popular
C - A -8 -G — My statistics (e.g., Abraham et al. 1994, Con-
selice 2003, Lotz et al. 2004), with the aim of describing galaxy
morphologies with only a few numbers. However, such an approach
may still not grasp the full complexity of a galaxy image. In fact,
although technically all the pixels of a galaxy image are used to
retrieve these quantities, their choice may be incomplete (i.e. the
C - A - S - G - My spatial diagnostics may in principle be ex-
tended, see for instance Freeman et al. 2013, Wen et al. 2014, Pawlik
et al. 2016, Rodriguez-Gomez et al. 2019), and, for this reason,
limited in power (i.e. the similarity of these statistics between ob-
served and simulated galaxies, although informative, is no guarantee
of the overall quality of simulated galaxy properties). The key point
is that all the precious information contained in the pixels of an
image may not be fully accessible with standard techniques, which
may be a major shortcoming when comparing the morphologies of
observed and simulated galaxies. Moreover, the different statistics
provide separate pieces of information, while it would be desirable
to assess the quality of a simulation using a single-valued metric.
A recent attempt to generalise over the (non) parametric techniques
outlined above has been carried out in Huertas-Company et al. (2019)
where a supervised deep learning framework was devised to classify
the morphology of simulated galaxies. Using Bayesian Neural Net-
works, Huertas-Company et al. (2019) were able to identify galaxies
in the simulation for which the network would produce a high vari-
ance in the output label - a sign that the the network struggled to
assign a clear morphology to some objects (mainly small galaxies),
which therefore may not be very realistic.

‘We build upon the work of Huertas-Company et al. (2019) by intro-
ducing a fully unsupervised framework to compare the morphologies
of simulated galaxies with observations. Comparing images coming
from different datasets is a task that in Machine Learning is known as
Out of Distribution detection (OoD). The high-level idea is to have a
deep learning model that learns the details of a dataset and condenses
it in a single-valued function, the likelihood, which can be used as
a metric to assess candidate OoD images. Deep Generative Models
(DGMs) have been proposed in the literature to perform this kind
of assessment. In short, a DGM trained on a given dataset computes
the likelihood for each of the in-distribution images (i.e. images that
come from the same distribution of the training set) as well as for
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all the candidate OoD images (i.e. data not seen by the Network at
training time that may or may not come from the same distribution of
the training set). A comparison between the likelihood distributions
of both datasets will reveal whether the candidate OoD sample agrees
with the training set (Bishop 1994).

However, the reliabilty of the likelihood of DGMs for OoD detec-
tion tasks has been questioned in the literature. In particular, Serra
et al. (2019) found that the likelihood a DGM computed for a test
image is a function of the image complexity with contributions from
both the background and the subject. Moreover, it has also been
found that the image background can have a significant confounding
effect on the likelihood that the network computes. For example, Ren
et al. (2019) showed that the likelihood correlates with the number
of pixels that have a value of zero. By combining the likelihood of
two DGMs trained on datasets that share a similar background, Ren
et al. showed that the contribution of the subject of the image may be
isolated. Here we take a step forward and try to overcome the issues
highlighted in Ren et al. (2019) and Serra et al. (2019) by combin-
ing the likelihood of two DGMs in a way that factors out both the
contribution of the background and that marginalizes over the trivial
properties of galaxy light profiles.

In this paper we propose the use of PixelCNN, an autoregressive
DGM, as a novel tool to compare the morphology of simulated and
observed galaxies. PixelCNNs (van den Oord et al. 2016a, van den
Oord et al. 2016b) explicitly learn the probability distribution of the
pixel values of images coming from a given dataset in an autore-
gressive fashion (i.e. the value of each pixel is conditioned to that
of previously processed pixels). The appeal of PixeICNN is that it
features an explicit, tractable likelihood with probabilistic meaning.
Other deep learning frameworks, such as Generative Adversarial
Networks (Goodfellow et al. 2014) and Variational Autoencoders
(Kingma & Welling 2014) are less suited for OoD tasks, as their
likelihood is not tractable. Nevertheless, GANs have been proposed
in Margalef-Bentabol et al. (2020) to perform OoD tasks based on
an anomaly score. We will discuss how our approach compares to
theirs more in detail in the remainder of this paper.

In this proof-of-concept work, our aim is to quantitatively as-
sess the fidelity of the stellar morphologies of galaxies produced by
the Illustris and IlustrisTNG simulations by comparing them with
available observations. We further explore whether an increase in
resolution may be able to lead to an even better agreement between
the morphology of simulated and observed galaxies by exploiting the
higher resolution offered by a realization of IllustrisTNG in a smaller
cosmological box, TNGS50, and how this depends on star formation
activity. The novelty of this work is in that we devise a methodology
which is sensitive to the relationship between the fine morphologi-
cal structure and the global properties of the galaxies’ light profile,
which is a very stringent test for simulations.

The outline of the paper is as follows. We describe the Sloan Digi-
tal Sky Survey observations and the fully realistic mock observations
of the Illustris and IlustrisTNG simulations in Section 2. In Section
3.1 we present our deep learning model and in Section 3.2 we out-
line the strategy with which we compare images of galaxies coming
from simulations and observations. This is done quantitatively ac-
cording to a metric which is a combination of the output of two
neural networks. In Section 4 we show that our framework is able
to recognize an improvement in [lustrisTNG compared to Illustris.
Such an improvement is still not enough to achieve a full agreement
with SDSS observations. In Section 5 we show that there has been a



continual advance in the realism of simulated galaxy morphologies
overall. However, this is less true for quiescent galaxies, particularly
the spheroidal ones, which do not compare well to observations, even
at the enhanced numerical resolution provided by TNGS50. In Section
6 we show how the quality of simulated galaxies varies across scaling
relations, and conclude that quiescent small and/or high Sérsic index
galaxies are the ones that are most problematic. Indeed, in Section
7 we show that most of the discrepancy between simulations and
observations for this galaxy population comes from the galaxy inner
regions. In Section 8 we discuss how similar findings have started to
emerge in the literature along with some potential caveats in common
with our study, as well as the potential reasons of this disagreement.
Finally, in Section 9 we give a concise summary of our findings and
discuss future applications of our framework.

2 DATA
2.1 Simulations

We make use of the Illustris Simulation (Vogelsberger et al.
2014b,Vogelsberger et al. 2014a, Genel et al. 2014, Sijacki et al.
2015) and its successor IllustrisTNG (Pillepich et al. 2018b, Nel-
son et al. 2018, Nelson et al. 2019a, Marinacci et al. 2018, Springel
etal. 2018, Naiman et al. 2018). Illustris and IllustrisTNG are hydro-
dynamical cosmological simulations , run with the AREPO moving-
mesh code (Springel 2010). The Illustris simulation has proved capa-
ble of reproducing several observables, but presented several short-
comings as summarized in Nelson et al. (2015). In the [llustrisTNG
simulation significant changes have been made with respect to the
Illustris framework. These include the modelling of magnetic fields
(Pakmor et al. 2011; Pakmor & Springel 2013; Pakmor et al. 2014),
the substitution of the bubble mode AGN feedback at low accretion
rates (Sijacki et al. 2007) with a kinetic AGN feedback (Weinberger
et al. 2017), a modification of the implementation of galaxy-wide
winds and updated mass yields from star particles (see Pillepich
et al. 2018a for a detailed summary).

The IlustrisTNG simulation was run with identical subgrid
physics in three cosmological volumes of progressively larger sizes
and with comparatively lower resolution. Here we compare the run
of Ilustris, which is performed in a cubic box of about 100 comoving
Mpc a side to the IlustrisTNG framework implemented in a box of
the same size, TNG100, and one of about 50 Mpc a side, TNG50
(Pillepich et al. 2019; Nelson et al. 2019b). We use in all three cases
the highest resolution realizations of each volume, which correspond
to baryonic mass resolutions of ~ 10°M¢ for TNG100 and Illus-
tris, whereas TNG50 has a fifteen times higher mass resolution of
~ 8 x 10* M, more comparable to zoom-in simulations.

From the simulations we select galaxies with Mg, > 109'5M@
at 7 = 0.04851, for a total of ~ 12,500 galaxies for Illustris and
TNG100 and ~ 1, 700 objects for TNGS50. The images are processed
with a joint use of the radiative transfer code SKIRT (Baes et al. 2011,
Camps & Baes 2015), the nebular modelling code MAPPINGS-III
(Groves et al. 2008) and the Bruzual & Charlot (2003) GALAXEV
stellar population synthesis code. The methodology is described in
detail in Rodriguez-Gomez et al. (2019). Briefly, each stellar particle
in either simulation (which represents a coeval stellar population) is
modelled with GALAXEV for stellar particles older than 10 Myr, while
younger stellar particles are treated as a starbursting population with
MAPPINGS-III. To model dust, it is assumed that the diffuse dust

1 snapshot 95 for IllustrisTNG and 131 for Illustris.
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Figure 1. The normalized stellar mass distributions for SDSS (solid orange
line), TNGS0 (dot-dashed magenta line), TNG100 (teal dashed line) and
Illustris (red dotted line). The vertical lines indicate the median mass of each
distribution. It can be seen that SDSS is incomplete at M,y < 1019M,, but
overall the mass distributions are similar.

content of each galaxy is traced by the star-forming gas, that the dust-
to-metal mass ratio is constant and equal to 0.3 (Camps et al. 2016),
and that dust is a mix of graphite grains, silicate grains, and polycyclic
aromatic hydrocarbons (Zubko et al. 2004). Full dust-inclusive ra-
diative transfer is run only if the fraction of star forming gas exceeds
1% of the total baryonic mass. The simulated galaxies are mock-
observed in the SDSS r—band at z = 0.0485 along a random line
of sight with the pixel scale of the SDSS telescope (~ 0.396” /pix).
Full observational realism is included as described in Section 2.4.
The structural properties of the mock-observed simulated galax-
ies, such as the effective radius R, and the Sérsic index g, , are ob-
tained with STATMORPH (Rodriguez-Gomez et al. 2019). STATMORPH
is a Python package? for calculating non-parametric morphological
diagnostics of galaxy images, as well as fitting 2D Sérsic profiles.
The stellar mass of galaxies is computed as the mass of all the bound
stellar particles within 30kpc from the galaxy center, while the star
formation rates (SFR) are computed within twice the half-mass ra-
dius of each galaxy. Other stellar mass and SFR definitions have been
discussed in Pillepich et al. (2018b) and Donnari et al. (2019).

2.2 Observations

In the following we will use the SDSS DR7 (Abazajian et al. 2009)
spectroscopic sample (Strauss et al. 2002). We use the Meert et al.
(2015) catalogues for galaxies in this sample, totaling 670,722 galax-
ies. The Meert et al. morphology catalogues have specifically been
shown to offer improved profile fits to the sample’s brightest galaxies
compared to previous catalogues (e.g. Simard et al. 2011) - owing to
a highly robust sky-subtraction algorithm. The galaxy stellar masses
are computed adopting Sérsic photometric fits and the mass-to-light
ratio Mgiar/L by Mendel et al. (2014). Although the spectral energy

2 Available at https://statmorph.readthedocs.io/en/latest/
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distribution of galaxies contains information which is critical to un-
derstand the physical processes that regulate galaxy formation, in
this exploratory work we choose to adopt only single band images
(specifically r-band). We plan to expand our work to multi-band
photometry in the future.

We also match the Meert et al. (2015) photometric catalog with
measurements of star formation rate (SFR) from Brinchmann et al.
(2004) and with the group catalogs of Yang et al. (2007, 2012), which
will allow us to identify satellite and central galaxies in our observed
galaxy sample.

We use the images of SDSS galaxies that have a stellar mass
Mar > 109'5M@ as our training sample. An important issue that
must be dealt with when choosing the training sample is that of
the redshift evolution of the angular diameter distance driven by
cosmology. Indeed, the pixel physical scale’ is a strong function of
redshift, which means that the training sample must be chosen so
that the average pixel scale is as close as possible to the pixel scale
at the redshift of the snapshot that we use for the simulations (i.e.
7 ~ 0.0485, see Section 2.1). Hence, we also limit the redshift range
of the SDSS training sample to 0.033 < z < 0.055, which gives a
median pixel scale only 7% larger than the pixel scale at z = 0.0485.
This redshift cut leaves us with ~44000 galaxies in SDSS, of which
we use ~ 32000 for training and ~ 12000 for testing. We note that in
principle with the pixel scale of the SDSS camera (i.e. 0.396"/pix) the
minimum physical scales probed at z~0.0485 would be around ~0.3
kpc. However, when the SDSS PSF (> 1"~3-4 pixels) is accounted
for the smallest scales to which we are sensitive are around ~ 1 kpc.
Such low resolution is still enough for some trends to arise, as shown
in the following Sections.

In Figure 1 we compare the stellar mass distribution of SDSS with
that of the simulations. The slightly higher median mass of SDSS
compared to Illustris and IlustrisTNG results from the incomplete-
ness of observations below Mg, < IOIOM@. Indeed, we checked
that the distributions have a very similar median value if only galax-
ies above that mass are considered. In the remainder of this paper,
we will break down our results above and below the completeness
threshold.

2.3 Galaxy archetypes

Our methodology implies training a second DGM on a simplified
version of the same galaxies used to train the first one. In other words,
we would like to have a second dataset where the global properties
of SDSS (such as brightness, size, ellipticity and light concentration)
are retained, but where more complex features, such as the spiral arms
of a disk galaxy, are ignored. This can be constructed by using the
Sérsic fits of the SDSS galaxies described in the previous subsection.
We produce these images using GalSim (Rowe et al. 2015) and the
values of the best-fitting r—band Sérsic parameters provided in Meert
et al. (2015). We include full observational realism as detailed in the
next Section.

2.4 Observational realism

Both the simulations and the best-fitting Sérsic images are idealized
objects. Therefore, for a fair comparison with observation we add the
same kind of observational effects that are found in SDSS, that is,
the presence of a noisy sky background and interlopers, as well as
the convolution with the SDSS Point Spread Function. Bottrell et al.

3 i.e. kpe/pix
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(2017a) and Bottrell et al. (2017b) presented RealSim, an algorithm
that enables such procedure. Briefly, with RealSim it is possible to
place a galaxy from a given simulation in a real SDSS field. The mock
galaxy is convolved with the Point Spread Function of that particular
field; the effects of shot noise and cosmological surface brightness
dimming are also included. For more details about RealSim, we refer
the reader to the original papers. Bottrell et al. (2019) have shown
that the including the correct level of realism in mock observations
is crucial when using neural networks for classification tasks.

2.5 Volume effects

Given that the cosmological volume spanned by the TNG100 and
Ilustris simulations is more than 8 times larger than that of TNGS50,
one thing we must worry about is cosmic variance. Indeed, Genel
etal. (2014) showed that the statistics of galaxy populations may vary
quite substantially in sub-boxes of 25/h~35 Mpc a side in the Illustris
simulation. Therefore, it is very much possible that the volume probed
by TNGS50 results in a biased galaxy population.

The way we address this issue in the following is by creating several
realizations of SDSS, TNG100 and Illustris of the same sample size
of TNGS50, and then use the mean and variance of the bootstrapped
distributions where possible.

In principle, cosmic variance could also affect the comparison
between SDSS and simulations. However, the test set of SDSS that
will be used in the following shares a very similar sample size with
Ilustris and TNG100. While this is not strictly a measure of the
volume spanned by SDSS, we can reasonably assume that a similar
sample size should enable a meaningful comparison between ob-
servations and those two simulations, since they have similar stellar
mass distributions.

3 METHODS
3.1 PixelCNN

PixelCNN (van den Oord et al. 2016a,b) is an autoregressive gen-
erative model with an explicit likelihood. Given an image X, the
likelihood of PixelCNN is “autoregressive" in the sense that the like-
lihood a given pixel is assigned is conditioned on all the previous
pixels of the image (which sometimes are collectively called "con-
text"), so that

N2
po(X) =] [pe(XilXi_i-p), (1)
i=1
where N is the pixel width/height of the square cutout. Here
po(Xi|Xy. i—1) is the probability distribution function of pixel i
evaluated at X; and conditioned on all the previous X ;1 pixels,
and @ are the weights of the network. It is worth stressing that eq.
1 models explicitly the likelihood of the training sample. In the fol-
lowing we will use the negative log-likelihood, which is less prone
to floating point limitations,

N2
L=-logpe(X)=- ) logpe(XilXi..i-1) 2)
i=1
The ansatz of eq. 1 imposes the choice of an ordering for the
pixels. We follow a prescription according to which the image
is scanned from top left to bottom right, row by row. This is a
standard implementation of PixelCNN that takes advantage of
the way convolutions are typically implemented in deep learning



frameworks. The autoregressive nature of PixelCNN is achieved
by means of a particular type of convolutions that mask the pixels
to the right and bottom of the current pixel, so that the network is
forced to learn the relationship between each pixel and the previous
context only. This is fully detailed in van den Oord et al. (2016a,b)).

We here adopt the PixelCNN++ architecture proposed by Sali-
mans et al. (201 7)4 interfaced with a higher level Tensorflow APP.
Briefly, Salimans et al. adopt a fully convolutional autoencoder-like
architecture, with three downsampling and three upsampling stages
respectively, where downsampling and upsampling are implemented
using strided convolutions 6. Each stage consists of an adjustable
number of Gated Resnet layers (van den Oord et al. 2016a, He et al.
2015), which entail zero-padding convolutions to preserve dimen-
sionality. Stages in the downsampling and upsampling parts of the
network with the same dimensionality are connected with shortcut
connections as in Ronneberger et al. (2015), to ensure that part of
the information lost in the downsampling is efficiently recovered. We
refer the reader to Salimans et al. (2017) and van den Oord et al.
(2016b,a) for further details of the implementation.

Obviously, not all images will have the same likelihood. Rather,
PixelCNN maps a distribution of images into a distribution of likeli-
hoods. This feature is in principle extremely powerful, since it allows
to collapse the complexity that characterizes images into a single-
valued function. However, as briefly mentioned in the Introduction
and as fully explained in the following, the likelihood alone may not
be a good proxy for the quality of an image. Rather, the combination
of the likelihood from two independent models may give a better
estimate for it. Therefore, we train two Pixel CNNs models:

® Dogpss» @ network trained on the SDSS sample described in
Section 2.2

® Dg,..c» @ model trained on the best Sérsic fits with the added
observational realism as described in Section 2.3.

3.1.1 Training

The images which originally were of size of 128x128 pixels, are
augmented 10 times with random rotations and then cropped to 64x64
and degraded to reach the size of 32x32 pixel’ in order to meet
memory and time constraints.

To train PixelCNN we use 32000 galaxies randomly extracted
from our SDSS sample, corresponding to the 75% of the dataset. We
also trained a second PixelCNN on the best r-band Sérsic fits of the
same SDSS galaxies. The likelihood distributions in the two cases
are shown in Figure Al.

One complication that astronomical images suffer compared to
standard applications which use png images is that in the latter case
the range of values that a pixel can take is limited (i.e. from O to 255),
while this does not apply to the astronomical standard where the value
of each pixel of a fits image is a flux and hence it is not bounded
in principle. Here we use fits images that can be downloaded from
the SDSS server and the Illustris and IlustrisTNG websites, as de-
tailed in the "Data Availability" Section. Therefore eq. 1 should be
interpreted as the product of the conditional probability distribution

4 Available at https:/github.com/openai/pixel-cnn

3 Available at https:/github.com/pmelchior/scarlet-pixelcnn
6 Transposed convolutions in the case of upsampling.

7 We use the publicly available scipy library.
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functions evaluated at X;, rather than the probability mass. To en-
sure the stability of training, we reduce the dynamical range of pixel
values by dividing each image by 1000 and subsequently applying
the arcsinh function. We further impose a hard upper limit of 1 to
the rescaled flux per pixel. The choice of this threshold involves a
trade-off between training convergence and information lost in the
small-scale details of the images. With our choice of 1 as an upper
limit, we do not see any trends between the metric that we use in this
paper (see next Section) and the fraction of pixels that are above the
chosen threshold, which is less than 1.5% for the vast majority of the
images in our samples.

3.2 Strategy and the LLR metric

The likelihood of generative models such as PixelCNN has been
proposed as a tool to compare different datasets on the grounds that
the likelihood distribution of a candidate OoD dataset should peak
at lower values (Bishop 1994). However, the interpretation of the
likelihood is not an easy task, as discussed in the following.

Firstly, the background of an image is thought to play an important
role in determining the likelihood of a given sample (Ren et al.
2019). This is because the log-likelihood is an additive quantity, and
therefore all the pixels will contribute to it, including those where the
subject (i.e., the galaxy in our case) is not present. To factor out the
undesired contribution of the background Ren et al. (2019) proposed
the use of two DGMs, where the second network is trained on a
dataset that has similar background statistics to the training set of
the first. In our case, we have the networks p gy and pg_,... which
both are trained to learn a similar sky background by construction.
The likelihood of a test image X;0s; evaluated by both models can
be decomposed simply in the roughly independent contributions of
the background pixels Xpackground @nd pixels of the subject, Xgypject,

Peo; (Xtest) =p 0; (Xbackground)p 6; (Xsubject) 3)
with i = SDSS, sersic. Then the log-likelihood ratio (LLR)
X
LLRZIOg{pHSDSS( test)} (4)
P Osersic (Xrest)
= log P 6spss (Xbackground)P Ospss (Xsubject) } )
P Oyeric (Xbackground)P Osersic (Xsubject)

should not depend on the background pixels, since both models
capture the background equally well.

Secondly, the complexity of an example image (both background
and subject) has been found to anticorrelate with the likelihood (Serra
et al. 2019) (see also Appendix B). However we are interested in
the complexity of the galaxy only, Xsupject, and irrespective of its
global features such as brightness, size, ellipticity and Sérsic index,
Xglobal- Indeed, the expression in eq. 4 does not only help isolating
the galaxy from the background, but it also provides information
about the small-scale morphological details, Xgetaiis. In fact, the
contribution of the subject of the image Xsypject can be decomposed
in the contributions from Xgjopa1 and Xgetails using the theorem of
compound probability,

Peo; (Xsubject) =Peo; (Xdetails» Xglobal) (6)
= pg; (Xdetails| Xglobal) P 6; (Xglobal) 7

where we have accounted for the dependence of certain morpholog-
ical features from global properties in the term p g, (Xdetails| Xglobal)
(e.g., spiral galaxies, which have very distinctive features, also tend
to be larger than spheroids as shown by a vast body of literature -
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see for example Shen et al. 2003; Bernardi et al. 2014; Lange et al.
2016; Zanisi et al. 2020). The log-likelihood ratio, LLR (where only
the contribution of Xgypject remains, see eq. 4), is now

P 6spss (Xsubject) }

LLR = log{—
P Ogersic (Xsubject)

- log { P 8spss (Xdetails| Xglobal) P 0spss (Xglobal) }

®)
p Osersic (Xglobal)

where we have used the fact that the best Sérsic fits are featureless and
so a model trained on them will only learn about Xgjopar- If pggpgs
and p g, are able to learn the global features equally well, then the
only contribution left to the LLR is

LLR ~ 10g{p ggps5 (Xdetails | Xglobal) } - )]

Therefore our LLR should be able to capture only the relationship
between the fine morphological details and the global properties,
without the contribution from the latter alone.

3.2.1 The LLR is informative of the agreement between simulations
and observations

A key property of the LLR is that it serves as a metric to assess which
of two competing models gives a better fit to the data. In our case our
models are two PixelCNNs which are trained on r—band images of
SDSS galaxies as well as their best-fitting Sérsic images ( p ggps and
D Oersic TESPECTiVely). Suppose that our samples X;es,, j are extracted
from a test distribution g, i.e Xyess ~ g. For us, Xyeg;, j represents a
single image from one of the simulations used in this work, and ¢ is
the collection of all these images.
The expected value of the LLR reads

M
P Ospss (Xtest, j)
Eyx-q[LLR] = l(),{—} Kresr ) o)
o ]21 ; pasersic(XIESt,j) 1\ Pest,j
M
q(Xrest,j)
:Z{bg +]Q(Xzesz,j) (11)
Jj=1 pgsersic( test,j)
q(Xrest j)
y POspss (Xtest. j) A\ Frest,j
:DKL(quHS“Sic)_DKL(quHSDSS), (13)

where the second equation is obtained by dividing and multiplying
the argument of the logarithm by g(X;es,j). Here D p (fllg) =
Zf.i ([log f(xi)/g(xi)]f(x;) is the Kullback-Leibler divergence,
which is a way to quantify the distance between two distri-
butions. Thus, if Ex.g[LLR] > 0, then Dk (qllpoy..) >
D 1.(qllpagpss)» that is, the distance of g from the pg,, . model
is larger than that from the p g, model, and therefore g is closer to
the distribution of SDSS galaxy images. Hence, Eq. 13 leads us to
conclude that the larger the expected value of the LLR, the more sim-
ilar q is to p gy - A clear indication of our mathematical derivation
is that SDSS should have the highest mean LLR (i.e., ¢ = pggpg)-
Conversely, the collection of galaxies coming from a given simula-
tion (i.e. ¢ # pgqpgs) should ideally have a mean LLR that is as close
as possible to that of SDSS, but it is predicted that the condition
(LLR) < (LLRgpss) should hold. More formally, we can quantify
how much simulations depart from SDSS by computing the differ-
ence between the mean LLR of simulated galaxies and that of SDSS,
A(LLR) = (LLR) — (LLRspss). Since Ex~4 [LLR] is highest for
observations by construction then the largest value that A(LLR) can
assume is zero. To make it abundantly clear, this means that the closer
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the A(LLR) is to zero, the more consistent a data set is with SDSS. A
simulation for which A(LLR) = 0 perfectly reproduces the observed
galaxy morphologies. We stress again that the level of agreement
between simulations and data is independent of both the sky back-
ground and global morphology with this metric, and depends only on
the small-scale structural details of simulated galaxies (see eq. 9). We
also emphasize that in this study we are limited by the relatively low
resolution of SDSS images, which is mimicked in the mock obser-
vations of Illustris and IlustrisTNG galaxies. In principle the same
identical framework may be applied to higher-resolution imaging.

The framework outlined above applies if all the global parameters
are the same, i.e. for galaxy samples with reasonably compatible
global scaling relations, which is roughly true in our case (but see
Section 8.4). On the other hand, should the simulated galaxy popula-
tion be extremely biased, our methodology would not be applicable.
For example, ad absurdum, let’s take the case of an hypothetical cos-
mological simulation that produces only a single, perfectly realistic
galaxy, or multiple identical copies thereof. The galaxy population in
this simulation, as a whole, is clearly not realistic, since real galaxies
span a range of properties. However, the LLR distribution of the
simulated sample would be a delta-Dirac function centered at a high
value of LLR, resulting in a very high, or even positive, A(LLR).
It is clear that such value of the A(LLR) does not indicate a good
agreement between the small-scale morphology of the population
of simulated and real galaxies. We will explore other methodologies
that will allow to circumvent this specific limitation of our approach
in future work.

Other techniques to compare distributions, such as the popular
Kolmogorov-Smirnov (KS) test, are available in the literature. How-
ever, we found that the KS test is not sensitive enough to describe the
difference between the LLR distributions of observed and simulated
galaxies. Indeed, the p-value of a KS test under the null hypothesis
that the LLR distributions of SDSS and each simulation are identical
is always zero - perhaps not surprisingly, since the distributions that
we will present in the following are substantially different. A p-value
of zero in all cases prevents us from achieving one of our main aims,
that is quantifying the improvement between the various simulations.
Therefore, in the following we will use the LLR as a metric to com-
pare observations and simulations. We discuss the robustness of this
approach compared to using the likelihood of the p g, ¢ model only
in Appendix B.

4 PIXELCNN CAN DISTINGUISH SIMULATIONS AND
OBSERVATIONS

The LLR distributions for Illustris, TNG100, TNG50 and the test sets
of SDSS and their best-fitting Sérsic profiles are shown in Figure 2,
which constitutes the main result of our paper. The first consideration
to emphasize is that the SDSS test set is the one with highest LLR,
while the best Sérsic fits of SDSS galaxies have a negative LLR. This
confirms the findings outlined at the end of the previous Section:
a higher LLR is a signature that a dataset is better represented by
SDSS observations and, conversely, the smaller the LLR the more
the dataset is similar to featureless Sérsic profiles.

With this in mind, we now bring the reader’s attention to a very
clear trend: the distribution of SDSS peaks at the highest LLR fol-
lowed, in order, by TNG50, TNG100 and Illustris. This results in
values of A(LLR) of -49.67+1.85, -69.32+1.93 and -81.37+2.09.
According to our framework, this means that Illustris is the simula-
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Figure 2. The log-likelihood ratio (LLR) distributions of SDSS (orange solid
line), TNG50 (magenta dot-dashed line), TNG100 (dashed line), Illustris
(red dotted line) and the best Sérsic fits (green long dashed line), for galaxies
with My > 1095 M. The shaded regions show the 1 sigma confidence level
obtained by bootstrapping SDSS, TNG100 and Illustris 1000 times to the same
sample size of TNG50. The A(LLR) for each simulation is also reported,
inclusive of the 1 o~ confidence interval resulting from the bootstrapping. The
higher the value of the A(LLR), the more similar a dataset is to SDSS.
Therefore, TNGS50 is the simulation that best reproduces the morphology of
SDSS galaxies, followed by TNG100 and Illustris.

tion that gives the worst performance of the three. The [llustrisTNG
implementation markedly improves over Illustris, with TNG50 being
the closest to SDSS. We recall that Illustris and the two IllustrisTNG
simulations differ in the implementation of the physics that shapes
galaxies while their resolution is comparable. Therefore, we must
conclude that the physical modelling implemented in IllustrisTNG
is able to generate more realistic galaxies compared to the original
Tlustris model. Moreover, TNG50 features a factor of 2.5 spatial
resolution compared to the other two simulations used here. We then
conclude that the improvement in resolution in TNG50 leads to fur-
ther agreement with observations.

It is noteworthy, however, that even the newest generation of sim-
ulations, although remarkably more accurate compared to earlier
efforts, still struggles to reproduce the small-scale morphological
details of SDSS observed galaxies, down to scales of = 1 kpc (see
Section 3.1.1).

5 THE SMALL-SCALE STELLAR MORPHOLOGY OF
QUIESCENT GALAXIES IS NOT WELL REPRODUCED
BY SIMULATIONS

5.1 Star forming galaxies vs quiescent galaxies

We have seen how the LLR provides a useful metric to evaluate the
quality of galaxy images produced by simulations which is aware of
the morphological details of galaxy structure. Based on this, in the
previous Section we have also demonstrated that the latest generation
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of simulations of galaxy formation still struggles to produce realistic
samples, despite a marked improvement compared to earlier work.
So, why is it that simulations are yet to reproduce in order to make
realistic-looking galaxies?

Here we try to answer this question by raising one issue that
has been broadly debated in the literature, that is, the effectiveness
of the implementations of the subgrid physics that regulates star
formation and quenching. In the following we will advocate that
most of the discrepancy between observations and simulation stems
from an imperfect relationship between star-formation activity and
small-scale morphological features.

To do this, we here exploit the power of our LLR framework,
which prescribes that the higher the mean value of the LLR distri-
bution of a dataset, the better it resembles observations. The LLR
distributions for star forming (log sSFR/ yr_] > —11) and quiescent
(log sSFR/yr_l < —11) galaxies in our simulations and SDSS are
shown in the upper panel of Figure 3. These distributions have been
obtained by resampling SDSS, Illustris and TNG100 with the same
sample size of TNGS50 similarly to Figure 2.

The left top panel of Figure 3 shows how the mean of the LLR
distribution for simulated star forming galaxies is the closest to SDSS
for TNG50, followed by TNG100 and with Illustris being the furthest
away from it. The higher LLR of TNG100 with respect to Illustris
is suggestive that the improved physical model for galaxy formation
adopted in the IlustrisTNG framework is overall an improvement
compared to the original Illustris implementation (Pillepich et al.
2018a). Furthermore, the unprecedented agreement with observa-
tions reached by TNGS50 star forming galaxies is also a sign that a
higher resolution is key to effectively model star formation. We note,
however, that all simulated data sets are still inconsistent at the 1
sigma level with SDSS.

On the other hand, it can be seen that the improvement noted for
star forming galaxies does not seem to propagate to quiescent galax-
ies as well (top right panel of Figure 3). We start by noting that in this
case [llustris galaxies show a tail of high LLR that is consistent with
IustrisTNG at the 1 sigma level. However the large variance sug-
gests that this tail is very scarcely populated, whereas the very small
variance found for the spike at low LLR is indicative that the bulk
of the population of Illustris quiescent galaxies lies there, i.e. they
are very far from reproducing SDSS. Yet, while there seems to be an
overall improvement from the original Illustris framework to Illus-
trisTNG, the better resolution offered by TNG50 over TNG100 does
not appear to significantly modify the overall LLR distribution for
quiescent galaxies. Indeed, the distributions of the two [llustrisTNG
volumes are practically consistent but at very high LLR, where the
probability density of TNGS50 is slightly higher.

In short, what the top of Figure 3 is telling us is that there has been
a clear amelioration from the Illustris to the IllustrisSTNG framework,
in both the modelling of star formation regulation and of quenching,
yet IllustrisTNG still produces small-scale stellar morphological de-
tails which differ from those in SDSS, and especially so for quiescent
galaxies. Most importantly, while the higher resolution featured by
TNGS50 generates a sizeable improvement in the morphology of star
forming galaxies, this is not the case for quiescent galaxies. This is
suggestive that the physics which couples small-scale stellar mor-
phological details to star-formation quenching in the IlustrisTNG
simulations warrants improvement, or that an even higher resolution
is needed to accurately model the processes that lead to quiescence.
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Figure 3. Upper row: The log-likelihood ratio (LLR) distribution of star forming (left) and quiescent (right) galaxies for SDSS (orange), TNG50 (magenta),
TNGI100 (teal) and Ilustris (red). Middle row: The LLR distributions of star forming galaxies in three bins of galaxy stellar mass. Bottom row: The LLR
distributions of quiescent galaxies in three bins of stellar mass. Colors and line styles in the Middle and Bottom rows are as in Upper row. The shaded regions
show the 1 sigma confidence level obtained by bootstrapping SDSS, TNG100 and Illustris 100 times to the same sample size of TNGS50. For star forming galaxies
the A(LLR) is the lowest for TNG50, followed by TNG100 and Illustris, indicating that TNG50 is the simulation that best models star forming galaxies. Instead,
all simulations struggle to accurately model quiescent galaxies, for which the A(LLR) remains low in all cases. These trends are robust across the stellar mass

bins considered.
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5.2 Mass dependence

The physical mechanisms that quench star formation in a galaxy are
thought to depend on stellar mass. At low masses, it is generally
accepted that quiescence mainly occurs in satellite galaxies due to
environmental processes (e.g., Peng et al. 2010) — this behaviour
naturally emerging also in IllustrisTNG (Joshi et al. 2020; Donnari
et al. 2020a). Conversely, a plethora of possible mechanisms has
been identified for quenching higher-mass galaxies (see Introduc-
tion). In MlustrisTNG, AGN feedback is responsible for halting star
formation in galaxies with My 2 1010-5 51, o (e.g. Weinberger et al.
2017; Zinger et al. 2020), regardless of whether they are centrals or
satellites (Donnari et al. 2020, submitted). Therefore, we break down
the upper panel of Figure 3 in the following bins of galaxy stellar
mass: 10°2 < Mgar/Mo < 10101010 < Myar/Mo < 10195 and
Mgar > 101051 o- The choice of these bins is not casual. Indeed, the
lowest mass bin is where SDSS is incomplete and so the comparison
between the datasets should be taken with a grain of salt. The other
two bins are chosen to be around a mass scale that is thought to be
key in galaxy formation, namely Mgar = 3x1010M¢ ~ 10195 M
(e.g., Cappellari 2016). In IllustrisTNG that is roughly the mass
scale where the AGN feedback mode switches from thermal to ki-
netic (Weinberger et al. 2017, Terrazas et al. 2020). We note that
the prescriptions for AGN feedback have been significantly changed
from Ilustris to [lustrisTNG (see Section 2.1 and Pillepich et al.
2018a), and that it has been argued that AGN feedback plays a role in
establishing the morphology of massive galaxies (e.g., Dubois et al.
2016,Genel et al. 2015).

For star forming galaxies, we can see that the trend of the top
panel of Figure 3 persists across all masses: star forming galaxies
are best reproduced by TNGS50, followed by TNG100 and Illustris,
from the least massive to the most massive galaxies. In particular, it
is noteworthy that the A(LLR) of massive star forming galaxies in
TNGS50 is consistent with zero at the 1o~ level, meaning that these
galaxies are reproduced extremely well by TNGS50.

Quiescent galaxies, instead, feature a significantly worse, i.e.
lower, A(LLR) consistently across all masses and for all simula-
tions. We note that the higher resolution of TNG50 improves only
marginally on TNG100 and Illustris in the lower mass bins, but it
is more significant for massive galaxies. This evidence suggests that
environmental quenching in all simulations always produces galaxy
morphologies that differ from those of SDSS, with a weak depen-
dence on resolution. For massive galaxies (Mstar 2 IOIO'SM@), we
note that for TNG100 the A(LLR) is lower than for [llustris (although
they are consistent at the 10 level), while TNG50 improves on both.
The fact that quenched galaxies in Illustris and TNG100 have a sim-
ilar performance is puzzling. In fact, the distinct implementations of
AGN feedback in the two simulations may be expected to generate
different levels of agreement with SDSS. We speculate below on the
possible reasons for this somewhat unexpected result.

One possibility is that the exact implementation of AGN feedback
does not significantly affect morphology at the resolution of Illustris
and TNG100, at least at the redshift probed here, z ~ 0.05. It could
be possible that AGN feedback may have an impact on morphology
at higher redshift, but then major mergers substantially change the
morphology of quiescent galaxies (e.g. Rodriguez-Gomez et al. 2017,
Clauwens et al. 2018, Martin et al. 2018, Tacchella et al. 2019), at
which point the small-scale collisionless dynamics of the stars in
the merger remnant depends on numerical resolution. This argument
would be favoured by the fact that major mergers are observed to
occur with similar rates in Illustris (Rodriguez-Gomez et al. 2016)
and TNG100 (Huertas-Company et al. 2019) for massive galaxies. In
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the pictures outlined above, the better match of TNGS50 with SDSS
could simply be due to an improved resolution, but not necessarily a
better physical model for AGN feedback.

We also note that some tensions in the relationship between size,
color and non-parametric morphological estimators between obser-
vations and both Illustris and, to a lesser extent, TNG100 massive
galaxies was already highlighted in Rodriguez-Gomez et al. (2019).
The variety of non-parametric morphological indicators adopted in
Rodriguez-Gomez et al. (2019) provide separate pieces of informa-
tion compared to our unsupervised LLR strategy, which generalises
over human-biased non-parametric approaches and summarises the
small-scale details in a single value. Moreover, we note that some
higher-level details in the galaxy structure may be lost with the higher
pixel scale (i.e. lower resolution, 0.396 arcsec/pix) of SDSS, which
we adopt here, compared to the Pan-STARRS observations used in
Rodriguez-Gomez et al. (2019), where a lower pixel scale (i.e., higher
resolution, 0.25 arcsec/pix) is available. Therefore, a direct compar-
ison between our results and those presented in Rodriguez-Gomez
et al. (2019) is significantly non trivial. This is true in general, and
it applies in particular to the case of massive galaxies which we
discussed here.

5.3 Does environment matter?

We have shown in the previous Sections that while the modelling
of star forming galaxies has continuously improved in the years,
quenched galaxies still seem inaccurate according to our deep learn-
ing framework. These results have been presented for the full galaxy
population of our data sets, as well as for three stellar mass cuts. In
particular, we have discussed the connection between stellar mass,
quiescence and the environment. Here, we test the link with environ-
ment more explicitly.

We show the LLR distributions of quiescent and star forming cen-
tral and satellite galaxies in Figure 4. Let’s start by comparing the
trends for star forming galaxies. It is clear that in this case both satel-
lites and centrals markedly improve from Illustris to TNG100, and
from the latter to TNGS50, as was shown in Figure 3 for the full pop-
ulation. It is also interesting to note that the A(LLR) for star forming
centrals and satellites are almost identical for all simulations. In fact,
this is a trend that we observe also for the quenched population: by
comparing the A(LLR) quoted in the right column of Figure 4 for
central and satellite quiescent galaxies, we observe that similarly low
values are achieved. The only exception is for TNG50, where central
quiescent galaxies feature a significantly higher A(LLR) compared
to quiescent satellites. Since the population of quenched quiescent
galaxies is dominated by massive galaxies in IllustrisTNG, we refer
the reader to the discussion at the end of the previous Section for a
speculative explanation of this behaviour.

In summary, Figure 4 suggests that the different processes that
quench central and satellite galaxies result in a similar disagreement
with observations. This in turn suggests that the main culprit for the
disagreement is not necessarily to be searched in the way gas is re-
moved and star formation halted (e.g. via ram-pressure stripping vs
gas expulsion via BH feedback in the TNG runs) but rather on how
the stellar light distribution is realized in the numerical models in the
case of quenched galaxies. We note, however, that the relatively small
volumes probed by the I1lustrisTNG and Illustris simulations, as well
as SDSS, implies that the statistic of cluster-sized dark matter haloes,
which host most of the satellite galaxies, is subject to significant cos-
mic variance: there are about 6 clusters with My, > 1013M¢ in
SDSS and TNG50, while TNG100 features more than 50 of them.
Since environmental quenching is found to be a rather steep function
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Figure 4. The log-likelihood ratio (LLR) distributions of quiescent and star forming galaxies for centrals (top) and satellites (bottom). The LLR distributions
of star forming centrals and satellites follow the same trends highlighted in Figure 3. Contrary to star forming galaxies, quiescent galaxies display a lower
A(LLR) both for centrals and satellites: this indicates that quiescent galaxies are not well reproduced in simulations regardless of the quenching mechanism
(environmental quenching for low mass satellites, AGN for centrals and massive satellites).

of host halo mass in both observations (e.g., Davies et al. 2019) and
simulations (e.g., Donnari et al. in prep), as well as of individual
cluster assembly history (Joshi et al. 2020), we caution that the dis-
agreement found for satellite galaxies should be taken with a grain
of salt.

6 THE REALISM OF SIMULATED GALAXIES ACROSS
SCALING RELATIONS AND THE ROLE OF
QUENCHING

The neural networks that we use here are aware of galaxy structure
only by design and are not trained with any direct information about
star formation activity. Yet, we have just shown that the morphologies
of quiescent and simulated galaxies are not reproduced equally well
by simulations according to our deep learning framework. The reason
for this behaviour must therefore be investigated more thoroughly.
One way to address this issue is to explore the quality of simu-
lations across galaxy scaling relations. More specifically, we study
how the average LLR of simulated galaxies deviates from the average
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LLR of SDSS galaxies at each point on the planes defined by scaling
relations. Thus, in this case the A(LLR) gives an indication of how
realistic simulated galaxies are in a given region of the planes defined
by galaxy properties. Note that this kind of analysis is possible only
because simulations are in the ballpark of observations, at least at the
redshift of interest. Yet some data points for simulations still lie out-
side of the manifold, and therefore we exclude them in the following.
To make this abundantly clear, the blank space in the following Fig-
ures may mean either that SDSS observations or simulated galaxies
are not present in that region of the manifold. Nevertheless, we show
contours in each panel for the distributions of SDSS (orange solid
curves) and the simulated (magenta dashed curves) galaxies to give
an idea of how the different samples populate the depicted planes.

As an example, we take three scaling relations that have been
widely studied in the literature: the R, — Mg, relation (size-mass
relation, e.g. Shankar et al. 2010,Bernardi et al. 2014, Lange et al.
2015, Zanisi et al. 2020), the nger — Re relation (Sérsic index-size
relation e.g. Trujillo et al. 2001, Ravikumar et al. 2005) and the
SSFR — Mgy relation (specific star formation rate-stellar mass re-
lation, e.g. Salim et al. 2007, Elbaz et al. 2011). These are shown
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Figure 5. The size-mass relation (top panel), sSF R — M, relation(middle panel) and the Sérsic index-size relation (bottom panel) for the three simulations
studied in this work as labelled. The color code is the difference between the mean LLR of each simulation and the mean LLR of SDSS at each point of the scaling
relations. A brighter color indicates a better agreement with SDSS. In the middle panel we also show with a red dashed line the sSFR threshold that defines star

forming (log sSFR/yr~! 2 —11) and quiescent(log sSF R /yr~!

< —11) galaxies. We also impose a strict lower limit on the sSFR at log sSFR/yr~! = —12.5.

We show with orange solid contours the 10th, 50th and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the mass completeness
threshold of My, ~ 109 M. Contours for the same mass cut are also shown with magenta dashed lines for simulations, which are in the ballpark of the
observed scaling relations (especially so for TNGS50, less so for Illustris). It can be seen that quenched, concentrated, small galaxies are the ones with the lowest
A(LLR), and so their fine stellar morphology substantially disagrees with observations.

for each simulation in Figure 5, and are color coded by the A(LLR).
We discuss each of these relations separately at first, and we then
propose an interpretation.

In the size-mass relations of both IllustrisTNG simulations there is
a clear gradient in A(LLR), where at fixed stellar mass larger galax-

ies deviate the least from SDSS and smaller ones are progressively
less realistic. Instead, this behaviour is not present in Illustris, due
to the well-known lack of small galaxies in this simulation at low
redshift (Snyder et al. 2015). Interestingly, massive galaxies seem
to be better reproduced in Illustris compared to TNG100. As Illus-
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tris massive galaxies are typically more star forming than TNG100
galaxies (Donnari et al. 2020b), and since star forming galaxies are
on average better reproduced, then the A(LLR) is likely biased high
for Illustris massive galaxies when no cut on star formation activity is
made. We will discuss trends for star forming and quenched galaxies
separately later in this Section.

The sSFR—Mg,, relations reveal that star forming galaxies notably
improve from Illustris to TNG100 and from the latter to TNGS50. In
particular, it is worth noticing that massive star forming galaxies
seem to be slightly more accurate than less massive ones. On the
contrary, it can be seen that on average passive galaxies differ the
most from SDSS. Lastly, it is also worth reminding the reader of the
well-known uncertainties in retrieving SFR from the observed optical
colours only (e.g. Donnari et al. 2019, Eales et al. 2017, 2018), which
could affect dramatically the distribution of SDSS observations for
log sSFR/ yr_l < —11 and hence this kind of region-wise comparison
with simulations. We will address this point in the following.

Finally, the bottom panels of Figure 5 show the n¢, — R, relations
for the three simulations. Although the trends are somewhat less
obvious is this case, a close inspection of the figure reveals a few
interesting details. First of all, Illustris is not able to produce galaxies
with medium-to-low sizes and high Sérsic indices, as already noted
by Bottrell et al. (2017b). While this is something that is reproduced
in TNG100, we note that high Sérsic index galaxies tend to differ the
most from their SDSS counterpart. In TNGS50, instead, we clearly see
that high mass galaxies with a high ng,, are much better in agreement
with SDSS.

To summarize our findings, simulations seem to still struggle at
reproducing the small-scale stellar structural features of galaxies that
are more concentrated and smaller in size, at fixed stellar mass.
We wish to further explore how the quality of simulated galaxies
across the scaling relations studied here depends on star formation
activity. Therefore, we split our data sets in star forming and quiescent
galaxies, as done in the previous Section. Note that by binning in
sSFR above and below log sSSFR/ yr_1 ~ —11, we alleviate the issue
about the reliability of the comparison between the sSFR inferred
from observations and simulations.

There is an important caveat to mention before we proceed. As
discussed already in Section 2, not all galaxy populations may be
statistically well represented in the volume of TNG50, which is more
than 8 times smaller compared to the other simulations. This would
explain, for instance, the fact that in TNGS50 the quiescent region
of the sSFR — Mg, relation seems to be less densely populated in
Figure 5. We alleviate this issue in the following by showing random
realizations of TNG100 and Illustris of the same sample size of
the smaller IllustrisTNG volume, as done previously. In the online
supplementary material we show the same Figures for different
random samples to show that our interpretation is robust.

Figure 6 shows the well-known trend where on average star form-
ing and quiescent galaxies lie above and below the mean of the size-
mass relation at fixed stellar mass respectively for the IllustrisTNG
simulations (Genel et al. 2018). This trend agrees with observations
and it is something that is not seen in Illustris. Indeed the absence
of this differential size-mass relation in Illustris was raised as a
cause of concern by Bottrell et al. (2017b). We note that the overall
too-large sizes of Illustris galaxies, independent of color/SFR, was
taken into account for the TNG model calibration (Pillepich et al.
2018a). However, it is clear from Figure 6 that quiescent galaxies in
both MustrisTNG volumes have a consistently lower A(LLR) value
compared to star forming galaxies, with the exception of massive
quiescent galaxies in TNGS50.

The nger — Re relations for star forming and quiescent galaxies are
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shown in Figure 7. In this Figure we see that for star forming galaxies
there is a definite improvement from TNG100 to TNG50, especially
for large, high-n;e, galaxies. In the original [llustris simulation very
few star forming extended, high Sérsic index galaxies even exist. For
quiescent galaxies, the improvement is less marked from Illustris to
TNG100. However when comparing the latter to TNG50 quiescent
galaxies, we do see hints that extended galaxies with 3 < nger < 4
are better reproduced in the smaller IllustrisTNG volume. Interest-
ingly, we also see that TNGS50 is able to produce compact, highly
concentrated galaxies, which however still differ more from SDSS
galaxies in terms of their small-scale stellar morphological details..

In summary, the variation of the quality of simulations across
galaxy structural scaling relations, as quantified by the A(LLR),
seems to support the idea that simulations do not generate realistic
small-scale features in the stellar morphology of quenched galaxies,
particularly those small in size and/or highly concentrated. This holds
true even in the IlustrisTNG simulations, where the bimodality of
structural scaling relations is broadly reproduced.

7 INTERPRETING THE LLR

The interpretability of the outcome of deep learning studies is al-
ways problematic. Substantial progress has been made in the case of
convolutional neural networks (CNNs) applied to classification tasks
with techniques such as GradCam (Selvaraju et al. 2016) and Saliency
Maps (Simonyan et al. 2013). These algorithms provide a way to vi-
sualize the regions of an image a CNN mostly focuses on to output a
certain prediction. Saliency maps have been already applied in galaxy
morphology classification (Huertas-Company et al. 2019), and Grad-
Cam in merger stage identification (Ciprijanovi¢ et al. 2020). Unfor-
tunately, by nature, these techniques cannot be applied to generative
models. PixelCNN, however, has the very amenable feature that the
likelihood is constructed pixel by pixel, and so the LLR, which is
the ratio of the likelihood of two PixelCNN networks. Therefore, it
is possible to identify which pixels contribute the most to the LLR,
and therefore infer what the networks believe a realistic galaxy looks
like.

As an example, we focus here on a population of galaxies which is
poorly reproduced in simulations, that is, small, concentrated quies-
cent galaxies (see previous Section). A sample of this population for
SDSS and TNGS50 is shown in Figure 8 (left column), along with the
pixel-wise contributions to the LLR (“LLR maps", right column).
The colour scale of the LLR maps saturates at values of 4 and -2 for
practical reasons, but the LLR contribution of individual pixels can
be much higher or lower. First and foremost, we note that it is im-
possible for the human eye to observe any difference between SDSS
galaxies and simulated ones. Admittedly, it is also not obvious to
identify clear patterns in the behaviour of the pixel-wise contribution
to the LLR. At a closer look, however, it can be seen that the central
regions of SDSS galaxies contribute much more to the LLR com-
pared to TNGS50. This means that the simulated galaxies are most
inaccurate in the central parts, where instead the differences with a
smooth Sérsic model are more pronounced for SDSS. Indeed, for
some simulated galaxies the LLR map is almost featureless, a sign
that there is not much difference between the simulated galaxy and a
Sersic model (e.g. the two central galaxies in the bottom row of the
top right panel in Figure 8), despite the fact that the galaxies them-
selves (the two central galaxies in the bottom row in the top left panel
of Figure 8) look reasonably realistic. We also note that the deviation
from a Sérsic profile may occur at different levels in different parts
of a galaxy with a non-trivial spatial distribution. This is because,
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Figure 6. The size-mass relation for star forming (top row) and quiescent galaxies (bottom row). The color code is the same as in Figure 5. Here TNG100 and
Tllustris have been randomly sampled to the same sample size of TNG50. See online supporting material for other realizations of the sampling. We also show
with orange solid contours the 10th, 50th and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the mass completeness threshold of
Mo ~ 1010 M. Contours for the same mass cut are also shown with magenta dashed lines for simulations. It can be seen that quiescent galaxies are in general
less well reproduced, with the exception of massive quenched TNG50 galaxies. Note that although the morphology of star forming galaxies is better reproduced
by simulations, smaller simulated star forming galaxies feature a lower A(LLR) compared to larger ones at fixed stellar mass.

while the galaxy light distribution may not display any interesting
feature at a visual inspection, the interplay between the likelihoods
of the two networks will determine the complex behaviour observed
in the LLR maps.

Given the behaviour of the LLR, it is entirely possible that the
light profiles of simulated galaxies differ substantially from SDSS.
This may be because the resolution elements are still too coarse
to properly capture the inner regions of the light distribution, as
discussed in Sections 8.5 and 8.6.

8 RELATED WORK, CAVEATS AND DISCUSSION

In this study we used deep generative neural networks to perform a
quantification of the extent to which the morphologies of galaxies
produced in simulations of galaxy formation agree with observa-
tions. We compare our framework with other works, in which either
more classical techniques or other deep learning methods were used,
bearing in mind that a full assessment of their relative performance
is out of the scope of this paper. In Section 8.3 we also discuss a
caveat that these works share with the present paper.

8.1 Non-parametric morphologies

One way to study the details of galaxy morphology that go beyond the
simple Sérsic index is to use the model-independent non-parametric
morphologies (Conselice 2003; Lotz et al. 2004). These provide a
quite flexible framework based on the way light is distributed across
the galaxy and have been used, amongst other applications, in auto-
mated classification tasks (Huertas-Company et al. 2011) and merger
identification (Lotz et al. 2008). The use of these moment-based ap-
proaches has been proposed in some studies to attempt a meaningful
comparison between the morphology of real and simulated galaxies
(Snyder et al. 2015; Rodriguez-Gomez et al. 2019; Bignone et al.
2019). Snyder et al. (2015) found a good agreement between the
non-parametric morphologies of Illustris galaxies and SDSS obser-
vations, also across scaling relations. That being said, in Rodriguez-
Gomez et al. (2019) it was also shown that in fact TNG100 much
better reproduces observed PanSTARRS morphologies compared to
the original Illustris implementation. This is also the case for the
EAGLE simulation, as shown with similar techniques in Bignone
et al. (2019). Although a direct, quantitative comparison with non-
parametric approaches is not possible, our deep learning-based anal-
ysis qualitatively agrees with the findings of Rodriguez-Gomez et al.
(2019), as shown in Figure 2. We further proved that the improved
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Figure 7. The Sérsic index-size relation for star forming (top row) and quiescent galaxies (bottom row). The color code is the same as in Figure 5. Here TNG100
and Illustris have been randomly sample to the same sample size of TNG50. See online supporting material for other realizations of the sampling. We also
show with orange solid contours the 10th, 50th and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the mass completeness threshold
of Mgpar ~ 1010M@. Contours for the same mass cut are also shown with magenta dashed lines for simulations. Note the absence of small, high-Sérsic index
galaxies in Illustris and (although to a less extent) TNG100. Also not that this population is instead present in the higher resolution TNG50. Moreover, it is worth
observing that large galaxies with a medium-to-high Sérsic index are better reproduced in TNGS50, both in the quiescent and star forming populations, compared

to TNG100.

resolution provided by TNGS50 is key to reproducing star forming
galaxies, while quiescent galaxies appear to be the most dissimilar
from SDSS for both [lustrisTNG realization. The lack of small, qui-
escent, bulge-dominated galaxies of Illustris was identified in Snyder
etal. (2015) and Bottrell et al. (2017b), but the dependence of galaxy
morphology on star formation activity for TNG100 is something that
was not addressed explicitly in Rodriguez-Gomez et al. (2019). Nev-
ertheless, Rodriguez-Gomez et al. (2019) argued that the correlations
between galaxy morphology, size and color in TNG100 is in tension
with PanSTARRS observations, which qualitatively agrees with our
results.

8.2 Other deep learning frameworks

In Huertas-Company et al. (2019) a CNN was trained on images
from Nair & Abraham (2010) 8 to perform a supervised classifica-
tion of galaxy morphology and it was then applied to both SDSS and
the IlustrisTNG simulation. Huertas-Company et al. (2019) found a

8 Where galaxies were assigned labels in the form of TType by means of
eyeball classification by the authors.
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remarkable agreement between the morphological scaling relations
of observed and simulated galaxies. However the fully supervised
approach taken in Huertas-Company et al. (2019) works under the
non-trivial assumption that the training (SDSS) and the test (Illus-
trisTNG) data come from the same underlying distribution. This is a
critical assumption, since it is not known a priori whether simulations
agree with observations. In fact, a test image will always be assigned
a predicted class by the CNN, sometimes with high confidence, even
though it looks nothing like any of the images in the training set.
In Huertas-Company et al. (2019) this issue was addressed by using
Monte Carlo dropout, which is equivalent to Bayesian Neural Net-
works (Gal & Ghahramani 2016). Monte Carlo dropout consists in
making repeated label predictions for any given image, each time
randomly setting to zero a number of weights in the CNN. This
technique allowed to select objects for which the network finds a
high variance in the output label, that is to identify galaxies in Illus-
trisTNG which do not look realistic. Interestingly, it was found that
for compact TNG100 galaxies, the prediction uncertainty was the
highest, something which qualitatively agrees with our finding that
those galaxies are not well reproduced in simulations.

More recently, other unsupervised approaches based on genera-
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Figure 8. Thumbnails of TNGS50 (top left) and SDSS (bottom left) quenched galaxies with R, < 37, nge,r > 4. The top right and bottom right panels show the
pixel-wise contributions to the LLR for the TNG50 and SDSS galaxies respectively. Each panel is labelled with its value of the LLR. The color scale in the right
column is identical for all the panels. Note that we have manually limited the color scale to values from -2 to 4 for practical reasons, but pixels can assume also
higher and lower values. For instance, if the contribution of a given pixel is 100, it will saturate to the color corresponding to the value of 4.

It can be seen that the central regions of TNG50 galaxies are much less prominent in the LLR maps compared to SDSS, despite the thumbnails of real and
simulated galaxies look fairly similar. This indicates a failure in the simulation to properly capture the densest regions of quenched galaxies.

tive models, like ours, have been proposed to compare simulations
and observations. In Margalef-Bentabol et al. (2020) a Generative
Adversarial Network (GAN,Goodfellow et al. 2014) was used for the
first time with the aim of comparing CANDELS high-redshift ob-
servations (Koekemoer et al. 2011; Grogin et al. 2011) with galaxies
produced by the Horizon-AGN simulation (Dubois et al. 2014). As
done in this work, Margalef-Bentabol et al. (2020) treated the prob-
lem as an OoD detection task. However, while we adopt a generative
model with an explicit likelihood for this purpose, in the case of
a GAN the likelihood is not explicit. Therefore, Margalef-Bentabol
et al. (2020) resorted to the anomaly score, a single-valued metric
that measures how well a trained GAN can reproduce a test image.
Objects with a higher anomaly score are considered outliers. More-

over, a difference in the distribution of anomaly scores of a test set
compared to that of the training sample is interpreted as a sign that
the two populations differ as a whole. Using an anomaly score-based
comparison between CANDELS observations and the Horizon-AGN
simulation, Margalef-Bentabol et al. concluded that the two popula-
tions differ statistically. Again, they also report the highest anomaly
score for spheroidal, small, high-Sérsic index galaxies. This is in
agreement with our results at low redshift.
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Figure 9. The LLR distribution of TNGS50 for the case of dust-inclusive radia-
tive transfer, which we used throughout this work (magenta dot-dashed line),
and the case where dust was not modelled (i.e., only stellar light contributes
to galaxy morphology, with no dust absorption or emission, purple dashed
line). Not including dust results in a better performance for the simulation.
This Figure highlights the challenge faced by dust radiative transfer models.
The main results presented in this paper remain valid as dust was included in
all the simulations in the same way.

8.3 A note on synthetic images

The generation of galaxy images from simulations comes with a
number of crucial assumptions that may significantly affect the com-
parison with observations. For example, the fluxes measured from
synthetic images strongly depend on the assumed stellar initial mass
function (IMF), the assumed stellar population synthesis model and
the adopted model for dust effects, such as obscuration and scatter-
ing. Different implementations can potentially generate substantial
variance in the resulting galaxy morphology. All the simulations that
we use in this work have been processed identically, and therefore
any uncertainty in the image generation process is propagated in the
same way across simulations. Moreover, we stress once again that
the mock images of observed galaxies have been convolved with real
SDSS PSF and feature a realistic sky background that includes in-
terlopers and the known sources of noise. Therefore we believe that
any difference between real and mock observations stems from the
galaxy in the center of the cutouts.

A major uncertainty comes from the fact that dust is not explicitly
traced in the simulations used here (see McKinnon et al. 2017 for
a simulation where this is done), and hence important assumptions
must be made for dust production in star forming regions and in the
interstellar medium , as shown in detail in Trayford et al. (2017). The
uncertainty in dust modelling results in different dust geometries, and
hence varied obscuration patterns (Rodriguez-Gomez et al. 2019).
Dust is ubiquitous in star forming galaxies (e.g. Galliano et al. 2018).
The discrepancy that we find between simulated and real star form-
ing galaxies, as quantified by the LLR in Figure 3, may be partially
explained by the way dust is modelled in the SKIRT pipeline (see

MNRAS 000, 1-24 (2019)

Section 2.1 and Rodriguez-Gomez et al. 2019). However, since the
simulations are processed in exactly the same way, the relative trends
seen (i.e. [NustrisTNG is overall better than [llustris and that a higher
resolution improves performance for star forming galaxies) are ro-
bust. Yet, it is entirely possible that the performance of simulations is
underestimated in this instance, since we expect simulations to reach
a better (worse) agreement with observations, i.e. a higher (lower)
A(LLR), with an optimal (non optimal) treatment of dust. We tested
this directly by using mock-observed galaxies from TNG50 where
dust radiative transfer was not included. The higher A(LLR) achieved
in the dust-less case (see Figure 9) supports the idea that dust mod-
elling is a non trivial task, and that it can lead to worse agreement
with the small-scale light distribution of observed galaxies.

As for passive galaxies, their dust content is a topic widely dis-
cussed the literature (e.g., Goudfrooij et al. 1994; Temi et al. 2004;
Smith et al. 2012; Yildiz et al. 2020 amongst many others). In this
work the full dust-inclusive radiative transfer is run only if the fraction
of star forming gas exceeds 1% of the total baryonic mass. There-
fore, the very low star forming gas content of our passive simulated
galaxies implies, at given gas metallicity, that they are essentially
dust-free in our model, which may affect the comparison to SDSS
observations. While we have not explicitly tested the impact of such
small amounts of dust on the detailed structural morphologies of sim-
ulated quiescent galaxies in terms of the LLR, we find no discernible
differences in the population average stellar size, Gini coefficient,
Asymmetry, Mo and Sérsic index of very gas-poor galaxies with
and without explicit treatment of dust in SKIRT. Hence, we specu-
late that the fact that the morphology of quiescent galaxies does not
seem to compare well to that observed for SDSS is unlikely to be
related to the dust modelling in simulated passive galaxies. It would
be interesting to test our framework directly on other simulations
where dust is explicitly created and destroyed by detailed physical
mechanisms (e.g., SIMBA, Davé et al. 2019; Li et al. 2019), and no
a-posteriori modelling of dust is required.

We conclude this Section with one last caveat. Given the relatively
low amount of star forming gas in the simulated passive galaxies,
most objects in this population are modelled using simple stellar
populations evolving on the ’Padova 1994’ evolutionary tracks and a
Chabrier (2003) Initial Mass Function (IMF, see Rodriguez-Gomez
et al. 2019 for more details). However, several observational studies
have also reported IMF gradients in passive galaxies (e.g., La Barbera
etal. 2016; Conroy etal. 2017; Dominguez Sdnchez et al. 2019 only to
name a few), which are not modelled here. Since all stars are formed
according to a Chabrier (2003) IMF in our simulations (Vogelsberger
et al. 2013; Pillepich et al. 2018a), we are unable to quantify how the
assumption of a universal IMF affects our results.

8.4 Summary of mass, star formation activity and
environmental dependence

In this paper we have exploited the A(LLR) to quantify the agreement
between the detailed light structure of galaxies from SDSS and the
TNG50, TNG100 and Illustris simulations. In particular, we have
presented how the A(LLR) depends on galaxy stellar mass, star
formation activity and environment in Section 5. A comprehensive
view of the trends found therein is displayed in Figure 10, and is
briefly summarised below:

e The morphology of star forming galaxies (solid markers) is al-
ways better reproduced by simulations compared to quiescent galax-
ies (empty markers), irrespective of the environment or the stellar
mass bin considered;



Deep learning, galaxy structure & quenching

Centrals only

17

Satellites only

All galaxies
504 ideal agreement A TNG50Q ]
A TNG50 SF % TNG100 Q
254 % TNG100 SF 4 O llustris Q E A
® lllustris SF \‘
0
3 i A
C -251 _ A i
3 A A A A A
3 50l * * * ] * * i *
3 ° | ° ° o
e S S U - |
T \ - | N a A |
—1004 4 I'e . J L . )
o h L o o4 8 5 %
~1251 & ; 1 \,‘L/ 1 &
-150 T T T T T T T T T
9.5 10.0 10.5 11.0 115 9.5 10.0 10.5 11.0 115 9.5 10.0 10.5 11.0 11.5
logMstar [Mo ]

logMstar [M o ]

logMstar [M o ]

Figure 10. The A(LLR) as a function of galaxy stellar mass for TNG50 (magenta triangles), TNG100 (teal stars) and Illustris (red dots). Star forming and
quenched galaxies are shown with filled and empty markers respectively. The left panel shows our results for all galaxies, while the central and right panels are
for central galaxies and satellite galaxies respectively. The data points for different simulations are offset for clarity. The error bars represent the 1o uncertainty

of 100 bootstrapped realizations of the datasets, of the size of TNG50. See Section 8.4 for more details.

e At fixed stellar mass and star formation activity, TNG50 pro-
vides the highest level of agreement between the small-scale morpho-
logical details of simulated and observed galaxies, while TNG100
achieves the second-best A(LLR) scores. Illustris features the lowest
A(LLR), as sign that the disagreement with SDSS is the strongest for
this simulation. In the highest stellar mass bin the trend for Illustris
and TNG100 are reversed, something that may be due to a combina-
tion of different implementations of AGN feedback and the effects
of major mergers, as discussed in Section 5.2.

e For any given simulation, at fixed star formation activity, it is
hard to identify clear trends in the relationship between A(LLR) and
stellar mass. Perhaps the only significant trend is that, irrespective of
a galaxy being central or satellite, for TNG100 and Illustris star form-
ing galaxies the A(LLR) declines steadily from M ~ 109'5M® to
Mgar ~ 101 Mg while in TNG50 the trend is stable. This finding
is actually quite puzzling: it would be expected that better sam-
pled galaxies (i.e. higher mass galaxies with larger particle numbers)
should be in better agreement with SDSS than lower-mass galaxies.
While this is true for TNGS50, it is exactly the opposite for TNG100

and Illustris. A possible explanation for this peculiar behaviour is that
observed higher mass galaxies may display comparatively more sub-
tle features than low mass galaxies: the number of particles per galaxy
at the resolution of TNG100 and Illustris may still not be enough to
properly capture them well, as opposed to the higher resolution of

TNGS50.

e Figure 10 also remarks the little difference in the A(LLR) of
central and satellite galaxies. While in Section 5.3 and Figure 4 we
have shown this for galaxies of all stellar masses, here we further
observe that the broad independence on environment applies to all

mass scales.

We also note that TNG50 and Illustris star forming galaxies seem
to have a A(LLR) > 0 at the highest masses, which seems counter-
intuitive given that we expect the LLR to be the highest for SDSS
(see Section 3.2). This may be because there are very few SF galax-
ies in SDSS with stellar mass above 10'!Mq. Indeed, the large
bootstrapped resampling variance at these masses for star forming
galaxies is indicative of a poorly represented and potentially biased
population. uture work will be dedicated to bypass this specific lim-

itation of our framework.
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Figure 11. The LLR distributions of SDSS (orange solid line), TNG50
(dashed magenta line), TNG50-2 (dotted gray line) and TNGS50-3 (dot-sashed
green line). The A(LLR) increases with improved resolutions, a sign that
simulations are converging. Future higher-resolution simulations are likely to
be in even better agreement with SDSS. Note that the value of the A(LLR)
for the highest resolution run of TNGS50 is not comparable to those for TNG50
found in the paper, as we are only considering subsets of the TNG50 simula-
tions and SDSS to match the joint magnitude-Sérsic index-R, distribution.

8.5 Convergence study

As the TNG simulations were run at different resolutions, we are
able to perform a direct convergence test. Specifically, we produced
mock-observations of two lower-resolution runs of TNG50, TNG50-
2 (medium resolution) and TNG50-3 (low resolution, see Pillepich
et al. 2019), as described in Section 2 and in detail in Rodriguez-
Gomez et al. (2019). Resolution is known to generate non-trivial
changes in the physical properties of simulated galaxies (see for
example also Appendix B1 of Pillepich etal. 2019, and, e.g., Sparre &
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Springel 2016; Chabanier et al. 2020). This is something that we wish
to marginalise on, since our aim is to test to what extent an improved
resolution brings the small-scale morphology of simulated galaxies
into better agreement with that of real galaxies, regardless of the
overall structure. Therefore, we match the three TNGS50 simulations
and SDSS to obtain an identical joint distribution of their global
properties, i.e. size, magnitude and Sérsic index, which are the key
observables learned by the pg,,, .. model. This allows us to isolate
the effect of resolution on the relationship between the global and
local properties of galaxies, as quantified by the LLR.

The A(LLR) (see Figure 11) is the highest for the highest resolu-
tion run, TNGS50, which is followed by TNG50-2, and TNG50-3, the
run with the lowest resolution. This result shows that the small-scale
morphology of simulated galaxies is converging for progressively
improved resolutions, and it is likely that a further improvement in
resolution would result in an even better agreement with SDSS. We
stress that with our methodology we are able to quantify with just
one number, for the first time, the effects of resolution on the detailed
morphology of simulated galaxies.

Note that both the spatial and mass resolution decrease in TNG50-
2 and TNGS50-3 (see Pillepich et al. 2019 for details), and therefore
we are not able to disentangle the contributions of the two here. We
will speculate on this matter in the next Section.

8.6 Possible shortcomings of the numerical simulations

In this study we have quantitatively assessed the agreement between
SDSS and simulations of galaxy formation on the relationship be-
tween the higher-level details and the global morphology. In particu-
lar, although the IllustrisTNG simulations agree extremely well with
the SDSS structural scaling relations (see also Huertas-Company
et al. 2019 and Genel et al. 2018), our findings show that the II-
lustrisTNG model cannot yet reproduce the detailed distribution
of stellar light in comparison to SDSS, particularly for quenched
galaxies and regardless of whether quenching is the result of en-
vironmental processes like ram-pressure stripping or BH feedback.
Earlier in this Section we have also discussed the results of other
deep learning studies that reached similar conclusions for TNG100
and the Horizon-AGN simulation using supervised Bayesian Neural
Networks or the anomaly scores of a GAN. The more classical ap-
proach used in Rodriguez-Gomez et al. (2019) also highlights similar
tensions in TNG100. Therefore, there are now multiple independent
indications that the detailed morphology of quiescent galaxies in
cosmological hydrodynamical simulations of galaxy formation is in
tension with that of galaxies in our Universe. We speculate below on
the possible reasons of this discrepancy, by focusing on the case of
the IustrisTNG simulations.

8.6.1 The difficulty of reproducing highly-concentrated stellar
distributions

Quenched galaxies in TNG100 (and Illustris) systematically fail at
populating the region of high Sérsic index and small size in the
nser — Re plane. TNGS0 can produce compact quiescent galaxies,
and yet small-size and high-Sérsic index quiescent objects exhibit
the worst disagreement with SDSS, also in TNGS50. To attempt to
disentangle the effects of quenching with possible issues related to
the global stellar morphology, in Figure 12 we contrast TNG100 and
TNGS50 simulated disky galaxies to SDSS, divided according to their
star formation state: star-forming disks on the left, quiescent disks on
the right.
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For disky quiescent galaxies TNG100 features A(LLR) ~ —65,
while TNG50 has A(LLR) ~ —45. In comparison to the differences
between star-forming and quiescent galaxies of Figure 3 without any
“diskiness selection” (i.e. A(LLR) ~ —101 and ~ —83 for TNG100
and TNGS50 respectively), we can see that the disagreement between
the real and simulated populations of quenched disks is much less dra-
matic than that featured by the overall population of quiescent galax-
ies, which is dominated by smaller spheroids (Huertas-Company
et al. 2019; Joshi et al. 2020). In other words, the TNG simulations
return more realistic quenched disk galaxies than quenched galaxies
in general: in fact, the TNG model always produces more realistic
disk galaxies, whether they are quenched or not. So this suggests that
what seems to mostly drive the discrepancy between the TNG and
SDSS quiescent populations is not the property of being quenched
but rather the fact of being non-disky, with stellar particles mostly in
non-rotationally supported orbits.

8.6.2 The limits of resolution at reproducing high stellar densities

Since lower-mass galaxies are represented by a lower number of
stellar particles in simulations, it could be argued that resolution plays
a key role in making quiescent (mostly spheroidal) galaxies look less
realistic than the more extended (mostly disky) star forming galaxies.
The fact that quiescent galaxies are better reproduced by TNG50,
which offers a higher resolution, seems to support this argument.
We also note that, even within the star forming population, smaller
galaxies have a lower A(LLR) in TNG50 and TNG100.

As highlighted above, differently than TNG100, TNGS50 is able
to produce compact quiescent galaxies. Moreover, TNGS50 features a
higher A(LLR) for quenched extended galaxies with an intermediate
nser compared to TNG100. This further evidence suggests, again,
that an improved resolution is able to better capture the small details
of the stellar structure of quenched galaxies. We briefly speculate on
the possible physical reason for this.

Quiescent galaxies in the TNG simulations tend to be smaller
at fixed stellar mass compared to star forming galaxies, in good
agreement with observations (see Figure 6). Furthermore, the quies-
cent TNG population tends to be dominated by spheroidal galaxies
(Huertas-Company et al. 2019; Joshi et al. 2020), with the stellar or-
bits mostly dominated by random motions. Thus, the finite resolution
of the simulations may not reproduce these orbits faithfully. However,
because the levels of (dis)agreement with SDSS do not seem to cor-
relate strongly with a galaxy stellar mass once TNG50 or TNG100
are considered separately (see Figure 10), the issue may be more
related to the spatial, rather than the mass, resolution underlying the
numerical models we have considered in this work.

Lastly, the fact that the central densities of quenched galaxies ap-
pear problematic may be related to an issue that was already identified
in the Illustris simulation by Sparre et al. (2015), where it was found
that the simulation did not reproduce well the number of starburst-
ing galaxies at the Illustris and TNG100 resolution. If at least some
quenched elliptical galaxies formed through gas-rich mergers which
drove large amounts of gas into the centers of the merger remnants,
the resulting high central densities, may not be resolved in most of the
cosmological simulations studied here. Indeed, the departure from
pure Sérsic profiles in the form of power-law “cusps" observed in
high-resolution imaging (e.g., Lauer et al. 1995; Faber et al. 1997;
Kormendy 1999) has been interpreted of a signature of previous dis-
sipational mergers (Hopkins et al. 2009a), and Sparre & Springel
(2016) showed that higher-resolution zoom-in resimulations of se-
lected major mergers in Illustris are able to produce denser starbursts
compared to the lower resolution Illustris run. Hopkins et al. (2009b)
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Figure 12. The LLR distributions of star forming (left) and quiescent (right) disks for TNG50 (magenta dot-dashed lines), TNG100 (teal dashed lines) and SDSS
(orange solid lines). The cyan and light orange coloured regions indicate the 1o uncertainty of 100 realizations of TNG100 and SDSS with the same sample
size of TNGS50. Disky galaxies are selected in SDSS and in simulations using the thresholds nse, < 2 and R, > 2arcsec~ 2kpc at z=0.05. The lower A(LLr)
featured by quiescent disky galaxies is indicative that the processes that lead to quiescence without affecting the stellar morphology (and hence dynamics) still

produce a worse agreement with data compared to star forming disks.

have also proposed that the inner stellar “cores" observed in some el-
liptical galaxies (e.g., Lauer et al. 1995) are the result of dry mergers
involving previously formed “cuspy" ellipticals. If the resolution of
TNGS50 and TNG100, as well as Illustris, is not able to capture the
formation of “cusps”, as indirectly suggested by Sparre & Springel
(2016), then also the formation of stellar “cores” in these simulations
may be unresolved.

8.6.3 Quenching may affect the small-scale morphology by
modifying the underlying gas distribution

We conclude with a final remark. Figure 6 shows that even quenched
galaxies with relatively large sizes are not fully reproduced by simu-
lations. In particular, at Mgy < 101 m o, some of the larger galaxies
where star formation has been halted belong to the population of
quenched disks (e.g., Zhang et al. 2019). Furthermore, as shown in
Figure 12, TNG quenched disks are still in worse agreement with
SDSS than star-forming disk, the A(LLR) of quenched disks being
twice as lower than that of star forming disks. This is somewhat
unexpected, as the quenching mechanism that operates on them has
preserved the bulk of the ordered stellar motions proper of disk
galaxies. A possible explanation for this is that the mechanisms that
quench disks may displace the distribution of gas within the galaxy,
thus affecting the distribution of dust and hence the small-scale light

distribution.

9 CONCLUSIONS AND FUTURE OUTLOOK

Since the time of Hubble (1926), the astronomical community has
strived to understand the physical origin of the variety of morpholo-
gies that galaxies display in our Universe. The simulations of galaxy
evolution available to date have achieved an unprecedented accuracy
inreproducing galaxy properties, and, with them, a plethora of galaxy

morphologies. Assessing how exactly the small-scale morphological
details of simulated galaxies agree with the real ones is a crucial test
for models of galaxy formation and evolution. Our contributions to
this topic are summarized as follows:

e We have introduced an unsupervised deep learning method to
accurately and quantitatively compare the small-scale stellar mor-
phology of galaxies produced by cosmological hydrodynamical sim-
ulations with that of real galaxies (Section 3.1). This assessment is
based on a single-valued metric which is the combination of the
likelihood of two deep generative models, the log-likelihood ratio,
LLR (Section 3.2). We demonstrate that the LLR is broadly indepen-
dent from the sky background statistically, and specifically is mostly
sensitive to internal, small-scale morphological structure. The be-
haviour of the LLR indeed follows these expectations, as shown in
Appendix B. We also prove that the LLR is a metric that can be used
to assess the similarity of two datasets based on the mean value of
its distribution, and we adopt the A(LLR) = (LLR) — (LLRspss)
to assess the quality of the small scale light structure of fully real-
istic mock observations of galaxies from the Illustris, TNG50 and
TNG100 simulations against observations from the Sloan Digital
Sky Survey.

e In Figure 2 we show that our approach can identify TNGS50
as the simulation that is able to produce galaxies with small-scale
morphological features that most closely resemble observations, fol-
lowed by TNG100 and the original Illustris implementation, which
performs the worst. This can be interpreted as a sign that the im-
provement in the modelling of galaxy formation physics featured
by the more recent IllustrisTNG simulations is more effective than
that implemented in Illustris. Rodriguez-Gomez et al. (2019) reached
similar conclusions using non-parametric morphologies. Moreover,
we find that the improved resolution of TNGS50 results in an even
better match to SDSS morphologies.

e We split our data sets in star forming (sSFR/yr‘1 > —11) and
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quiescent (sSFR/ yr_1 < —11) galaxies and show the respective LLR
distributions in the upper panel of Figure 3. We find a marked im-
provement in the morphology of star forming galaxies from Illustris
to TNG100 and from the latter to TNG50, which indicates that a
better treatment of star formation regulation and an improved resolu-
tion are key to accurately reproduce the morphology of star forming
galaxies. On the other hand, we see only a marginal improvement for
quiescent galaxies from Illustris to its successor IlustrisTNG, and
we note that the better resolution offered by TNG50 over TNG100
does not lead to a significantly better agreement with SDSS.

e We find the trends with star formation activity to be weakly
dependent on stellar mass (middle and lower panels of Figure 3)
and environment (Figure 4), so that simulated quenched galaxies are
in similar disagreement with SDSS regardless of the nature of the
quenching mechanism i.e. regardless of whether quenching is driven
by e.g. ram-pressure stripping or AGN feedback. This information is
displayed in a more self-contained way in Figure 10.

e We study how well simulated galaxies are reproduced across
scaling relations of galaxy size, star formation rate and Sérsic index
in Figures 5, 6 and 7. We note a significant change in the quality of
simulated galaxies, whereby large, star forming, disky objects are the
most similar to SDSS, while the smaller, high-Sérsic index, quenched
galaxies are found less realistic by our deep learning framework. We
also note that even within the structural scaling relations of star
forming and quiescent galaxies some trends are appreciable. More
massive, extended galaxies are more realistic in both quenched and
star forming TNGS50 galaxies, while the same is true of TNG100 star
forming galaxies only.

e Ourmain finding is that reproducing the small-scale morpholog-
ical features of quiescent, small and/or concentrated galaxies remains
a challenge for state-of-the-art hydrodynamical cosmological simu-
lations of galaxy formation. We show that this kind of evidence has
started to emerge in the literature in Sections 8.1 and 8.2. We spec-
ulate that a limited resolution may be at the origin of these findings.
First, we carry out a specific convergence test in Section 8.5, where
we show that the lower-resolution runs TNG50-2 and TNG50-3 per-
form worse than the flagship, better-resolution TNG50 simulation.
Secondly, in Section 8.6 we also argue that the high density of stellar
particles in the central regions of quenched galaxies may not be prop-
erly captured by the finite resolution of simulations, as also shown by
the "LLR maps" in Figure 8. This argument is also supported by the
similar level of (dis)agreement with SDSS observations reached by
both Ilustris and TNG100 for massive quenched galaxies (see Fig.
3), despite the AGN feedback mechanism implemented in the two
simulations is substantially different. In fact, the formation histories
of these galaxies are affected by similar rates of major mergers that
cause a similar change in the stellar dynamics, since the resolution
of the two simulations is comparable. We also speculate that the
displacement of gas, and the consequent dust obscuration patterns,
that quenching mechanisms cause within a galaxy, may also partially
explain the lesser agreement between simulated and real quenched
galaxies.

o Finally, we remark that the results listed above have been ob-
tained at the seeing-limited resolution of SDSS, i.e. # 1kpc, which
means that the some of small-scale details of the stellar light struc-
ture that characterizes galaxies have been lost. Future work that will
exploit higher resolution images may be able to unveil some trends
that are not found in this exploratory study.

The deep learning framework outlined here provides a useful tool
to evaluate the performance of hydrodynamical simulations of galaxy

formation, that generalizes over the parametric and non-parametric
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approaches taken in the past. With our strategy, we can identify
meaningful physical information encoded in the galaxy structure,
which proves key in identifying the shortcomings and successes of
simulations. Our methodology still works only in a statistical sense,
given the not completely null contribution of the sky background to
the metric that we use (see Appendix B1.1). However, future work
in this direction will make it possible to evaluate the morphology of
simulated galaxies at the time of calibrating the next generation of
simulations of galaxy formation and evolution.

Lastly, Out of Distribution detection tasks are of paramount impor-
tance in Astronomy since they are able to unearth the potentially most
interesting objects in a dataset, and will be even more important when
the next observing facilities such as EUCLID and JWST will come
online and collect an unprecedented load of data. Our framework
may be applied also in this context, similarly to Margalef-Bentabol
et al. (2020) and Storey-Fisher et al. in prep.
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The Meert et al. (2015) SDSS dataset is located at http:
//alan-meert-website-aws.s3-website-us-east-1.

amazonaws.com/fit_catalog/download/index.html.

APPENDIX A: TRAINING

The likelihood distributions of training and test sets for both models
are shown in Figure Al. The good agreement between the training
and test sets is indicative of the convergence of the models.
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overlap between the distributions shows that the model has converged.

APPENDIX B: ROBUSTNESS OF THE METHODOLOGY

In the main text we have extensively used the fact that the LLR is a
good metric to compare the morphology of observed and simulated
galaxies. Conversely, in Section 3.2 we argued that the likelihood
alone may not be as good as a metric. In the following we outline the
rationale behind this statement.

We start by showing the likelihood distributions of our datasets for
both the pgg,s and the pg_ . models in Figure A2 . It can be seen
that in the former case the distributions of simulations are displaced at
slightly lower likelihoods and feature a higher variance compared to
SDSS. This is less severe for both the IllustrisTNG realizations, and
more substantial for [llustris. Interestingly, the best Sérsic fits appear
to peak at a higher likelihood than all the other datasets, including
SDSS. This fact is suggestive that simpler images have a higher like-
lihood compared to more complex samples, including the training
set (SDSS in this case), since the best Sérsic fits are simple, smooth
objects. To further explore this hypothesis, already formulated in
Serra et al. (2019), in Figure A3 we show random samples of SDSS
and simulated galaxies in three narrow bins of likelihood. It is read-
ily appreciable that indeed more extended galaxies with a complex
structure and the presence of interlopers dominate the low likelihood
tail of the distributions, while smaller, smoother objects are located
at very high likelihood values. Figure A3 raises two important issues
that undermine the use of the likelihood alone to compare simula-
tions and observations. We discuss them in the following discussed
below.

B1 The role of the sky background

First of all, the fact that large and small galaxies are at the opposite
ends of the likelihood spectrum is suggestive that the number of sky
pixels in an image is an important predictor of the likelihood. This
is not really a surprise, since the overall likelihood of an image is
the sum of that of all pixels®, but it is certainly not desirable that
the sky background plays such an important role, given that what we
are really interested in is, of course, only the structure of the galaxy.
How to solve this issue?

In Section 3.2 we have hypothesized that the p gy, and the pg_ ;.
models are able to capture the background equally well, and therefore
their LLR should isolate the contribution of the galaxy alone. We
show that this is indeed the case in the third column of Figure A4,

9 Recall that we are actually using the log likelihood.
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where most of the sky pixels have an LLR close to zero, whereas in
the middle panels of Figure A4 is shown that the sky background
gives the most positive contribution to the likelihood.

Bl.1 The sky generates variance in the LLR

Figure A4 reveals also that bright interlopers (first row) may still
contribute significantly to the LLR. It is important to recall that we
implement observational realism on simulations by assigning a sim-
ulated galaxy to a random SDSS field. Given the potential presence
of interlopers in that field, we expect this to be a process that gener-
ates some variance in the LLR of a given galaxy cutout. Therefore,
the LLR of any single object should not be strictly interpreted as a
measure of its quality compared to observations. However, the mean
LLR of selected subpopulations can still be robustly compared.

B2 The role of image complexity

Secondly, it is clear from Figure A3 that some of the simulated galax-
ies, especially in the low likelihood bin, are all but realistic. Hence
the second question: is the substantial overlap in the likelihood dis-
tributions of Figure A2 really meaningful to assess the quality of
simulated images? We discuss how the LLR may be a more mean-
ingful metric below.

We start by discussing the right panel of Figure A2, where the
likelihood distributions of our datasets evaluated through the pg_ ..
model are shown. The most significant feature is certainly that in
this case the likelihood of the best Sérsic fits is markedly higher
compared to that of all the other datasets, and not only slightly larger
as it was the case for the pgg,, model. We interpret this as a sign
that a model trained on the smooth archetypes (i.e. the best Sérsic
fits) of more irregular objects (i.e. the real SDSS galaxies) is able to
identify the complexity of the latter and other non-smooth datasets
(i.e. the simulations). We have already discussed above that in Figure
A3 the likelihood of a galaxy is heavily dependent on the complexity
of its internal patterns. Although the discussion referred only to the
P ospss model (the left panel of Figure A2) a similar behaviour is
found in the pg,, . model. Crucially this dependence is not the same
in the p g, and the pg . models, as shown by the fact that the
two models produce a different likelihood distribution for the same
dataset. Therefore the hope is that by combining the likelihood of
the same object evaluated by both models some trends will arise
which will depend only on the galaxy’s internal structure, as derived
mathematically in Section 3.2. Let us now come back once again to
Figure A4, which already helped us prove that the LLR is able to
factor out most of the sky contribution. What is really interesting is
that not all the pixels of a galaxy show up in the LLR, but only a few of
them carry a high LLR value. These may be the fine morphological
details that deviate from the smoothness of the Sérsic profile. In
short, this corroborates our hypothesis that the LLR of the the p g
and the pg_ . models is able to isolate the subtle patterns that are
present in galaxy structure (eq. 9).

The issues discussed in this Section are known and have been ad-
dressed in previous studies (Shafaei et al. 2018; Nalisnick et al. 2018),
which however made use of toy datasets popular in the machine learn-
ing community!?. We have shown that similar considerations can be
made for astronomical images, which is not obvious in principle.

10 These datasets included MNIST and FashionMNIST (pictures of numbers
and clothing in a monochromatic background respectively) and ImageNet
(natural images such as dogs and boats) amongst others.
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Figure A4. (a):A galaxy from IllustrisTNG that was assigned a sky patch with both a large and a small Milky Way star by RealSim. (b): The pixel-wise
likelihood of the pggp,qq model. (c): The pixel-wise LLR for (a). The net contribution of the pure sky noise is zero, while the galaxy contributes positively to
the LLR. The spikes and edges of the larger star as well as the smaller star contribute negatively. The contribution of the larger star itself is mostly null. (d):
An SDSS galaxy in an empty background. (e): This galaxy has a lower likelihood compared to the rest of the sky. (f): The galaxy gives the largest positive

contribution to the LLR.
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