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The dynamics and structure of societies have long been a puzzle to archaeologists, historians and social

scientists in general. In particular, increases in social inequality and the possibility of societal collapse are

two deeply distressing prospects for any society. In this three paper thesis we provide two contributions

to the literature of societal collapse and one regarding the emergence of social inequality.

In the first article we present a mathematical model of Easter Island and show that the collapse can

be modelled as a supercritical Hopf bifurcation where the critical parameter is the harvesting rate of

resources. This suggests an universal mechanism by which societal collapse can be understood quantita-

tively. In addition, we show that societies coupled together can be more robust against collapse, which

means that, within a larger region of parameter space, a sustainable outcome can occur for both societies

than in the case when the societies are isolated. In particular, if at least one society has a harvesting

rate below the critical value, then collapse can be prevented for the entire system.

In the second article we build a dynamical system model of the Maya civilisation taking into account the

main specialisations of the population: swidden and intensive agriculturalists, and monument builders.

The archaeological record for population growth and monument construction is accurately reproduced,

with the model calibration close to archaeologically determined values for the parameters. We show that

if, after the year 550 CE, a significant part of each new generation moved from swidden to using intensive

agricultural methods, then this would explain the rapid population growth and the subsequent collapse.

This conclusion is reached irrespective of the impact of drought. Furthermore, the model is shown to

also undergo a supercritical Hopf bifurcation when the harvesting rate is high. An extensive sensitivity

analysis indicates that the model predictions are robust under parameter changes, which means that the

period around the year 550 CE played a key role in the collapse.

In the third article we address the issue of social inequality by considering games on networks. In contrast

to large parts of the literature, we investigate for what network structure a system of linked agents can

exhibit maximally rational strategic behaviour. The agent’s strategies are quantified through the quantal

response equilibrium, and the network is optimised so that the strategies are as close as possible to the

Nash equilibrium. Previous work has argued that a scale-free topology maximises system rationality.

In contrast, we show that a core-periphery structure emerges, where a small set of nodes enjoy higher

degrees than the majority, which are leaf nodes. In symmetric games the di↵erence in degrees between

the two node types are stark, whereas in asymmetric games the di↵erence is less notable.

Taken together, the di↵erent parts of this thesis highlight and explain dynamical and large-scale struc-

tural features in societies as seen throughout the history of the world. Thus, this work can help deepen

our understanding of complex social phenomena.
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Preface

The thesis is structured according to the three paper format. Each paper represents an

independent contribution but they all address long-standing problems regarding societal

structure and function.

The introduction highlights the themes of the three papers and provides a literature

review of the main topics addressed in the thesis, as recommended by the o�cial guide-

lines. The conclusion summarises the main findings and outlines possible future research

directions.

Appendix A provides a review of the most common theories regarding the collapse of

societies. The other appendices complement the papers with analytical and numerical

results that strengthen the main findings of the papers. All the appendices are places

at the end of thesis, as stipulated by the o�cial guidelines.

vii



List of publications and conferences

First authored papers

• Coupled Societies are More Robust Against Collapse: A Hypothetical Look at

Easter Island, Ecological Economics, Volume 132, Pages 264-278, 2017, Sabin

Roman, Seth Bullock and Markus Brede

• The Dynamics of Human-Environment Interactions in the Collapse of the Classic

Maya, Ecological Economics, Volume 146, Pages 312-324, 2018, Sabin Roman,

Erika Palmer and Markus Brede

• Topology-dependent rationality and quantal response equilibria in structured pop-

ulations, Physical Review E 95, 052310, 2017, Sabin Roman and Markus Brede

Conferences

• Conference on Complex Systems, Cancun, Mexico, September 2017, delivered

two presentations: “Topology-dependent rationality and Quantal Response Equi-

libria in structured populations” and “Dynamical system modelling of human-

environment interactions: the case of the Classic Maya collapse”

• International Conference on Statistical Physics (SigmaPhi), Corfu, Greece, July

2017, delivered two presentations: “Topology-dependent rationality and Quantal

Response Equilibria in structured populations” and “Dynamical system modelling

of human-environment interactions: the case of the Classic Maya collapse”

• Workshop on Economic Science with Heterogeneous Interacting Agents, Milan,

Italy, June 2017, delivered presentation:“Topology-dependent rationality and Quan-

tal Response Equilibria in structured populations”

• Conference on Complex Systems, Amsterdam, Netherlands, September 2016, de-

livered two presentations: “Coupled societies are more robust against collapse:

a hypothetical look at Easter Island” and “Topology-dependent rationality and

Quantal Response Equilibria in structured populations”

• 60th anniversary of Robert MacKay Conference, Warwick University, UK, May

2016, presented poster:“Resilience of Networked Societies”

• Winter School on Complex Systems, Madrid, Spain, January 2016, delivered tuto-

rial: “Modelling the Macro-dynamics and Collapse of Societies”

• Student Conference on Complex Systems, Granada, Spain, September 2015, deliv-

ered presentation:“Resilience of Networked Societies”

viii



• International Conference on Computational Social Science, Helsinki, Finland, June

2015, presented poster:“Resilience of Networked Societies”

• Student Conference on Complex Systems, Brighton, UK, August 2014, presented

poster: “Intersocietal extensions of the Human and Nature Dynamics (HANDY)

model”

ix





Contents

Acknowledgements v

1 Introduction 1

1.1 Motivation and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Modelling of societal dynamics . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Games on networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Common themes and chapter outline . . . . . . . . . . . . . . . . . 4

1.2 Dynamic modelling of societal growth and collapse . . . . . . . . . . . . . 5

1.2.1 Large-scale models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1.1 Agent based models . . . . . . . . . . . . . . . . . . . . . 7

1.2.1.2 Integrated world models . . . . . . . . . . . . . . . . . . . 8

1.2.2 Low-dimensional dynamical systems . . . . . . . . . . . . . . . . . 10

1.2.2.1 Economic based models . . . . . . . . . . . . . . . . . . . 11

1.2.2.2 Ecologically inspired models . . . . . . . . . . . . . . . . 13

1.3 Network and game theoretic modelling of social structure . . . . . . . . . 16

1.3.1 Coevolutionary networks . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Network optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Coupled societies are more robust against collapse: A hypothetical
look at Easter Island 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Easter Island model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Critical transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Coupled societies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Di↵usive coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Wealth-driven coupling . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 The dynamics of human-environment interactions in the collapse of
the Classic Maya 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Numerical models of the dynamics of the Maya society . . . . . . . 54

3.3 Quantifying Maya society and environment . . . . . . . . . . . . . . . . . 56

3.4 Methodology and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



3.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Topology-dependent rationality and quantal response equilibria in struc-
tured populations 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Logit Quantal Response Equilibrium . . . . . . . . . . . . . . . . . 77

4.2.2 Optimisation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Symmetric games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.1 Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.2 Stag Hunt . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Asymmetric games . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2.1 Battle of the Sexes . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2.2 Matching Pennies . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusions and future work 93

A Common reasons for collapse 97

B Easter Island model analysis 103

C Equilibria for di↵usive coupled system 107

D Analysis of critical transitions 109

E Parameter sensitivity analysis 113

References 117

xii



Chapter 1

Introduction

1.1 Motivation and aims

1.1.1 Modelling of societal dynamics

The large scale dynamics of societies has presented many questions for historic and

scientific inquiry, in particular the phenomenons of societal collapse and the emergence

of social inequality. History provides us with a multitude of examples where societies

have failed to solve the problems they faced and collapsed, e.g., Easter Island, the

Lowland Classic Maya, the Western Roman Empire, the Egyptian Old Kindom, the

Minoan and Mycenaean civilisations (Tainter, 1988; Butzer and Endfield, 2012). Hence,

societal collapse is a recurrent phenomenon that has been taking place at least since the

agricultural revolution (Diamond, 2005) and the archaeological record provides accounts

of these historical “experiments”.

The collapse of past societies is associated with a loss of economic functions, of centralised

control, of trading relations, of investment in cultural property such as literary, artistic

or architectural work, and is also often accompanied by a significant loss of life (Tainter,

1988). Thus, it represents a traumatic process that a society can undergo and, given its

characteristics, is generally undesirable. The topic of societal collapse is highly relevant

to the contemporary world, as the modern, global society is pushing environmental

boundaries and leaving the safe operating space it once found itself in (Rockström et al.,

2009). Climate change, resource depletion (of oil, phosphorus, water etc.), deforestation

and species extinction pose great challenges to modern society that make us question its

long-term sustainability and give us reasons to worry about a potential collapse (Turner,

2012). Given that a collapse would entail a loss of life, culture and modern amenities,

it is a worthwhile pursuit to seek and understand the phenomenon through past cases

of societies that have collapsed.
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Understanding why and how the collapse of past societies takes place can provide unique

insights into our present condition (Costanza et al., 2007b). Past societies that have

collapsed o↵er test cases in geographically restricted and temporarily limited conditions

that allow us to quantify and understand their socio-environmental relationships. The

aim of the research presented here is to construct mathematical and computational

models of societal structure and dynamics, focusing in particular on two historical cases

of collapse: Easter Island and the Classic Maya.

There have been numerous studies that address societal collapse within the field of

archeology, see the work of Tainter (1988) and references therein, but also from an

ecological perspective (Costanza et al., 2007b). But, with few exceptions, the topic has

been approached from a mostly qualitative perspective, which presents arguments in a

narrative form without a mathematical understanding of the underlying dynamics. In

some cases, even an aversion to quantitative models has been manifested (Tainter, 2004).

The argument invoked by Tainter (2004) says that quantitative models are inadequate to

capture the full scope of societal complexity and the underlying drivers of its evolution.

Turchin (2003b, p. 1) disagrees and argues that “a discipline usually matures only after

it has developed mathematical theory”, especially if the discipline deals with dynamical

quantities. Informal verbal models are appropriate if the underlying mechanisms are

su�ciently simple (acting in a linear and additive manner), but generally misleading if

the system exhibits non-linear feedbacks and time lags (Turchin, 2003b; Sterman, 2000).

Casting hypotheses into quantitative models can thus help in illuminating uncertainties

regarding the system, expose prevailing wisdom as incompatible with available data,

guide data collection or discover new questions (Epstein, 2008). Mathematical models

can thus be “indispensable when we wish to rigorously connect the set of assumptions

about the system to predictions about its dynamics behavior” (Turchin, 2003b, p. 4).

The use of quantitative models to test the validity of hypotheses has not been common

in the historical social sciences, and in recent years a new field called “cliodynamics” has

emerged to tackle this issue (Turchin, 2008). The work presented here on societal collapse

is an application of quantitative methods, in particular dynamical systems modelling,

to encapsulate simple hypotheses about the drivers of collapse. Specifically, we capture

some key socio-environmental feedbacks that prove su�cient in explaining the long-term

behaviour of the societies we investigate. Thus, if simpler hypotheses are enough to

explain the archaeological record, this then challenges or at least questions the complex

narratives that have been put forth by archaeologist or historians regarding the societies

in question.

In cases where quantitative models have been developed, such as world integrated models

(Costanza et al., 2007a) or agent based models (Axtell et al., 2002; Heckbert, 2013), there

has been a tendency to develop very complex models that capture as many environmental

and social features as possible. Prominent models include the IPCC models on climate

change (Flato et al., 2013), the World3 model of Limits to growth (Meadows et al.,
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2004), the GUMBO model (Boumans et al., 2002) and several others (Costanza et al.,

2007b). Human behaviour and the multitude of relationships and processes the models

attempt to capture are, arguably, not well understood individually either and, given

the complexity of the systems, separating the di↵erent parts and e↵ects might not be

feasible or possible (Corning, 1998). Thus, these e↵orts again run against problems with

validation, as disentangling the di↵erent e↵ects is prohibitive.

Much simpler mathematical models have also been employed to explain societal dy-

namics and collapse, such as in the work of Hamblin and Pitcher (1980) on the Maya

civilisation and of Brander and Taylor (1998) on Easter Island. But these models can fail

to meaningfully capture societal structure (Lowe, 1982) or do not reproduce known his-

torical trends (Erickson and Gowdy, 2000). Thus, searching for models at a mesoscopic

scale of intermediate complexity can be advantageous, as su�cient societal elements can

be accounted for to reproduce known data but also keeping the model manageable to

understand analytically and communicate more easily.

Furthermore, most models of societal dynamics focus on one particular system in isola-

tion. The literature that addresses how multiple societies can interconnect and interact

is scarce (Roman et al., 2017). The issue of how the sustainability of multiple, connected

regions is a↵ected by their individual characteristics has been rarely explored, and in

cases where such a study was undertaken (Anderies and Hegmon, 2011) no noticeable

deviation from the independent case was seen. Also, no previous study has analysed the

most basic coupling of socio-environmental systems, namely through simple di↵usion.

Our models for the Easter Island and the Maya societies have been developed with the

goals of tractability and realism in mind. The models incorporate su�ciently many

details of the societies in question that the existing archaeological record can be repro-

duced. But, they are also simple enough to be analytically tractable and general insights

on the nature of societal collapse can be obtained. In addition, we have explored how

two coupled socio-environmental systems can evolve depending on their resource extrac-

tion rates. We analysed two di↵erent types of coupling, including simple di↵usion, and

we found significant di↵erences compared to when the societies are isolated.

1.1.2 Games on networks

Another common pattern observed throughout time for many societies has been the

existence of social structure manifesting a high degree of inequality between individuals.

Understanding how social (in particular economic) inequality appears and persists has

been a long-standing problem in the social sciences (Kuznets, 1955). Recent decades have

seen a increase in social and economic inequality worldwide (Piketty, 2014). Societies

with high degrees of inequality also have higher death rates (Wilkinson, 2002), less social

cohesion as measured by the civic participation score (Lancee and Van de Werfhorst,

3



2012) as well as more mental health problems; examples in the latter case include status

anxiety (Layte and Whelan, 2014), depression (Layte and Whelan, 2014) and a rise in

narcissistic tendencies (Wilkinson and Pickett, 2017). While these associations are not

necessarily causal, they are su�cient to warrant concern if inequality (e.g., as measured

through the Gini index) is increasing. Thus, understanding how inequality can arise is

important to be able to manage or decrease it within society.

Applying game theory on complex networks can give insights into the large scale struc-

ture of the relationships between socio-environmental agents. In particular, it has pro-

vided a variety of mechanisms by which inequality can emerge between agents (Gross

and Blasius, 2008), but this literature has yet to consider agent rationality explicitly, at

least in the context of the quantal response equilibrium (McKelvey and Palfrey, 1995).

We build on previous work to investigate social structure through game theory on net-

works, looking at the quantal response equilibrium for agents that posses a quantified

degree of rationality, and we develop an optimisation procedure by which highly unequal

states can emerge. More generally, we can obtain insights into the emergence of hetero-

geneous social structures and hierarchy through the modelling of both network features

and peer to peer interactions.

Methodologically, our work falls in the network optimization literature (i Cancho and

Solé, 2003), but similar results to our own have also been found in the context of adap-

tive coevolutionary networks (Gross and Blasius, 2008; Perc and Szolnoki, 2010). The

appearance of division of labour and of class structures is a common pattern observed

in the network optimisation literature (Holme and Ghoshal, 2006; Brede, 2010a; Gut-

tenberg and Goldenfeld, 2010; Peixoto and Bornholdt, 2012; Mahault et al., 2017) and

coevolutionary networks (Ito and Kaneko, 2001, 2003; Zimmermann et al., 2004; Zim-

mermann and Egúıluz, 2005; Egúıluz et al., 2005), but the research up to now has not

dealt with quantifying rationality on networks. By assigning varying degrees of ratio-

nality to agents depending on their status in the network, we are able to see how the

topology of the network evolves to facilitate higher (or perfect) rationality. Previous

work (Kasthurirathna et al., 2016b) has argued that scale-free networks maximise the

system’s rationality. In contrast with this result, but more consistent with the general

literature, we show that a network that admits two classes of nodes (of higher and lower

connectivity) maximises the system’s rationality.

1.1.3 Common themes and chapter outline

The research presented here focuses on the topics of societal collapse and the emergence

of social inequality. Both topics naturally refer to large-scale social organisation and

behaviour. Methodologically, Chapters 2 and 3 use dynamical systems to specify the

models for the collapse on Easter Island and the Maya civilisation. The analysis of

the models is also carried out according to dynamical system’s theory. Quantifying the
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e↵ect of network structure on internal node dynamics is another common theme in our

work. The Easter Island model is extended to consider the simplest possible network,

consisting of one edge. Despite the simplicity of this network structure, the e↵ects on

the internal dynamics of the nodes are significant. Chapter 4 is dedicated to exploring

an optimisation algorithm applied on networks, wherein the topology of the network

directly a↵ects the node behaviour.

Another unifying theme of the present work is the subject of rationality (or lack thereof)

of human behaviour. In our game-theoretic network model of Chapter 4, the degree of

rationality (or irrationality) of the di↵erent agents is explicitly modelled, whereas in

the dynamical models of Chapter 2 and Chapter 3 the issue of rationality is implicit

but nevertheless important. Despite the unsustainable path past and present societies

can find themselves on, a certain inertia in changing the course of their evolution can

be seen, e.g., the case of shifting from fossil fuel for our modern world, also known as

carbon lock-in (Unruh, 2000). This phenomenon highlights a potentially high degree

of irrationality found in larger social systems, commonly referred to as the sunk-cost

fallacy (Janssen et al., 2003; Janssen and Sche↵er, 2004).

The rest of this chapter provides a literature review of mathematical models that pertain

to societal growth and collapse, and of the game theoretic results on networks regarding

class formation. The literature on modelling societal dynamics can be further divided

into models of high or low complexity, and we dedicate a section for each category.

The work pertaining to games on networks also falls in two categories: coevolutionary

networks, where the topology adapts in response to local dynamics, and optimisation,

where the network structure is changed to minimise or maximise a certain objective

function. In the final section we provide a synopsis of the main contributions of the

thesis.

1.2 Dynamic modelling of societal growth and collapse

The large-scale, long-term development of numerous complex societies, such as the Low-

land Classic Maya civilisation, the Western Roman Empire, The Egyptian Old Kingdom,

The Minoan civilisation, the Mesopotamian civilisations and the Anasazi, ended in col-

lapse. Thus, any study that aims to understands and model the long-term dynamics of

societies should account for the recurrent historical phenomenon of societal collapse. In

this section we review the literature that models the long-term developments of societies

and, in particular, their collapse.

According to Tainter (1988), collapse is a rapid and significant loss of an established

level of socio-political complexity of a society. A complex society usually exhibits (Tain-

ter, 1988): a degree of social stratification and di↵erentiation, specialisation of economic
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functions and occupations at the individual, group and territorial level, centralised con-

trol i.e. elites that regulate and integrate economic and political activity, regimenta-

tion and behavioural control (e.g., rule of law), investment in cultural property (e.g.,

monumental architecture, literary and artistic creation etc.), information flow between

individuals (e.g., education), between economic and political groups, and between cen-

tralised structures and the periphery, trading and redistribution of resources, general

coordination and organisation of individuals and groups and a single political unit which

integrates an extended territory. Practically, collapse is signalled by (or has been asso-

ciated with) the disappearance or significant decline in these indicators of complexity.

Within the scope of our present research we identify societal collapse with a significant

decline in the population of a society within a short timespan. A population crash is not

a necessary condition for a society to collapse, as can be seen in the case of the Roman

Empire (Van der Leeuw and de Vries, 2003), but it is a su�cient condition due to the

loss of the underlying support structure of the more complex social constructs.

Our treatment of the topic is not archaeological in focus, but rather mathematical and

computational. We detail some of the main archaeological theories regarding collapse in

Appendix A. Hence, we focus mostly on the research that pertains to the quantitative

analysis of long-term societal development and collapse. The quantitative modelling

literature can be divided into the following areas of inquiry:

1. Large-scale models that attempt to capture multiple socio-environmental factors

in a fine-grained fashion. These models fall in two broad classes:

(a) Agent based models (ABMs), which represents individuals (or communities)

as agents with set attributes and behavioural rules, such that a realistic

rendering of relevant behaviour is desired with the aim of obtaining larger

scale emergent phenomena. Often, they explicitly also model the spatially-

extended features, such as terrain.

(b) Integrated world models, which employ a wide variety of modelling techniques

(dynamical systems, econometrics etc.) and aim for an accurate, detailed

representation of the system under study. So, they are complex models that

use a large number of variables and parameters.

2. Low-dimensional dynamical system models that consists of a set of coupled ordi-

nary di↵erential equations which represent in an aggregated way the dynamics of

the system. The models generally fall into one of two methodological approaches:

(a) Economic based models, in which individuals of the society are modelled

as rational, utility-maximising agents. Typically, a utility function is chosen

dependent on labour and land, and maximised under certain constraints. The

relations that are obtained later inform the choice of dynamical system and

parameters that give the societal dynamics.
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(b) Ecologically inspired models, which employ functional forms used in ecology

to build the dynamical system and do not rely on neo-classical assumptions of

consumer behaviour. The choice of dynamical system in this case is made by

attempting to match the model structure to a theoretical framework (sociolog-

ical or archaeological) along with empirical observations and measurements.

Agent based models provide an alternative framework to the one we employ in the

present work and it is worthwhile to contrast the di↵erent approaches. Integrated world

models are some of the most ambitious attempts at comprehensively capturing socio-

environmental factors, and their achievement thus form an important benchmark for

our own work. Low dimensional models have most in common with our research, and

represent a direct counterpart to our work in the present literature. In the next two

sections we outline in detail the quantitative modelling literature.

1.2.1 Large-scale models

1.2.1.1 Agent based models

Early agent based models were formulated and implemented in the 1970’s and 80’s, of

which we mention Schelling’s model of racial segregation (Schelling, 1971), the iterated

prisoner’s dilemma (Axelrod and Hamilton, 1981) and Reynolds boids (Reynolds, 1987).

In the 1990’s the method expanded significantly and become widely applied to modelling

social and economic phenomena. Of particular interest is the Sugarscape model (Ep-

stein and Axtell, 1996) that is build up gradually, grows increasingly complex and more

realistic phenomena start to emerge, like wealth inequality, trade relations and conflict.

This example is an excellent illustration of the general, non-trivial and useful insights

ABMs can provide by building social structure from the bottom-up.

There are several notable examples of agent based models (Kohler and van der Leeuw,

2007; Barceló and Del Castillo, 2016) that address the dynamics of past societies and

human activity (trade, migration etc.). Arguably, the first significant e↵ort in this sense

is by Dean et al. (2000), Axtell et al. (2002) and Gumerman et al. (2003) who modelled

the Kayenta Anasazi that lived in the Long House Valley in the Black Mesa area of

north-eastern Arizona (U.S.) from about 1800 B.C. to 1300 A.D. The area is bounded

topographically and there is ample geographical and historical data, which makes it

well suited for multi-agent modelling. An agent is taken to be a typical household with

five people on average. The model predicts well the population growth, the change

in spatial settlement patterns and the collapse of the society. The fit of the model

output to the archaeological record has helped popularise the work (Diamond, 2002;

Janssen, 2009). But, Janssen (2009) reproduces the main findings of Axtell et al. (2002)

and shows that the endogenous model dynamics make little contribution to the fit of
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the aggregated archaeological record. Rather, the model mostly acts as a smoothing

function for the input. Janssen (2009) finds that if the carrying capacity approximates

the population levels this determines a good fit to the data, while parameters regarding

the demographics are not so important. Janssen (2010) provides an alternative model for

populations in ancient arid environments to investigate the role of climate variability. In

contrast to Axtell et al. (2002), the di↵erent assumptions in the model of Janssen (2010)

have a marked e↵ect on temporal and spatial population dynamics. Janssen (2010)

concludes that higher climate variability increased the resilience of ancient societies,

which would have been more vulnerable to collapse otherwise.

Another agent-based model focuses on the Mayan civilisation (Heckbert, 2013) and pro-

ceeds in similar fashion to the above. It incorporates geographical and archaeological

information and produces a spatial model of the south-west Yucatan peninsula, which

we discuss in more detail in Chapter 3. Beyond the case of the Anasazi and the Maya

civilisations, agent based models that aim to reproduce the archaeological records of

complex, past societies are scarce. E↵ort in this area is directed more towards under-

standing prehistoric social dynamics and organisation (Barceló and Del Castillo, 2016).

Given the large number of parameters and the many specific modelling choices that have

to be made when designing such a high-resolution model, the problem of validating it is

quite di�cult. How many other parameter values and design decisions are compatible

with the output of the model? To what extent are these possible models equivalent and

insightful about the actual historical behaviour, decisions and events? These questions

cannot be answered in general and despite the significant e↵ort put into developing a

realistic ABM, the whole endeavour can be at risk of being a very sophisticated curve fit-

ting exercise and provide little historical insight. Still, a variety of empirical approaches

have been applied to ABMs and this has led to a continued debate regarding their

validation (Windrum et al., 2007; Moss, 2008).

ABMs have been a relatively recent addition to the literature on modelling societal

dynamics. Models formulated as dynamical systems (ODEs) have been the predominant

type within the literature, starting with the “Limits to Growth” model, which is also

the first instance of a integrated world model.

1.2.1.2 Integrated world models

The first major example of a mathematical model developed to account for collapse has

not been for an ancient society, but actually for modern society. During the sustain-

ability movement of the 1960’s, the Club of Rome was established in 1968 by a group

of economists and scientists with the goal to pursue a holistic understanding of and

solutions to the world’s major social and environmental problems (Ozbekhan, 1976). In
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the mid 1950’s, Prof. Jay Forrester at MIT developed system dynamics, a diagram-

matic method to aid in developing large scale models consisting of di↵erential equations

(Forrester, 1961).

At the request of the Club of Rome, Forrester developed the World1 and World2 mod-

els (Forrester, 1971), which showcased some of the complex feedbacks that characterise

modern industrial society. Eventually, the World3 model was developed which led to the

“Limits to growth” (LTG) study (Meadows et al., 1972) that attempted to understand

the development of society by taking into account a wide range of phenomena, includ-

ing food production, pollution, economic well-being, population growth and industrial

output. “Limits to growth” is based on the World3 model which consists of 16 state

variables (e.g., population, pollution, arable land) and 80 fixed parameters. The time

frame the model is concerned with is of 200 years, between 1900 and 2100. The study

focused on 3 scenarios: a base case which used parameters that fitted best to historical

data, an environmentally sustainable case and a technological driven, industry-intensive

scenario. The first and latter cases led the a peak in industrial output sometime in the

21st century and subsequent decline in economic activity and demographic numbers.

The sustainable case manages to reach a steady state for the system with little loss of

life, but it required parameter choices that in the real world would correspond to drastic

action to curtail pollution and population growth. Given its dire outlook, the LTG study

has received significant amount of criticism from economists (Bardi, 2011), but in recent

years the standard run of the model has been found to match well historical trajectories

(Turner, 2008).

Since LTG was published several other models have been developed and aimed at in-

tegrating social, ecological and technological factors into a coherent whole to provide

policy recommendations (Costanza et al., 2007b). The model by Mesarovic and Pes-

tel (1974) is an extension of World3 and disaggregates the world into 10 regions, thus

accounting for regional variation of parameters and dynamics. Despite the higher level

of spatial resolution, the model had a much shorter time horizon that World3, only 50

years. The results mostly show upward curves in key variables and no decline in the

short-term, very similar to World3 within the same timespan. Other world models, like

IMAGE (Rotmans, 1990), IMAGE-2 (Alcamo et al., 1998) and TARGETS (Rotmans

and de Vries, 1997) are significantly focused on ecological modelling and so, their em-

phasis is misaligned with our main concerns. Models such as IFs (Hughes, 1993) and

GUMBO (Boumans et al., 2002) are formidable with regard to the amount of data in-

puts they require and their level of detail. They are comprehensive in the representation

of the world but their level of complexity hinders their communication and use. In our

work we aim to model long-term societal behaviour using low-dimensional mathematical

structures that can accurately capture aggregate features. Of the above models, World3

is closest to our desired aims because it is the simplest of the world models and is built

only using coupled sets of ordinary di↵erential equations. Nevertheless, the number
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of parameters and the complexity of the World3 model are still high, which make it

counterproductive to understand its behaviour.

The modelling methodology of LTG, namely system dynamics, was also applied to the

case of ancient Maya (Hosler et al., 1977). The model of Hosler et al. (1977) is by no

means a world model but with 40 variables, it is comparable to World3 in complexity.

The main result of the model is predicting a complete demographic collapse of the Low-

land Classic Maya in the year 800. Nevertheless, the time-scales and specific dynamics

in the model are questionable (Sharer, 1977). After the year 800, the model predicts a

population of 10�36, which is essentially zero, clearly at odds with the historical record

that shows a rapidly decreasing, but still present population. As noted by Sharer (1977),

the timescales and dynamics in the model output are not consistent with the actual data.

Nevertheless, the model does capture certain relevant feedback mechanisms within the

system and reproduces a rapid demographic decline. Its drawbacks, rather than discred-

iting the model, could just as well indicate contradictions in the understanding of the

scientific community about the Maya at the time the model was proposed. Potential

contradictions might not have otherwise been observed without the use of a quantitative

model that tries to integrate several strands of knowledge.

Most other models focused on modelling societal structure and process have employed a

more conservative approach in model scope and size. We detail these models next, with

particular emphasis on work related to Easter Island and the Maya civilisation.

1.2.2 Low-dimensional dynamical systems

After the model by Hosler et al. (1977), a set of one-equation models was built by

Hamblin and Pitcher (1980) to test the class-conflict hypothesis of the Maya collapse

and alternative theories. The models are a drastic simplification from the previous

modelling e↵ort by Hosler et al. (1977) and attempted to gradually built a quantitative

understanding of Maya civilisation (Lowe, 1982).

A broader trend started in the late 1990’s to develop simple dynamical systems to

model societal evolution. Renewed interested in the mathematical modelling of societal

development (and collapse) was sparked by the work of Brander and Taylor (1998). The

general premise is to represent humans as predators and resources (palm trees in this

case) as prey, and develop a Lotka-Volterra type of system to model an isolated historical

example of collapse, namely Easter Island. Two stocks are considered: the resources

and the population. Resources are assumed to regenerate logistically. The rate at which

the resources are harvested is determined based on neoclassical economic principles,

in which the individuals of the society are seen as utility maximising, rational agents.

The utility function of an individual is considered to be a Cobb-Douglass function of

individual consumption of resources and manufactured goods, and is maximised under
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certain budget constraints. Only the current utility is maximised, with no foresight

assumed on the part of the agents. The optimal harvesting rate is determined to be

proportional to the population and resource stock, i.e. the law of mass action as in a

typical Lotka-Volterra model.

The modelling e↵ort does have some shortcomings, one of which is that the minimum

population levels that Brander and Taylor (1998) predict for the year 1500 A.D. actually

corresponds closer to a maximum population in the archaeological record, according to

Flenley and Bahn (2003). More details regarding the model and its fit to the archaeo-

logical record for Easter Island are provided in Chapter 2.

1.2.2.1 Economic based models

Several papers appeared following Brander and Taylor (1998) also employed the eco-

nomic methodology and analysed how di↵erent factors, such property rights, technology

or growth, could have impacted and possibly modified the outcome on Easter Island.

These papers do not focus on improving the fit between the model prediction and the

archaeological record, such as reconstructed by Flenley and Bahn (2003). Rather, they

represent thought experiments on how di↵erent extensions of the model by Brander and

Taylor (1998) behave. The models we review below study the e↵ects of di↵erent insti-

tutional settings, of technical progress, what would happen if agents had foresight, of

di↵erent resource dynamics and of conflict.

Dalton and Coats (2000), Pezzey and Anderies (2003) and Chakraborty (2007) have con-

sidered the e↵ects of di↵erent institutional settings. Dalton and Coats (2000) introduce

a parameter that models people’s response to changes in expectations of future prices.

A positive (negative) parameter implies that the society’s institutions encourage people

to harvest less (more) intensely in anticipation of higher future (lower) prices, which in

turn has the e↵ect of avoiding (intensifying) the collapse. Pezzey and Anderies (2003)

considers four di↵erent institutions: one that taxes the collective resource consumption

and three that cap the total extraction. In all cases, if the subsistence resource con-

sumption in utility is small enough, then the collapse is prevented. Chakraborty (2007)

introduces a tax to the extraction supply price and finds that a tax of 54% would su�ce

to avert the collapse.

Reuveny and Decker (2000) consider a di↵erent avenue to possibly avoiding the “Malthu-

sian trap” on Easter Island, namely technical progress. The e↵ect of this is to spur

exponential growth in one of three aspects: the carrying capacity, the extraction rate of

resource or the regeneration rate of renewable resources. They find that only the latter

e↵ect can avert collapse. Decker and Reuveny (2005) carry out similar research but

with technical progress spurred on by resource scarcity, as expected by Boserup’s theory

(Boserup, 1965). Nevertheless, there is no significant di↵erence from the findings of
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Reuveny and Decker (2000). Anderies (2003) introduces a growth model incorporating

Hicks neutral technical progress, but concludes that technological change is not as im-

portant in avoiding collapse as are demographic processes. Dalton et al. (2005) analyse

Easter Island by taking into account the possibility of economic growth. Pre-modern

societies experience little economic growth and were subject to feast-famine Malthusian

cycles (Gailor and Weil, 2000). The model shows that economic growth in combination

with strong property-rights institutions can help mitigate Malthusian cycles. Case in

point, “property-rights regimes that favour biological growth rates over harvest rates

tend to dampen feast-famine cycles, while those that favour harvest e�ciency worsen

such cycles” (Dalton et al., 2005, p. 31).

Good and Reuveny (2006) were the first to consider agents with foresight, that optimise

taking into account future utilities. What they conclude is that even if the people

of Easter Island had a complete assignment of property rights, implemented optimal

resource management with infinite horizon, or had a social planner to perform such a

task, a boom-bust cycle would still occur due to natural resource limitations, which could

not have been fully substituted by capital. Good and Reuveny (2009) also introduce

a social welfare function (SWF) given by the society’s total utility. They conclude

that, even with modern institutions, foresight and SWFs similar to today, it ”... seems

reasonable to assert that these collapses were socially optimal” (Good and Reuveny,

2009, p. 877). Good and Reuveny (2012) consider foresight along with technical progress

but reach conclusions similar to Reuveny and Decker (2000).

Anderies (2000) argues that in the Brander and Taylor (1998) model the Cobb-Douglas

utility function allows for unlimited substitution between goods without a↵ecting util-

ity, which is unrealistic in case of resource scarcity. To address this, Anderies (2000)

introduces a subsistence requirement in the utility function which has the desired ef-

fect of reducing manufacturing when resources are low. Nagase and Mirza (2006) also

tackle the issue of substitutability of natural and man-made goods and find that a de-

crease in the elasticity of substitution has negative e↵ects on the population, resource

stock and welfare. Janssen and Sche↵er (2004) extend the model of Anderies (2000)

by introducing a stock of manufactured goods, meant to measure the extent of sunk-

costs e↵ects of the society. The general finding is that large boom-bust cycles occur in

the presence of sunk-costs. D’Alessandro (2007) investigates what happens when two

di↵erent renewable resources are present and which can irreversibly disappear under a

critical threshold. What is found is that multiple equilibria exist and there is a greater

sensitivity to parameter changes than seen in previous literature. Similarly, but only

considering one resource, Taylor (2009) extends Brander and Taylor (1998)’s model by

adding a minimum resource threshold which, if it exceeds 30% of the carrying capacity,

then extinction occurs.

Beyond the impact of di↵erent institutional settings, technical progress, foresight or

various assumptions regarding resource dynamics, there has been considerable research
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into economic models incorporating negative social change, such as fighting for re-

sources (Maxwell and Reuveny, 2000; Reuveny and Maxwell, 2001; Prskawetz et al.,

2003; Maxwell and Reuveny, 2005; Reuveny et al., 2011) or demographic rivalry (Faria,

2000; Horan et al., 2007; Ruseski and Quinn, 2007; de la Croix and Dottori, 2008). Given

that war and conflicts are not the main focus of our research, we point the interested

reader to the review by Reuveny (2012).

With regard to economic models of societal dynamics we can identify three weakness:

(i) the fundamental assumption of rational human behaviour is not justified empirically

(Janssen and Sche↵er, 2004; Nell and Errouaki, 2013), (ii) the literature did not aim

to improve the archaeological fit of the initial model by Brander and Taylor (1998)

and (iii) the models have increased in complexity over time with no discernible, testable

features, e.g., more parameters were added or more complicated objective functions were

proposed. Models developed on ecological and archaeological ground, which we detail

next, do not share these di�culties.

1.2.2.2 Ecologically inspired models

Some models have not employed an economic approach to modelling societies, but rather

develop the dynamical systems more heuristically, from either ecological considerations

or society specific features consistent with the archeology. All the models borrow ele-

ments from population biology, hence we choose to label them as “ecologically inspired”.

Such extensions of Brander and Taylor (1998)’s model dynamics include the addition

of a capital stock (Erickson and Gowdy, 2000), modification of the Lotka-Volterra dy-

namics (Basener and Ross, 2004; Bologna and Flores, 2008), the introduction of a rat

population (Basener et al., 2008) or the incorporation of several factors, including ro-

dents and disease (Brandt and Merico, 2015). These models are reviewed in more depth

in Chapter 2.

The models we address in this section can be very diverse in their scope, ranging from

modelling specific societies (Anderies, 1998), to quantifying the impact of a cognitive bias

(Janssen et al., 2003), accounting for the impact of inequality on collapse (Motesharrei

et al., 2014) to modelling dynamics between di↵erent regions (Anderies and Hegmon,

2011). We have selected only a few models to specify in more detail, so as to both give an

idea of this type of modelling and to contrast it with to the economic approach discussed

earlier. The rationale for our selection is as follows: Anderies (1998) presented one of

the earliest smaller-scale models of societal dynamics, Janssen et al. (2003) analyse the

impact of sunk-costs e↵ects which play a key role in collapse dynamics, Motesharrei

et al. (2014)’s model was a starting point in developing our own Easter Island model

and Anderies and Hegmon (2011) is one of the few papers that address multi-regional

dynamics.
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Beyond Easter Island, other societies have also been modelled, such as in the work

of Anderies (1998), who captures the social dynamics of the Tsembaga of New Guinea.

The Tsembaga have domesticated animals, predominantly pigs. There is a ritual activity

called the Kaiko, a year-long pig festival that is meant to end a 5-25 year-long cycle that

couples pig husbandry and warfare. When the pig population becomes too high, the

number of garden invasions will likely increase as well, leading to more tension in the

community. If a garden is invaded, there is a chance that the person who’s garden

was invaded will kill the owner of the pigs (Anderies, 1998). Records of these incidents

are kept so that they are avenged in the next ritualistic outbreak of warfare. To lower

the pig population and repair the community ties, the Kaiko starts and all but a few

of the pigs are slaughtered. Thus, pig husbandry is deeply rooted in the traditions of

the Tsembaga and it implies the existence of periodic social dynamics. The model of

Anderies (1998) reproduces these cycles. If the pig population is low, their maintenance

is unproblematic and the work level required is low. The dynamics in this case leads to

a steady state. Otherwise, when pig numbers grow, a bifurcation boundary is passed

and the ritualistic cycle begins.

Janssen et al. (2003) introduces a model that aims to illustrate what are called sunk-cost

e↵ects. Humans take into consideration prior investments when deciding what course

of action to take, a phenomenon commonly referred to as sunk-cost e↵ects. Research

on sunk-cost e↵ects has been mostly focused on the individual level, but the e↵ect is

even more pronounced in groups. Reaching consensus is critical to group cohesion and

activity, and often constitutes an explicit, key goal of political processes. Once consensus

is reached there is an inbuilt bias and the group “may not suggest abandoning an earlier

course of action because this might break the existing unanimity” (Janssen et al., 2003, p.

722). So, the groups tends to commit to the decision taken, even though negative results

are obtained. The model only features a resource variable and the human population is

taken as an adjustable parameter. The bifurcation diagram for the system shows that

at higher population levels (and hence higher sunk-costs) the critical level of resource

that is tolerated tends to be smaller. A point is reached where the resource collapses

and the population abandons the settlement.

Motesharrei et al. (2014) proposes a model of societal dynamics that attempts to capture

the relation of economic inequality to collapse. To do this they introduce a new variable,

specific to human activity: wealth, that serves as a stock of refined/preserved resources,

e.g., food reserves. This helps distinguish humans from other factors that could impact

nature, and clarifies the interpretation of the model. The population is separated into

commoners and elites, which di↵er in the intensity of their wealth (reserves) consump-

tion. Also, it is only commoners that extract resources. The model suggests inequality

can be a significant factor leading to collapse due to the rapid consumption of wealth by

the elites, which limits the access its availability to commoners and leads to an increase

in the death rate.
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Anderies and Hegmon (2011) aim to develop a model of the Mimbres River Valley in

New Mexico, USA, to explain why the richer area was significantly more degraded than

the less rich eastern area. As such, the model consists of three patches: a hinterland with

low resource availability and two areas with di↵erent resource abundance (one area has

more resources and higher regeneration rates). The resources regenerate according to

logistic growth and are consumed through a Lotka-Volterra predation term, with humans

acting as “predators”. The human population growth rate depends on the resource

levels in its patch. If the resources are above a certain threshold then the growth rate is

positive, otherwise it is negative. Net migration occurs towards a patch if its resource

levels are su�ciently large compared to neighbouring patches. Using the model, they

conclude that a richer region that also requires less harvesting e↵ort will show greater

degradation, which is consistent with empirical observations. Furthermore, they analyse

the e↵ect of migration between patches but find that it is has no significant e↵ect on

the long-run configuration of the system. The equilibrium states in the two regions with

and without migration are found to be very similar, even when the regeneration rate of

natural resources for one of the regions is varied.

As we can see from the above examples, the topics and aims of what we labelled as

“ecologically inspired models” are diverse, and the methodology of building the models is

not as unified as it is for economic models. What these models have in common is the goal

of translating certain real-world dependencies and feedbacks regarding human societies

into appropriate functional forms that accurately represent the dynamics in question.

In building models such as those of Anderies (1998), Janssen et al. (2003), Motesharrei

et al. (2014) or Anderies and Hegmon (2011) we must question if the proposed equations

indeed convey the idea they intend, or if alternative formulations are preferable. Without

reference to a specific real system, some models might not be possible to validate, such

as that of Janssen et al. (2003) or Motesharrei et al. (2014).

In mathematical ecology, similar to economics, an adequate representation of a system by

a model is achieved by following certain general modelling principles (Turchin, 2003a).

But, with regard to historical processes, there has not yet to be a consensus on the

appropriate modelling techniques. A new field, called “cliodynamics” (Turchin, 2008),

seeks to provide such a common framework for modelling historical processes, but the

field is still in its infancy.

Nevertheless, certain ecologically inspired models do share a common modelling method-

ology, namely system dynamics (Forrester, 1961). Models of Maya society have been

largely developed in the system dynamics methodology and share many features with

the ecologically oriented models discussed above. There has been a recent renewal in

interest in the modelling the Maya, but despite capturing structural features of the so-

cieties, some models (Forest, 2007, 2013) are deficient in recovering known population

developments. Models that fare better in the population modelling (Bueno, 2011; Kuil
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et al., 2016) neglect monument construction and show high sensitivity to parameter

changes. More details on these models are provided in Chapter 3.

1.3 Network and game theoretic modelling of social struc-

ture

In this section we review game-theoretic literature that addresses class formation in

networks of agents. Game theory provides a framework for modelling strategic deci-

sion making, while network theory allows us to capture social structure and interaction.

Naturally, we can expect their combination to give insight into the di↵erent social phe-

nomena, such as cooperation and, the subject we are concerned with, the emergence of

di↵erent class structures.

There are two broad categories of models that have provided insights into class forma-

tion: one that is methodologically similar to our approach, namely network optimisation

(i Cancho and Solé, 2003), and the other is adaptive or coevolutionary networks (Gross

and Blasius, 2008), where the topology of the network can adapt depending on the local

dynamics. Certain models, with an economic focus (Mahault et al., 2017), lie at the

junction between the two approaches, with the network optimisation algorithm acting

as the topological evolution of the network. Our own work is methodologically aligned

to the network optimisation literature but, given that our results show a type of class

emergence, we detail both types of models.

1.3.1 Coevolutionary networks

Adaptive networks are defined by a feedback mechanism that exists between the local

dynamics and the topology of the network. The local interaction between agents deter-

mines the overall state of the system, which then a↵ects the topological evolution. Con-

comitantly, the emerging topology influences the local dynamics between agents. The

emergence of di↵erent classes of nodes, that manifested a type of “division of labour”

with certain nodes acting as leaders, was first reported by Ito and Kaneko (2001) and

Zimmermann et al. (2001).

Ito and Kaneko (2001) propose a model of a temporally evolving, directed network where

the state of a node is given by a logistic map coupled to all other nodes, and the connec-

tion weights vary depending on the current state. The weights update such that they

increase between similar states, but the total indegree of each node is kept constant. By

letting the network evolve, Ito and Kaneko (2001) find that the nodes form two distinct

groups: a first group whose nodes posses many connections (i.e., large weights) towards

the second group, and a second group with few outward connections to the first. Thus,
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a core-periphery structure is manifest in the network. Further work (Ito and Kaneko,

2003) reveals the dynamical regimes that the system undergoes in di↵erent regions of pa-

rameter space. In a certain region a temporally stable core-periphery structure emerges

due to a positive feedback that exists between node dynamics and the weights, which

reinforces the separation of the nodes into the two groups.

Zimmermann et al. (2001) considers a network where each node represents an agent

playing a Prisoner’s Dilemma game against his neighbours. If the payo↵ collected by a

node is not the largest in its neighbourhood then (with a certain probability) it rewires

its links to new nodes. Cooperator nodes of high degree emerge that help sustain cooper-

ation in the network. Under a perturbation of the cooperator “leader” nodes the network

oscillates between states with low and high numbers of cooperators, before stabilising

again to a cooperative state. Zimmermann et al. (2004) and Egúıluz et al. (2005) con-

sider a variant of this model and modify the selection rule for a new node such that (with

a certain probability q) it is selected from the neighbourhood of a neighbour. Even for

q = 1%, the emerging network has the small world property. Zimmermann and Egúıluz

(2005) perform a more detailed analysis of the model and discover an uneven wealth

distribution between cooperators and defectors. While cooperators are more numerous,

they are on average poorer than defectors. After the finding of Zimmermann et al.

(2001), that cooperation can dominate in a adaptive network, significant e↵orts were in-

vested in developing models of coevolutionary networks that can maintain cooperation;

for a review, see Perc and Szolnoki (2010).

In the model of Ito and Kaneko (2001) the network does not freeze in a given configura-

tion but the weights continue to grow or decrease, whereas in the model of Zimmermann

et al. (2004), Egúıluz et al. (2005) and Zimmermann and Egúıluz (2005) the network

evolution stops at a certain point, achieving what is called a network Nash equilibrium

(Gross and Blasius, 2008).

As we can see from the above summarised work, the di↵erent rules governing the dynam-

ics of nodes and network evolution give rise to core-periphery networks, wherein a set

of nodes enjoy a high degree and the rest are poorly connected. The highly connected

nodes are associated a leadership status in the network, due to their influence in the

network that helps maintain the disaggregated topology.

The emergence of leadership structure has also been reported beyond core-periphery

networks, e.g., scale-free networks (Anghel et al., 2004; Zhang et al., 2014). In other

studies (Kianercy and Galstyan, 2013; Lipowski et al., 2014; Allahverdyan and Galstyan,

2016), we can see a common pattern among the di↵erent models, namely that most admit

at least two di↵erent phases: one where the structure and interaction of agents can be

considered egalitarian, and another phase where leaders distinguish themselves and the

topology becomes centralised.
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1.3.2 Network optimisation

Network structure optimisation follows the same pattern of other optimisation prob-

lems, namely that a certain objective function is chosen which is either minimised or

maximised. In certain cases, a structure manifesting class di↵erentiation emerges. We

highlight some studies that have had notable results in this regard.

Holme and Ghoshal (2006) model agents on a network that aim to maximise centrality

while keeping a low degree. The simulations show that no stable configuration is arrived

at, but there are long periods of stability where a certain rewiring strategy dominates.

Between these periods of stability the network undergoes transitions that can manifest

a wide diversity of topologies. Holme and Ghoshal (2006) highlight a specific topology

where a small set of elite nodes achieve both high centrality and a low degree.

Guttenberg and Goldenfeld (2010) build an abstract model of information exchange to

capture key features of political organisation. Agents need to allocate time between

producing resources and information, and each agent makes decisions by combining

information observed from other agents with its own. A score is computed for each

agent which depends on guessing the environmental state correctly, and the goal is to

optimise the average score obtained over many trials. There are three phases that are

observed for the system: a state with disconnected independent agents, or a homogenous

cooperative state or a cooperative state with a leader.

Peixoto and Bornholdt (2012) aim to find an optimal topology robust to random failures

and intentional attempts. They build a block-model that is general enough to contain

arbitrary degree distributions, block correlations and di↵erent types of links (for connec-

tivity and interdependence). If the percolation properties of the network are optimised,

then resulting network is a core-periphery network where the core consists of a small

number of nodes of large degree.

Mahault et al. (2017) proposes a model wherein a network of agents have certain quan-

tified amounts of wealth, power, frustration and initiative. In topologies optimised for

maximum power (which a quadratic function of wealth) the wealth inequality is extreme.

If a trade-o↵ between power and frustration is sought, then three social classes emerge

(lower, middle and upper class) and above a certain initiative level, the system no longer

converges but shows cyclical regimes of equality and inequality.

Finally, we consider the model of Kasthurirathna and Piraveenan (2015), who model

agents on a network playing di↵erent games (Prisoner’s Dilemma, Stag Hunt, Battle of

the Sexes or Matching Pennies) with their neighbour. The quantal response equilibrium

(QRE) (McKelvey and Palfrey, 1995) is computed for every pair of interactions (or link

in the network) with the rationality of a node being taken to be a monotonous function

of its degree. The network is rewired such that the QRE is as close as possible to the

Nash equilibrium, i.e., the rational outcome. Kasthurirathna and Piraveenan (2015)
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claim that a scale-free topology with a power law distribution in the degree maximises

the rationality in the system. We show in Roman et al. (2017) and Chapter 4 that

the model proposed by Kasthurirathna and Piraveenan (2015) actually leads to the

formation of core-periphery topologies.

The core-periphery topology is ubiquitous in the real-world, having been found in social

relations (Bourgeois and Friedkin, 2001; Boyd et al., 2006), financial networks (Vitali

et al., 2011; Lux, 2015; Barucca and Lillo, 2016), online social networks and collaboration

networks (Yang and Leskovec, 2014) and the structure of scientific outputs (Zelnio,

2012). Given their predominance, several techniques have been developed to detect

such structures (Borgatti and Everett, 2000; Holme, 2005; Rombach et al., 2014; Zhang

et al., 2015).

As we have seen, the literature on theoretical models that aim to capture the emergence

of social structure is rich with mechanisms that lead to the emergence of leaders, and

the core-periphery topology is a frequent pattern that forms in these cases. But, with

the exception of Kasthurirathna and Piraveenan (2015), no research has considered

modelling agent rationality as an explicit factor that depends on the network topology.

Furthermore, the research of Kasthurirathna and Piraveenan (2015) is questionable in

several regards: no analytic arguments are provided for the results, the optimisation that

is performed for the network does not reach a minimum and it is claimed that the results

do not dependent on the type of games played. We address these problems in Chapter

4 by showing numerically and analytically that core-periphery topologies optimise the

network structure for maximum system rationality, and that there is marked di↵erence

between the features of the core-periphery topologies for symmetric and asymmetric

games.

1.4 Synopsis

In this chapter we have looked at modelling techniques employed to capture large-scale

societal growth and collapse, as well as the use of network theory and game theory to

model social interactions.

Agent based models o↵er a bottom-up approach to understanding a system’s structure

and behaviour. The insight these models can provide is how basic building blocks of the

system in question behave. The di�culty lies in matching underlying agent behaviour

with large scales features in the data and discriminating between alternative assumptions

regarding the agent’s characteristics.
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Integrated world models have a high degree of complexity (many variables, equations,

mechanisms and sub-models) that hinder understanding and communication. Never-

theless, due to their complexity and comprehensiveness they are also the most realistic

models and are used in policy making.

Low-dimensional dynamical systems models have been widely used to capture societal

mechanisms from a top-down approach. There are di↵erent schools of thought on how

to develop these type of models: economically or ecologically focused, which di↵erent

emphases and strengths. The advantage of these type of models is that they can capture

a specific idea or theory on how societal evolution takes place. This, plus their smaller

number of variables, allows for comparison with the archaeological record. The main

shortcomings of these models is the potential over-simplifications they make in describing

the systems under study.

Overall, we identify the following gaps and largely unaddressed issues in the literature:

• A lack of an explicit and precise match between model prediction and archaeolog-

ical data (where available). This is the bare minimum that any model attempting

to capture real world behaviour should aim for. The model of Brander and Tay-

lor (1998) for Easter Island does not fit well with the data by Flenley and Bahn

(2003), and no better fit was attempted by any subsequent paper building on their

work. While Hosler et al. (1977) aim to reproduce the collapse of the Maya, it does

so with unrealistic time-scales and model behaviour. Notable examples where a

good fit with empirical data has been achieved is the work by Anderies (1998) and

the World3 model (Meadows et al., 1972), with the comparison done by Turner

(2008).

• Models tend to be either complex or of very low dimensionality, most often 1 or 2

dimensional. There is a lack of models between these two extremes, which is prob-

lematic because justifying the features, calibrating and communicating a complex

model is challenging, while getting valuable real insights from very low-dimensional

models is unlikely. Complex models include the agent-based and integrated world

models. The models of Hamblin and Pitcher (1980) and the economic-based mod-

els of Easter Island (Reuveny and Decker, 2000; Dalton and Coats, 2000; Pezzey

and Anderies, 2003; Dalton et al., 2005; Good and Reuveny, 2006) fall in the very

low-dimensional category, while giving questionable insight (Lowe, 1982; Janssen

and Sche↵er, 2004). Ecological-type models like (Turchin, 2009; Motesharrei et al.,

2014) are 3 or 4 dimensional and capture su�cient features for their aims.

• Even when a model makes an explicit fit with the archaeological record and aims

for a high-enough level of detail to warrant a meaningful interpretation, like that

of Bueno (2011), the behaviour of the model can be too sensitive to changes in

parameters to provide robust conclusions.
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• While some integrated world models dissagregate the world into distinct regions

to capture regional e↵ects, such as Mesarovic and Pestel (1974) have done, there is

a lack of low-dimensional models that aim to understand the dynamics of multiple

coupled socio-environmental systems.

We provide two contributions to the literature on modelling societal growth and collapse.

The first paper, found in Chapter 2, focuses on Easter Island and o↵ers a dynamical

system model of the island society. The model is the first to aim for a match with

the archaeological record (Flenley and Bahn, 2003) and provides mathematically precise

conditions under which a sustainable outcome or a collapse can occur. Specifically, the

collapse of the island society corresponds to a supercritical Hopf bifurcation, where the

critical parameter is the harvesting rate of resources.

Furthermore, we extend the model by coupling two societies together under di↵erent

assumptions. The framework in which we formulate the two-society model is that of

coupled dynamical oscillators. This is appropriate because, in the unsustainable regime,

a society behaves like a dynamical (limit cycle) oscillator with a large amplitude. The

two-society model is the first of its kind to study coupling of socio-environmental oscil-

lators representing human societies. We establish under what conditions two coupled

societies can be both sustainable and when mutual collapse occurs. Surprisingly, as long

as one society had a su�ciently low harvesting rate, then the overall system could reach

a steady state. Steady states of such coupled oscillators are thus more prevalent in the

parameter space, making the system more robust to collapse.

The second paper, that constitutes Chapter 3, is on the Maya collapse. Again, we build

a dynamical system model that is the first to match fine-grained archaeological data on

the growth rates and population levels of the Lowland Classic Maya (Folan et al., 2000),

and the data on monument building rates (Erickson, 1973). To validate the model, an

extensive sensitivity analysis is performed which shows that the best-fit parameters lie

at a minimum in parameter space, and also correspond to archaeologically determined

values. Given the excellent fit to the data and the consistency of the determined pa-

rameters with the broader literature, the model is validated and suggests that a drastic

increase in the practice of intensive agriculture can account for the collapse. The model

also o↵ers the possibility to assess the role of drought in the collapse of the ancient

Maya, which is a commonly invoked reason for their demise. We find that, as long as

a significant shift to intensive agriculture takes place, the archaeological record is re-

produced irrespective of the e↵ects of precipitation. Specifically, the models shows that

the archaeological record is recovered only if after 550 CE a fraction of around 70% of

each new generation undertakes intensive agricultural practices. A mathematical anal-

ysis shows that this system also undergoes a supercritical Hopf bifurcation when the

harvesting rate increases beyond a critical point.
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In the network and game theoretic literature we have seen a wide variety of models that

give rise to social structure, manifested in particular through the emergence of leaders

and core-periphery topologies. In the literature applying game theory on networks we

can identify two gaps:

• The quantal response equilibrium has been extensively used in economics and

provides a way to quantify a graded notion of rationality (McKelvey and Palfrey,

1995). But, it has been sparsely used in adaptive network models despite allowing

a natural link between topological properties and game parameters, such as in the

work of Kasthurirathna and Piraveenan (2015).

• There are certain shortcomings in the work by Kasthurirathna and Piraveenan

(2015): the optimisation of network structure did not reach a local minimum

(no plateau observed), a lack of analytic arguments and an erroneous conclusions

regarding the nature of the optimal topology and the fact that it is independent

of the type of game played.

In the third paper, which is Chapter 4, we employ the framework of Kasthurirathna and

Piraveenan (2015) to quantify the rationality of players and to measure the distance of

an agent’s strategy from perfectly rational outcomes. Instead of computing the Nash

equilibrium, we allow for a range of rationalities (given by the degree of a node) and

determine the quantal response equilibrium (QRE). In the limit of perfect rationality

(or infinite degree in our case) the QRE coincides with the Nash equilibrium. Hence, we

compute the quantal response equilibrium and measure the deviation of the resulting

probability distribution from the Nash equilibrium using the Jensen-Shannon divergence.

We address the problems with Kasthurirathna and Piraveenan (2015) treatment and

provide numerical and analytic arguments that in symmetric games (Prisoner’s Dilemma

and Stag Hunt) the optimal network configuration to maximise rational behaviour is that

of core-periphery graph with small number of hubs of high degree that form a complete

subgraph, and a periphery consisting of nodes of degree one. In asymmetric games

(Battle of the Sexes and Matching Pennies) a core-periphery topology also emerges, but

the core consists of a regular subgraph and the degrees of the hubs are smaller.
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Chapter 2

Coupled societies are more robust

against collapse: A hypothetical

look at Easter Island

Abstract

Inspired by the challenges of environmental change and the resource limitations experi-

enced by modern society, recent decades have seen an increased interest in understanding

the collapse of past societies. Modelling e↵orts so far have focused on single, isolated

societies, while multi-patch dynamical models representing networks of coupled socio-

environmental systems have received limited attention. We propose a model of societal

evolution that describes the dynamics of a population that harvests renewable resources

and manufactures products that have positive e↵ects on population growth. Collapse is

driven by a critical transition that occurs when the rate of natural resource extraction

passes beyond a certain point, for which we present numerical and analytical results.

Applying the model to Easter Island gives a good fit to the archaeological record. Sub-

sequently, we investigate what e↵ects emerge from the movement of people, goods, and

resources between two societies that share the characteristics of Easter Island. We anal-

yse how di↵usive coupling and wealth-driven coupling change the population levels and

their distribution across the two societies compared to non-interacting societies. We

find that the region of parameter space in which societies can stably survive in the long-

term is significantly enlarged when coupling occurs in both social and environmental

variables.
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2.1 Introduction

Modern society is pushing beyond the safe operating boundaries of its global environ-

ment (Rockström et al., 2009). Resource depletion, species extinction, deforestation and

climate change are symptoms associated with passing these boundaries. A starting point

for managing modern societies response to these these problems is understanding the

dynamics governing human-environment interactions, and studying past societies o↵ers

the possibility of gaining insight into these dynamics. There are many examples through-

out history of societies that have collapsed: Mesopotamia, the Minoan and Mycenaean

Civilisations, the Western Roman Empire, the Lowland Classic Maya and the Chacoans

to name a few (Tainter, 1988). Understanding and quantifying the conditions which lead

to collapse can provide a guide for present society concerning how to cope with resource

constraints and environmental challenges, and avoid a potential collapse.

Societal collapse can be defined as a “rapid, significant loss of an established level of

sociopolitical complexity” (Tainter, 1988, p. 4). Under what conditions do human

societies face a collapse or, in particular, a population crash? This question has been a

recurrent issue in the history of mathematical and computational modelling. Arguably,

the earliest study addressing it can be considered to be the work of Malthus (1798)

which raised wide concerns over population growth and land availability. Much later,

a more sophisticated model was developed in Limits to Growth (Meadows et al., 1972)

that showed a decline in population levels in the second half of the 21st century. Both

works were misunderstood and faced harsh criticism (Neurath, 1994), mostly because the

quantitative reasoning and modelling they employed were unfamiliar at the time to large

portions of the educated population, especially in the case of Limits to Growth (Bardi,

2011). In recent times, interest in the mathematical modelling of societal dynamics has

revived (Anderies, 2000; Turchin, 2008), with several models quantifying historical cases

of societies that have experienced collapse (Brander and Taylor, 1998; Axtell et al., 2002;

Heckbert, 2013).

The focus of most recent models has been on the dynamics of single societies, most

prominently Easter Island (Brander and Taylor, 1998; Dalton and Coats, 2000; Reuveny

and Decker, 2000; Pezzey and Anderies, 2003; Good and Reuveny, 2006). While, like

Easter Island, many cases of collapse occurred in isolation, the dynamics of multiple cou-

pled societies is no less important to historical knowledge and understanding. Given the

highly interconnected nature of the modern world, studying the behaviour of a network

with many coupled, interacting socio-environmental systems is of much interest for the

present environmental debate (Rockström et al., 2009). Furthermore, it is likely that it

can shed light on past cases of collapse. The movement of populations, along with the

products they carry, have had a significant e↵ect on social dynamics throughout human

history (Manning and Trimmer, 2013). Historically, commerce and the establishment of

trade routes proved crucial to the growth and development of many complex societies, in

24



particular the Roman empire (Van der Leeuw and de Vries, 2003). The building of road

networks and the development of exchange systems contributed to its growth (Dowdle,

1987). Subsequently, the migration of Germanic tribes had a large impact on the later

stages of the empire (Halsall, 2007). Seafaring has been equally important to migration

and trade, e.g., the Roman Empire with Egypt, but also in the society of the Maya

(McKillop, 1996). The systematic movement of people and goods over large distances

and the building of the necessary infrastructure (roads, bridges etc.) to facilitate tran-

sit and transport are characteristic signs of high levels of societal complexity (Tainter,

1988).

In this paper we present a dynamical systems model of societal development, which we

apply to Easter Island. Then, we take a first step in the direction of quantifying the

dynamics of networks of societies by starting with the simplest possible case, namely two

coupled societies interacting by various forms of movement of people, goods or resources.

To add historical context to our study, we again parametrise the model for Easter Island.

By investigating the situation of interacting societies, we are essentially addressing the

hypothetical situation: What if Easter Island was not an isolated island? What if

people migrated and traded goods with an adjacent island? Would such interactions

have prevented, alleviated or accelerated the collapse?

The paper is organised as follows. In Section 2.2 we review the recent literature on

models of the long-term dynamics of societies. We find that the modelling methodology

regarding dynamical systems is separated into two schools of thought, one focusing on

economic principles underlying societal dynamics, while the other uses a more heuristic

ecological approach to model building.

In Section 2.3 we propose a model aligned to the ecological methodology for the dynamics

of a single society. In Subsection 2.3.1 we describe the model and apply it to reproduce

the archaeological data of Flenley and Bahn (2003) about the collapse of Easter Island.

Furthermore, a comparison is made between the results of the proposed model and the

model of Brander and Taylor (1998), that also focuses on Easter Island. In Subsection

2.3.2 we analyse the critical transitions in the model when important parameters are

changed. Appendix B contains a more detailed mathematical treatment.

Having validated the model for a single society, we proceed in Section 2.4 to investigate

scenarios of two societies coupled together through exchanges of population, resources or

goods under di↵erent conditions. We initially investigate simple di↵usion in Subsection

2.4.1, and then in Subsection 2.4.2 we study targeted, wealth-driven migration, in which

migration occurs from poor to rich societies driven by a di↵erence in the wealth per

capita. The results pinpoint when the coupling is beneficial or not for the sustainability

of the entire system.
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2.2 Related literature

The earliest arguments regarding long-term societal sustainability or collapse that were

amenable to quantitative modelling were in the work of Malthus (1798). Concerns

regarding human-environment interactions started to re-emerge in the 1960s, when sus-

tainability science was born, arguably through the publication of the work of Carson

(1962). A work that sparked intense debate and interest in mathematical modelling

was Limits to Growth (LTG) (Meadows et al., 1972), which proposed an aggregated

world model formulated in terms of a set of equations describing the dynamics and time

evolution of several key aspects of society. Such a set of equations constitutes a dynami-

cal system that attempts to capture important feedbacks present in socio-environmental

systems. Recent research by Turner (2008) has compared the trajectories from Meadows

et al. (1972) with real data over a span of 30 years. The comparison shows a reason-

ably good fit despite the initial modelling e↵ort not aiming to be predictive but only

precautionary.

In recent times, modelling the long-term development of societies, in particular the pos-

sibility of their collapse, has received renewed attention. The paper that re-sparked

interest in this topic was by Brander and Taylor (1998). By appealing to neo-classical

utility maximisation arguments, along with a set of functional forms widely used in ecol-

ogy (e.g., logistic growth) Brander and Taylor (1998) arrive at a set of predator-prey

type equations used to describe the evolution of the human population and renewable re-

sources on Easter Island. Following this work a stream of papers appeared that adopted

the methodology of Brander and Taylor (1998), expanded on it or applied it to other

cases. We can broadly categorise these models as “economic type models”, meaning

that they represent people as utility maximising, rational agents.

There is a second class of models that aim to capture societal development that we

label “ecologically inspired models.” In this case the choice of dynamical system is

made heuristically to capture the observed real-world dynamics of the society, while

respecting modelling principles of population biology (Turchin, 2003a), but rationality

of individuals is not enforced. An early model following this approach was developed by

Anderies (1998) to capture the social dynamics of the Tsembaga of New Guinea. The

wider diversity of assumptions that underlie the ecological style of modelling means that

the endeavour tends to lack the conceptual unity of economic models. The theoretical

appeal of the more unified economic framework is understandable, with modelling e↵orts

that that were initially ecological in style (Anderies, 1998; Janssen et al., 2003), soon

joining the economic camp (Anderies, 2000; Janssen and Sche↵er, 2004). Nevertheless,

the reliability of the rationality hypothesis has been questioned many times (Nell and

Errouaki, 2013), including by Janssen and Sche↵er (2004).

The underlying di↵erence between the two modelling schools is in the theoretical frame-

work from which they start the modelling process. The economic type models use a
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narrower set of assumptions, typically including utility maximisation as a driver of hu-

man behaviour along with a decision on the global institutional policy. The ecologically

flavoured models are less restrictive in their theoretical underpinnings, more attentive to

characteristic features of the society and try to account for emergent social phenomena

that can contrast with or even contradict economic rationality, e.g. sunk-cost e↵ects

(Janssen et al., 2003) or war rituals (Anderies, 1998).

We proceed to give a short overview of the di↵erent strands of literature that deal

with societal modelling, starting with the economic type models. Dalton and Coats

(2000) extends the model of Brander and Taylor (1998) for Easter Island to account for

possible institutional reforms and how these could e↵ect feast-famine cycles. Reuveny

and Decker (2000) investigates other possible solutions to the “Malthusian Trap” for

Easter Island in the form of technological progress and population management. Pezzey

and Anderies (2003), along with considerations of institutional adaptation, also adds a

resource subsistence requirement to preferences. Dalton et al. (2005) analyses Easter

Island by taking into account the possibility of economic growth. Good and Reuveny

(2006) look at limits to resource management institutions and conclude that even if

the people of Easter Island had a complete assignment of property rights, implemented

optimal resource management with an infinite horizon, or had a social planner to perform

such a task, a boom-bust cycle would still occur. D’Alessandro (2007) investigates what

happens when two di↵erent renewable resources are present which cannot recover once

below a critical threshold. A comprehensive survey of these type of models is to be

found in Nagase and Uehara (2011) and Reuveny (2012).

We now turn to the ecological strand of models which have arguably received less at-

tention. Anderies (1998) modelled the social structure of the Tsembaga, which employ

a simple swidden (slash-and-burn) agricultural system that also features domesticated

animals, predominantly pigs which are part of a periodic war ritual called the Kaiko.

Other research attempts to quantify conceptual theories of societal dynamics, such as

the work of Turchin (2003b) who, among several ideas, also develops models reflecting

Ibn Klaldun’s theory of collective solidarity (“asabiya”). Janssen et al. (2003) introduces

a model that aims to illustrate what are called sunk-cost e↵ects, which refer to people

taking into consideration prior investments when deciding what course of action to take.

A group “may not suggest abandoning an earlier course of action because this might

break the existing unanimity” (Janssen et al., 2003, p. 722). Turchin (2009) takes into

account the demographic-structural theory proposed by Goldstone (1991) in developing

a model that reproduces the dynastic cycles seen in many societies. Motesharrei et al.

(2014) propose the Human and Nature Dynamics (HANDY) model for societal dynam-

ics that attempts to capture the relation of economic inequality to collapse. The model

suggests inequality can be a significant factor leading to collapse.

Regarding Easter Island, Erickson and Gowdy (2000) point out discrepancies between

Brander and Taylor (1998) and the archaeological record for Easter Island reconstructed
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by Bahn and Flenley (1992) and propose the addition of a capital stock to account for

continued population growth despite resources being depleted. While a more abrupt

collapse is observed than compared to Brander and Taylor (1998), the overall trajecto-

ries for the population and resources levels do not match the quoted historical record.

Basener and Ross (2004) build a two-dimensional model that aims to reproduce a dis-

crete set of data points of the population levels, particularly around the population peak.

While the model achieves the desired fit, the results show a near instantaneous collapse

of the population after 1700 which is unrealistic. Bologna and Flores (2008) develop

a very similar model to Basener and Ross (2004) but with a Lotka-Volterra term for

resource extraction. While no instant collapse occurs, the results of Bologna and Flores

(2008) show a much earlier peak in the population compared to data Flenley and Bahn

(2003), similar to Brander and Taylor (1998).

Basener et al. (2008) extends the model from Basener and Ross (2004) to account for

rat infestation on Easter Island, while Brandt and Merico (2015) also considers rat

infestation along with an epidemic component. With the higher dimensional model,

Brandt and Merico (2015) investigate multiple scenarios regarding the collapse that

reflect di↵erent theories regarding it. Plausible results are obtained under each scenario

and none can be ruled out, which is not a surprinsing fact given the large number of

parameters of the model and their uncertainty. We aim for a simpler treatment and

propose a three dimensional model, that uses a similar parametrisation to Brander and

Taylor (1998), provides analytic insights and has results that match very well with the

time series by Flenley and Bahn (2003).

The examples in the above categories develop dynamical systems that describe a single,

isolated society. Follow up studies by Quirin et al. (1977) and Mesarovic and Pestel

(1974) extended the model in LTG by disaggregating the world into two and ten re-

gions, respectively. The finer resolution allows for an analysis of societal development

that moves past the homogeneity assumption that went into building the model behind

LTG. For example, both Quirin et al. (1977) and Mesarovic and Pestel (1974) take into

consideration the di↵erences in internal development between the various regions, the

imports and exports among them and variation in industrial activity.

While the work of Mesarovic and Pestel (1974) increased spatial resolution, it decreased

the temporal horizon to 50 years and shows increasing trends in population and resource

usage and no global collapse, much like the results of Meadows et al. (1972) up to the

middle of the 21st century. Quirin et al. (1977)’s standard run also shows steadily

increasing production of services, industrial output and population but for the next 300

years, completely disagreeing with Meadows et al. (1972). A significant role in this

outcome is likely played by the annual rate of technological growth, which Quirin et al.

(1977) assumed to be at least 5% and has a beneficial e↵ect on all aspects of the model.
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Instead of using a model of high complexity such as the one in LTG, here we opt for

lower dimensional models and focus on systematically understanding their dynamics.

Research on (relatively) simple models of coupled dynamical oscillators has a rich history

in theoretical ecology, the closest related literature to our purposes being the Lotka-

Volterra (LV) predator-prey models that explore di↵usion between two patches. Early

research on the topic was pursued by Levin (1974), who finds predator and prey can co-

exist provided the migration rate is su�ciently low, while higher rates make the system

act like a single patch and co-existence is no longer possible. Nisbet et al. (1992) and

Jansen (1995) find that, for identical patches linked together by dispersal at a constant

rate, the only possible equilibrium is symmetric with equal densities on each patch,

which is a general result highlighted in a review by Briggs and Hoopes (2004). On two

heterogeneous patches with LV predation, Murdoch et al. (1992) finds that di↵erent

prey birth rates have a stabilising e↵ect, while Jansen (1995) concludes that temporal

variability in predator death rates decreases the amplitude of fluctuations in the system

when it is perturbed by noise.

While the ecological literature provides us with useful mathematical tools, there are

nevertheless specific features that predator-prey models do not capture when applied to

societal dynamics. Examples of this include the building and use of products derived

from natural resources (such as tools, food reserves and infrastructure) or specific incen-

tives regarding migration, like economic prosperity, both of which are key aspects that

we are modelling. However, methods from population biology modelling have been used

to asses the impact of human population growth and migration on the carrying capacity

of the environment, and to understand the feedbacks associated with these processes.

In particular, the Prehistoric U.S. Southwest has been researched from this perspec-

tive, with early work on the problem by Zubrow (1971), and a more recent study by

Anderies and Hegmon (2011) who proposes a heterogenous, three-patch model that cap-

tures population and resource dynamics, with net migration occuring towards a region

if its resource stock is su�ciently large compared to neighbouring patches. Anderies and

Hegmon (2011) finds that the equilibrium states of regions with and without migration

are very similar.

In the present work we present a thought experiment where-in two regions similar to

Easter Island interact through di↵usion or through targeted migration due to di↵erences

in wealth per capita. The regions not only exchange people, but also resources and

manufactured goods can interchange between patches. The coupling of the patches

significantly changes the equilibrium states obtained in the regions, a result which is in

opposition to the findings of Anderies and Hegmon (2011).

Societal dynamics has also been explored with agent based models. Representative

examples for the work done in this area are Axtell et al. (2002), who develop a model of

the Anasazi in north-eastern Arizona (U.S.), Heckbert (2013), who focuses on the Maya

civilisation and Turchin et al. (2013), who aim to understand how intense competition,
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in particular warfare, contributed to the emergence of large-scale complex societies.

Agent based models, like the examples mentioned, incorporate detailed features such

as spatially extended terrain and multiple forms of social interaction, and account for

heterogeneity in agent behaviour and in the environment. The focus of this paper is,

instead, to obtain a description of the time evolution of aggregate measures of societal

macro-features, such as the population and resource consumption. Following previous

research in the area (Brander and Taylor, 1998; Erickson and Gowdy, 2000; Basener and

Ross, 2004; Bologna and Flores, 2008; Brandt and Merico, 2015), dynamical systems are

an adequate tool for our purposes, which we use to formulate and specify our model.

2.3 Easter Island model

2.3.1 Model specification

Here, we opt for an ecological type of model for the dynamics of a single society that we

apply to Easter Island. Using, where possible, the same parameter choices as Brander

and Taylor (1998), we compare the solution of the model to the historical data provided

by Flenley and Bahn (2003), who present an exhaustive review of the archaeological

research of Easter Island. For comparison with an economic approach, we also show the

model of Brander and Taylor (1998) and its solution. Subsequent papers, that extended

the treatment of Brander and Taylor (1998), did not attempt to match the historical

data, hence, our focus for comparison is on the original model.

By matching model output to real data we, at least partially, validate the proposed

model. This means that by reproducing the observed historical trends, we can consider

the relationships that the model describes to be plausible mechanisms at play within

the socio-environmental system. Hence, the model moves beyond a thought experiment,

and makes a better connection to reality which lends validity to later extensions of the

model for coupled societies. However, it is beyond the scope of this paper to explain

the collapse of Easter Island or quantify all relevant factors that led to it, such as rats

(Hunt, 2007) or European contact (Stevenson et al., 2015).

We propose the following model for the dynamics of a society:

ẋ = (b� de�z/(⇢x))x

ẏ = ry(1� y/K)� ↵xy

ż = ↵xy � sx(1� e�z/(⇢x))� cz

(2.1)

We regard the x variable as a stock of population, y as a stock of renewable natural

resources and z as the cumulated goods produced from extracting natural resources,

which we also refer to as wealth. In more concrete terms we could think of y as crops,

30



Symbol Meaning Typical values
b Maximum birth rate 0.002
d Maximum death rate 0.012
r Resource regeneration rate 0.004
K Maximum stock of resources 12,000
s Subsistence requirement 0.004
⇢ Wealth per capita threshold 0.1
↵ Resource extraction rate 10�6

c Decay rate of goods 0
� Fraction of population harvesting 0.4 or 1.
� E↵ect of consumption on fertility 4 or None

Table 2.1: Parameters for model (2.1) and the model of Brander and Taylor
(1998) for Easter Island. The time unit is taken to be one year.

wood, animal stock, etc., and z as products derived from these, like food stocks, shelter,

tools, etc.; these are characteristic elements of past agricultural societies.

The dynamics governing the population change is consistent with the early phases de-

scribed by demographic transition theory: in a developing society (which has relatively

low, but growing levels of wealth per capita) the death rates drop quickly due to im-

provements in food supply and material conditions (Landry, 1934; Kirk, 1996). Data

for modern societies indicates that infant death rates have fallen significantly over time

(Chesnais, 2001), sometimes exponentially. We do not include a mechanism for the

reduction of birth rates because the maximum net birth rate in the model is 0.2% per

year, comparable to net growth rates in the High Middle Ages in Europe (Russell, 1972),

which we judge to already be quite low.

The demographic mechanism is implement as follows: if the wealth per capita z/x is

high compared to a threshold ⇢ then the population grows exponentially at the (max-

imum) rate b, while if z/x is close to 0 then the population decreases exponentially at

the (minimum) rate b � d, where d is the maximum raw death rate. The presence of

material wealth lowers the death rate, hence it has a positive impact on net growth

rates, consistent with the first stages hypothesised by demographic transition theory.

As has been common in many models of societal dynamics, we consider natural resources

to recover logistically at a rate r, with a maximum capacity of K. Another classical

feature is that the resource extraction is governed by a predator-prey term ↵xy, with

people acting as predators and resources as prey. The extraction rate ↵ is the fraction of

the resource base that can be extracted by one person over a year. Thus, the equation

for the rate of change of resources is analogous to that used by Brander and Taylor

(1998).

Material goods, i.e. the wealth z, are produced at the same rate as the resources are ex-

tracted, which reflects conservation of matter. The consumption of goods is proportional
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to the population and the rate of consumption per capita is equal to the subsistence re-

quirement s when wealth per capita is high. We expect that, if the average wealth per

capita decrease, then the average consumption per capita also decreases. Hence, the

consumption per capita tends to zero when z/x is low, which is similar to the dynam-

ics proposed by Motesharrei et al. (2014). To account for wear-and-tear, manufactured

products decay exponentially at a rate c, a feature previously considered by Erickson

and Gowdy (2000). A summary of the parameters and their values is found in Table

2.1.

We show that by solving the equations of model (2.1) it is possible to reproduce to high

accuracy the archaeological record for Easter Island as presented in Flenley and Bahn

(2003). To achieve this, the choice of parameters in (2.1) is made to coincide with the

values (and notation) used in the model (2.2) proposed by Brander and Taylor (1998):

L̇ = (b� d+ �↵�S)L

Ṡ = rS(1� S/K)� ↵�SL
(2.2)

where L is the population and S is the renewable resource stock. We set most of the

parameters in (2.1) to have the same values as the choices Brander and Taylor (1998)

made for model (2.2). The maximum birth rate is b = 0.002, while the maximum

death rate is d = 0.012, so that b � d = �0.01 as in (Brander and Taylor, 1998). The

regeneration rate (per year) of resources is r = 0.004, the maximum resource level is

K = 12000 and the extraction rate is ↵ = 10�6 (per person, per year).

Some parameter choices for model (2.1) di↵er from model (2.2) of Brander and Taylor

(1998). We choose the subsistence requirement per person per year to be s = 0.004.

Despite being mentioned, no explicit value is quoted by Brander and Taylor (1998) for

the subsistence requirement. The largest di↵erence between equations (2.1) and (2.2) is

how the resource extraction is modelled and how this impacts birth rates.

For Brander and Taylor (1998), the parameter � is the fraction the population involved

in resource extraction, so ↵� is the e↵ective extraction rate per capita in model (2.2).

The parameter ↵ was assigned the value 10�6 so that at maximum resource levels a

“household could provide its subsistence requirements in about 20 percent of available

labour time ... A value of 0.4 for � is probably in the reasonable range” (Brander

and Taylor, 1998, p. 128). In model (2.1) we eliminate the redundancy of the extra �

parameter and take the e↵ective extraction rate per capita to be ↵ = 10�6, such that

at maximum resource levels a person can meet his subsistence requirement in 33% of

available time. While debatable, this value for the extraction rate allows the solution of

(2.1) to match the archaeological record, see Fig. 2.1.

The parameter � = 4 scales the e↵ect of resource consumption on birth rates in model

(2.2). Resources do not directly impact birth rates in model (2.1) so, there is no �
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parameter in our case. We made the assumption in (2.1) that wealth per capita a↵ects

demographic rates and the parameter ⇢ = 0.1 sets the scale at which the impact of

wealth cumulation on population growth is significant, corresponding to ⇢/s = 25 years

of material requirements (food reserves, tools etc.). There is no equivalent parameter

for the decay rate c in model (2.2) so, we take c = 0 in model (2.1) if we are considering

Easter Island. By choosing c = 0, we are assuming that wealth decreases mainly through

human consumption.

Fig. 2.1(a) shows the historical evolution of population and resource levels on Easter

Island according to Flenley and Bahn (2003). For initial conditions of 1100 people,

12000 units of natural stocks and no wealth, the output of model (2.1) is shown in Fig.

2.1(b). The initial conditions for model (2.2) are set to 40 people, while resources are

at 12000 units, with trajectories in Fig. 2.1(c).

The population peak in Fig. 2.1(c) occurs several centuries earlier than in the data of

Fig. 2.1(a), as noted by Erickson and Gowdy (2000). Also, the decline in population

and resource levels in Fig. 2.1(c) is much less abrupt than Flenley and Bahn (2003)

show in Fig. 2.1(a). Furthermore, the initial population value of 40 is much lower than

estimates of the minimum viable population sizes, which are placed between 100s and

10,000s for humans (Smith, 2001). A higher initial population leads to an even earlier

population peak in model (2.2).

Model (2.1) does not su↵er from these shortcomings and its output in Fig. 2.1(b) fits Fig.

2.1(a) visibly better, both in population and aggregate resource trajectories, while using

almost identical parameter estimates to Brander and Taylor (1998). The population

peak, its timing, the collapse profile and the significant decline in resources, as indicated

in Fig. 2.1(a) are accurately reproduced in Fig. 2.1(b). Thus, the results in Fig. 2.1

partially validate model (2.1). The resource level in Fig. 2.1(b) should be seen as an

aggregated mean of renewable stocks (trees, livestock etc.) which are not all included in

Fig. 2.1(a). This explains why the minimum resource level in Fig. 2.1(b), which occurs

close to the time when the population reaches its maximum level, does not precisely

match the resource minima in Fig. 2.1(a).

33



(a)

Population Resources

400 800 1200 1600 2000

0

2000

4000

6000

8000

10000

12000

Time

(b)

Population Resources

400 800 1200 1600 2000

0

2000

4000

6000

8000

10000

12000

Time

(c)

Figure 2.1: (a) Figure
showing the archaeological
record of Easter Island
from collected data and
estimates (Flenley and
Bahn, 2003, p. 201). We
see the population reaches
a peak of approximately
10,000 people around
the year 1600 AD. The
resources were continually
declining as the popula-
tion was increasing.

(b) The population and
resource levels for Easter
Island as determined by
model (2.1) from the
year 400 AD to 2000 AD
assuming no outside influ-
ence. The predictions are
valid up to the late 19th
century when significant
interaction between Easter
Island and the outside
world started taking place.
We see a good fit between
the output of (2.1) and
the real data.

(c) The solution of
the model by Brander and
Taylor (1998) shown for
comparison. The timing
of the population peak
as well as the overall
shape of the model out-
put is inconsistent with
the data in Fig. 2.1(a).
The initial population
value is below the lower
bound for the minimum
viable population size for
humans.

Why do we obtain a better fit using the model (2.1)? Part of the reason lies in the delay

induced by the additional equation describing the accumulated amount of manufactured
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Figure 2.2: Bifurcation diagram for (a) population level, and (b) resource level.
The vertical solid lines show the bifurcation points. The curved solid line in-
dicates the analytically computed stable inner fixed point E, while the dashed
line shows when E becomes unstable. The dotted lines highlight the maximum
and minimum population on the numerically determined stable attractors. For
↵ < ↵c = 2.8↵? the inner fixed point E is attracting while for ↵ > ↵c a stable
limit cycle emerges. When ↵ & 10↵? the system equilibrates to the saddle point
N with no population and maximum resources.

products (wealth), which leads to a longer feedback loop within system (2.1) compared

to other models.

The fit between the output of model (2.1) and the historical record shows us that the

structure of the model and the feedbacks captured by it are viable choices to describe

the dynamics of a simple agricultural society. Moreover, by fitting the model to a

real world-case, we obtain reasonable parameter estimates, which can inform further

modelling e↵orts and make them more realistic. Given this, the model can serve as

a starting point to explore new dynamics, like that of multiple interacting societies.

Nevertheless, it is worth pointing out that the results do not fully explain or quantify

the scope of the collapse of Easter Island, as many more factors were at play in the

collapse and model (2.1) does not incorporate all the complexities of reality.

2.3.2 Critical transitions

In this section we focus on the critical transitions that model (2.1) exhibits. Fig. 2.2

shows the bifurcation diagram for system (2.1) when varying the extraction rate ↵. The

critical transition points are highlighted through vertical lines that separate the di↵erent

regimes. The di↵erent regimes correspond to di↵erent long-term outcomes for our model

society.

The mathematical analysis of the equilibrium points and transitions undergone by the

system (2.1) is provided in Appendix B. The model has a single interior equilibrium

35



point that we denote by E = (xe, ye, ze) where:

xe =
r

↵

 
1�

ye

K

!

ye =
1

↵

 
s

 
1�

b

d

!
+ ⇢c log

d

b

!

ze = ⇢xe log
d

b

(2.3)

The first transition occurs at ↵? = (s(1 � b/d) + ⇢c log d/b)/K, which we take as a

reference value for the other transitions. When the extraction rate ↵ is varied beyond

↵? it leads to a stable steady state (at the point E) or to oscillations, see Fig. 2.2.

This indicates the presence of a critical transition (a Hopf bifurcation) in the system

at a certain threshold value of the extraction rate, which we denote as ↵c. That value

separates regimes with long-term stable outcomes from boom-bust cycles. The precise

determination of the transition point is of interest, as it dictates the eventual state of

the system. The structure of system (2.1) allows for the exact analytic determination of

the critical value ↵c at which the Hopf bifurcation occurs:

↵c =
B +

p
B2 + 4AC

2A
↵? (2.4)

where

A = bdr⇢

 
ds� bs+ cd⇢ log

d

b

!

B = bdrs⇢(2c+ d) + c2d2r⇢2 + b2rs(s� d⇢)

+ bdr⇢(2bs+ 3cd⇢) log
d

b
+ b2d2r⇢2 log2

d

b

C = dr2⇢

 
bs+ cd⇢+ bd⇢ log

d

b

!
.

(2.5)

In case of ↵ < ↵? the equilibrium population is zero, which means that the extraction

rate is too low for any human population to meet their subsistence requirements. For

↵? < ↵ < ↵c there exists an attractive fixed point E, as the single branch of the

bifurcation diagram in Fig. 2.2 indicates. This regime corresponds to a sustainable

society in the sense that it equilibrates to a long term steady state. For ↵ > ↵c the

system oscillates and we can interpret this as a sequence of boom-bust cycles the society

goes through.

For very large extraction rates, exceeding a threshold we call ↵h, the natural resources

are depleted quickly and they reach low enough levels for long enough that the popula-

tion dies o↵ and all wealth disappears. Without population pressure, natural resources

recover and the system stabilises at a fixed point with no human population or wealth,
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Figure 2.3: Plots depicting how regime boundaries vary with (a) resource regen-
eration rate, r, and (b) subsistence rate, s. Solid lines indicate the analytically
computed value of the critical extraction rate ↵c using equation (1). Above
this critical rate the system exhibits oscillation, while below it the system equi-
librates to a steady state with positive population. Dots indicate numerically
determined values of ↵c. Squares indicate numerically determined values of ↵
above which the system equilibrates to the maximum resource state, N . The
reference values r

0

and s
0

are equal to the corresponding values in Table 2.1.

but with maximum amount of natural resources. In practice, if ↵ > ↵c, the larger am-

plitude cycles would likely manifest as a collapse due to the low population values that

are reached at the lower bound of the periodic orbit.

Relation (2.4) allows us to determine the behaviour of the critical threshold ↵c when

varying other parameters. In particular, we notice that the relative extraction rate

↵c/↵?, at which the transition to the boom-bust regime occurs, has no dependence

on the maximum resource level K. The dependence of ↵c/↵? on the value of r, the

regeneration rate of natural resources, is shown in Fig. 2.3(a), while the dependence

on s, the subsistence requirement, is presented in Fig. 2.3(b). As we see, the higher

the regeneration rate r the higher the critical ratio ↵c/↵? at which the transition to

the unsustainable regime takes place. A similar trend is seen for the subsistence rate s.

Also, with increasing values of the regeneration rate r, the threshold ↵h/↵? is shifted

upwards, whereas for the case of subsistence requirement s it is roughly constant.

With an increasing regeneration rate r we would expect an upward shift in the points

of critical transition as the natural resources replenish faster. An increase in the subsis-

tence requirement means goods are consumed at a higher rate which tends to lower the

cumulated wealth, and hence the wealth per capita which leads to lower birth rates. We

would thus expect the system to reach a steady state over a wider range of extraction

rates, which is what Fig. 2.3(b) confirms.

In the case of Easter Island we have that ↵
0

/↵? = 3.6 which is larger than the critical

ratio ↵c/↵? = 2.8 so, the system is in a boom-bust regime that in real terms translates

into a collapse. Thus, the critical value ↵c of the extraction rate serves to separate
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the sustainable regime (that leads to a steady state) from unsustainable regimes (where

collapse can occur).

We can give model (2.1) and its behaviour a more concrete interpretation by identifying

the feedbacks at play. If the extraction rate is above the critical value than the feedback

loop dominance in the model changes between two competing mechanisms: resource

extraction and wealth consumption. Initially, the resource extraction is the dominant

feedback (an increasing population leads to a decrease in resources and an increase in

wealth, which implies an increase in wealth per capita and, thus, a further increase in

the population). Once the resources are depleted, the cumulated wealth reserves are

no longer produced but only consumed, which leads to a decrease in wealth per capita,

which implies a decrease in the population. A smaller population means a slower rate of

wealth consumption. As can be seen, resource extraction is part of reinforcing feedback

loop, while wealth consumption is in a negative feedback loop. The feedback loops

balance out when ↵ < ↵c, while if ↵ > ↵c the feedbacks alternate in strength.

2.4 Coupled societies

2.4.1 Di↵usive coupling

Having established and understood a model that reproduces the historical development

of Easter Island, we now proceed with an analysis of two coupled socio-environmental

systems. This is a first step at trying to quantify and understand the dynamics of

networks of multiple, interacting societies, which is a situation that characterises the

modern, industrial world but was also typical of many ancient societies. We aim at

obtaining general insights on what new features the coupling of two socio-environmental

systems gives rise to.

Human settlements and their surrounding environment, e.g. islands, form a natural

partition of the overall socio-environmental landscape. Flows between di↵erent regions,

such as migration or trade, provide additional sources (or sinks) for the respective stocks

within regions. Accounting for these flows adds an important degree of realism to any

model that tries to quantify inter-societal interactions.

There are many di↵erent types of possible interactions, and hence flows, that can occur

between two systems. We start by considering possibly the simplest of such interactions,

namely we model flows between systems through the mechanism of di↵usion. If we

assume people, resources and goods move or are moved randomly and unguided between

di↵erent regions then a coarse description of such flows is given by a di↵usion term in the

equations. A further motivation for our choice is that di↵usion is one of the most common

types of coupling employed in the study of coupled dynamical systems (Pikovsky et al.,

2001). Also, di↵usion terms are widely used in spatial ecology to represent population
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dispersal from one region to another (Briggs and Hoopes, 2004). We do not model the

geographical structure behind the flow of people, resource or goods. Here we are only

considering how the average flows between two regions (or land masses, islands) impact

the stocks levels within the di↵erent systems.

More specifically, we consider two instances of the system (2.1) which we couple by

adding di↵usion terms to all variables. The equations for the first socio-environmental

system (referred to as S1) are given by:

ẋ
1

= (b� de�z1/(⇢x1))x
1

+ �x(x2 � x
1

)

ẏ
1

= ry(1� y
1

/K)� ↵
1

x
1

y
1

+ �y(y2 � y
1

)

ż
1

= ↵
1

xy � sx
1

(1� e�z1/(⇢x1))� cz
1

+ �z(z2 � z
1

)

(2.6)

where the first terms are from model (2.1) and the additional terms represent the di↵u-

sive coupling, with �x,�y,�z acting as coupling constants. The equations for x
2

, y
2

, z
2

of the second system (called S2) are analogous to (2.6). For concreteness and mathe-

matical convenience, the two societies share all the same parameter values except for

the extraction rate and initial conditions. S1 has the same initial conditions (x
0

, y
0

, z
0

)

as Easter Island, while S2 has half those values, namely (x
0

/2, y
0

/2, z
0

/2). Hence, we

can think of the second society as a sister island to Easter Island, which shares most of

its features but starts o↵ with fewer people and resources.

The di↵usion in the population x can be interpreted as migration. If x
1

> x
2

there will

be a net influx of people from S1 into S2. A similar mechanism holds for the other

di↵usion terms. The di↵usion of wealth z along with migration can be seen as people

moving with their share of goods. A value of 0.1 for a di↵usive coupling constant is

quoted with respect to one year, just like the rest of the parameters in model (2.1). So,

if �x = 0.1 then 10% of population di↵erence can move between the societies (or islands)

in the span of one year, e.g., if one island has 10,000 people and the other 5000, this

means roughly 500 people moving per year between the two landmasses. We consider

natural resources to be less mobile and when they do di↵use, only 1% of their di↵erence

is allowed to move between the regions in a year.

As we saw in the case of one society, the factor determining the long-term behaviour

(steady state or collapse) is the critical value of the extraction rate ↵c. We are interested

in investigating if coupling societies can expand the volume of the parameter space that

leads to sustainable outcomes. Hence, we will focus on the equilibrium states of the

system rather than the transient dynamics.

To help us identify the bifurcation boundary we first quantify the decline in the popu-

lation by looking at the relative change in the population over the long term, i.e., the

relative distance between the maximum and the minimum of the oscillations with the

amplitude measured in the population variable.
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Thus, we define:

� = 1�
lim inft!1 x(t)

lim supt!1 x(t)
(2.7)

where lim inft!1 x(t) is the smallest value the population reaches in the long term and

lim supt!1 x(t) is the largest. If a system reaches a steady state (sustainable outcome)

then the relative change is 0%, with no decline in the population. On the other hand,

if there are large amplitude oscillations (collapse) the relative change in the population

is close to 100%. The use of the measure (2.7) allows us to represent the 3-dimensional

bifurcation diagram for the population of S1 on a 2-dimensional diagram, see Fig. 2.4.

Other relevant measures are the long-term average population µ of a system:

µ = lim
T!1

1

T

Z T

0

x(t)dt, (2.8)

and the average population relative to the uncoupled regime, which we write as ⌘:

⌘ =
µ
coupled

µ
uncoupled

. (2.9)

An index indicates what society we are referring to, e.g. �
1

for S1, while no index refers

to both societies.

We are interested in the long-term behaviour of the system for relative extraction rates

above and below the critical ratio ↵c/↵? = 2.8 for a single society. To explore the

parameter space we take the relative extraction rates of the two societies ↵
1

/↵? and

↵
2

/↵?, and vary them in the range 1 to 5. No population exists for an isolated society if

↵/↵? < 1, which sets a natural lower bound for the interval of exploration. The choice

of the upper bound forms an almost symmetrical interval around the critical ratio.

Figs. 2.4(a)-2.4(d) shows the relative change in the population of S1 when di↵usion

occurs in progressively more dimensions of the system. Similarly, Figs. 2.4(e)-2.4(h)

shows the long-term average population of S1. The corresponding figures for S2 are

given by reflecting the graphs in the two top rows of Fig. 2.4 with respect to the second

diagonal.
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Figure 2.4: Graphs for two societies coupled via simple di↵usion. Horizontal and
vertical (white) lines at the critical ratios divide panels into quadrants, labelled
from I to IV. Top: The relative population change in population for system 1
(S1) when: (a) uncoupled from system 2 (S2), with (�x,�y,�z) = (0, 0, 0),
or coupled via: (b) migration, with (�x,�y,�z) = (0.1, 0, 0), (c) migration
and resource di↵usion, with (�x,�y,�z) = (0.1, 0.01, 0) and (d) migration with
wealth and resource di↵usion, with (�x,�y,�z) = (0.1, 0.01, 0.1). The gray dot-
ted curves indicate the bifurcation boundary determined using the first-order
approximation of the interior equilibrium point for the coupled system, see Ap-
pendix C. Middle (e)-(h): The average population for S1 in the same regimes as
above. Bottom (i)-(l): The ratio between the average population in S1, S2 and
overall system in the coupled and uncoupled regimes along the black dotted line
where ↵

2

/↵? = 1.8. The mesh size in the numerical simulations is �↵/↵? = 0.1.

Horizontal and vertical (white) lines divide the panels into 4 quadrants, such that both

relative extraction rates are above the critical ratio in quadrant II and below it in

quadrant III. Only one of the extraction rates is above the critical ratio in quadrants I

(S2) and IV (S1).

Figs. 2.4(i)-2.4(l) indicate the ratio between the average population size of S1, S2 and

the overall system to its value in the uncoupled regime along the dotted black line,

where ↵
2

/↵? = 1.8. Figs. 2.4(a), 2.4(e) and 2.4(i) show the relative population change,

the average population and the relative population (along the black dotted line) in the

uncoupled case and can be taken as a reference to compare the results in the coupled

regime. We can see that Fig. 2.4(a) reflects the critical transition seen in Fig. 2.2(a)

that separates the steady state and oscillatory regimes.
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The gray dotted line in Figs. 2.4(a)-2.4(d) represents the bifurcation boundary computed

using an approximation of the stable equilibrium point of the system, see Appendix C.

The determination of the boundary become more accurate due to better mixing of the

system when more couplings are present, as can be seen in Fig. 2.4(d) that includes

di↵usion in all the variables.

A steady state is a sustainable outcome, hence we refer to the region of parameter space

where the relative population change is 0% as the sustainability region. By contrast,

the region with a 100% change in the population is the collapse region. In all cases of

Figs. 2.4(a)-2.4(d) quadrant III lies in the sustainability region and quadrant II in the

collapse region. So, when both societies have a low extraction rate the overall system

reaches a steady state, whereas if both societies intensively extract resources we have a

case of mutual collapse. Figs. 2.4(b)-2.4(d) are symmetric along the second diagonal, so

we only need to discuss quadrant IV. In contrast to Fig. 2.4(a) all coupled regimes show

the sustainability region extending to quadrant IV, where ↵
1

/↵? is above the critical

threshold. In Figs. 2.4(a) and 2.4(d) the sustainability area is similar, occurring below

the main diagonal but in Fig. 2.4(c) it extends to most of quadrant IV.

When ↵
1

= ↵
2

, which occurs along the second diagonal in Fig. 2.4(b)-2.4(d), the

societies share the exact same parameters and they follow identical trajectories in the

long run. Thus, they synchronise completely. The populations of the two societies

continue to synchronise throughout most of the parameter space that we consider, which

is consistent with the symmetrical stable equilibria seen in predator-prey patch models

with di↵usion (Briggs and Hoopes, 2004). For the sustainability region, synchronisation

is illustrated by the population levels in Figs. 2.5(c) and 2.5(d), 2.5(e) and 2.5(f), 2.5(g)

and 2.5(h) that match closely. For the collapse region, synchronisation implies that the

collapse occurs in both societies simultaneously.

The region with the highest average population in Figs. 2.4(e)-2.4(h) is shown in white

and, in all cases, it occurs within the sustainability region. The average population then

gradually decrease in the direction of the collapse region. In case of migration in Fig.

2.4(f), the region with the highest average population does not change significantly from

the uncoupled case of Fig. 2.4(e). By adding couplings in more dimensions the area

increases noticeably, as seen in Figs. 2.4(g), 2.4(h).

Figs. 2.4(j)-2.4(l) show that, on the black dotted line where ↵
2

/↵? = 1.8, the long-term

average population of each society in the coupled regime is equal to its population in

the uncoupled regime, provided ↵
1

/↵? is smaller than the critical ratio ↵c/↵? = 2.8.

For values above the critical ratio, the average population of S1 is higher in the coupled

regime than when isolated, while for S2 it is lower. Along the black dotted line, the

population of the overall system of coupled societies is greater or equal to the sum of

the populations of the isolated societies, with the only exception occurring in Fig. 2.4(j)

when ↵
1

/↵? ' 5 and di↵usion takes places only in the population variable.
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Repeated numerical simulations show that the results in Figs. (2.4)(a)-2.4(k) are robust

over changes in initial values and coupling constants. If the coupling constant for product

di↵usion is greater than that for population di↵usion, namely �z > �x, the results are

similar to those in Figs. 2.4(d), 2.4(h).

We next look at a specific scenario: we take ↵
1

/↵? = 3.6 which corresponds to the

case of Easter Island and ↵
2

/↵? = 1.8. The results are shown in Fig. 2.5(a)-2.5(h) for

the di↵erent couplings. We see that in the uncoupled case in Figs. 2.5(a), 2.5(b) S1

collapses and S2 reaches a steady state.

In the coupled regimes both systems stabilise so, Easter Island could potentially have

been saved provided an almost identical sister island was present where the population

extracted resources at a smaller rate. The most rapid approach to equilibrium occurs

in Figs. 2.5(e), 2.5(f) where migration and resource di↵usion take place but no wealth

is transported between the two societies. In the case of population di↵usion in Figs.

2.5(c), 2.5(d) and full di↵usion in Figs. 2.5(g), 2.5(h) there is a long-term, oscillatory

transient until equilibrium is reached.

The increased sustainability regions and the new areas of higher population that occur in

the coupled regime compared to the uncoupled one, allows us to conclude that di↵usive

coupling makes societies more robust against collapse. By this we mean a larger area

of the parameter space can be explored without the risk of collapse or significant loss

of population. We can broadly interpret these results as follows: the di↵usion of people

alleviates the demographic pressure from the more populous society, while the di↵usion

of goods lowers the wealth per capita and hence the birth rate in the society with higher

overall wealth. This allows both societies to reach a steady state as long as one of the

societies has a low enough extraction rate of natural resources.
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Figure 2.5: Graphs for two societies coupled via simple di↵usion. Trajectories
for system 1 (left) with ↵

1

/↵? = 3.6 and system 2 (right) with ↵
2

/↵? = 1.8 in
the regimes: uncoupled (a) and (b), only migration (c) and (d), migration and
di↵usion of resources (e) and (f), and coupling in all variables (g) and (h).
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2.4.2 Wealth-driven coupling

In the previous section we explored what happens when two societies are coupled in a

simple, di↵usive manner. We can explore alternative ways to couple societies and this

is the goal here. What if people decided to move from poor to rich societies, i.e., from

low to high wealth per capita?

We can write a dynamical system that captures this possibility as follows:
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(2.10)

where . . . represent the source terms from system (2.1) for S1 and ✓(x) = 1/(1 +

e�2n(x�h)) is a smooth step function, with n = 2 and h = 1. Analogous equations hold

for S2.

The function ✓ is a smoothed out step function shifted to the right by one unit, as seen

in Fig. 2.6. If z
1

/x
1

 z
2

/x
2

then there will be no movement of people from S2 to S1.

The greater z
1

/x
1

is relative to z
2

/x
2

the greater the influx to S1, which is shown in the

monotone increase of the function ✓. So, if the wealth per capita in S1 is greater than

in S2, then there will be an influx of people from S2 into S1 which corresponds to the

intuition that people will move to the society with higher wealth per capita.

Fig. 2.7 shows the same analysis as performed previously in Fig. 2.4 but now for the

case of the system (2.10).
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Figure 2.7: Graphs for two societies coupled via wealth-driven di↵usion. Hor-
izontal and vertical (white) lines at the critical ratios divide panels into quad-
rants, labelled from I to IV. Top: The relative population change in population
for system 1 (S1) when: (a) uncoupled from system 2 (S2), with (�x,�y,�z) =
(0, 0, 0), or coupled via: (b) migration, with (�x,�y,�z) = (0.1, 0, 0), (c) migra-
tion and resource di↵usion, with (�x,�y,�z) = (0.1, 0.01, 0) and (d) migration
with wealth and resource di↵usion, with (�x,�y,�z) = (0.1, 0.01, 0.1). Middle
(e)-(h): The average population for S1 in the same regimes as above. Bottom
(i)-(l): The ratio between the average population of S1, S2 and the overall sys-
tem in the coupled and uncoupled regimes along the black dotted line where
↵
2

/↵? = 1.8. The mesh size in the numerical simulations is �↵/↵? = 0.1.

For convenience, Figs. 2.7(a) and 2.7(e) again show the relative population change and

average population of S1 in uncoupled regime, which is to be taken as a reference case.

We see that in all cases of Figs. 2.7(b)-2.7(d) quadrants I to III are predominantly in

the sustainability region, whereas quadrant II is mostly in the collapse region. Again, if

↵
1

= ↵
2

the two societies synchronise completely but, in contrast to the case of di↵usive

coupling, synchronisation no longer extends beyond the second diagonal, as is shown by

the asymmetry in the average population levels in Figs. 2.7(f)-2.7(h).

The average long-term population of S1 is increased in the new sustainability regions

of the population di↵usion case, as Fig. 2.7(f) shows. Compared to the other graphs,

we notice some new features present in Figs. 2.7(g) and 2.7(h) regarding the long-

term average population of S1. The novelty of these scenarios consists in the very low

(almost zero) population in S1 above the second diagonal, and the clustering of almost

the entire population of both societies into S1 when 2 < ↵
1

/↵? < 3 and ↵
2

/↵? is close
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to 1. Both cases Figs. 2.7(g), 2.7(h) have in common the coupling of population and

natural resources. The di↵usion of resources clearly plays a role in the emergence of

the new features as they are not present in the case of only population di↵usion. The

equivalent diagrams for S2 are obtained by reflecting the figures in the top two rows of

Fig. 2.7 along the second diagonal.

We can see that resource di↵usion is important because in the region of parameter space

with the highest population of Figs. 2.7(g), 2.7(h) essentially most of the population

moves into S1 and lowers the level of natural sources. In S2 on the other hand, the

population is low while the resource level is high and this ensures a high influx of

resources into S1, allowing it to maintain a higher population.

Figs. 2.7(i)-2.7(l) show the ratio of the average population in S1, S2 and the overall

system to its population in the uncoupled regime for the subset of the parameter space

that lies along the black dotted line in Figs. 2.7(e)-2.7(h). For di↵usion occurring only

between populations, the average population of S1 is equal to that of the uncoupled

case if its relative extraction rate is below the critical ratio ↵c/↵? = 2.8, after which the

population increases, as Fig. 2.7(j) shows. For S2, the population is fairly similar to the

uncoupled regime.

In Figs. 2.7(k), 2.7(l) at low extraction rates the population of S1 is 0, but then steadily

increases at higher extraction rates. In S2 the situation is reversed, with the population

high at low extraction rates (for S1) and then decreasing to 0 at higher rates. This

contrast is to be expected from the asymmetry in Figs. 2.7(g), 2.7(h). The overall

average population of the system in the coupled regimes in Figs. 2.7(j)-2.7(l) matches

the average population in the uncoupled case.

We again look at the specific scenario when S1 has the extraction rate corresponding

to Easter Island, namely ↵
1

/↵? = 3.6 and S2 has half that value, ↵
2

/↵? = 1.8. The

results are presented in Fig. 2.8 and we see that the coupling again stabilises both

systems. In the case of migration in Figs. 2.8(c), 2.8(d) both societies reach the same

population level in the steady state. In the other coupled regimes of Figs. 2.8(e)-2.8(h)

the population of S2 is 0, having moved completely into S1.
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Figure 2.8: Graphs for two societies coupled via wealth-driven di↵usion. Trajec-
tories for system 1 (left) with ↵

1

/↵? = 3.6 and system 2 (right) with ↵
2

/↵? = 1.8
in the regimes: uncoupled (a), (b), only migration (c), (d), migration and dif-
fusion of resources (e), (f) and coupling in all variables (g), (h).

In all coupled cases we see an increased sustainability region in Fig. 2.7, noticeably

larger than the corresponding simple di↵usion cases of Fig. 2.4. Why is this the case?

Whenever one of the societies has a higher wealth per capita than the other, people

will migrate to it. The influx of people increases demographic pressure in the richer
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society but lowers its wealth per capita. The lower wealth per capita leads to a decreased

population growth rate that helps stabilise the system. This di↵erent operating principle

makes wealth-driven di↵usion more e↵ective at generating sustainable outcomes than

simple di↵usion, while maintaining similar overall levels of the population. Similarly, we

can conclude that the coupling via wealth-driven di↵usion makes the overall system of

societies more robust against collapse.

2.5 Conclusion

In this paper we proposed and analysed a model to describe the simultaneous dynamics

of the population, resources and manufactured goods of a society. We can match most

of the parameters in the model with a well-known model of Easter Island by Brander

and Taylor (1998) and by using similar values we obtain a faithful reproduction of the

archaeological record provided by Flenley and Bahn (2003). The model captures crucial

feedbacks present in most ancient agrarian societies, making it more general than the

case of Easter Island.

We found the equilibrium points of the system along with the critical transitions (bifur-

cations) it undergoes when the rate of resource extraction is varied. At values below a

particular extraction rate ↵c the system reaches a steady state (sustainable outcome),

whereas for value above it the system displays oscillatory behaviour (unsustainable out-

come). Large amplitude oscillations can be identified with collapse, and this is the regime

that Easter Island is found to be in. It is important to mention that for ecological sys-

tems, fold bifurcations provide a general mechanism by which ecosystem transitions can

be understood and modelled (Sche↵er et al., 2001). Given the prevalence of persistent

oscillations in data and models of societal dynamics (Anderies, 1998; Turchin, 2009;

Turchin and Nefedov, 2009), we can hypothesise that Hopf bifurcations, as the one il-

lustrated by the model we propose, could serve a similar role when modelling critical

transitions, such as collapse.

We then investigated the case of two societies coupled through simple di↵usion or wealth-

driven di↵usion. We set up experiments with two societies parametrised to match Easter

Island, except for the extraction rates which we systematically varied. In contrast to the

results of Anderies and Hegmon (2011), we generally found that population migration,

along with resource and wealth di↵usion, makes a significant change to the equilibrium

states the subsystems reach compared to uncoupled, non-interacting societies.

In particular, coupling leads to new or extended regions of parameter space where sus-

tainable outcomes occur. This means that societies that would have undergone large

amplitude fluctuations and collapsed if they were isolated, can now reach a stable steady
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state, provided they are coupled with other societies with less resource intensive prac-

tices. The di↵erences in resource extraction rates between the two societies helps sta-

bilise the overall system, which echoes findings that heterogeneity in two patch predator-

prey models is stabilising (Murdoch and Oaten, 1975; Murdoch et al., 1992; Briggs and

Hoopes, 2004). Furthermore, the regions of parameter space where a given society

achieved the highest average population increased. The more couplings are added (in

population, resource etc.) the stronger the e↵ect.

The present world is in a similar situation where, because of competing power centres of

comparable strength, any collapse that could occur is more likely to be simultaneous and

global (Tainter, 1988). These results indicate that a coupled network of societies could

prove more robust against collapse provided that at least some societies maintain lower

extraction rates of natural resources to dampen the oscillations in the rest of the system.

Precisely quantifying the regime in which overall system sustainability is achieved is of

obvious importance and is the future focus of our research e↵orts.
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Chapter 3

The dynamics of

human-environment interactions

in the collapse of the Classic

Maya

Abstract

In this study we investigate the societal development of the Maya in the Southern Low-

lands over a span of approximately 1400 years and explore whether societal dynamics

linked to the depletion of natural resources can explain the rise and fall of the Classic

Maya. We propose a dynamical systems model that accounts for the state of the land,

population and workers employed in swidden and intensive agriculture and monument

building. Optimisation of model output to fit empirical data fixes biometric parameters

to values consistent with the literature and requires that a shift from swidden to more

intensive agriculture took place at around 550 CE. The latter prediction is consistent

with the dating of the beginning of the Late Classical period. Thus, our model o↵ers

an explanation of the collapse of the society of the Maya and suggests that the role of

droughts may have been overestimated. Consistent with previous work, the collapse can

be modelled by a critical transition (supercritical Hopf bifurcation), where the critical

parameter is the harvesting rate per capita of intensive agriculture. Furthermore, an

extensive sensitivity analysis indicates that the model and its predictions are robust.
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3.1 Introduction

The collapse of the Classic Maya has been the subject of considerable focus in the

published literature, with many di↵erent hypotheses having been proposed regarding the

underlying causes and drivers for the collapse (Tainter, 1988; Aimers, 2007; Turner and

Sablo↵, 2012). It is important to check to which degree these narratives are consistent

with the historical record, which requires mathematical or computational modelling

(Turchin, 2003b). Beyond this, Occam’s razor needs to be applied, which means checking

if simple hypotheses are enough to explain collapse. If the simple hypotheses are enough,

this then helps to put more complex explanations into perspective.

The aim of this study is to explore whether a nonlinear dynamical system focused on

socio-environmental feedbacks can account for the observed data about the Maya civili-

sation. In the present study, we identify and quantify some key feedback mechanisms of

the socio-environmental system of the Lowland Classic Maya by building a model that

captures the di↵erent specialisations of the majority of the population, and links them

to the resource abundance in the environment and the number of monuments built over

time.

We show that, if less intensive (e.g., swidden) agriculture would have remained the

dominant method of food production, then the rapid increases in population levels that

occurred around 700 CE and the concomitant extent of monument construction would

not have taken place. We numerically determine that a match of the model’s outputs to

the archaeological record requires assumptions about a change in farming practices from

less to more intensive agriculture around the year 550 CE. This change eventually leads

to a severe depletion of agricultural resources and largely accounts for a steep drop in

population numbers around the year 900 CE.

Hence, we find that, from 550 CE onward, an increased spread of intensive agricultural

practices can account for the observed archaeological record of the Maya society as

reconstructed in the demographic data of Folan et al. (2000) and monument building

rates reported in Erickson (1973). In similar fashion to the work of Anderies (2003), by

carrying out extensive sensitivity testing, we ensure the robustness of our findings. In

addition to this, by changing assumptions about precipitation levels, we can also analyse

the impact of droughts and find that the dynamical model can reproduce historical data

with and without assuming reductions in precipitation.

To the best of our knowledge, the present work provides the first robust mathematical

model of the Maya society that accurately reproduces the historical trends regarding

population growth, as presented by Folan et al. (2000), and the building rate of mon-

uments, as found in the work by Erickson (1973), and also available in Tainter (1988,

p. 165). The collapse can be understood as driven by a critical transition in the system

(a supercritical Hopf bifurcation), where the critical parameter is the harvesting rate
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per capita of intensive agriculture. Importantly, this is consistent with previous findings

regarding Easter Island (Roman et al., 2017) and generalises its conclusion that collapse

can be modelled as a certain type of critical transition. The collapse is thus understood

as an endogenous process in the socio-environmental system and questions the impor-

tance of contingent events, such as catastrophic droughts. Our modelling thus suggests

that a socio-cultural process might have led to the widespread, permanent adoption of

intensive agriculture, which has been a key driver of the rapid growth and expansion of

the Maya civilisation starting in the Late Classic Period, as well as the cause of their

later decline.

It is important to note that, given the vast array of potential aspects that can be

studied regarding the Classic Maya, we do not aim for a model that gives an accurate

representation of each potential factor. Furthermore, the definition of societal collapse

and how it applies to the Maya has been a issue of ongoing debate (Aimers, 2007).

Rather, we address an Occam’s razor-type question, and investigate if a small set of

interlocking factors could potentially account for the available data about the Maya

society, in particular the significant decline in population and monument construction

that occurred after 800 CE.

The paper is organised as follows. In section 3.2 we highlight some of the main theo-

ries regarding the collapse of the Classic Maya and provide a review of the quantitative

(mathematical or computational) modelling regarding it. Following on, in section 3.3

we present a parsimonious model of the Maya society and their human-environment

interaction. The results of the model, which are analysed in section 3.4, demonstrate an

excellent match to empirical data for the evolution of the crude growth rates, population

levels and building rates. Finally, we provide a summary of results in section 3.5. The

results are complemented by two appendices: Appendix D includes a simplified math-

ematical treatment of the critical transitions undergone by the model we propose, and

in Appendix E we present a detailed sensitivity analysis.

3.2 Literature review

Hypotheses for the the collapse of the Maya can generally be separated into two cate-

gories: (i) socio-political, such as class conflict (Hamblin and Pitcher, 1980; Chase and

Chase, 2005), inter-site warfare (Webster, 2000; Inomata, 2008), changes in trade routes

(Demarest et al., 2014) or pathological ideological systems (Dornan, 2004; O’Mansky

and Dunning, 2004); and (ii) environmentally related, which includes soil erosion (Beach

and Dunning, 2006; Anselmetti et al., 2007), volcanic activity (Gill and Keating, 2002;

Tankersley et al., 2011), deforestation (Oglesby et al., 2010; McNeil et al., 2010), diseases

(Acuna-Soto et al., 2005) and climate change induced drought (Hodell et al., 2001; Haug

et al., 2003; Hodell et al., 2005; Gill et al., 2007; Webster et al., 2007; Medina-Elizalde
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et al., 2010; Medina-Elizalde and Rohling, 2012; Kennett et al., 2012; Douglas et al.,

2015).

Concomitant with present day concerns with climate change, the drought hypothesis

for the Maya collapse has received significant attention in recent years. A strong case

has been made for climate change and drought as the main contributing factors towards

the collapse of the Lowland Classic Maya; however, single-factor explanations of the

collapse can misrepresent the underlying complexities of the Maya socio-environmental

system, which shows a wide range of diverse features over space and time (Aimers, 2007;

Dunning et al., 2012; Turner and Sablo↵, 2012).

Some researchers have been more skeptical with regard to the significance of drought

episodes in the context of the Maya collapse; Robichaux (2002); Aimers and Hodell

(2011); Dunning et al. (2012) argue for the need of a more integrated understanding of the

socio-cultural processes along with environmental constraints. This view is supported

by Robichaux (2002) who highlights that the initial signs of collapse are also present in

water-advantaged areas.

Rosenmeier et al. (2002) distinguish two possibilities for explaining observed isotope

concentrations in Lake Salpetén, Guatemala: either greater aridity or decreased water

intake by the lake due to forest recovery (which implies previous deforestation). Aimers

and Hodell (2011) points out that some climate data has been highly localised, and this

prohibits us from generalising across length scales of several thousand miles. Also, even

though some experimental methods provide annual resolution in the data collection, this

does not guarantee annual accuracy.

Furthermore, the calibration between proxies and actual rainfall is not necessarily exact.

Luzzadder-Beach et al. (2012) show that site abandonment occurred even in wetlands

where e↵ects of drought are not as significant. Carleton et al. (2014) reassess the con-

clusions of Hodell et al. (2001) and Hodell et al. (2005) and determine that they are

methodological artefacts, which casts doubt on the drought cycle hypothesis. While

drought and water scarcity certainly played a role in the dynamics of the Maya society,

socio-cultural processes are at least equally important and should be quantified (Aimers

and Hodell, 2011).

3.2.1 Numerical models of the dynamics of the Maya society

Quantitative modelling of the dynamics of the Maya society has had a sparse history

and began with an early model proposed by Hosler et al. (1977), developed within

the framework of system dynamics (Forrester, 1961). The model attempts to capture

in mathematical form the best of historical knowledge and understanding at the time

about the Maya (Coyle, 2000). The model manages this using 40 variables but, despite

it’s complexity, the model’s realism is debatable as it predicts an average life span of
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13 years for the Maya, many of whom were building monuments despite the lack of

available food. As noted by Sharer (1977), the timescales and dynamics in the model

output are not consistent with the actual data.

Hamblin and Pitcher (1980) incorporate di↵erent hypotheses into one-equation models

regarding monument building at Maya sites and find that the class conflict hypothesis of

collapse fits the data best. Compared to Hosler et al. (1977), the models of Hamblin and

Pitcher (1980) are much simpler and “the attempt to cast explanations of collapse into

mathematical form points the way for the next generation of collapse models” (Lowe,

1982, p. 643). Despite a good fit to data, the models lack a good fit between their

conceptual and mathematical elements because the same mathematical relationship can

be used to support completely di↵erent views of the collapse (Lowe, 1982). Furthermore,

the models lack any feedback between their variables and are therefore too simple to

capture enough systemic features of Maya society to provide an accurate description of

it or at least allow for a univocal interpretation.

Several system dynamics models, similar in spirit to Hosler et al. (1977), have recently

been developed. The focus of these models is the demographical evolution of the Maya

(Forest, 2007; Bueno, 2011; Forest, 2013). While all these models attempt to capture

societal feedbacks and features of the Maya society, their validity is questionable. The

models of Forest (2007) and Forest (2013) conclude that either involvement in warfare

or climatic variations are su�cient to account for the collapse. However, the model of

Forest (2007) shows that population is close to maximum before 600 CE and that the

population levels undergo a boom-bust cycle of 800 years, while the results of Forest

(2013) show a collapse before 800 CE and population cycle of 600 years. Both outcomes

are inconsistent with reconstructed time series of the archaeological record (Folan et al.,

2000, p. 12). In contrast, the model of Bueno (2011) shows qualitative agreement with

the archaeological data on the overall trend of population levels. However, the model

proposed by Bueno (2011) is highly sensitive to parameter changes. A critical parameter

is the fraction of population engaged in warfare. Above a certain threshold, not enough

people would be available to harvest and produce food, leading to a collapse. Such high

sensitivity of behaviour based on a single parameter is unrealistic, as it suggests that

the society could have averted collapse by slightly reducing its army.

More recently, Kuil et al. (2016) developed a dynamical socio-hydrological model to

examine the impact of water scarcity on the Maya in the Classic Period (400-830 CE).

A main result of the simulations is that a modest reduction in precipitation could have led

to an 80% reduction in the population. Nevertheless, they point out that the population

density and sensitivity of crops to variations in precipitation may have had an equally

important role. The model has findings consistent with the archaeological record of

population growth and decline. However, Kuil et al. (2016) recognises that the model

outcomes show sensitivity to its parameters and inputs to an extent to which reliable

predictions are di�cult to make.
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In addition to ODE-based models assuming large well-mixed populations, spatially re-

solved agent-based models (ABMs) are an alternative approach, which might be more

suitable to account for the diversity in Maya society (Lucero, 1999). Heckbert (2013)

makes an ambitious attempt at integrating and quantifying many features of the environ-

ment and Maya society. Settlements are represented as agents that develop in a spatial

landscape, which itself evolves in response to climate and anthropogenic e↵ects. The

richness of the model allows many elements of physical and social reality to be explored,

but there is little empirical evidence to validate all the features of the model (Heckbert,

2013). The calibration, verification and validation of ABMs are troublesome, and in-

sights into the real system are not straightforward (Crooks et al., 2008). Ideally, the

complexity of a model should rise in proportion to gains in explanatory power. It is not

clear if ABMs o↵er the best balance in this regard when considering the Maya society,

and given the sparsity and uncertainty of empirical data, we prefer a more parsimonious

modelling framework.

None of the studies mentioned above perform an explicit comparison to historical data;

hence, our discussion is based on our own independent comparison between the model

output presented in the articles and the data from Folan et al. (2000). The model

we propose is specified as a dynamical system. As we have seen, early models of this

type (Hosler et al., 1977) did not match known demographic developments from the

archaeological record. More recent models (Bueno, 2011; Kuil et al., 2016) agree to

a good extent with data on overall population trends over time. However, they all

show a sensitivity to changes in parameters that precludes robust prediction making.

Furthermore, they do not address the issue of monument construction, which could

prove important in constraining model dynamics. In contrast to previous approaches,

we explicitly compare our model output with the archaeological record for population

growth (Folan et al., 2000) and monument construction (Erickson, 1973) and find a very

good fit to data. Furthermore, we show that the collapse can be understood to be driven

by a supercritical Hopf bifurcation and we provide a comprehensive sensitivity analysis

which shows that the modelling outcomes are robust under changes in parameters.

3.3 Quantifying Maya society and environment

We provide a concise model of Maya society and their human-environment interaction.

We capture portions of the population engaged in mainly agricultural and monument

building activities, undertaken within a representative site of 1000 km2(' 32⇥ 32 km2)

of agriculturally productive land.

The model consists of the set of ordinary di↵erential equations (3.1). Table 3.1 lists

all the parameters of the model and their values. We divide the population into three

occupations: workers in swidden agriculture xs, intensive agriculture xi and monument
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building xb. The environment is modelled simply as one stock, namely the food produc-

tion capacity of the land, labelled y, and the number of monuments built in the region

is z. At least 70% of the Maya population was involved in agriculture (Diamond, 2005).

Given the scope of the model, this is the part of the population of highest interest be-

cause the agricultural activity and related practices likely had the largest impact on the

environment (Turner, 1974; Webster, 2002).

Beyond agriculture,Becker (1973) identifies six specialisations of the Classic Maya at

Tikal, four of which are directly related to stone work (or likely so) and the other two

are woodworking and pottery. Hence, by considering agricultural and monument related

practices we cover most of the activities the Maya were involved in.

We do not try to capture the administrative, military or artisan aspects of the society.

Compared with the segments of the population we do include, these occupations made

up a much smaller part of the demography. Assuming that the environmental impact of

the people in these professions derived mainly from food requirements, the model can

easily be extended to account for these parts of the population, though their roles would

otherwise remain inert within the model’s scope. The above considerations can be taken

as forming the model’s boundary, and while they do limit the internal dynamics of the

model, the choice of boundary is informed by the data we have and the time series we

aim to explain/reproduce.

Concretely, the dynamical model we propose is given by

ẋs = [(1� ⌧) + ⌧ps]�nx� �n��xs + �[(1� ✓(n))xb � ✓(n)xs]

ẋi = ⌧pi�nx� �n��xi

ẋb = ��n��xb � �[(1� ✓(n))xb � ✓(n)xs]

ẏ = wtry(1� y/(wtK))� sdnx

ż = bxb �mz

(3.1)

where x, n, and ✓(n) are given by:

x = xs + xi + xb

n = wt
xs + ↵xi

xs + xi + xb
(1� e�y/(wtcK))

✓(n) =
1

1 + e�2k(n�nb)

(3.2)

Above, x represents the total size of the population, n is the food available per capita

and ✓(n) is a smooth approximation of the step function (k = 1.5, nb = 2), where nb

parameterises the required minimum food availability for people to change their activity

towards monument building and k controls the steepness of the step function ✓(n).
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Type Symbol Meaning Values

Population
parameters

� Natality scale factor 0.0014
� Death rate exponent 0.08

ps
Prevalence (popularity) of

swidden agriculture
1 or 0.27

pi
Prevalence (popularity) of

intensive agriculture
0 or 0.73

tT Year of transition 550
⌧ Transition switch 0 or 1

Resource
parameters

r Land recovery rate (1/yr) 0.045
K Maximum available land (ha) 100,000
c Threshold fraction of land 0.2
wt Relative precipitation at time t 1± 0.5
d Land depletion rate 0.007

↵
Relative productivity of
intensive agriculture

20

s Swidden productivity (ha/pers/yr) 0.5
tP Year when precipitation changes 800

Monument
parameters

b Builder productivity (monum/pers/yr) 0.00006
m Monument decay rate (1/yr) 0.00015
� Di↵usion coe�cient (1/yr) 0.1
k Step function stepness 1.5

nb
Minimum food availability for

monument building
2

Table 3.1: Parameters for the Maya model (3.1). The values of � and K set
the scales in the model and are chosen to simplify presentation and analysis;
r,↵, s are set to match values from the literature (Turner, 1976), and similarly
for wt, tP (Haug et al., 2003; Medina-Elizalde et al., 2010; Medina-Elizalde and
Rohling, 2012). Other parameters are subject to constraints: literature on soil
management suggests a lower bound for 1/rd of 7 (USDA Survey, 1962, pp.
20-21), the parameter c signals scarcity of food, so we expect it to be below
40%, the di↵usion coe�cient � has at most a value of 1 and monument building
would not occur if food per capita would not be su�ciently high, so we estimate
n
0

� 2. The values of d, c,� and nb were chosen to satisfy the constraints but
also numerically optimised. The parameters �, b, k are determined solely by
numerical optimisation, see Appendix E. The parameters pi, tT are optimised
but also consistent with values in the literature, see section 3.4.

The model can be interpreted as follows: People are born into certain agricultural spe-

cialisations, determined by fractions given by ps and pi. They then harvest resources at

a rate specific to their specialisation, i.e. proportional to s for swidden or ↵s for intensive

agriculture. The harvested amount provides food which, if in surplus, positively a↵ects

the population growth rate. If the harvest is insu�cient to meet basic requirements

per capita, then the population will start to decrease. Left alone, the land’s productive

capacity regenerates within a characteristic time of 1/r ' 22 years, but a given patch

can only be harvested up to 7 consecutive years using intensive practices before crop

failure.
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Thus, there exists a negative feedback loop between population and environment, re-

flecting a Malthusian mechanism. A higher availability of resources leads to higher

population, which leads to a more rapid depletion of the resource base that later im-

pacts the growth rate of the population. As we will see, due to land overuse, an increase

in the number of workers in intensive agriculture leads to a loss of production capacity

in the long term, and subsequently to a demographic decline.

If the food available per capita is high, then a part of the swidden workers move into

monument construction. Monuments are built in proportion to the number of builders

available, but they also decay slowly in time. If the harvest has poor yield, builders go

back to practicing agriculture to compensate. Thus, a higher agricultural yield leads

to a higher population and to a higher rate of monument building. The building of

monuments does not have a direct e↵ect on the population within the scope of our

model.

We next outline the features of the model more precisely. The first three equations of

model (3.1) dictate the population dynamics. The � parameter sets the scale for the first

two terms, which represent the natality (birth and death) rates. The first term in each

of these equations represents the crude birth rate, which we assume is proportional to:

the total population x, the available food per capita n and the parameters ps, pi, which

represent the proportion of each new generation that go into the respective occupations.

Birth rates are often assumed in the literature to be proportional to the present popula-

tion (Turchin, 2003a) and also to be monotonically increasing functions of the food per

capita (Anderies, 1998; Motesharrei et al., 2014). The parameters ps and pi (which add

up to 1) can be interpreted as the prevalence (or popularity) of swidden and intensive

agricultural activities in the society.

In addition to these more conventional aspects, the birth rates feature the binary ⌧

parameter, which is either set to 0 (before the onset of intensive agriculture) or to 1

(after the onset) and thus models a rapid change in the ps, pi parameters; see section

3.4 for more details.

The next term in the equations for the population dynamics is the death rate, which is

also assumed to be proportional to population size. A natural candidate for the death

rate’s dependence on food availability is n��; this is because if there was no food, the

population would quickly decline to zero, which means the death rate would grow very

large (or even diverge) as n ! 0. For example, a death rate proportional to n�1 has

been previously used in the World2 model by Forrester (1971).

The last term in the population equations is a di↵usion term that models movement of

people between two di↵erent specialisations: swidden agriculture and monument build-

ing. We assume that monument building will only take place if surplus production exists

to support it. Specifically, if the food availability is high (n > nb = 2) then enough sur-

plus production exists to support non-agriculturally related activities and a shift of work
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from purely subsistence based agriculture to monument building is modelled via the dif-

fusion terms in Eq. (3.1). Once n > nb, then ✓(n) ' 1 and people move (di↵use) from

practicing swidden agriculture to building monuments. If n < nb, then ✓(n) ' 0 then

the opposite e↵ect occurs. The � parameter, which represents the di↵usion coe�cient,

has an upper bound of 1 as we cannot have a population flow of over 100% within a

year. We use a value of � of 0.1 as determined by numerical optimisation (see section

3.4), implying that 10% of the population in a given specialisation changes to a di↵erent

occupation within a year conditioned on the availability of food (as discussed above).

The movement between specialisations typically takes place much more rapidly (or on

a shorter timescale) then the demographic growth of each specialisation. This has led

us to make two simplifying assumptions in the model. First, the equation for xb does

not feature a birth rate term, and second, there is no movement (via di↵usion) to inten-

sive agriculture. Regarding the first simplification, it is possible to set the prevalence

parameter of monument building activity to zero and not significantly a↵ect the model

dynamics. The birth rate term for the xb variable (number of builders) would be domi-

nated by the di↵usion dynamics. Because of this, we chose to eliminate one parameter

(the prevalence of monument building) and set it to zero. The second simplification is

justified because the movement to intensive agriculture requires a large initial investment

to be undertaken (allocation of land, building of terraces etc.). Therefore, it is unlikely

that intensive practices can be picked up quickly. Due to sunk-costs e↵ects (Janssen

et al., 2003), once such a large investment is made, it is unlikely that the activity will be

immediately abandoned for alternatives. Hence, we decided not to implement a di↵usion

mechanism towards or away from intensive agriculture.

The fourth equation of (3.1) models the resource dynamics. The first term follows the

usual logistic dynamics and describes how resources recover over time while the second

term captures the harvesting activity of the population. The production capacity y

is a renewable resource that regenerates with a characteristic timescale of 1/r = 22

years, which is consistent with the typical time between harvests in swidden agriculture

(Turner, 1976). Left unexploited, resources will return to their maximum values within

a matter of decades. This is likely what also happened in reality after the collapse, with

the Maya environment today in good condition (Turner and Sablo↵, 2012).

The Maya employed a wide range of agricultural techniques (Turner, 1974) and we do

not attempt to capture the full complexity of their endeavours. The work of Turner

(1976) suggests that agricultural practices are polarised into two categories, with short

(up to two years) and long (1-2 decades) cycles. Thus, for simplicity, we distinguish

two categories: swidden agriculture with a full harvesting cycle of 20 years and intensive

practices with a cycle of 1 year. Intensive practice is not equated to short-fallow swidden

agriculture, but represents an aggregated activity of the diverse types of methods that

were used. The average amount of land per year that a person requires to fulfil their

caloric needs is 0.5 hectares (Turner, 1976). Hence, we can measure the food production
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capacity of the land y in hectares and set its initial value to K = 100, 000 hectares,

which is the size of the region we are modelling.

In the presence of a human population, the production capacity y decreases in proportion

to the number of agricultural workers and their productivity. We take the productivity

per capita of swidden agriculture to be s = 0.5 ha/yr/pers., which is the minimum value

it can have to meet subsistence needs. For intensive agriculture, the harvest takes place

annually, which is reflected in the model by assigning a productivity that is ↵ = 20

times higher than that for swidden practice. The depletion parameter d is chosen such

that the average number of consecutive times a piece of land can be re-harvested until

it is completely depleted by intensive practices is 1/(↵d) ' 7 times. Soils of high

productivity and less prone to erosion than the ones found in the Yucatan peninsula

can be re-harvested for a maximum of 7 consecutive years, while still giving good yields

(USDA Survey, 1962, pp. 20-21). Our choice of d thus reflects an optimistic lower bound

on depletion rates of the Maya environment. Wilk (1997, p. 84) highlights the fact that

even with good soil quality, such as enjoyed by the Mopan community of San Antonio,

serious problems start to emerge once fallow cycles are shortened to five years or less.

Depletion in our case refers only to the amount of food that can be produced (e.g., crops

that can be harvested) and does not strictly refer to the state of the soil. Soil depletion

varies widely throughout the Lowlands (Beach and Dunning, 2006) and its variation is

too complex of an issue to capture in such a simple model.

When production capacity y is high, the resource extracted per worker is roughly con-

stant (but depends on the type of agricultural activity). This assumption has been

previously used in models of Easter Island (Basener and Ross, 2004; Basener et al.,

2008) and warfare dynamics (Turchin, 2009). Nevertheless, once the production capac-

ity of the land decreases below the threshold of c = 20% of the maximum K, productive

land becomes increasingly sparse, which leads to a decrease in food production per

capita. This dynamic is implemented through the exponential term in the definition

of the food availability per capita n, see equations (3.2). When y ! 0, the extraction

term of natural resources becomes, to first order, a predator-prey term as found in the

Lotka-Volterra model (i.e., type I functional response). Because the c parameter signals

scarcity of food, we expect it to be below 40% and through numerical optimisation the

value c = 20% was determined.

A particular feature of the resource dynamics is the e↵ect of precipitation. The absolute

levels of rainfall are not relevant to the model; what is important is only how the

relative variation of the amount of water impacts the di↵erent parameters in the model.

There are three aspects directly related to rainfall: (i) the rate of resource regeneration

r, (ii) the maximum amount of productive land K and (iii) the extraction term of

natural/agricultural resources. Reductions in the amount of available water will reduce

the rate of regeneration of the environment, only allowing for recovery to a smaller

carrying capacity and also impede e↵orts to exploit it. The proposed model accounts
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for all three e↵ects. For simplicity, we assumed the e↵ects to be linearly proportional to

wt, which is the relative amount of precipitation at time t. Thus, normal precipitation

conditions correspond to wt = 1. Deviations from this assumption are explored in

Appendix E, Fig. E.1(e). Di↵erent areas of the Lowlands were subject to di↵erent

exogenous factors, which, besides precipitation, also include volcanic ash (Tankersley

et al., 2011). The e↵ect of an exogenous contribution to environmental recovery, such as

volcanic ash, can be incorporated in the model a similar way to precipitation. We can

thus interpret the precipitation scaling factor wt as an aggregate of external e↵ects on

resource recovery and use.

For clarity, the variable y is interpreted as the agricultural production capacity of the

land, but the logistic equation for the growth of y only represents the dynamics of a

renewable resource, which could equally represent forest resources. Also, the terms of the

model dictating resource exploitation are not univocal in regard to their interpretation.

Strictly, we can only say that we distinguish between low intensity and high intensity

resource extraction. For concreteness, we associated the low intensity activity with

swidden agriculture and the high intensity activity with intensive agriculture. The factor

of ↵ = 20 between the intensities of the extraction activities is taken to match the relative

di↵erence between annual harvesting and swidden practice, but this might be seen as

only one instance of a wider variety of low and high impact environmental activity. Thus,

the variable y can more generally be interpreted as an aggregate of renewable resources,

which can include output of agriculture, forestry and fishing. Then, the extraction

activity can be seen as the exploitation of a set of resources, which has a positive e↵ect

on birth rates. As food security studies on modern agricultural Amazonian societies

(Ivanova, 2010; Piperata et al., 2011) explain, the primary source of energy (caloric

intake) is from agricultural products. Dietary diversity increases the nutritional content

of an individual’s intake, but does not contribute greatly to the overall caloric quantity.

Because of this, and the important role energy has in societal development, we emphasise

this agricultural interpretation of the stocks and parameters.

The last equation of (3.1) describes the dynamics underlying monument building. Monu-

ments are constructed at a rate proportional to the number of builders. The productivity

b of a builder is chosen such that 1000 people working for ⇠ 17 years would build on

average one medium-sized monument. The monuments decay at a rate m = 0.00015,

which implies a half-life of approximately 5000 years. The half-life is estimated based

on observed weathering rates of 0.2 millimeters per century for Maya buildings of the

Uxmal site in Yucatan (Roussel and André, 2013) and the assumption that a cumulated

weathering of ⇠ 1 centimeter would compromise the structural integrity of a monument.

In addition to our proposed equation for monument building, we have also considered

another option that implements a minimum threshold of workers required to start con-

struction, with increasing returns to scale. But, the output of the model does not change

significantly, see Appendix D.
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The model omits several features of the Maya society amenable to dynamical system

modelling, e.g., war (Webster, 2000; Martin and Grube, 1995), water management

(Lucero et al., 2011), and finer details of agricultural intensification (Johnston, 2003).

The time period we model covers over 1000 years, so we strive to capture feedback mech-

anisms persisting over the longest timescales. Our assumptions prove su�cient for the

model to reproduce historical patterns and so, the simplified treatment can be justified

in the interest of parsimony.

The above specifications outline the model’s main assumptions and dynamics. While

they likely leave out some aspects of the real world’s complexity, it is important to start

from the simplest formulation that remains faithful to reality, namely one that captures

the elements at play in long-term feedback and that also proves su�cient at explaining

the data.

3.4 Methodology and results

We search for a calibration of the model proposed in section 3.3 that can give a good

match to empirical data. More specifically, we determine the parameters that minimise

the deviation of the model output with respect to the empirical time series for the

population levels, birth rates (Folan et al., 2000), and monument building rates (Erick-

son, 1973). Depending on the model structure, deviations will not necessarily be small,

hence, even with a optimal choice of parameter values the actual fit to the historical

time series might be very poor. Also, even if the fit to the time series is excellent, there

is no certainty that the numerically optimised parameters are realistic or match archaeo-

logically determined values. Thus, we can validate the model by comparing the optimal

parameter values with archaeological estimates as well as performing sensitivity testing.

Thus, if the model predictions fit the empirical data well, with results largely insensitive

to changes in parameters, and if parameter choices are consistent with archaeological

estimates, then we can conclude that that proposed model is partially validated and is

a viable theory for the historical processes it aims to capture.

More specifically, we aim to reproduce the historical evolution of: (i) the crude growth

rates and population levels reconstructed by Folan et al. (2000) from Santley (1990),

and (ii) the data on monument building rates from Erickson (1973). We refer to the

time series in the data as reference modes. The scope of the model is dictated by the

reference modes we wish to reproduce. Thus, the temporal limits are set between 0-1400

CE with regard to population dynamics, while for the monument building activity we

focus on the time span between 400-900 CE (when most monuments are dated).

We can see in the time series of Folan et al. (2000) that the demographic evolution at

many sites followed a similar pattern. Thus, instead of focusing on one specific region,

we aimed at developing an abstract model that captures demographic commonalities of
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several regions. The dynamical system model (3.1) we propose is intended to capture

this prototypical dynamics that occurred in di↵erent regions. The reference mode for the

population in Fig. 3.2(b) was generated using the reference mode for the overall crude

growth rate observed in the south-central Maya lowlands in Fig. 3.2(a) (Folan et al.,

2000, p. 13) and matches well to population development seen at Tikal and Calakmul

(Folan et al., 2000, p. 12).

When analysing the data for the crude growth rate, see Fig. 3.2(a) (solid line), we can

distinguish two regimes: an early regime where the birth rate was decreasing, indicating

convergence towards an equilibrium (a sustainable outcome); and a later boom-bust

regime, when the birth rate increased dramatically and subsequently crashed. We take

the initial conditions such that the total population is 10,000, and the Maya had 90%

of the population working in swidden agriculture and 10% in intensive agriculture. We

assume that initially, because food requirements were met and intensive agriculture

meant more e↵ort, no new people would go into intensive practices, which means pi = 0

and the extent of those activities was gradually declining. This leads to an initial decrease

in the available food per capita and hence also of the birth rates, which corresponds to

the first regime in the reference mode of Figs. 3.2 (a), (b). If this pattern had continued

we would see only a modest rise in the population levels of the Classic Maya, see Fig.

3.2(b) (dotted line). Hence, we assume that the transition between the two regimes

corresponds to a change in the occupations and agricultural practices of the society.

Thus, from a certain time (tT ) a fraction (pi) of each new generation starts practicing

intensive agriculture.

We can numerically determine the optimal values of tT and pi that minimises the devi-

ation of the model output from the historical data. We measure the deviation of model

output from historical data as follows. Let x = xs + xi + xb be the total population,

and let xref be the total population of the reference mode of Fig. 3.2(b). We define the

following distance function to determine how far apart the total population from the

model output is from the reference mode for the population (where T = 1340 years):

D(x, xref ) =

R T
0

|x(t)� xref (t)|dtR T
0

xref (t)dt
(3.3)

The distance (3.3) is the L
1

metric divided by the area under the reference mode. The

numerator of (3.3) measures the sum of all the areas where the curves of the model

output and the reference mode di↵er. So, if D(x, xref ) = 0, we would see a perfect

fit between model predictions and historical data. A distance function similar to (3.3)

can be defined between the building rate of monuments and the reference mode in Fig.

3.3(a).
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(a)

(b)

Figure 3.1: Level sets corresponding to the deviation of: (a) simulated total
population (3.1) and the reference data from Fig. 3.2(b), (b) monument building
predicted by model (3.1) and the reference data of Fig. 3.3(a). For pi0 cf. Table
3.1.

If we vary pi by a factor of two above and below the entry in Table 3.1 and similarly vary

tT in the range of 350� 750 CE, and then plot the distances from the reference modes

for the population levels and monument building rates, we obtain the contour plots

visualised in Figs. 3.1(a), (b). We see that the parameter values in Table 3.1, namely

tT = 550 and pi = 73%, achieve a global minimum for the distance of the model output
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from both the population levels at ' 10% and monument building rates at ' 15%. All

other neighbouring values show an increased deviation from either the population or

monument data.

Hence, historical data cannot be reproduced, unless a change in agricultural preferences

around the year tT = 550 CE is assumed (which we model by changing the parameter ⌧

from 0 to 1).

Thus, to explain the sudden rise in birth rates, assumptions about a dramatic change

of the prevalence (or popularity) of intensive agricultural practices are required. This is

reflected in the model by a shift of the initial prevalences (ps, pi) = (1, 0) to (0.27, 0.73)

from the year 550 CE onwards; by attracting a larger share of new workers, intensive

agriculture gradually became more widely used to the detriment of swidden practice.

This leads to an increase in food production, which allows for an increase in the popu-

lation.

With the optimal values for tT and pi, the model reproduces the population levels and

(relative) crude growth rates very well, as seen in Figs. 3.2(a), (b). The maximum

population density reached is around 100/km2, which is consistent with the estimates

of (Turner, 1974). In addition to good agreement with the population reference modes,

the model is also in good agreement with the data on monument building rates from

Erickson (1973), especially in the time range of 600-850 CE, shown in Fig. 3.3(b).

Moreover, the final density of monuments obtained in the model is consistent with the

observed density in areas such as Tikal, see Fig. 3.3(b).

Furthermore, the values we obtain for pi and tT are consistent with the literature on the

Maya. We know that at least 70% of the Maya were involved in agricultural production

(Diamond, 2005), which is consistent with our estimate of pi of 73%. The agreement

between our result pi = 73% and Diamond (2005)’s estimate can be attributed to the

fact that intensive agricultural techniques are more likely to have a lasting environmental

impact (Turner, 1974), and hence any estimate of the farming population is more likely to

be more representative of the fraction involved in intensive practices. The year tT = 550

corresponds to the start of the Late Classic period according to Lucero (1999, p. 212)

and Estrada-Belli (2010, p. 3).

The change in the prevalence of activities (ps, pi) during the transition leads to changes

in the population stocks, as Fig. 3.4(a) shows. A much larger fraction of the population

becomes involved in intensive agriculture, reaching 63%, while the fraction practising

swidden falls to 37%, see Fig. 3.4(b). The final fractions shown in Fig. 3.4(b) approach

the prevalence parameters ps, pi.
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(a)

(b)

Figure 3.2: Model predictions for (a) relative crude growth rates and (b) total
population when precipitation is: normal (dashed line), enhanced by 50% (tri-
angles) and reduced by 50% (inverted triangles). The standard output in (a) is
fitted to the historical reference (continuous line) for crude growth rates from
Fig. 1.3 of (Folan et al., 2000, p. 13), reconstructed from (Santley, 1990, p.
343). The population reference (continuous line) in (b) is generated from the
crude growth rates in (a). Population levels are similar to those seen at Tikal
and Calakmul from Fig. 1.2 of (Folan et al., 2000, p. 12), reconstructed from
(Santley, 1990, p. 342). For comparison we also show the (simulated) case un-
der the assumption of no shift in agricultural activity and normal precipitation
(dotted line).
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(a)

(b)

Figure 3.3: Model predictions for (a) monument building rates and (b) mon-
ument density in the case of normal precipitation with agricultural transition
(dashed line) and without (dotted line). From 900 CE onward no significant
building activity was undertaken and monuments only decay exponentially with
constant rate (dash-dot line). The standard output in (a) is fitted to building
rate data (continuous line) from (Erickson, 1973, p. 151). A 2-katun period is
equal to 39 years. The simulated monument density over time in (b) is compared
to the presently observed density in areas such as Tikal, which has approximately
200 monuments (Webster, 2002) over an area of 570km2, corresponding roughly
to 35 monuments per 100km2 (continuous line).

68



(a)

(b)

Figure 3.4: Simulated (best fit) model output for (a) the population level and
(b) the fraction of the total population for each specialisation: swidden agricul-
ture (dash-dot line), intensive agriculture (dashed line), and monument building
(continuous line).

In the long term, the fraction of the population in intensive agriculture does equilibrate

to the value of the popularity pi, as the following calculation shows:

d

dt

✓
xi

xs + xi + xb

◆
= 0 ! xi

xs + xi + xb
=

ẋi
ẋs + ẋi + ẋb

! xi
xs + xi + xb

= pi (3.4)
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The approximate values we obtain in Fig. 3.4(b) are due to the transient nature of the

dynamics. Hence, it is reasonable to compare pi with the fraction of the population

involved in intensive practices.

In Appendix D, we vary the prevalence parameter pi and relativity productivity of

intensive agriculture ↵ to see how the behaviour of the model changes. When ↵ ' 1, all

the stocks in the model equilibrate to stationary values, which is in line with what we

would expect for a society with low, sustainable harvesting rates of swidden agriculture

(Nigh and Diemont, 2013). If ↵ exceeds a certain threshold, the system (3.1) undergoes a

critical transition that leads to large oscillations in the population levels. Phrased more

generally, when the harvesting rate increases beyond a certain point a (Hopf) bifurcation

takes place that leads to large amplitude oscillations in the system. A similar conclusion

has been reached for another model of a society that has collapsed, namely Easter Island

(Roman et al., 2017). The findings here lend support to a more general thesis that

societal collapse can be modelled as a certain type of critical transition (supercritical

Hopf bifurcation).

A detailed mathematical treatment of the critical transition for a simplified version

(without specialisations or monument building) of model (3.1) is also presented in Ap-

pendix D and exhibits very similar behaviour to the complete model when varying the

↵ parameter.

In Appendix E, we use the distance function (3.3) for the population and a similarly

defined function for the monument building rates to perform a thorough sensitivity

analysis for the key parameters in the model, namely all the parameters except � and K

(which set the scales in the model). What we find is that with respect to the deviation

from the reference modes for the population levels and monument building rates, the

model (with the parameters in Table 3.1) lies at a minimum in the subspace of population

and resource related parameters (�, r, c, d,↵, wt) and close to a minimum in the subspace

of monument related parameters (�, b, k, nb). The sensitivity analysis also indicates that

similar output is obtained for a range of parameters around the standard values in Table

3.1. For changes in the parameters �, r, c, d,↵ and water availability wt, the deviation

from the minimum is gradual and quasi-parabolic, while for �, b, k, nb, the shallowness

of the optima also indicates robustness of the findings to parameter changes.

Furthermore, the optimal values of several important parameters in the model show

good agreement of the values with the literature, as is the case with pi, tT ,↵, d. The

fact that the model reproduces empirical time series well with optimal parameter values

that are consistent with the real measurements indicates that the model structure and

the choice of parameter values is viable. Therefore, model (3.1) is partially validated.

Given its critical role in the model, further comments are in order regarding the ↵

parameter. The value of the relatively productivity of intensive agriculture is ↵ = 20,

which was chosen because the harvesting period of intensive agriculture is on average 20
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times less than that of swidden agriculture. For example, swidden agriculture employed

di↵erent methods with cycles between 5-20 years, whereas intensive techniques ranged

between 0.5 to 1 year (Turner, 1976, p. 80). But, as Fig. D.1(a) in appendix D shows,

any value for ↵ in the range 2� 20 can prove consistent with the archaeological record

provided the initial population and land are re-scaled appropriately. Such re-scaling is

necessary given the di↵erent land requirements and expected population densities for

the di↵erent agricultural methods (Turner, 1976, p. 80). Fig. E.1(f) does not take such

re-scaling into consideration and so, shows an increasing deviation from the reference

modes for values of the relative productivity di↵erent from ↵ = 20.

Model (3.1) also allows us to study the impact of changes in precipitation. A reduction

(�50%) (Medina-Elizalde et al., 2010) or increase (+50%) in the available amount of

water starting from the year tP = 800 (Haug et al., 2003; Medina-Elizalde and Rohling,

2012) does not impact the population levels to a large extent. As detailed in section 3.3,

we have assumed that precipitation directly a↵ects the parameters r and K and the food

available per capita n. If a smaller set of possible e↵ects that precipitation can have is

considered, then the model output is largely unchanged compared to Figs. 3.2(a), (b).

Strictly speaking, a time lag should be included for the impact of precipitation, but we

observe that lags (even up to a few years) have little e↵ect on the system trajectory, and

we have left them out for simplicity’s sake.

It is important to note that in the sensitivity analysis in Appendix E, Fig. E.1(e), we

vary the amount of precipitation wt throughout the entire time span of the model such

that we take the year that precipitation changes to be tP = 0. If we consider any other

starting time tP for the precipitation change, the deviation in the model output from

the reference mode would be comparable or smaller than that shown in Fig. E.1(e).

Hence, irrespective of when the precipitation level changes (e.g., drought occurs), we

expect to see either similar results to those discussed above or a larger deviation from

the reference mode.

In formulating the model we have not addressed the issue property rights. Wilk (1997,

p. 87-88 ) states that when population density in low, common access is favoured

while, when the density is high, private property emerges as the dominant institution.

Thus, the population pressure determines the assignment of property rights. Our model

then suggests that prior to 550 CE common access was likely used and after, once

the population grew, that private land become widespread. As such, property rights

emerge from the output of our model and do not have to be explicitly considered in

its formulation, which is in contrast to previous literature on the topic that considers

it a foundational issue (Anderies, 2000; Reuveny and Decker, 2000; Dalton and Coats,

2000).

While we have assumed that, based on data of Folan et al. (2000), many Maya regions

had similar population trajectories, there was, nevertheless, variation in demographic,
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geographic and cultural elements occurring both spatially and temporally throughout

the many regions (Aimers, 2007; Iannone, 2013). This also leads to asynchronous de-

velopment and decline of the societies in the di↵erent areas (Wahl et al., 2007). For

example, the Late Preclassic Maya in the Mirador Basin built some of the largest Maya

structures (Dunning et al., 2012; Hansen et al., 2002). In addition to this, evidence of

multiple intensive agricultural systems has been found in several Maya regions (Dunning

and Beach, 2010). Hence, certain sites show deviations from our modelling assumptions,

and hence, also from the model output. Note that our main goal was to reproduce aggre-

gate patterns and that a more integrated multi-regional model would require verification

against substantially more fine-grained temporal data of regional interactions (such as

trade, warfare etc.).

3.5 Discussion and conclusion

In this study, we presented a low dimensional model with the aim of describing the

evolution of population sizes, farming activities and monument building of the Classic

Maya society. What insights do we gain? First, we show that a low dimensional model

can indeed robustly reproduce demographic and monument building data. To the best

of our knowledge, this is the first model of its type that has been validated by direct

comparison with historical data and it is worth emphasizing that reproduction of the

historical data is possible using a low dimensional model that only captures the most

basic feedbacks between population, resources, and monument building activities. More

generally, our modelling exercise suggests that, instead of building very detailed models

that incorporate complex explanations of collapse, a better methodological practice is

to attempt a simpler explanation or model as we have done here.

Second, the model indicates that a change in the practice of intensive agriculture in

the Maya society around the year 550 CE is an important contributing factor to the

collapse. It is important to note that our model formulation allows for a change in

agricultural practices. However, the precise location of this shift in time is a direct

result of optimization and shows that (within the scope of this class of low dimensional

models) reproducing demographic and monument building dynamics is only possible if

such a shift occurred at 550 CE. The year 550 CE is around the beginning of the Late

Classic (Lucero, 1999; Estrada-Belli, 2010), a period which saw unprecedented expansion

of the Maya, not only demographically, but also culturally. The model thus provides a

mechanism by which this Golden Age and its later collapse can be explained.

The shift to intensive agriculture does not mean that the Maya forfeited their knowledge

of environmental management, as most areas continued to adapt to their local conditions

by using di↵erent techniques (Dunning and Beach, 2003), but a change large enough to

forgo the established equilibrium is likely to have taken place. Why would this occur?
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Most individuals would not typically pursue intensive forms of agriculture (Russell,

1988), despite being more productive, due to its taxing and time consuming nature

(Boserup, 1965). Additional drivers are needed for the activity to become commonplace.

We can only speculate on the likely reasons: (i) governing policy (e.g., in case of war), (ii)

higher real or perceived degree of wealth in neighbouring regions, (iii) trading benefits

and (iv) ideological (religious, political etc.) determinants, of similar nature to those

described by Demarest (1992).

Third, the model brings into question the role drought played in the collapse. Drought

is often named as the cause or a major contributing factor of the Maya collapse with

recent estimates indicating up to a 40� 50% reduction in annual precipitation (Medina-

Elizalde et al., 2010; Medina-Elizalde and Rohling, 2012). Our results indicate that

a 50% reduction in rainfall does not significantly alter the outcome of the simulation

with respect to the population levels, see Fig. 3.2(b). What the model is showing is

that the land’s production capacity might have already been severely exhausted and a

reduction in crops might have been unavoidable even in the absence of drought. A fall

in crop production is consistent with evidence from skeletal remains that show signs of

progressive nutritional disease (Folan and Hyde, 1985; Sharer and Traxler, 2006), while

at the same time, there are no mass graves discovered that might indicate large scale

epidemics or warfare (Folan et al., 2000). Our research cannot be taken as proof, but

it does suggest that drought, though important, played a smaller role than previously

thought (Hodell et al., 2001; Haug et al., 2003; Gill et al., 2007; Webster et al., 2007;

Kennett et al., 2012; Douglas et al., 2015).

Lastly, from a mathematical perspective the shift to intensive agriculture can be seen

as a type of critical transition (a supercritical Hopf bifurcation). Specifically, when the

harvesting rate of natural resources exceeds a this threshold, the dynamics of the system

changes from a stationary state to a situation where large amplitude oscillations in the

population are experienced, resulting in a collapse once the amplitude of the oscillations

becomes too large and population numbers become too low. This echoes a similar finding

for Easter Island (Roman et al., 2017).

The model developed in this study reproduces the general demographic trend seen in

many regions of the Lowlands (Folan et al., 2000) by making minimum assumptions

regarding changes in agricultural practices. In addition, the model predicts monument

building rates that fit well with the time series of Erickson (1973). The model is ini-

tialised with the assumption that the society was in a sustainable regime but changes

to a much more resource intensive regime to explain the rapid demographic rise. The

nature of the transition that the society underwent is consistent with previous finding

regarding the dynamics of societal collapse (Roman et al., 2017) and, thus, points to

a more general mechanism by which collapse can be understood, namely, as a type of

critical transition (supercritical Hopf bifurcation).
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In addition, the methodology we employed could be adopted elsewhere and provide

similar insights for other historical cases. Our methodology in exploring the parameter

space led to a careful alignment of the model parameters with empirical data that has not

been achieved before and our sensitivity analysis is more comprehensive than previous

literature in this context. The behaviour of the model under changes in parameters

shows that it achieves a local minimum in parameter space while staying consistent with

estimates provided in the literature.

Prominent explanations of societal collapse throughout time often fall into the trap of

preferring one cause, where that cause reflects the current dominant social problem

or issue (Tainter, 2006), e.g., climate change or environmental degradation (Diamond,

2005). The case made for climatic variations leading to the collapse of the Classic Maya

is in line with modern climate change concerns and highlights a common bias throughout

time to single out current problems, project them into the past to function as cautionary

tales (Tainter, 2008). On the other hand, if common lessons can be generalised from

past cases of collapse, as we have done in this and previous work (Roman et al., 2017),

this can provide a valuable insight into our present condition (Tainter, 1988).

We have not tried to single out any one cause for the collapse of the Classic Maya but

aimed at identifying a set of interlocking mechanisms that could spur a positive feedback

in population growth and monument building. Also, we do not claim to have settled the

long-standing problem of the Classic Maya collapse but rather hope to re-balance the

discussion regarding the role of drought and socio-cultural factors.
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Chapter 4

Topology-dependent rationality

and quantal response equilibria in

structured populations

Abstract

Given that the assumption of perfect rationality is rarely met in the real world, we

explore a graded notion of rationality in socioecological systems of networked actors.

We parametrize an actors’ rationality via their place in a social network and quantify

system rationality via the average Jensen-Shannon divergence between the games Nash

and logit quantal response equilibria. Previous work has argued that scale-free topolo-

gies maximize a system’s overall rationality in this setup. Here we show that while,

for certain games, it is true that increasing degree heterogeneity of complex networks

enhances rationality, rationality-optimal configurations are not scale-free. For the Pris-

oner’s Dilemma and Stag Hunt games, we provide analytic arguments complemented by

numerical optimization experiments to demonstrate that core-periphery networks com-

posed of a few dominant hub nodes surrounded by a periphery of very low degree nodes

give strikingly smaller overall deviations from rationality than scale-free networks. Sim-

ilarly, for the Battle of the Sexes and the Matching Pennies games, we find that the

optimal network structure is also a core-periphery graph but with a smaller di↵erence in

the average degrees of the core and the periphery. These results provide insight on the

interplay between the topological structure of socioecological systems and their collec-

tive cognitive behavior, with potential applications to understanding wealth inequality

and the structural features of the network of global corporate control.
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4.1 Introduction

Game theory has been a popular tool for modelling decision making scenarios, with ap-

plications that vary from understanding economic market forces (Cardell et al., 1997),

to evolutionary biology (Nowak and Sigmund, 2004), to political science and consid-

erations of warfare (De Mesquita, 2006). The identification of equilibrium states is a

primary concern in the field, a key notion being that of Nash equilibria (Nash, 1950),

which represent fully rational outcomes in strategy selection. Nevertheless, actors in the

real world deviate from rational behaviour (Nell and Errouaki, 2013).

As a consequence, extended notions of equilibrium are needed to deal with the discrep-

ancies between real and perfectly rational behaviour, and to precisely quantify such

bounded rationality. One alternative equilibrium concept is the notion of quantal re-

sponse equilibrium (QRE), which is given by statistical reaction functions that satisfy

certain monotony properties with respect to the payo↵s of possible strategies (McK-

elvey and Palfrey, 1995, p. 10). One possible class of parametric class of functions,

which relate to the study of individual choice behaviour (Luce, 2005), define the logit

quantal response equilibrium (LQRE). In LQRE a rationality parameter is used to inter-

polate between Nash equilibria and a uniform distribution over all the possible strategies

(McKelvey and Palfrey, 1995). An early use of LQRE was to account for experimen-

tally observed behaviour in choosing strategies when playing the Matching Pennies game

(Ochs, 1995; McKelvey and Palfrey, 1995). Since then, the LQRE has found applications

in the traditional areas of game theory, including auction theory (Goeree et al., 2002),

participation games, e.g., voting (Enriqueta and Thomas, 2004; McKelvey and Patty,

2006), and theories of social learning (Rogers et al., 2009; Choi et al., 2012). Here, we

will make use of the LQRE in conjuncture with network theory.

Games on networks have had a rich history, with early research started by considering

propagation of strategic behaviour in spatial settings, e.g, on lattices by considering

the Prisoner’s Dilemma (Nowak and May, 1992) or, recently, the more general case

of potential games (Szabó and Borsos, 2016). In recent times, evolutionary games on

networks have been a topic of growing interest, see, e.g., (Szabó and Fath, 2007; Perc

et al., 2013) for reviews.

Topology can have a significant e↵ect on equilibria of the system, e.g., scale-free net-

works have been found to promote cooperation in the Prisoner’s Dilemma, provided

that pairwise imitation is used with the probability of imitation proportional to the

di↵erence in total payo↵s (Santos and Pacheco, 2005). Other research has investigated

the coevolution of internal states and topological features of networks where players are

able to modify the structure by rewiring links, leading to a highly cooperative station-

ary state (Zimmermann et al., 2004), or, if cooperation is to be maintained as a viable

strategy in the Prisoner’s Dilemma then the network tends to acquire an exponential

degree distribution (Szolnoki et al., 2008).
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Also investigating the topological evolution of networks, Kasthurirathna and Piraveenan

(2015) account for the fact that individuals are known to be influenced and biased by

their social connections and thus consider LQREs for games played between agents

connected via a social network. As more highly connected players are assumed to be

in a better position to gather information, the rationality of players is modelled as an

increasing function of node degree. The network structure is then optimised to minimise

the overall deviation from perfect rationality (i.e., the Nash equilibrium), and the general

result arrived at by Kasthurirathna and Piraveenan (2015) is that scale-free networks

realise an optimum. More precisely, Kasthurirathna and Piraveenan (2015) employ two

notions of rationality: the rationality of a node, which is given by a monotonic function

of the degree, and system rationality ⇢, which is equal to the average Nash-LQRE

divergence (discussed below) but with opposite sign. Due to our close methodological

alignment to Kasthurirathna and Piraveenan (2015), we use the same terminology.

Furthermore, the scale-free topology seems to emerge independently of the games con-

sidered by Kasthurirathna and Piraveenan (2015). Since then, the framework and results

of Kasthurirathna and Piraveenan (2015) have been used in problems relating to inter-

net routing (Kasthurirathna et al., 2016b) and optimising influence in social networks

(Kasthurirathna et al., 2016a). Here, we argue that the optimal topology to maximise

rational behaviour among all players depends on the games under consideration, and in

no case does it correspond to a scale-free network.

Below we show that for the Prisoner’s Dilemma and the Stag Hunt games the optimum

topology is a core-periphery network, where the core consists of a low number of high

degree hubs and the periphery is made up of many low degree nodes. For the Battle of

the Sexes and Matching Pennies games, the optimum topology is also of core-periphery

type, but there are di↵erences in the number of hubs, as well as in the average degree of

the nodes in the core and in the periphery. In all cases we provide analytic treatment and

perform computational experiments to support our claims. In Section 4.2 we outline our

methodology, which is closely aligned to that of Kasthurirathna and Piraveenan (2015).

In Section 4.3 we present results, with Subsection 4.3.1 containing the treatment of the

Prisoner’s Dilemma and Stag Hunt games and Subsection 4.3.2 dealing with the Battles

of the Sexes and Matching pennies. Section 4.4 concludes the paper.

4.2 Methodology

4.2.1 Logit Quantal Response Equilibrium

In this section we briefly revisit the framework of (Kasthurirathna and Piraveenan, 2015).

Parameter choices and the nature of the equilibria we analyse in the rest of the paper

are closely aligned with (Kasthurirathna and Piraveenan, 2015) to facilitate comparison.
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Game P2

P1
u1
11

, u2
11

u1
12

, u2
12

u1
21

, u2
21

u1
22

, u2
22

Table 4.1: Payo↵s in the general form of two-person game.

Given a network, every node i is assigned a rationality �i = f(di) which is a function

of the nodes’ degree di. The rationality function is an increasing function of the degree,

which implies that higher degree nodes have higher rationality. We consider the cases in

which the function f is: linear, where f(d) = rd and r = 0.2, convex, where f(d) = rd2

and r = 0.002 or concave, where f(d) = r
p
d and r = 0.5.

A two-person game is played on every edge of the network, where the nodes represent

the players and links denote the games. The payo↵s for any two person game can be

written as in Table 4.1. We will be considering games such as the Prisoner’s Dilemma

and we are interested in determining the Logit Quantal Response Equilibrium (LQRE)

of the games, rather than their Nash equilibrium. Each edge has two players, labeled

1 and 2, with rationality �
1

and �
2

, respectively. We consider mixed strategies, where

each player has two available pure strategies, labeled cooperation and defection. Player

1 cooperates with probability p1c and defects with probability 1 � p1c , and similarly for

player 2. Following McKelvey and Palfrey (1995) the LQRE is determined by solving

the system of equations

p1c =
e�1(p2cu

1
11+(1�p2c)u

1
12)

e�1(p2cu
1
11+(1�p2c)u

1
12) + e�1(p2cu

1
21+(1�p2c)u

1
22)

p2c =
e�2(p1cu

2
11+(1�p1c)u

2
21)

e�2(p1cu
2
11+(1�p1c)u

1
21) + e�2(p2cu

2
12+(1�p2c)u

2
22)

(4.1)

Alternatively, Eq.’s (4.1) can be written as:

p1c(1 + a
1

b
p2c
1

) = 1

p2c(1 + a
2

b
p1c
2

) = 1
(4.2)

where

a
1

= exp(�
1

(u1
22

� u1
12

))

b
1

= exp(�
1

(u1
12

+ u1
21

� u1
11

� u1
22

))

a
2

= exp(�
2

(u2
22

� u2
21

))

b
2

= exp(�
2

(u2
12

+ u2
21

� u2
11

� u2
22

))

(4.3)
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(a) (b)

Figure 4.1: Illustrative example of a core-periphery topology that minimises
the average divergence (while avoiding isolated nodes) in the case of the: (a)
Prisoner’s Dilemma and Stag hunt games, where the hubs form a complete
subgraph and each has a high degree and (b) Battle of the Sexes, where the
hubs for a regular subgraph. For the Matching Pennies the optimal topology is
similar to (b) but the periphery consists of isolated K

2

graphs.

Eq. (4.2) will be helpful when solving for di↵erent games. In case of the Prisoner’s

Dilemma, if �
1

,�
2

! 1, then p1c , p
2

c ! 0, which corresponds to the Nash equilibrium,

i.e., a rational outcome. For an edge k we write the probability distribution associated to

player 1 as P 1

k = (p1c , 1�p1c), and likewise for player 2. We writeQ1, Q2 for the probability

distribution of the Nash equilibrium for players 1 and 2, respectively. For the Prisoner’s

Dilemma Q1 = Q2 = (0, 1), i.e., the rational outcome in which no cooperation occurs.

We want to quantify the extent to which the players on the network play rationally.

For this, we measure the average Jensen-Shannon divergence from the Nash equilibrium

over the edges:

� ⇢ =
1

M

MX

k=1

Div(P 1

k ||Q1) +Div(P 2

k ||Q2), (4.4)

where

Div(P ||Q) =
1

2

 
X

i

P (i) ln
P (i)

R(i)
+
X

i

Q(i) ln
Q(i)

R(i)

!
(4.5)

is the Jensen-Shannon divergence and R = (P +Q)/2 is the average of the probability

distributions P and Q and M is the number of edges in the network. We refer to �⇢ as

the average Nash-LQRE divergence and to ⇢ as the system rationality.
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4.2.2 Optimisation algorithm

What is the network topology that maximises the system rationality as measured by ⇢ or,

equivalently, minimises �⇢? This is the question Kasthurirathna and Piraveenan (2015)

posed, and the authors also suggested that scale-free graphs realise the optimum. More

specifically, Kasthurirathna and Piraveenan (2015) showed that scale-free graphs have

lower �⇢ than random graphs with the same number of nodes and edges. Furthermore,

an optimisation procedure that rewired a random graph to minimise �⇢ gave rise to

a network with a degree distribution that fitted a power-law with a R2 correlation of

90%. There are at least two weaknesses in the argument: firstly, the optimisation run

by Kasthurirathna and Piraveenan (2015) does not indicate convergence to a minimum,

i.e., no plateau is visibly reached and secondly, checking through linear regression that

the degree distribution fits a power-law is a poor test to verify that a scale-free topology

is present, and it is more robust to perform linear regression on the rank distribution

(Li et al., 2005).

In the next section we propose an alternative topology that minimises �⇢, and give

computational and analytic support for this. To numerically obtain a network with

minimum �⇢ we consider the following numerical scheme. The scheme, which is similar

to other optimisation schemes previously employed in the context of path-length optimi-

sation (Brede, 2010a) or optimal synchronisation (Brede, 2010b) essentially implements

a random hillclimber. Start from a random graph and repeat the following operations:

1. Randomly select a node A, and one of its neighbors B.

2. The edge that links from A to B is rewired to connect A and a randomly selected

node C which is not a neighbour of A. If we wish to prevent the appearance

of isolated nodes, then we do not rewire away from nodes of degree one, i.e., we

require d(B) > 1 when selecting B.

3. We calculate the divergence on each edge, according to (4.5), in the new neighbor-

hood of C and sum them. We compare this sum to the analogous sum computed

for the old neighborhood of B.

4. If there is a decrease in the value of the sum, the rewiring is kept. Otherwise, the

original position of the edge is restored and the entire procedure is repeated.

5. If we allow isolated nodes to form during the optimisation, then we regularly

remove them and randomly rewire the links between the remaining nodes (akin to

simulated annealing). Afterwards, the optimisation proceeds as above.

The above algorithm implies that, after a re-wiring, the rationalities of a node and its

neighbours are updated simultaneously. Note that, once a node becomes isolated, it will
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PD P2 SH P2

P1
1, 1 0, �

P1
�,� 0, 1

�, 0 0, 0 1, 0 0, 0

Table 4.2: Payo↵s for the Prisoner’s Dilemma (PD) and Stag Hunt (SH) games.

never reconnect to the rest of network through the hill-climbing part of the optimisa-

tion. This is because a zero degree node will always increase the average divergence if

reconnected to the rest of graph through an edge.

In the following section we reproduce the results of (Kasthurirathna and Piraveenan,

2015) for random and scale-free networks, and also consider two additional topologies,

regular random graphs and what we refer to as core-periphery networks. The core-

periphery network we explore can be described as having a bipartite subgraph, but, in

addition, the high degree nodes, i.e., hubs, form a regular (or even complete) subgraph.

See Fig. 4.1 for a illustration of the types of core-periphery networks we find when

maximising system rationality.

4.3 Results

We analyse four games: the Prisoner’s Dilemma, the Stag Hunt, the Battle of the Sexes

and the Matching Pennies game. The network topologies we investigate are: core-

periphery, scale-free networks, regular and Erdős-Rényi random graphs. The scale-free

networks are generated using preferential attachment, according to the Barabási-Albert

model (Barabási and Albert, 1999). Tables 4.3 and 4.5 show the average divergence in

the case of the four games on networks that have N = 1000 nodes and M = 2000 edges.

The results for the random and scale-free graphs are averaged over 100 instances, and

likewise for the core-periphery topology in the case of the Prisoner’s Dilemma and Stag

Hunt games. The ‘game parameter’ is set to � = 1.33. The choice of games, network

parameters and � parameter are again consistent with (Kasthurirathna and Piraveenan,

2015). We deviate from (Kasthurirathna and Piraveenan, 2015) by considering a more

common form of the Matching Pennies that is employed in experimental setups (Ochs,

1995). In the case of the asymmetric games, namely the Battles of the Sexes and

Matching Pennies, the game on each edge is played twice with players interchanging

roles. This amounts to solving equations (4.1) once with rationalities (�
1

,�
2

) and once

with (�
2

,�
1

), and then taking the average of the two divergences.
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Game with

� = 1.33
Prisoner’s Dilemma Stag Hunt

Graph type
Core-periphery (K = 13)

Scale-free Random Regular
Core-periphery (K = 18)

Scale-free Random Regular
Computed Analytic Computed Analytic

Linear 0.2149(2) 0.2135 0.361(2) 0.3914(3) 0.3982 0.1532(6) 0.1485 0.337(7) 0.311(1) 0.3377

Convex 0.2112(2) 0.2108 0.407(4) 0.4290(1) 0.4300 0.1988(1) 0.1983 0.395(4) 0.4263(1) 0.4286

Concave 0.3082(1) 0.2890 0.377(1) 0.3876(2) 0.3907 0.2435(5) 0.3817 0.284(3) 0.2930(7) 0.3067

Table 4.3: The average Nash-LQRE divergence (�⇢) in the case of the Prisoner’s
Dilemma and Stag Hunt games for the di↵erent network topologies and ratio-
nality functions. The numerical results for the core-periphery, scale-free and
random networks are averaged over 100 instances. The core-periphery nodes
have K hubs.

4.3.1 Symmetric games

4.3.1.1 Prisoner’s Dilemma

Our results for the Prisoner’s Dilemma on random networks closely match with (Kasthuri-

rathna and Piraveenan, 2015), while the results for scale-free networks are consistent

but show a larger decrease than reported by Kasthurirathna and Piraveenan (2015)

compared to the random case, see Table 4.3. Next we consider rationality-optimised

networks. Figure 4.2(a) shows the evolution of the divergence during optimisation. The

numerical computations indicate that the topology of the random graph is evolving to-

wards a core-periphery graph with a complete subgraph of K = 13 hubs, cf. Fig. 4.1 for

a qualitative visualisation. To complement these simulations with analytic arguments

we approximate the solutions to equations (4.1).

The network obtained through the optimisation procedure has a divergence within 2%

of the analytic estimate, as Fig. 4.2(a) shows. The core-periphery networks that were

generated to compute the entries in Table 4.3 have a divergence that deviates less than

0.5% from the analytic estimate (in the case of linear rationality). Hence, the di↵erence

between the numerical result and the analytic estimate in Fig. 4.2(a) likely stems from

the optimisation getting stuck in a local optimum. Selective re-wirings of a few edges

could further reduce the divergence but the global network topology would still be of

core-periphery type with K = 13 hubs.

The payo↵s for the Prisoner’s Dilemma are shown in Table 4.2. In this case we have

that a
1

= 1, b
1

= e�1(��1), a
2

= 1, b
2

= e�2(��1) and equations (4.1) take the form:

p1c(1 + e�1(��1)p2c ) = 1

p2c(1 + e�2(��1)p1c ) = 1
(4.6)

We can obtain analytic results for regular graphs in which all players are characterised

by the same rationality. Let pr be the probability of cooperation on a regular graph.
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(a) (b)

Figure 4.2: (a) The evolution of �⇢, the average Jensen-Shannon divergence be-
tween Nash and LQR equilibria, for the Prisoner’s Dilemma (� = 1.33) with lin-
ear rationality, of an initially random network (N = 1000 nodes and M = 2000
edges) as a function of attempted edge rewirings, while not allowing isolated
nodes. The optimisation gets within 2% of the estimated minimum (dashed
line). (b) The divergence of a core-periphery graph with N = 1000,M = 2000
as a function of the number of hubs according to numerical calculations (dots)
and analytic estimates (dashed line) using equation (4.12) for core-periphery
graphs.

Then, in the case of the Prisoner’s Dilemma, pr satisfies the equation:

pr(1 + e�(��1)pr) = 1, (4.7)

where � is the rationality of a node. The divergence �⇢r for a regular graph with N

nodes and M edges is thus given by:

� ⇢r = pr ln 2 + (1� pr) ln
1� pr

1� pr/2
+ ln

1

1� pr/2
. (4.8)

The results of applying equation (4.8) for the di↵erent rationality functions match pre-

cisely with the entries for regular random graphs in Table 4.3. The degree distribution

for the random graph has an average and mode of hdi = 4, and we see that results for

the random and regular topologies are close (within 2%), i.e., the regular random graph

can be seen as a zero order approximation of the random graph.

Analytic results are also possible for the core-periphery graph, where the core consists of

hubs with high degree (high rationality) and the periphery contains nodes of low degree

(low rationality). Let ph be the probability of cooperation for a hub and pf the same

quantity but for a periphery (fringe) node. For the Prisoner’s Dilemma, the equations

ph and pf satisfy are

ph(1 + e�hpf (��1)) = 1

pf (1 + e�fph(��1)) = 1
(4.9)
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where �h and �f are the rationalities of the two types of nodes. If �f > 0 and �h � 1,

then ph ' 0 and this implies that pf = 0.5. So, we can approximate the probability of

cooperation of a periphery node with a hub to zero order by p
(0)

f = 1/2 , while hubs do

not cooperate, i.e., p(0)h = 0. The contribution of the edges between the high connectivity

nodes in a core-periphery graph leaves the divergence -⇢ largely unchanged, because the

hubs are highly rational (due to their large degree). The divergence of a connected core-

periphery graph with a finite number of hubs but infinite number of periphery nodes is

thus given by µ = 3/4 ln 4/3 = 0.216, independent of the choice of rationality function

is long as it is an increasing function of the degree.

For a more accurate picture we consider first order corrections and obtain

ph =
1

1 + e�h(��1)/2
' e��h(��1)/2 = p

(1)

h

pf =
1

1 + e�f (��1)p1c
' 1

2(1 + �f (� � 1)p1c/2)

' 1

2
�

�f (� � 1)p1c
4

= p
(0)

f + p
(1)

f

(4.10)

In a core-periphery network with K hubs each each hub has degree M/K +K � 1 and

the periphery nodes have average degree d that satisfies

K(K � 1)

2
+ d(N �K) = M. (4.11)

If the hubs are of high enough degree such that the first order corrections p
(1)

h , p
(1)

f are

small, then the divergence -⇢ of the core-periphery graph with N nodes and K hubs can

be approximated as follows:

�⇢cp '
✓
1� K(K � 1)

2M

◆0

@µ+
p
(1)

h ln 2 + p
(1)

f ln 3

2

1

A

� K(K � 1)

2M
⇢c,

(4.12)

where �⇢c is the average divergence over the edges between the hubs, which form a

complete subgraph. The average divergence of the core-periphery network with K = 13

hubs for linear rationality is �⇢cp = 0.2135. This result is close but slightly lower than

the numerically computed entries in Table 4.3. As one would expect, the approximation

is better for the convex rationality function (because it extends the region in which the

approximation (4.10) holds), whereas the analytic estimate is poor for the concave case

(due to the opposite e↵ect).

Making use of Eq. (4.12) Fig. 4.2(b) shows the dependence of the Nash-LQRE di-

vergence as a function of the number of hubs in the core-periphery network. We can

understand the dependence by noting the two competing factors in equation (4.12).
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With increasing numbers of hubs, the number of edges in the core increases which tends

to lower the average divergence. On the other hand in a finite graph, an increasing num-

ber of hubs leads to a decrease of the average degree of a hub, which makes hubs less

rational, and so the divergence tends to increase. For a graph with N = 1000 nodes and

M = 2000 edges the minimum of (4.12) is obtained in the neighbourhood of 12 hubs,

in good agreement with the numerical optimisation in Fig. 4.2(a) that tends toward a

graph with 13 hubs.

As Table 4.3 shows, the results for the average divergence of the core-periphery graph

are notably smaller than results obtained for all other topologies. Furthermore, it is

easy to see that the core-periphery networks lie at local minima (in the space of possible

graphs) with respect to the value of the Nash-LQRE divergence. This can be seen by

exploring the e↵ects of possible rewirings. Moving an edge that connects two nodes in

the core (a cc edge) to connect another two nodes in core does not change the average

divergence. Also, moving an edge that connects a core node to a periphery node (a cp

edge) to connect another core-periphery pair has no e↵ect. A rewiring that does a↵ect

the divergence involves moving an edge that lies between:

(a) two hubs, so that it connects a hub and a periphery node, i.e., moving from a cc

edge to a cp edge

(b) two hubs, so that it connects two periphery nodes, i.e., moving from a cc edge to a

pp edge

(c) a hub and a periphery node, so that it connects two periphery nodes, i.e., moving

from a cp edge to a pp edge

Due to the high rationality of hub nodes, an edge between two hubs has a near zero

contribution to the divergence. The low degree nodes are associated with low rationality,

hence they will a have quantal response equilibria that di↵er significantly from the Nash

equilibrium. Hence, moving an edge that lies between two hubs so that it now connects

to one or two periphery nodes will lead to an increase the in the average divergence.

Moving an edge that connects a hub and a periphery node to connect two periphery

nodes, will also lead to an increase in the divergence, which we can quantify. After

rewiring an edge that connected a hub to the periphery to now connect two periphery

nodes, the divergence is:

�⇢w '
✓
1� K(K � 1)/2� 1

M

◆0

@µ+
p
(1)

h ln 2 + p
(1)

f ln 3

2

1

A

� K(K � 1)

2M
⇢c +

1

M
pd+1

ln 2

+
1

M

✓
(1� pd+1

) ln
1� pd+1

1� pd+1

/2
+ ln

1

1� pd+1

/2

◆

(4.13)
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where pd+1

is the probability of cooperation for a node in a regular graph of average

degree d + 1. If pd+1

' 0.5, then the last three terms are approximately 2µ/M , which

is larger than the term it is replacing that is approximately µ/M . Thus, �⇢w � �⇢cp.

In summary, any rewiring either does not change the average divergence, or increases it.

So, the core-periphery topology achieves a local minimum for the average divergence in

the space of possible graph topologies.

4.3.1.2 Stag Hunt

The results for the Stag Hunt game are largely analogous to the Prisoner’s Dilemma.

The payo↵ matrix for the Stag Hunt is also in Table 4.2. We have that a
1

= e�1 , b
1

=

e��1� , a
2

= e�2 , b
2

= e��2� and equations (4.1) take the form:

p1c(1 + e�1(1��p2c)) = 1

p2c(1 + e�2(1��p1c)) = 1
(4.14)

For a regular graph the equations reduce to:

pr(1 + e�(1��pr)) = 1 (4.15)

Applying Eq. (4.8) for the average divergence of a regular graph to the solution of (4.15)

again matches with the numerical computations in Table 4.3.

If �h is large and �f is small then we can approximate to zero order ph = 0 and

pf = 1/(1 + e�f ). If � < 1 + e�2 , then the first order approximations are:

ph =
1

1 + e(�h(1��/(1+e
�f

)))

' e��1(1��/(1+e
�f

))

pf =
1

1 + e�f (1��ph)
' 1

2(1� �f (1� �ph)/2)

' 1

2
�

�f (1� �ph)

4

(4.16)

The optimum network that minimises �⇢ is a core-periphery network with K = 18

hubs that form a complete subgraph. For linear rationality, equation (4.12) gives an

average divergence of �⇢cp = 0.1485 which is in reasonable agreement with the numerical

calculation in Table 4.3, while a close match is found for convex rationality. A large

di↵erence is observed between the numerical result and analytic estimate for the concave

case, due to the square root function decreasing the rationality of the hubs and, thus,

approximation (4.16) failing.

Above we have considered rewirings in which isolated nodes were prevented. However,

the observation of the emergence of a strong core-periphery structure makes one wonder
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(a) (b)

Figure 4.3: (a) The evolution of �⇢, the average Jensen-Shannon divergence
between Nash and LQR equilibria, for the Prisoner’s Dilemma (� = 1.33) with
linear rationality, starting with an initially random network (N = 1000 nodes
and M = 2000 edges) as a function of the number of attempted edge rewirings,
allowing isolated nodes. The optimisation reaches the theoretical minimum
(dashed line), which is achieved for a complete graph with 63 nodes. (b) Nu-
merical (dots) and analytical (dashed line) results for the divergence of regular
graphs with M = 2000 edges in the case of the Prisoner’s Dilemma. Analytic
values calculated according to equation (4.8).

if optimal networks would actually become disconnected when this constraint is removed.

Hence, we consider again the Prisoner’s Dilemma and relax the optimisation conditions

in the rewiring of the network to allow for isolated nodes. Figure 4.3(a) shows the results

of a variant of simulated annealing performed to optimise the network. The numerical

results indicate that a majority of nodes become isolated and a certain number of hub

nodes end up sharing the edges between them. If we approximate the remaining sub-

graph of hubs as a complete graph, then the number of hubs is given by

K =
1 +

p
1 + 8M

2
(4.17)

The average divergence for a complete graph with K nodes is given by equation (4.8)

for a regular graph when the average degree is K � 1. For M = 2000 the number of

hubs is K = 63 and gives a divergence of �⇢ = 0.197, which matches with the numerical

optimisation in Fig. 4.3(a). Of all regular graphs with M = 2000 edges the complete

graph with 63 nodes has minimum divergence, which is indicated in Fig. 4.3(b). For the

Stag Hunt game the unconstrained optimisation leads to regular graph with N = 400

nodes and average degree 2M/N = 10.

4.3.2 Asymmetric games

4.3.2.1 Battle of the Sexes

We now consider the asymmetric games: the Battle of the Sexes and the Matching

Pennies, with payo↵s given in Table 4.4. In the cases of these two games we compute
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BS P2 MP P2

P1
�, 1 0, 0

P1
�, 0 0, 1

0, 0 1, � 0, 1 1, 0

Table 4.4: Payo↵s for the Battle of the Sexes (BS) and Matching Pennies (MP)
games.

the average Nash-LQRE divergence with respect to the mixed strategy Nash equilibria.

For the Battle of the Sexes, we find that the average divergence with respect to the

mixed Nash equilibrium, Q1 = (�/(1+�), 1/(1+�)) and Q2 = 1�Q1, is much closer to

zero than for the pure strategy Q1 = Q2 = (0, 1). In the case of the Matching Pennies

games, there is no pure Nash equilibrium.

We first analyse the Battle of the Sexes for which a
1

= e�1 , b
1

= e��1(1+�), a
2

=

e�2� , b
2

= e��2(1+�). Equations (4.1) take the form:

p1c(1 + e�1(1�(1+�)p2c)) = 1

p2c(1 + e�2(��(1+�)p1c)) = 1
(4.18)

As equations (4.18) are not symmetric when exchanging players, the game is played

twice on each edge, once solving equations (4.1) with the rationalities (�
1

,�
2

), and once

with the rationalities interchanged, i.e, (�
2

,�
1

).

If �
1

and �
2

are small then we can approximate to zero order and obtain p1c = 1/2 and

p2c = 1/2. The approximations to first order are given by:

p1c =
1

1 + e
�1(1��)

2

' 1

2
⇣
1 + �1(1��)

4

⌘ ' 1

2
+

�
1

(� � 1)

8

p2c =
1

1 + e
�2(��1)

2

' 1

2
⇣
1 + �2(��1)

4

⌘ ' 1

2
� �

2

(� � 1)

8

(4.19)

The average divergence for di↵erent topologies is found in Table 4.5. By optimising the

network topology to minimise �⇢, as we did for the Prisoner’s Dilemma game, we obtain

the results in Fig. 4.4. The divergence is minimised for a core-periphery network where

the core consist of N/2 = 500 nodes that form a regular graph, and each node in the

core links to a single periphery node. The degree of a node in the core is dh = 7, while

in the periphery it is df = 1. A qualitative illustration of the network topology can be

seen in Fig. 4.1(b).

If we optimise the network topology to minimise the divergence with respect to the

pure strategy Nash equilibrium Q1 = Q2 = (0, 1), we obtain a regular graph of average

degree 2M/N = 4 and �⇢ = 2µ = 0.432 for all rationality functions. As Table 4.5
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Game with

� = 1.33
Battle of the Sexes (�⇢⇥ 102) Matching Pennies (�⇢⇥ 102)

Graph type
Core-periphery

(K=1500)
Scale-free Random Regular

Core-periphery

(K=168)
Scale-free Random Regular

Linear 0.178 2.9(3) 0.25(1) 0.236 0.096 0.47(3) 0.215(1) 0.218

Convex 0.458 1.0(4) 0.473(1) 0.486 0.230 0.8(3) 0.252(1) 0.252

Concave 0.180 1.1(1) 0.200(1) 0.202 0.142 0.26(1) 0.200(1) 0.203

Table 4.5: The average Nash-LQRE divergence (�⇢) in the case of the Battle of
the Sexes and Matching Pennies games for the di↵erent network topologies and
di↵erent choices of rationality functions. The numerical results for the scale-
free and random networks are averaged over 100 instances. The core-periphery
nodes have K hubs.

shows, optimising with respect to the mixed strategy Nash equilibrium gives a much

lower value for the average divergence �⇢, which is why we focus on this case.

We can gain analytic insight into the results presented in Table 4.5 by writing the average

divergence as:

� ⇢ = ↵(�⇢c) + (1� ↵)(�⇢f ) (4.20)

where �⇢c is the average divergence of the core, i.e., that of a regular graph with average

degree dh = 7, and �⇢f is the average divergence of the periphery, i.e., the divergence

for an edge connecting a degree df = 1 node with a node from the core. The value of

↵ is the fraction of links that exist within the subgraph containing the core. Hence,

↵ = N(dh � 1)/(2M) = 75%. The rest of the links are part of the periphery. By

numerically solving for the cooperation probabilities in (4.18) and using equation (4.20),

we obtain an exact match to the numerically obtained entries in Table 4.5.

If we allow isolated nodes to form throughout the optimisation then, similar to the

Prisoner’s Dilemma and Stag Hunt games, the periphery nodes disconnect from the

network but now a core with a strongly bi-modal degree distribution emerges. The core

has Nc1 = 263 nodes with degree dh1 ' 8, and Nc2 = 159 nodes with degree dh2 ' 12.

The average divergence is approximated well by (4.20), where the two contributions

come from regular graphs with Nc1, Nc2 nodes with average degrees 8 and, respectively,

12. Numerical and analytic results for regular graphs for the asymmetric games we

consider are shown in Fig. 4.4(b).

4.3.2.2 Matching Pennies

Finally, we consider the Matching Pennies game with the more general payo↵ matrix

shown in Table 4.4. In the case of the Matching Pennies we have that a
1

= e�1 , b
1

=
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(a) (b)

Figure 4.4: (a) The evolution of �⇢, the average Jensen-Shannon divergence
between Nash and LQR equilibria, for the Battles of the Sexes (thin line) and
Matching Pennies (thick line) (� = 1.33) with linear rationality, in the range of
topologies between an initially random network (N = 1000 nodes andM = 2000
edges) as a function of attempted edge rewirings, while not allowing isolated
nodes. The optimisations reaches the estimated minima (dashed lines). (b)
The divergence for regular graphs with M = 2000 edges in the case of the
Battle of the Sexes (triangular dots) and Matching Pennies (square dots), with
analytic results shown by dashed lines.

e��1(1+�), a
2

= e��2 , b
2

= e2�2 and equations (4.1) take the form:

p1c(1 + e�1(1�(1+�)p2c)) = 1

p2c(1 + e�2(�1+2p1c)) = 1
(4.21)

Equations (4.21) are again not symmetric when exchanging players and so the game is

played twice on each edge, as also done for the Battle of the Sexes. We can approximate

the probabilities for strategy choice C to zero order by p1c = p2c = 0.5. If the rationalities

are small then we can make the following first order approximations:

p1c '
1

2
+

�
1

(� � 1)

8

p2c '
1

2
� �

1

�
2

(� � 1)

16

(4.22)

Table 4.5 gives figures for the average divergence for di↵erent topologies and rationality

functions, while Fig. 4.4(a) shows the results obtained numerically from an optimisation

procedure to minimise �⇢. The results are largely analogous to the Battle of Sexes,

with one exception: The core-periphery graph that minimises the divergence has a

core consisting of a quasi-regular graph, with Nc = 168 nodes with average degree

dh ' 19, and the periphery nodes form (N �Nc)/2 = 416 pairs (K
2

graphs) completely

disconnected from the core. Equation (4.20) can be applied with ↵ = Ncdh/(2M) ' 80%,

and the results match with the entries in Table 4.5. If we allow isolated nodes to form

during the optimisation, then the optimal network structure that minimises the average

divergence is a quasi-regular graph with Nc = 168 and average degree dh ' 24. Hence,
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the core in both types of optimisation for the Matching Pennies game has the same

number of nodes; it is only the number of edges within the core that varies due to the

connectivity constraint.

4.4 Conclusion

Previous work has proposed that scale-free networks maximise the overall ”rationality”

of a networked system of players Kasthurirathna and Piraveenan (2015). Here we have

shown that for the Prisoner’s Dilemma game core-periphery graphs, composed of a core

of connected hub nodes which each link to a single periphery node, have a significantly

lower average Nash-LQRE divergence than scale-free networks. This result is supported

by numerical experiments and also by an analytic approximation for the divergence of

core-periphery graphs that reproduces numerical results well for all the di↵erent ratio-

nality functions considered. The accuracy of the analytic results can decrease due to

the fact that in finite core-periphery graphs the hubs will always have a finite degree,

and hence the approximations su↵er. If no connectivity constraint is enforced during

optimisation, optimal networks are found to consist of a core made up by a complete

graph with all other nodes being isolated.

For the Stag Hunt game, an analogous analytic treatment of the connectivity constrained

case yields qualitatively similar results to the Prisoner’s Dilemma, while the connectivity

unconstrained optimisation leads to a regular graph.

Further, in contrast to Kasthurirathna and Piraveenan (2015), we have demonstrated

that highly heterogeneous degree distributions do not necessarily maximise system ra-

tionality for all classes of games. Analytic and simulation results show that, for the

Battle of the Sexes and the Matching Pennies games, core-periphery graphs with cores

that have a quasi-regular topology minimise the average Nash-LQRE divergence. If the

connectivity of the network is not constrained in the optimisation procedure, then in

the case of the Battle of the Sexes a graph with a strongly bi-modal degree distribution

emerges, while for the Matching Pennies game we obtain a quasi-regular graph.

We can interpret the results for the Prisoners Dilemma or Stag Hunt games in a broader

way. Cooperation is naturally associated with altruistic behaviour, whereas defection

can be seen as a selfish course of action. Maximising system rationality, or minimising

the di↵erence between the probability distributions and the Nash equilibria, can thus

be interpreted as promoting selfish behaviour within the system. The topology that

emerges is one where a core consisting of roughly 1% of the nodes in the network are

part of over 90% of the connections available, whereas each periphery node is as poorly

connected as possible. If higher numbers of a node in a social network translates into

greater influence/wealth, then we see that by maximising selfishness in a social network

most of the power ends up concentrated in a very small set of players. This result echoes
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present concerns regarding wealth inequality, and furthermore, a similar core-periphery

structure has been found to underlie the network of global corporate control, wherein

a “large portion of control flows to a small tightly-knit core of financial institutions”

(Vitali et al., 2011). Our results elaborate a possible mechanism for the emergence of

such highly concentrated core-periphery structures in social networks.
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Chapter 5

Conclusions and future work

Previous literature on the modelling of past societies, even work as prominent as Bran-

der and Taylor (1998), has not aimed at reproducing the known historical time series

for important data (Bahn and Flenley, 1992) that characterise the development of the

society in question, such as the population size. Furthermore, most other work has ei-

ther proposed models that are too complex, such as Hosler et al. (1977), or too simple,

such as Hamblin and Pitcher (1980), to strike an adequate balance between the realis-

tic features that should be captured and the tractability a model should posses to be

insightful.

In our work, we have proposed a three stock model of Easter Island with similar calibra-

tion to the model proposed by Brander and Taylor (1998). In contrast to previous work,

our model fits the archaeological record given by Flenley and Bahn (2003). Up to our

best knowledge no other model has achieved such a fit. We have also built a model of

the Maya civilisation that encapsulates the main specialisations of the population, the

land dynamics and monument construction. Also for the case of the Maya, our model

is the first to explicitly match archaeological data of population growth and monument

building. Thus, the models capture su�cient features of the societies in question to ad-

equately reproduce known historical trends. Nevertheless, simple socio-environmental

feedbacks underlie the models and prove su�cient to reproduce the historical data re-

garding the collapse. This fact brings into question why more complicated hypotheses

should be considered, such as those enumerated by Aimers (2007) for the Maya collapse.

Furthermore, the structure of the models allows for analytic insight into their dynamics.

We can obtain a closed form analytic expression for the critical value of the harvesting

rate, above which the Easter Island model undergoes a supercritical Hopf bifurcation.

To the extent of our knowledge, no other model of a society that has collapsed has had

a critical bifurcation parameter explicitly computed. Similarly, a bifurcation analysis

for the model of Maya society shows that, when the harvesting rate exceeds a certain

threshold, a supercritical Hopf bifurcation occurs. Thus, both the collapse on Easter
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Island and the Classic Maya are modeled by the same type of critical transition. Hence,

the models enjoy a level of tractability that allows us to derive useful, more general

insights about the drivers of societal collapse.

Where comparison is possible, the model we built to describe the Classic Maya has a

calibration consistent with the archaeological record. This, to the best of our knowledge,

is unique in the literature on modelling societal development using low-dimensional

dynamical systems. Furthermore, an extensive sensitivity analysis was performed on

the model which shows that the calibration lies at a minimum in parameter space.

With the exception of the work by Anderies and Hegmon (2011), there has been little

research on low dimensional systems that explores the dynamics of multiple coupled

regions. Anderies and Hegmon (2011) does not find significant di↵erence between the

coupled and uncoupled regimes, possibly due to the specific coupling employed between

the di↵erent regions. We have analysed the simplest scenario for possible couplings of

societies, which is via di↵usion. Each society is parametrised similar to Easter Island,

with the exception of the extraction rate of resource per capita. We performed a bifur-

cation analysis of the di↵usively coupled set of oscillators representing societies, where

the critical parameters were the harvesting rates for the two societies.

In contrast to previous work (Anderies and Hegmon, 2011), we found that a simpler

coupling makes a significant di↵erence to the equilibrium states. Namely, as long as

one society has a su�ciently low harvesting rate the overall system can achieve a stable

state. Furthermore, we obtained an analytic derivation of the inner fixed point of the

di↵usively coupled system, which was used to numerically approximated the bifurcation

boundary. In addition to the di↵usive coupling, we proposed a model of wealth-driven

di↵usion between two societies and carried out a bifurcation analysis similar to the

di↵usive model, with similar results.

In our current research we have striven to develop models of intermediate complexity

to understand the dynamics of ancient societies. The models aim to incorporate su�-

cient detail for a meaningful interpretation of the dynamics but also facilitate analytic

understanding and communication. In future work an aim will be to develop a model in

similar spirit for the mechanisms at play in an industrial society. It would be interesting

to quantify macro-dynamical relationships and feedbacks in modern societies through

dynamical systems models, such as we have done for the case of Easter Island (Roman

et al., 2017) and the Classic Maya.

Most models that have been developed in this regard are either highly stylised (M. and

J., 2013), aimed at analytic tractability or very detailed, large-scale and of unyielding

complexity (Costanza et al., 2007b), but the mid-ground in-between has not been ex-

plored to a large extent. The starting point can be the Easter Island model which could

be extended to incorporate some crucial, missing aspects, such as di↵erent industry
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and energy sectors, so that the model can be calibrated and applied to modern soci-

eties. While other models exist that have incorporated such features, such as “Limits

to Growth” (Meadows et al., 1972), these models have a large number of parameters

which makes exploring their behaviour di�cult and, as far as we know, the models are

not adequate for analytic insights.

Another possible extension of the work is to consider multi-regional modelling of the

Maya civilisation. Dynamical systems similar to the model we proposed can be set up

to represent each of the Maya sites, which then can be coupled (di↵usively or otherwise)

to represent the relationship patterns among the Maya. The issue of societal connectivity

has been under-explored (Roman et al., 2017) and a low dimensional dynamical system

gives us a natural way of investigating the impact of connectivity on sustainability.

Each node in the network could represent a Maya site, with the parameters calibrated

specifically to it. Then, interaction between sites will be represented through the edges

in the network. The interaction between nodes can include migration, trade, resource

movement or warfare.

Thus, the framework of the proposed model would allow us to systematically look at

the role of connectivity and analyse issues regarding trade, migration or warfare. This

extension would provide a more comprehensive picture of the entire spatial distribution

of the Maya civilisation and would allow us to track the historical evolution of di↵erent

sites, thus also allowing for a greater degree of validation of the existing work.

Beyond the topic of dynamical system’s modelling of societal structure and dynamics,

we have provided contributions to the field of games on complex networks. We corrected

numerical results of the work by Kasthurirathna and Piraveenan (2015) for a network

model of agents interacting by playing symmetric games (Prisoner’s Dilemma or Stag

Hunt), according to strategies determined by the quantal response equilibrium. We

have established that the minimum is not achieved by a scale free network as stated by

Kasthurirathna and Piraveenan (2015), but by a type of core-periphery network. The

core consists of a complete subgraph where the nodes have a high degree, while the

periphery consists of nodes of degree one.

Furthermore, we obtained analytic results in the case of symmetric games for the opti-

mal core-periphery topology and for the case of regular graphs. Zeroth and first order

corrections for the quantal response equilibrium were determined, along with the cor-

responding value of the system rationality. Also, we arrived at numerical and analytic

results for asymmetric games (Battle of the Sexes and Matching Pennies), with the op-

timal topology that maximises system rationality being a core-periphery topology with

a core consisting of a regular subgraph. In contrast to Kasthurirathna and Piraveenan

(2015), the specific features of optimal topology di↵er between symmetric and asymmet-

ric games.
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Within the wider context of the literature, our findings provide an alternative mechanism

by which core-periphery structures can form. By accounting for a new factor, namely

rationality of the players, our finding show that the emergence of core-periphery structure

is more robust in the sense of occurring in a more diverse set of circumstances than

previously considered.

Thus, we have provided some of the first accurate results that incorporate a graded

notion of rationality in games played between agents on a network. The present model

only considers a single layer network in which all relationships are treated as equal.

There has been a growing interest in disaggregated network models (Gomez et al., 2013)

and our model could also be extended in this regard by considering a multiplex network,

wherein each level represents a di↵erent relationship between agents. For example, one

level could determine the rationality of the agents, whereas another level can contain

the neighbours against which the games are played. This extension of the model would

di↵erentiate between the cognitive plane, where rationality is computed, and the social

aspect, which pertains to links to other nodes.

The thesis brings together several novel insights into the large-scale, long-term dynamics

of societies and their structural organisation. In particular, the issue of rationality plays

an important, unifying role in the present work, implicitly through the existence of

sunk-costs e↵ects in the societies we consider or explicitly in the modelling of agent’s

behaviour in networks. We hope to have achieved a notable advance compared to the

existing literature on the subjects of societal dynamics and games on networks, and that

our research inspires future work into these topics.
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Appendix A

Common reasons for collapse

One common reason invoked for the collapse of complex societies is the gradual depletion

of natural resources, e.g., deforestation, as argued in case of Easter Island (Diamond,

2005) or soil nutrient depletion in the case of the Maya (Webster, 2002). Alternatively,

resources can be rapidly lost due to environmental change, most notably climatic shifts,

e.g., high Nile floods that favoured soil crop parasites in the Middle Kingdom of Egypt

(Butzer and Endfield, 2012) or drought in the case of the Maya (Kennett et al., 2012).

Another possibility involves moving to a new resource base that lead to the loss of

previously established social order (Harner, 1970). Natural resource arguments have

the di�culty that societies develop administrative structure, and allocate labour and

resources to deal with possible resource shortage and deteriorating environmental con-

ditions (Isbell, 1978). Hence, these theories propose that societies collapse in conditions

they have been adapting and dealing with since their formation.

Another category of explanations focuses on competition between societies, e.g., which

might have led to the demise of the Huari and Tiahuanaco (Lanning, 1967). Similarly,

intruders have been argued to have caused the collapse of di↵erent societies, such as in

the case of the barbarian invasion of the Roman Empire (Manning and Trimmer, 2013),

or the invasion of the Hittite Empire by seafaring nomads (Carpenter, 1966), or contact

with Europeans for Easter Island (Stevenson et al., 2015). Catastrophes are also a

frequently quoted cause of collapse, with examples including the volcanic eruptions and

earthquakes for the Minoan Civilisation (Marinatos, 1939; Driessen and Macdonald,

1997), major epidemics for the Maya (Acuna-Soto et al., 2005) or rat infestation for

Easter Island (Hunt, 2007). A related cause of collapse are contingent events, where a

sequence of detrimental events led to the collapse. Catastrophes can also be considered as

an extreme case of a contingent event. But, the explanation based on contingent events

has no causal mechanism underlying it. Also, catastrophes, intruders and competition

with other societies have been previously encountered by a given society but no collapse

occurred, e.g. earthquakes in the Minoan civilisation, barbarian attacks on the Roman
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front or competition between the Maya centres. These latter theories have the added

di�culty of placing the drivers of the collapse outside of the society in question.

Conflict between social classes and elite mismanagement have been some of the earli-

est proposed causes for the collapse of civilisations. Their strength lie in placing the

mechanism of collapse within the society in question. But, often, these explanations are

accompanied by some mystical (vague, unmeasurable) factors underlying the collapse,

e.g., a loss of social unity or of civic virtue.

An early theory of why societies decline and collapse was put forward by Khaldun (1377),

who proposed a cyclical model for the rise and fall of civilisations. A key concept of

Khaldun (1377) was that of “asabiyyah” which roughly translates to social cohesion

and unity, which is strongly felt in the early stages of a society, but diminishes as

the society grows and the leadership becomes too removed from the concerns of the

majority of people. If a group at the periphery of the society enjoys a greater degree of

social solidarity, this can eventually lead to a change in the leadership and a new cycle

starts. The theory was applied by historians of the Ottoman Empire to understand

its development, which started at the periphery of the Byzantine empire and grew to

prominence (Lewis, 2006).

In the “Decline and fall of the Roman Empire” (Gibbon, 1776) it is argued that the

“virtue” of the citizens degraded, as they were less willing to protect their borders and

outsourced their military defences to barbarian mercenaries. Also, Gibbon argues that

Christianity diminished the martial spirit of the Romans and belief in the afterlife made

them reluctant to sacrifice themselves for the empire (Gibbon, 1776). We see in both

Khaldun (1377) and Gibbon (1776) explanations based on the loss of social cohesion,

either due to the leadership or the masses, and the subsequent invasion/replacement by

an outside force.

After archeology developed as a scientific field, the explanations based on class conflicts

gained new popularity. The first systematic study aimed at a comprehensive review

and integration of historical knowledge on societal development and collapse was likely

Toynbee’s “A study of history” (Toynbee, 1961). Volumes IV-VI of (Toynbee, 1961)

cover the “breakdown” and “disintegration” of civilisations. Toynbee (1961) does not

consider environmental degradation or external invading forces as a root cause of the

breakdown of a society. Rather, he argues the mechanism behind the collapse is internal

to the society and develops a theory of how this unfolds: a “creative minority” is respon-

sible for problem-solving within a society that leads to its growth and development, but

eventually it ceases to be innovative, at which point it turns into a “dominant minority”

which simply imposes rules and forces the majority into obedience. The majority is

called the “proletariat” and further divided into internal and external categories. The

internal proletariat is under direct subjugation of the dominant minority, whereas the

external one is left in poverty and disorganised. This state of a↵airs creates a tension
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that eventually leads to the disintegration of the social order. Toynbee (1961) applies

the above theory to an extensive set of examples, including the Roman Empire, the

Maya civilisation and Old Egyptian Kingdom.

Recent applications of the class conflict hypothesis include Easter Island (Pakandam,

2009) and the Maya (Hamblin and Pitcher, 1980; Chase and Chase, 2005). The main

di�culty with theories of internal conflict and elite mismanagement is that these type

of tensions and ine�ciencies always exist in societies (Tuchman, 1984; Tainter, 1988).

It is questionable that only at a certain point in a society’s history did these recurrent

themes cause the social structure to breakdown completely.

Another theory of collapse considers societies to be vulnerable and incapable of adap-

tation so, they cannot provide adequate and su�cient responses to their challenges and

circumstances, e.g., the Aztec and Inca Empires (Conrad and Demarest, 1984). If a

society could not find and implement e↵ective solutions to its problems, what prevented

it from doing so? While these type of theories postulate the natural implication that

if a society is not able to respond adequately to problems it will collapse, they do not

account for the state of fragility.

As seen above, most common theories of societal collapse either focus on factors that

are not internal to the society in question, or in case the causes are intrinsic to the

society, they refer to social conditions that have been characteristic to the society since

its formation. Tainter (1988) proposes a theory that surpasses these di�culties, building

upon the idea of diminishing returns to investments in problem solving. This is best

exemplified by the Roman Empire (Tainter, 1988), whose early conquests were very

profitable and allowed for the elimination of taxes for the citizens. With the expanding

territory, the military and administrative costs grew as well. At a certain point, further

conquests/conflicts proved less beneficial and even amounted to a loss of resources, like

the wars with the German tribes. Maintenance of the empire ended up having larger

costs then revenue, and territory was gradually lost. The Roman currency, the denarius

was being debased to expand the money supply and cover the costs (at least temporarily)

(Tainter, 2000). Throughout a period of 400 years these negative returns manifested as a

collapse. Similar arguments have been forwarded regarding the Ottoman Empire (Lewis,

1958), the Chinese dynastic cycle (Lattimore, 1940), as well as the Maya (Culbert, 1991).

More generally, as was the case with the Roman Empire, the maintenance of a complex

socio-political system requires resources and energy in various forms. Each new prob-

lem leads to an increase in the system’s complexity due to the new institutions, more

people and di↵erence specialisations required to implement a solution. The increased

complexity carries additional energy costs. The previously existing structures are not

radically reformed but are expanded to incorporate new functionality or additional ones

are created. So, the complexity tends to add in time and hence, also the costs of its

maintenance. Furthermore, the benefits incurred in this enterprise su↵er from the law of
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diminishing returns (Tainter, 1996). As such, “investment in socio-political complexity

as a problem-solving response reaches a point of declining marginal returns.” (Tain-

ter, 1988, p. 118). We see in Tainter’s argument, besides the explanation of collapse,

also a justification of why societies grow complex in the first place, namely to solve the

problems they encounter.

At an advanced stage of socio-political growth, a society uses up most of its energy to

maintain all the previously implemented solutions and has very low returns on solving

new problems. Thus, it becomes increasingly sensitive and incapable to tackle internal

or external threats and perturbations. In these conditions, collapse is a likely outcome

irrespective of specific factors or circumstances.

We can see early seeds of the above argument in the work of Malthus (1798), who points

out that population grows in exponential fashion, whereas agricultural production can

only grow linearly. Eventually, the mismatch will cause population levels to return to

sustainable levels. With increasing population density, the chances of wars breaking

out increases, diseases are more easily transmitted, food becomes scarce and general

livelihood become harsher which makes the bearing and raising of children more di�cult.

From the economic viewpoint, we can interpret this as saying that the costs of sustaining

the population are growing faster than the capacity to sustain them.

With the industrial revolution, it became increasingly clear that technology could help

eliminate, or at least delay the negative population pressure Malthus hypothesised.

Eventually, an alternative theory appeared with the work of E. Boserup’s “The Condi-

tions of Agricultural Growth: The economics of agrarian change under population pres-

sure” (Boserup, 1965) which argued that under conditions of rapid population growth

and low land productivity, new, more intensive agricultural technology would be devel-

oped to provide su�cient food. Behind Boserup’s thesis is the old tenet that “necessity

is the mother of all invention.” For example, the Maya civilization employed intensive

agricultural practices (field raising, terrace forming etc.) and better irrigation and water

management systems (e.g. building reservoirs) to cope with rainfall variability (including

droughts) and their growing population (Turner, 1974).

The theories of Malthus and Boserup operate at di↵erent time-scales. When conven-

tional farming methods prove insu�cient, the short-term response is likely a diversifi-

cation and intensification of agricultural practice to compensate any likely short-fall in

production. But, as the Maya example shows, on much longer time scales, the (ulti-

mately) finite carrying capacity of the environment would constrain population growth

(assuming all other factors unchanged). Despite challenging Malthus (1798) by argu-

ing that productivity per unit of land increases under intensification, Boserup (1965)

argues that productivity per unit of labour actually decreases. Through factors such as

preparation, fertilization and irrigation, human labour per unit of agricultural output

increases but continues to be undertaken due to the growing population size. The work
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of Boserup (1965) received quantitative support through the data compiled by Clark and

Haswell (1966) and Wilkinson (1979), who show that the average and marginal return

on agriculture does indeed decline with increasing labour.

Tainter (1988) generalises Boserup’s observation to all problem solving endeavours, not

just procurement of food. In particular, Tainter argues the same trend holds for technical

innovation, e.g., to reach the same number of patent applications in 1958 as in 1946 the

US required twice as many scientists and engineers, and three time as much investment

then 12 years before (Machhup, 1962). Similar trends continue till today (Tainter and

Patzek, 2011), e.g., Eroom’s law in pharmaceutical discoveries that shows a decrease in

R & D e�ciency by a factor of 100 since 1950 to 2010 (Scannell et al., 2012).

Despite its strengths and empirical support, Tainter’s theory does have a significant

shortcoming that it does not precisely define what constitutes a societal problem. Also,

the exact variables that indicate diminishing returns in human activity are not specified

completely, but requires case by case checking for each society under study.
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Appendix B

Easter Island model analysis

In the following we analyse system (2.1) by identifying the equilibrium points, discussing

their stability and determining the critical transitions (bifurcations) of (2.1) under vari-

ations of the extraction rate of natural resources, namely the ↵ parameter.

By equating the rates of change of the variables to 0, we find that the fixed points of

the system (2.1) are given by:

1. The origin O = (0, 0, 0).

2. The state with no human population and maximum amount of natural resources

N = (0,K, 0).

3. An interior equilibrium point E = (xe, ye, ze) where:

xe =
r

↵

 
1�

ye

K

!

ye =
1

↵

 
s

 
1�

b

d

!
+ ⇢c log

d

b

!

ze = ⇢xe log
d

b

(B.1)

Similar to the analysis by Motesharrei et al. (2014), we define an extraction rate at

which ye = K which we call ↵? = (s(1 � b/d) + ⇢c log d/b)/K. This value can be seen

as a characteristic extraction rate for system (2.1) and sets a reference level for other

values of the extraction rate. As such, we quote extraction rates by their relative value

with respect to ↵?.

To assess the stability of the fixed points of system (2.1), we look at the Jacobians which

are given by:
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1. At the origin O:

JO =

2

64
b� d 0 0

0 r 0

0 0 �c

3

75 (B.2)

2. At the fixed point N:

JN =

2

64
b� d 0 0

�K↵ �r 0

K↵ 0 �c

3

75 (B.3)

3. At the interior equilibrium E:

JE =

2

66666664

�b log
d

b
0

b

⇢

�K↵? �r
↵?

↵
0

bs+ cd⇢

d
log

d

b
r � r

↵?

↵
�c�

bs

d⇢

3

77777775

(B.4)

Thus, we can see that the origin O is a saddle node, while the state with maximum

natural resources N is an attractive node. As we see in the bifurcation diagram shown

in Fig. 2.2, the stability of E depends on the value of the relative extraction rate ↵/↵?.

Specifically, when varying ↵, we encounter three bifurcations:

(a) A transcritical bifurcation when ↵ = ↵?. The fixed points E and N cross and E

changes stability from a saddle node to an attractive one. No positive population

exists for ↵ < ↵?.

(b) A supercritical Hopf bifurcation at ↵c which is given by:

↵c =
B +

p
B2 + 4AC

2A
↵? (B.5)

where

A = bdr⇢

 
ds� bs+ cd⇢ log

d

b

!

B = bdrs⇢(2c+ d) + c2d2r⇢2 + b2rs(s� d⇢)

+ bdr⇢(2bs+ 3cd⇢) log
d

b
+ b2d2r⇢2 log2

d

b

C = dr2⇢

 
bs+ cd⇢+ bd⇢ log

d

b

!
.

(B.6)

At the critical transition the fixed point E loses stability and a limit cycle is formed.

The expression for ↵c in (B.5) was obtained by applying the Routh-Hurwitz stability

criterion to the characteristic polynomial of JE in (3).
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(c) A global heteroclinic bifurcation at a large extraction rate we call ↵h. At this point

the limit cycle and the N point intersect, which leads to the disappearance of the

limit cycle and the formation of a heteroclinic orbit.

The term z/x in model (2.1) has a singularity at x = 0, but the fastest decrease the

population variable x can exhibit is an exponential decay with rate b� d, meaning that

if x(0) > 0 then for any finite time x(t) > 0. Numerically, the ratio z/x is regularised

by adding a small positive quantity to the population, i.e., x ! x+ ✏ where ✏ = 10�10.

The system (2.1) was solved using a 4th order Runge-Kutta method.
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Appendix C

Equilibria for di↵usive coupled

system

We can identify as fixed points of (2.6) the origin O, the state with maximum resources

and an interior equilibrium point, which we denote E. We can estimate the bifurcation

boundary by approximating the point E. Let v = (x
1

, y
1

, z
1

, x
2

, y
2

, z
2

) be the vector

of state variables of (2.6), which we can then rewrite v̇ = f(v). To compute the

approximate equilibrium values, let v
0

be the equilibrium when ↵
1

= ↵
2

. We can

expand f around v
0

:

f(v) = f(v
0

) + (v � v
0

)Df(v
0

) + h.o.t.

where Df(v0) is the Jacobian evaluated at v0. If we solve f(v
0

) + v
1

Df(v
0

) = 0 for

v
1

then v
0

+ v
1

is an O(�↵2) approximation of the interior fixed point for the coupled

system. The equilibrium populations for the uncoupled and coupled regime (obtained

both analytically and numerically) are shown in Fig. B.1. By computing the eigenvalues

of the Jacobian at v
0

+ v
1

we can determine the bifurcation boundary for the system

(2.6). The results are shown in the gray dotted curves of Figs. 2.4(a)- 2.4(d).
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Figure B.1: Population, resource and wealth values at the stable, interior fixed
point for society 1 when uncoupled (dashed line), or coupled via: migration
alone (a), (d), (g), (�x,�y,�z) = (0.1, 0, 0); migration and resource di↵usion
(b), (e), (h), (�x,�y,�z) = (0.1, 0.01, 0); migration with wealth and resource
di↵usion (c), (f), (i), (�x,�y,�z) = (0.1, 0.01, 0.1). In all cases we see a rea-
sonable match between analytic (solid lines) and numerical results (dots). The
results are quoted with respect to the equilibrium values for an isolated society
with extraction rate 2↵?, which is taken as a reference.
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Appendix D

Analysis of critical transitions

Fig. D.1 shows the minimum and maximum population values that the Maya model

(3.1) predicts in the long term. In Fig. D.1(a) we see that above a certain productivity

the of intensive agriculture the system (3.1) shows a Hopf bifurcation. In Fig. D.1(b)

a similar pattern is seen with respect to the fraction of people pi working in intensive

agriculture. In both case only the higher values for ↵ and pi are compatible with the

archaeological record. To gain analytic insight into system (3.1) we first simplify it by

considering only one specialisation x for the population who extract resources y at a

relativity productivity ↵:

ẋ = �(n� n��)x

ẏ = ry(1� y/(wK))� sdnx
(D.1)

where n is the normalised food per capita:

n = w↵(1� e�y/(wcK)) (D.2)

The equations (D.1) have two fixed points. One fixed point N is given by (0, wK) and

the other fixed point E is:

xe = rye(1� ye/(wK))/(sd)

ye = wcK log

✓
1� 1

w↵

◆�1 (D.3)

We denote the Jacobian at the fixed points by JN and JE . By applying the Routh-

Hurwitz stability criterion to the characteristic polynomial of JE we find that the fixed

E changes from a stable spiral to an unstable one when the relative productivity ↵
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(a) (b)

(c) (d)

Figure D.1: Minimum and maximum values of the total population for the
Maya model (3.1) when we vary (a) the relativity productivity ↵ and (b) the
fraction of people pi that work in intensive agriculture. (c) is analogous to (a)
but for the simplified system (D.1). (d) shows the point where f(↵) = 0 and
the bifurcation in (c) occurs. When varying a parameter all other parameters
are fixed at their standard value from Table 3.1.

exceeds the value given by:

f(↵) = 1 + log
⇣
1� ↵

w↵

⌘✓
�1 + 2c+ w↵+ c(w↵� 1) log

✓
1� 1

w↵

◆◆
= 0 (D.4)

In Fig. D.1(c) we see the maximum and minimum population determined by (D.1). In

Fig. D.1(d) the plot of the function f(↵) defined in (D.4) is shown. In Fig. D.1(c) the

bifurcation of the simplified system (D.1) occurs when ↵c = 1.15, which is also when

f(↵) = 0, as Fig. D.1(d) shows.

In addition to the main model considered in the paper, we have also analysed how a

di↵erent formulation of monument construction. The following equation implements a

minimum threshold of workers required for e�cient monument building and describes

the simplest form of increasing returns to scale:

ż = bxb✓build(xb)�mz (D.5)

where

✓build(xb) =
1

1 + exp 2kbuild(xbuild � xb)
(D.6)
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and xbuild is the workforce threshold for monument construction to become e�cient. We

consider that a realistic range for xbuild is between 100 and 500 people. We find that

as long as kbuild is large enough (above 5), then the value of xbuild does not change the

output significantly and the the consistency with the archaeological record is largely

maintained, similar to Fig. 3.3(a).
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Appendix E

Parameter sensitivity analysis

We refer to the model with the standard parameter values in Table 3.1 as the stan-

dard model and label quantities (parameters, population etc.) in this model with a 0

subscript. Let x
0

be the total population in the standard model. In Figs. E.1 (a)-(f)

and E.2 (a)-(d) we vary all the key parameters in the model by a factor of 2 below and

above the standard values from Table 3.1, and plot the two distance functions for the

population level and building rate.

In Fig. E.1(a)-(f) the population and environmental parameters are varied. We see

that the minimum value for the population distance is D(x
0

, xref ) ' 10%, while for

the building rate the distance is ' 15%. Both minima are achieved by the standard

parameter values. When varying the parameters related to monument building in Fig.

E.2(a)-(d), we see that total population level is largely left unchanged. For the building

rate, the minimum is achieved by the standard values. The deviation from the minimum

is gradual in all cases, and so there is no sudden change in model behaviour under a

change in parameter values.

Figs. E.1(a)-(f) and E.2(a)-(d) allows to conclude that standard model simultaneously

minimises the distances from both reference modes with respect to all the key param-

eters. The standard values of parameters r, wt, d,↵, s,m were chosen to be aligned as

much as possible with the literature. Hence, the model achieves a local minimum with

values consistent with the literature (where available). This increases our confidence in

the model’s validity. Why define the distance function (3.3) with respect to the popu-

lation levels and not the birth rates? The reference mode for the crude growth rate is

discontinuous and likely less accurate than the total population levels. In case of the

monuments, the building rate is su�ciently smooth and well known to define a distance

function.
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(a) (b)

(c) (d)

(e) (f)

Figure E.1: Sensitivity analysis performed by varying the key population and
environment parameters of the model with respect to the standard values (la-
beled with a 0 subscript) and measuring the distance by the formula (3.3) of the
total population from the reference mode (dotted line). Also plotted is the dis-
tance of the building rate predicted by the model to the corresponding reference
mode (solid line). The minimum distance from the reference mode (indicated
by the red diamond for the population) is achieved by the standard value of
the parameters from Table 3.1. The parameter axis is logarithmic in base 2.
In analysing changes in water availability, see subfigure (e), we considered only
constant functions wt = w throughout the entire time range.
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(a) (b)

(c) (d)

Figure E.2: Sensitivity analysis performed by varying the key monument related
parameters of the model with respect to the standard values (labeled with a 0
subscript) and measuring the distance by the formula (3.3) of the total popula-
tion from the reference mode. Also plotted is the distance of the building rate
predicted by the model to the corresponding reference mode (solid line). The
parameter axis is logarithmic in base 2.
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