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Abstract. We present a novel approach to the management of notifications from
devices in a healthcare setting. We employ a distributed constraint optimisation
(DCOP) approach to the delivery of notification for healthcare assistants that aims
to preserve the privacy of patients while reducing the intrusiveness of such no-
tifications. Our approach reduces the workload of the assistants and improves
patient safety by automating task allocation while ensuring high priority needs
are addressed in a timely manner. We propose and evaluate several DCOP mod-
els both in simulation and in real-world deployments. Our models are shown to
be efficient both in terms of computation and communication costs.

1 Introduction

The penetration of novel Internet-of-things technology in the healthcare setting is grow-
ing rapidly. Many of these devices serve to monitor patients and alert healthcare profes-
sionals whenever abnormalities are detected (for instance, a syringe pump is going to
ring when it detects an air bubble in its mechanism) or when routine checks are needed
(about every four hours).

Nevertheless, operating and monitoring these devices take a considerable amount
of time ranging from 5 to 10% a day. As a result, a healthcare provider has to check
all those devices on a regular basis. As part of this project, a series of interviews with
hospital staff were conducted. The following conclusions were drawn from these inter-
views. Every time a device encounters a technical problem (e.g. running out of power)
or the device is ending its program (e.g. the syringe pump will finish its program in
less than ten minutes), the device produces a very loud tone in order to alert the medical
staff. Attending to such notifications rapidly becomes intractable with large departments
with hundreds of patients. Thus, when a device rings, the medical staff cannot remem-
ber which one it is and what action is expected. Therefore, the staff needs to: (1) go
in the room (2) notice the defective equipment (3) act accordingly (for instance: get
a medication stored in another room). Limiting these tasks (by only checking rooms
requiring an intervention, where it used to be every room of the department every =
hours for instance) can improve healthcare professionals’ work conditions. With this
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in mind, several issues were noticed: (1) most of the devices are not integrated into an
information system, thus forcing healthcare professionals to individually check them
regularly, thereby wasting precious time on monitoring actions; (2) audible notifica-
tions from multiple devices at the same time can raise levels of stress and confusion
among staff.

Against this background, in this paper we propose a novel approach that looks to
minimise the intrusiveness of such devices. Specifically, we develop a solution that:
(1) Detects anomalies and manages tasks division by combining data from multiple
sources; (2) Constructs and suggests an action plan for healthcare provider. The aim
is to provide staff with situational awareness and help them anticipate future interven-
tions. The purpose of our system is to warn the medical staff before devices ring, but
without increasing the frequency of their interventions. We formulate the problem as a
Distributed Constraint Optimization Problem (DCOP) which has been shown to be ef-
fective in itinerary optimization [6], [15] and scheduling problems [7]. This decentral-
ized approach has the benefit of distributing the main computations across all available
devices. Specifically, this paper advances the state of the art in the following ways.

1. We propose a DCOP approach that limits the amount of data transmitted to a central
node.

2. Our DCOP approach allows the seamless integration or removal of IoT devices.

3. We show that a DCOP approach is a natural way of modelling the problem. Our
system was simulated using Raspberry Pi’s to help represent the problem in a more
realistic way. This specific deployment method is very important since it adds de-
velopment constraints to our system (execution time, machine resources, interac-
tions with the staff).

The remainder of this article is organized as follows. First, the paper introduces the
problem statement. After that, we describe the DCOP model we propose to solve this
problem. Then, we detail the proposed solution. We pursue with an evaluation of our
work. In the conclusion, we summarize the work done and we provide some perspec-
tives.

2 Related Work

MobiCare [1], designed by Chakravorty in 2006, provides a wide-area mobile patient
monitoring system to facilitate continuous monitoring of the patients physiological sta-
tus. Like CodeBlue [9], [11] is a popular healthcare project based on BSN framework
(Body Sensor Network). In this system, sensors on the patient’s body transmit infor-
mation wirelessly to other devices for further analysis (like laptops and personal com-
puters). While CodeBlue is using a wireless architecture, there have been many efforts
in the medical field to design gateways for specific applications. For example, [2], [16]
suggest the use of gateways instead of wireless or Ethernet to connect networks with
different protocols.

Beyond these first solutions, DCOP algorithms have already been tested in practical
scenarios such as travel optimization ( [6], [15]) or planning ( [7]). Among the DCOP
algorithms, three are particularly well known: ADOPT [12], DPOP [14], OptAPO [10].
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[6] compared these main algorithms in situations where the environment changes
dynamically. Their study shows that these algorithms offer good performance but also
highlight some limitations. DPOP is the fastest algorithm at runtime, but it is extremely
greedy about the size of the messages exchanged. ADOPT gives variable results de-
pending on the constraints. Indeed, if the system is not subject to many conflicting con-
straints, the algorithm will be efficient. On the other hand, if many constraints conflict,
ADOPT does not provide efficient results. OptAPO was proven to be incomplete and
therefore, a complete variant has been proposed [5]. Both variants are based on a medi-
ator agent, so the resolution is not fully distributed. [7] proposed another algorithm to
solve dynamic problems called DCDCOP (Dynamic Complex DCOP) based on a case
study of time use optimization in a medical context. This algorithm - mainly based on
the addition of a Degree of Unsatisfaction measure - dynamically guides agents through
the resolution process. This method is more appropriate where agents try to optimize
several variables at the same time.

The mechanism we propose is based on the DPOP algorithm [13]. We propose an
improved version of the algorithm proposed by [13]. We have designed new heuristics
for the Depth First Search (DFS) tree generation to improve the execution speed. This
is the first model for device management using DCOPs.

3 Problem Statement

We consider a hospital facility made up of several departments. Each department in-
cludes a set of rooms. Within a room, several devices are deployed to monitor the status
of each patient. Each room has a neighborhood formed by a set of rooms. The objective
of the system is to determine the times when healthcare providers pass through each of
these rooms and prioritize them in order to perform the operations required for each pa-
tient (e.g. recharging a syringe pump, etc.). The intervention time consists of a number
of minutes before the situation becomes critical. Thus, we prioritize the rooms depend-
ing on which one is the most urgent. The emergency “level” is calculated dynamically
and depends on several parameters. A room deadline is the time when a device of this
room will ring. We define, a configuration O; as the set of times for all the rooms in the
department for a time step ¢. Each configuration O; must satisfy the following rules:
(1) a room must have only one intervention time at a time ¢;; (2) the current configu-
ration must be accessible by all rooms so that they share the same information; (3) all
the rooms should not call the healthcare providers at the same time, except the rooms
in the same neighbourhood. In order to build this configuration, we model the problem
as follows. Let A = {a1, ..., a, } be the set of agents (which manage the rooms) with n
the total number of rooms. Each room ¢ is modeled by an agent a;. For a room ¢, each
agent a; will compute a value v; which represents the time (in minutes) before the next
intervention. Let D = {dy, ..., d,, } be all the possible values for v;. If d; = 400, then
no intervention is required in the room . Let ¢ be the current time step. A configuration
O; = {v1, ..., v, } is optimal if, and only if, it respects all the constraints of each room
in the department. The system’s inputs are the agents A and the previous configuration
O;_1. Thus, the O, configuration is optimal if F’, the interventions cost function, is
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minimal according to the next intervention dates v;. Our goal is to seek a minimization:

n

argmin F(O;) = ZCi )]

Ot

For a specific v;, C; returns a global cost € R U {oc}. This global cost, to satisfy
F, is defined regarding all the following structural constraints.

— cl. Device number constraint: If there are no devices in the room, the agent will
not ask for intervention: Let M; = {m, ..., m;} be the set of all the devices of the
room ¢.

Vai6A7|Mi|:0:>Ui_+OO 2

— c2.a Simple device rescheduling constraint: Healthcare professionals have to
check the room just before a device ends its program. We define the function
isInCriticState(m;) which returns true if the device m; is in a critical state.

Va; € A,le (S Mi,

3
isInCriticState(m;) = v; < 10 )

— ¢2.b Critical device rescheduling constraint: Healthcare professionals have to
reschedule machines when they come to a critical state. Therefore, we define the
function programState(m;) to return the remaining time (minutes) before m;
ends its program. If the remaining time is not computable (i.e. the device does not
require an intervention), the function returns +o0o. As a consequence, if a device in
the room ¢ ends its program in less than 30 minutes than v; has to be less than this
value.

Va; € A, dm, € Mi,
= isInCriticState(m;) A programState(m;) < 30 @

= v; < programState(my)

— ¢3. Neighbourhood constraint: If two rooms are in the same location, they can
synchronize their decisions to avoid multiple interventions in a short time. In other
words: two neighbours should not ask for interventions with less than t,y,cnro
minutes interval (except if they both call at the same time). We define the function
neighbours(a;,a;) as a function returning true when the agents a; and a; are
neighbours.

Vai,a; € A% neighbours(ai,a;) = 5)

(lvi = 5] > tsynehro V [vi — vj| = 0)

— c4.a Patient’s condition constraint: If a patient uses multiple devices (more than
five), we consider that he needs more attention than others. His state should be
checked at least every three hours instead of four otherwise. Let 7; be the elapsed
time since a medical staff came into the room <.

VaiEA,(|M¢|>5/\T1'2180):>1)¢<30 (6)
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— c4.b Time between two visits constraint: The elapsed time between two inter-
ventions in a room cannot exceed four hours. This constraint is derived from the
interviews we made. If more than 3 hours and 30 minutes have passed since the last
visit, the system should plan another visit within 30 minutes.

Va; € A, (IMi| > 1 A7 > 210) = v; < 30 )

— 5. Quietness constraint: Each agent a; verifies if there is no device in the room i
that needs intervention. If it is the case, healthcare staff can ignore the room:

Ya; € A,Ym; € M;,
(—isInCriticState(mi) A\
programState(m;) > 30 A 1; < 180)
= v; > 240

®)

Example 1 Consider the following scenario with 6 rooms (a1, as, as, a4, as and ag)
in a medical department. None of the rooms has devices to monitor except the room
as which is monitoring 3 devices programmed to end respectively in 40 minutes, 60
minutes, and the last is in a critical state. The neighbourhood is the following: a; is
surrounded by as and as ; a4 is surrounded by as and as ; And as is also neighbour
with ag. Therefore, a1, as, a4, as have two neighbours, while ao and ag have only one
neighbour (cf. Figure 1).
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Fig. 1: Illustration scenario with the 6 rooms in the medical department. None of the
rooms have devices to monitor except agent az which is monitoring 3 devices pro-
grammed to end respectively in 40 minutes, 60 minutes, and the last (in red) is in a
critical state. All adjacent rooms are neighbours. Therefore, a1, as, a4, as have two
neighbours, while as and ag have only one neighbour.
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Also, assuming that:

- M3 = {m317m327m33}
with isInCriticState(msa) = True (the device is in a critical state), programState(ms;) =
60 and
programsState(mss) = 40.

- My = Ms =M, = My = Mg = {0}.

- 73 = 60.

- We also set tsynchro = 30.

The structural constraints can be described as:

cl: vy, vs, v1, Vg and ve Will take the value +oc.

c2: The device mso needs intervention. Thus, v3 < 10. The device msy ends its pro-
gram in 60 minutes and the device mss in 40 minutes. Hence: v3 < 60; vs < 40.

¢3: Given the neighbourhood in the scenario, we deduce that |vs — vg| > tsynchro and
|U3 - Ul‘ > tsynchro'

cd: The last intervention is very recent (because T3 < 180 and |M3| < 5), so this
constraint will not be applied.

¢5: This constraint does not apply here.

Next, we formalize the problem as a distributed constraint optimization problem.
Centralized solutions to scheduling have a lack of scalability and adaptability to

dynamic events such as the arrival of an emergency. In such a dynamic context, using a

decentralized approach allows to be proactive to any change of the devices.

4 DCOPs for Device Management

We formalise the Device Management DCOP as a tuple {A,V, D,C} , where: A =
{a1,az,...,a,} is a set of n agents; V' = {vy,vq,...,v,} are variables owned by the
agents, where variable v; is owned by agent a;; D = {d;,d>, ...,d, } is a set of finite-
discrete domains. A variable v; takes values in d,,, = vy, ...,v%; C = {c1,...,cm} is a
set of constraints, where each ¢; defines a cost € N U {oo}. A solution to the DCOP is
an assignment to all variables that minimizes >, ¢;.

DCOP is a preferred solution to deal with stochastic and dynamic environments with
data gathered from different agents. It is applied to numerous different applications in
multi-agent systems such as disaster management, meeting scheduling, sensor network
[3].

There are several ways to formalize our problem as a DCOP, depending on what
agents, variables and constraints are representing. Here we present three approaches to
formalize the medical optimization problem as a DCOP: a fully decentralized room-
based approach (Room Approach), a semi-decentralized area-based approach (Area
Approach) and finally a semi-decentralized multi-variable approach (Multi-variable
Area-based Approach). We intend to show the effect of different levels of decentral-
ization on the quality of time computing. We evaluate and show the performance of
each approach which may be suitable for different medical device conditions.
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4.1 Room-based Approach

The Room Approach consists of modelling all the rooms as agents. The number of
agents corresponds to the number of rooms to monitor. Each agent has a variable that
corresponds to the desired intervention time, depending on the devices conditions in the
room. The domain of the variables varies from 0, which is the most critical call, to co
which means that no call is planned. We then map the structural constraints described
in the equations 2 to 8 as follows:

Device number constraint

oo, if |M;| =0andwv; # +o0
c1(v) = { | 7 )

0, otherwise
Device rescheduling constraint

oo, if I3m; € M;,
isInCriticState(m;) and v; > 10
1, if 3my € M;, (nisInCriticState(m;)

C2(V; ) =
2(vi) and programState(m;) < 30)

10)

and v; > programState(m;)

0, otherwise
Neighbourhood constraint

1, if neighbours(as,a;)
Cg(U' U') _ and |vi _Uj‘ S tsynchTo (1])
2y Y] -
! and|vi —U‘j‘ 750

0, otherwise

Patient’s condition and time between two visits constraint

oo, if ((|M1| > b5and 7; > 180)
ca(vi) = or (|M;| > 1 and 7; > 210)) and v; > 30 (12)
0, otherwise

Quietness constraint

1, ifVm; € M;, v; < 240
(v3) and —isInCriticState(my) (13)
C5\V; ) =
> and programState(m;) > 30 and 7; < 180

0, otherwise

The objective of our DCOP is to minimize ;- ¢;. This optimization represents the
goal of the system (i.e. minimizing the number of rooms making calls without violating
any structural constraint).
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4.2 Area-based Approach

Instead of considering each room as an agent, we can consider a hospital area as an
agent which monitors multiple rooms. We consider that the department is divided into
several areas. As an area agent, it holds a unique variable v that contains the most critical
intervention time among all monitored rooms. By gathering information from several
rooms in this way, the system solves the problem using the same constraints as in the
previous approach. However, these constraints are applied to all the rooms instead of a
single room. On the other hand, the neighbourhood constraint no longer concerns the
rooms, but rather the areas. Therefore, the global cost C; is also computed by area as
follows:

00, if 3rx € R;, 3m; € My
C; = isInCriticState(m;) (14)
b1 Dyeo Cq(vi), otherwise

In this approach, the device number constraint is no more used. We define a similar
constraint to take all rooms R; into account and no longer a single one.

This approach also requires us to consider the impact on privacy and, more specif-
ically, the transit of data. For security and data protection reasons, the centralization of
data is very sensitive.

4.3 Multi-variable Area-based Approach

To go further in the area-based modelling, a slightly more specific approach was also
considered where each area defines an intervention time for each room. In this last
approach, we still consider that each one of the rooms in the area has the knowledge on
all the other rooms. Thus, we still have a single area agent, but this agent will calculate

a time set V,, = {vy,,Vpy, ..., v, } where k is the number of rooms of the area i.
This approach also requires us to consider the impact on privacy, like the area-based
approach.

Now that we have formalized the problem as a DCOP, we discuss the quality of the
solution and the usefulness of the method.

5 A DPOP Solution for the Device Management Problem

To solve the DCOP presented above, we use the DPOP algorithm (Dynamic Parameter
Optimization Problem) [14], based on the exchange of messages between agents. We
chose to use DPOP as it is one of the fastest DCOP algorithms [6], working by tree
aggregation [4]. In more details, DPOP operates on a matrix handling algorithm. To
communicate agents use a tree graph (DFS): an undirected graph, which contains a
variable node v; for each agent, and an edge connecting a variable node v; with another
variable node v; if and only if v; is a neighbour of v;. Each agent in DPOP takes
the role of the variable node which represents its own variable. Figure 2 shows the
tree graph of the room-based approach for the scenario presented in the Example 1.
The main process of DPOP consists in computing and exchanging messages between
variable nodes through the tree graph constructed. At each iteration &k of the process,
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all agents execute 3 phases. In the first phase, a proper tree graph is generated to serve
as a communication structure for the next steps. To do so, agents exchange messages
through their neighbourhood in order to generate the tree graph. When this graph is
complete, the second phase starts: starting from the leaves of the tree, each agent a;
computes its own cost matrix Utel; (depending on its v; value and on its children v
values) and propagates it upward through the tree edges. Those matrices summarize the
influence of the sending agent and its neighbours on the next steps. The third phase is
started by the root when phase 2 is over. Each agent computes its optimal value for v
based on the Util matrix and the Value message it received from its parent. Then it
sends this value as a V alue message to its own children.

Fig. 2: Room-based approach tree graph for the scenario presented in Example 1. There
are 6 agents (v1 to vg), each is connected to its neighbours.

Example 2 Consider the tree graph presented in Figure 2. Let D = {0, 30,241}. The

message that the variable vy sends to its parent vy for the iteration k is the following:
a

Utilo = | b|, where each matrix value is the result of a cost ( Zf’zl ¢1). The abscissa
c

axis represents the lowest possible value for vs, while the ordinate represents all possi-

ble values for vy in D. When vy is set up with the best value for this iteration (let us say

b), v1 sends this value back to vs.

During the propagation of messages, an agent is able to calculate locally its next
intervention time that minimizes the sum of the costs over all neighbours functions.
Classic DPOP does not always guarantee convergence at the end of an iteration. In our
context, we overcome this issue with the use of the Quietness constraint.

Event Detection and Management Dynamic events should be taken into account during
the resolution. For instance, we need to detect when a medical staff is in a room (or
when she is near). Every event will dynamically impact some constraints. Thus, the
system will detect healthcare staff interventions and can update the different constraints
parameters, for instance, the time since the last intervention (7), the states of the devices,
the number of interventions (| M|, isInCriticState(m), programState(m)).

Event detection is essential when a device enters in a critical state. The healthcare
provider needs to be called right away because the situation corresponds to an emer-
gency.
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Priority Management After each iteration, all agents set their next intervention time
v depending on their knowledge about their devices. However, if an agent 7 asks for a
quicker intervention than its neighbours, ¢ will not necessarily be satisfied if it is not the
most critical in the system.

In order to deal with this issue, we define the concept of priority for the DCOP
solver. The classic DPOP algorithm generates a DFS tree for the problem to solve.
But for the same problem, several DFS trees may be generated. Yet, depending on the
generated tree, the algorithm finds a local solution (possibly the best solution, but not
necessarily).

Yet, in our case study, finding a local solution is not enough. We therefore search
for the best solution because healthcare providers need to check on the most urgent
patients first. To do so, we define some specific rules for the DPOP that allow agents to
declare themselves as more important. More precisely, those rules impact the tree graph
construction in the first phase of DPOP by putting the most important agents at the top
of the DSF tree. This allows them to choose their intervention time first. Three specific
priority rules are defined:

— Critical Priority is triggered when a device enters a critical state. The concerned
agent will ask other agents to start a new DCOP computation handling its condi-
tion. This priority is the most important. When this rule applies, it overcomes all
the others. When triggered, all agents will start a new computation of the DCOP
algorithm.

— Time Priority is triggered when a device needs intervention since the last iteration,
but no healthcare provider has been able to intervene. At each iteration, the agent
will increase its priority until a healthcare provider answers the call.

— Intervention Consequence Priority is triggered after a healthcare assistant pro-
vides an intervention. When triggered, the priority of the concerned agent is re-
duced to the lowest value.

6 Empirical Evaluation

We have evaluated the performance of our method using the DPOP algorithm. The
algorithm was implemented in Python 3.6 and deployed on Raspberry Pi devices, using
Broadcom BCM2837 64-bit processor with four ARM Cortex-AS3 hearts - 1,2 GHz.
The use of Raspberry pi allows us to physically distribute our agents - as it will be
the case in a real situation. DPOP was also implemented using Frodo [8]. In order
to communicate, the Mqtt protocol was used with a Mqtt Server running on a local
gateway. All compared values are averages on up to 10 to 50 consecutive simulations
(the exact number depends on the used method with the Frodo simulator or with the
deployed system and their multiple parameters). All algorithms are evaluated according
to their execution time. We ran our experiments with all our different approaches: room-
based approach, area-based approach and the multi-variable area-based approach.

6.1 Benchmarking

The Figure 3a represents the execution time of each approach: Room Approach in
solid line; Area Approach in big dots; and Multi-variable Area-based Approach
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Algorithm 1 Scheduling Agent pseudo-code

Require: root = NULL
for all agents do
if root == NULL then
send starting signal
else
send starting signal with root as a parameter
end if
end for
while results size < number of agents do
wait
end while
for all results do
if result == 0 then
root = agent
Start over
end if
if result < 30 and agent.priority > O then
agent.priority = agent.priority + 1
end if
if result > 30 and agent.priority > O then
agent.priority = 0
end if
end for

Algorithm 2 DPOP Agent pseudo-code when receiving a message to start

if root != NULL then
run DPOP algorithm with root as the DFS Tree root
else
run DPOP classic algorithm
end if
return result

with dashed lines. Multiple curves are shown for different numbers of agents in the
system. Whatever the situation, these curves show that the fastest approach is the Area
Approach (execution time between 1,29 and 2,68 seconds by agent). The Room Ap-
proach also gives good results (between 3,75 and 5,6 seconds). This evaluation shows
that the Area Approach can offer faster results but it will be at the detriment of the
precision of the results. The Figure 3b summarizes these results. Figures 5a and 6a
present the results with 6 agents. Among them, 3 agents run on Raspberry Pi devices
and 3 agents run on Windows 10 computers. Figures 5Sb and 6b show a similar situa-
tion but with 10 agents (3 agents on Raspberry Pi devices and others on Windows 10
computers). Also, dotted lines represent a specific simulation performed with simulated
Raspberry Pi devices (QEMU). The use of this simulator drastically increased the ex-
ecution time because this simulator uses more computer resources. Therefore, we will
focus on the analysis of the results represented in solid lines. The total execution time
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Fig. 3: Evaluations of our algorithm. (a) Execution time of the system deployed on
Raspberry Pi devices depending on the approach for a medical department of 6 rooms.
(b) Average execution time of the system deployed on Raspberry Pi devices depending
on the approach for a medical department of 6 rooms.

of our deployed system is higher than the execution time we observed with the DPOP
simulation (cf. Figure 4). For 6 agents (cf. Figure 5a), we provide a solution in less
than 1 second using the simulator and in less than 5 seconds with our deployed system.
This can be explained by the fact that our system provides an optimal solution, whereas
FRODO provides a local optimum. This is the case because the “priority constraint”
cannot be taken into account by Frodo without completely rewriting the DPOP algo-
rithm. Secondly, regardless of the number of agents, the execution time is quite similar.
Against the Room Approach, the Area Approach runs the algorithm much faster. For
instance, 10 rooms divided into 4 areas give results in 1,64 seconds, and 10 rooms di-
vided into 6 areas give results in 2,15 seconds. This semi-decentralized approach allows
the system to produce more relevant results for great numbers of rooms (more than 30).
Furthermore, the algorithm gives 4,64 seconds for 50 rooms divided into 4 areas and
9,29 seconds for 6 areas. This is consistent since the system only has 4 to 6 agents
instead of 50 agents for the Room Approach.

Table 1 gives the execution times for the Multi-variable Area-based Approach.
If the method takes more time to execute, we observed some considerable differences
between two agents, execution times for the same iteration. For instance, in the ta-
ble 1, agent 6 takes 1571 seconds to execute and agent 4 takes 129 seconds while
others take less than 65 seconds. Those major differences can be explained by the
new data structure that the agents use. Indeed, instead of using matrices of |D| di-
mensions, the agents are computing matrices of | D| bRoomsArea(a:) dimensions where
NbRoomsArea(a;) is the number of rooms managed by the agent a;. Therefore, de-
pending on their positions in the tree graph in the DPOP algorithm, some agents will
have to deal with much more data because each parent in the tree will receive as much
matrix |D|NbReomsArea(ai) a4 it has children. The resulting matrix will then have the
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Fig. 4: Execution time depending on the number of agents using FRODO.

following dimension: | D|NbfieomsArealai) y NbChildren(a;) where NbChildren(a;)
is the number of children for the agent a; in the DFS tree.

Area 1 2 3 4 5 6

Time (s) 66.9566.6766.91129.360.991571.99

Table 1: Execution time for 12 Rooms and 6 Areas (with a Multi-variable Area-based
Approach).

6.2 Message Size

Our algorithm (and DPOP in general) requires a linear number of messages. This is
explained by the DFS construction which requires 2 x [ messages, where [ is the num-
ber of edges in the tree graph. For n agents, Util DPOP phase requires n — 1 messages
(from the bottom to the top of the tree). The Value propagation requires n — 1 mes-
sages (from the top to the bottom of the tree). The maximum message size and memory
requirements grow exponentially with the number of agents. More precisely, DFS and
Value messages are size and memory linear. But the complexity lies in the size of the
Util messages, which is space and time exponential. Figures 6a and 6b give the size of
the exchanged messages between the agents (respectively for 6 agents in the system,
and for 10 agents). Those curves show the average size of the received messages for
each agent depending on different tested situations. Our system exchanges very tiny
messages compared to a Frodo simulation. For example with 10 agents (plain curves),
the agent number 3 is the one receiving huge messages (average of 3800 bytes). But
with Frodo, average messages size is in the order of 102 Kbytes. These results are
explained by the fact that we use the Mqtt communication protocol, which allows to
define a specific message structure. Also, regarding the Figures (6a and 6b), we observe
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Fig.5: Execution time comparison between our system and QEMU simulations. (a)
Comparison for 6 agents. The figure shows the quality of the solutions and that our
system performed better on Raspberry Pi devices. (b) Comparison for 10 agents.

important variations from one agent to another. Those results are explained by the algo-
rithm processing method. Indeed, depending on the DFS tree generated during the first
phase, the agents at the top of this tree will receive bigger messages because their chil-
dren will send them bigger matrices during the Util propagation phase. The Util matrix
is a multidimensional matrix, with one dimension for each variable of the problem to
solve. Therefore, every time an agent received a Util matrix from one of its children,
the current agent increases the dimensions of the matrix (because the agent adds its own
variable to solve to the matrix). In the DPOP algorithm as described by A. Petcu, each
dimension of the matrix corresponds to the possible value of an agent. Each agent who
receives a matrix from one of these children (in the DFS tree) actually receives a cost
matrix based on the value the child will take. The more the matrix goes up in the DFS
tree, the more children are to be taken into account, so the more dimensions there are.
For instance, in the Figure 6b, agents 1 to 3 received bigger messages than other agents
because they are at the top of the tree and they have to compute more data. The same
effect is observed for the agent 2 in the Figure 6b.

7 Conclusion

In this paper, we have proposed an intelligent system to ease the daily work of the medi-
cal staff in helping patients. Our work offers a new method to supervise and monitor the
various devices running in the rooms of the medical department and leaves the medical
staff to focus on their patients. We provided a DCOP formalization of the problem and
showed how we use the DPOP algorithm to solve it. Our method produces an efficient
solution in terms of alerting healthcare professionals in intervention times. We showed
the robustness of this solution to dynamic events. We also provided different formula-
tions of the model with different degrees of privacy preservation when it comes to the
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Fig. 6: Evaluation of the messages size. (a) Average received messages size compari-
son between our system deployed on Raspberry Pi devices and our system deployed
with QEMU simulator (for 6 agents). (b) Average received messages size comparison
between our system deployed on Raspberry Pi devices and our system deployed with
QEMU simulator (for 10 agents).

messages passed around. While our work has shown the potential of the DCOPs to solve
the medical device management problem, in the future, we aim to extend our method
to consider a more sophisticated system with cameras to detect healthcare providers
movements in the medical department. More precisely, we want to deploy our system
on Arduino instead of the Raspberry to follow up on this work. We also aim to test our
system with real devices like syringe pumps and multi-parameter monitor as they are
the most common ones in most medical services.
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