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ABSTRACT

Speech enhancement algorithms using polynomial matrix eigenvalue
decomposition (PEVD) have been shown to be effective for noisy
and reverberant speech. However, these algorithms do not scale well
in complexity with the number of channels used in the processing.
For a spherical microphone array sampling an order-limited sound
field, the spherical harmonics provide a compact representation of
the microphone signals in the form of eigenbeams. We propose a
PEVD algorithm that uses only the lower dimension eigenbeams
for speech enhancement at a significantly lower computation cost.
The proposed algorithm is shown to significantly reduce complex-
ity while maintaining full performance. Informal listening examples
have also indicated that the processing does not introduce any no-
ticeable artefacts.

Index Terms— Polynomial matrix, speech enhancement, spher-
ical microphone arrays, multichannel signal processing

1. INTRODUCTION

The acquisition of speech is important for many applications such as
hearing aids, telecommunications and automatic speech recognition.
The performance of these applications is usually reduced because the
received signal is often degraded by background noise and reverber-
ation. To overcome these degradations, microphone array processing
techniques have been proposed for speech enhancement.

Among many possible array geometries, spherical arrays have
gained much interest [[1)2]]. Spherical microphone arrays can provide
a compact representation and efficient processing of the 3D sound
field in the spherical harmonic (SH) domain. They are used in sound
field decomposition [3]], 3D sound reproduction [4[[5]] and for appli-
cations such as sound zones, spatial audio and virtual reality.

Beamforming using spherical arrays has been proposed for lo-
calization and tracking [|6,[7], noise reduction [8] and dereverbera-
tion [9]]. However, the speech enhancement problem considered here
requires suppression of both noise and reverberation. This problem
has been addressed in, for example, [|[10f11]] but with the requirement
of prior information or with performance dependent on the reliability
of direction-of-arrival and/or relative transfer function estimators.

In [12H14]], a polynomial matrix eigenvalue decomposition
(PEVD)-based speech enhancement approach based on the second-
order sequential best rotation (SBR2) [[15H17]] or sequential matrix
diagonalization (SMD) [18]] algorithm, has been proposed. This ap-
proach can suppress noise and reverberation while improving speech
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intelligibility and quality, without introducing any audible artefacts
and without the requirement to estimate any acoustic parameters.
While it has been shown to be robust for linear and arbitrary array
geometries in noisy reverberant environments, the algorithm does
not scale well in complexity with the number of channels used [[19].

In this paper, we propose a novel PEVD-based speech enhance-
ment algorithm that operates on eigenbeams developed in the SH
domain, rather than the raw microphone signals in the time-domain.
This capitalizes on the compact representation of spherical micro-
phone array signals using spherical harmonics and exploits the capa-
bilities for speech enhancement offered by the PEVD algorithm. The
proposed algorithm is compared and evaluated against benchmark
approaches using simulated and measured room impulse responses
and noise signals. Informal listening examples, available at [20],
highlight that speech enhancement is achieved with no significant
processing artefacts.

2. PROBLEM FORMULATION

The noisy and reverberant speech signal arriving at the g-th micro-
phone on a spherical array at time sample n, is

zq(n) =hgso(n) +vg(n), n=0,...,N, M)

where hy = [hqo,. .., hq,J]T is the acoustic channel from the
source to the g-th microphone, modelled as a J-th order finite im-
pulse response filter, so(n) = [so(n), ..., so(n —J)] " is the ane-
choic speech signal vector, vg(n) is the additive noise, that is un-
correlated with the speech component, and []T is the transpose op-
erator. To express the microphone signals in terms of the array ge-
ometry explicitly, (T) can be written as x4(n) = z(n,r,), where
rq = (r,0q, ¢q) is the location of the g-th microphone relative to the
array centre expressed in spherical polar coordinates, r is the radius,
0, and ¢, are elevation and azimuth angles. The received signals
at the array are x(n) = [z1(n), ... ,xQ(n)]T with v(n) similarly
defined, and x(n, r) = [z(n,11),...,z(n, rQ)]T is used when the
array geometry is explicitly modelled.

3. MULTICHANNEL ARRAY PROCESSING

3.1. Spherical Harmonic Decomposition

The real spherical harmonic transform (SHT) of the sound field,
which is spatially sampled using ) microphones on a spherical ar-
ray, is approximated by [21]]

Q
xe'(n) = Z aqz(n, re) Ry (rq), 2)

q=1



where a4 is the quadrature weight, x7"(n) is the ¢-th order, m-th
degree time-domain eigenbeam signal associated with the real SH
basis function, Ry*(r,), defined as [2]

V2(=1)"{Y" (1)} m <0
Ry (r) = { Y2(r) m=0, 3)
V2(-1)"R{Y (1)} m >0

where ;"' (r) = / (Qiil) Eﬁ;g;Pg”(cos 0)ei™?, Py (-) is the as-

sociated Legendre function, 3 and J denote the real and imaginary
parts of a complex number. Any function on the sphere can be ex-
pressed as a weighted combination of the spherical harmonics given
by [1,2]

L 4
2(n,rg) =) Y X (m)RI(rg). S

=1 m=—

Alias-free spatial reconstruction of the sound field can be achieved
if @ > (L + 1)?, where L is the maximum SH order of the sound
field. The sound field can then be represented by £ = (I + 1)?
eigenbeam signals in the time-domain and is compactly written
as x(n) = [x0(n), x11(n), xo(n), .. .,Xﬂ(n)]T, with elements
arranged in ascending SH order and degree.

3.2. Polynomial Matrix Eigenvalue Decomposition

The space-time covariance matrix, which is parameterized by the
temporal lag 7, is defined as [|15]

Rxx(7) = E{x(n)xT(n -7} (5)

where the (p, ¢)™ element, 7,4 (7), is computed using the correlation
between the p-th and g-th microphone signals and E{-} is the expec-
tation operation over n. This produces auto- and cross-correlations
on the diagonals and off-diagonals of Rxx (7), respectively.

Classical subspace-based approaches for narrowband signals
evaluate (3) only at 7 = 0 and then the received signals are decor-
related using an eigenvalue decomposition (EVD). The instanta-
neous spatial covariance matrix, Rxx(0), has been shown to be
unable to represent fully the correlation structure of broadband sig-
nals like speech [[12,[15]]. Decorrelation of speech signals is more
completely achieved by considering a range of time lags. Accord-
ingly, the concatenation of the covariance matrices in (3) for all
values of 7 € {—N,..., N} gives a 3D-tensor of dimensions,
QxQx (2N +1).

Speech signals, which are typically processed using the short-
time Fourier transform, will require further expansion into a 4D-
tensor of dimensions, @ X Q X (2N +1) x K, where K is the number
of frequency bins. However, this approach divides broadband signals
into multiple narrowband signals, ignoring the correlations between
frequency bands and neglecting phase coherence across bands [22].
An alternative representation is the z-transform and, because of sym-
metry, the z-transform of (3) is a para-Hermitian polynomial matrix

Rxx(z) = Z Rxx(T)Z7T7 (6)
satisfying Rxx(2) = RE(2) = RE(271), where []7 and []°
are the Hermitian and para-Hermitian operators respectively. The
PEVD of (6) is [13]

R (2) 2 UL (2) A (2)Ux (2) € RY*C, )
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Fig. 1. Block diagram of the proposed algorithm.

where the rows of Ux(z) are the polynomial eigenvectors and the
elements on the diagonal matrix Ax(z) are the polynomial eigenval-
ues. To compute (7)), iterative algorithms based on the SBR2 [T5H17]]
and the SMD [18] have been proposed.

At each iteration, the PEVD algorithm will first search for the
off-diagonal element with the largest magnitude. If its magnitude
exceeds a predefined threshold d, a delay polynomial matrix is ap-
plied to bring the element to the z° plane. A unitary matrix, which is
designed to zero out the element, is applied to the entire polynomial
matrix. A trimming procedure [[15]] based on y, a fraction of the total
Frobenius-norm squared, is also used to keep the polynomial order
compact. The algorithm terminates when the magnitudes of all off-
diagonal elements are less than § or when the user-defined maximum
iteration number, ¢, is reached.

4. PEVD-BASED ENHANCEMENT USING EIGENBEAMS

The PEVD-based algorithm [[12H14] has been shown to be robust and
effective for speech enhancement in diverse acoustic environments.
Rxx(z), on which the PEVD operates, has Q*(2N + 1) elements
and a computational complexity, O(Q®N) due to matrix multiplica-
tions applied to every lag [[19] and is of much larger complexity than
the SHT, which uses matrix-vector products. Hence, the complex-
ity can be reduced by compressing the space-time covariance matrix
using the SHT which reduces @ to £, where typically £ < Q, if the
enhancement performance is not significantly compromised.

In our approach, instead of using () microphone signals to repre-
sent the L-th order sound field around the spherical array, a lower di-
mension £ eigenbeams are used. The SHT uses all microphone sig-
nals for processing and this may reduce diffuse sensor noise in each
eigenbeam [2[]. However, this approach only decomposes the sound
field spatially and we aim to improve speech enhancement perfor-
mance for other noise types and reverberation by also exploiting tem-
poral correlations via PEVD. Accordingly, we aim to achieve further
improvement by using the eigenbeams as inputs for the PEVD algo-
rithm, as summarized in Fig.[TJand Algorithm 1.

The space-time covariance matrix of the eigenbeams is

Rax(1) = E{x(n)x" (n = 7)} = ¥ Rux(1)¥,  (8)

where Rxx(7) is the space-time covariance matrix of the raw mi-
crophone signals in (3) and ¥, is defined by

Ri(r1), ..., REI(r1)
W= : ' : € RO*E, o)
R{(rq) RE(rq)
The PEVD of (§) is
Rxx(z) = ui(Z)Ax(Z)ux(z) € RE*, (10
and the processed output is
y(2) = Ux(2)x(2)- (11)



Assuming stationarity, (8) is estimated in practice using

A
1
Ryx () = PN Z x(n)x" (n—7) (12)
n=0

where ) is the frame size. The z-transform of is

w
Rxx(z) = Z Rox (7)277, (13)
T=—W

where W is the truncation window that captures the temporal corre-
lations of the eigenbeam signals, outside which R (7) = 0.

We consider a single speech source and therefore the rank of
the signal subspace in Ax(z) or Ay (2) is 1, thereby, suggesting an
opportunity for compression. By construction, W is rank deficient
when £ < Q. For an order-limited sound field with @) being neces-
sarily large to avoid spatial aliasing, the proper selection of the order,
L, can sufficiently represent Rxx (7) of the microphone signals us-
ing a smaller dimension R (7) of the eigenbeams. This effective
compression allows the PEVD to be computed at a lower cost.

Algorithm 1 PEVD-based enhancement using eigenbeams.
Inputs: x(n) € R?, a, L, \, W, 6, 1, ¢.
x(n) < x(n) // SHT, see [@)
Ry (1)  E{x(n)x"(n — 1)} /see ([0
Roxx(2) <= Z{Rox (7)} // see
U (2), Ax(z) < PEVD {Rxx(2), 6, p, L} // use any [|I5H18]
x(z) + Z{x(n)} / see
v(2) < Ux(2)x(z) // speech enhancement
return y(z).

5. SIMULATION AND RESULTS

5.1. Experimental Setup

Anechoic speech signals sampled at 16 kHz are taken from the
TIMIT corpus [23]]. In Experiment 1, the SMIRgen tool in [24]
is used to generate room impulse responses for a 32 microphone
spherical array with radius 4.2 cm. The room has dimensions 5 mx
6 m x 4 mand Ts0 = 0.3 s. The positions of the source and the ar-
ray centre in metres are (3.37,4.0,1.7) and (1.67,4.0,1.7). White
Gaussian noise is used to simulate sensor noise. In Experiment 2, the
Lecture Room 2 impulse response with 759 = 1.22 s and the babble
noise signals, which are recorded using the 32-channel Eigenmike
spherical array [25], are taken from the ACE corpus [26].

In each experiment, 50 trials were conducted. For each trial,
sentences from a randomly selected speaker were concatenated so
that each speech signal lasted for 8 to 10 s. The anechoic speech
signal was convolved with the room impulse response before adding
noise to obtain the microphone signals at a specified input SNR. The
SNR was varied from -10 dB to 20 dB.

The parameters for the PEVD algorithms were p = 107>,
¢ =500, = \/N1/3 x 10™2, where N; is the square of the trace-
norm of Rxx (0) and A = W = 1600 samples. To study the effects
of using SHT, two cases L = 1 (PEVD L1) and L = 2 (PEVD L2)
were computed. Correspondingly, 4 and 9 eigenbeam signals were
used as inputs to the PEVD algorithm. The quadrature weights o
were computed based on the non-uniform method in [27].

The proposed approach is compared against the PEVD-based
method which uses the raw microphone signals (RAW PEVD) [13].

Table 1. Spherical harmonic order, L, number of eigenbeam signals
L, approximation error, £(%) and PEVD computational complexity
factor § relative to ) = 32, for a single speech example.

L 0 1 2 3 4
L 1 4 9 16 25
e(%) | 3.82  3.77 3.45 2.74 1.38

B - 0.002 0.022 0.125 0477

Eigenbeams x§(n) and x1(n) are also evaluated since the former
can provide some noise reduction while the latter represents a dipole
directed at the source for Experiment 1. To demonstrate the decorre-
lation ability of the PEVD, Karhunen-Loeve transform (KLT) [28]] is
also applied to the eigenbeam x§(n) (KLT{x$(n)}) since space and
time decoupling is achieved by using SHT and KLT, respectively.

5.2. Evaluation Metrics

The evaluation uses measures of the segmental signal to noise ratio
(SegSNR) and frequency-weighted SegSNR (FwSegSNR) for noise
reduction [29]], normalized signal-to-reverberant ratio (NSRR) and
Bark spectral distortion (BSD) for dereverberation [30], short-time
objective intelligibility (STOI) for speech intelligibility [31]] and per-
ceptual evaluation of speech quality (PESQ) [32] for speech quality.
The metrics are computed for the microphone and enhanced signals
and the improvement A is reported for each case. Positive A values
indicate improvements in all measures, except ABSD, for which a
negative value implies a reduction in spectral distortions.
The approximation loss, quantified as a percentage, is

__ X —a(nro))?
e (@(n,1))?

that is the total squared error between the received signals = and re-
constructed microphone signals using the L-th order SH &, normal-
ized by the total energy of the received signals in () microphones.
The PEVD complexity factor relative to () = 32, which is esti-
mated using 8 = (%)3, quantifies the computational savings.

x 100%, (14)

5.3. Experiments and Discussion

For a single example received by the spherical microphone array in
a SMIRgen simulated room and corrupted by 0 dB white noise, Ta-
ble[T[shows the approximation error, €, associated with different SH
order L. As expected, € decreases with increasing L. The relatively
small values of € obtained even using just the low-order eigenbeams
suggests that the raw microphone signals may be highly redundant
and may be compactly represented in the SH domain. [ is signif-
icantly lower for a small number of eigenbeam signals £, and is
omitted for £ = 1 since PEVD is a multichannel algorithm.

Table [2] compares the speech enhancement performance of the
algorithms for a single example from Experiment 1. In this setup, the
PEVD-based algorithms perform comparably with PEVD L2 per-
forming best in all metrics. PEVD L1 gives a bigger improvement in
AFwSegSNR and ABSD compared to RAW PEVD, which uses all
microphone signals directly. After PEVD L2, the x1(n) eigenbeam
directed at the source gives the best ASTOI. Applying the KLT to
X5 (n) improves all measures except for ASTOL

Speech enhancement performance for 50 Monte-Carlo trials in
Experiment 1 is shown in Fig. 2] Across all measures and SNRs,
the PEVD-based algorithms including RAW PEVD, PEVD L1 and
PEVD L2 are ranked first or second after KLT{xJ(n)}, which is



Table 2. Speech enhancement performance for a single speech ex-
ample in a SMIRgen simulated room, corrupted by 0 dB white noise.

(dB) (a)ASegSNR (higher is better) (dB)  (b)AFwSegSNR (higher is better)

[ Algorithm  AFwSegSNR  ASTOI APESQ  ABSD |
5 5
x0(n) 486 dB 0055 042  -153dB .
KLT{xJ(n)} _ 5.56 dB 0054 051  -1.65dB . .
') 0.89 dB 0.122 044  0.65dB L
PEVD LI 572 dB 0110 047 -1.68dB . .
-10 0 10 20 -10 0 10 20
PEVD L2 592dB 025 051 -1.71dB o o 5
RAW PEVD 5.59 dB 0.119 0.49 -1.62 dB (¢)ASTOI (higher is better) (d)APESQ (higher is better)
(dB) (a)ASegSNR (higher is better) (dB)  (b)AFwSegSNR (higher is better) 58
10f & 5 % was®™®
10 s
5 5 : '
8
0 ob
-10 0 10 20 -10 0 10 20
SNR (dB) SNR (dB)
5 5 (dB) (e)ANSRR (higher is better) (dB) (f)ABSD (lower is better)
-10 0 10 20 -10 0 10 20 g
SNR (dB) SNR (dB) 10
(c)ASTOI (higher is better) (d)APESQ (higher is better)

0.25 1.2

-10 0 10 20 - -10 0 10 20
SNR (dB) SNR (dB)
(dB) (e)ANSRR (higher is better) (dB) (f)ABSD (lower is better)

10 0 10 20 ) 10 0 10
SNR (dB) SNR (dB)

Fig. 2. Speech enhancement results for white noise in a SMIRgen
simulated room with 0.3 s reverberation time.

optimal for white noise, or the x1(n) eigenbeam, which is pointing
directly at the source. The PEVD-based algorithms perform compa-
rably well, even though different numbers of channels are used for
processing. This highlights that processing the eigenbeam signals
instead of the raw microphone signals for speech enhancement can
be effective and computationally advantageous.

When recorded signals from the ACE corpus are used, Fig. [3]
shows that RAW PEVD provides the greatest improvement across
all metrics for SNR> 0 dB and is closely followed by PEVD L2 and
PEVD L1. The xJ(n) eigenbeam shows some improvement and
the use of KLT does not offer further improvement and may even
introduce processing artefacts when the noise is not white. This can
be seen from a slight reduction in ASTOI and APESQ in Fig. EI: and
Fig. [3d for babble noise. The x1(n) eigenbeam is not expected to
perform well because it is no longer pointing at the source directly
and may only pick up weaker reverberant components along with
noise.

10 0 10 20 REET) 0 10
SNR (dB) SNR (dB)

Fig. 3. Speech enhancement results for babble noise in ACE Lec-
ture Room 2 with 1.22 s reverberation time.

At -10 dB SNR, the PEVD algorithms which use the eigen-
beams, PEVD L1 and PEVD L2, perform better than RAW PEVD.
In very noisy environments, the generated eigenbeams take ad-
vantage of the noise reduction offered by the signal independent
SH domain processing but this is not available to RAW PEVD. At
other SNRs, they perform comparably even though PEVD L1 and
PEVD L2 use 4 and 9 channels respectively compared to the 32
channels used in the RAW PEVD approach.

6. CONCLUSION

The proposed approach, suitable for a spherical microphone array
sampling an order-limited sound field, uses spherical harmonics to
generate eigenbeam signals. Instead of processing the microphone
signals directly, the PEVD algorithm is applied to the lower di-
mension eigenbeam signals. The proposed PEVD processing of the
eigenbeams for speech enhancement has been shown to perform
almost identically, and sometimes even better, than applying PEVD
to all the raw microphone signals. However, importantly, the com-
plexity factor of the proposed algorithm was shown to be 0.002 to
0.477 compared to PEVD processing of the raw microphone signals.
Listening examples, available at [20], also indicate that our approach
does not introduce any noticeable artefacts.
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