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by Yan Zhang

In this thesis, we develop various techniques for working with sets in
machine learning. Each input or output is not an image or a sequence,
but a set: an unordered collection of multiple objects, each object de-
scribed by a feature vector. Their unordered nature makes them suitable
for modeling a wide variety of data, ranging from objects in images to
point clouds to graphs. Deep learning has recently shown great success
on other types of structured data, so we aim to build the necessary

structures for sets into deep neural networks.

The first focus of this thesis is the learning of better set representa-
tions (sets as input). Existing approaches have bottlenecks that prevent
them from properly modeling relations between objects within the set.
To address this issue, we develop a variety of techniques for different
scenarios and show that alleviating the bottleneck leads to consistent

improvements across many experiments.

The second focus of this thesis is the prediction of sets (sets as output).
Current approaches do not take the unordered nature of sets into ac-
count properly. We determine that this results in a problem that causes
discontinuity issues with many set prediction tasks and prevents them
from learning some extremely simple datasets. To avoid this problem,
we develop two models that properly take the structure of sets into
account. Various experiments show that our set prediction techniques

can significantly benefit over existing approaches.
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Chapter 1

Sets in machine learning

Sets are collections of things without a natural ordering to them. For
example, the types of fruit that someone has eaten in the past week
can be considered a set of fruit. While it may be possible to order them
in some way (such as by name, date last eaten, tastiness, etc.), there is
no inherently “correct” ordering. Talking about the nutritional value
of the collective {apple, raspberry, blackberry} is exactly the same as
talking about {raspberry, blackberry, apple}. The order that they are
written down in is different, but the set of fruits itself is the same. This
is in contrast to data that do have a natural order, like the words in a
sentence — a sentence can lose much of its meaning when the individual

words are shuflled around.

Such sets are a natural way of describing different kinds of data in the
real world. There are many problems of interest to the machine learning
community that can be described in terms of sets: predicting the set
of objects in an image is known as object detection; Lidar scanners
on self-driving cars produce a set of 3d points of their surroundings
to find obstacles; properties of molecules can be predicted based on
the set of atoms and the set of bonds connecting those atoms. In all of
these examples, a machine learning model either takes a set as input or

produces a set as output.

In this thesis, we will focus on a specific type of machine learning
method for working with sets: deep neural networks. In recent years,
these have stood out as one of the most successful approaches on struc-
tured data like images and text. Part of this success is due to the building
blocks that these deep neural networks are made of. These building
blocks (like convolutions for images) take advantage of the structure
in the data and allow the neural networks to learn much more effi-

ciently.
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large cyan rubber sphere,
small blue rubber cylinder,
small purple metal cube,
small yellow metal cube,
large cyan rubber cube,

small green rubber sphere,

Figure 1.1: Example sets that we will work with throughout the thesis. (a) set of object proposals
(Chapter 3). (b) set of image tiles (Chapter 4). (c) set of points in a point cloud (Chapter 5). (d) set
of object attributes (Chapter 6).

With sets, this structure is given by their unordered nature. While
there is existing work on neural network approaches to sets (which
we briefly review in[Chapter 2), the set domain has been studied to a
much lesser extent than domains like images and text. What building
blocks are needed to adequately handle sets with neural networks? This
question is what this thesis explores by identifying shortcomings in
existing techniques and developing new techniques for modeling sets

with neural networks.

We begin by motivating our work with a benchmark task for Machine
Intelligence: visual question answering. The task requires a machine to
answer natural language questions about images, such as “how many
people are there?” about the image in (a). These questions can
be arbitrarily difficult, so the task probes the edge of what is possible
with current machine learning techniques. While this task was initially
defined with images as input, extracting and using the set of objects in
the image has been found to lead to better results [4]. This makes visual
question answering a task with set inputs. We identify a problem with
existing visual question answering models in[Chapter 3| which means
that counting questions like the one above are virtually impossible to
answer. We then propose a building block that fixes this issue. Our

work on this task shows that sets can be quite interesting to work
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with and how existing methods for sets can fall short. This is what
motivated us to continue researching ways of modeling sets with neural

networks.

We move on from this specific application of sets to more general set
problems. There are two main directions for this: a machine learning

model can take a set as input or produce a set as output.

Sets as input In these tasks, the inputs are sets and the desired output
is something else, like a classification or regression. In visual question
answering, the input is the set of object proposals (along with a question)
and the output is an answer. The objective is to extract as much relevant
information out of the set as possible. We worked on two different

methods for doing this:

« In|Chapter 4| we propose a way of learning to permute the elements
of the set into a list, which is easier to work with than the set.

This is based on the assumption that there are some orderings

that are easier to learn from [[101]], which our model tries to find.

« In|Chapter 5| we propose a model that involves sorting the features
in the set numerically. This allows the model to learn about the
distribution of features, which can better capture relationships

between set elements.

Sets as output In these tasks, we have some input and want to pro-
duce a set as output. In object detection, the input is an image and
output is the set of objects in that image. In[Chapter 5 we identify a
problem that we call the responsibility problem with existing set pre-
diction techniques, which can significantly hinder the learning of the
neural network. We then propose a solution which works in the limited
scenario of auto-encoders. From what we learned through this, we
develop a general set prediction algorithm in without the
auto-encoder limitation. This is the first neural network for predicting
sets that properly respects the unordered nature of sets, and - in our

opinion - it is the most significant contribution of this thesis.

We conclude the thesis by discussing potential future research direc-
tions in Sets are a natural way of modeling object-based
representations, which can be beneficial in a much wider variety of

tasks and models than sets are currently used in.



1.1. List of contributions

1.1 List of contributions

Concretely, this thesis contributes the following:

Chapter 2

« We provide an accessible introduction to modeling sets with neu-
ral networks. We cover how sets are represented (Section 2.2), set
encoders (Section 2.3), set decoders (Section 2.4), and how sets
are used in other areas of machine learning (Section 2.5).

Chapter 3| These contributions have been published as [118]] in the
International Conference on Learning Representations (ICLR) 2018 and
have been presented at the Visual Question Answering Challenge work-
shop, hosted at the Conference on Computer Vision and Pattern Recog-
nition (CVPR) 2018.

« We review related work on counting objects in images with neural

networks (Section 3.2)).

« We identify a problem in existing VQA models and explain why
they struggle with counting questions as a result (Section 3.3).

« We propose a model for counting sets of objects that avoids this

problem (Section 3.4).

« We evaluate our model on a toy dataset that we developed for

testing counting ability in an isolated setting (Subsection 3.5.1),
and on the full VQA v2 dataset (Subsection 3.5.2).

« We open-source the code to reproduce all our experiments at:
https://github.com/Cyanogenoid/vqa-counting
and the first publically-available code to reproduce a strong base-
line by Kazemi et al. [54] at:
https://github.com/Cyanogenoid/pytorch-vqa,

These contributions have been published as [[117]] in the In-
ternational Conference on Learning Representations (ICLR) 2019.

« We propose a model for learning permutations based on learning

pairwise comparisons (Section 4.2]).
« We review related work on learning permutations (Section 4.3).

« We evaluate our model on sorting numbers (Subsection 4.4.1), as-

sembling image mosaics explicitly or implicitly
(Subsection 4.4.3), and VQA v2 (Subsection 4.4.4).

« We open-source the code to reproduce all experiments at:

https://github.com/Cyanogenoid/perm-optim,


https://github.com/Cyanogenoid/vqa-counting
https://github.com/Cyanogenoid/pytorch-vqa
https://github.com/Cyanogenoid/perm-optim
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which also includes the first reproduction of the baseline results
by Mena et al. [71]).

Chapter 5| These contributions have been presented as [116] at the
Sets & Partitions workshop, hosted at the Neural Information Processing
Systems (NeurIPS) 2019 conference, and have been submitted to the In-

ternational Conference on Learning Representations (ICLR) 2020.

« We identify a responsibility problem with existing set prediction

methods, which results in discontinuities (Section 5.3)).

« We propose a set encoder based on sorting features numerically

and an associated set decoder for auto-encoding (Section 5.4).

+ We review related work on using sorting in neural networks

(Section 5.5)).

« We evaluate our auto-encoder on a rotating polygon toy dataset
(Subsection 5.6.1)) and a set version of MNIST (Subsection 5.6.2).

« We evaluate our encoder on MNIST set classification (Subsec]
tion 5.6.3), CLEVR (Subsection 5.6.4), and graph classification
(Subsection 5.6.5).

» We open-source the code to reproduce all experiments at:
https://github.com/Cyanogenoid/fspool,
which also includes the first reproduction of the baseline graph

classification results by Xu et al. [[105].

Chapter 6| These contributions have been published as [[115] in Ad-
vances in Neural Information Processing Systems 32 (NeurIPS) 2019
and have been presented at the Sets & Partitions workshop, hosted
at the Neural Information Processing Systems (NeurIPS) 2019 confer-

ence.

« We propose a model for general set prediction (Section 6.3)) that

avoids the responsibility problem.

« We review related work on predicting sets with neural networks

(Section 6.4).

« We evaluate our model on auto-encoding MNIST sets

tion 6.5.1), predicting the set of bounding boxes in an image
(Subsection 6.5.2), and predicting the set of object attributes in an

image (Subsection 6.5.3).

« We open-source the code to reproduce all experiments at:
https://github.com/Cyanogenoid/dspn, which includes
an implementation of the models by Achlioptas et al. [1]].


https://github.com/Cyanogenoid/fspool
https://github.com/Cyanogenoid/dspn

1.1. List of contributions

Chapter 7

« We discuss future research directions and open problems. We

discuss ideas in the area of set encoders (Section 7.1)), set decoders
(Section 7.2), and using latent sets in neural networks (Section 7.3).



Chapter 2

Basics of set neural

networks

In this chapter, we will introduce the basics of working with sets using

neural networks. This provides the necessary background from the set

literature to understand this thesis, especially|Chapter 4] [Chapter 5| and
This chapter is not an exhaustive review of the literature, but

an accessible introduction into the foundational work on modeling sets

with neural networks. We leave the more detailed discussions of related

work in the appropriate chapters, in particular [Section 3.2} [Section 4.3
[Section 5.5} [Section 6.4}

2.1 Overview

First, let us be clear with what we mean when we talk about sets. In
essence, sets are unordered collections of entities or elements. These
entities can be objects, people, atoms, symbols, and so on. Since we are
working in machine learning, it is useful to describe each entity in the
set with a feature vector. For example, we can have the set of points
in a point cloud and store their 3d position (xyz coordinates) as the set
{[x1, y1, 2], [x2, 2, z,]7, ...} with each [x;, i, z;]" as the feature vector
for a point in the set. Because the order of the points does not matter
— swapping the order of any two points does not change the shape
captured by the point cloud - this is indeed a set. Since the entities
in the set typically correspond to real-world things, it does not make
much practical sense to talk about infinitely many entities. So, the sets
we work with will always have a finite number of elements in them.
However, there is one major difference compared to sets in mathematics:
duplicates are typically allowed, so when we talk about sets, we usually

mean multisets (also known as bags).
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—_—— ——
.............. (-1,-1) — — (-1, 1)
Q O
® O (1, 1) — ED' A — (1,-1) ® O
............... (_]’ 1) (_1,_1)
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Figure 2.1: A neural network for auto-encoding a set of four 2d points. The set encoder encodes
the input set into a feature vector, which the set decoder decodes to predict a set. Notice how the
output points are not necessarily in the same order as the input points.

Let us see how this fits into existing machine learning setups. In tra-
ditional supervised learning, we have a dataset that consists of many
input-output pairs. The subject of interest in this thesis is when the
input or the output of the model is a set of feature vectors. These sets
usually vary in size across the dataset, so any model for sets has to be

able to work with varying set sizes.

There are two main types of operations that we care about, which we

visualise in [Figure 2.1

1. When the input is a set, we want to encode the input set into a
feature vector (Section 2.3).

2. When the output is a set, we want to decode a feature vector into

the output set (Section 2.4).

By relating sets of feature vectors with a single feature vector in this way,
we can combine these operations on sets with other, well-established
methods that operate on feature vectors. If we can also make encoding
and decoding differentiable, they can be included in deep neural net-
works. This gives us a fully differentiable model for sets that can be
trained with conventional methods for neural networks like stochastic

gradient descent (SGD) and its variants.

This differentiability is one of the important foundations that much
work in Deep Learning is built upon. We will take care to build our
models from differentiable primitives so that they easily fit into the
usual gradient-based neural network training framework. For more
background on deep neural networks, we refer you to part two of the

Deep Learning book [37]].

2.2 Representation in memory

To understand how set encoding and decoding works, we first have to

understand how the set itself is represented.
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Even though sets are orderless, we still have to store them in memory,
which forces them to be ordered in some way. Conveniently, the order
of the set elements does not matter, so we can store the elements in the
set in any arbitrary order. In essence, we treat the set of feature vectors
as if it were just a list of feature vectors, which means that we can
simply store it as a matrix. A set of size n wherein each feature vector
has dimensionality d can therefore be stored as an R™" or R™? matrix.
We will use one or the other in the upcoming chapters depending on
what makes the narrative the clearest, but we will always clarify which
one we are using in a chapter. In this chapter, we store them as R®>"

matrices: each column corresponds to one set element.

Let us look at an example. The set:

1 4
2 [,| 5 (2.1)
3 6

has two elements of dimensionality three. It can be stored as one

of these two (equivalent) matrices:

2.2)

W N =
N G
o
=
N G
W DN =

Storing the set as a matrix is memory efficient and easy to work with
through the usual matrix operations like matrix multiplication. How-
ever, this comes with the trade-off that there are now multiple repre-
sentations of the same set, one for each possible permutation of the set
elements. Since these different representations are an artefact of the
way the set is stored in memory, a key aspect when working with sets

is to not rely on this arbitrary ordering of the elements.

There is one additional consideration for minibatch-wise training with
sets, which is needed with stochastic gradient descent. Since the set
size typically varies across the dataset, we end up with sets of different
sizes in a minibatch. To make computation on a minibatch efficient, the
typical approach is to pad all sets within a batch to a fixed size with
elements of all zeros. This fixed size is usually the size of the largest set
in the minibatch or the size of the largest set in the dataset. We then
need to keep track of which elements are padding elements to not affect
the result. For example, if we want to compute a mean over the set

elements, we cannot divide the sum by the number of columns in the
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matrix (which includes padding elements not part of the set), but we

have to divide by the actual set size.

2.3 Set encoders

Now that we know how sets are stored, let us take a look at how such
sets can be encoded into a feature vector. We want to build a neural
network that can take a set of feature vectors as input and produce a
feature vector representation of that set as output. Set encoders can for
example be used for classifying what type of object the shape of a 3d
point cloud forms, or answering natural language questions about a set

of objects (visual question answering).

At this point, we have a matrix representation of the set and could
just use a traditional neural network approach — such as a multilayer
perceptron (MLP) — on it. The d X n matrix can be flattened into a dn-
dimensional vector and we could feed this into a normal fully-connected
neural network. This is essentially what Murphy et al. [[76]] do, which we
discuss in more detail in[Section 4.3] However, this has a major problem:
different representations of the same set can give a different output.
There is no guarantee that f([1,2,3]) = f([2,3,1]) = f([3,2,1]) = ...,
even though they all represent the same set {1, 2, 3}.

While a neural net as a universal approximator could learn to map all of
these to the same output, this quickly becomes infeasible for non-trivial
set sizes. With n elements in a set and thus n! different representations
of the same set, an MLP quickly runs into its modeling capabilities. This
is why Murphy et al. [76] recommend sampling many permutations at
test time and averaging the results to counteract this reliance on the

arbitrary permutation.

We already know that order should not matter for sets. So, let us be
smarter about this: rather than letting the MLP learn freely, we can
structure the neural network so that it is impossible for it to rely on
the arbitrary order. This lets the neural network focus on extracting
the pertinent information in the set, without having to learn to ignore
the order at the same time. Building the necessary structures into a
neural network to properly work with sets is the key approach in this

thesis.

2.3.1 Properties

To enforce a neural network to not rely on the ordering of the set
elements, there are two properties that are important to know about. In
the context of deep neural networks, these were first defined by Zaheer
et al. [[112].
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Permutation-invariance The property of permutation-invariance
says that the output of a function does not change when its input is
permuted. If a permutation-invariant function is applied to a set, then
we can guarantee that regardless of which arbitrary order we stored the
elements in, we get the same output. This ensures that the arbitrarily-
chosen order of the set can never affect the result. A permutation-
invariant function can be thought of as serving the same purpose as
pooling in convolutional neural networks (CNNs): it reduces multiple

feature vectors to a single feature vector.

Definition 1 A function f : R™" — R€ is permutation-invariant iff

it satisfies:

f(X) = f(XP) (2.3)

for all permutation matrices P.

Take the set from the previous example:

1 4
2 .| 5 (2.4)
3 6

Summing each feature over the set is permutation-invariant.

Regardless of which order the set is stored in, we have:

1+4 4+1 5
245 |=|5+2 |=]7]. (2.5)
346 6+3 9

We can do this because summing (as well as other operations like
calculating the mean, maximum, or the product) is commutative

and associative.

Another permutation-invariant function is numerical sorting.
We will elaborate on how to make use of this in

When building set encoders, this property of permutation-invariance is
what is ultimately needed. However, in the example, there are currently
no weights to be learned and the possible operations are quite simplis-
tic. Using a single sum as set encoder can only express rather basic
information about the set. This is where the second property comes in,

which adds in learnable weights.

11
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Permutation-equivariance Permutation-equivariance says that the
output of a function changes in a predictable way when its input is
permuted. The difference to the permutation-invariance property is
that the output is still a set, not a single feature vector. Changing the
order of the input should only change the order of the output, not any
of its values. Again, this property is to ensure that the arbitrary order

of the set elements does not affect the result.

Definition 2 A function g : R™" — R is permutation-equivariant

iff it satisfies:

9(XP) = g(X)P (2.6)

for all permutation matrices P.

Example 2.3

The most important permutation-equivariant function is apply-
ing a function on each set element, i.e. on each feature vector.
Since this function is applied on each set element individually,
it does not take the order into account, so it is permutation-
equivariant. Let us see what happens on our running example

with the function g(x) = ; x;.

1 4 [ (1 4
2 Slgl 2] gl s =[6 15] (2.7)
3 6
4 1
g9l 2 :[15 6] (2.8)
6 3

Swapping the first and second element of the input also swaps the
first and second element of the output. A widely-used choice for
g is a neural network, which lets the model learn a transformation
of the set elements. Another popular choice is concatenation of
the same feature vector to every element, which is common in
soft attention models [9,74].

With the two main properties in place, we can start combining functions
with these properties to give us more complex functions.

Corollary 1 The composition of two permutation-equivariant functions

g and h is permutation-equivariant.
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Proof.
h(g(XP)) = h(g(X)P) = h(g(X))P (2.9)

Corollary 2  The composition of a permutation-equivariant function g

with a permutation-invariant function f is permutation-invariant.

Proof.
f(g(XP)) = f(g(X)P) = f(9(X)) (2.10)

This means that we can compose equivariant and invariant functions
to build learnable and more powerful set encoders while still being

permutation-invariant on the whole.

2.3.2 Specific set encoders

Let us look at some specific examples of set encoder architectures used

in the literature.

Deep Sets One of the simplest set encoders is the Deep Sets model
by Zaheer et al. [[112]]. At its core, it is defined as:

mm:%Zam) (2.11)

xeX

We use x € X to refer to the columns in the matrix X, which correspond
to the different set elements. The set encoder h applies a neural network
g on every set element x (permutation-equivariant), then sums over the
transformed set (permutation-invariant). The feature vector result of
this is fed into another neural network p to perform the task at hand,
such as classification. While this seems quite basic, it turns out that it
is a universal approximator for permutation-invariant functions [[112}
103].

Relation Networks Of course, universal approximation does not
mean that the set encoder problem is solved, since it says nothing about
learnability and generalisation. Just like how there are improvements
to neural networks with a single hidden layer (which are already ca-

pable of universal approximation [27]), there are improvements to the

13
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Deep Sets model as well. One such improvement are Relation Net-
works [89]:

rX)=p| D) 9(xy) (212)

x,yeX

The difference here is that the sum is not over the transformed set
elements, but over the transformed pairs of set elements. Expanding the
set into the set of all pairs first is permutation-equivariant. To model
relations between different elements, the Deep Sets model can only
let information from the set elements interact through the sum. With
the Relation Network, g can model relations between pairs of elements
much more easily since it receives the pairs as inputs. This has been
successfully used in tasks where relations between set elements are
important [113, 80, 46]. This comes at the cost of @(n?) time complexity,
compared to the ®(n) complexity of Deep Sets.

PointNet PointNet [84] is a model designed for 3d point clouds. There
are two main differences to what we have seen earlier: the permutation-
invariant function is not a sum, but a maximum, and there are multiple

stages of encoding.

hi(X) = Pl(fpg((gl(x)) (2.13)
ha(X) = pa rilg})((gz(Concat[x, hi(X)])) (2.14)

Here, the set is first encoded to a feature vector using an elementwise
maximum in h;. This feature vector is concatenated to each element of
the set again, and this new set is once again encoded. This two-stage
process lets global information about the set (obtained with h;) be shared
with the individual elements, which can then affect the representation
in hy. Concatenation of a fixed feature vector to every element of the
set is permutation-equivariant, since it is simply a function applied to
every element. ps,p2, g1, and g, are once again MLPs with trainable

weights.

Attention Soft attention attempts to model the human ability to focus
on one thing out of many things. While not a full set encoder by itself,
this is used as a building block in not only set encoders, but also in
image and text encoders. The typical soft attention model [74} 9] takes
in a set and additional contextual information as input, and “attends” to
part of the set that is relevant to that context. This will come in use in
where the context is the question about the set.
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h(X,z) = Z 9(x,2)x (2.15)

xeX

g(x, z) is a neural network that outputs a scalar — which makes this a
weighted sum — and is also often normalised with a softmax function so
that it is a weighted average of the elements x. The specific weightings

depend on the context vector z.

Elements where g has a high value have a greater influence on the result
than where g is low. By giving certain elements higher weightings than

others, the model can “focus” on the relevant elements of the set.

A modification of this idea called self-attention [[100]] has recently found
great success in language modeling. In essence, every x is used as z to
attend on the X set (this is where the “self” comes from), rather than
using a single z from a separate model. This model is related to Relation

Networks, since all pairs of x, y € X are modeled by g again.

The example set encoders we have covered here demonstrate how com-
positions of permutation-invariant and permutation-equivariant func-

tions are used in practice.

2.3.3 Pooling bottleneck

We mentioned earlier that the typical permutation-invariant primitives
have no learnable parameters. Operations like sum and max are very
simple, but have to compress a (potentially very large) set into a feature
vector in a single step. This heavy compression can discard a lot of

information that could be useful for the downstream task [76,84]].

This is what motivates us to develop learned, permutation-invariant

approaches in [Chapter 4] and [Chapter 5| We show that by having a

more sophisticated, learned model for this step, results are frequently
improved. Due to the nature of composability of these set function
properties, replacing the sum or max pooling in an existing set encoder

with our approaches is straightforward.

2.4 Set decoders

Set decoders turn a feature vector into a set and are used when the
desired output is set-structured. There are a variety of such tasks,
ranging from object detection (predicting the set of objects in an image)
to molecule generation (predicting the set of atoms and the set of bonds
connecting them). This problem turns out to be much less studied than

the set encoder case.

15
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There are two new aspects to consider: how can we make this set
prediction with a neural network, and how can we compute a loss

between sets to use as the training objective?

2.4.1 Setlosses

Regardless of how the set is predicted, we have to compute the loss
between the predicted set and a ground-truth set in order to train
the model. The problem here is that both predicted set as well as
ground-truth set are in an arbitrary order. Naively computing a pairwise
loss — such as a mean squared error — does not work, since there is
no guarantee that the elements are in the same order in the matrix

representation.

Let us say that the prediction that a model has made is:

1 4
2 5 (2.16)
3 6

but the set label was stored as:

4 1
5 2 |. (2.17)
6 3

The model made the correct prediction of {[1, 2, 317, [4,5,6]7},
but a mean squared error would incorrectly think that the pre-
diction was wrong. The order of the elements in the target set
is arbitrary, so it is impossible for the model to guess the order.
By pairing up the first column in the prediction with the second

column in the label and vice versa, this issue is resolved.

Since the loss should not be affected by the order of either set, we need
something that is permutation-invariant in both its arguments. One
such loss is the Chamfer loss, which matches up every element of a
predicted set ¥ = (9, Y, .. .] to the closest element in the target set
Y = [y,,y,,...] and vice versa. A normal pairwise loss — like a mean

squared error — is used to measure this closeness.

N . 2 . R 2
Lena(Y,Y) = ijin|yi —yjH +ZmimHy,~ —yj” (2.18)
i J
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Chamfer loss Hungarian loss

/ ® .\O

Figure 2.2: Example of the assignments of the Chamfer loss (left) and Hungarian loss (right).
Orange points mark the target set, blue points mark the predicted set. The arrows show which
direction the loss pulls a predicted point. Each point of one colour (e.g. orange) is matched up
with the closest point of the other colour (e.g. blue). Blue arrows denote assignments from the

first term in[Equation 2.18| orange arrows denote assignments from the second term.

The nested sums and minimisations ensure the desired permutation
invariance in both arguments. One issue is that one element in one
set can be matched up with multiple elements in the other set. This
means that there can be issues with different set sizes and duplicates:
the loss between [1,1,2] and [1, 2,2, 2] is 0, even though the multisets
that are represented are clearly different. Conceptually, the Chamfer
loss treats the inputs as proper sets, not the multisets that we usually

work with.

A more sophisticated loss that does not have this problem involves
the linear assignment problem with the pairwise losses as assignment

costs:

2
(2.19)

Lhun(Y, Y) = r]?éﬁlz ng - yn:(i)’
i

where II is the space of all permutations. This minimisation can be
solved exactly with the Hungarian algorithm and has the benefit of
assigning each element in one set to exactly one element from the other
set. This comes with the trade-off of ®(n®) time complexity and that it
is not easily parallelisable. We visualise the difference between these
two losses in[Figure 2.2] which shows the Hungarian loss matching up

elements one-to-one.

2.4.2 Predicting sets

Now that we know how to define the training objective for set prediction

models, we need a model that is able to predict sets. The main approach
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to predicting sets in the literature is to use an MLP or RNN that simply
predicts the matrix representation of the set. To predict a set of size
n with vectors of size d, an MLP with nd number of outputs is used.
Alternatively, the initial state of an RNN (such as an LSTM [44]) with
d hidden units is initialised with the input feature vector and run for
n steps to produce the n X d outputs. To handle sets with variable
sizes, one option is to pad all sets in a dataset with zeros to a fixed size
and concatenate an additional feature to each set element, indicating
whether that element is a padding element. These two approaches are
essentially the only general ways to predict sets in the literature without

making domain-specific assumptions about the sets.

Aside: Object detection

For some specialised tasks like object detection, there are existing
approaches like Faster R-CNN that are not based on sets, but
a combination of heuristics. These are specifically tuned to the
image domain input and have certain drawbacks that a set-based
approach avoids. A set-based approach has the advantage of
being fully end-to-end differentiable, which potentially improves
the quality of the predictions compared to a multi-stage object
detector like Faster R-CNN. Traditional object detectors also
require post-processing of the outputs outside of the training al-
gorithm with techniques like non-maximum suppression, which

is somewhat inelegant.

The goal of this thesis is to explore approaches which work
generically for sets, without requiring input domain-specific
changes. Therefore, we limit ourselves to feature vectors as input
when predicting sets. Structured data like image feature maps
can always be turned into a feature vector, but not necessarily

vice versa.

These methods are somewhat unsatisfying, since they treat the set as
if it were just a list, with the only difference to predicting a list being
the use of the set loss. The MLP and RNN outputs are ordered, but
they are used to predict sets, which are unordered. We indeed find in
Section 5.3|that this can cause a responsibility problem. The mismatch
between ordered MLP or RNN outputs and unordered sets results in
discontinuity issues which hinders learning. The study in[Chapter 5|is
in part about this problem and our solution to it in the auto-encoding
setting. Then, we build on this work to develop a set prediction method
in[Chapter 6| without the responsibility problem that is no longer limited
to the auto-encoder setting. We show that our method can perform

tasks like end-to-end object detection in a purely set-based way.
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2.5 Other sets in machine learning

In this section, we discuss some related topics on sets in machine learn-

ing. This puts our work on sets into a broader context.

2.5.1 Pooling in CNNs

Global average pooling, which is commonly applied at the end of CNNs
such as ResNets [42], average the feature vectors across all spatial
positions in the CNN feature map. Essentially, global average pooling
treats the different spatial positions as if they were a set. The same
applies to global max pooling in order to summarise a feature map into
a feature vector, which has been used by Perez et al. [83]. This can lead
to surprising consequences where small patches of the input image can
be shuffled around and processed independently (just like a set) without

much loss of performance [[17]].

On a smaller scale, this applies to the non-global average and max
pooling as well. For max pooling with a kernel size of 2 X 2, the four

input feature vectors are treated as if they were a set.

Since these pooling methods are simply permutation-invariant func-

tions, we can substitute them with any other permutation-invariant

function. Our methods in|Chapter 4/and |[Chapter 5|could therefore be

used in CNNs. However, it is unclear whether they would make any
significant difference with the much greater importance of convolutions

over poolings in CNNs.

2.5.2 Per-element prediction

In some tasks, we have a set as input and want to predict something
about each element of the set, rather than the set as a whole. In other
words, these are set-to-set problems. While each element could be inde-
pendently predicted, there is some prior belief that there is additional
information to be gained from considering the other elements in the
set at the same time. An example of this is detecting an outlier in a set
of inputs [64]: determining an outlier requires finding commonalities
between the non-outliers, so it is sensible to make a prediction about

all elements in the set at once rather than one-by-one.

Unlike in set encoders, we want the output in these models to be equi-
variant rather than invariant. If h([a, b, c]) = [@’,b’, ¢’], then changing
the input to h([b, @, c]) should give us [b’, @’, ¢’]. Because the order of
the output is always the same as the input, there is no responsibility
problem and no need for the assignment-based set losses. This makes it

an easier problem than something like image-to-set. We will make use

of this benefit in
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Taking a step back, supervised learning with a dataset is itself a set
problem. The inputs in the dataset are fed into a model - the ma-
chine learning algorithm — which predicts an output for each element
in the set (set-to-set). There is usually a loss over the dataset, which
is permutation-invariant by averaging or summing across the indi-
vidual losses. From this, computing things like 9 loss/d parameters is
permutation-invariant too. Training algorithms that do not use the
whole dataset at once (like SGD) are made invariant in expectation by
randomly sampling from the dataset. Using a permutation of the dataset

that is easier to learn with is known as curriculum learning [[15].

2.5.3 Multi-labeling

Multi-labeling tasks can be seen as set prediction problems, where the
goal is predict a set of labels. These labels come from a fixed, finite set of
all possible labels. The main difference to our set prediction setup is that
because there are only a finite number of possible labels, we can pick a
fixed arbitrary ordering for these labels just like in classification or word
embeddings. An n-hot vector encoding (a vector with a 0 in a dimension
if the label is not present and a 1 when the label is present) therefore
suffices for multi-label classification, though more set-oriented methods
have also been studied [41} |12]].

In contrast, the sets we are working with have vectors in R as elements.
With infinitely many possible elements, there is no order we can enforce
on the set elements a priori, so the strategy for multi-labeling does not
work. Choosing one anyway results discontinuities in the labels, similar
to the responsibility problem that we discuss in[Section 5.3 This is why
we need something like our model in to predict these more

complex sets with elements in R

2.5.4 Clustering

Lastly, clustering can be seen as a set prediction task. The goal in
clustering is to find a partitioning of the input set where “similar” points
are grouped into the same partition. So, the output is a set of sets,
where the inner sets contain the elements of the input. This is usually
done in an unsupervised setting, while our method in[Chapter 6/ works
in the supervised learning setting. Our approach to set prediction
could be used to train a supervised clustering algorithm like Finley et
al. [32].



Chapter 3

Motivation: Counting in
visual question

answering

In this chapter, we will motivate our work on sets with the visual
question answering task. We will develop a method for counting sets of
object proposals that have associated bounding box information. These

sets can be obtained from traditional object detectors.

When we worked on this problem, our focus was not on sets in gen-
eral, but specifically the set of object proposals. We later realised the
fundamental importance of properly using the given set representation,

which motivated us to study sets more generally in later chapters.

These contributions have been published as [[118] in the International
Conference on Learning Representations (ICLR) 2018 and have been pre-
sented at the Visual Question Answering Challenge workshop, hosted
at the Conference on Computer Vision and Pattern Recognition (CVPR)
2018.

3.1 Introduction

Consider the problem of counting how many cats there are in[Figure 3.1}
Solving this involves several rough steps: understanding what instances
of that type can look like, finding them in the image, and adding them up.
This is a common task in visual question answering (VQA) — answering
questions about images — and is rated as among the tasks requiring the
lowest human age to be able to answer [6]. However, current models
for VQA on natural images struggle to answer any counting questions

successfully outside of dataset biases [|50].
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Figure 3.1: Simplified example about counting the number of cats. The light-coloured cat is
detected twice and results in a duplicate proposal. This shows the conversion from the attention
weights a to a graph representation A and the eventual goal of this module with exactly one
proposal per true object. There are 4 proposals (vertices) capturing 3 underlying objects (groups
in dotted lines). There are 3 relevant proposals (black with weight 1) and 1 irrelevant proposal
(white with weight 0). Red edges mark intra-object edges between duplicate proposals and blue
edges mark the main inter-object duplicate edges. In graph form, the object groups, colouring of
edges, and shading of vertices serve illustration purposes only; the model does not have these

3.1. Introduction

access to these directly.

One reason for this is the presence of a fundamental problem with
counting in the widely-used soft attention mechanisms
that we identify. Another reason is that unlike standard counting tasks,
there is no ground truth labelling of where the objects to count are.
Coupled with the fact that models need to be able to count a large variety
of objects and that, ideally, performance on non-counting questions
should not be compromised, the task of counting in VQA seems very

challenging.

To make this task easier, we can use object proposals — a set of pairs of
a bounding box and object features — from object detection networks
as input instead of learning from pixels directly. In any moderately
complex scene, this runs into the issue of double-counting overlapping
object proposals. This is a problem present in many natural images,

which leads to inaccurate counting in real-world scenarios.

Our main contribution is a differentiable neural network module that
tackles this problem and consequently can learn to count (Section 3.4).
Used alongside an attention mechanism, this module avoids a fundamen-
tal limitation of soft attention while producing strong counting features.
As the input is a set, we build our model to be permutation-invariant
to the order of the object proposals. We then provide experimental
evidence of the effectiveness of this module (Section 3.5). On a toy
dataset, we demonstrate that this module enables robust counting in
a variety of scenarios. On the number category of the VQA v2 Open-
Ended dataset [38], a relatively simple baseline model using the counting
module outperforms all previous models - including large ensembles
of state-of-the-art methods — without degrading performance on other

categories.
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3.2 Related work

Usually, greedy non-maximum suppression (NMS) is used to eliminate
duplicate bounding boxes. The main problem with using it as part of a
model is that its gradient is piecewise constant. Various differentiable
variants such as by Azadi et al. [8]], Hosang et al. [[45]], and Henderson
et al. [43]] exist. The main difference is that, since we are interested in
counting, our module does not need to make discrete decisions about
which bounding boxes to keep; it outputs counting features, not a
smaller set of bounding boxes. Our module is also easily integrated into
standard VQA models that utilise soft attention without any need for
other network architecture changes and can be used without using true

bounding boxes for supervision.

On the VQA v2 dataset [38]] that we apply our method on, only few ad-
vances on counting questions have been made. The main improvement
in accuracy is due to the use of object proposals in the visual processing
pipeline, proposed by Anderson et al. [4]]. Their object proposal network
is trained with classes in singular and plural forms, for example “tree”
versus “trees”, which only allows primitive counting information to
be present in the object features after region-of-interest pooling. Our
approach differs in the way that instead of relying on counting features
being present in the input, we create counting features using informa-
tion present in the attention map over object proposals. This has the
benefit of being able to count anything that the attention mechanism can
discriminate instead of only objects that belong to the predetermined

set of classes that had plural forms.

Using these object proposals, Trott et al. [[99] train a sequential counting
mechanism with a reinforcement learning loss on the counting question
subsets of VQA v2 and Visual Genome. They achieve a small increase in
accuracy and can obtain an interpretable set of objects that their model
counted, but it is unclear whether their method can be integrated into
traditional VQA models due to their loss not applying to non-counting
questions. Since they evaluate on their own dataset, their results can

not be easily compared to existing results in VQA.

Methods such as by Santoro et al. [89]] and Perez et al. [83] can count on
the synthetic CLEVR VQA dataset [52]] successfully without bounding
boxes and supervision of where the objects to count are. They also use
more training data (~250,000 counting questions in the CLEVR training
set versus ~50,000 counting questions in the VQA v2 training set), much

simpler objects, and synthetic question structures.
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Figure 3.2: Example demonstrating the problem with using soft attention for counting. The
resulting two feature vectors are the same for the two images, even though the images show a
different number of stars.

More traditional approaches based on Lempitsky et al. [66] learn to
produce a target density map, from which a count is computed by inte-
grating over it. In this setting, Cohen et al. [25] make use of overlaps of
convolutional receptive fields to improve counting performance. Chat-
topadhyay et al. [[22] use an approach that divides the image into smaller
non-overlapping chunks, each of which is counted individually and com-
bined together at the end. In both of these contexts, the convolutional
receptive fields or chunks can be seen as sets of bounding boxes with
a fixed structure in their positioning. Note that while Chattopadhyay
et al. [22] evaluate their models on a small subset of counting ques-
tions in VQA, major differences in training setup make their results not

comparable to our work.

3.3 Problems with soft attention

The main message in this section is that using the feature vectors ob-
tained after the attention mechanism is not enough to be able to count;
the attention maps themselves should be used, which is what we do in

our counting module.

Models in VQA have consistently benefited from the use of soft at-
tention [74][10] on the image, commonly implemented with a shallow
convolutional network. It learns to output a weight for the feature vector
at each spatial position in the feature map, which is first normalised and
then used for performing a weighted sum over the spatial positions to
produce a single feature vector. However, soft spatial attention severely

limits the ability for a model to count.

Consider the task of counting the number of stars for two images
Jure 3.2): an image showing a single star on a clean background and an
image that consists of two side-by-side copies of the first image. What
we will describe applies to both spatial feature maps and sets of object

proposals as input, but we focus on the latter case for simplicity. With
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an object detection network, we detect one star in the first image and
two stars in the second image, producing the same feature vector for
all three detections. The attention mechanism then assigns all three

instances of the same star the same weight.

The usual normalisation used for the attention weights is the softmax
function, which normalises the weights to sum to 1. Herein lies the
problem: the star in the first image receives a normalised weight of 1,
but the two stars in the second image now each receive a weight of 0.5.
After the weighted sum, we are effectively averaging the two stars in
the second image back to a single star. As a consequence, the feature
vector obtained after the weighted sum is exactly the same between
the two images and we have lost all information about a possible count
from the attention map. Any method that normalises the weights to

sum to 1 suffers from this issue.

Multiple glimpses [[61] — sets of attention weights that the attention
mechanism outputs — or several steps of attention [108, |70] do not
circumvent this problem. Each glimpse or step can not separate out
an object each, since the attention weight given to one feature vector
does not depend on the other feature vectors to be attended over. Hard
attention [9}74] and structured attention [57|] may be possible solutions
to this, though no significant improvement in counting ability has
been found for the latter so far [[120]]. Ren et al. [|85] circumvent the
problem by limiting attention to only work within one bounding box
at a time, remotely similar to our approach of using object proposal

features.

Without normalisation of weights to sum to one, the scale of the output
features depends on the number of objects detected. In an image with
10 stars, the output feature vector is scaled up by 10. Since deep neural
networks are typically very scale-sensitive — the scale of weight initiali-
sations and activations is generally considered quite important [[73]] -
and the classifier would have to learn that joint scaling of all features is
somehow related to count, this approach is not reasonable for counting
objects. This is shown in Teney et al. [98] where they provide evidence
that sigmoid normalisation not only degrades accuracy on non-number

questions slightly, but also does not help with counting.

3.4 Counting module

In this section, we describe a differentiable mechanism for counting from
attention weights, while also dealing with the problem of overlapping
object proposals to reduce double-counting of objects. This involves
some nontrivial details to produce counts that are as accurate as possible.
The main idea is illustrated in[Figure 3.1 with the two main steps shown
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in[Figure 3.3|and [Figure 3.4] The use of this module allows a model to

count while still being able to exploit the benefits of soft attention.

Our key idea for dealing with overlapping object proposals is to turn
these object proposals into a graph that is based on how they overlap.
We then remove and scale edges in a specific way such that an estimate

of the number of underlying objects is recovered.

Our general strategy is to primarily design the module for the unre-
alistic extreme cases of perfect attention maps and bounding boxes
that are either fully overlapping or fully distinct. By introducing some
parameters and only using differentiable operations, we give the ability
for the module to interpolate between the correct behaviours for these
extreme cases to handle the more realistic cases. These parameters
are responsible for handling variations in attention weights and partial

bounding box overlaps in a manner suitable for a given dataset.

3.4.1 Piecewise linear activation

To introduce these parameters, we use several piecewise linear functions
fi,..., fs as activation functions, approximating arbitrary functions

with domain and range [0, 1]. We show how these functions look

after training in [Figure 3.7| (page 35). The shapes of these functions

are learned to handle the specific nonlinear interactions necessary for
dealing with overlapping proposals. Through their parametrisation
we enforce that f;(0) = 0, fi (1) = 1, and that they are monotonically
increasing. The first two properties are required so that the extreme
cases that we explicitly handle are left unchanged. In those cases, f; is
only applied to values of 0 or 1, so the activation functions can be safely
ignored for understanding how the module handles them. By enforcing
monotonicity, we can make sure that, for example, an increased value
in an attention map should never result in the prediction of the count

to decrease.

Intuitively, the interval [0, 1] is split into d equal size intervals. Each
contains a line segment that is connected to the neighbouring line
segments at the boundaries of the intervals. These line segments form

the shape of the activation function.

For each function fi, there are d weights w1, . . ., Wiq, where the weight
wg; is the gradient for the interval [%, fl). We arbitrarily fix d to be
16 in this chapter, observing no significant difference when changing
it to 8 and 32 in preliminary experiments. All wy; are enforced to be

non-negative by always using the absolute value of them, which yields
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the monotonicity property. Dividing the weights by an |Wikm| yields
the property that (1) = 1. The function can be written as

d i
Zj:l |wi|
= 0,1-|dx —i|]) —/————— 3.1
fi(x) ;mm |dx l')zi’,,:1|wkm| (3.1)

In essence, the max term selects the two nearest boundary values of an
interval, which are normalised cumulative sums over the wy weights,
and linearly interpolates between the two. This approach is similar to
the subgradient approach by Jaderberg et al. [51] to make sampling
from indices differentiable. All wy; are initialised to 1, which makes
the functions linear on initialisation. When applying fi(x) to a vector-
valued input x, it is assumed to be applied elementwise. By caching the
normalised cumulative sum Z; |wi;l/ Zil | Wim|, this function has linear
time complexity with respect to d and is efficiently implementable on
GPUs.

Extensions to this are possible through Deep Lattice Networks [111],
which preserve monotonicity across several nonlinear neural network
layers. They would allow A and D to be combined in more sophisticated
ways beyond an elementwise product, possibly improving counting
performance as long as the property of the range lying within [0, 1] is

still enforced in some way.

3.4.2 Input

Given a set of features from object proposals, an attention mechanism
produces a weight for each proposal based on the question. The counting
module takes as input the n largest attention weights @ = [ay, ..., a,]"
and their corresponding bounding boxes b = [by, ..., b,]". We assume
that the weights lie in the interval [0, 1], which can easily be achieved

by applying a logistic function on the attention map.

In the extreme cases that we explicitly handle, we assume that the
attention mechanism assigns a value of 1 to a; whenever the ith proposal
contains a relevant object and a value of 0 whenever it does not. This
is in line with what usual soft attention mechanisms learn, as they
produce higher weights for relevant inputs. We also assume that either
two object proposals fully overlap (in which case they must be showing
the same object and thus receive the same attention weight) or that
they are fully distinct (in which case they show different objects). Keep
in mind that while we make these assumptions to make reasoning
about the behaviour easier, the learned parameters in the activation
functions are intended to handle the more realistic scenarios when the

assumptions do not apply.
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Instead of partially overlapping proposals, the problem now becomes
the handling of exact duplicate proposals of underlying objects in a

differentiable manner.

3.4.3 Deduplication

We start by changing the vector of attention weights a into a graph
representation in which bounding boxes can be utilised more easily.
Hence, we compute the outer product of the attention weights to obtain

an attention matrix.

A=aa' (3.2)

A € R™" can be interpreted as an adjacency matrix for a weighted di-
rected graph. In this graph, the ith vertex represents the object proposal
associated with a; and the edge between any pair of vertices (i, j) has
weight a;a;. In the extreme case where a; is virtually 0 or 1, products
are equivalent to logical AND operators. It follows that the subgraph
containing only the vertices satisfying a; = 1 is a complete digraph with

self-loops.

In this representation, our objective is to eliminate edges in such a way
that, conceptually, the underlying true objects — instead of proposals
thereof — are the vertices of that complete subgraph. In order to then
turn that graph into a count, recall that the number of edges |E| in a
complete digraph with self-loops relates to the number of vertices |V|
through |E| = |V|2. |E| can be computed by summing over the entries
in an adjacency matrix and |V| is then the count. Notice that when
|E| is set to the sum over A, |E| = ¥;; a;a; = (¥, ;)*, which implies
|V| = 3}; a;. This convenient property implies that when all proposals
are fully distinct, the module can output the same as simply summing

over the original attention weights by default.
There are two types of duplicate edges to eliminate to achieve our

objective: intra-object edges and inter-object edges.

Intra-object edges

First, we eliminate intra-object edges between duplicate proposals of a

single underlying object.

To compare two bounding boxes, we use the usual intersection-over-

union (IoU) metric. We define the distance matrix D € R™" to be

Dij =1- IOU(bi, bj) (33)
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Figure 3.3: Removal of intra-object edges by masking the edges of the attention matrix A with
the distance matrix D. The black vertices now form a graph without self-loops. The self-loops
need to be added back in later.

£ 28

= 8

=R
Il
I

Figure 3.4: Removal of duphcate inter-object edges by computing a scaling factor for each vertex
and scaling A accordingly. A is A with self- loops already added back in. The scaling factor
for one vertex is computed by counting how many vertices have outgoing edges to the same
set of vertices; all edges of the two proposals on the right are scaled by 0.5. This can be seen
as averaging proposals within each object and is equivalent to removing duplicate proposals
altogether under a sum.

D can also be interpreted as an adjacency matrix. It represents a graph
that has edges everywhere except when the two bounding boxes that

an edge connects would overlap.

Intra-object edges are removed by elementwise multiplying (©) the
distance matrix with the attention matrix (Figure 3.3).

A= fi(A)© f(D) (3.4)

Ano longer has self-loops, so we need to add them back in at a later
point to still satisfy |E| = |V|2. Notice that we start making use of the
activation functions mentioned earlier to handle intermediate values
in the interval (0, 1) for both A and D. They regulate the influence of
attention weights that are not close to 0 or 1 and the influence of partial

overlaps.

Inter-object edges

Second, we eliminate inter-object edges between duplicate proposals of

different underlying objects.

The main idea (depicted in|Figure 3.4) is to count the number of proposals
associated to each individual object, then scale down the weight of their
associated edges by that number. If there are two proposals of a single

object, the edges involving those proposals should be scaled by 0.5.
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In essence, this averages over the proposals within each underlying
object because we only use the sum over the edge weights to compute
the count at the end. Conceptually, this reduces multiple proposals of
an object down to one as desired. Since we do not know how many
proposals belong to an object, we have to estimate this. We do this by

using the fact that proposals of the same object are similar.

Keep in mind that A has no self-loops nor edges between proposals of
the same object. As a consequence, two nonzero rows in 7\ are the same
if and only if the proposals are the same. If the two rows differ in at
least one entry, then one proposal overlaps a proposal that the other
proposal does not overlap, so they must be different proposals. This
means for comparing rows, we need a similarity function that satisfies
the criteria of taking the value 1 when they differ in no places and 0
if they differ in at least one place. We define a differentiable similarity

between proposals i and j as

Simy; = f5(1 - la; — ;) | | A1 = Xk = Xel) (3.5)
k

where X = f;(A) © f5(D) is the same as A except with different acti-
vation functions. The [] term compares the rows of proposals i and j.
Using this term instead of f3(1 — D;;) was more robust to inaccurate

bounding boxes in initial experiments.

Note that the f5(1 — |a; — a;|) term handles the edge case when there is
only one proposal to count. Since X does not have self-loops, X contains
only zeros in that case, which causes the row corresponding to a; = 1
to be incorrectly similar to the rows where a;,; = 0. By comparing the

attention weights through that term as well, this issue is avoided.

Now that we can check how similar two proposals are, we count the
number of times any row is the same as any other row and compute a

scaling factor s; for each vertex i.

Si = 1/2 Simij (36)
J

The time complexity of computing s = [sy,...,s,]" is @(n®) as there
are n® pairs of rows and ©(n) operations to compute the similarity of

any pair of rows.

Since these scaling factors apply to each vertex, we have to expand s

into a matrix using the outer product in order to scale both incoming
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and outgoing edges of each vertex. We can also add self-loops back in,

which need to be scaled by s as well. Then, the count matrix C is

C=A0Oss + diag(s © fi(a © a)) (3.7)

where diag(-) expands a vector into a diagonal matrix with the vector

on the diagonal.

The scaling of self-loops involves a non-obvious detail. Recall that
the diagonal that was removed when going from A to A contains the
entries fi(a © a). Notice however that we are scaling this diagonal by s
and not s © s. This is because the number of inter-object edges scales
quadratically with respect to the number of proposals per object, but

the number of self-loops only scales linearly.

3.4.4 Output

Under a sum, C is now equivalent to a complete graph with self-loops
that involves all relevant objects instead of relevant proposals as origi-

nally desired.

To turn C into a count ¢, we set |[E| = }; ; C;; as mentioned and

c=|V|=vIE| (3.8)

We verified experimentally that when our extreme case assumptions
hold, c is always an integer and equal to the correct count, regardless of

the number of duplicate object proposals.

To avoid issues with scale when the number of objects is large, we turn
this single feature into several classes, one for each possible number.
Since we only used the object proposals with the largest n weights,
the predicted count ¢ can be at most n. We define the output o =

[009 01, .-+, On]T to be

0; =max(0,1—|c—i|) (3.9)

This results in a vector that is 1 at the index of the count and 0 ev-
erywhere else when c is exactly an integer, and a linear interpolation
between the two corresponding one-hot vectors when the count falls

in-between two integers.

3.4.5 Output confidence

Finally, we might consider a prediction made from values of @ and D

that are either close to 0 or close to 1 to be more reliable — we explicitly
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handle these after all — than when many values are close to 0.5. To
incorporate this idea, we scale o by a confidence value in the interval
[0, 1].

We define p, and pp to be the average distances to 0.5. The choice of 0.5
is not important, because the module can learn to change it by changing
where fs(x) = 0.5 and f;(x) = 0.5.

o= D lfla) - 03 (.10

oD %ZJ} f3(D;;) — 0.5 (3.11)

Then, the output of the module with confidence scaling is

0= fs(pa+pp)-0 (3.12)

In summary, we only used differentiable operations to deduplicate object
proposals and obtain a feature vector that represents the predicted count.
This allows easy integration into any model with soft attention, enabling
a model to count from an attention map. Each step that we applied is
either permutation-equivariant or permutation-invariant, which makes

our whole model permutation-invariant.

3.5 Experiments

We provide the source code to reproduce our experiments at https:

//github.com/Cyanogenoid/vga-counting,

3.5.1 Toy task

First, we design a simple toy task to evaluate counting ability. This
dataset is intended to only evaluate the performance of counting; thus,
we skip any processing steps that are not directly related such as the

processing of an input image. Samples from this dataset are given in

The classification task is to predict an integer count ¢ of true objects,
uniformly drawn from 0 to 10 inclusive, from a set of bounding boxes
and the associated attention weights. 10 square bounding boxes with
side length I € (0, 1] are placed in a square image with unit side length.
The x and y coordinates of their top left corners are uniformly drawn
from U(0, 1-1) so that the boxes do not extend beyond the image border.
I is used to control the overlapping of bounding boxes: a larger I leads
to the fixed number of objects to be more tightly packed, increasing the

chance of overlaps. ¢ number of these boxes are randomly chosen to be
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Figure 3.5: Example toy dataset data for varying bounding box side lengths I and noise g. The
ground truth column shows bounding boxes of randomly placed true objects (blue) and of
irrelevant objects (red). The data column visualises the samples that are actually used as input (dark
blues represent weights close to 1, dark reds represent weights close to 0, lighter colours represent
weights closer to 0.5). The weight of the ith bounding box b; is defined as a; = (1 — q) score + gz
where the score is the maximum overlap of b; with any true bounding box or 0 if there are no
true bounding boxes and z is drawn from U (0, 1). Note how this turns red bounding boxes that
overlap a lot with a blue bounding box in the ground truth column into a blue bounding box in
the data column, which simulates the duplicate proposal that we have to deal with. Best viewed
in colour.
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Figure 3.6: Accuracies on the toy task as side length [ and noise g are varied in 0.01 step sizes.
Our counting module is in blue, the baseline is in orange.

true bounding boxes. The score of a bounding box is the maximum IoU
overlap of it with any true bounding box. Then, the attention weight is
a linear interpolation between the score and a noise value drawn from
U(0,1), with g € [0, 1] controlling this trade-off. g is the attention noise
parameter: when q is 0, there is no noise and when q is 1, there is no
signal. Increasing q also indirectly simulates imprecise placements of

bounding boxes in real datasets.

We compare the counting module against a simple baseline that simply
sums the attention weights and turns the sum into a feature vector with
Both models are followed by a linear projection to the
classes 0 to 10 inclusive and a softmax activation. They are trained with
cross-entropy loss for 1000 iterations using Adam [58] with a learning
rate of 0.01 and a batch size of 1024.

Results

The results of varying I while keeping q fixed at various values and vice
versa are shown in[Figure 3.6] Regardless of [ and g, the counting module
performs better than the baseline in most cases, often significantly so.
Particularly when the noise is low, the module can deal with high
values for [ very successfully, showing that it accomplishes the goal of
increased robustness to overlapping proposals. The module also handles
moderate noise levels decently as long as the overlaps are limited. The
performance when both I and g are high is closely matched by the
baseline, likely due to the high difficulty of those parametrisations

leaving little information to extract in the first place.

We can also look at the shape of the activation functions themselves,
shown in (full version: [Figure 3.8|and [Figure 3.9), to under-

stand how the behaviour changes with varying dataset parameters. For

simplicity, we limit our description to the two easiest-to-interpret func-

tions in [Figure 3.7 f; for the attention weights and f; for the bounding

box distances.
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Figure 3.7: Shapes of trained activation functions f; (attention weights) and f; (bounding box
distances) for varying bounding box side lengths (left) or the noise (right) in the dataset, varied in
0.01 step sizes. Best viewed in colour.

When increasing the side length, the height of the “step” in f; decreases
to compensate for the generally greater degree of overlapping bounding
boxes. A similar effect is seen with f;: it varies over requiring a high
pairwise distance when [ is low — when partial overlaps are most likely
spurious — and judging small distances enough for proposals to be con-
sidered different when [ is high. At the highest values for [, there is little
signal in the overlaps left since everything overlaps with everything,
which explains why f, returns to its default linear initialisation for those

parameters.

When varying the amount of noise, without noise f; resembles a step
function where the step starts close to x = 1 and takes a value of close
to 1 after the step. Since a true proposal will always have a weight of 1
when there is no noise, anything below this can be safely zeroed out.
With increasing noise, this step moves away from 1 for both x and f; (x),
capturing the uncertainty when a bounding box belongs to a true object.
With lower g, f; considers a pair of proposals to be distinct for lower
distances, whereas with higher g, f, follows a more sigmoidal shape.
This can be explained by the model taking the increased uncertainty of
the precise bounding box placements into account by requiring higher

distances for proposals to be considered completely different.

3.52 VQA

VOQA v2 [38] is the updated version of VQA v1 [6]] where greater care
has been taken to reduce dataset biases through balanced pairs: for
each question, a pair of images is identified where the answer to that
question differs. The standard accuracy metric on this dataset accounts
for disagreements in human answers by averaging min(} agreeing, 1)
over all 10-choose-9 subsets of human answers, where agreeing is the
number of human answers that agree with the given answer. This can

be shown to be equal to min(0.3 agreeing, 1) without averaging.
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Figure 3.8: Shape of activation functions as [ is varied for ¢ = 0.5 on the toy dataset. Each line
shows the shape of the activation function when [ is set to the value associated to its colour. Best
viewed in colour.
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Figure 3.9: Shape of activation functions as q is varied for [ = 0.5 on the toy dataset. Each line
shows the shape of the activation function when q is set to the value associated to its colour. Best
viewed in colour.
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Aside: Simplifying the evaluation metric

We managed to simplify the official metric of averaging over the

10-choose-9 subsets as follows.
There are two cases for the one answer to be discarded:

1. the discarded answer is not the predicted answer

— accuracy stays the same

2. the discarded answer is the predicted answer
— we have to subtract 1 from the number of agreeing

answers.

We use # to denote the number of human answers agreeing with
the prediction. There are 10—# of case 1 and # of case 2, therefore

the accuracy is:

0.1- ((10—#) min (g, 1) + #min (#%1, 1)) (3.13)

We know that when # = 0, the accuracy is 0, and when # > 4,
the accuracy is 1. In the remaining cases 1 < # < 3, we know
that #g—l < % < 1, so all the mins can be removed. This allows us

to move the # outside:

0.1 %-#((10—#)+(#—1)) (3.14)

which simplifies to 0.3#. Lastly, we can combine all the cases

together to get min(0.3#, 1) as accuracy metric.

Model Our baseline model is based on the work of Kazemi et al. [54],
which outperformed most previous VQA models on the VQA v1 dataset
with a simple baseline architecture. We adapt the model to the VQA

v2 dataset and make various tweaks that improve validation accuracy
slightly, which we describe in full in[Section A.1] The architecture is

illustrated in [Figure 3.10

We have not performed any tuning of this baseline to maximise the
performance difference between it and the baseline with counting mod-
ule. To augment this model with the counting module, we extract the
attention weights of the first attention glimpse (there are two in the
baseline) before softmax normalisation, and feed them into the counting
module after applying a logistic function. Since object proposal features
from Anderson et al. [4] vary from 10 to 100 per image, a natural choice

for the number of top-n proposals to use is 10. The output of the module

37
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Figure 3.10: Schematic view of a model using our counting module. The modifications made to
the baseline model when including the counting module are marked in red. Blue blocks mark
modules with trainable parameters, grey blocks mark modules without trainable parameters.
White (W) mark linear layers, either linear projections or convolutions with a spatial size of 1
depending on the context. Dropout with drop probability 0.5 is applied before the GRU and every
W), except before the @) after the counting module. ¢ stands for the fusion function we define
in BN stands for batch normalisation, ¢ stands for a logistic, and Embedding is a
word embedding that has been fed through a tanh function. The two glimpses of the attention
mechanism are represented with the two lines exiting the W). Note that one of the two glimpses
is shared with the counting module.

is linearly projected into the same space as the hidden layer of the clas-
sifier, followed by ReLU activation, batch normalisation, and addition

with the features in the hidden layer.

Results shows the results on the official VQA v2 leader board.
The baseline with our module has a significantly higher accuracy on
number questions without compromising accuracy on other categories
compared to the baseline result. Despite our single-model baseline
being substantially worse than the state-of-the-art, by simply adding
the counting module we outperform even the 8-model ensemble in Zhou
et al. [119] on the number category. We expect further improvements in
number accuracy when incorporating their techniques to improve the
quality of attention weights, especially since the current state-of-the-art
models suffer from the problems with counting that we mention in
Some qualitative examples of inputs and activations within

the counting module are shown in[Figure 3.11

Since the writing of this chapter, further VQA challenges have been
run. The winners of the 2018 challenge were Kim et al. [56]], who used
our counting model to improve the counting results in their model.
They achieved a 54.04% accuracy on the number category of the VQA
v2 test set, which is a 2.65% improvement over our results. Without
our counting module, they obtained 50.66% accuracy in the number

category, so a significant part of their improved number results are
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Table 3.1: Results on VQA v2 of the top models along with our results. Entries marked with (Ens.)
are ensembles of models. At the time of writing, our model with the counting module places
third among all entries. All models listed here use object proposal features and are trained on
the training and validation sets. The top-performing ensemble models use additional pre-trained
word embeddings, which we do not use.

VQA v2 test-dev VOQA v2 test

Model Yes/No Number Other All Yes/No Number Other All
Teney et al. 98] 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67
Teney et al. [98] (Ens.)  86.08 48.99 60.80 69.87 86.60 48.64  61.15 70.34
Zhou et al. [|119] 84.27 49.56 59.89 68.76 - - - -
Zhou et al. [119] (Ens.) - - - - 8665 5113 6175 70.92
Baseline 82.98 46.88 58.99 67.50 83.21 46.60 59.20 67.78
+ counting 83.14 51.62 58.97 68.09 83.56 51.39 59.11 68.41

Table 3.2: Results on the VQA v2 validation set with models trained only on the training set.
Reported are the mean accuracies and sample standard deviations (+) over 4 random initialisations.

VQA accuracy Balanced pair accuracy
Model Number Count All Number Count All
Baseline 44 83402 51.69+02 64.80=0.0 17.34+02 20.02+x02 36.44+0.1
+ NMS 44.60x0.1 51.41=01 64.80=01 17.06x0.1 19.72+01 36.44 =02

+ counting  49.36z01 57.03:00 65.42+01 23.10=02 26.63:02  37.19z01

due to our model. In other words, they independently confirmed that
a better attention model (which they developed) leads to even better

counting results.

We also evaluate our models on the validation set of VQA v2, shown in
This allows us to consider only the counting questions within
number questions, since number questions include questions such as
"what time is it?" as well. We treat any question starting with the words
"how many" as a counting question. As we expect, the benefit of using
the counting module on the counting question subset is higher than on
number questions in general. Additionally, we try an approach where
we simply replace the counting module with NMS, using the average
of the attention glimpses as scoring, and one-hot encoding the number
of proposals left. The NMS-based approach, using an IoU threshold
of 0.5 and no score thresholding based on validation set performance,
does not improve on the baseline, which suggests that the piecewise
gradient of NMS is a major problem for learning to count in VQA and
that conversely, there is a substantial benefit to being able to differentiate

through the counting module.

Additionally, we can evaluate the accuracy over balanced pairs as pro-
posed by Teney et al. [[98]: the ratio of balanced pairs on which the VQA
accuracy for both questions is 1.0. This is a much more difficult metric,

since it requires the model to find the subtle details between images
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How many birds?

Predicted = 2
Ground truth = 2

Predicted = 5
Ground truth = 5

Predicted = 1
Ground truth = 1

Predicted = 5
Ground truth = 4

Figure 3.11: Selection of validation images with overlaid bounding boxes, values of the attention
matrix A, distance matrix D, and the resulting count matrix C. White entries represent values
close to 1, black entries represent values close to 0. The count c is the usual square root of the
sum over the elements of C. Notice how particularly in the third example, A clearly contains
more rows/columns with high activations than there are actual objects (a sign of overlapping
bounding boxes) and the counting module successfully removes intra- and inter-object edges to
arrive at the correct prediction regardless. The prediction is not necessarily — though often is -
the rounded value of c.
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Figure 3.12: Shape of activation functions for a model trained on the train and validation sets of
VQA v2 (thick black), compared against the shapes when parametrising the toy dataset with ¢
around 0.4 (green), 0.7 (orange), or 1.0 (red) with fixed I = 0.2. Best viewed in colour.

instead of being able to rely on question biases in the dataset. First,
notice how all balanced pair accuracies are greatly reduced compared
to their respective VQA accuracy. More importantly, the absolute accu-
racy improvement of the counting module is still fully present with the
more challenging metric, which is further evidence that the module can

properly count rather than simply fitting better to dataset biases.

When looking at the activation functions of the trained model, shown
in we find that some characteristics of them are shared
with high-noise parametrisations of the toy dataset. This suggests that
the current attention mechanisms and object proposal network are still
very inaccurate, which explains the perhaps small-seeming increase in
counting performance. This provides further evidence that the balanced
pair accuracy is maybe a more reflective measure of how well current
VQA models perform than the overall VQA accuracies of over 70% of

the current top models.

3.6 Conclusion

After understanding why VQA models struggle to count, we designed
a counting module that alleviates this problem through differentiable
bounding box deduplication. The module can readily be used alongside
any future improvements in VQA models, as long as they still use soft
attention as all current top models on VQA v2 do. It has uses outside of
VQA as well: for many counting tasks, it can allow an object-proposal-

based approach to work without ground-truth objects available as long



42

3.6. Conclusion

as there is a — possibly learned — per-proposal scoring (for example
using a classification score) and a notion of how dissimilar a pair of
proposals are. Since each step in the module has a clear purpose and
interpretation, the learned weights of the activation functions are also
interpretable. The design of the counting module is an example showing
how by encoding inductive biases into a deep learning model, challeng-
ing problems such as counting of arbitrary objects can be approached

when only relatively little supervisory information is available.

For future research, it should be kept in mind that VQA v2 requires a
versatile skill set that current models do not have. To make progress on
this dataset, we advocate focusing on understanding of what the current

shortcomings of models are and finding ways to mitigate them.
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Set encoder: Permutation-

optimisation

After having motivated the usefulness of sets through the VQA bench-
mark task, we move on to developing a method for extracting informa-
tion from sets in a more general setting. Based on the idea that lists are
easier to work with than sets, we aim to let the model learn how to turn

a set into a list.

These contributions have been published as [[117]] in the International

Conference on Learning Representations (ICLR) 2019.

4.1 Introduction

Consider a task where each input sample is a set of feature vectors
with each feature vector describing an object in an image (for example:
{person, table, cat}). Because there is no a priori ordering of these
objects, it is important that the model is invariant to the order that the
elements appear in the set. However, this puts restrictions on what can
be learned efficiently. As we covered in[Section 2.3| the typical approach
is to compose elementwise operations with permutation-invariant re-
duction operations, such as summing [112]] or taking the maximum [84]
over the whole set. Since the reduction operator compresses a set of
any size down to a single descriptor, this can be a significant bottleneck

in what information about the set can be represented efficiently.

We take an alternative approach based on an idea explored in Vinyals et
al. [101]], where they find that some permutations of sets allow for easier
learning on a task than others. They do this by ordering the set elements
in some predetermined way and feeding the resulting sequence into a
recurrent neural network. For instance, it makes sense that if the task
is to output the top-n numbers from a set of numbers, it is useful if

the input is already sorted in descending order before being fed into
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an RNN. This approach leverages the representational capabilities of
traditional sequential models such as LSTMs, but requires some prior

knowledge of what order might be useful.

Our idea is to learn such a permutation purely from data without re-
quiring a priori knowledge (Section 4.2). The key aspect is to turn a
set into a sequence in a way that is both permutation-invariant, as
well as differentiable so that it is learnable. Our main contribution is a
Permutation-optimisation (PO) module that satisfies these requirements:
it optimises a permutation in the forward pass of a neural network us-
ing pairwise comparisons. By feeding the resulting sequence into a
traditional model such as an LSTM, we can learn a flexible, permutation-
invariant representation of the set while avoiding the bottleneck that
a simple reduction operator would introduce. Techniques used in our
model may also be applicable to other set problems where permutation-
invariance is desired, building on the literature of approaches to dealing
with permutation-invariance (Section 4.3).

In four different experiments, we show improvements over existing
methods (Section 4.4). The former two tasks measure the ability to learn
a particular permutation as target: number sorting and image mosaics.
We achieve state-of-the-art performance with our model, which shows
that our method is suitable for representing permutations in general.
The latter two tasks test whether a model can learn to solve a task that
requires it to come up with a suitable permutation implicitly: classifica-
tion from image mosaics and visual question answering. We provide no
supervision of what the permutation should be; the model has to learn
by itself what permutation is most useful for the task at hand. Here, our
model also beats the existing models and we improve the performance of
a state-of-the-art model in visual question answering (VQA) with it. This
shows that our PO module is able to learn good permutation-invariant

representations of sets using our approach.

4.2 Permutation-optimisation module

We will now describe a differentiable, and thus learnable model to turn
an unordered set {x;}n with feature vectors as elements into an ordered
sequence of these feature vectors. An overview of the algorithm is
shown in[Figure 4.1)and pseudo-code is shown in The
input set is represented as a matrix X = [xy, ... ,xN]T with the feature
vectors x; as rows in some arbitrary order. Note that this representation
of sets is transposed compared to (R™ instead of R") to
ease the exposition in this chapter. In the algorithm, it is important to
not rely on the arbitrary order so that X is correctly treated as a set. The

goal is then to learn a permutation matrix P such that when permuting



> [ro]ee] ]

by minimising cost:

- - 5
1mprove permutation R AR . _
z g

Chapter 4. Permutation-optimisation

1 3 2
1 <|< )
F = > c ( P) function to measure cost
(learnable) P of permutation with
ac(P)
C ~ 9P

p© pM p() X Y

45

Figure 4.1: Overview of Permutation-optimisation module. In the ordering cost C, elements
of X are compared to each other (blue represents a negative value, red represents a positive

~(t
value). Gradients are applied to unnormalised permutations P ( ), which are normalised to proper
permutations P(*).

Algorithm 4.1 Forward pass of permutation-optimisation algorithm

R AR L R A e

=
N o= O

Input: X € RV*M with x; as rows in arbitrary order
Learnable parameters: weights that parametrise F, step size 7

Cij < normed(F(x;, x;)) > ordering costs (Equation 4.15
initialise P > uniform or linear assignment init (Equation 4.11
fort — 1,T do

P — S(P) > normalise assignment (Equation 4.8
G < 9c(P)/oP > compute gradient of assignment (Equation 4.9
P—P-nG > gradient descent step on assignment (Equation 4.12

end for

. P — S(P)
: Y « PX > permute rows of X to obtain output Y

the rows of the input through Y = PX, the output is ordered correctly
according to the task at hand. When an entry P;; takes the value 1, it
can be understood as assigning the ith element to the kth position in

the output.

Our main idea is to first relate pairs of elements through an ordering
cost, parametrised with a neural network. This pairwise cost tells us
whether an element i should preferably be placed before or after element

Jj in the output sequence. Using this, we can define a total cost that

measures how good a given permutation is (Subsection 4.2.1). The

second idea is to optimise this total cost in each forward pass of the
module (Subsection 4.2.2). By minimising the total cost of a permutation,
we improve the quality of a permutation with respect to the current
ordering costs. Crucially, the ordering cost function - and thus also the
total cost function - is learned. In doing so, the module is able to learn

how to generate a permutation as is desired.
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In order for this to work, it is important that the optimisation process
itself is differentiable so that the ordering cost is learnable. Because
permutations are inherently discrete objects, a continuous relaxation
of permutations is necessary. For optimisation, we perform gradient
descent on the total cost for a fixed number of steps and unroll the iter-
ation, similar to how recurrent neural networks are unrolled to perform
backpropagation-through-time. Because the inner gradient (total cost
differentiated with respect to permutation) is itself differentiable with
respect to the ordering cost, the whole model is kept differentiable and

we can train it with a standard supervised learning loss.

Note that as long as the ordering cost is computed appropriately
[tion 4.2.3), all operations used turn out to be permutation-equivariant or
invariant. Thus, we have a model that respects the symmetries of sets
while producing an output without those symmetries: a sequence. This
can be naturally extended to outputs where the target is not a sequence,

but grids and lattices (Subsection 4.2.4).

4.2.1 Total cost function

The total cost function measures the quality of a given permutation and
should be lower for better permutations. Because this is the function
that will be optimised, it is important to understand what it expresses

precisely.

The main ingredient for the total cost of a permutation is the pairwise
ordering cost (details in [Subsection 4.2.3). By computing it for all pairs,
we obtain a cost matrix C where the entry C;; represents the ordering
cost between i and j: the cost of placing element i anywhere before
Jj in the output sequence. An important constraint that we put on C
is that C;; = —Cj;. In other words, if one ordering of i and j is “good”
(negative cost), then the opposite ordering obtained by swapping them
is “bad” (positive cost). Additionally, this constraint means that C;; = 0.
This makes sure that two very similar feature vectors in the input will
be similarly ordered in the output because their pairwise cost goes to
0.

In this chapter we use a straightforward definition of the total cost
function: a sum of the ordering costs over all pairs of elements i and
j. When considering the pair i and j, if the permutation maps i to be
before j in the output sequence, this cost is simply C;;. Vice versa, if

the permutation maps i to be after j in the output sequence, the cost
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has to be flipped to Cj;. To express this idea, we define the total cost

c: RNN 1 R of a permutation P as:

c(P)=>"Cij > Pu (Z P = Y ij,) (4.1)
ij k

k'>k k'<k

This can be understood as follows: If the permutation assigns element
i to position u (so P;, = 1) and element j to position v (so Pj, = 1),
the sums over k and k’ simplify to 1 when v > u and —1 when v < u;
permutation matrices are binary and only have one 1 in any row and
column, so all other terms in the sums are 0. That means that the term
for each i and j becomes C;; when v > u and —C;; = Cj; when v < u,

which matches what we described previously.

4.2.2 Optimisation problem

Now that we can compute the total cost of a permutation, we want to
optimise this cost with respect to a permutation. After including the
constraints to enforce that P is a valid permutation matrix, we obtain

the following optimisation problem:

miniPmize c(P)

subject to Vi, k: Py € {0,1}, (4.2)

Vi ZP,-k = I,ZPki =1
k k

Optimisation over P directly is difficult due to the discrete and combina-
torial nature of permutations. To make optimisation feasible, a common
relaxation is to replace the constraint that P € {0, 1} with P € [0, 1]
[33]. With this change, the feasible set for P expands to the set of
doubly-stochastic matrices, known as the Birkhoff or assignment poly-
tope. Rather than hard permutations, we now have soft assignments of
elements to positions, analogous to the latent assignments when fitting

a mixture of Gaussians model using Expectation-Maximisation.

Note that we do not need to change our total cost function after this
relaxation. Instead of discretely flipping the sign of C;; depending on
whether element i comes before j or not, the sums over k and k’ give us
a weight for each C;; that is based on how strongly i and j are assigned
to positions. This weight is positive when i is on average assigned to

earlier positions than j and negative vice versa.

In order to perform optimisation of the cost under our constraints, we
reparametrise P with the Sinkhorn operator S from Adams et al. [2] so

that the constraints are always satisfied.
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We found this to lead to better solutions than projected gradient descent
in initial experiments. After first exponentiating all entries of a matrix,
S repeatedly normalises all rows, then all columns of the matrix to sum

to 1, which converges to a doubly-stochastic matrix in the limit.

P =5(P) (4.3)

This ensures that P is always approximately a doubly-stochastic ma-
trix. P can be thought of as the unnormalised permutation while P
is the normalised permutation. By changing our optimisation to min-
imise P instead of P directly, all constraints are always satisfied and
we can simplify the optimisation problem to ming c¢(P) without any

constraints.

Aside: Sinkhorn operator

The Sinkhorn operator S as defined in Adams et al. [2]] is:

T7(X)i; = Xij/Zk] Xik (4.4)
To(X)ij = Xi/ ), Xas (45)
SO (x) = exp(;) (4.6)
S (x) = 7;(7: (s0x0) ) (47)
S(X) = s (X) (4.8)

7, normalises each row, 7; normalises each column of a square
matrix X to sum to one. This formulation is different from the
normal Sinkhorn operator by Sinkhorn by exponentiating
all entries first and running for a fixed number of steps L in-
stead of for steps approaching infinity. Mena et al. include a
temperature parameter on the exponentiation, which acts analo-
gously to temperature in the softmax function. In this chapter,
we fix L to 4.

It is now straightforward to optimise P with standard gradient descent.

First, we compute the gradient:
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dc(P)
achq =2 ZJ: Cpi| D, P = D, P (4.9)

k'>q k'<q
ac(P) 9P ac(P)
OPpg  Ppy P

(4.10)

From [Equation 4.9} it becomes clear that this gradient is itself differen-
tiable with respect to the ordering cost C;;, which allows it to be learned.
In practice, both dc(P)/ P as well as 9[dc(P)/dP] /aC can be computed
with automatic differentiation. However, some implementations of au-
tomatic differentiation require the computation of ¢(P) which we do
not use. In this case, implementing dc(P)/ oP explicitly can be more
efficient. Also notice that if we define Bjq = Xisq Pik — g <q Pik's
is just the matrix multiplication CB and is thus efficiently

computable.

For the optimisation, P has to be initialised in a permutation-equivariant
way to preserve permutation-invariance of the algorithm. In this chapter,
we consider a uniform initialisation so that all P;z = 1/N (PO-U model,
left) and an initialisation that linearly assigns [71]] each element to each
position (PO-LA model, right).

5(0 5(0
Pik) =0 or Pik) = WrX; (4.11)
where wy is a different weight vector for each position k. Then, we
perform gradient descent for a fixed number of steps T. The iterative
update using the gradient and a (learnable) step size n converges to the

optimised permutation P(7):

N ALt w12
One peculiarity of this is that we update P with the gradient of the
normalised permutation P, not of the unnormalised permutation P
as normal. In other words, we do gradient descent on P but in
we set 9P,/ aﬁpq = 1when u = p,v = ¢, and 0 everywhere
else. We found that this results in significantly better permutations
experimentally; we believe that this is because 9P/ P vanishes too
quickly from the Sinkhorn normalisation, which biases P away from

good permutation matrices wherein all entries are close to 0 and 1. We

justify this in more detail in|Subsection 4.2.5|

The runtime of this algorithm is dominated by the computation of

gradients of ¢(P), which involves a matrix multiplication of two N X N
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matrices. In total, the time complexity of this algorithm is T times the
complexity of this matrix multiplication, which is ©(N?) in practice.
We found that typically, small values for T such as 4 are enough to get

good permutations.

4.2.3 Ordering cost function

The ordering cost C;; is used in the total cost and tells us what the
pairwise cost for placing i before j should be. The key property to
enforce is that the function F that produces the entries of C is anti-
symmetric (F(x;, x;) = —=F(x}, x;)). A simple way to achieve this is to
define F as:

F(xixj) = f(xix5) — f(xj,x:) (4.13)

We can then use a small neural network for f to obtain a learnable F

that is always anti-symmetric.

Lastly, C is normalised to have unit Frobenius norm. This results in
simply scaling the total cost obtained, but it also decouples the scale of
the outputs of F from the step size parameter 7 to make optimisation

more stable at inference time. C is then defined as:

Cl'j = F(xi,xj) (4.14)
Cij = Cij/IICllF (4.15)

4.2.4 Extending permutations to lattices

In some tasks, it may be natural to permute the set into a lattice structure
instead of a sequence. For example, if it is known that the set contains
parts of an image, it makes sense to arrange these parts back to an
image by using a regular grid. We can straightforwardly adapt our
model to this by considering each row and column of the target grid as
an individual permutation problem. The total cost of an assignment to a
grid is the sum of the total costs over all individual rows and columns of
the grid. The gradient of this new cost is then the sum of the gradients
of these individual problems. This results in a model that considers
both row-wise and column-wise pairwise relations when permuting
a set of inputs into a grid structure, and more generally, into a lattice

structure.
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4.2.5 Justification for alternative update

We mentioned previously that we perform gradient descent with the
post-Sinkhorn gradients on the pre-Sinkhorn matrix. Here, we justify

why this is a reasonable thing to do.

First, the gradient of S(X) is:

aS(X)  dexp(X) a7 (exp(X)) 9‘72( r(exp(X)))
= e (4.16)
oX oX dexp(X) o7; (exp(X))
a(];(X)uv _ _ﬂv:j Zk Xuk - Xuv
Ky T (K 1
aﬁ(x)uv _ ) 1y=i Zk Xico — Xuo
Ky T (S Ki) 19

where 1 is the indicator function that returns 1 if the condition is true

and 0 otherwise.

We compared the entropy of the permutation matrices obtained with
and without using the “proper” gradient with dS(P) /P as term in it and
found that our version has a significantly lower entropy. To understand
this, it is enough to focus on the first two terms in[Equation 4.16| which
is essentially the gradient of a softmax function applied row-wise to
P.

Let x be a row in P and s; be the ith entry in the softmax function
applied to x. Then, the gradient is:
asi

gj =si(1]i:j—sj) (419)

Since this is a product of entries in a probability distribution, the gradient
vanishes quickly as we move towards a proper permutation matrix (all
entries very close to 0 or 1). By using our alternative update and thus
removing this term from our gradient, we can avoid the vanishing

gradient problem.

Gradient descent is not efficient when the gradient vanishes towards
the optimum and the optimum - in our case a permutation matrix with
exact ones and zeros as entries — is infinitely far away. Since we prefer
to use a small number of steps in our algorithm for efficiency, we want
to reach a good solution as quickly as possible. This justifies effectively
ignoring the step size that the gradient suggests and simply taking a step
in a similar direction as the gradient in order to be able to saturate the
Sinkhorn normalisation sufficiently, thus obtaining a doubly stochastic

matrix that is closer to a proper permutation matrix in the end.
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4.2.6 Quadratic programming formulation

We can write our total cost function as a quadratic program in the stan-
dard x"Qx form with linear constraints. (We leave out the constraints
here as they are not particularly interesting.) This connects our work

to the extensive quadratic programming literature.

First, we can define O € RN*N ag:

-1 ifk>k
Okk/ =350 lfk = k" (420)
1 ifk <k’
and with it, Q € RN?XN? 5.
Qik) (k) = CijOkk’ (4.21)

Then we can write the cost function as:

C(P) = Z Cij Z Pikij/Okk, (422)
i kK
= D D Pie(CijOuie) Py (4.23)
ik jk'
- Z Z Py Qi) (i) Pijie) (4.24)
(ik) (jk')
=p'0p (4.25)

where there is some bijection between a pair of indices (i, k) and the
index [, and p is a flattened version of P with p; = Pj. O is indefinite
because the total cost can be negative: a uniform initialisation for P has
a cost of 0, better permutations have negative cost, worse permutations
have positive cost. Thus, the problem is non-convex and the problem is
possibly NP-hard. Also, since we have flattened P into p, the number of
optimisation variables is quadratic in the set size N. Even if this were
a convex quadratic program, methods such as OptNet [3] have cubic
time complexity in the number of optimisation variables, which makes

it O(N®) for our case.

4.3 Related work

The most relevant work to ours is the inspiring study by Mena et al. [[71]],
where they discuss the reparametrisation that we use and propose a

model that can also learn permutations implicitly in principle. Their
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model uses a simple elementwise linear map from each of the N elements
of the set to the N positions, normalised by the Sinkhorn operator.
This can be understood as classifying each element individually into
one of the N classes corresponding to positions, then normalising the
predictions so that each class only occurs once within this set. However,
processing the elements individually means that their model does not
take relations between elements into account properly; elements are
placed in absolute positions, not relative to other elements. Our model
differs from theirs by considering pairwise relations when creating the
permutation. By basing the cost function on pairwise comparisons,
it is able to order elements such that local relations in the output are
taken into account. We believe that this is important for learning from
permutations implicitly, because networks such as CNNs and RNNs rely
on local ordering more than absolute positioning of elements. It also
allows our model to process variable-sized sets, which their model is

not able to do.

Our work is closely related to the set function literature, where the
main constraint is invariance to ordering of the set. While it is always
possible to simply train using as many permutations of a set as possible,
using a model that is naturally permutation-invariant increases learn-
ing and generalisation capabilities through the correct inductive bias in
the model. There are some similarities with relation networks [89]] in
considering all pairwise relations between elements as in our pairwise
ordering function. However, they sum over all non-linearly transformed
pairs, which can lead to the bottleneck we mention in[Section 4.1] Mean-
while, by using an RNN on the output of our model, our approach can
encode a richer class of functions: it can still learn to simply sum the
inputs, but it can also learn more complex functions where the learned
order between elements is taken into account. The concurrent work
by Murphy et al. [[76]] discusses various approximations of averaging
the output of a neural network over all possible permutations, with
our method falling under their categorisation of a learned canonical
input ordering. Our model is also relevant to neural networks operating
on graphs such as graph convolutional networks [59]. Typically, a set
function is applied to the set of neighbours for each node, with which
the state of the node is updated. Our module combined with an RNN is

thus an alternative set function to perform this state update with.

Noroozi et al. [[79]] and Cruz et al. [26]] show that it is possible to use
permutation learning for representation learning in a self-supervised
setting. The model in Cruz et al. [26] is very similar to Mena et al. [[71]],
including use of a Sinkhorn operator, but they perform significantly
more processing on images with a large CNN (AlexNet) beforehand with

the main goal of learning good representations for that CNN. We instead
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focus on using the permuted set itself for representation learning in a

supervised setting.

We are not the first to explore the usefulness of using optimisation in
the forward pass of a neural network (for example, Stoyanov et al. [97],
Domke [29], and Belanger et al. [[13]]). However, we believe that we are
the first to show the potential of optimisation for processing sets because
- with an appropriate cost function - it is able to preserve permutation-
invariance. In OptNet [3], exact solutions to convex quadratic programs
are found in a differentiable way through various techniques. Unfortu-
nately, our quadratic program is non-convex, which makes finding an
optimal solution possibly NP-hard [[81]]. We thus fall back to the simpler
approach of gradient descent on the reparametrised problem to obtain

a non-optimal, but reasonable solution.

Note that our work differs from learning to rank approaches such as
Burges et al. [[18]] and Severyn et al. [90], as there the end goal is the
permutation itself. This usually requires supervision on what the target
permutation should be, producing a permutation with hard assignments
at the end. We require our model to produce soft assignments so that it is
easily differentiable, since the main goal is not the permutation itself, but
processing it further to form a representation of the set being permuted.
This means that other approaches that produce hard assignments such
as Ptr-Net [[102] are also unsuitable for implicitly learning permutations,
although using a variational approximation through Mena et al. [71]] to
obtain a differentiable permutation with hard assignments is a promising
direction to explore for the future. Due to the lack of differentiability,
existing literature on solving minimum feedback arc set problems [21]]

can not be easily used for set representation learning either.

4.4 Experiments

Throughout the text, we will refer to our model with uniform assignment
as PO-U, with linear assignment initialisation as PO-LA, and the model
from Mena et al. [[71]] as LinAssign. We perform a qualitative analysis
of what comparisons are learned in[Section 4.5 Precise experimental
details can be found in and our implementation for all
experiments is available at https://github.com/Cyanogenoid/

perm-optim for full reproducibility.

An interesting aspect we observed throughout all experiments is how
the learned step size n changes during training. At the start of training,
it decreases from its initial value of 1, thus reducing the influence of the
permutation mechanism. Then, # starts rising again, usually ending up
at a value above 1 at the end of training. This can be explained by the

ordering cost being very inaccurate at the start of training, since it has


https://github.com/Cyanogenoid/perm-optim
https://github.com/Cyanogenoid/perm-optim

Chapter 4. Permutation-optimisation 55

—_— —
03 ——) T 0.1
MLP
08 ——r | ¢ 0.3
: PO
0.7 —— 0.7
0.1 ——f= 0.8
——— [

Figure 4.2: Network architecture for number sorting. The MLP in F computes f and is shared
across pairs of set elements. The PO block performs the optimisation with the given costs and
permutes the input set.

not been trained yet. Through training, the ordering cost improves and
it becomes more beneficial for the influence of the PO module on the

permutation to increase.

4.4.1 Sorting numbers

We start with the toy task of turning a set of random unsorted numbers
into a sorted list. For this problem, we train with fixed-size sets of
numbers drawn uniformly from the interval [0, 1] and evaluate on
different intervals to determine generalisation ability (for example:
[0, 1], [0, 1000], [1000, 1001]). We use the correctly ordered sequence as
training target and minimise the mean squared error. Following Mena et
al. [71], during evaluation we use the Hungarian algorithm for solving
a linear assignment problem with —P as the assignment costs. This

is done to obtain a permutation with hard assignments from our soft

permutation. We show our model architecture in

Results Our PO-U model is able to sort all sizes of sets that we tried —
5 to 1024 numbers — perfectly, including generalising to all the different
evaluation intervals without any mistakes. This is in contrast to all
existing end-to-end learning-based approaches such as Mena et al. [71]],
which starts to make mistakes on [0, 1] at 120 numbers and no longer
generalises to sets drawn from [1000,1001] at 80 numbers. Vinyals
et al. [101] already starts making mistakes on 5 numbers. Our stark
improvement over existing results is evidence that the inductive biases
due to the learned pairwise comparisons in our model are suitable
for learning permutations, at least for this particular toy problem. In

Subsection 4.5.1) we investigate what it learns that allows it to generalise

this well.
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Figure 4.3: Network architecture for image mosaic tasks. The small CNN and the MLP in F is
shared across set elements and pairs of set elements respectively. The PO block performs the
optimisation with the given row and column costs and permutes the input set. The ResNet-18
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network at the end is only present in the implicit permutation setting.

assignment initialisation respectively.

ResNet-18

Table 4.1: Mean squared error of image mosaic reconstruction for different datasets and number of
tiles an image is split into. Lower is better. LinAssign* is the model by Mena et al. [71], LinAssign
is our reproduction of their model, PO-U and PO-LA are our models with uniform and linear

MNIST CIFAR10 ImageNet 64 X 64
Model 2X2 3%X3 4%X4 5X5 2%X2 3X3 4%x4 5%X5 2%X2 3X3 4%X4 5%X5
LinAssign *0.00 0.00 026 0.18 - - - - 0.22 0.31 - -
LinAssign 0.00 0.00 0.33 0.08 037 049 134 1.12 0.60 1.10 133 1.44
PO-U 0.00 0.02 046 045 0.11 044 123 126 0.14 0.69 1.20 1.31
PO-LA 0.00 0.00 0.07 0.01 0.18 0.16 1.07 0.70 0.16 0.62 1.13 1.32

4.4.2 Re-assembling image mosaics

As second task, we consider a problem where the model is given images
that are split into n X n equal-size tiles and the goal is to re-arrange
this set of tiles back into the original image. We take these images
from either MNIST, CIFAR10, or a version of ImageNet with images

resized down to 64 X 64 pixels. For this task, we use the alternative

cost function described in [Subsection 4.2.4|to arrange the tiles into a

grid rather than a sequence; this lets our model take relations within
rows and columns into account. Again, we minimise the mean squared
error to the correctly permuted image and use the Hungarian algorithm
during evaluation, matching the experimental setup in Mena et al. [71]).
Due to the lack of reference implementation of their model for this
experiment, we use our own implementation of their model, which
we verified to reproduce their MNIST results closely. Unlike them, we
decide to not arbitrarily upscale MNIST images to get improved results
for all models. We show our model architecture in [Figure 4.3|



Table 4.2: Accuracy of image mosaic reconstruction. Higher is better. A permutation is considered
correct if all tiles are placed correctly. Because of indistinguishable tiles at higher tile counts (for
example multiple completely blank tiles on MNIST) it becomes very unlikely to guess the correct

Chapter 4. Permutation-optimisation

ground-truth matching at higher tile counts. LinAssign* results come from Mena et al. [|71].

MNIST CIFAR10 ImageNet 64 X 64
Model 2X2 3X3 4X4 5%X5 2%X2 3%X3 4%X4 5%X5 2X2 3X3 4X4 5%X5
LinAssign™ 100 72 3 0 - - - - 81 47 0 0
LinAssign 99.7 669 0.8 0.0 688 303 0.0 0.0 477 4.0 0.0 0.0
PO-U 100.0 659 0.2 00 86.2 344 0.0 0.0 859 19.2 0.1 0.0
PO-LA 999 731 18 00 87.3 660 0.6 03 842 286 0.1 0.0

Results The mean squared errors for the different image datasets and
different number of tiles an image is split into are shown in[Table 4.1}
The corresponding accuracies when training a classifier on these re-
constructions are shown in First, notice that in essentially
all cases, our model with linear assignment initialisation (PO-LA) per-
forms best, often significantly so. On the two more complex datasets
CIFAR10 and ImageNet, this is followed by our PO-U model, then the

LinAssign model. We analyse what types of comparisons PO-U learns

in ion 4.5.2

On MNIST, LinAssign performs better than PO-U on higher tile counts
because images are always centred on the object of interest. That means
that many tiles only contain the background and end up completely
blank; these tiles can be more easily assigned to the borders of the image
by the LinAssign model than our PO-U model because the absolute
position is much more important than the relative positioning to other
tiles. This also points towards an issue for these cases in our cost
function: because two tiles that have the same contents are treated the
same by our model, it is unable to place one blank tile on one side of
the image and another blank tile on the opposite side, as this would
require treating the two tiles differently. This issue with backgrounds
is also present on CIFAR10 to a lesser extent: notice how for the 3 x 3
case, the error of PO-U is much closer to LinAssign on CIFAR10 than
on ImageNet, where PO-U is much better comparatively. This shows
that the PO-U model is more suitable for more complex images when
relative positioning matters more. PO-LA is able to combine the best of
both methods.

In[Figure 4.4] [Figure 4.5 and [Figure 4.6) we show some example recon-

structions that have been learnt by our PO-U model. Starting from a
uniform assignment at the top, the figures show reconstructions as a
permutation is being optimised. Generally, it is able to reconstruct most

images fairly well.
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Figure 4.4: Example reconstructions of PO-U as they are being optimised on MNIST 3 x 3 with
explicit supervision. These examples have not been cherry-picked.
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Figure 4.5: Example reconstructions of PO-U as they are being optimised on CIFAR10 3 X 3 with
explicit supervision. These examples have not been cherry-picked.
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Figure 4.6: Example reconstructions of PO-U as they are being optimised on ImageNet 3 X 3 with
explicit supervision. These examples have not been cherry-picked.

4.4.3 Implicit permutations through classification

We now turn to tasks where the goal is not producing the permutation
itself, but learning a suitable permutation for a different task. For these
tasks, we do not provide explicit supervision on what the permuta-
tion should be; an appropriate permutation is learned implicitly while

learning to solve another task.

As the dataset, we use a straightforward modification of the image
mosaic task. The image tiles are assigned to positions on a grid as
before, which are then concatenated into a full image. This image is
fed into a standard image classifier (ResNet-18 [42]]) which is trained
with the usual cross-entropy loss to classify the image. The idea is
that the network has to learn some permutation of the image tiles so
that the classifier can classify it accurately. This is not necessarily the

permutation that restores the original image faithfully.

One issue with this set-up we observed is that with big tiles, it is easy
for a CNN to ignore the artefacts on the tile boundaries, which means
that simply permuting the tiles randomly gets to almost the same test
accuracy as using the original image. To prevent the network from
avoiding to solve the task, we first pre-train the CNN on the original
dataset without permuting the image tiles. Once it is fully trained,
we freeze the weights of this CNN and train only the permutation

mechanism.

Results We show the classification results in[Table 4.3 and the corre-
sponding MSE reconstruction losses in [Table 4.4] Note that the models
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Table 4.3: Accuracy of classification from implicitly-learned image reconstructions through
permutations. max shows the accuracy of the pre-trained model on the original images, min
shows the accuracy of the pre-trained model on images with randomly permuted tiles.

MNIST CIFAR10 ImageNet 64 X 64

Model 2x2 3X3 4%x4 5%X5 2X2 3%X3 4X4 5%X5 2X2 3%x3 4X4 5%5

max 99.5 995 995 993 81.0 810 819 802 312 334 312 335
min 36.6 225 17.1 146 365 264 229 180 114 78 35 2.7
LinAssign 99.4 99.2 86.0 842 64.6 33.8 334 325 131 58 53 33
PO-U 99.3 98.7 679 69.2 70.8 41.6 333 297 246 12.1 7.3 5.1
PO-LA 993 994 93.3 89.8 71.6 40.7 34.2 323 234 109 63 44

Table 4.4: Mean squared error of implicitly-learned reconstruction. Lower is better.

MNIST CIFAR10 ImageNet 64 X 64

Model 2x2 3x3 4%x4 5%x5 2%X2 3%X3 4%X4 5X5 2X2 3xX3 4%x4 5%5

max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
min 159 163 191 172 176 191 211 201 148 172 179 183
LinAssign 0.02 0.05 0.73 1.11 0.56 1.29 153 1.62 088 133 132 1.39
PO-U 0.02 0.15 138 1.24 033 1.03 144 134 044 116 1.28 147
PO-LA 0.01 0.03 0.50 0.93 0.28 1.00 147 155 0.41 1.15 141 143

are not trained to minimise MSE loss. Generally, a similar trend to the
image mosaic task with explicit supervision can be seen. Our PO-LA
model usually performs best, although for ImageNet PO-U is consis-
tently better. This is evidence that for more complex images, the benefits
of linear assignment decrease (and can actually detract from the task in
the case of ImageNet) and the importance of the optimisation process
in our model increases. With higher number of tiles on MNIST, even
though PO-U does not perform well, PO-LA is clearly superior to only
using LinAssign. This is again due to the fully black tiles not being able

to be sorted well by the cost function with uniform initialisation.

In[Figure 4.7, [Figure 4.8 and [Figure 4.9 we show some example recon-

structions that have been learnt by our PO-U model on 3 X 3 versions
of the image datasets. Because the quality of implicit CIFAR10 and Ima-
geNet reconstructions are relatively poor, we also include
and on 2 X 2 versions. Starting from a uniform assignment
at the top, the figures show reconstructions as a permutation is being
optimised. The reconstructions here are clearly noisier than before
due the supervision only being implicit. This is evidence that while
our method is superior to existing methods in terms of reconstruction
error and accuracy of the classification, there is still plenty of room
for improvement to allow for better implicitly learned permutations.
Keep in mind that it is not necessary for the permutation to produce the

original image exactly, as long as the CNN can consistently recognise
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Figure 4.7: Example reconstructions of PO-U as they are being optimised on MNIST 3 X 3 with
implicit supervision. These examples have not been cherry-picked.

Figure 4.8: Example reconstructions of PO-U as they are being optimised on CIFAR10 3 X 3 with
implicit supervision. These examples have not been cherry-picked.
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Figure 4.9: Example reconstructions of PO-U as they are being optimised on ImageNet 3 x 3 with
implicit supervision. These examples have not been cherry-picked.

Figure 4.10: Example reconstructions of PO-U as they are being optimised on CIFAR10 2 x 2 with
implicit supervision. These examples have not been cherry-picked.
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Example reconstructions of PO-U as they are being optimised on ImageNet 2 X 2 with
implicit supervision. These examples have not been cherry-picked.

what the permutation method has learned. Our models tend to naturally
learn reconstructions that are more similar to the original image than
the LinAssign model.

4.4.4 Visual question answering

As the last task, we consider the much more complex problem of visual
question answering (VQA): answering questions about images. We use
the VQA v2 dataset [6| 38], which in total contains around 1 million
questions about 200,000 images from MS-COCO with 6.5 million human-
provided answers available for training. We use bottom-up attention
features [4] as representation for objects in the image, which for each
image gives us a set (size varying from 10 to 100 per image) of bounding
boxes and the associated feature vector that encodes the contents of
the bounding box. These object proposals have no natural ordering a

priori.

We use the state-of-the-art BAN model as baseline and perform a
straightforward modification to it to incorporate our module (see
[ure 4.12). For each element in the set of object proposals, we concatenate
the bounding box coordinates, features, and the attention value that the
baseline model generates. Our model learns to permute this set into
a sequence, which is fed into an LSTM. We take the last cell state of
the LSTM to be the representation of the set, which is fed back into the
baseline model. This is done for each of the eight attention glimpses
in the BAN model. We include another baseline model (BAN + LSTM)
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Object proposals —

Attention glimpse Attention glimpse

Question —

BAN

Figure 4.12: Network architecture for visual question answering task using BAN with 8 glimpses
(2 shown) as baseline. We add a shared PO-U module with an LSTM to process its output for each
glimpse. The outputs of the BAN attention and the LSTM are added into the hidden state of the
BAN network.

Table 4.5: Accuracy on VQA v2 validation set, mean of 10 runs. The sample standard deviation
over these runs is shown after the + symbol. Overall includes the other three question categories.

Model Overall Yes/No Number Other

BAN 65.96 = 0.16 83.34+0.09 49.24+0.56 57.17 £0.14
BAN + LSTM  66.06 + 0.13 83.29 +0.13  49.64+ 037 57.30+0.13
BAN + PO-U  66.33 £+ 0.09 83.50 £0.10 50.42 +£046 57.48 £0.10

that skips the permutation learning, directly processing the set with the
LSTM.

Our results on the validation set of VQA v2 are shown in We
improve on the overall performance of the state-of-the-art model by
0.37% — a significant improvement for this dataset — with 0.27% of this
improvement coming from the learned permutation. This shows that
there is a substantial benefit to learning an appropriate permutation
through our model in order to learn better set representations. Our
model significantly improves on the number category, despite the in-
clusion of our counting module from specifically targeted
at number questions in the baseline. This is evidence that the repre-
sentation learned through the permutation is non-trivial. Note that
the improvement through our model is not simply due to increased
model size and computation: Kim et al. [[56] found that significantly
increasing BAN model size, increasing computation time similar in scale

to including our model, does not yield any further gains.

4.5 Analysis of learned comparisons

4.5.1 Number sorting

First, we investigate what comparison function F is learned for the

number sorting task. We start with plotting the outputs of F for different
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Figure 4.13: Outputs of F for different pairs of numbers as input. Red indicates that the number
on the left should be ordered after the number at the top, blue indicates the opposite. Evaluation
intervals are [0, 1] (left) and [0, 1000] (right).
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Figure 4.14: Outputs of f for different pairs of numbers as input. Evaluation intervals are [0, 1]
(left) and [0, 1000] (right).

pairs of inputs in [Figure 4.13] From this, we can see that it learns a
sensible comparison function where it outputs a negative number when

the first argument is lower than the second, and a positive number vice

versa.

The easiest way to achieve this is to learn f(x;, x;) = x;, which results
in F(x;,xj) = x; — x;j. By plotting the outputs of the learned f in
[Figure 4.14 we can see that something close to this has indeed been
learned. The learned f mostly depends on the second argument and
is a scaled and shifted version of it. It has not learned to completely
ignore the first argument, but the deviations from it are small enough
that the cost function of the permutation is able to compensate for it.
We can see that there is a faint grey diagonal area going from (0, 0)
to (1, 1) and to (1000, 1000), which could be an artefact from F having
small gradients due to its skew-symmetry when two numbers are close

to each other.

4.5.2 Image mosaics

Next, we investigate the behaviour of F on the image mosaic task. Since
our model uses the outputs of F in the optimisation process, we find it

easier to interpret F over f in the subsequent analysis.
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Figure 4.15: Outputs of F; (left half, row comparisons) and F; (right half, column comparisons) for
pairs of tiles from an image in MNIST. For Fj, the tiles are sorted left-to-right if only F; was used
as cost. For F,, the tiles are sorted top-to-bottom if only F, was used as cost. Blue indicates that
the tile to the left of this entry should be ordered left of the tile at the top for F, the tile on the
left should be ordered above the tile at the top for F,. The opposite applies for red. The saturation

of the colour indicates how strong this ordering is.

Outputs

We start by looking at the output of F; (costs for left-to-right ordering)
and F; (costs for top-to-bottom ordering) for MNIST 2 X 2, shown in
First, there is a clear entry in each row and column of both
F; and F, that has the highest absolute cost (high colour saturation)
whenever the corresponding tiles fit together correctly. This shows that
it successfully learned to be confident what order two tiles should be
in when they fit together. From the two 2-by-2 blocks of red and blue
on the anti-diagonal, we can also see that it has learned that for the
per-row comparisons (F;), the tiles that should go into the left column
should generally compare to less than (i.e. should be permuted to be to
the left of) the tiles that go to the right. Similarly, for the per-column
comparisons (F) tiles that should be at the top compare to less than
tiles that should be at the bottom. Lastly, F; has a low absolute cost
when comparing two tiles that belong in the same column. These are
the entries in the matrix at the coordinates (1, 2), (2, 1), (4, 3), and (3, 4).
This makes sense, as F; is concerned with whether one tile should be
to the left or right of another, so tiles that belong in the same column
should not have a preference either way. A similar thing applies to F,

for tiles that belong in the same row.

Sensitivity to positions

Next, we investigate what positions within the tiles F; and F, are most
sensitive to. This illustrates what areas of the tiles are usually important
for making comparisons. We do this by computing the gradients of
the absolute values of F with respect to the input tiles and averaging

over many inputs. For MNIST 2 X 2 (Figure 4.16| left), it learns no

particular spatial pattern for F; and puts slightly more focus away from
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Figure 4.16: Sensitivity to positions within a tile for MNIST 2 x 2 (left), 3 X 3 (middle), and 4 x 4
(right). The left plot of each pair shows Fy, the right plot shows F,.

Figure 4.17: Sensitivity to positions within a tile of the comparisons for CIFAR10 2 X 2 (left), 3 x 3
(middle), and 4 X 4 (right). The left plot of each pair shows Fj, the right plot shows F,.

the centre of the tile for F,. As we will see later, it learns something
that is very content-dependent rather than spatially-dependent. With
increasing numbers of tiles on MNIST, it tends to focus more on edges,
and especially on corners. For the CIFAR10 dataset (Figure 4.17), there
is a much clearer distinction between left-right comparisons for F; and
top-bottom comparisons for F,. For the 2 X 2 and 4 X 4 settings, it
relies heavily on the pixels on the left and right borders for left-to-right
comparisons, and top and bottom edges for top-to-bottom comparisons.
Interestingly, F; in the 3 X 3 setting (middle pair) on CIFAR10 focuses on
the left and right halves of the tiles, but specifically avoids the borders.
A similar thing applies to F,, where a greater significance is given to
pixels closer to the middle of the image rather than only focusing on
the edges. This suggests that it learns to not only match up edges as
with the other tile numbers, but also uses the content within the tile to

do more sophisticated content-based comparisons.

Per-tile gradients

Lastly, we can look at the gradients of F with respect to the input tiles for

specific pairs of tiles, shown in|[Figure 4.18|and|[Figure 4.19} This gives us

a better insight into what changes to the input tiles would affect the cost
of the comparison the most. These figures can be understood as follows:
for each pair of tiles, we have the corresponding two gradient maps next
to them. Brightening the pixels for the blue entries in these gradient
maps would order the corresponding tile more strongly towards the left
for F; and towards the top for F,. The opposite applies to brightening
the pixels with red entries. Vice versa, darkening pixels with blue entries
orders the tile more strongly towards the right for F; and the bottom for
F,. More saturated colours in the gradient maps correspond to greater

effects on the cost when changing those pixels.
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Figure 4.18: Gradient maps of pairs of tiles from MNIST for F; (left half) and F, (right half). Each
group of four consists of: tile 1, tile 2, gradient of F(t,, t;) with respect to tile 1, gradient of F(t5, t;)
with respect to tile 2.
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Figure 4.19: Gradient maps of pairs of tiles from CIFAR10 for F; (left half) and F, (right half).
Each group of four consists of: tile 1, tile 2, gradient of F(#, ;) with respect to tile 1, gradient of
F(ty, t1) with respect to tile 2.
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4.5. Analysis of learned comparisons

We start with gradients on the tiles for an input showing the digit 2 on
MNIST 2 x 2 in[Figure 4.18] We focus on the first row, left side, which
shows a particular pair of tiles from this image and their gradients
of F; (left-to-right ordering), and we share some of our observations

here:

« The gradients of the second tile show that to encourage the per-
mutation to place it to the right of the first tile, it is best to increase
the brightness of the curve in tile 2 that is already white (red en-
tries in tile 2 gradient map) and decrease the black pixels around
it (blue entries). This means that it recognised that this type of
curve is important in determining that it should be placed to the
right, perhaps because it matches up with the start of the curve
from tile 1. We can imagine the curve in the gradient map of tile
2 roughly forming part of a 7 rather than a 2 as well, so it is not

necessarily looking for the curve of a 2 specifically.

+ In the gradient map of the first tile, we can see that to encourage it
to be placed to the left of tile 2, increasing the blue entries would
form a curve that would make the first tile look like part of an 8
rather than a 2, completing the other half of the curve from tile
2. This means that it has learned that to match something with
the shape in tile 2, a loop that completes it is best, but the partial

loop that we have in tile 1 satisfies part of this too.

« Notice how the gradient of tile 1 changes quite a bit when going
from row 1 to row 3, where it is paired up with different tiles.
This suggests that the comparison has learned something about
the specific comparison between tiles being made, rather than
learning a general trend of where the tile should go. The latter
is what a linear assignment model is limited to doing because it

does not model pairwise interactions.

« In the third row, we can see that even though the two tiles do not
match up, there is a red blob on the left side of the tile 2 gradient
map. This blob would connect to the top part of the line in tile 1,
so it makes sense that making the two tiles match up more on the

border would encourage tile 2 to be ordered to the right of tile 1.

Similar observations apply to the right half of such as row
5, where tile 1 (which should go above tile 2) should have its pixels in
the bottom left increased and tile 2 should have its pixels in the top left
increased in order for tile 1 to be ordered before (i.e. above) tile 2 more

strongly.

On CIFAR10 2 X 2 in[Figure 4.19] it is enough to focus on the borders
of the tiles. Here, it is striking how specifically it tries to match edge
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colours between tiles. For example, consider the blue sky in the left
half (F;), row 6. To order tile 1 to the left of tile 2, we should change
tile 1 to have brighter sky and darker red on the right border, and also
darken the black on the left border so that it matches up less well with
the right border of tile 2, where more of the bright sky is visible. For
tile 2, the gradient shows that it should also match up more on the left
border, and have increase the amount of bright pixels, i.e. sky, on the
right border, again so that it matches up less well with the left border
of tile 1 if they were to be ordered the opposing way.

4.6 Discussion

In this chapter, we proposed our Permutation-optimisation module for
learning permutations of sets using an optimisation-based approach. In
various experiments, we verified the merit of our approach for learning
permutations and, from them, set representations. We think that the
optimisation-based approach to processing sets is currently underap-
preciated and hope that the techniques and results in this chapter will
inspire new algorithms for processing sets in a permutation-invariant
manner. Of course, there is plenty of work to be done. For example,
we have only explored one possible function for the total cost; differ-
ent functions capturing different properties may be used. The main
drawback of our approach is the cubic time complexity in the set size
compared to the quadratic complexity of Mena et al. [71]], which limits
our model to tasks where the number of elements is relatively small.
While this is acceptable on the real-world dataset that we used - VQA
with up to 100 object proposals per image — with only a 30% increase
in computation time, our method does not scale to the much larger set
sizes encountered in domains such as point cloud classification. Im-
provements in the optimisation algorithm may improve this situation,

perhaps through a divide-and-conquer approach.

We believe that going beyond tensors as basic data structures is impor-
tant for enabling higher-level reasoning. As a fundamental mathematical
object, sets are a natural step forward from tensors for modelling un-
ordered collections. The property of permutation invariance lends itself
to greater abstraction by allowing data that has no obvious ordering to
be processed, and we took a step towards this by learning an ordering

that existing neural networks are able to take advantage of.
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Chapter 5

Set auto-encoder:

Featurewise sort pooling

In this chapter, we will present a multitude of contributions to the set
neural network literature. We identify the responsibility problem in
existing set prediction models. We then develop a set encoder that
is simpler and faster than our model in It is based on a
similar idea of turning the set into an ordered representation; we use
numerical sorting instead of trying to learn the ordering. To avoid the
responsibility problem, we develop a set decoder that is paired with our

set encoder.

These contributions have been presented as [[116]] at the Sets & Parti-
tions workshop, hosted at the Neural Information Processing Systems
(NeurIPS) 2019 conference, and have been submitted to the International

Conference on Learning Representations (ICLR) 2020.

5.1 Introduction

Consider the following task: you have a dataset wherein each data point
is a set of 2-d points that form the vertices of a regular polygon, and the
goal is to learn an auto-encoder on this dataset. The only variable is the
rotation of this polygon around the origin, with the number of points,
size, and centre of it fixed. Because the inputs and outputs are sets, this

problem has some unique challenges.

Encoder: This turns the set of points into a latent space. The order
of the elements in the set is irrelevant, so the feature vector the encoder
produces should be invariant to permutations of the elements in the set.
While there has been recent progress on learning such functions [[112}
84]], they compress a set of any size down to a single feature vector in

one step. This can be a significant bottleneck in what these functions
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can represent efficiently, particularly when relations between elements
of the set need to be modeled [|76,117]).

Decoder: This turns the latent space back into a set. The elements
in the target set have an arbitrary order, so a standard reconstruction
loss cannot be used naively — the decoder would have to somehow
output the elements in the same arbitrary order. Methods like those in
Achlioptas et al. [1]] therefore use an assignment mechanism to match
up elements (Section 5.2), after which a usual reconstruction loss can be
computed. Surprisingly, their model is still unable to solve the polygon
reconstruction task with close-to-zero reconstruction error, despite the

apparent simplicity of the dataset.

In this chapter, we introduce a set pooling method for neural networks
that addresses both the encoding bottleneck issue and the decoding

failure issue. We make the following contributions:

1. We identify the responsibility problem (Section 5.3). This is a

fundamental issue with existing set prediction models that has
not been considered in the literature before, explaining why these

models struggle to model even the simple polygon dataset.

2. We introduce FSPooL: a differentiable, sorting-based pooling
method for variable-size sets (Section 5.4). By using our pooling
in the encoder of a set auto-encoder and inverting the sorting in the
decoder, we can train it with the usual MSE loss for reconstruction
without the need for an assignment-based loss. This avoids the

responsibility problem.

3. We show that our auto-encoder can learn polygon reconstruc-

tions with close-to-zero error, which is not possible with existing

set auto-encoders (Subsection 5.6.1). This benefit transfers over to

a set version of MNIST, where the quality of reconstruction and

learned representation is improved (Subsection 5.6.2). In further

classification experiments on CLEVR (Subsection 5.6.4) and sev-

eral graph classification datasets (Subsection 5.6.5), using FSPool

in a set encoder improves over many non-trivial baselines.

5.2 Background

The problem with predicting sets is that the output order of the elements
is arbitrary, so computing an elementwise mean squared error does not
make sense; there is no guarantee that the elements in the target set
happen to be in the same order as they were generated. The existing

solution around this problem is an assignment-based loss, which assigns
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each predicted element to its “closest” neighbour in the target set first,

after which a traditional pairwise loss can be computed.

We have a predicted set Y with feature vectors as elements and a ground-
truth set Y, and we want to measure how different the two sets are.
These sets can be represented as matrices with the feature vectors
placed in the columns in some arbitrary order, so ¥ = [, .. ., 1,] and
Y = [y,,...,y,] with n as the set size (columns) and d as the number of
features per element (rows). In this work, we assume that these two sets
have the same size. The usual way to produce Y is with a multi-layer

perceptron (MLP) that has d X n outputs.

Hungarian loss One way to do this assignment is to find a linear
assignment that minimises the total loss, which can be solved with the
Hungarian algorithm in O(n®) time. With II as the space of all n-length

permutations:

2

n
Lu(¥.Y) = min > |~ yro (5.1)
1

Chamfer loss Alternatively, we can assign each element directly
to the closest element in the target set. To ensure that all points in
the target set are covered, a term is added to the loss wherein each
element in the target set is also assigned to the closest element in the

predicted set. This has O(n?) time complexity and can be run efficiently
on GPUs.

2
Y - yj“ (5.2)

koS . A 2 .
st Sl -a'+ S
i J

Both of these losses are examples of permutation-invariant functions:
the loss is the same regardless of how the columns of Y and Y are

permuted.

5.3 Responsibility problem

It turns out that standard neural networks struggle with modeling
symmetries that arise because there are n! different list representations
of the same set, which we highlight here with an example. Suppose we
want to train an auto-encoder on our polygon dataset and have a square
(so a set of 4 points with the x-y coordinates as features) with some
arbitrary initial rotation (see [Figure 5.2). Each pair in the 8 outputs of
the MLP decoder is responsible for producing one of the points in this
square (Figure 5.1). We mark each such pair with a different colour in
the figure.

75



76 5.3. Responsibility problem

............... (-1,-1) — —— (-1, 1) ..
® % 7 o S
o o (LD—I4§ = — e o
TN N (_1’ ]) —)(_1’_1) TTTTTTTTTTeT N

Figure 5.1: Each pair of outputs of the auto-encoder is responsible for one of the points of the set.
This responsibility is marked with the different colours of the outputs.
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Figure 5.2: Discontinuity (red arrow) when rotating the set of points. The coloured points denote
which output of the network is responsible for which point. In the top path, the set rotated by 90°
is the same set (exactly the same shape before and after rotation) and encodes to the same feature
vector, so the output responsibility (colouring) must be the same too. In this example, after 30°
and a further small clockwise rotation by €, the point that each output pair is responsible for has
to suddenly change.

If we rotate the square (top left in figure) by 90 degrees (top right in
figure), we simply permute the elements within the set. They are the
same set, so they also encode to the same latent representation and
decode to the same list representation. This means that each output
is still responsible for producing the point at the same position after
the rotation, i.e. the dark red output is still responsible for the top left
point, the light red output is responsible for the top right point, etc.
However, this also means that at some point during that 90 degree
rotation (bottom path in figure), there must exist a discontinuous jump
(red arrow in figure) in how the outputs are assigned. We know that
the 90 degree rotation must start and end with the top left point being
produced by the dark red output. Thus, we know that there is a rotation
where all the outputs must simultaneously change which point they are
responsible for, so that completing the rotation results in the top left
point being produced by the dark red output. Even though we change
the set continuously, the list representation (MLP or RNN outputs) must

change discontinuously.

This is a challenge for neural networks to learn, since they can typically
only model functions without discontinuous jumps. As we increase the
number of vertices in the polygon (number of set elements), it must

learn an increasing frequency of situations where all the outputs must
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discontinuously change at once, which becomes very difficult to model.

Our experiment in|[Subsection 5.6.1|confirms this.

This example highlights a more general issue: whenever there are
at least two set elements that can be smoothly interchanged, these
discontinuities arise. For example, the set of bounding boxes in object
detection can be interchanged in much the same way as the points of
our square here. An MLP or RNN that tries to generate these (like in
Rezatofighi et al. [87]] and Stewart et al. [96]) must handle which of its
outputs is responsible for what element in a discontinuous way. Note
that traditional object detectors like Faster R-CNN do not have this
responsibility problem, because they do not treat object detection as
a proper set prediction task with their anchor-based approach. When
the set elements come from a finite domain (often a set of labels) and
not RY, it does not make sense to interpolate set elements. Thus, the
responsibility problem does not apply to methods for such problems, for
example Welleck et al. [104] and Hamid Rezatofighi et al. [41].

5.3.1 Formal statement

The following theorem is a more formal treatment of the responsibility

problem resulting in discontinuities.

Theorem 1 For any set function f : S¢ — R" (d > 2,n > 2, 8% is
the set of all sets of size n with elements in R¢) from a set of points S = {x1,
Xy, ..., Xp} to alist representation of that set L = [Xq(1), X5(2)> - - - Xo(n) ]
with some fixed permutation o € II, there will be a discontinuity in f:
there exists an ¢ > 0 such that for all § > 0, there exist two sets S; and S,

where:

ds(51,52) <8 and di(f(51).f(S2)) > e (5:3)

ds is a measure of the distance between two sets (e.g. Chamfer loss) and d;
is the sum of Euclidean distances (d;(A, B) = ). ||aj - ijz).

Proof. We prove the theorem by considering mappings from a set of two
points in two dimensions. For larger sets or sets with more dimensions,
we can isolate two points and two dimensions and ignore the remaining

points and dimensions.
. . _ —cos(0) cos(0)
Let us consider the set of two points S(6) = —sin(8) | * | sin(0) (see

[Figure 5.3). This is mapped to a list L(9) = f(S(#)). Without loss

of generality, we can assume that our list representation for = 0 is

L(0) = [:zifég)) zﬁf((g))] = [_01 (1)] Since the order of set elements is

irrelevant and f is a (permutation-invariant) set function, S(r) = S(0)
and therefore L(r) = L(0) = [ ! § |. This implies that for at least one
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value of 0 = 0%, there is a change in responsibility such that for § < 6*,
the list representation will be L;(0) = [:zﬁfég)) Z:’;Eg)) ] while for 8 > 6%,

the list representation will be L, (6) = [ ifz((g; :Efgég)) ] in order to satisfy

L(x) = L(0). For any 6, d;(L1(0), L,(0)) = 4.

Let ¢ = 3.9 and 6 be given. We can find a sufficiently small > 0 so that
ds(S(07),S(0" + ) < S and dj(L(6"), L(6" + a)) > «. O

5.4 Featurewise sort pooling

The main idea behind our pooling method is simple: sorting each feature
across the elements of the set and performing a weighted sum. The
numerical sorting ensures the property of permutation-invariance. The
difficulty lies in how to determine the weights for the weighted sum in

a way that works for variable-sized sets.

A key insight for auto-encoding is that we can store the permutation
that the sorting applies in the encoder and apply the inverse of that per-
mutation in the decoder. This allows the model to restore the arbitrary
order of the set element so that it no longer needs an assignment-based
loss for training. This avoids the problem in [Figure 5.2] because rotating
the square by 90° also permutes the outputs of the network accord-
ingly. Thus, there is no longer a discontinuity in the outputs during
this rotation. In other words, we make the auto-encoder permutation-
equivariant: permuting the input set also permutes the neural network’s
output in the same way. This also means that L(r) # L(0), so the proof

no longer applies.

We describe the model for the simplest case of encoding fixed-size sets in

Subsection 5.4.1| extend it to variable-sized sets in[Subsection 5.4.2] then
discuss how to use this in an auto-encoder in|Subsection 5.4.3

Figure 5.3: Example of the set containing two points.
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Figure 5.4: Overview of our FSPoor model for variable-sized sets. In this example, the weights
define piecewise linear functions with two pieces. The four dots on each line correspond to the
positions where f is evaluated for a set of size four.

5.4.1 Fixed-size sets

We are given a set of n feature vectors X = [xy,..., x,] where each x;
is a column vector of dimension d placed in some arbitrary order in the
columns of X € R¥". From this, the goal is to produce a single feature
vector in a way that is invariant to permutation of the columns in the

matrix.

We first sort each of the d features across the elements of the set by
numerically sorting within the rows of X to obtain the matrix of sorted

features X:

X,j = SorT(X.); (5.4)

where X; . is the ith row of X and Sort(-) sorts a vector in descending
order. While this may appear strange since the columns of X no longer
correspond to individual elements of the set, there are good reasons
for this. A transformation (such as with an MLP) prior to the pooling
can ensure that the features being sorted are mostly independent so
that little information is lost by treating the features independently.
Also, if we were to sort whole elements by one feature, there would
be discontinuities whenever two elements swap order. This problem is

avoided by our featurewise sorting.

Efficient parallel implementations of SORT are available in Deep Learn-
ing frameworks such as PyTorch, which uses a bitonic sort (O(log® n)
parallel time, O(n log? n) comparisons). While the permutation that the
sorting applies is not differentiable, gradients can still be propagated
pathwise according to this permutation in a similar way as for max

pooling.

Then, we apply a learnable weight matrix W € R¥" to X by ele-
mentwise multiplying and summing over the columns (row-wise dot

products).

Y = Z m,j)?i,j (5.5)
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y € R¥ is the final pooled representation of X. The weight vector allows
different weightings of different ranks and is similar in spirit to the
parametric version of the gather step in Gather-Excite [47]]. This is a
generalisation of both max and sum pooling, since max pooling can be
obtained with the weight vector [1,0,...,0] and sum pooling can be
obtained with the 1 vector. Thus, it is also a maximally powerful pooling
method for multisets [105] while being potentially more flexible [76] in

what it can represent.

5.4.2 Variable-size sets

When the size n of sets can vary, our previous weight matrix can no
longer have a fixed number of columns. To deal with this, we define a
continuous version of the weight vector in each row: we use a fixed num-
ber of weights to parametrise a piecewise linear function f : [0,1] — R,
also known as calibrator function [51]]. For a set of size three, this func-
tion would be evaluated at 0, 0.5, and 1 to determine the three weights
for the weighted sum. For a set of size four, it would be evaluated at 0,
1/3, 2/3, and 1. This decouples the number of columns in the weight
matrix from the set size that it processes, which allows it to be used for

variable-sized sets.

To parametrise a piecewise linear function f, we have a weight vector
w € RF where k — 1 is the number of pieces defined by the k points.
With the ratio r € [0, 1],

k
Flrw) =" max (0,1 |r(k = 1) = (i = 1)) w, (5.6)
i=1

The max(-) term selects the two nearest points to r and linearly inter-
polates them. For example, if k = 3, choosing r € [0, 0.5] interpolates
between the first two points in the weight vector with (1 — 2r)w; +

2rws.

We have a different w for each of the d features and place them in the

Rka

rows of a weight matrix W € , which no longer depends on n.

Using these rows with f to determine the weights:

n .
J-1 = )
yi = E 1f(n_ 1,Wl-,)Xi,j (5.7)
Jj=

y is now the pooled representation with a potentially varying set size

n as input. When n = k, this reduces back to [Equation 5.5| For most

experiments, we simply set k = 20 without tuning it.
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5.4.3 Auto-encoder

To create an auto-encoder, we need a decoder that turns the latent space
back into a set. Analogously to image auto-encoders, we want this
decoder to roughly perform the operations of the encoder in reverse. The
FSPool in the encoder has two parts: sorting the features, and pooling
the features. Thus, the FSUnpool version should “unpool” the features,
and “unsort” the features. For the former, we define an unpooling
version of that distributes information from one feature
vector to a variable-size list of feature vectors. For the latter, the idea
is to store the permutation of the sorting from the encoder and use
the inverse of it in the decoder to unsort it. This allows the auto-
encoder to restore the original ordering of set elements, which makes it

permutation-equivariant.

With y” € R? as the vector to be unpooled, we define the unpooling

similarly to[Equation 5.7|as

O j_ 1 -, ’
Xi,j =f (m>Wi,:) Yi (5.8)

In the non-autoencoder setting, the lack of differentiability of the permu-
tation is not a problem due to the pathwise differentiability. However,
in the auto-encoder setting we make use of the permutation in the
decoder. While gradients can still be propagated through it, it intro-
duces discontinuities whenever the sorting order in the encoder for
a set changes, which we empirically observed to be a problem. To
avoid this issue, we need the permutation that the sort produces to be
differentiable. To achieve this, we use the recently proposed sorting
networks [[40]], which is a continuous relaxation of numerical sorting.
This gives us a differentiable approximation of a permutation matrix
P; € [0,1]™™ i € {1,...,d} for each of the d features, which we can
use in the decoder while still keeping the model fully differentiable. It
comes with the trade-off of increased computation costs with O(n?)
time and space complexity, so we only use the relaxed sorting in the
auto-encoder setting. It is possible to decay the temperature of the
relaxed sort throughout training to 0, which allows the more efficient

traditional sorting algorithm to be used at inference time.

Lastly, we can use the inverse of the permutation from the encoder to

restore the original order.

X,i,j = (S{i,:P—zr)j (59)

where P] permutes the elements of the ith row in X'
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Because the permutation is stored and used in the decoder, this makes
our auto-encoder similar to a U-net architecture [69]] since it is possible
for the network to skip the small latent space. Typically we find that
this only starts to become a problem when d is too big, in which case it
is possible to only use a subset of the P; in the decoder to counteract
this.

5.5 Related work

We are proposing a differentiable function that maps a set of feature
vectors to a single feature vector. This has been studied in many works
such as Deep Sets [112] and PointNet [84], with universal approxima-
tion theorems being proven. In our notation, the Deep Sets model is
g(2; h(X.;)) where h : RY — R? and ¢ : R? — RY. Since this is O(n)
in the set size n, it is clear that while it may be able to approximate
any set function, problems that depend on higher-order interactions
between different elements of the set will be difficult to model aside
from pure memorisation. This explains the success of relation networks
(RN), which simply perform this sum over all pairs of elements, and has
been extended to higher orders by Murphy et al. [76]]. Our work pro-
poses an alternative operator to the sum that is intended to allow some
relations between elements to be modeled through the sorting, while
not incurring as large of a computational cost as the O(n?) complexity
of RNs.

Sorting-based set functions The use of sorting has often been con-
sidered in the set learning literature due to its natural way of ensuring
permutation-invariance. The typical approach is to sort elements of the
set as units rather than our approach of sorting each feature individu-

ally.

For example, the similarly-named SortPooling [[114] sorts the elements
based on one feature of each element. However, this introduces discon-
tinuities into the optimisation whenever two elements swap positions
after the sort. For variable-sized sets, they simply truncate (which again
adds discontinuities) or pad the sorted list to a fixed length and process
this with a CNN, treating the sorted vectors as a sequence. Similarly,
Cangea et al. [[19] and Gao et al. [34] truncate to a fixed-size set by
computing a score for each element and keeping elements with the
top-k scores. In contrast, our pooling handles variable set sizes without
discontinuities through the featurewise sort and continuous weight
space. Gao et al. [34] propose a graph auto-encoder where the decoder
use the “inverse” of what the top-k operator does in the encoder, similar
to our approach. Instead of numerically sorting, Mena et al. [[71]] and our
Permutation-optimisation model learn an ordering of set
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Figure 5.5: Examples from polygon dataset for n € {2,4, 8,16}.

elements instead. Our FSPool model introduced here has the benefit of
only ©(nlog n) time complexity, compared to Permutation-optimisation
with ©(n?), so it is much easier to use with larger sets and thus a greater

variety of tasks.

Outside of the set learning literature, rank-based pooling in a convolu-
tional neural network has been used in Shi et al. [92]], where the rank is
turned into a weight. Sorting within a single feature vector has been
used for modeling more powerful functions under a Lipschitz constraint
for Wasserstein GANs [5] and improved robustness to adversarial ex-

amples [24].

Set prediction Assignment-based losses combined with an MLP or
similar are a popular choice for various auto-encoding and generative
tasks on point clouds [30,|107, |1]. An interesting alternative approach
is to perform the set generation sequentially [96}[52}[110]]. The difficulty
lies in how to turn the set into one or multiple sequences, which these

papers try to solve in different ways.

5.6 Experiments

We start with two auto-encoder experiments, then move to tasks where
we replace the pooling in an established model with FSPool. Full results
can be found in the appendices, experimental details can be found in

Section A.3| and we provide our code for reproducibility at https:
//github.com/Cyanogenoid/fspooll

5.6.1 Rotating polygons

We start with our simple dataset of auto-encoding regular polygons
(Section 5.3), with each point in a set corresponding to the x-y coordinate
of a vertex in that polygon. This dataset is designed to explicitly test
whether the responsibility problem occurs in practice. We keep the set
size the same within a training run and only vary the rotation. We try

this with set sizes of increasing powers of 2. We show some examples

of different set sizes in
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Table 5.1: Direct mean squared error (in hundredths) on Polygon dataset with different number of
points in the set. Lower is better.

Set size 2 4 8 16 32 64

FSPooL 0.000 0.001 0.000 0.000 0.000 0.0001
RanpoMm 100.323 100.134 99.367 99.951 99.438 99.523

Table 5.2: Chamfer loss (in hundredths) on Polygon dataset with different number of points in the
set. Lower is better.

Set size 2 4 8 16 32 64

FSPooL 0.001 0.001 0.001 0.000 0.001 0.002
MLP + Chamfer 1.189 1.771  0.274 1.272 0.316 0.085
MLP + Hungarian 1.517  0.400 0.251 1.266 0.326 0.081
RanDOM 72.848 19.866 5.112 1.271 0.322 0.081

Table 5.3: Hungarian loss (in hundredths) on Polygon dataset with different number of points in
the set. Lower is better.

Set size 2 4 8 16 32 64

FSPooL 0.000 0.001 0.000 0.000 0.000 0.001
MLP + Chamfer 0.595 0.885 0.137 0.641 0.160 0.285
MLP + Hungarian 0.758 0.200 0.126 0.634 0.163  0.040
RanDOM 36.424 9.933 2556 0.635 0.161 0.041

Model The encoder contains a 2-layer MLP applied to each set el-
ement, FSPool, and a 2-layer MLP to produce the latent space. The
decoder contains a 2-layer MLP, FSUnpool, and a 2-layer MLP applied
on each set element. We train this model to minimise the mean squared
error. As baseline, we use a model where the decoder has been replaced
with an MLP and train it with either the linear assignment or Chamfer
loss (equivalent to AE-EMD and AE-CD models in Achlioptas et al. [1]]).
We also include a random baseline that outputs a polygon with the

correct size and centre, but random rotation.

Results First, we verified that if the latent space is always zeroed out,
the model with FSPool is unable to train, suggesting that the latent space
is being used and is necessary. In[Table 5.1} [Table 5.2} and[Table 5.3] we

show the results of various model and training loss combinations. For

our training runs with set sizes up to 128, our auto-encoder is able to
reconstruct the point set close to perfectly. Meanwhile, the baseline
converges significantly slower with high reconstruction error when the
number of points is 8 or fewer and outputs the same set irrespective of
input above that, regardless of loss function. This shows that FSPool
with the direct MSE training loss is clearly better than the baseline

trained with either Hungarian or Chamfer loss.
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Figure 5.6: MNIST as point sets with different amounts of Gaussian noise (o) and their reconstruc-
tions. The baseline uses sum pooling and an MLP decoder, which had the best quantitative results
among the baselines. We used the best network for our model (0.28 x 10* average Chamfer loss)
and the best network for the baseline model (0.20 x 10* average Chamfer loss). The examples are
not cherry-picked.

Even when significantly increasing the latent size, dimensionality of
layers, tweaking the learning rate, and replacing FSPool in the encoder
with sum, mean, or max, the baseline trained with the Hungarian or
Chamfer loss fails completely at 16 points. We verified that for 4 points,

the baseline shows the discontinuous jump behaviour in the outputs as

we predict in

This experiment highlights the difficulty of learning this simple dataset
with traditional approaches due to the responsibility problem, while

our model is able to fit this dataset with ease.

5.6.2 Noisy MNIST reconstruction

Next, we turn to the harder task of auto-encoding MNIST images —
turned into sets of points — using a denoising auto-encoder. Each pixel
that is above the mean pixel level is considered to be part of the set with
its x-y coordinates as feature, scaled to be within the range of [0, 1].
The set size varies between examples and is 133 on average. We add
Gaussian noise to the points in the set and use the set without noise as

training target for the denoising auto-encoder.

Model We use exactly the same architecture as on the polygon dataset.
As baseline models, we combine sum/mean/max pooling encoders with
MLP/LSTM decoders and train with the Chamfer loss. This closely
corresponds to the AE-CD approach [1] with the MLP decoder and the
model by Stewart et al. with the LSTM decoder.

Results We show the quantitative results for the default MNIST set-

ting in [Table 5.4 Interestingly, the sum pooling baseline has a lower
Chamfer reconstruction error than our model, despite the example

outputs in looking clearly worse. This demonstrates the
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Table 5.4: Test Chamfer loss (in 1000ths) for MNIST for different input noise levels o over 6 runs.
Lower is better.

Noise o 0.00 0.01 0.02 0.03 0.04 0.05

FSPooL + FSUNPOOL 0.42:006 0.34x005 0.36x002 0.38x003 0.41:000 0.44x001
Sum + MLP 0.30:004 0.28:003 0.28+003 0.28x003 0.27x001 0.31+0.04
Sum + RNN 0.76+046 0.58+006 0.57x000 0.54x011 0.64+013 0.78+039
Max + MLP 1.29+025 1.37x028 1.232016 1.74x032 1.27x010 1.43z030
MEeaAN + MLP 1414012 1.22+01s 1.331020 1.252009 1.31:015 1.49z031

Table 5.5: Test Chamfer loss (in 1000ths) for MNIST with additional mask features on every
element for different input noise levels o over 6 runs. Lower is better.

Noise o 0.00 0.01 0.02 0.03 0.04 0.05

FSPooL + FSUNPOOL 0.28:003 0.21:001 0.25:003 0.25:001 0.27:001 0.30=0.01
Sum + MLP 0.87+043 0.90:039 0.61x040 0.99+08¢ 0.63+027 0.61024
Sum + RNN 0.58+013  0.69:016 0.60x018 1.35+155 0.73x012  0.63+013
Max + MLP 5914310 4.78+305 7.10+240 5.05+287 5.85+311 4.57+208
MEeaAN + MLP 5.924310 4.55+317 6.84+28¢  7.11s230 3.041078 6.341253

weakness of the Chamfer loss we mentioned in[Subsection 2.4.1l when
comparing multisets. Our model avoids this weakness by being trained
with a normal MSE loss (with the trade-off of a potentially higher Cham-
fer loss), which is not possible with the baselines. This MSE loss ensures
that our model always has to predict the correct set size. The sum
pooling baseline has a better test Chamfer loss because it is trained to
minimise it, but it is also solving an easier task, since it does not need

to distinguish padding from non-padding elements.

The main reason for this difference comes from the shortcoming of the
Chamfer loss in distinguishing sets with duplicates or near-duplicates.
For example, the Chamfer loss between [1,1.001,9] and [1,9,9.001]
is close to 0. Most points in an MNIST set are quite close to many
other points and there are many duplicate padding elements, so this
problem with the Chamfer loss is certainly present on MNIST. That is
why minimising MSE can lead to different results with higher Chamfer
loss than minimising Chamfer loss directly, even though the qualitative

results seem worse for the latter.

We can make the comparison between our model and the baselines more
similar by forcing the models to predict an additional “mask feature”
for each set element. This takes the value 1 when the point is present
(non-padding element) and 0 (padding element) when not. This setting
is useful for tasks where the predicted set size matters, as it allows points
at the coordinates (0, 0) to be distinguished from padding elements. The
results of this variant are shown in Now, our model is clearly
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better: even though our auto-encoder minimises an MSE loss, the test
Chamfer loss is also much better than all the baselines. Having to predict
this additional mask feature does not affect our model predictions much
because our model structure lets our model “know” which elements
are padding elements, while this is much more challenging for the

baselines.

We can also qualitatively compare our FSPool-FSUnpool model against
the best baseline, which uses the sum pooling encoder and MLP decoder
(Figure 5.6). In general, our model can reconstruct the digits much better
than the baseline, which tends to predict too few points even though
it always has 342 (the maximum set size) times 2 outputs available.
Occasionally, the baseline also makes big errors such as turning 5s
into 8s (first ¢ = 0.01 example), which we have not observed with our

model.

5.6.3 Noisy MNIST classification

Instead of auto-encoding MNIST sets, we can also classify them. We
use the same dataset and replace the set decoder in our model and the
baseline with a 2-layer MLP classifier. We consider three variants: using
the trained auto-encoder weights for the encoder and freezing them,
not freezing them (finetuning), and training all weights from random
initialisation. This tests how informative the learned representations of

the pre-trained auto-encoder and the encoder are.

Results We show our results for 1 or 10 epochs and ¢ = 0.05 in
for o = 0.00 in[Table 5.7} and for 100 epochs and both o values
in[Table 5.8] These are based on pre-trained models from the default
MNIST setting without mask feature.

The FSPool-based models are consistently superior to all the baselines
in all training settings. Even though our model can store information
in the permutation that skips the latent space (the model could “cheat”
the reconstruction by somehow storing everything in the permuta-
tion matrix), our latent space contains more information to correctly
classify a set, even when the weights are fixed. Our model with fixed
encoder weights already performs better after 1 epoch of training than
the baseline models with unfrozen weights after 10 epochs of training.
This shows the benefit of the FSPool-FSUnpool auto-encoder to the
representation. When allowing the encoder weights to change (Un-
frozen and Random init), our results again improve significantly over

the baselines.
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Table 5.6: Classification accuracy (mean =+ stdev) on MNIST ¢ = 0.05 over 6 runs (different pre-
trained networks between runs). Frozen: training with frozen pre-trained auto-encoder weights.
Unfrozen: unfrozen auto-encoder weights (fine-tuning). Random init: auto-encoder weights not
used.

1 epoch of training 10 epochs of training

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPooL 82.2%=21 86.9%:13 84.7 %19 84.3%+15 91.5%z05 91.9%-=05
Sum 76.6%+13  68.7%z35 30.3%zs.6 79.0%+10  77.7%=23 72.7%z+34
MEAN  25.7%s36  32.2%+105 30.1%z16 36.8%z+50  75.0%=27 73.0%=17
Max 73.6%z+13  73.0%=35 56.1%x=5.6 77.3%z+05  80.4%=1s 76.9%=13

Table 5.7: Classification accuracy (mean + stdev) on MNIST ¢ = 0.00 over 6 runs.

1 epoch of training 10 epochs of training

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPooL 86.3%=16 92.3%=1.1 90.5%=+12 88.2%+14  96.0%=03 96.1%=03
Sum 82.3%z+12  77.9%=34 35.3%xs3 85.0%z+0s  84.2%x25 78.4%3.9
MEAN  27.0%x33  43.5%z71 31.2%z10 42.0%+77  76.7%z26 77.2%x22
Max 82.0%z+15  84.1%=14 62.9%x35 86.8%z+09  91.9%x13 87.7%x+1.2

Table 5.8: Classification accuracy (mean + stdev) on MNIST for 100 epochs over 6 runs.

o = 0.05, 100 epochs o = 0.00, 100 epochs

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPooL 84.9%=17 93.9%=x04 94.0%=+03 88.6%x+16  97.4%=03 97.5%=+03
Sum 79.8%z+10  85.3%z1.1 83.1%=+19 85.6%z+05  89.5%=25 88.3%x+14
MEAN  48.2%=x69 86.5%=0s 84.1%x23 57.0%z+77  90.3%=13 91.1%=0s
Max 78.8%+0s  84.7%=+1.0 84.6%+09 89.2%+05  95.3%=07 95.1%=+15
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Interestingly, switching the relaxed sort to the unrelaxed sort in our
model when using the fixed auto-encoder weights does not hurt accu-
racy. Training the FSPool model takes 45 seconds per epoch on a GTX
1080 GPU, only slightly more than the baselines with 37 seconds per
epoch.

Note that while Qi et al. [|84] report an accuracy of ~99% on a similar
set version of MNIST, our model uses noisy sets as input and is much
smaller and simpler: we have 3820 parameters, while their model has
1.6 million parameters. Our model also does not use dropout, batch
norm, a branching network architecture, nor a stepped learning rate
schedule. When we try to match their model size, our accuracies for

o = 0.00 increase to ~99% as well.

5.6.4 CLEVR

CLEVR [52] is a visual question answering dataset where the task is
to classify an answer to a question about an image. The images show
scenes of 3D objects with different attributes, and the task is to answer
reasoning questions such as “what size is the sphere that is left of the
green thing”. Since we are interested in sets, we use this dataset with
the ground-truth state description - the set of objects (maximum size
10) and their attributes — as input instead of an image of the rendered

scene.

Model For this dataset, we compare against relation networks (RN)
[89] - explicitly modeling all pairwise relations —, Janossy pooling [76],
and regular pooling functions. While the original RN paper reports
a result of 96.4% for this dataset, we use a tuned implementation by
Messina et al. [72]] with 2.6% better accuracy. For our model, we modify
this to not operate on pairwise relations and replace the existing sum
pooling with FSPool. We use the same hyperparameters for our model

as the strong RN baseline without further tuning them.

Results Over 10 runs, shows that our FSPool model reaches
the best accuracy and also reaches the listed accuracy milestones in
fewer epochs than all baselines. The difference in accuracy is statistically
significant (two-tailed t-tests against sum, mean, RN, all with p =~ 0.01).
Also, FSPool reaches 99% accuracy in 5.3 h, while the fastest baseline,
mean pooling, reaches the same accuracy in 6.2 h. Surprisingly, RNs
do not provide any benefit here, despite the hyperparameters being
explicitly tuned for the RN model. We show some of the functions
f(-,W) that FSPool has learned in These confirm that FSPool

uses more complex functions than just sums or maximums, which
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Table 5.9: CLEVR results over 10 runs: mean =+ stdev of accuracy after 350 epochs, epochs to reach
an accuracy milestone, and wall time required with a 1080 Ti GPU. * averages over only 8 runs
because 2 runs did not reach 99%. MAC [48]] is a model specifically designed for CLEVR and the
state-of-the-art for image inputs and without program supervision.

Epochs to reach accuracy ~ Time for

Model Accuracy  98.00% 98.50% 99.00% 350 epochs

FSPoorL  99.27%x01s 1415 16616 20933 8.8h
RN 98.98 %025 144+ 18920  *268:46 15.5h
JaNOssY  97.00%-x054 - - - 115h
Sum 99.05%0.17 146213 191440 281456 80h
MEAN 98.96 %027 169+ 225431 273433 80h
Max 96.99 %026 - - - 8.0h

MAC 99.0 % - - - -

allow it to capture more information about the set than other pooling

functions.

5.6.5 Graph classification

We perform a large number of experiments on various graph classi-
fication datasets from the TU repository [55]: 4 graph datasets from
bioinformatics (for example with the graph encoding the structure of a
molecule) and 5 datasets from social networks (for example with the
graph encoding connectivity between people who worked with each
other). The task is to classify the whole graph into one of multiple

classes such as positive or negative drug response.

Model We use the state-of-the-art graph neural network GIN [[105] as
baseline. This involves a series of graph convolutions (which includes
aggregation of features from each node’s set of neighbours into the
node), a readout (which aggregates the set of all nodes into one feature
vector), and a classification with an MLP. We replace the usual sum
or mean pooling readout with FSPool k = 5 for our model. We repeat
10-fold cross-validation on each dataset 10 times and use the same
hyperparameter ranges as Xu et al. [105] for our model and the GIN

baseline.

Experimental setup The datasets and node features used are the
same as in GIN; we did not cherry-pick them. Because the social network
datasets are purely structural without node features, a constant 1 feature
is used on the RDT datasets and the one-hot-encoded node degree is
used on the other social network datasets. The hyperparameter sweep
is done based on best validation accuracy for each fold in the cross-
validation individually and over the same combinations as specified in
GIN.
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Figure 5.7: Shapes of piecewise linear functions learned by the FSPool model on CLEVR. These
show r € [0, 1] on the x-axis and f(r,w) on the y-axis for a particular w of a fully-trained model.
A common shape among these functions are variants of max pooling: close to 0 weight for most
ranks and a large non-zero weight on either the maximum or the minimum value, for example
in row 2 column 2. There are many functions that simple maximums or sums can not easily
represent, such as a variant of max pooling with the values slightly below the max receiving a
weight of the opposite sign (see row 1 column 1) or the shape in the penultimate row column 5.
The functions shown here may have a stronger tendency towards 0 values than normal due to
the use of weight decay on CLEVR.
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Note that in GIN, hyperparameters are selected based on best test accu-
racy. This is a problem, because they consider the number of epochs
a hyperparameter when accuracies tend to significantly vary between
individual epochs. For example, our average result on the PROTEINS
dataset would change from 73.8% to 77.1% if we were to select based on

best test accuracy, which would be better than their 76.2%.

While we initially also used k = 20 in FSPool for this experiment, we
found that k = 5 was consistently an improvement. The k = 20 model

was still better than the baseline on average by a smaller margin.

Results We show the results in On 6 out of 9 datasets,
GIN-FSPool achieves better test accuracy than GIN-Base. On a different

6 datasets, it converges to the best validation accuracy faster.

The most significant improvements are on the two RDT datasets. Inter-
estingly, these are the two datasets where the number of nodes to be
pooled is by far the largest with an average of 400+ nodes per graph,
compared to the next largest COLLAB with an average of only 75 nodes.
This is perhaps evidence that FSPool is helping to avoid the bottleneck
problem of pooling a large set of feature vectors to a single feature
vector. Mean and sum pooling are mostly able to keep up with FSPool
on the smaller set sizes, but are bottlenecked for the RDT datasets with

the much larger set sizes.

A Wilcoxon signed-rank test shows that the difference in accuracy to the
standard GIN has p =~ 0.07 (W = 7) and the difference in convergence
speed has p ~ 0.11 (W = 9). Keep in mind that just because the results

have p > 0.05, it does not mean that the results are invalid.

We emphasise that the main comparison to be made is between the
GIN-Sum and the GIN-FSPool model in the last four rows, since that is
the only comparison where the only factor of difference is the pooling
method. When comparing against other models, the network architec-
ture, training hyperparameters, and evaluation methodology can differ

significantly.

Keep in mind that while GIN-Base looks much worse than the original
GIN-Base*, the difference is that our implementation has hyperparame-
ters properly selected by validation accuracy, while GIN-Base* selected
them by test accuracy. If we were to select based on test accuracy, our
implementation frequently outperforms their results. Also, they only
performed a single run of 10-fold cross-validation, while our results are

averaged over 10 repeats of 10-fold cross validation.
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Table 5.10: Cross-validation classification results (%) on various commonly-used graph classifi-
cation datasets, with the mean cross-validation accuracy averaged over 10 repeats and sample
standard deviations (+). Hyperparameters of entries marked with * are known to be selected
based on test accuracy instead of validation accuracy, so results are likely not comparable to other
existing approaches that were (hopefully) selected based on validation accuracy. Our results were
selected based on validation accuracy.

Social Network IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

Num. graphs 1000 1500 2000 5000 5000
Num. classes 2 3 2 5 3
Avg. nodes 19.8 13.0 429.6 508.5 74.5
Max. nodes 136 89 3063 2012 492
DCNN (7] 49.1 33.5 - - 521
PATCHY-SAN [78]] 71.0 x23 452 28  86.3 =16 49.1 xo7 72.6 22
SorTPooOL [|114] 70.0 x00  47.8 z09 - - 73.8 o5
DirrPoor [[109] - - - - 75.5
WL [1105]] 73.8 50.9 81.0 52.5 78.9
GIN-BASsg™ [[105]] 75.1 52.3 92.4 57.5 80.2
GIN-FSPooL 72.1 +20 499 x17  89.1:12  51.8 +o00 80.0 04
- epochs 95 170 27 123 124 6 66 31 124 56
GIN-Base 71.3 12 48.8 117 84.8 +17 48.1 20 80.3 04
- epochs 83 i1 57 4359 156 58 211 +27 204 26

Bioinformatics MUTAG PROTEINS PTC NCI1

Num. graphs 188 1113 344 4110
Num. classes 2 2 2 2
Avg. nodes 17.9 39.1 25.5 29.8
Max. nodes 28 620 109 111
PK [77] 76.0 x27 737 s07 595424 82.5 05
DCNN (7] 67.0 61.3 56.6 62.6

PATCHY-SAN [78] 92.6 142 75.9 125 60.0 245 78.6 10
SorTPooL [|114] 85.8 +17 75.5 09 58.6 +25  74.4 05

DrrrPoor [109] - 76.3 - -
WL [91] 84.1 +19 74.7 05 58.0 +25  85.5 s05
WL* [105]] 90.4 75.0 59.9 86.0
GIN-BASg” [[105]] 89.4 76.2 64.6 82.7
GIN-FSPooL 85.9 24 73.8 +05 59.3 115 79.2 06
- epochs 299 s 69 123 214 s10 361 154
GIN-Baske 85.0 115 73.2 112 59.9 124 79.4 06

- epochs 244 95 160 +123 202 1100 412 155
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5.7 Discussion

In this chapter, we identified the responsibility problem with existing
approaches for predicting sets and introduced FSPool, which provides a
way around this issue in auto-encoders. In experiments on two datasets
of point clouds, we showed that this results in much better reconstruc-
tions. We believe that this is an important step towards set prediction
tasks with more complex set elements. However, because our decoder
uses information from the encoder, it is not easily possible to turn it into
a generative set model, which is the main limitation of our approach.
Still, we find that using the auto-encoder to obtain better representa-
tions and pre-trained weights can be beneficial by itself. We will use

our insights about the responsibility problem to create a model without

the auto-encoder limitation in

In classification experiments, we also showed that simply replacing the
pooling function in an existing model with FSPool can give us better
results and faster convergence. We showed that FSPool consistently
learns better set representations at a relatively small computational cost,
leading to improved results in the downstream task. Our model thus
has immediate applications in various types of set models that have
traditionally used sum or max pooling. For example, we will use FSPool
in the next chapter (replacing the pooling in a Relation Network) to
improve the quality of the learned representations. It would be useful
to theoretically characterise what types of relations are more easily
expressed by FSPool through an analysis like in Murphy et al. [76]. This
may result in further insights into how to learn better set representations

efficiently.
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Set decoder: Deep set

prediction networks

In the previous chapter, we found that all existing approaches for pre-
dicting sets suffer from the responsibility problem. The solution we
provided there only covered the auto-encoder setting. In this chapter,
we will develop a solution without this restriction: a model that can
predict sets without the responsibility problem in normal supervised

learning tasks.

These contributions have been published as [115]] in Advances in Neu-
ral Information Processing Systems 32 (NeurIPS), 2019, and have been
presented at the Sets & Partitions workshop, hosted at the Neural Infor-

mation Processing Systems (NeurIPS) 2019 conference.

6.1 Introduction

You are given a rotation angle and your task is to draw the four corner
points of a square that is rotated by that amount. This is a structured
prediction task where the output is a set, since there is no inherent
ordering to the four points. Such sets are a natural representation for
many kinds of data, ranging from the set of points in a point cloud, to
the set of objects in an image (object detection), to the set of nodes in a
molecular graph (molecular generation). Yet, existing machine learning
models often struggle to solve even the simple square prediction task

as we showed in

The main difficulty in predicting sets comes from the ability to permute
the elements in a set freely, which means that there are n! equally good
solutions for a set of size n. Models that do not take this set structure
into account properly (such as MLPs or RNNs) result in discontinuities,

which is the reason why they struggle to solve simple toy set prediction

95



96

6.2. Background

tasks. We quickly review the background on what the problem is in

How can we build a model that properly respects the set structure of the
problem so that we can predict sets without running into discontinuity
issues? In this chapter, we aim to address this question. Concretely, we

contribute the following:

1. We propose a model (Section 6.3] [Algorithm 6.1) that can predict

a set from a feature vector (vector-to-set) while properly taking
the structure of sets into account. We explain what properties we
make use of that enables this. Our model uses backpropagation
through a set encoder to decode a set and works for variable-size
sets. The model is applicable to a wide variety of set prediction

tasks since it only requires a feature vector as input.

2. We evaluate our model on several set prediction datasets
[tion 6.5). First, we demonstrate that the auto-encoder version of
our model is sound on a set version of MNIST. Next, we use the
CLEVR dataset to show that this works for general set prediction
tasks. We predict the set of bounding boxes of objects in an im-
age and we predict the set of object attributes in an image, both
from a single feature vector. Our model is a completely differ-
ent approach to usual anchor-based object detectors because we
pose the task as a set prediction problem, which does not need
complicated post-processing techniques such as non-maximum

suppression.

6.2 Background

Representation We are interested in sets of feature vectors with the
feature vector describing properties of the element, for example the 2d
position of a point in a point cloud. A set of size n wherein each feature
vector has dimensionality d is represented as a matrix Y € R™ with the
elements as rows in an arbitrary order, Y = [y,,..., yn]T. Note that this
representation of sets is transposed compared to(R"Xd instead
of R%™) to ease the exposition in this chapter. To properly treat this as
a set, it is important to only apply operations with certain properties to
it [112]: permutation-invariance or permutation-equivariance. In other
words, operations on sets should not rely on the arbitrary ordering of

the elements.

Set encoders (which turn such sets into feature vectors) are usually built
by composing permutation-equivariant operations with a permutation-
invariant operation at the end. A simple example is the Deep Sets model
by Zaheer et al. [112]: f(Y) = }; g(y;) where g is a neural network.
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Because g is applied to every element individually, it does not rely on
the arbitrary order of the elements. We can think of this as turning
the set {y;}?, into {g(y;) },. This is permutation-equivariant because
changing the order of elements in the input set affects the output set
in a predictable way. Next, the set is summed to produce a single
feature vector. Since summing is commutative, the output is the same
regardless of what order the elements are in. In other words, summing
is permutation-invariant. This gives us an encoder that produces the
same feature vector regardless of the arbitrary order the set elements

were stored in.

Loss In set prediction tasks, we need to compute a loss between a
predicted set Y = [§,,...,7,]" and the target set Y. The main problem
is that the elements of each set are in an arbitrary order, so we cannot
simply compute a pointwise distance. The usual solution to this is an
assignment mechanism that matches up elements from one set to the
other set. This gives us a loss function that is permutation-invariant in

both its arguments.

One such loss is the O(n?) Chamfer loss, which matches up every

element of Y to the closest element in Y and vice versa:

2
-y 6

. . 2 .
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i J

Note that this does not work well for multisets: the loss between [a, a, b],
[a,b,b] is 0. A more sophisticated loss that does not have this problem
involves the linear assignment problem with the pairwise losses as

assignment costs:

2
(6.2)

Lhun(Y, Y) = l;rnéll:llz ng - yn'(i)‘
i

where II is the space of permutations, which can be solved with the
Hungarian algorithm in O(n®) time. This has the benefit that every
element in one set is associated to exactly one element in the other set,

which is not the case for the Chamfer loss.

Responsibility problem A widely-used approach is to simply ignore
the set structure of the problem. A feature vector can be mapped to a set
Y by using an MLP that takes the vector as input and directly produces
Y with n X d outputs. Since the order of elements in Y does not matter,
it appears reasonable to always produce them in a certain order based
on the weights of the MLP.
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While this seems like a promising approach, we pointed out
that this results in a discontinuity issue: there are points where a small
change in set space requires a large change in the neural network
outputs. The model needs to “decide” which of its outputs is responsible
for producing which element, and this responsibility must be resolved

discontinuously.

Here, we give a different example to give the intuition behind this prob-
lem. Consider an MLP that detects the colour of two otherwise identical
objects present in an image, so it has two outputs with dimensionality
3 (R, G, B) corresponding to those two colours. We are given an image
with a blue and red object, so let us say that output 1 predicts blue
and output 2 predicts red; perhaps the weights of output 1 are more
attuned to the blue channel and output 2 is more attuned to the red
channel. We are given another image with a blue and green object, so
it is reasonable for output 1 to again predict blue and output 2 to now
predict green. When we now give the model an image with a red and
green object, or two red objects, it is unclear which output should be
responsible for predicting which object. Output 2 “wants” to predict
both red and green, but has to decide between one of them, and output
1 now has to be responsible for the other object while previously being
a blue detector. This responsibility must be resolved discontinuously,

which makes modeling sets with MLPs difficult.

The main problem is that there is a notion of output 1 and output 2
— an ordered output representation — in the first place, which forces
the model to give the set an order. Instead, it would be better if the
outputs of the model were freely interchangeable — in the same way
the elements of the set are interchangeable — to not impose an order on

the outputs. This is exactly what our model accomplishes.

6.3 Deep set prediction networks

This section contains our primary contribution: a model for decoding
a feature vector into a set of feature vectors. As we have previously
established, it is important for the model to properly respect the set

structure of the problem to avoid the responsibility problem.

Our main idea is based on the observation that the gradient of a set
encoder with respect to the input set is permutation-equivariant (see
[Subsection 6.3.1): to decode a feature vector into a set, we can use gradient
descent to find a set that encodes to that feature vector. Since each
update of the set using the gradient is permutation-equivariant, we
always properly treat it as a set and avoid the responsibility problem.
This gives rise to a nested optimisation: an inner loop that changes a

set to encode more similarly to the input feature vector, and an outer
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Algorithm 6.1 One forward pass of the set prediction algorithm within the training

loop.
1: z=F(x) > encode input with a model
2: ?(0) « init > initialise set
3: fort «— 1,T do
4: [ « Lrepr(f/(t—l), 2) > compute representation loss
5: vyt ry% > gradient descent step on the set
6: end for o
7: predict vy
8: L = % ZLO Lset(?<t), Y) + ALiep: (Y, 2) > outer optimisation loss

loop that changes the weights of the encoder to minimise a loss over a

dataset.

With this idea in mind, we build up models of increasing usefulness for

predicting sets. We start with the simplest case of auto-encoding fixed-

size sets (Subsection 6.3.2), where a latent representation is decoded

back into a set. This is modified to support variable-size sets, which is
necessary for most sets encountered in the real-world. Lastly and most

importantly, we extend our model to general set prediction tasks where

the input no longer needs to be a set (Subsection 6.3.3). This gives us

a model that can predict a set of feature vectors from a single feature

vector. We give the pseudo-code of this method in|Algorithm 6.1

6.3.1 Proof of permutation-equivariance

Recall definitions of permutation-invariance and equivariance:

Definition 3 A function f : R™“ — R is permutation-invariant iff

it satisfies:

f(X) = f(PX) (6.3)

for all permutation matrices P.

Rnxd

Definition 4 A functiong : — R™¢ is permutation-equivariant

iff it satisfies:

Pg(X) = g(PX) (6.4)

for all permutation matrices P.

The definitions here use the transposed set representations to match
the exposition in this chapter. With these definitions, we can prove the

following:
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Theorem 2  The gradient of a permutation-invariant function f :

R™4 — R with respect to its input is permutation-equivariant:

p2f(X) _ of(PX)

(6.5)
oX oPX

Proof. Using Definition 1, the chain rule, and the orthogonality of P:

P20 _ of(PX)

(6.6)

0X 0X
22X 2 (PX) )

0X oPX
= PPTM (6.8)
oPX '

_ (PX) (6.9)

oPX
O

This property ensures that our model is permutation-equivariant.

6.3.2 Auto-encoding fixed-size sets

In a set auto-encoder, the goal is to turn the input set Y into a small
latent space z = genc(Y) with the encoder ge, and turn it back into the
predicted set Y = Jdec(z) with the decoder gge.. Using our main idea,

we define a representation loss and the corresponding decoder as:
A N 2
Lrepr(Y, z) = ”genc(Y) - Z” (6.10)

Jaec(z) = argmin Liepr (Y, 2) (6.11)
Y

In essence, Lyep; compares Y to Y in the latent space. To understand
what the decoder does, first consider the simple, albeit not very useful
case of the identity encoder gene(Y) =Y. Solving ggec(z) simply means

setting Y = Y, which perfectly reconstructs the input as desired.

When we instead choose gen to be a set encoder, the latent representa-
tion z is a permutation-invariant feature vector. If this representation is
“good”, Y will only encode to similar latent variables as Y if the two sets
themselves are similar. Thus, the minimisation in [Equation 6.11|should
still produce a set Y that is the same (up to permutation) as Y, except

this has now been achieved with z as a bottleneck.

Since the problem is non-convex when genc is a neural network, it is

infeasible to solve [Equation 6.11|exactly. Instead, we perform gradient
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Figure 6.1: Overview of our algorithm for auto-encoding an MNIST set. The initial set at step 0 is
iteratively refined, at each step improving the current prediction.

. . : s o (0
descent to approximate a solution. Starting from some initial set 7! ),

gradient descent is performed for a fixed number of steps T with the

update rule:

o (£)
N N oL Y ',z
Y(t+1) _ Y(t) —- repr}(\ — )

Y

(6.12)

with 5 as the learning rate and the prediction being the final state,
Jdec(2) = ?". This is the aforementioned inner optimisation loop. In
practice, we let 7" be a learnable R" matrix which is part of the

neural network parameters.

To obtain a good representation z, we still have to train the weights
(1) Y) -

with Lget = Lcha OF Lhyn — and differentiate with respect to the weights

Of Gene. For this, we compute the auto-encoder objective Lset(f/

as usual, backpropagating through the steps of the inner optimisation.

This is the aforementioned outer optimisation loop.

In summary, each forward pass of our auto-encoder first encodes the
input set to a latent representation as normal. To decode this back
into a set, gradient descent is performed on an initial guess with the
aim to obtain a set that encodes to the same latent representation as
the input. The same set encoder is used in the encoding and decoding

stages.

Variable-size sets To extend this from fixed- to variable-size sets, we
make a few modifications to this algorithm. First, we pad all sets to a
fixed maximum size to allow for efficient batch computation. We then

concatenate an additional mask feature m; to each set element ¢, that

indicates whether it is a regular element (m; = 1) or padding (m; = 0).

With this modification to ¥, we can optimise the masks in the same
way as the set elements are optimised. To ensure that masks stay in the

valid range between 0 and 1, we simply clamp values above 1 to 1 and
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Figure 6.2: Overview of DSPN for supervised prediction. The main difference is the MSE loss
between the input encoding and target encoding.

values below 0 to 0 after each gradient descent step. This performed
better than using a sigmoid in our initial experiments, possibly because

it allows exact 0s and 1s to be recovered.

6.3.3 Predicting sets from a feature vector

In our auto-encoder, we used an encoder to produce both the latent
representation as well as to decode the set. This is no longer possible in
the general set prediction setup, since the target representation z can
come from a separate model (for example an image encoder F encoding

an image x), so there is no longer a set encoder in the model.

When naively using z = F(x) as input to our decoder, our decoding
process is unable to predict sets correctly from it. Because the set
encoder is no longer shared in our set decoder, there is no guarantee that
optimising genc(Y) to match z converges towards Y (or a permutation
thereof). To fix this, we simply add a term to the loss of the outer
optimisation that encourages genc(Y) =~ z again. In other words, the
target set should have a very low representation loss itself. This gives
us an additional Lyep, term in the loss function of the outer optimisation

for supervised learning:

L= Lset(Ya Y) + ALrepr(Ya Z) (6-13)

with Lge being either Lep, or Lyy,. With this, minimising Lrepr(?, Z) in
the inner optimisation will converge towards Y. The additional term
is not necessary in the pure auto-encoder because z = genc(Y), so

Liep:e (Y, 2) is always 0 already.
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Practical tricks For the outer optimisation, we can compute the
set loss for not only ?(T), but all ¥, That is, we use the average
set loss % > Lset(f/(t), Y) as loss (similar to Belanger et al. [13]]). This
encourages Y to converge to Y quickly and not diverge with more steps,

which increases the robustness of our algorithm.

We sometimes observed divergent training behaviour when the outer
learning rate is set inappropriately. By replacing the instances of |||
in Lset and Lyep, with the Huber loss (squared error for differences be-
low 1 and absolute error above 1) — as is commonly done in object
detection models — training became less sensitive to hyperparameter

choices.

The inner optimisation can be modified to include a momentum term,
which stops a prediction from oscillating around a solution. This gives
us slightly better results, but we did not use this for any experiments to

keep our method as simple as possible.

It is possible to explicitly include the sum of masks as a feature in the
representation z for our model. This improves our results on MNIST -
likely due to the explicit signal for the model to predict the correct set

size — but again, we do not use this for simplicity.

6.4 Related work

The main approach we compare our method to is the simple method of
using an MLP decoder to predict sets. This has been used for predict-
ing point clouds [1} 30], bounding boxes [87, [11]], and graphs (sets of
nodes and edges) [20L[93]]. These predict an ordered representation (list)
and treat it as if it is unordered (set). As we discussed in
this approach runs into the responsibility problem. Some works on
predicting 3d point clouds make domain-specific assumptions such as
independence of points within a set [[67]] or grid-like structures [107].
To avoid inefficient graph matching losses, Yang et al. [106] compute a
permutation-invariant loss between graphs by comparing them in the

latent space (similar to our Liep,) in an adversarial setting.

An alternative approach is to use an RNN decoder to generate this
list 68} |96} 101]. The problem can be made easier if it can be turned
from a set into a sequence problem by giving a canonical order to the
elements in the set through domain knowledge [[101]. For example, You
et al. [110] generate the nodes of a graph by ordering the set of nodes

based on the node traversal order of a breadth-first search.

The closest work to ours is by Mordatch [75]. They also iteratively
minimise a function (their energy function) in each forward pass of

the neural network and differentiate through the iteration to learn the
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weights. They have only demonstrated that this works for modifying
small sets of 2d elements in relatively simple ways, so it is unclear
whether their approach scales to the harder problems such as object
detection that we tackle in this chapter. In particular, minimising Lyep;
in our model has the easy-to-understand consequence of making the
predicted set more similar to the target set, while it is less clear what

minimising their learned energy function E(Y, z) does.

In we constructed an auto-encoder that pools a set into a
feature vector where information from the encoder is shared with their
decoder. This is done to make the decoder permutation-equivariant,
which we used to avoid the responsibility problem. However, this
strictly limits the decoder to usage in auto-encoders — not set prediction

— because it requires an encoder to be present during inference.

Greff et al. [39] construct an auto-encoder for images with a latent
space that is set-structured. They are able to find latent sets of variables
to describe an image composed of a set of objects with some task-
specific assumptions. While interesting from a representation learning
perspective, our model is immediately useful in practice because it

works for general supervised learning tasks.

Our inspiration for using backpropagation through an encoder as a
decoder comes from the line of introspective neural networks 62, 65]]
for image modeling. An important difference is that in these works,
the two optimisation loops (generating predictions and learning the
network weights) are performed in sequence, while ours are nested.
The nesting allows our outer optimisation to differentiate through the
inner optimisation. This type of nested optimisation to obtain struc-
tured outputs with neural networks was first studied by Belanger et
al. [[12]13]], of which our model can be considered an instance of. Note
that Greff et al. [39] and Mordatch [75] also differentiate through an
optimisation, which suggests that this approach is of general benefit
when working with sets.By differentiating through a decoder rather
than an encoder, Bojanowski et al. [[16] learn a representation instead

of a prediction.+

It is important to clearly separate the vector-to-set setting in this chapter
from some related works on set-to-set mappings, such as the equivariant
version of Deep Sets [112] and self-attention [100]. Tasks like object
detection, where no set input is available, can not be solved with set-
to-set methods alone; the feature vector from the image encoder has to
be turned into a set first, for which a vector-to-set model like ours is
necessary. Set-to-set methods do not have to deal with the responsibility
problem, because the output usually has the same ordering as the input.
Methods like the one in Mena et al. [[71] and our method in [Chapter 4]
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learn to predict a permutation matrix for a set (set-to-set-of-position-
assignments). When this permutation is applied to the input set, the set
is turned into a list (set-to-list). Again, our model is about producing a

set as output while not necessarily taking a set as input.

6.5 Experiments

In the following experiments, we compare our set prediction network
to a model that uses an MLP or RNN (LSTM) as set decoder. In all
experiments, we fix the hyperparameters of our model to T = 10,5 =
800, 1 = 0.1. Further details about the model architectures, training
settings, and hyperparameters are given in We provide
the PyTorch [[82] source code to reproduce all experiments at https:
//github.com/Cyanogenoid/dspn.

Note that there are two minor bugs (which do not affect the conclusions

of the experiments) in the following results:

1. the CLEVR experiments computed the set loss only on the last

step ?(T),

2. the bounding box results are consistently overestimated.

[Subsection A.4.3|shows our results with these bugs fixed.

6.5.1 MNIST

We begin with the task of auto-encoding a set version of MNIST. A set
is constructed from each image by including all the pixel coordinates (x
and y, scaled to the interval [0, 1]) of pixels that have a value above the
mean pixel value. The size of these sets varies from 32 to 342 across the

dataset.

Model In our model, we use a set encoder that processes each element
individually with a 3-layer MLP, followed by FSPool as
pooling function to produce 64 latent variables. These are decoded
with our algorithm to predict the input set. We compare this against a
baseline model with the same encoder, but with a traditional MLP or
LSTM as decoder. This approach to decoding sets is used in models such
as in Achlioptas et al. [[1] (AE-CD variant) and Stewart et al. [[96]]; these
baselines are representative of the best approaches for set prediction
in the literature. Note that these baselines have significantly more
parameters than our model, since our decoder has almost no additional
parameters by sharing the encoder weights (ours: ~140 000 parameters,
MLP: ~530 000, LSTM: ~470 000). For the baselines, we include a mask
feature with each element to allow for variable-size sets. Due to the

large maximum set size, use of Hungarian matching is too slow. Instead,
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Figure 6.3: Progression of set prediction algorithm on MNIST (l?(t)). Our predictions come from
our model with 0.08 x 1073 loss, while the baseline predictions come from an MLP decoder model
with 0.09 X 107> loss.

b
b

ek
4

Sk
g

Foon
Dl

Table 6.1: Chamfer reconstruction loss on MNIST in 1000ths. Lower is better. Mean and standard
deviation over 6 runs.

Model Loss

MLP baseline  0.21:0.1s
RNN baseline  0.49+0.19
Ours 0.09:00

we use the Chamfer loss to compute the loss between predicted and

target set in this experiment.

Results shows that our model improves over the two base-

lines. In[Figure 6.3|and[Figure 6.4, we show the progression of ¥ through-
(10)

out the minimisation with Y as the final prediction, the ground-truth
set, and the baseline prediction of an MLP decoder. Observe how every
optimisation starts with the same set 1?(0), but is transformed differently
depending on the gradient of gene. Through this minimisation of Lyep,
by the inner optimisaton, the set is gradually changed into a shape that

closely resembles the correct digit.

The types of errors of our model and the baseline are different, despite
the use of models with similar losses in [Figure 6.3 Errors in our model
are mostly due to scattered points outside of the main shape of the digit,
which is particularly visible in the third row. We believe that this is due
to the limits of the encoder used: an encoder that is not powerful enough
maps the slightly different sets to the same representation, so there is no
Lyepr gradient to work with. It still models the general shape accurately,
but misses the fine details of these scattered points. The MLP decoder
has less of this scattering, but makes mistakes in the shape of the digit
instead. For example, in the third row, the baseline has a different curve

at the top and a shorter line at the bottom. This difference in types of
errors is also present in the extended examples in
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Note that reconstructions shown in (Subsection 5.6.2) for the same auto-

encoding task appear better because the decoder there uses additional
information outside of the latent space: multiple n X n matrices are
copied from the encoder into the decoder. In contrast, all information
about the set is completely contained in our permutation-invariant

latent space.

6.5.2 Bounding box prediction

Next, we turn to the task of object detection on the CLEVR dataset [53],
which contains 70,000 training and 15,000 validation images. The goal
is to predict the set of bounding boxes for the objects in an image. The
target set contains at most 10 elements with 4 dimensions each: the (nor-
malised) x-y coordinates of the top-left and bottom-right corners of each
box. As the dataset does not contain bounding box information canon-
ically, we use the processing method by Desta et al. [28] to calculate
approximate bounding boxes. This causes the ground-truth bounding

boxes to not always be perfect, which is a source of noise.

Model We encode the image with a ResNet34 [42] into a 512d feature
vector, which is fed into the set decoder. The set decoder predicts the set
of bounding boxes from this single feature vector describing the whole
image. This is in contrast to existing region proposal networks [86]]
for bounding box prediction where the use of the entire feature map is
required for the typical anchor-based approach. As the set encoder in our
model, we use a 2-layer relation network [89] with FSPool
as pooling. This is stronger than the FSPool-only model (without RN)
we used in the MNIST experiment. We again compare this against
a baseline that uses an MLP or LSTM as set decoder (matching AE-
EMD [1] and [87] for the MLP decoder, [96] for the LSTM decoder).
Since the sets are much smaller compared to our MNIST experiments, we
can use the Hungarian loss as set loss. We perform no post-processing
(such as non-maximum suppression) on the predictions of the model.

The whole model is trained end-to-end.

Results We show our results in[Table 6.2| using the standard average

precision (AP) metric used in object detection with sample predictions

in[Figure 6.5|and [Figure 6.6| Our model is able to very accurately localise

the objects with high AP scores even when the intersection-over-union
(IoU) threshold for a predicted box to match a ground truth box is very
strict. In particular, our model using 10 iterations (the same it was
trained with) has much better APy5 and APyg than the baselines. The
shown baseline model can predict bounding boxes in the close vicinity

of objects, but fails to place the bounding box precisely on the object.
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Y Y® Yo Yy (0 True Y Baseline

Figure 6.5: Progression of set prediction algorithm for bounding boxes in CLEVR. The shown
MLP baseline sometimes struggles with heavily-overlapping objects and often fails to centre the
object in the boxes.

Table 6.2: Average Precision (AP) for different intersection-over-union thresholds for a predicted
bounding box to be considered correct. Higher is better. Mean and standard deviation over 6 runs.

Model AP50 APgO AP95 Ang AP99

MLP baseline 99.3+02 94.0+19 57.9479 0.7+02 0.0x00
RNN baseline  99.4:02  94.9120  65.0x103  2.4:00  0.0x00
Ours (10 iters) 98.8:03  94.3:15  85.7+30 34.5157  2.9:12
Ours (20 iters) 99.8:00 98.7+11  86.2:72  24.3:50  1.4=09
Ours (30 iters) 99.8:01  96.7:24  75.5x123  17.4x77  0.9x07

This is visible from the decent performance for low IoU thresholds, but

bad performance for high IoU thresholds.

We can also run our model with more inner optimisation steps than
the 10 it was trained with. Many results improve when doubling the
number of steps, which shows that further minimisation of Lrepr(Y, Z)is
still beneficial, even if it is unseen during training. The model “knows”
that its prediction is still suboptimal when Lyp, is high and also how
to change the set to decrease it. This confirms that the optimisation is
reasonably stable and does not diverge significantly with more steps.
Being able to change the number of steps allows for a dynamic trade-off
between prediction quality and inference time depending on what is

needed for a given task.

The less-strict AP metrics (which measure large mistakes) improve with
more iterations, while the very strict APgg and APgy metrics consistently
worsen. This is a sign that the inner optimisation learned to reach its
best prediction at exactly 10 steps, but slightly overshoots when run
for longer. The model has learned that it does not fully converge with
10 steps, so it is compensating for that by slightly biasing the inner
optimisation to get a better 10 step prediction. This is at the expense of
the strictest AP metrics worsening with 20 steps, where this bias is not

necessary anymore.



1

~

0 6.5. Experiments

Y© Y®) Yy (0 Y0 True Y Baseline

Figure 6.6: Progression of set prediction algorithm on CLEVR bounding boxes.
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Table 6.3: Ablation experiments with DSPN-RN-Sum (standard RN model) and DSPN-RN-Max.
The DSPN-RN-FSPool results are the same as in the previous table.

Model AP50 APgo AP95 AP93 AP99

DSPN-RN-FSPooL (10 iters) 98.8+03 94.3+15 85.7x30  34.5:57  2.9:12
DSPN-RN-FSPooL (20 iters) 99.8:00 98.7:11  86.2:72  24.3:80  1.4z09
DSPN-RN-FSPooL (30 iters) 99.8+01 96.7+24  75.5z123  17.4277  0.9z07

DSPN-RN-SuM (10 iters) 88.3+37  43.4+1a4  10.0174 0.1x01 0.0=x00
DSPN-RN-Sum (20 iters) 87.2x30  42.9:119  5.7:35 0.0x00  0.0x00
DSPN-RN-SumM (30 iters) 79.0t119  32.5:124  3.4x22 0.0x00  0.0x00
DSPN-RN-Max (10 iters) 68.0=43 4.0x2. 0.1x01 0.0x00  0.0x00
DSPN-RN-Max (20 iters) 66.6145 332138 0.1=x00 0.0z00  0.0z00
DSPN-RN-MAXx (30 iters) 64.1+50 2.3+11 0.0+00 0.0x00  0.0x00

We also perform an ablation experiment where we replace FSPool in
the encoder with sum or max pooling. The results in[Table 6.3 show
that using FSPool greatly benefits our algorithm, likely due to the better
representation that it is able to learn. The representation of the DSPN-
RN-FSPool model is good enough that iterating our algorithm for more
steps than the model was trained with can benefit the prediction, while

for the baselines it generally only worsens.

Bear in mind that we do not intend to directly compete against tradi-
tional object detection methods. Our goal is to demonstrate that our
model can accurately predict a set from a single feature vector, which is

of general use for set prediction tasks not limited to image inputs.

6.5.3 Object attribute prediction

Lastly, we want to directly predict the full state of a scene from images
on CLEVR. This is the set of objects with their position in the 3d scene
(xyz coordinates), shape (sphere, cylinder, cube), colour (eight colours),
size (small, large), and material (metal/shiny, rubber/matte) as features.
For example, an object can be a “small cyan metal cube” at position (0.95,
-2.83, 0.35). We encode the categorial features as one-hot vectors and
concatenate them into an 18d feature vector for each object. Note that
we do not use bounding box information, so the model has to implicitly
learn which object in the image corresponds to which set element with
the associated properties. This makes it different from usual object
detection tasks, since bounding boxes are required for traditional object

detection models that rely on anchors.

Model We use exactly the same model as for the bounding box pre-
diction in the previous experiment with all hyperparameters kept the
same. The only difference is that it now outputs 18d instead of 4d set

elements. For simplicity, we continue using the Hungarian loss with the
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Table 6.4: Average Precision (AP) in % for different distance thresholds of a predicted set element
to be considered correct. AP, only requires all attributes to be correct, regardless of 3d position.
Higher is better. Mean and standard deviation over 6 runs.

Model AP, AP, APy 5 APy25  APg12s

MLP baseline 3.6x05 1.5z04 0.8=03 0.2z01 0.0=00
RNN baseline 4.0+19 1.8+12 0.9z05 0.2101 0.0x0.0
Ours (10 iters) 72.8x23  59.2:28  39.0x4sa 124225  1.3z04
Ours (20 iters) 84.0+45 80.0x49  57.0:121  16.6290 1.6=05
Ours (30 iters) 85.2:4s 81.1s52  47.4x176  10.8x90  0.6x07

Huber loss as pairwise cost, as opposed to switching to cross-entropy

for the categorical features.

Results We show our results in and give sample outputs
in [Table 6.6] The evaluation metric is the standard average precision
as used in object detection, with the modification that a prediction
is considered correct if there is a matching groundtruth object with
exactly the same properties and within a given Euclidean distance of
the 3d coordinates. Our model clearly outperforms the baselines. This
shows that our model is also suitable for modeling high-dimensional

set elements.

When evaluating with more steps than our model was trained with, the
difference in the more lenient metrics improves even up to 30 iterations.
This time, the results for 20 iterations are all better than for 10 itera-
tions. This suggests that 10 steps is too few to reach a good solution
in training, likely due to the higher difficulty of this task compared to
the bounding box prediction. Still, the representation z that the input
encoder produces is good enough such that minimising L;ep, more at
evaluation time leads to better results. When going up to 30 iterations,
the result for predicting the state only (excluding 3d position) improves
further, but the accuracy of the 3d position worsens. We believe that this
is again caused by overshooting the target due to the bias of training

the model with only 10 iterations.

The results of the ablation experiment where we replace FSPool in the
encoder with sum or max pooling are shown in [Table 6.5] This time,
the difference between FSPool and the other encoders is even larger
than for the bounding box experiments. These results confirm that a
better set encoder leads to better prediction results. They also show
that a way to improve RNs is to simply replace the sum pooling with
FSPool.
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Table 6.5: Average Precision (AP, mean =+ stdev) for different distance thresholds of the predicted
state descriptions over 6 runs. All results are worse than the DSPN-RN-FSPool in the previous
table. The DSPN-RN-FSPool results are the same as in the previous table.

Model AP, AP APys  APpys  APjizs

DSPN-RN-FSPooL (10 iters)  72.8:23  59.2x28  39.0x44  12.44125 1.3204
DSPN-RN-FSPooL (20 iters) 84.0+45 80.049  57.0:121  16.6x90 1.6:05
DSPN-RN-FSPooL (30 iters) 85.2:45 81.1ss2  47.4x176  10.8:00  0.6x07

DSPN-RN-Sum (10 iters) 44.6+35  21.9z24s 7.1x27 1.0x05 0.0=x0.0
DSPN-RN-Sum (20 iters) 39.6154  15.2164 3.0x22 0.3z03 0.0=x00

DSPN-RN-Sum (30 iters) 30.2:02  7.1x3s 0.9x0s 0.1x01 0.0=0.0
DSPN-RN-Max (10 iters) 3.0=02 0.9=01 0.5z02 0.1x01 0.0=00
DSPN-RN-MaAx (20 iters) 3.1+01 1.2+01 0.8+02 0.3+02 0.0+00
DSPN-RN-Max (30 iters) 3.1x01 1.2+01 0.9=x022 0.3z02 0.0=x00

6.6 Discussion

In this chapter we showed how to predict sets with a deep neural
network in a way that respects the set structure of the problem. We
demonstrated in our experiments that this works for small (size 10) and
large sets (up to size 342), as well as low-dimensional (2d) and higher-
dimensional (18d) set elements. Our model is consistently better than
the baselines across all experiments by predicting sets properly, rather

than predicting a list and pretending that it is a set.

The improved results of our approach come at a higher computational
cost. Each evaluation of the network requires time for O(T) passes
through the set encoder, which makes training take about 75% longer on
CLEVR with T = 10. Keep in mind that this only involves the set encoder
(which can be fairly small), not the input encoder (such as a CNN or
RNN) that produces the target z. Further study into representationally-
powerful and efficient set encoders such as RN [89] and FSPool
ter 5) — which we found to be critical for good results in our exper-
iments — would be of considerable interest, as it could speed up the
convergence and thus inference time of our method. Another promising
approach is to better initialise Y(®) — perhaps with an MLP - so that the
set needs to be changed less to minimise Lyep;. Our model would act as
a set-aware refinement method of the MLP prediction. Lastly, stopping
criteria other than iterating for a fixed 10 steps can be used, such as
stopping when Lyepr (Genc (Y), z) is below a fixed threshold: this would
stop when the encoder thinks Y is of a certain quality corresponding to
that threshold.

Our algorithm may be suitable for generating samples under other
invariance properties. For example, we may want to generate images of
objects where the rotation of the object does not matter (such as aerial

images). Using our decoding algorithm with a rotation-invariant image
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Table 6.6: Progression of set prediction algorithm on CLEVR state prediction. Red text denotes
a wrong attribute. Objects are sorted by x coordinate, so they are sometimes misaligned with

wrongly-coloured red text (see third example: red entries in Y(ZO)).

v

Y(IO)

?(20)

True Y

Baseline

(-0.14, 1.16, 3.57)

large purple rubber sphere

(0.01, 0.12, 3.42)
large gray metal cube
(0.67, 0.65, 3.38)
small purple metal cube
(0.67, 1.14, 2.96)

small purple rubber sphere

(-2.33,-2.41, 0.73)
large yellow metal cube
(-1.20, 1.27, 0.67)

large purple rubber sphere

(-0.96, 2.54, 0.36)
small gray rubber sphere
(1.61, 1.57, 0.36)
small yellow metal cube

(-2.33, -2.42, 0.78)
large yellow metal cube
(-1.21, 1.20, 0.65)
large purple rubber sphere
(-0.96, 2.59, 0.36)
small gray rubber sphere
(1.58, 1.62, 0.38)
small purple metal cube

(-2.42, -2.40, 0.70)
large yellow metal cube
(-1.18, 1.25, 0.70)
large purple rubber sphere
(-1.02, 2.61, 0.35)
small gray rubber sphere
(1.74, 1.53, 0.35)
small purple metal cube

(-1.65, -2.85, 0.69)
large yellow metal cube
(-0.95, 1.08, 0.68)
large green rubber sphere
(-0.40, 2.14, 0.35)
small red rubber sphere
(1.68, 1.77, 0.35)
small brown metal cube

v

(10

?(20)

True Y

Baseline

(-0.29, 1.14, 3.73)
small purple metal cube
(-0.11, -0.37, 3.65)
small brown metal cube
(0.08, 0.56, 3.84)
large cyan rubber cube
(0.69, -0.43, 3.55)
small brown rubber sphere
(1.12,0.21, 3.83)
large cyan rubber cube
(1.23,-0.25, 3.58)
small cyan rubber sphere
(1.73, 1.04, 3.57)
small cyan rubber sphere
(2.06, 1.94, 3.81)
large brown rubber sphere

(-2.78, 0.86, 0.72)
large cyan rubber sphere
(-217, -1.59, 0.38)
small blue rubber cylinder
(-0.45, 2.19, 0.40)
small purple metal cube
(-0.14, -2.15, 0.38)
small yellow metal cube
(0.53, 2.56, 0.70)
large green rubber sphere
(0.93, -1.41, 0.35)
small cyan rubber sphere
(2.50, -2.08, 0.76)
large cyan rubber cube
(2.61, 2.59, 0.33)
small green rubber sphere

(-2.62, 0.83, 0.68)
large cyan rubber sphere
(-212, -1.58, 0.49)
small blue rubber cylinder
(-0.60, 2.23, 0.29)
small purple metal cube
(-0.30, -1.99, 0.32)
small yellow metal cube
(0.27, 2.46, 0.72)
large green rubber sphere
(0.86, -1.31, 0.27)
small cyan rubber sphere
(2.64, -2.05, 0.76)
large cyan rubber cube
(2.75, 2.73, 0.35)
small green rubber sphere

(-2.88, 0.78, 0.70)
large cyan rubber sphere
(-2.14, -1.63, 0.35)
small blue rubber cylinder
(-0.78, 1.97, 0.35)
small purple metal cube
(-0.38, -2.06, 0.35)
small yellow metal cube
(0.42, 2.56, 0.70)
large green rubber sphere
(0.81, -1.30, 0.35)
small cyan rubber sphere
(2.56, -1.94, 0.70)
large cyan rubber cube
(2.74, 2.64, 0.35)
small green rubber sphere

(-2.42, 0.63, 0.71)
large purple rubber sphere
(-2.40, -2.07, 0.35)
small green rubber cylinder
(-0.74, 2.46, 0.33)
small cyan metal cube
(0.30, -1.86, 0.34)
small gray rubber sphere
(0.69, -2.10, 0.36)
small red metal cube
(1.12, 2.28, 0.70)
large cyan rubber sphere
(2.55, -2.26, 0.73)
large yellow rubber cube
(2.99, 2.59, 0.35)
small purple rubber sphere

v

3(10)

(20

True Y

Baseline

(0.22,0.12, 3.47)
small brown rubber cube
(0.41,0.11, 3.77)
large gray metal cube
(0.50, 0.44, 3.61)
small gray rubber cube
(0.83,0.53, 3.45)
small cyan rubber sphere
(0.86, 0.85, 3.50)
small gray rubber sphere
(1.86, 2.34, 3.80)
large gray metal cube
(1.97, 0.55, 3.61)
small green rubber sphere

(-2.76, -1.42, 0.68)
large blue metal cylinder
(-1.56, -0.61, 0.35)
small blue rubber cylinder
(-1.08, 0.23, 0.33)
small green rubber cube
(-0.07, 0.97, 0.36)
small green rubber cylinder
(0.28, -2.44, 0.49)
small cyan rubber cylinder
(1.36, -0.63, 0.38)
small green rubber sphere
(2.01,3.07, 0.65)
large gray metal cube
(2.69, 0.63, 0.34)
small yellow rubber sphere

(-2.68, -1.64, 0.77)
large blue metal cylinder
(-2.43,0.03, 0.34)
small blue rubber cube
(-1.00, 1.18, 0.33)
small red rubber cylinder
(-0.01, -1.00, 0.46)
small green rubber cube
(0.21, -2.88, 0.40)
small cyan rubber cylinder
(0.99, 0.17, 0.37)
small green rubber sphere
(1.97, 2.89, 0.39)
large gray metal cube
(2.87, 0.51, 0.25)
small yellow rubber sphere

(-2.62, -1.76, 0.70)
large blue metal cylinder
(-2.29, 0.49, 0.35)
small blue rubber cube
(-0.93, 1.15, 0.35)
small red rubber cylinder
(0.28, -2.84, 0.35)
small cyan rubber cylinder
(0.29, -0.98, 0.35)
small green rubber cube
(0.92, 0.54, 0.35)
small green rubber sphere
(2.04, 2.78, 0.70)
large gray metal cube
(2.70, 0.67, 0.35)
small yellow rubber sphere

(-2.47, -1.73, 0.70)
large cyan metal cylinder
(-2.42, 0.09, 0.36)
small blue rubber cylinder
(-1.24, 1.16, 0.36)
small red rubber cube
(0.39,0.20, 0.33)
small red rubber sphere
(0.56, -3.11, 0.35)
small yellow rubber cylinder
(0.90, 0.64, 0.35)
small green rubber sphere
(2.39,0.27, 0.36)
small yellow rubber sphere
(2.44, 2.55, 0.68)
large gray metal cube
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encoder could predict images without forcing the model to choose a fixed

orientation of the image, which could be a useful inductive bias.

In conclusion, we are excited about enabling a wider variety of set pre-
diction problems to be tackled with deep neural networks. Our main
idea should be readily extensible to similar domains such as graphs to al-
low for better graph prediction, for example molecular graph generation
or end-to-end scene graph prediction from images. We hope that our
model inspires further research into graph generation, stronger object
detection models, and — more generally — a more principled approach

to set prediction.
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Chapter 7

Future work

In this thesis, we have developed a variety of techniques for modeling
sets with deep neural networks. All of our proposed methods are fully
differentiable, which makes them readily usable in existing and new

neural networks for sets.

Starting from our initial work on the specialised task of counting object

proposals in visual question answering (Chapter 3), we developed two

building blocks for set encoders and two building blocks for set decoders.

Our set encoders tackle the bottleneck problem (Subsection 2.3.3) of

traditional approaches, which only use simple pooling functions like
sum and max pooling. By learning how to permute the set elements
with the Permutation-optimisation module or sorting the
features within a set independently with FSPool (Chapter 5), the set is
turned into an ordered representation, which is much easier to work
with.

In|Chapter 5| we also realised that existing approaches for predicting

sets suffer from a responsibility problem (Section 5.3), which forces a
set decoder to predict discontinuous outputs. Since we show that this

can majorly hinder successful learning (Subsection 5.6.1), we tried to

find ways to avoid this problem. We first did this through FSUnpool

in the limited auto-encoder setting, then through Deep Set Prediction
Networks (DSPN) in the much more general supervised prediction
setting (Chapter 6). This is perhaps the most significant contribution
of this thesis, since it is the first model for predicting sets that has the
right properties for sets while being able to scale to complex tasks like

object detection.

Of course, many open problems remain in the area of set encoders and

set decoders, which we discuss in[Section 7.1|and [Section 7.2| Last but
not least, we discuss the potential of latent sets (Section 7.3), which we

would have loved to work on.
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7.1 Set encoders

A better encoder can learn better representations and therefore should
also result in better performance for the downstream task. This can
even extend to improvements to set prediction through DSPN. Recent
progress in set encoders has been closely linked to better modeling of
relationships between set elements and we believe that this will continue
to play an important role. Due to the similarity between the domains of
sets and graphs, improvements in either area are easily transferable, so

researchers in either field should be closely aware of the other.

The permutation-invariant step We have primarily used the idea

of ordering the set in some way in|Chapter 4and|Chapter 5| There may

be other algorithms similar to sorting that are able to turn a set into a
list in a way that is easy to learn from. An important consideration is the
trade-off between the complexity of relationships within the set that can
be modeled and the computational efficiency of that method. Developing
new set pooling methods with different trade-offs and theoretically
characterising the limitations like in Murphy et al. [[76]], Xu et al. [105],
and Wagstaff et al. [[103] are therefore both useful.

The permutation-equivariant step We have explored various equi-
variant approaches in this thesis: the FSPool-FSUnpool combination
(Chapter 5) and backpropagating through a set encoder (Chapter 6).
While we used them in the context of predicting sets, it would be in-
teresting to see how well these work as a building block in a pure set

encoder or in per-element set prediction tasks.

What about other permutation-equivariant ways to propagate informa-
tion within the set? A recent major advance is the building block of
self-attention in set transformers [100], which has been successfully
used in contexts other than sets such as language modeling. Here, the
same trade-off between complexity of relations and efficiency exists.
Methods that strike a good balance between the two are needed, and
gaining deeper theoretical understanding of this balance may help in

this regard.

Applications As we have pointed out in[Section 2.5] various models
that already use a sum or max — such as pooling in CNNs — allow for
set methods to be used as an alternative. In those cases, lessons from
the set literature can be applied to understand the existing models and

potentially improve them.

For language modeling, set transformers have the benefit over tradi-
tional sequential models of being able to efficiently model long-distance

relationships (words that are far apart). To not lose information about
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the order of the words in a sentence when going from the sequence of
words to the set of words, the words are augmented with positional
information. In essence, the existing sequence problem is transformed
into an equivalent set problem. Due to the versatility of thinking about
problems in terms of sets, there is potential in transforming other prob-

lems into sets and using set-based approaches on them.

7.2 Set decoders

Predicting sets in new ways is an especially promising direction due to
our contributions of the responsibility problem, FSPool-FSUnpool, and
DSPN. One option is to make improvements to our DPSN algorithm
like the ones we suggest in [Section 6.6] There are also various other

research directions for set decoders.

Set losses While the Hungarian loss seems ideal from an optimal
transport standpoint, the computational complexity of ©(n®) is not
good enough for large sets. Alternatives like Sinkhorn-based meth-
ods [35] or something else entirely [11] could prove to be just as good in
terms of quality while being much faster and more easily parallelisable.
There is also potential in the use of k-dimensional (k-d) trees to reduce
computation. This would allow for prediction of much larger sets and

thus greater applicability of set decoders.

Other approaches We argued throughout the thesis that it is impor-
tant to avoid the responsibility problem. While we showed one solution
with our DSPN model and its iterative optimisation approach, other
ways to avoid it may exist. One potential direction is to find a more
lightweight method than backpropagating through a set encoder to de-
termine the update to the set, perhaps with a self-attentive decoder [100,
14]). It would also be interesting to find a non-iterative approach, since

the iteration is a core component of DSPN.

7.2.1 Applications

There are a variety of existing tasks in machine learning where the
output is a set, but none of the models for the task treat it as a set
prediction problem. This is particularly evident in Computer Vision
with tasks like object detection, instance segmentation, and multi-object
tracking. All of these share the commonality of being about multiple
objects, for which a set would be ideal. Models with good performances
on these tasks exist, but they usually rely on various post-processing
heuristics like thresholding and non-maximum suppression to produce
a set of outputs. By using a proper model for predicting sets like our

DSPN, results in these tasks can potentially be greatly improved.
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Object detection Of course, this is not without its challenges. We
will take the Faster R-CNN [86]] as representative example of traditional
object detectors. Our DSPN model does not make any assumptions
about its input feature vector, while Faster R-CNN assumes that the
input feature map comes from an image encoder. While this has the
benefit of DSPN being applicable to non-image tasks, it also means that
DSPN makes global predictions: the existence of an object in one corner
of an image can affect the entire feature vector and therefore how a
different object is predicted in a different corner. This is something
that is often undesirable. The convolutional approach to predicting
the anchors in Faster R-CNN means that its predictions are reasonably
translation-invariant and mostly local. An object in one part of the

image rarely affects an object in a completely different part.

Another potential challenge is how the model handles noise in the
target sets. We have only tested DSPN on a synthetic dataset where
perfect information about the scene is available, which is unrealistic for
datasets with real images and human annotators. We currently do not
know how robust our method is to noisy labels. A missing object in the
labeling could again affect the entire input feature vector and therefore

the quality of the entire prediction.

A hybrid approach that combines DSPN with Faster R-CNN and sim-
ilar object detection architectures could combine the benefits of the
two: proper set prediction with end-to-end training whilst maintaining

reasonable translation-invariance.

Instance segmentation Instance segmentation models typically use
a two-stage approach: first detect the objects, then segment each object
individually. By using our DSPN model, this can be turned into a single
stage of predicting the set of masks, each mask corresponding to the
segmentation of one object. By applying a softmax function on every
pixel of these masks across the set, we could ensure that each pixel
in the image belongs to at most one object or the background. This
is arguably a more elegant approach to instance segmentation, which

could also lead to better results since it can be trained end-to-end.

Graph prediction A domain that is very similar to sets is the domain
of graphs. With the set of nodes and the set of edges, or the set of
nodes and - for each node - the set of neighbours, the connection to
sets is quite clear. Graph prediction methods have also only relied on
MLPs and RNNs so far, so the responsibility problem and our DSPN
method to avoid it are directly applicable. In particular, replacing the
set encoder in our model with a graph encoder should immediately

enable the prediction of graphs. The main problem here would be the
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choice of loss function between graphs, which in the most difficult case
would have to solve the graph isomorphism problem. Simonovsky et
al. [93] have used such a graph loss before, which has a large @(n?)
time complexity in the number of nodes. Finding good, efficient graph

losses is perhaps the bigger challenge with predicting graphs.

7.3 Latent sets in neural networks

Lastly, it would be fascinating to have sets used in more contexts than
in neural networks specifically for sets. This is a more speculative

idea.

An interesting aspect about sets is that they are a unique combination
between a symbolic, object-based representation (set elements are dis-
crete and each set element corresponds to a different symbol or object),
while also being grounded (each set elements is associated with a con-
tinuous, learned feature vector describing it). Humans are able to think
about objects in terms of its smaller parts, like a hand being made of
five fingers and a palm. By letting a traditional neural network like an
image classifier use sets of feature vectors as latent representation, we
may start to see such object- and parts-based representations emerge.
Instead of modeling an image of a hand as a feature vector, it could
learn to model it as a set of five fingers and a palm, or other decomposi-
tions of the hand into smaller parts. We know from [Chapter 3|that an
object-based representation can be much easier to work with, so being
able to discover such a representation automatically through the set
structure would be quite useful. In some ways, this is an extension of
the parts-based representation idea that Capsule Neural Networks [[88]]
try to achieve, without forcing the notion of pose in Capsule Nets onto

the neural network.

Because sets are in this unique position between connectionist and
symbolic Artificial Intelligence, they have the potential to combine the
best of both worlds. We hope that our thesis provides a stepping stone

towards this goal.
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Appendix A

Experimental details

A.1 Countingin visual question answering

Here, we detail our improved baseline model for visual question an-
swering in We provide the corresponding source code to re-
produce our experiments at https://github.com/Cyanogenoid/

vga-counting,

The most significant change to the baseline model [54] that we make is
the use of object proposal features by Anderson et al. [4]] as previously
mentioned. The following tweaks were made without considering the
performance impact on the counting module; only the validation accu-
racy of the baseline was optimised. Details not mentioned here can be

assumed to be the same as in their paper.

To fuse vision features x and question features y, the baseline concate-
nates and linearly projects them, followed by a ReLU activation. This
is equivalent to ReLU(W,x + W y). We include an additional term
that measures how different the projected x is from the projected y,

changing the fusion mechanism to

x oy =ReLUW,x + W,y) — (W,x - W,y)* (A1)

The LSTM [44] for question encoding is replaced with a GRU [23]] with
the same hidden size with dynamic per-example unrolling instead of a
fixed 14 words per question. We apply batch normalisation [49] before
the last linear projection in the classifier to the 3000 classes. The learning
rate is increased from 0.001 to 0.0015 and the batch size is doubled to
256. The model is trained for 100 epochs (1697 iterations per epoch
to train on the training set, 2517 iterations per epoch to train on both
training and validation sets) instead of 100,000 iterations, roughly in
line with the doubling of dataset size when going from VQA v1 to VQA
V2.
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Note that this single-model baseline is regularised with dropout [95],
while the other current top models skip this and rely on ensembling
to reduce overfitting. This explains why our single-model baseline
outperforms most single-model results of the state-of-the-art models.
We found ensembling of the regularised baseline to provide a much
smaller benefit in preliminary experiments compared to the results of

ensembling unregularised networks reported in Teney et al. [98]].

A.2 Permutation-optimisation

In this section, we describe the experimental set-up of in
detail. All of our experiments can be reproduced using our implementa-
tion at https://github.com/Cyanogenoid/perm-optimin Py-
Torch [82] through the experiments/all. sh script. For the former
three experiments, we use the following hyperparameters through-

out:

 Optimiser: Adam [58]] (default settings in PyTorch: f; = 0.9, f, =
0.999,¢ = 107%)

« Initial step size 7 in inner gradient descent: 1.0

All weights are initialised with Xavier initialisation [36]]. We choose the
f within the ordering cost function F to be a small MLP. The input to
f has 2 times the number of dimensions of each element, obtained by
concatenating the pair of elements. This is done for all pairs that can be
formed from the input set. This is linearly projected to some number
of hidden units to which a ReLU activation is applied. Lastly, this is
projected down to 1 dimension for sorting numbers and VQA, and 2
dimensions for assembling image mosaics (1 output for row-wise costs,
1 output for column-wise costs). These outputs are used for creating

the ordering cost matrix C.

A.2.1 Sorting numbers

Inner gradient descent steps T: 6
+ Adam learning rate: 0.1
+ Batch size: 512

« Number of sets to sort in training set: 218

Set sizes: 5, 10, 15, 80, 100, 120, 512, 1024

Evaluation intervals: [0, 1], [0, 10], [0, 1000], [1, 2], [10, 11],
[100, 101], [1000, 1001] (same as in Mena et al. [71]])

F size of hidden dimension: 16
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The ordering cost function F concatenates the two floats of each pair
and applies a 2-layer MLP that takes the 2 inputs to 16 hidden units,

ReLU activation, then to one output.

For evaluation, we switch to double precision floating point numbers.
This is because for the interval [1000, 1001], as the set size increases,
there are not enough unique single precision floats in that interval
for the sets to contain only unique floats with high probability (the
birthday problem). Using double precision floats avoids this issue. Note
that using single precision floats is enough for the other intervals and
smaller set sizes, and training is always done on the interval [0, 1] at

single precision.

A.2.2 Re-assembling image mosaics
« Adam learning rate: 1073
« Inner gradient descent steps T: 4
« Batch size: 32
« Training epochs: 20 (MNIST, CIFAR10) or 1 (ImageNet)

« F size of hidden dimension: 64 (MNIST, CIFAR10) or 128 (Ima-
geNet)

For all three image datasets from which we take images (MNIST, CI-
FAR10, ImageNet), we first normalise the inputs to have zero mean and
standard deviation one over the dataset as is common practice. For
ImageNet, we crop rectangular images to be square by reducing the size
of the longer side to the length of the shorter side (centre cropping).
Images that are not exactly divisible by the number of tiles are first
rescaled to the nearest bigger image size that is exactly divisible. Follow-
ing Mena et al. [71]], we process each tile with a 5 x 5 convolution with
padding and stride 1, 2 X 2 max pooling, and ReLU activation. This is
flattened into a vector to obtain the feature vector for each tile, which is
then fed into our F. Unlike Mena et al. [71], we decide not to arbitrarily
upscale MNIST images by a factor of two, even when upscaling results

in slightly better performance in general.

While we were able to mostly reproduce their MNIST results, we were
not able to reproduce their ImageNet results for the 33 case. In general,
we observed that good settings for their model also improved the results
of our PO-U and PO-LA models. Better hyperparameters than what we
used should improve all models similarly while keeping the ordering of

how well they perform the same.

This task is also known as jigsaw puzzle [[79], but we decided on naming

it image mosaics because the tiles are square which can lead to multiple
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solutions, rather than the typical unique solution in traditional jigsaw

puzzles enforced by the different tile shapes.

A.2.3 Implicit permutations through classification

We use the same setting as for the image mosaics, but further process
the output image with a ResNet-18. For MNIST and CIFAR10, we replace
the first convolutional layer with one that has a 3 X 3 kernel size and
no striding. This ResNet-18 is first trained on the original dataset for 20
epochs (1 for ImageNet), though images may be rescaled if the image
size is not divisible by the number of tiles per side. All weights are
then frozen and the permutation method is trained for 20 epochs (1
for ImageNet). As stated previously, this is necessary in order for the
ResNet-18 to not use each tile individually and ignore the resulting
artefacts from the permuted tiles. This is also one of the reasons why
we downscale ImageNet images to 64 X 64 pixels. Because the resulting
image tiles are so big while the receptive field of ResNet-18 is relatively
small if we were to use 256 X 256 images, the permutation artefacts
barely affect results because they are only a small fraction of the globally-
pooled features. The permutation permutes each set of tiles, which are
reconstructed (without use of the Hungarian algorithm) into an image,

which is then processed by the ResNet-18.

We observed that the LinAssign model by Mena et al. [[71] consistently
results in NaN values after Sinkhorn normalisation in this set-up, despite
our Sinkhorn implementation using the numerically-stable version of
softmax with the exp-normalise trick. We avoided this issue by clipping
the outputs of their model into the [-10, 10] interval before Sinkhorn
normalisation. We did not observe these NaN issues with our PO-U

model.

A.2.4 Visual question answering

We use the official implementation of BAN as baseline without changing
any of the hyperparameters. We thus refer to [56]] for details of their
model architecture and hyperparameters. The only change to hyperpa-
rameters that we make is reducing the batch size from 256 to 112 due
to the GPU memory requirements of the baseline model, even without

our permutation mechanism.

The BAN model generates attention weights between all object propos-
als in a set and words of the question. We take the attention weight for
a single object proposal to be the maximum attention weight for that
proposal over all words of the question, the same as in their integration
of the counting module. Each element of the set, corresponding to

object proposals, is the concatenation of this attention logit, bounding
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box coordinates, and the feature vector projected from 2048 down to 8
dimensions. We found this projection necessary to not inhibit learning
of the rest of the model, which might be due to gradient clipping or other
hyperparameters that are no longer optimal in the BAN model. This set
of object proposals is then permuted with T = 3 and a 2-layer MLP with
hidden dimension 128 for f to produce the ordering costs. The elements
in the permuted sequence are weighted by how relevant each proposal
is (sigmoid of the corresponding attention logit) and the sequence is
then fed into an LSTM with 128 units. The last cell state of the LSTM is
the set representation which is projected, ReLUd, and added back into
the hidden state of the BAN model. The remainder of the BAN model
is now able to use information from this set representation. There are
8 attention glimpses, so we process each of these with a PO-U module

and an LSTM with shared parameters across these 8 glimpses.

A.3 Featurewise sort pooling

In this section, we describe the experimental set-up of in
detail. We provide the code to reproduce all experiments at https:

//github.com/Cyanogenoid/fspooll

For almost all experiments, we used FSPool and the unpooling version
of it with k = 20. We guessed this value without tuning, and we did not
observe any major differences when we tried to change this on CLEVR
to k = 5 and k = 40. W can be initialised in different ways, such as
by sampling from a standard Gaussian. However, for the purposes of
starting the model as similarly as possible to the sum pooling baseline
on CLEVR and on the graph classification datasets, we initialise W to a

matrix of all 1s on them.

A.3.1 Polygons

The polygons are centred on 0 with a radius of 1. The points in the
set are randomly permuted to remove any ordering in the set from
the generation process that a model that is not permutation-invariant
or permutation-equivariant could exploit. We use a batch size of 16
for all three models and train it for 10240 steps. We use the Adam
optimiser [58]] with 0.001 learning rate and their suggested values for
the other optimiser parameters (PyTorch defaults). Weights of linear
and convolutional layers are initialised as suggested in Glorot et al. [36]].
The size of every hidden layer is set to 16 and the latent space is set to 1
(it should only need to store the rotation as latent variable). We have
also tried much hidden and latent space sizes of 128 when we tried to

get better results for the baselines.
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A.3.2 MNIST

We train on the training set of MNIST for 10 epochs and the shown
results come from the test set of MNIST. For an image, the coordinate of a
pixel is included if the pixel is above the mean pixel level of 0.1307 (with
pixel levels ranging 0-1). Again, the order of the points are randomised.
We did not include results of the Hungarian loss because we did not get
the model to converge to results of similar quality to the direct MSE
loss or Chamfer loss, and training time took too long (> 1 day) in order

to find better parameters.

The latent space is increased from 1 to 16 and the size of the hidden
layers is increased from 16 to 32. All other hyperparameters are the the

same as for the Polygons dataset.

A.3.3 CLEVR

The architecture and hyperparameters come from the open-source im-
plementation available at
https://github.com/mesnico/RelationNetworks-CLEVR.
For the RN baseline, the set is first expanded into the set of all pairs by
concatenating the 2 feature vectors of the pair for all pairs of elements in
the set. For the Janossy Pooling baseline, we use the model configuration
from Murphy et al. [76] that appeared best in their experiments, which
uses 7-SGD with an LSTM that has |h| as neighbourhood size.

The question representation coming from the 256-unit LSTM, process-
ing the question tokens in reverse with each token embedded into 32
dimensions, is concatenated to all elements in the set. Each element
of this new set is first processed by a 4-layer MLP with 512 neurons in
each layer and ReLU activations. The set of feature vectors is pooled
with a pooling method like sum and the output of this is processed with
a 3-layer MLP (hidden sizes 512, 1024, and number of answer classes)
with ReLU activations. A dropout rate of 0.05 is applied before the
last layer of this MLP. Adam is used with a starting learning rate of
0.000005, which doubles every 20 epochs until the maximum learning
rate of 0.0005 is reached. Weight decay of 0.0001 is applied. The model
is trained for 350 epochs.

A.3.4 Graph classification

The GIN architecture starts with 5 sequential blocks of graph convolu-
tions. Each block starts with summing the feature vector of each node’s
neighbours into the node’s own feature vector. Then, an MLP is applied
to the feature vectors of all the nodes individually. The details of this
MLP were somewhat unclear in [[105]] and we chose Linear-ReLU-BN-
Linear-ReLU-BN in the end. We tried Linear-BN-ReLU-Linear-BN-ReLU
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Table A.1: Average of best hyperparameters over 10 repeats.

IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1

GIN-FSPooL

- dimensionality — 64.0 64.0 64.0 64.0 64.0 28.8 19.2 28.8 304
- batch size 66.0 100 45.6 32.0 86.4 89.6 60.8 41.6 128
- dropout 0.25 0.15 0.35 0.10 0.40 0.15 0.35 0.20 0.50
GIN-BASE

- dimensionality — 64.0 64.0 64.0 64.0 64.0 27.2 20.8 25.6 28.8
- batch size 86.4 93.2 72.8 100 100 70.4 60.8 60.8 128
- dropout 0.30 0.15 0.25 0.45 0.40 0.25 0.45 0.20 0.35

as well, which gave us slightly worse validation results for both the
baseline and the FSPool version. The outputs of each of the 5 blocks
are concatenated and pooled, either with a sum for the social network
datasets, mean for the social network datasets (this is as specified in
GIN), or with FSPool for both types of datasets. This is followed by
BN-Linear-ReLU-Dropout-Linear as classifier with a softmax output
and cross-entropy loss. We used the torch-geometric library [31]] to

implement this model.

The starting learning rate for Adam is 0.01 and is reduced every 50
epochs. Weights are initialised as suggested in [36]]. The hyperparame-
ters to choose from are: dropout ratio € {0, 0.5}, batch size € {32,128},
if bioinformatics dataset hidden sizes of all layers € {16,32} and 500
epochs, if social network dataset the hidden size is 64 and 250 epochs.
Due to GPU memory limitations we used a batch size of 100 instead
of 128 for social network datasets. The best hyperparameters are se-
lected based on best average validation accuracy across the 10-fold
cross-validation, where one of the 9 training folds is used as validation
set each time. In other words, within one 10-fold cross-validation run
the hyperparameters used for the test set are the same, while across the
10 repeats of this with different seeds the best hyperparameters may
differ.

A.4 Deep set prediction networks

In this section, we describe the experimental set-up of in
detail. In our algorithm, n was chosen in initial experiments and we did
not tune it beyond that. We did this by increasing 5 until the output
set visibly changed between inner optimisation steps when the set
encoder is randomly initialised. This makes it so that changing the set
encoder weights has a noticeable effect rather than being stuck with

y(T) ~ ?(0)'
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T = 10 was chosen because it seemed to be enough to converge to good
solutions on MNIST. We simply kept this for the supervised experiments
on CLEVR.

In the supervised experiments, we would often observe large spikes in
training that cause the model diverge when A = 1. By changing around
various parameters, we found that reducing A eliminated most of this
issue and also made training converge to better solutions. Much smaller
values than 0.1 converged to worse solutions. This is likely because

the issue of not having the Lie, (Y, z) term in the outer loss in the first

place (A = 0) is present again — see [Subsection 6.3.3|

For all experiments, we used Adam with the default momentum values
and batch size 32 for the outer optimisation. The only hyperparameter
we tuned in the experiments is the learning rate of the outer optimisation.

Every individual experiment is run on a single 1080 Ti GPU.

The MLP decoder baseline has 3 layers with 256 (MNIST) or 512 (CLEVR)
neurons in the first two layers and the number of channels of the output
set in the task in the third layer. The LSTM decoder linearly transforms
the latent space into 256 (MNIST) or 512 (CLEVR) dimensions, which
is used as initial cell state of the LSTM. The LSTM is run for the same
number of steps as the maximum set size, and the outputs of these steps

is each linearly transformed into the output dimensionality.

A.4.1 MNIST

For MNIST, we train our model and the baseline model for 100 epochs
to make sure that they have converged. Both models have a 3-layer
MLP with ReLU activations and 256, 256, and 64 neurons in the three
layers. For simplicity, sets are padded to a fixed size for FSPool. FSPool
has 20 pieces in its piecewise linear function. We tried learning rates in
{1.0,0.1,0.03,0.01,0.003, 0.001, 0.0003, 0.0001, 0.00001} and chose 0.01.
For the baselines, none of the other learning rates performed signifi-

cantly better than the one we chose.

The baselines are trained slightly differently to our model. They do
not output mask values natively, so we have to train them with the
mask values in the training target. In other words, they are trained to
predict x coordinate, y coordinate, and the mask for each point. We
found it crucial to explicitly add 1 to the mask in the baseline model
for good results. Otherwise, many of the baseline outputs get stuck in
the local optimum of predicting the (0, 0, 0) point and the output is too

sparse.



Appendix A. Experimental details

A.4.2 CLEVR

We train our model and the baselines models for 100 epochs on the
training set of CLEVR and evaluate on the validation set, since no
ground-truth scene information is available for the test set. All images
are resized to 128x128 resolution. The set encoder is a 2-layer Relation
Network with ReLU activation between the two layers, wherein the sum
pooling is replaced with FSPool. The two layers have 512 neurons each.
Because we use the Hungarian loss instead of the Chamfer loss here,
including the mask feature in the target set does not worsen results,
so we include the mask target for both the baseline and our model for
consistency. To tune the learning rate, we started with the learning rate
found for MNIST and decreased it similarly-sized steps until the training
accuracy after 100 epochs worsened. We settled on 0.0003 as learning
rate for both the bounding box and the state prediction task. All other
hyperparameters are kept the same as for MNIST. The ResNet34 that

encodes the image is not pre-trained.

A.4.3 Fixed results

Due to a bug, the practical trick of computing the loss over all v in-

stead of only the last "

was not used for the experiments on CLEVR.
Also, all evaluation numbers on CLEVR with bounding boxes are over-
estimates, but consistent across the models. These are minor problems
that do not affect the conclusions of the experiments. The first bug was
found by Sangwoo Mo ﬂ the second bug was found by Chao Fengﬂ We
are very grateful to them for finding and letting us know of these bugs.
The following tables show the results with the bugs fixed when using

exactly the same hyperparameters as before:

. shows the results when only fixing the evaluation bug
(note the different AP metrics compared to[Table 6.2) for bounding

box prediction,

. shows the results when fixing the evaluation bug and

also computing the loss on all v for bounding box prediction,

. shows the results when computing the loss on all o

for state prediction.

In summary, our model still handily beats the baseline models. On
bounding box prediction, interestingly the results with the set loss bug
fixed tend to be worse than when only using the last prediction to
compute the loss. On state prediction, fixing the set loss bug improves

almost all results. The largest improvement is on the AP, 5 metric with

!swmoekaist .ac.kr, Korea Advanced Institute of Science and Technology.

2chf2018@med. cornell. edu, Weill Cornell Graduate School of Medical Sci-
ences.
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Table A.2: Fixed bounding box evaluation, still computing loss only on the last v Average

Precision (AP) for different intersection-over-union thresholds for a predicted bounding box to be
considered correct. Higher is better. Mean and standard deviation over 6 runs.

Model AP5() AP60 AP70 APSO AP90

MLP baseline 87.6+24  73.6239  48.1:50  15.1:2s 0.1+01
RNN baseline  85.8:25  70.0x2s  43.9x24 133215 0.2x00
Ours (10 iters) 94.0x04  90.6x06 82.2:14 58.9:34  16.0x24
Ours (20 iters) 98.0x05 94.4:09 83.0:16  55.033  12.3:26
Ours (30 iters)  95.9x21  89.4133  74.8439  46.1434 9.4:+19

Table A.3: Fixed bounding box evaluation and computing the loss on all intermediate sets. Average
Precision (AP) for different intersection-over-union thresholds for a predicted bounding box to be
considered correct. Higher is better. Mean and standard deviation over 6 runs. Baselines are the

same as in[Table A.2

Model AP50 AP(,O AP70 APgo AP90

Ours (10 iters) 97.1:11  91.4s28  73.4:s51  35.4x48  3.3:13
Ours (20 iters) 97.5:10  90.8:26  69.4x49  31.3z47  2.9x12
Ours (30 iters) 97.1:10  88.6:20 64.4ss53  27.752  2.6x12

Table A.4: State predicton when computing the loss on all intermediate sets. Average Precision
(AP) in % for different distance thresholds of a predicted set element to be considered correct.
AP, only requires all attributes to be correct, regardless of 3d position. Higher is better. Mean
and standard deviation over 6 runs. Baselines are the same as in|Table 6.4]

Model AP, AP APos5  APgos APy

Ours (10 iters) 76.4:25  69.6:28  53.7:43  18.2437 2.2+06
Ours (20 iters)  80.9:19  77.3x235 639241 22.72aa  2.7x06
Ours (30 iters) 82.5:17  79.8+20 66.8:41  23.6146 2.8+03

an increase from 57.0 for the best result to 66.8 for the best result. No-
tably, running more iterations now only results in strict improvements

without worsening on any metric.
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