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Intermittent Computing System Performance
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Abstract—Batteryless energy-harvesting devices promise to
deliver a sustainable Internet of Things. Intermittent computing
is an emerging area, where application forward progress, i.e.
computation beneficial to the progress of the active application,
is maintained by saving volatile computing state into non-volatile
memory before power interruptions, and restored afterwards.
Conventional intermittent computing approaches typically mini-
mize energy storage to reduce device dimensions and interruption
periods, but this can result in high state-saving and -restoring
overheads and impede forward progress. In this paper, we argue
that adding a small amount of energy storage can significantly
improve forward progress. We develop an intermittent computing
model that accurately estimates forward progress, with an
experimentally validated mean error of 0.5%. Using this model,
we show that sizing energy storage can improve forward progress
by up to 65% with a constant current supply, and 43% with real-
world photovoltaic sources. An extension to this approach, which
uses a cost function to trade-off the energy storage size against
forward progress, can save 83% of capacitor volume and 91%
of interruption periods while maintaining 93% of the maximum
forward progress.

Index Terms—Intermittent computing, energy harvesting, en-
ergy storage, forward progress, batteryless, internet of things.

I. INTRODUCTION

INTERNET of Things (IoT) devices are becoming ubiq-
uitous, with forecasts of hundreds of billions being in-

stalled in the near future [1]. They are conventionally battery-
powered, thus have constrained lifespans, necessitating incon-
venient periodic battery replacement. Energy-harvesting is a
potential solution. Environmentally harvested power is, how-
ever, intrinsically variable and intermittent [2]. Traditionally,
large energy storage devices such as rechargeable batteries or
supercapacitors are used to smooth out supply variability [3].
Unfortunately, these increase cost and device dimensions [4],
raise pollution concerns [5], and still limit lifespans [6].

Recently, intermittent computing systems (ICSs) have been
proposed as an alternative [7]. Instead of using large energy
storage devices to sustain execution, they tolerate power in-
terruptions by saving the state of the system into non-volatile
memory (NVM) so that computation can continue when power
is restored. They may save this state (e.g. CPU registers
and RAM contents) either statically at pre-defined points, or
reactively by detecting when the supply is about to fail [7].
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Fig. 1. The relationship between energy storage capacitance and ICS forward
progress, for various supply currents.

Static approaches save state at points determined at design
or compile time, either by inserting checkpoints [8], [9] or
decomposing a program into atomic tasks1 [10], [11]. After
a power interruption, progress rolls back and resumes from
the last saved checkpoint or task boundary. This can introduce
issues such as violation of data memory consistency, along
with wasting energy on lost and re-executed progress.

Conversely, reactive approaches monitor the supply voltage
and only save state when it falls below a threshold [12]–[14],
which is set high enough to reliably save state even with a total
and immediate drop-off in harvested energy. They then enter
a low-power mode, in many cases preserving their volatile
memory and avoiding re-execution. These typically make more
forward progress than static approaches, e.g. a 2.5× mean
computational speedup [15].

In ICSs, forward progress denotes the computation benefi-
cial to the progress of the active application, excluding lost
progress due to power failures and state-saving and -restoring
operations [16]. The amount of forward progress directly
determines application performance, e.g. program iteration
rate or task completion time. In this paper, to allow fair
comparison, we define normalized forward progress as the
ratio of the effective execution time to the total elapsed time,
without being restricted to a specific workload.

With the goal of minimizing device dimensions and in-
terruption periods, most ICS approaches adopt a minimum
amount of energy storage [12], [17]–[20]. This is typically
just sufficient for the most energy-expensive atomic operation.
However, our assertion is that this can be inherently inefficient

1Atomic operations in ICSs denote operations that should be completed in
one continuous period. If an atomic operation is interrupted by a power failure,
it should be re-executed rather than resumed. Examples of atomic operations
include saving and restoring volatile state, transmitting and receiving packets,
and sampling sequences of data from sensors.

https://doi.org/10.5258/SOTON/D1785
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in terms of time and energy. We show that a system with min-
imum energy storage frequently goes through a cycle of: wake
up; restore state; execute program; save state; halt. We propose
that provisioning slightly more energy storage can prolong
the operating cycles, reduce the frequency of interruptions,
and hence improve forward progress. We show with modelled
and experimental results that (Fig. 1) using efficiently-sized
energy storage capacitance (in this case, 43 µF) achieves up to
a 55% improvement in forward progress compared to using
the theoretical minimum amount of capacitance (6.2 µF). This
improvement is more significant with a weaker supply.

The relationship between ICS energy storage capacitance
and forward progress has not previously been defined. How-
ever, current tools for ICSs (Section II) are not practical for
estimation of forward progress in a long-term deployment, and
lack a method of sizing energy storage to improve forward
progress while moderating the physical size and interruption
periods. We present an ICS model for estimating forward
progress, along with an approach for sizing energy storage in
ICSs, quantifying and trading-off forward progress, capacitor
volume, and interruption periods.

The main contributions of this paper are:
• A reactive ICS model which accurately estimates forward

progress; experimental validation shows a 0.5% mean
error (Section III).

• A model-based sizing approach that recommends appro-
priate energy storage capacitance in ICSs (Section IV).

• An exploration based on the model, where we analyze the
energy storage sizing effect on forward progress, showing
up to 65% forward progress improvement (Section V).

• An evaluation of the impact of sizing in real-world con-
ditions using real energy availability data (Section VI).
This includes a cost function-based method for trading-off
parameters. In an example, this reduced capacitor volume
and interruption periods by 83% and 91% respectively,
while sacrificing 7% of forward progress.

The associated simulation tool is available open-source at
https://git.soton.ac.uk/energy-driven/energy-storage-sizing.

II. RELATED WORK

To explore forward progress of ICSs with regard to energy
storage, simulation tools need to represent transient operation
(timescales of µs-ms) as well as long-term overall performance
(from days up to years).

Su et al. [21] modelled a dual-channel solar-powered non-
volatile sensor node, and Jackson et al. [22] provided a model
to explore battery usage in ICSs. Both were configured for
long-term simulations and large energy storage (from mF-scale
supercapacitors to batteries), thus cannot respond to frequent
power interruptions and accurately estimate forward progress
when using minimized energy storage (e.g. 4.7 µF [19]).

In contrast, a set of fine-grained models have been proposed
to accurately simulate the frequent micro-operations in ICSs.
NVPsim [23] is a gem5-based simulator for nonvolatile pro-
cessors. Fused [24] is a closed-loop simulator which allows
interaction between power consumption, power supply, and
forward progress. EH model [25] can compare a range of ICS

TABLE I
MODEL PARAMETERS OF REACTIVE ICS

Input Parameters
Iharv Energy harvester current supply
C Energy storage capacitance

Configuration Parameters
Iexe Execution current draw
Ilpm Low-power mode current draw
Ir Restore current draw
Is Save current draw
Ileak Leakage current draw
Vr Restore voltage threshold
Vs Save voltage threshold
Tr Restore time overhead
Ts Save time overhead

Output Parameter
αexe Normalized forward progress

approaches in a single active period with the same energy
budget, quantifying forward progress by the energy spent on
effective execution. These fine-grained models are inefficient
for processing long-term energy data, especially when iterative
tests are needed for various system configurations.

Besides models and simulators, hardware emulators of en-
ergy harvesters can provide replicate power profiles recorded
from energy harvesters for experimental comparisons [26],
[27]. Though they provide practical results, hardware em-
ulations are limited by hardware options and are generally
impractical for performing long-term trials.

To address the above problems, we provide a reactive ICS
model to estimate forward progress even with minimized
energy storage, and a simulation tool that enables exploration
with long-term real-world environmental conditions. Together,
they enable the exploration of the effect of energy storage
size on the forward progress of ICSs. Further, we provide a
sizing approach which recommends appropriate energy storage
capacitance when deploying ICSs.

III. REACTIVE ICS MODELLING

To facilitate the understanding and exploration of reactive
ICSs, we present a model which outputs the normalized
forward progress αexe. Parameters of this model are listed
in Table I. We assume that all input and configuration pa-
rameters remain constant in this model derivation, but later
provide a dynamic process for cases where parameters change
dynamically.

For brevity, Iin denotes the usable input current as expressed
in (1). The effect of capacitor leakage current, Ileak, is
discussed at the end of Section III-B.

Iin = Iharv − Ileak (1)

A. Operating Modes of Reactive ICS

The behavior of reactive ICSs can be classified into three
operating modes depending on the supply current, as shown
in Fig. 2. These are differentiated by the relationship between

https://git.soton.ac.uk/energy-driven/energy-storage-sizing
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Fig. 2. Operating modes of reactive ICSs, and achieved forward progress
against supply current.

input current Iin and the system’s current draw in its low-
power mode (LPM) or active modes, i.e. Ilpm and Iexe. We
define the three modes as:

• Off mode: When Iin < Ilpm, the system stays inactive.
The supply voltage Vcc cannot rise above the restore
threshold Vr to wake the system and start execution. The
LPM current Ilpm includes the consumption of voltage
monitoring circuits and system idle current.

• On mode: When Iin > Iexe, the system executes con-
stantly as the supply voltage Vcc never drops below Vs.
Vcc grows until Iin and Iexe are in equilibrium, which
may result from Iin decreasing due to poor impedance
matching, or Iexe increasing due to either greater current
draw at higher voltage or dissipation through overvoltage
protection circuits.

• Intermittent mode: When Ilpm < Iin < Iexe, the
system executes intermittently after Vcc > Vr and before
Vcc < Vs. Vcc can rise above Vr and the system starts
execution. However, the stored energy is then consumed
by the load as Iin < Iexe, causing Vcc to eventually drop
below the save threshold Vs, where the system saves its
state and enters LPM. The system stays in LPM until
Vcc rises to Vr again and then resumes execution. In
general, a higher Iin leads to more forward progress in
this mode, but the exact relationship between Iin and
forward progress requires further analysis.

B. Formulating Forward Progress

Next, we derive formulations to calculate αexe from Iin and
energy storage capacitance C. We then explore the effect of
capacitor leakage on maximum forward progress.

In the On and Off modes, the normalized forward progress
is trivial to find (simply 1 and 0 respectively). In the Intermit-
tent mode, as shown in Fig. 3, the system goes through four
intervals in turn, i.e. charging, restoring, executing, and saving,
with current consumption of Ilpm, Ir, Iexe, and Is in each
interval respectively. The normalized forward progress, i.e. ef-
fective execution time ratio, is indicated as Texe/Tcycle, where
Texe is the time spent on effective execution in one operating
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Fig. 3. Operating cycles in the Intermittent mode.

cycle and Tcycle is the period of operating cycles. Hence, the
forward progress given all supply levels is expressed as:

αexe =


0 , Off (Iin < Ilpm)

Texe
Tcycle

, Intermittent (Ilpm < Iin < Iexe)

1 , On (Iin > Iexe)

(2)

In the following analysis, we focus on deriving Texe/Tcycle
in the Intermittent mode. Let Vpr (post-restore) and Vps (post-
save) denote the voltage after restoring and saving operations.
Referring to Table I and Fig. 3, Vpr and Vps can be calculated
as:

Vpr = Vr +
Tr(Iin − Ir)

C
(3)

Vps = Vs +
Ts(Iin − Is)

C
(4)

With (3), the time spent on effective execution Texe in one
operating cycle can be expressed as:

Texe =
C(Vpr − Vs)

Iexe − Iin
(5)

Analogously, with (4), the charging interval can be described
as:

Tcharge =
C(Vr − Vps)

Iin − Ilpm
(6)

With (5) and (6), the period of an operating cycle is:

Tcycle = Tcharge + Tr + Texe + Ts (7)

Finally, combining (3)–(7), we obtain normalized forward
progress αexe in the Intermittent mode as:

αexe =
Texe
Tcycle

=

C(Vr−Vs)+Tr(Iin−Ir)
Iexe−Iin

C(Vr−Vs)+Ts(Is−Ilpm)
Iin−Ilpm + C(Vr−Vs)+Tr(Iexe−Ir)

Iexe−Iin
(8)

In the numerator Texe, C(Vr − Vs) represents the amount of
charge in the capacitor available for restoring and executing.
Tr(Iin−Ir) represents the charge used by a restore operation.
Iexe − Iin is the rate of charge consumption from the energy
storage during execution.
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To explore the effect of energy storage on forward progress,
we need to analyze dαexe/dC. Here, if we assume that
Ileak remains constant, αexe keeps increasing and approaches
(Iin−Ilpm)/(Iexe−Ilpm) when energy storage capacitance C
increases. Defining (Iin − Ilpm)/(Iexe − Ilpm) as αexe ideal,
αexe = αexe ideal is an ideal case, where restore and save
overheads are absent.

In an electrolytic capacitor, however, Ileak typically in-
creases with C with the following relationship [28]:

Ileak = kCVcc (9)

where k is a constant normally in a range 0.01 to 0.03 ( A
F ·V ).

Combining (9) with (1), dIin/dC is −kVcc, meaning Iin
decreases linearly as C increases. Thus, when C increases,
αexe keeps approaching αexe ideal while αexe ideal decreases.
Hence, we believe that there is a capacitance value that leads
to the maximum αexe considering Ileak increases with C.

C. Dynamic process
The above model assumes all parameters are constant,

which is useful for fast exploration in cases where this can
be considered to approximately hold true (this is used for the
analysis of principal sizing effects presented in Section V). For
dynamically-varying parameters (e.g. a dynamic harvesting
profile), we also implement a dynamic process, where the
supply voltage is calculated with current flows across small
time steps, hence updating system state accurately. This is
used for the exploration of real-world energy conditions in
Section VI.

D. Model Validation
We implemented and parameterized a reactive ICS [29] on a

TI MSP430FR6989 microcontroller to validate our model. The
on-board decoupling capacitance was measured as 10.0 µF,
and hence was the minimum capacitance that could be tested.
Further capacitance was added to provide extra energy storage
up to a maximum of 43 µF, as forward progress with this
capacitance can approximate αexe ideal (an upper bound),
which is linear to supply current Iin when Ilpm < Iin < Iexe
(mentioned in Section III-B). The parameters are profiled
with the MCU running a Dijkstra path finding algorithm with
1696 B RAM usage at 8 MHz. The supply voltage monitoring
circuits use the MCU’s internal comparator and an external
3 MΩ voltage divider. The restore and save voltage thresholds
are set as Vr = 2.4 V and Vs = 2.1 V respectively. The MCU
shutdown voltage Voff is 1.8 V.

To validate the accuracy of our model, we powered the
device with a range of supply currents (0–0.9 mA) to operate
the device in Intermittent mode, and repeated the tests with
three energy storage capacities: a) 10.0 µF decoupling capaci-
tance; b) 21.5 µF (11.5 µF added); c) 43.0 µF (33.0 µF added).
We compared the actual forward progress against predictions
generated from our model. As shown in Fig. 4, the model-
generated output matches closely with the experimental results
with only 0.5% mean absolute percentage error.

In the next section, we extend this approach with a cost
function for trading-off forward progress against various de-
sign factors.
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IV. ENERGY STORAGE SIZING APPROACH

We propose a sizing approach which recommends appropri-
ate energy storage capacitance for an ICS, trading-off forward
progress against capacitor volume and interruption periods.
We present a system model which accepts real long-term data
on environmental energy conditions. The three inputs can be
swept for design exploration, but we focus on energy storage
in this paper. The model outputs forward progress, capacitor
volume, and interruption periods (defined in Section VI-B).
These are subsequently traded-off in a cost function to obtain
the appropriate energy storage capacitance. This process is
summarized in Fig. 5 with details explained as follows.

A. Input

A time trace of representative environmental energy condi-
tions in the intended deployment location is provided as an
input, along with the energy harvester size; for design explo-
ration, these can optionally be changed to explore variations
and scales of harvested power. A pre-defined set of energy
storage capacitance values are swept through.
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B. System Model

This contains three modules:
• Energy Harvester and Conversion Circuits: The energy

harvester module transduces environmental energy into
electricity. In ICSs, conversion circuits may simply be a
diode to inhibit backflow of current. The energy harvester
and conversion circuits can be modelled together as a
module because they are usually coupled or integrated.

• Energy Storage: Energy storage in ICSs is usually in the
form of a µF- to mF-scale capacitor. It must be sufficient
to complete the most energy-expensive atomic operation,
and may be formed only of the decoupling capacitor(s).
This also includes an empirical model relating capaci-
tance to capacitor volume (discussed in Section VI-C).

• Intermittent Load: Includes all the power consumers in
an ICS, such as a microcontroller, sensors, and a radio.
This module outputs forward progress and interruption
periods using the model presented in Section III.

C. Trade-off

The appropriate capacitance is then found through a cost
function (an example of which is presented in Section VI-C).
This may trade-off forward progress against capacitor volume
and interruption periods.

V. EXPLORATION OF ENERGY STORAGE SIZING

In this section, we configure the reactive ICS model pre-
sented in Section III to approximate a real ICS platform, and
then present an exploration of the relationship between αexe
and C with respect to Iharv and volatile state size.

A. Model Configuration

1) Energy Storage: The energy storage is represented as
an ideal capacitor with leakage current. Its terminal voltage is
directly applied to the load, so is modelled as:

C
dVcc
dt

= Iharv − Iload − Ileak (10)

where Iload is the current consumption of the load. In this
exploration, we refer to the empirical Ileak of AVX TAJ low-
profile series tantalum capacitors, which depends on capaci-
tance C, rated voltage Vrated, and terminal voltage Vcc [28]:

Ileak = 0.01λCVrated (A) (11)

where λ denotes the ratio of the actual current leakage at Vcc
to the current leakage at Vrated, and λ is approximated as:

λ = 0.05 × 20
Vcc

Vrated (12)

We assume a typical load of < 4.0 V so, to minimize leakage,
we select a device with Vrated = 10 V so as to operate between
25-40% of its rated voltage [28].

TABLE II
PROFILED MCU PARAMETERS

Parameter Value
Iexe 887 µA
Ilpm 26 µA
Ir 971 µA
Is 811 µA
Tr 1.903 ms
Ts 1.880 ms
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Fig. 6. Forward progress against energy storage capacitance at different levels
of constant supply current. Error bars around Cα max denote the impact
of typical ±20% capacitance tolerance. The 30–150 µF range is omitted as
forward progress in that range increases monotonically.

2) Intermittent Load: The load parameters of current draws
and time overheads, as listed in Table II, were profiled with
the experimental settings explained in Section III-D. We only
consider computational loads in this study, as handling of
peripherals in intermittent systems is still an ongoing re-
search topic [15], [30]. The current draw was profiled with
experimental measurements at a range of supply voltages.
The variation of Ilpm between Voff (1.8 V) and Vr (2.4 V)
is 2%, and for Iexe between Vs (2.1 V) and 3.3 V is 1.5%.
Iexe also has a run-time variation of 2.8% due to a variable
memory access rate. We omit these minor variations and
use the mean of Iexe and Ilpm in the model. Ir and Is
are measured at Vr and Vs respectively. Given the voltage
thresholds and the current consumption, the minimum energy
storage capacitance is 6.2 µF. This guarantees that a save and
restore operation can complete even if the incoming supply
current drops instantaneously to zero. The model parameters
in Table II are given as an example, and can be changed for
different load characteristics. For example, Tr and Ts can be
tuned for different volatile state sizes.

B. Sizing Energy Storage to Improve Forward Progress

1) Impact of Supply Current: Increasing energy storage
capacitance above the minimum can improve forward progress
by reducing the frequency of power interruptions, but this
improvement may be offset by increased leakage. Fig. 6 shows
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case), with the corresponding maximum and sub-maximum (95% of maxi-
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TABLE III
LINEAR SCALING RANGE OF VOLATILE STATE SIZE AND RESTORE/SAVE

TIME OVERHEADS

State Size Restore Time Save Time
(Registers + SRAM)

64B + 160B (lower bound) 232 µs 208 µs
64B + 2048B (upper bound) 2.298 ms 2.274 ms

the relationship between forward progress and energy storage
capacitance for a range of constant supply currents. In this
section, we denote the capacitance that leads to the maximum
forward progress αexe as Cα max.

The minimum capacitance (dashed line in Fig. 6) is calcu-
lated to deliver correct operation even if the supply current
instantaneously drops to zero. If it does not drop to zero, this
means that correct operation could have continued even with
a smaller capacitance, though designing a system in this way
would be inadvisable owing to unpredictability of the supply.
This property is illustrated in Fig. 6, in the area on the left
of the dashed line. It may be observed that, for each of the
current values, there is a sudden drop-off towards zero forward
progress. This illustrates the hazard of setting the capacitance
too small: the stored energy is too low to allow a restore and
save to be undertaken.

Typically, commercially-available capacitors have a ±20%
tolerance. The effect of this variation on maximum forward
progress is shown to be negligible (< 0.23%) in Fig. 6.
However, it must be pointed out that the effect would be much
more pronounced if operating at the minimum capacitance
as the variation of forward progress is larger with smaller
capacitance values. Thus, it is recommended that a tolerance is
considered when designing ICSs with minimum capacitance.

Fig. 7 shows that an improvement in forward progress of
up to 65% can be achieved when using Cα max instead of
the minimum. However, it may not be desirable to set the
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Fig. 8. Impact of RAM usage (linear to restore/save overheads) on sizing
energy storage with 0.4 mA current supply. Improvement and reduction are
normalized by the minimum capacitance case.

capacitance solely for maximizing forward progress, because
there are often trade-offs with other factors including increased
interruption periods and dimensions. While a large improve-
ment can be delivered with Cα max, as shown in Fig. 7, 95%
of this gain can still be obtained with significantly smaller
capacitances (mean 31% of Cα max). For example, reducing
from 325 µF to 90 µF gives 95% of the maximum improvement
with a 0.5 mA supply.

2) Impact of Volatile State Size: The size of volatile state
differs across applications with different amounts of RAM
usage, and hence incurs varying time and energy overheads for
restore and save operations. We measured time overheads of
restore and save operations in the minimum case (64B register
data and a 160B stack) and the maximum case (64B register
data and a full 2048B RAM) respectively as shown in Table III.
As these time overheads are expected to be linear to the state
size [31], the model can be tuned for various volatile state
sizes by linearly scaling the profiled values.

An example of this is plotted in Fig. 8. The forward
progress improvement by sizing energy storage increases with
the volatile state size, and Cα max grows accordingly. The
improvement becomes insignificant when the volatile state
size is small because the restore and save overheads are
already negligible. For example, when the workload uses the
least volatile state (the leftmost point), the maximum progress
improvement is only 3.6% although the restore and save
overheads are reduced by 93%.

Where the size of the volatile state may vary at run time,
a different capacitor size within the range 108–355 µF may
have been recommended (Fig. 8). However, as can be seen
from Fig. 6, there is a minimal difference in forward progress
across this range. In the worst case, a 2.7% reduction results
from setting Cα max for the minimum state size, while running
with the largest state size.
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Fig. 9. Improvement of average forward progress by sizing energy storage given different PV panel areas under real-world energy source conditions. The
model is able to find the PV panel area required for achieving the target mean forward progress.
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Fig. 10. System model of a PV-based ICS.

C. Validation of Sizing Effects

As previously shown in Fig. 1, the efficiently-sized energy
storage capacitance (43 µF) improves forward progress by up
to 55% and 30% compared to the minimum and decoupling
capacitance respectively. We notice that this improvement be-
comes significant when the supply current attenuates because
the save and restore overheads consume a larger proportion
of the available energy. Also, this achieves at least 90% of
the ideal forward progress mentioned in Section III-B. These
results illustrate the importance of this technique, in particular
for conditions where the supply current is low.

VI. SIZING UNDER REAL-WORLD ENERGY CONDITIONS

In this section, we model an ICS with a photovoltaic (PV)
energy harvester to explore the energy storage sizing effect
in real-world energy conditions, and demonstrate use of the
proposed sizing approach.

A. Simulation Configuration

We integrate the validated reactive ICS model into a system
model with a PV energy-harvesting supply as shown in Fig. 10.
The energy storage model and the intermittent load model are
as presented in Section V.

We use a converter-less supply circuit where only a Schottky
diode is connected to the energy harvester output in order
to prevent current backflow. The energy source conditions
are imported from NREL outdoor solar irradiance data [32]
and EnHANTs indoor irradiance data [33]. Four sets of light

TABLE IV
PV CELL PROPERTIES UNDER A 1000 W/CM2 , AM-1.5 LIGHT SOURCE

Parameter Value
Open-Circuit Voltage 0.89 V/cell
Short-Circuit Current 14.8 mA/cm2

Maximum Power Voltage 0.65 V/cell
Maximum Power Current 12.1 mA/cm2

conditions are used to encompass different energy environ-
ments. To convert irradiance into harvested power, we adopt
a PV cell model [34] which uses the parameters available in
common datasheets, so it can easily be reconfigured to suit
various devices. We refer to Panasonic Amorton glass type
solar cells [35] for PV cell properties as shown in Table IV.
We set four cells in series (with Voc = 3.56V) to match the
operating voltage of the MCU (maximum 3.6V), and model
energy harvester sizing by scaling the cell area.

B. Exploration with Real-World Energy Source Conditions

In real-world deployments, ambient energy source condi-
tions are dependent on time and location. The energy harvester
and storage need to be sized to achieve the desired forward
progress across the range of expected conditions.

1) Sizing the Energy Harvester: For the purposes of this
exploration, three levels of baseline mean forward progress
(αexe) are set as 0.1, 0.2, and 0.3. We use the system model
to find the PV panel area that achieves the expected forward
progress under the different energy source conditions with
minimum energy storage. We scale the PV panel area to find
that which achieves each baseline αexe. As shown in Fig. 9, the
energy harvester sizes that achieve the desired αexe may span
orders of magnitude given different energy source conditions
from mm2 for outdoor sources ((c) and (d)) to cm2 for indoor
sources ((a) and (b)).

2) Sizing the Energy Storage: Having obtained the energy
harvester sizes for the baseline forward progress, we then
use the modelling approach to size energy storage. We an-
alyze the sizing effect of energy storage on forward progress
given real-world energy conditions. Fig. 9 shows a 7.8-43.3%
improvement in forward progress by sizing energy storage
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Fig. 11. Distribution of interruption periods.

under the given real-world energy conditions and baseline
energy harvester sizes. It can also be inferred that optimizing
energy storage can either improve forward progress for a given
energy harvester size, or reduce the energy harvester size
that achieves the target forward progress. Given higher-power
energy sources (e.g. Denver 2018 and Hawaii 2018 outdoor
solar), increasing the harvester size efficiently improves for-
ward progress with minor dimensional overheads, e.g. tens
of mm2; however, given lower-power sources (e.g. EnHANTs
Setup A and Setup D indoor light), optimizing energy storage
capacitance can save tens of cm2 of PV panel area to achieve
the same forward progress.

3) Interruption Period: Besides forward progress, we also
explore how the capacitance can change the interruption
periods. When interrupted by insufficient power supply, an
ICS enters an interruption period where it saves its volatile
state, waits for supply voltage to recover, and restores the state
to resume execution, without making any forward progress.
Applications that require frequent sensing may be negatively
affected by long interruption periods. We measure an inter-
ruption period as the period between two successive execution
periods, e.g. a consecutive ‘SLR’ period in Fig. 3 forms an
interruption period. We record all the interruption periods dur-
ing a one-year simulation with 10–50 µF capacitors, the Denver
2018 dataset, and an 80 mm2 PV panel. Fig. 11 presents the
distribution of all the interruption periods. With increased
energy storage, the interruption period is prolonged. For exam-
ple, the 90th percentile of interruption periods increases from
32.2 ms at 10 µF to 123.4 ms at 50 µF at an approximate rate of
23 ms per 10 µF. Facilitated by the simulator, developers are
enabled to estimate whether the distribution of interruption
periods meet their application requirement.

C. Trading Forward Progress, Dimensions, and Interruption
Period

Although increasing energy storage capacitance improves
forward progress, larger capacitance increases both dimen-
sions and interruption periods. We evaluate the overheads of
increased capacitor dimensions and interruption periods, and
then trade them off against forward progress using a cost
function to suggest an optimal capacitance value.
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Fig. 12. Tantalum capacitor volume against capacitance for the six series of
capacitors analyzed.

1) Metric of Dimensions: The overhead of capacitor dimen-
sions is evaluated by characteristics of off-the-shelf tantalum
capacitors. We narrow down the range of sample capacitors
within a set of characteristics: low-profile, 10V rated voltage,
and surface-mount package, and select six series of capaci-
tors2. The volume and capacitance of these devices are plotted
in Fig. 12. We use the regression of these data to approximate
a capacitance-volume relationship.

2) Metric of Interruption Periods: Applications may have
various requirements on interruption periods. To demonstrate
the usage of our sizing approach, we consider a designer
requests the 90th percentile of all interruption periods as an
example metric of interruption periods, denoted as Tint. This
metric indicates 90% of interruption periods are shorter than
Tint. This metric can be adapted for particular application
requirements.

3) Cost Function: From the previous observations (Fig. 7)
we can see that achieving the optimal progress improvement
costs much more capacitance (mean 3.2×) than to achieve
95% improvement. A trade-off is necessary to improve for-
ward progress while restricting the overheads of increased
capacitor volume and interruption periods. This involves a
problem of multi-criteria decision making [36], which is
outside the scope of this paper. Nevertheless, we provide a
cost function in (13) as an example to illustrate how these
three factors could be traded-off, but designers are expected
to customize a cost function with parameters of importance to
specific application requirements. Note that the function (13)
is to be maximized to find the recommended capacitance.

f =
αexe
k1

−
(
vcap
k2

)2

−
(
Tint
k3

)2

(13)

αexe denotes normalized forward progress as defined in Sec-
tion I, vcap denotes capacitor volume, and Tint denotes ap-
plication interruption periods as mentioned in Section VI-C2.
αexe, vcap, and Tint can be generated from the simulation
tool given C as an input. k1, k2, and k3 are coefficients for
normalizing each metric, and they are empirically determined

2The series of capacitor considered were: AVX TAJ, AVX TACmicrochip,
AVX F92, Vishay 572D, Vishay 591D, and Vishay 592D.
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Fig. 13. The sizing approach trades-off forward progress, capacitor volume,
and interruption periods. The results are plotted against a range of PV panel
area, given Denver 2018 energy source dataset.

according to applications. In this example, the undesirable
parameters are expressed as quadratic and negative terms to
give an increasing cost to higher values. While only three
parameters are considered here, others (such as the energy
harvester size) could be included for a system-wise sizing sce-
nario. As an example to demonstrate its usage, we arbitrarily
configure the function by setting k1 = 0.2, k2 = 200 mm3, and
k3 = 500 ms.

The effect of the trade-off is plotted in Fig. 13 using the
Denver 2018 energy source dataset. Compared to the capacitor
size that solely maximizes forward progress, on average, an
appropriately-sized capacitor achieves 93% of the maximum
forward progress, while saving 83% of capacitor volume
and 91% of interruption periods. This also demonstrates the
efficacy of the cost function and the chosen coefficients.
Compared to the minimum storage case, the appropriately-
sized capacitor improves forward progress by 12-124% with
energy storage increased from 6.2 µF to 30 µF.

As shown in Fig. 12, the closest available capacitance that
satisfies the 6.2 µF minimum capacitance is 6.8 µF, whereas the
closest available capacitance to the appropriate 30 µF is 33 µF.
The minimum volumes of 6.8 µF and 33 µF capacitors are both
2.75 mm3, which means using the appropriate capacitance,
instead of the minimum one, may not incur dimensional
overhead. The regressed volume of the above two capacitance
values are 8.1 mm3 and 23.8 mm3 respectively. However, the
selection of capacitors can be dependent on factors other than

physical volume, such as reliability, operation temperature,
and more specific application needs. These factors can also
be added into the cost function if necessary.

VII. CONCLUSIONS

While conventional ICSs have used minimal levels of ca-
pacitance, this paper has shown that increasing the amount of
energy storage can improve forward progress by up to 65%
with a constant current supply and 43% with real-world PV
sources. The work includes a simulation tool which is available
to download, enabling researchers to experiment with energy
storage sizes to optimize ICS designs. A cost function can be
incorporated, allowing various properties of the system to be
traded-off. Our conclusion is that energy storage should be
carefully designed, rather than minimized or indiscriminately
picked, to efficiently operate ICSs. Future work will include a
further investigation into cost functions for meeting multiple
design objectives, and extensions to the simulation tool, e.g.
models of additional energy storage devices and peripheral
workloads.
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