

1 **Childhood vascular phenotypes have differing associations with pre- and postnatal
2 growth**

4 **Short title:** Early growth and vascular phenotypes

6 **Authors:**

7 Line SLETNER ^{a,b, c}

8 Sarah R. CROZIER ^b

9 Hazel M. INSKIP ^{b,d}

10 Keith M. GODFREY ^{b,d}

11 Pamela MAHON ^b

12 Scott T. CHIESA ^e

13 Marietta CHARAKIDA ^e

14 Cyrus COOPER ^{b,d}

15 Mark HANSON ^{d,f}

17 **Affiliations:**

18 ^a Dept. of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog,
19 Norway

20 ^b MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK

21 ^c Institute of Clinical Medicine, University of Oslo, Campus AHUS, Lørenskog, Norway

22 ^d NIHR Southampton Biomedical Research Centre, University of Southampton and University
23 Hospital Southampton NHS Foundation Trust, Southampton, UK

24 ^e Vascular Physiology Unit, Institute of Cardiovascular Science, University College London,
25 London, UK

26 ^f Institute of Developmental Sciences, University of Southampton, Southampton, UK

28 **Sources of funding**

29 This work was supported by the UK Medical Research Council (MC_UU_12011/4),
30 University of Southampton; British Heart Foundation Programme [grant number
31 RG/07/009/23120]; UK Food Standards Agency [contracts N05049 and N05071]; the
32 National Institute for Health Research through the NIHR Southampton Biomedical Research
33 Centre and a NIHR Senior Investigator award to KMG [NF-SI-0515-10042]; European
34 Union's Seventh Framework Program [project Early Nutrition under grant agreement
35 n°289346]. The South-Eastern Norway Regional Health Authority funded a one-year travel
36 award [grant number HSO-2016126] for LS to be a visiting researcher at the MRC Lifecourse
37 Epidemiology Unit, University of Southampton, UK. The funders had no role in data
38 collection, analyses or interpretation of data or in writing the paper.

39

40 **Disclosures:**

41 KMG has received reimbursement for speaking at conferences sponsored by companies
42 selling nutritional products, and is part of an academic consortium that has received research
43 funding from Abbott Nutrition and Danone. Members of HMI's team have received funds from
44 Nestec, Abbott Nutrition and Danone. For the other authors: none declared.

45

46

47 **Corresponding author:**

48 Line Sletner, Department of Pediatric and Adolescents Medicine, Akershus University
49 Hospital, 1478 Lørenskog, Norway.

50 E-mail: line.sletner@medisin.uio.no

51 Phone number: +47 901 18 392

52

53 **Word count: 4970** (incl. manuscript text and references)

54

55 **Total number of figures: 3**

56 **Total number of tables: 1**

57 **Number of supplementary files: 3**

58

59

60 **Abstract**

61 **Objective:** In children aged 8-9 years, we examined the associations of linear and
62 abdominal circumference (AC) growth during critical stages of pre- and post-natal
63 development with six vascular measurements commonly used as early markers of
64 atherosclerosis and later CVD risk.

65 **Methods:** In 724 children from the UK Southampton Women's Survey mother-offspring
66 cohort, offspring length/height and AC measurements were collected at ten ages between 11
67 weeks' gestation and age 8-9 years. Using residual growth modelling and linear regression,
68 we examined the independent associations between growth and detailed vascular measures
69 made at 8-9 years.

70 **Results:** Postnatal linear and AC growth were associated with higher childhood systolic
71 blood pressure and carotid-femoral pulse wave velocity, while prenatal growth was not. For
72 example, 1SD faster AC gain between ages three and six years was associated with 2.27
73 (95%CI: 1.56, 2.98) mmHg higher systolic blood pressure. In contrast, faster AC gain before
74 19 weeks' gestation was associated with greater carotid intima media thickness (0.009 mm
75 (0.004, 0.015) per 1SD larger 19 week AC), while later growth was not. We found no strong
76 associations between pre- or post-natal growth and diastolic BP or measures of endothelial
77 function.

78 **Conclusions:** Higher postnatal linear growth and adiposity gain are related to higher systolic
79 blood pressure and carotid-femoral pulse wave velocity in childhood. In contrast, faster
80 growth in early gestation is associated with greater childhood carotid intima media thickness,
81 perhaps resulting from subtle changes in vascular structure that reflect physiological
82 adaptations rather than subclinical atherosclerosis.

83 **Abstract word count: 244**

84
85 **Keywords:** Blood pressure, pulse wave velocity, endothelial function, intima media
86 thickness, developmental biology

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113 **Introduction**

114 In adults, a number of haemodynamic non-invasive techniques to measure vascular structure
115 and function have been shown to give reliable prognostic information for later risk of
116 cardiovascular disease (CVD).¹⁻⁴ This includes blood pressure (BP), flow-mediated dilatation
117 (FMD) and reactive hyperaemia (to assess endothelial function), carotid artery intima-media
118 thickness (cIMT) and carotid-femoral pulse wave velocity (cfPWV; a measure of arterial
119 stiffness). Low birth weight and adiposity gain later in life has been associated with a higher
120 risk of hypertension, CVD and metabolic dysfunction in adulthood.⁵ The heart and vascular
121 structures start developing very early in prenatal life.⁶ Hence, assessing vascular structure
122 and function in children could thus potentially not only give an indication of childhood
123 cardiovascular development, but also of responses to challenges, such as adiposity, and the
124 trajectory of cardiovascular risk. However, there remains uncertainty about whether
125 differences in vascular measures in children in relation to growth and development reflect
126 early pathological changes or mainly represent physiological adaptations.

127 Several studies have explored relationships between either fetal growth or postnatal growth
128 and vascular markers such as blood pressure in children.⁷⁻¹³ Nevertheless, as far as we are
129 aware, only one study has assessed relationships between both pre- and post-natal growth
130 and measures of vascular structure and function in childhood, and no studies have included
131 cIMT or measures of endothelial function.¹⁴

132 In the Southampton Women's Survey, an extensive set of cardiovascular markers was
133 measured in children at 8-9 years of age. As women were recruited to the study before
134 pregnancy, from a substantial number of their children we also have fetal growth
135 measurements of length/height and AC from as early as 11 weeks' gestation, through fetal
136 life, infancy and during early childhood. Using residual growth modelling, we have a unique
137 opportunity to examine the independent influence of growth during critical stages of
138 development on later vascular structure and function, and also the relative importance of
139 linear growth compared with soft tissue growth. Further, as we also have measurements of
140 fat and lean mass, measured by dual x-ray absorptiometry in a large sub-sample at age 8-9
141 years, we are able to examine the body composition correlates of AC gain.

142 Our main aim was therefore to examine whether conditional linear and AC growth through
143 different stages from early pregnancy to 8-9 years of age are associated with vascular CVD
144 risk markers at 8-9 years of age.

145

146

147 **Methods**

148 **Study design:**

149 The Southampton Women's Survey (SWS) is an ongoing, prospective cohort study of 12,583
150 initially non-pregnant women aged 20-34 years, living in Southampton, UK.¹⁵ Assessments
151 of lifestyle, diet and anthropometry were performed at study entry (April 1998-December
152 2002). Some 3,158 women in the SWS who subsequently became pregnant were followed
153 up through pregnancy, including ultrasound measurements of the fetuses, and the offspring
154 without congenital growth anomalies, from uncomplicated pregnancies, have been followed
155 through infancy and childhood.

156 **Growth variables:**
157 Crown-rump-length and abdominal circumference (AC, a composite of liver size and
158 adiposity) were measured by ultrasound at 11 weeks' gestation by two operators according
159 to internationally accepted and validated methodology. At 19 and 34 weeks' gestation, fetal
160 AC and femur length (a measure of skeletal size) were measured. Ultrasound measurements
161 were made on still images using electronic callipers. AC and length/height were measured at
162 birth and at ages 6 months, 12 months and 2, 3, 6-7 and 8-9 years. Crown-heel length was
163 measured using a neonatometer (Harpenden, Wrexham, UK) at birth, and using an
164 infantometer (Seca, Birmingham, UK) at 6 months and 1 year. At the other ages, standing
165 height was measured with a Leicester stadiometer. Abdominal circumference from birth
166 onwards was taken at the end of expiration using a blank tape measured against a fixed
167 scale (measured three times and the mean was used). Of children with vascular
168 measurements at age 8-9 years the body composition of a sub-sample of 983 children was
169 measured by dual x-ray absorptiometry, as described previously.¹⁶ From these, 574 children
170 had AC measured at 2 and 8-9 years of age.

171 The predicted date of delivery was calculated from the date of the mother's last menstrual
172 period and confirmed by an early dating ultrasound scan or adjusted if there were more than
173 14 days discordance between the two methods or the mother's menstrual dates were
174 uncertain. Postnatal age at all time points was defined as years from predicted date of
175 delivery (to adjust for gestational age at birth).

176

177 **Vascular measures:**
178 Details of the vascular measures have been published previously.¹⁶ Briefly, left systolic and
179 diastolic BP (mmHg) and cIMT (maximum thickness, the mean of up to four measures, in
180 mm) were measured after 10-15 min rest. BP was measured by a Dinamap Critikon 8100
181 vital signs monitor. The BP cuff (upper arm) was inflated immediately after acquiring an
182 optimal cIMT image. cfPWV was recorded transcutaneously (Vicorder) after 10-15 min rest.
183 Sensor cuffs were placed on the left carotid suprasternal notch and the upper left thigh, and
184 the time delay between two simultaneously measured cardiac cycles were measured (mean
185 of up to four measures). Measurements of FMD and reactive hyperaemia were obtained from
186 the right brachial artery, using high-resolution ultrasound. Brachial artery FMD was induced
187 by a 5 min inflation of a pneumatic cuff around the forearm, followed by rapid deflation. FMD
188 was expressed as the maximum percentage change in vessel diameter from baseline and
189 reactive hyperaemia as percent change in flow, from baseline to maximum flow within 15 s of
190 cuff deflation (RH%).

191

192 **Confounding variables**

193 We used a Directed Acyclic Graph (Supplemental figure 1) to determine which confounding
194 variables to adjust for in the models. We chose only to adjust for variables extensively shown
195 from the literature to be associated with both growth and vascular structure and function in
196 children. These were maternal socioeconomic status (here determined by maternal
197 educational level in six categories from none to university degree or above), pre-pregnant
198 BMI, and smoking. We also adjusted for child's sex. As age at vascular assessment is
199 strongly associated with vascular measures in children, even within the 8-9 year range, we

200 also adjusted for age, as a competing exposure, to increase precision of effect size
201 estimates.

202 **Ethics**

203 The SWS was approved by the Southampton and South West Hampshire Local Research
204 Ethics Committee (reference number: 08/H0502/95). Written informed consent was obtained
205 from all participating women and by a parent or guardian with parental responsibility on
206 behalf of each child. The investigation conformed to the principles outlined in the Declaration
207 of Helsinki.

208

209 **Statistical analysis:**

210 All statistical analyses were performed using Stata: Release 14. Statistical Software.
211 StataCorp (2015). (College Station, TX: StataCorp LP). Sex-specific z-scores were derived
212 for all biometric measurements using the LMS method for boys and girls separately.¹⁷ Internal
213 rather than external z-scores were used, as suitable external standards were not available
214 for prenatal data. Crown-heel length cannot be measured by prenatal ultrasound scans, but
215 length can be estimated from crown-rump length and femur length by assuming that they are
216 proportional to total length. An appropriate multiplier was found by comparing the summary
217 statistics for total length from fetal autopsies provided by Guihard-Costa et al (excluding
218 multiple- and diabetic pregnancies, macerated fetuses and fetuses with any malformation,
219 chromosomal abnormalities and infections),¹⁸ with those for crown-rump length and femur
220 length in the SWS dataset. Suggested multipliers were 1.71, 7.66 and 6.91 to predict crown-
221 heel length from crown-rump length at 11 weeks' gestation and femur length at 19 weeks'
222 and 34 weeks', respectively.

223 To assess associations with growth over distinct age periods we used residual growth
224 modelling to eliminate collinearity problems caused by repeated measures.^{19, 20} For our main
225 analyses, conditional growth z-scores were derived from standardized residuals resulting
226 from the regression of the z-score for a measurement at a specific time point on the z-score
227 for the measurements at all preceding ages. Hence, the conditional variables represent how
228 much a child's length/height or AC at a certain age differs from what would be expected
229 based on the child's previous size, as well as the overall growth of other participants in the
230 cohort. The successive variables are statistically independent from each other and can
231 therefore be entered concurrently into the same regression model. We used linear regression
232 analyses to estimate associations between fetal size at 19 weeks' gestation and fetal/child
233 conditional growth through 8 time windows (19-34 weeks' gestation, 34 weeks' gestation-
234 birth, birth-6 months, 6 months-12 months, 12 months-2 years, 2-3 years, 3-6 years and 6-9
235 years) as exposures, and vascular measures at 8-9 years of age as outcomes, adjusting for
236 confounders.

237 We further performed a sensitivity analysis in a sub-sample of children who also had growth
238 measures from 11 weeks' gestation, in order to examine if associations with fetal size at 19
239 weeks gestation were explained by faster/slower growth before week 11 or by growth from
240 weeks 11-19. For this sub-sample, new conditional growth measures were developed. Lastly,
241 we performed sensitivity analyses, including only pregnancies with certain last menstrual
242 period dates, with similar results to when using the total study sample (data not shown). We
243 also performed sensitivity analyses stratified by sex.

244 To explore whether associations with conditional growth were mainly driven by children with
245 low (lowest quarter) or high (highest quarter) values of each vascular outcome, we undertook
246 linear regression analyses comparing linear size and AC size z-scores from all nine time-
247 points in the extreme quarters with the “middle” two quarters. We did similar analyses using
248 child BMI z-scores (age- and sex-specific) from ages 6 months to 8-9 years of age as
249 outcomes. To further examine the body composition correlates of childhood AC gain, we
250 analysed data from the sub-samples who had AC measurements at 19 weeks’ gestation and
251 at ages 2 and 8-9 years, and measurements of fat and lean mass at age 8-9 years.

252 A priori, we planned to draw conclusions based on effect estimates and their CIs, rather than
253 statistical tests using an arbitrary P-value cut-off. Nevertheless, in the figures, symbols
254 representing the point estimates are filled reflecting the precision of the estimate (filled
255 symbols when $p \leq 0.01$, semi-filled symbols $p < 0.05$ but > 0.01 and open symbols $p > 0.05$).
256

257 **Results**

258 Among the 12,583 women recruited to the SWS, 3,158 women became pregnant and had a
259 live singleton birth, constituting the total sample for the SWS offspring cohort followed up
260 several times since birth (Supplemental Figure 2, Flow chart).¹⁵ Of these, a sub-sample of
261 1,216 children participated in the 8-9 year follow-up. Due to logistical challenges and the
262 time-consuming nature of measurements, not all measures could be taken for all
263 participants, but at least one vascular measure was taken in 1,152 children. Of these, 724
264 children had growth data from all nine time points between 19 weeks’ gestation and 8-9
265 years of age, and could be included in the comprehensive growth analyses. Maternal and
266 child characteristics are presented for the main sample in Table 1. Except for slightly fewer
267 mothers who smoked and slightly higher mean birthweight in the sub-sample than in mother-
268 child pairs not included, the sub-sample seemed representative of the total cohort (data not
269 shown).

270 The primary analysis, in children who had growth measures taken from 19 weeks’ gestation,
271 showed that prenatal conditional linear- and AC-growth were not associated with systolic BP
272 at age 8-9 years. However, conditional linear growth through all postnatal time windows, as
273 well as AC conditional growth from birth to six months of age and through all time windows
274 from 12 months to 8-9 years (Figure 1, details in Table S1a and S2a) were associated with a
275 higher systolic BP. The strongest association was with AC-growth between 3-6 years of age:
276 a child in whom AC increased one SD more than expected between 3-6 years of age had
277 2.27 mmHg ((95% CI: 1.56, 2.98) higher systolic BP at age 8-9 years than a child growing as
278 expected. In contrast, there was little evidence of associations between diastolic BP and the
279 pre- or post-natal conditional growth measures, although slower AC gain in late gestation
280 was borderline significantly associated with higher diastolic BP (-0.72 (-1.32, -0.14), $p=0.01$).

281 Prenatal conditional growth was not associated with cfPWV at age 8-9 years, but postnatal
282 conditional linear growth from birth to 6 months, and from 6-7 to 8-9 years, and conditional
283 AC-growth from 3 to 6 years of age were positively associated. In contrast, there were no
284 associations between postnatal growth and cIMT at age 8-9 years, but a greater AC at 19
285 weeks’ gestation was associated with higher cIMT (0.009 mm (0.004, 0.015), $p=0.001$). The
286 sub-sample analysis in children who also had growth measures taken at 11 weeks’ gestation
287 showed that faster AC-growth from 11-19 weeks was associated with higher cIMT (0.009
288 (0.002, 0.017), $p=0.01$) (Table S1b and S2b).

289 Accelerated AC-growth from 6-7 to 8-9 years of age was associated with lower reactive
290 hyperaemia at age 8-9 years. Apart from this, there were no apparent associations between
291 conditional growth and FMD or RH% (Figure 1, details in Table S1a and S2a).

292 Figure 2 and Supplementary table 3 show that children with high systolic BP and children
293 with low systolic BP at 8-9 years of age had a similar length and AC as children with middle
294 values until birth. However, from birth onwards both growth measures started diverging in the
295 high vs. the low systolic BP groups, so that at 2 years of age children with high systolic BP
296 were larger, while children with low systolic BP were smaller. These differences increased
297 further until 8-9 years of age. Analysing child BMI from 6 months to 8-9 years of age as the
298 outcome showed that children with systolic BP in the highest quartile had a higher BMI
299 already at 6 months, and that the difference increased further from 3 years of age (Figure 3
300 and Table S4).

301 A similar pattern was observed for children with the highest and lowest cfPWV at age 8-9
302 years. For cfPWV the divergence in length/height became apparent from 6 months of age,
303 while the AC divergence emerged from three years of age. In contrast, children with the
304 lowest cIMT at age 8-9 years tended to have smaller ACs at 19 weeks' gestation while
305 children with cIMT in the highest quarter tended to be larger. However, these differences
306 declined during early childhood, and no differences in AC between the groups were observed
307 at 8-9 years of age.

308 Girls had slightly higher blood pressure than boys (Table 1), which as previously shown, was
309 not explained by a higher weight or more fat mass.¹⁶ However, stratified analyses
310 (Supplementary figure 3 and tables S5 and S6) showed similar effects of growth on the
311 vascular outcomes in boys and girls, although results were less robust given the smaller
312 sample sizes.

313 AC may both represent fat and lean mass. In supplementary analyses we therefore
314 examined the body composition correlates of childhood AC gain using data from the 574
315 children in our study sample who had measurements of fat and lean mass at age 8-9 years
316 using dual-x-ray absorptiometry. Fetal AC at 19 weeks' gestation was not associated with
317 child fat or lean mass at 8-9 years. However, among children whose AC z-scores increased
318 between ages 2 and 8 years (n=347) there was a strong positive linear association between
319 AC z-score change and fat mass at 8-9 years; each SD increase in AC z-score from 2 to 8-9
320 years was associated with 0.81 SD (95% CI: 0.64, 0.98) higher total fat mass, 0.89 SD (0.72,
321 1.07) higher truncal fat mass while only 0.37 SD (0.20, 0.54) higher total lean mass at 8-9
322 years of age.

323 Discussion

324 We found clear relationships of higher postnatal linear growth with higher systolic BP and
325 cfPWV at 8-9 years of age; higher post-infancy AC gain, likely to mainly represent truncal
326 adiposity gain, was also associated with higher late childhood systolic BP and cfPWV. In
327 contrast, we found no robust associations between postnatal growth indices and diastolic BP,
328 cIMT and measures of endothelial function. With the notable exception of a relation between
329 higher AC growth before 19 weeks' gestation and greater childhood cIMT, no independent
330 associations were observed between prenatal growth and vascular measures at 8-9 years of
331 age.

332

333 Our results do not suggest strong independent associations between prenatal growth and
334 systolic or diastolic BP and cfPWV at age 8-9 years, and hence differ from some previous

335 studies indicating associations between slower last trimester linear growth and weight gain
336 with higher BP in early childhood.^{8, 13, 14} However, the reported associations from the only
337 study assessing associations with both pre- and postnatal growth up to two years of age,
338 were subtle.¹⁴ We found similar effect estimates for diastolic BP in our study, although only
339 borderline significant, which could be due to a lower sample size. However, for systolic BP
340 our results indicate an opposite relationship, as children with the highest systolic BP at 8-9
341 years of age tended to be smaller at 19 weeks' gestation but had a borderline faster linear
342 growth in late pregnancy. Our findings are in accordance with recent longitudinal studies in
343 older children and young adults followed from birth onwards, using size at birth as a proxy
344 measure of prenatal growth, which showed only small effects of size at birth on later BP and
345 cfPWV, and modest effects of early postnatal growth, alongside relatively larger effects of
346 increases in weight gain or adiposity gain in the post-infancy phase.^{7, 9-12, 21} Our findings also
347 support our previous results suggesting that associations between BMI and systolic BP and
348 cfPWV at age 8-9 years represent both pre- and post-natal adaptations to greater lean mass
349 and adverse effects of fat deposition in later childhood.¹⁶ Our finding that children with high
350 systolic BP had a higher BMI already at 6 months, and that this difference increased further
351 from 3 years of age also support this. This endorses the importance of the first 1000 days
352 (conception to postnatal age 2) as a period of developmental plasticity, after which perhaps
353 adaptability is reduced and so fat and pre-pathological changes in blood vessels occur in
354 relation to lifestyle factors. Furthermore, importantly, prenatal influences could have lasting
355 consequences for postnatal cardiovascular structure and function without necessarily
356 affecting early growth. Evidence for this comes from our findings linking maternal oily fish
357 consumption during pregnancy and candidate epigenetic marks at birth with PWV in later
358 childhood.^{22, 23}

359
360 Most direct and indirect measures of fat or lean mass cannot be measured prenatally.
361 Further, how we interpret associations between AC growth and vascular outcomes later in
362 life will differ depending on which time window we are considering. In the first and second
363 trimesters of fetal life, AC growth is linked to the amount and pattern of distribution of venous
364 liver perfusion, and liver size,²⁴ and not fat mass, as substantial fetal fat deposition generally
365 does not start before the third trimester. In contrast, in adults, AC gain will mainly represent
366 relative increases in fat deposition. In late pregnancy and in the growing child, AC gain can
367 however reflect accelerated growth of both lean and fat mass, although in the post-infancy
368 phase it will increasingly represent fat gain. This is supported by our supplementary analyses
369 of data from the children with measurements of AC from ages 2 and 8-9 years who also had
370 measurements of fat and lean mass at 8-9 years of age. This suggests that the associations
371 with post-infancy AC gain predominantly reflects effects of fat gain.

372
373 In contrast to the other vascular measures, we found that faster AC growth before 19 weeks'
374 gestation was associated with greater cIMT at age 8-9 years, while later growth was not.
375 cIMT is mainly a structural measure, and is much used as an early indicator of
376 atherosclerosis. Previous studies have reported associations between high child BMI, high
377 fat mass or "persistent high BMI trajectory" and greater cIMT in children and adolescents.^{21,}
378 ^{25, 26} The observed association with early fetal AC growth in our study was subtle, although
379 the effect estimate (1 SD increase in AC was associated with 0.009 mm=0.13 SD increase in
380 cIMT) is in the same range as reported in other studies assessing relations with postnatal
381 adiposity measures.²⁶ However, we and others have previously shown that in young people
382 higher cIMT is more strongly related to the lean mass component of BMI than to fat mass.¹⁶

383 25, 27 This suggests that subtle changes in cIMT in the young may predominantly represent
384 physiological adaptations to a larger body size as opposed to subclinical atherosclerosis.²⁵
385 Elastin accounts for almost half of the dry weight in the aorta in young people.²⁸ The
386 synthesis of elastin in aorta and large arteries increases from early gestation until the
387 perinatal period, before it drops dramatically. It has been hypothesized that impairment in the
388 synthesis of elastin during a critical period of blood vessel development, caused by
389 hemodynamic changes in the fetal circulation related to intra-uterine growth retardation, may
390 underlie the association of low birthweight with hypertension in adult life.²⁸ From our finding
391 we could speculate that the first half of pregnancy is such a critical period. In the long run, a
392 relative deficiency in elastin may reduce the compliance of the aorta and large arteries, which
393 in turn leads to higher pulse pressures, over time, leading to gradually thicker and stiffer
394 arterial walls as elastin is replaced by collagen. We could therefore further speculate that at a
395 young age, low rather than high cIMT may be a risk factor for later CVD, in particular if
396 accompanied by an unhealthy diet, lack of physical activity or obesity.
397

398 In contrast to the strong relations between postnatal growth and systolic BP, we did not find
399 strong associations with diastolic BP. It is suggested that increasing body mass (both lean
400 and fat) in children probably results in increased systolic BP in part due to a chronic
401 hyperaemic state and an elevated stroke volume, while diastolic BP at this age is maintained
402 in part by peripheral vascular adaptations.²⁹ Our results may support this. Moreover, except
403 for AC growth between 6-7 and 8-9 years, no associations were observed between
404 conditional growth and measures of endothelial function, FMD and RH%. This may indicate
405 that RH% and FMD, being mainly functional measures, remain more plastic than other
406 aspects of body composition or vascular structure, and that these processes develop
407 gradually over many years.
408

409 **Limitations**

410 Combining prenatal and postnatal growth measurements involves making assumptions. We
411 have combined fetal ultrasound measures of AC with measures of AC after birth using
412 somewhat different landmarks, and for length measurements we combined femur length,
413 crown-heel length, length and height. Furthermore, use of the pregnancy measures was
414 based on equations developed from pathological examinations of a large sample of fetuses.¹⁸
415 Despite considerable efforts to define a reference population that was as normal as possible,
416 the development of multipliers using a sample of fetal autopsies may involve bias, due to
417 their possible pathological growth. Of the 3,158 women-child pairs in the total sample of the
418 SWS cohort, only a sub-sample could be included in the present study. Although the sub-
419 sample seemed fairly representative, this decreased statistical power to detect associations.
420 With over 700 participants, this study is however large enough to detect clinically-relevant
421 effects, although the clinical relevance of some of the observed subtle changes should be
422 interpreted with caution. Moreover, there are potentially a number of environmental factors
423 (including maternal nutrition and BP during pregnancy) which could influence both growth
424 and vascular phenotype during different stages of early life. It is therefore possible that
425 unmeasured confounding remains unaccounted for.
426

427 **Conclusions**

428 Early growth may point to aspects of the early life environment that induce cardiovascular
429 adaptations, which may subsequently affect the individuals' risk of developing cardiovascular
430 disease, for example in terms of responses to a post-natal obesogenic environment. In this

431 study of 8-9 year old children, we showed that systolic BP and cfPWV were associated with
432 postnatal linear growth and post-infancy AC-gain, while subtle changes in cIMT was
433 associated with early fetal AC growth. In contrast, diastolic BP and endothelial function
434 measures were not strongly related to growth at any time point. These differing relations with
435 growth may point to variations in the timing, degree and duration of plasticity of different
436 vascular phenotypes, but could also reflect varying responses to adiposity.

437
438

439 **Acknowledgements**

440 We are most grateful to the late Ann Donald who contributed greatly to the development of
441 the cardiac structure and function measures in the first part of the project before her untimely
442 death. We acknowledge the work of Corinne Nisbet who performed the FMD measures and
443 the research nurses under the supervision of Julia Hammond who performed the PWVs.

444
445

446

447 **References**

- 448 1. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves
449 cardiovascular event prediction: An individual participant meta-analysis of prospective
450 observational data from 17,635 subjects. *Journal of the American College of Cardiology*.
451 2014;63:636-646
- 452 2. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific
453 relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for
454 one million adults in 61 prospective studies. *Lancet*. 2002;360:1903-1913
- 455 3. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular
456 events with carotid intima-media thickness: A systematic review and meta-analysis.
Circulation. 2007;115:459-467
- 457 4. Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk
458 prediction: A systematic review with meta-analysis. *International journal of cardiology*.
459 2013;168:344-351
- 460 5. Hanson M. The inheritance of cardiovascular disease risk. *Acta Paediatr*. 2019
- 461 6. Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ. Myocyte enlargement,
462 differentiation, and proliferation kinetics in the fetal sheep heart. *J Appl Physiol* (1985).
463 2007;102:1130-1142
- 464 7. Aris IM, Bernard JY, Chen LW, Tint MT, Lim WY, Soh SE, Saw SM, Shek LP, Godfrey KM,
465 Gluckman PD, Chong YS, Yap F, Kramer MS, Lee YS. Postnatal height and adiposity gain,
466 childhood blood pressure and prehypertension risk in an asian birth cohort. *Int. J. Obes.*
467 (*Lond.*). 2017;41:1011-1017
- 468 8. Blake KV, Gurrin LC, Beilin LJ, Stanley FJ, Kendall GE, Landau LI, Newnham JP. Prenatal
469 ultrasound biometry related to subsequent blood pressure in childhood. *J. Epidemiol.*
Community Health. 2002;56:713-718
- 470 9. de Beer M, Vrijkotte TG, Fall CH, van Eijsden M, Osmond C, Gemke RJ. Associations of infant
471 feeding and timing of weight gain and linear growth during early life with childhood blood
472 pressure: Findings from a prospective population based cohort study. *PLoS One*.
473 2016;11:e0166281
- 474 10. Jones A, Charakida M, Falaschetti E, Hingorani AD, Finer N, Masi S, Donald AE, Lawlor DA,
475 Smith GD, Deanfield JE. Adipose and height growth through childhood and blood pressure
476 status in a large prospective cohort study. *Hypertension*. 2012;59:919-925

479 11. Krishnaveni GV, Veena SR, Srinivasan K, Osmond C, Fall CH. Linear growth and fat and lean
480 tissue gain during childhood: Associations with cardiometabolic and cognitive outcomes in
481 adolescent Indian children. *PLoS One*. 2015;10:e0143231

482 12. Perng W, Rifas-Shiman SL, Kramer MS, Haugard LK, Oken E, Gillman MW, Belfort MB. Early
483 weight gain, linear growth, and mid-childhood blood pressure: A prospective study in project
484 viva. *Hypertension*. 2016;67:301-308

485 13. van Houten VA, Steegers EA, Witteman JC, Moll HA, Hofman A, Jaddoe VW. Fetal and
486 postnatal growth and blood pressure at the age of 2 years. The generation r study. *J
487 Hypertens*. 2009;27:1152-1157

488 14. Toemen L, de Jonge LL, Gishti O, van Osch-Gevers L, Taal HR, Steegers EA, Hofman A, Helbing
489 WA, Jaddoe VW. Longitudinal growth during fetal life and infancy and cardiovascular
490 outcomes at school-age. *J Hypertens*. 2016;34:1396-1406

491 15. Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJ, Cooper C, Group SWSS. Cohort
492 profile: The southampton women's survey. *Int. J. Epidemiol*. 2006;35:42-48

493 16. Sletner L, Mahon P, Crozier SR, Inskip HM, Godfrey KM, Chiesa S, Bhowruth DJ, Charakida M,
494 Deanfield J, Cooper C, Hanson M. Childhood fat and lean mass: Differing relations to vascular
495 structure and function at age 8 to 9 years. *Arterioscler. Thromb. Vasc. Biol.* 2018;38:2528-
496 2537

497 17. Cole TJ, Green PJ. Smoothing reference centile curves: The lms method and penalized
498 likelihood. *Statistics in medicine*. 1992;11:1305-1319

499 18. Guihard-Costa AM, Menez F, Delezoide AL. Organ weights in human fetuses after formalin
500 fixation: Standards by gestational age and body weight. *Pediatric and developmental
501 pathology : the official journal of the Society for Pediatric Pathology and the Paediatric
502 Pathology Society*. 2002;5:559-578

503 19. Crozier SR, Johnson W, Cole TJ, Macdonald-Wallis C, Muniz-Terrera G, Inskip HM, Tilling K. A
504 discussion of statistical methods to characterise early growth and its impact on bone mineral
505 content later in childhood. *Ann. Hum. Biol.* 2019;46:17-26

506 20. Tu YK, Tilling K, Sterne JA, Gilthorpe MS. A critical evaluation of statistical approaches to
507 examining the role of growth trajectories in the developmental origins of health and disease.
508 *Int. J. Epidemiol*. 2013;42:1327-1339

509 21. Lycett K, Juonala M, Magnussen CG, et al. Body mass index from early to late childhood and
510 cardiometabolic measurements at 11 to 12 years. *Pediatrics*. 2020;146

511 22. Bryant J, Hanson M, Peebles C, Davies L, Inskip H, Robinson S, Calder PC, Cooper C, Godfrey
512 KM. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness
513 in the child at age 9 years. *Circulation research*. 2015;116:1202-1205

514 23. Murray R, Bryant J, Titcombe P, Barton SJ, Inskip H, Harvey NC, Cooper C, Lillycrop K, Hanson
515 M, Godfrey KM. DNA methylation at birth within the promoter of anril predicts markers of
516 cardiovascular risk at 9 years. *Clin. Epigenetics*. 2016;8:90

517 24. Kessler J, Rasmussen S, Godfrey K, Hanson M, Kiserud T. Venous liver blood flow and
518 regulation of human fetal growth: Evidence from macrosomic fetuses. *Am. J. Obstet.
519 Gynecol.* 2011;204:429 e421-427

520 25. Chiesa ST, Charakida M, Georgopoulos G, et al. Determinants of intima-media thickness in
521 the young: The alspac study. *JACC Cardiovasc. Imaging*. 2019

522 26. Doyon A, Kracht D, Bayazit AK, et al. Carotid artery intima-media thickness and distensibility
523 in children and adolescents: Reference values and role of body dimensions. *Hypertension*.
524 2013;62:550-556

525 27. Moreno M, Puig J, Moreno-Navarrete JM, Xifra G, Ortega F, Ricart W, Fernandez-Real JM.
526 Lean mass, and not fat mass, is an independent determinant of carotid intima media
527 thickness in obese subjects. *Atherosclerosis*. 2015;243:493-498

528 28. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit
529 arteries during early development as an initiating event in pathogenesis of systemic
530 hypertension. *Lancet*. 1997;350:953-955

531 29. Charakida M, Jones A, Falaschetti E, Khan T, Finer N, Sattar N, Hingorani A, Lawlor DA, Smith
532 GD, Deanfield JE. Childhood obesity and vascular phenotypes: A population study. *Journal of*
533 *the American College of Cardiology*. 2012;60:2643-2650

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564 **Table 1.** Maternal and child characteristics of main study sample (n=724). Numbers are n
 565 (%)
 (%)
 mean (SD) or median (IQR).

	Total (n=724)	Boys (n=353)	Girls (n=371)
Maternal characteristics			
Education			
None	12 (2%)	5 (1%)	7 (2%)
CSE	55 (8%)	23 (7%)	32 (9%)
O-levels	204 (28%)	96 (27%)	108 (29%)
A-levels	217 (30%)	112 (32%)	105 (28%)
HND	49 (7%)	22 (6%)	27 (7%)
Degree	186 (26%)	94 (27%)	92 (25%)
Primiparous	362 (50%)	182 (52%)	180 (49%)
Smoker	155 (21%)	73 (21%)	82 (22%)
Pre-pregnant BMI (kg/m ²)	24.0 (22.0, 27.1)	24.2 (21.9, 27.2)	23.9 (22.0, 26.9)
Birth characteristics			
Gestational age (weeks)	40.0 (39.0, 41.0)	39.9 (39.0, 40.9)	40.1 (39.1, 41.1)
Birthweight (g)	3493 (493)	3550 (494)	3440 (488)
Crown-heel length (cm)	49.9 (2.1)	50.3 (2.1)	49.5 (2.0)
Abdominal circumference (cm)	31.7 (2.1)	31.7 (2.0)	31.7 (2.1)
Child characteristics at age 8-9 years			
Age (years)	9.2 (0.2)	9.2 (0.2)	9.2 (0.2)
Participating in sports (h/week)	2.5 (1.0, 4.0)	2.5 (1.0, 4.0)	2.0 (0.5, 4.0)
Height (cm)	135.6 (6.0)	135.7 (5.9)	135.6 (6.2)
Weight (kg)	29.9 (26.7, 34.5)	29.1 (26.5, 33.2)	30.6 (27.1, 35.4)
BMI (kg/m ²)	16.2 (15.0, 18.1)	16.1 (14.9, 17.5)	16.6 (15.2, 18.5)
BMI UK-WHO z-score	0.05 (1.11)	-0.02 (1.15)	0.12 (1.07)
Vascular outcomes			
Systolic BP (mmHg)	106.2 (9.2)	104.8 (9.0)	107.6 (9.3)
Diastolic BP (mmHg)	55.7 (7.5)	54.0 (6.8)	57.3 (7.8)
Carotid IMT (max, mm)	0.49 (0.07)	0.49 (0.07)	0.49 (0.07)
Carotid-femoral PWV (m/s)	4.58 (0.58)	4.54 (0.58)	4.62 (0.58)
Brachial FMD	6.74 (3.69)	6.43 (3.53)	7.02 (3.83)
Brachial RH%	571 (248)	542 (235)	598 (258)

566 BMI, body mass index; BP, blood pressure; cIMT, carotid intima media thickness (max); PWV, pulse wave
567 velocity; FMD, flow mediated dilatation (maximum % change in brachial artery diameter after cuff-deflation); RH%,
568 Reactive hyperaemia (per cent change in flow from baseline to maximum flow within 15 s of cuff-deflation).

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

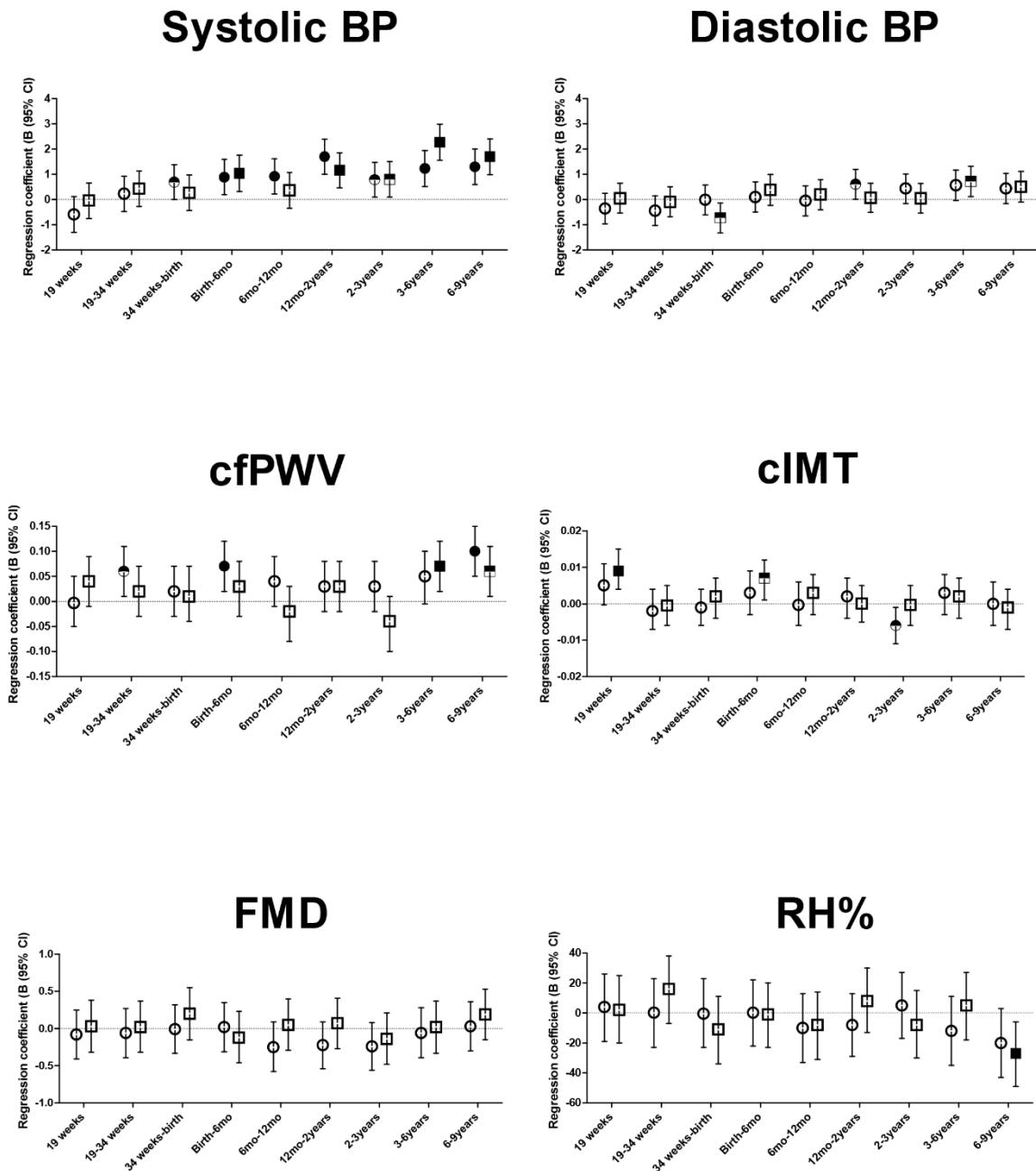
586

587

588

589

590


591

592

593

594

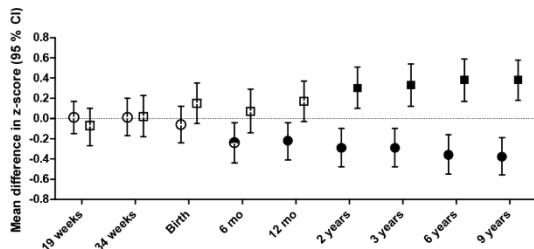
595 **Figure 1**

596

597 **Figure legend:**

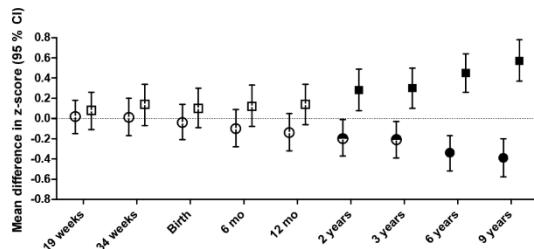
598 **Figure 1.** Associations (β (95% CI)) between conditional linear growth (circles)- and AC
 599 growth (squares) through 8 time windows from 19 gestational weeks until 8-9 years of age
 600 and vascular measures; systolic BP, diastolic BP, cfPWV, cIMT, FMD (%) and RH (%).
 601 Numbers are regression coefficients (95% CI) for each time window from linear regression
 602 analyses, adjusted for confounders.

603 **Footnote:**

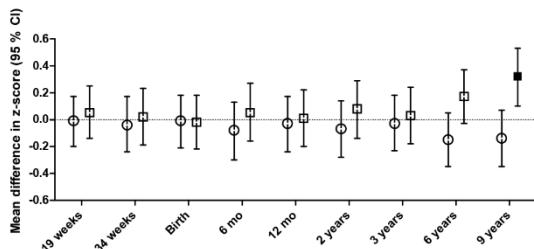
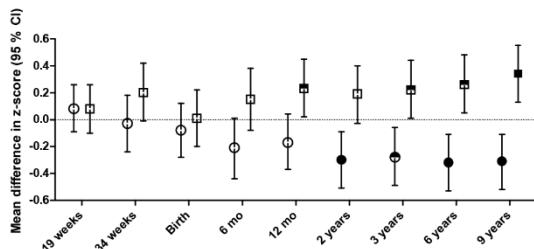

604 Filled symbols are when $p \leq 0.01$, semi-filled symbols $p < 0.05$ but > 0.01 and open symbols

605 $p > 0.05$.

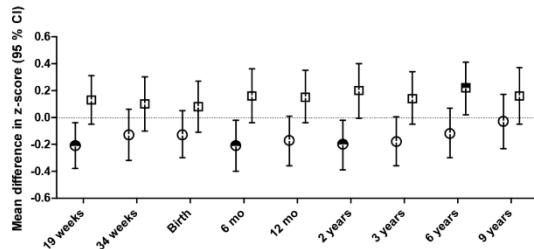
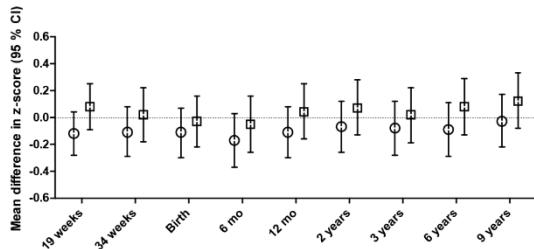
606


607 **Figure 2**

Linear size

AC-size



Systolic BP

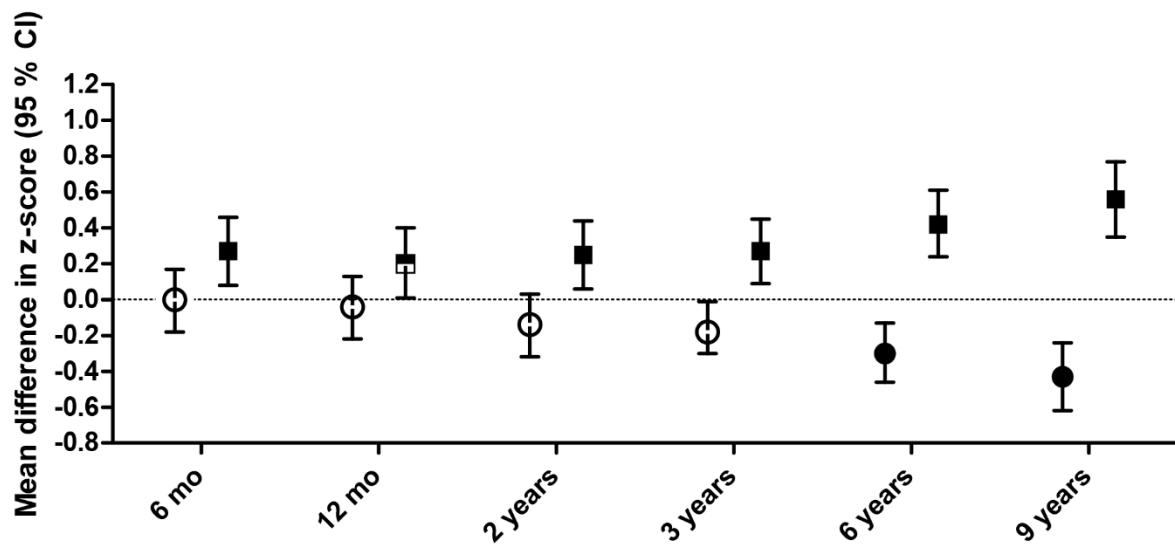
cfPWV

cIMT

608

609 **Figure legend:**

610 **Figure 2:** Fetal and child growth patterns of children with highest quarter (squares) or lowest
611 quarter (circles) levels of systolic BP, cfPWV and cIMT, compared with “middle” values (the
612 middle two quarters, represented by the zero-line). Values are mean differences in z-scores
613 at each time point (left panel: linear size*, right panel: AC-size*), using separate linear
614 regression analyses.


615 **Footnote:**

616 Filled symbols are when $p \leq 0.01$, semi-filled symbols $p < 0.05$ but > 0.01 and open symbols
617 $p > 0.05$.

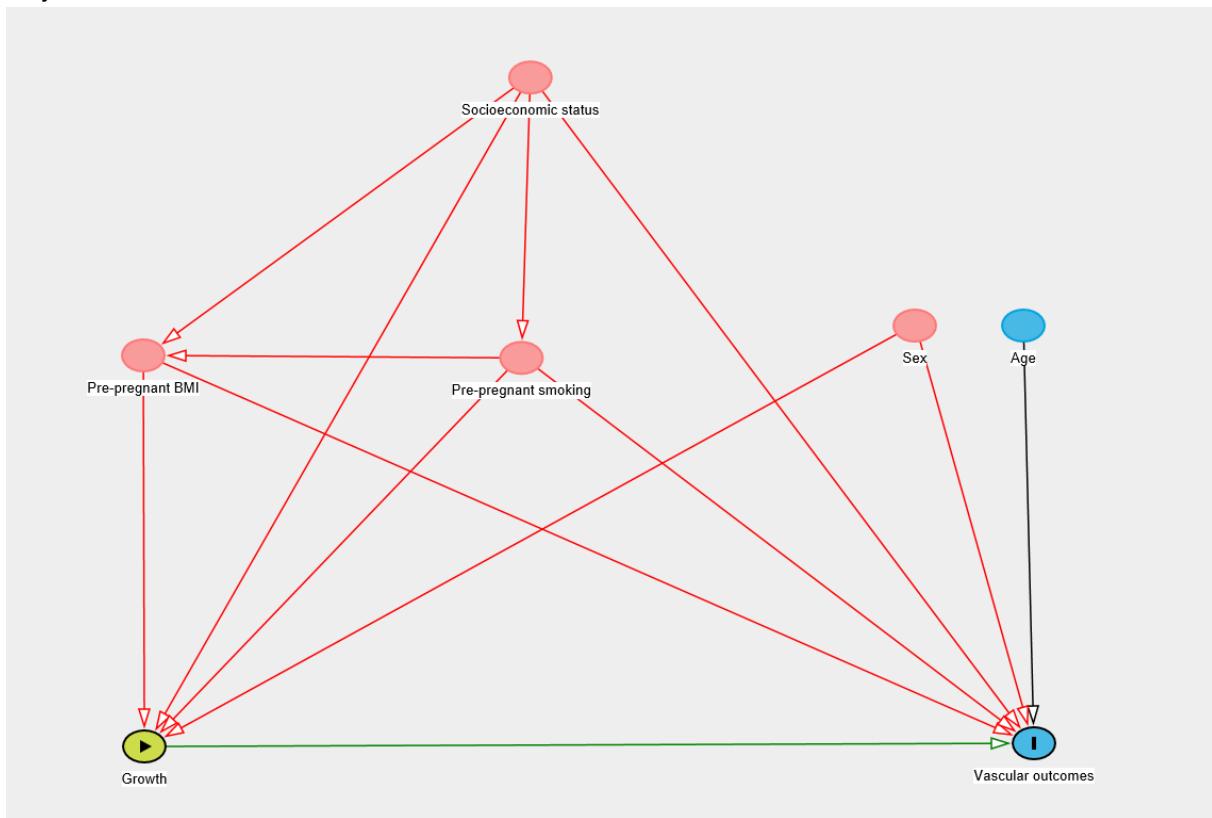
618 * Analyses were performed and is presented for the total sample (n=724). Of these, 686 had
619 linear size and 652 had AC measured at all time points. Regression models for different time
620 points were therefore run on slightly different numbers. However, we have rerun the analyses
621 on consistent n's, with nearly identical results.

622
623

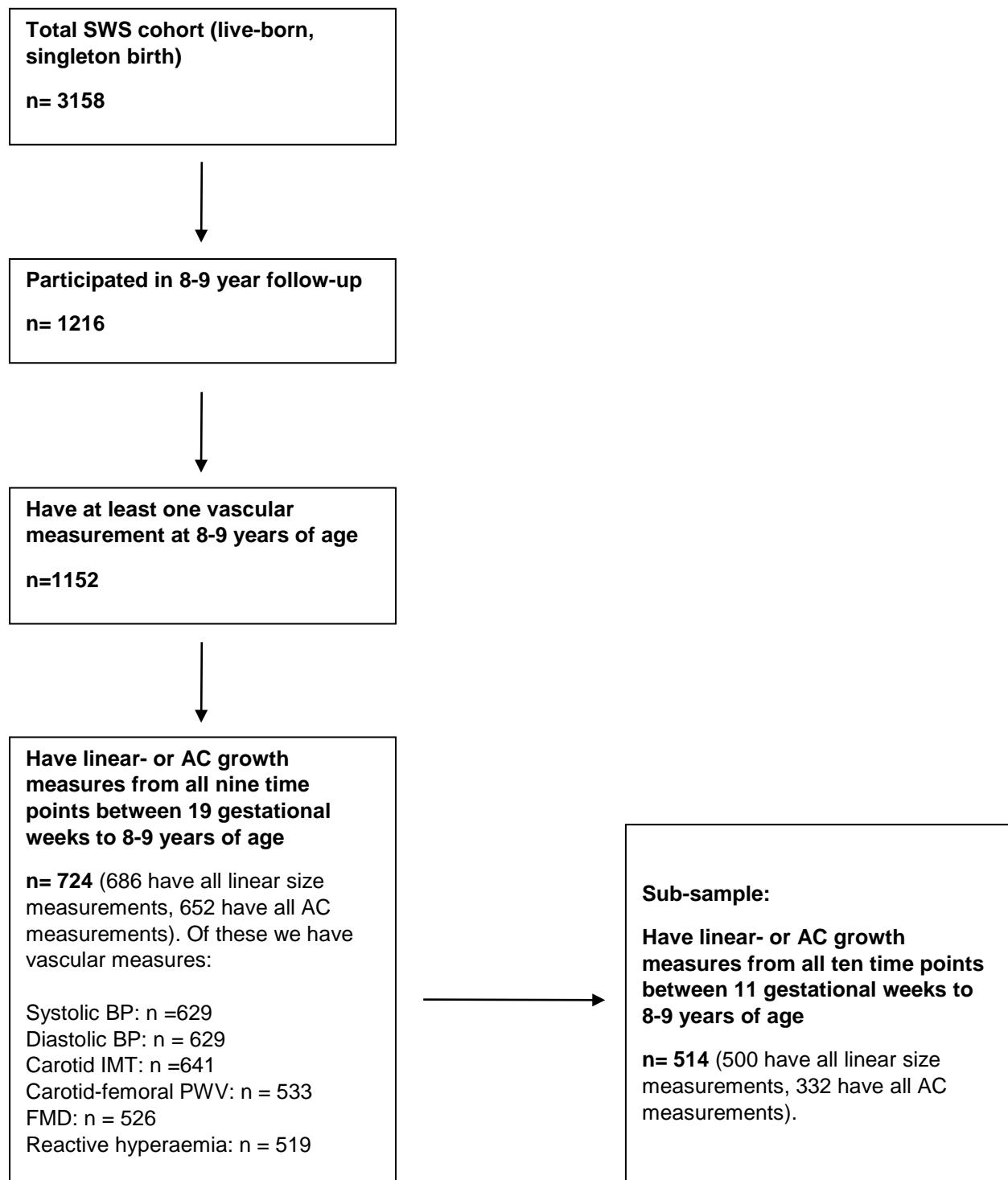
624 **Figure 3**

625

626 **Figure legend:**

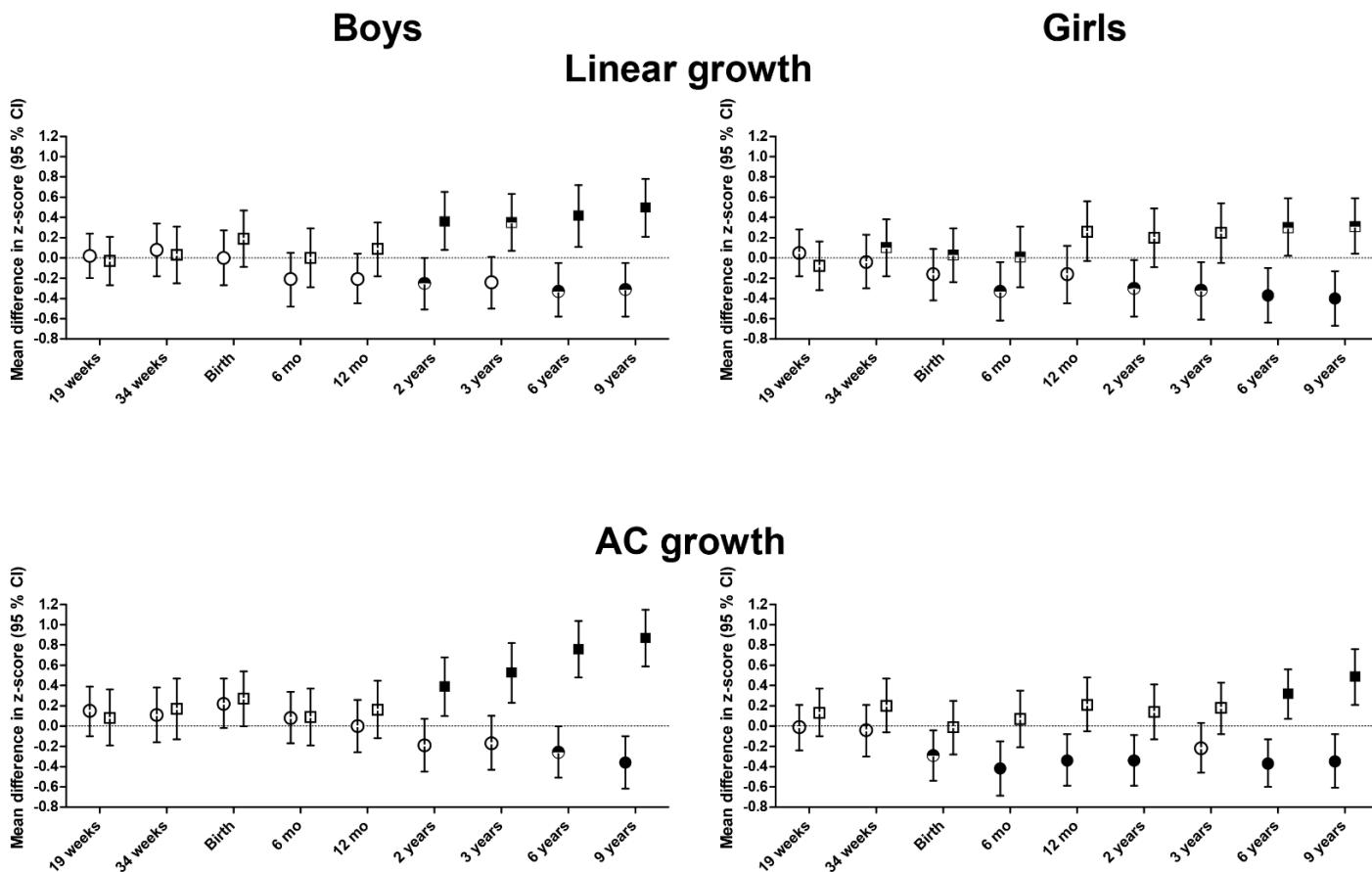

627 **Figure 2:** Child BMI growth pattern from six months to 8-9 years of age of children with
628 highest quarter (squares) or lowest quarter (circles) levels of systolic BP, compared with
629 "middle" values (the middle two quarters, represented by the zero-line). Values are mean
630 differences in BMI z-scores at each time point, using separate linear regression analyses.

631 **Footnote:**


632 Filled symbols are when $p \leq 0.01$, semi-filled symbols $p < 0.05$ but > 0.01 and open symbols
633 $p > 0.05$.

634

Supplemental figure 1. Directed Acyclic Graph, showing the confounders chosen to adjust for in the models.



Supplemental Figure 2. Flow chart showing participating children in the Southampton Women's Survey cohort selected for analysis

BP = blood pressure; IMT = intima media thickness (max); PWV = pulse wave velocity; FMD = flow mediated dilatation (maximum % change in brachial artery diameter after cuff-deflation); Reactive hyperaemia = per cent change in flow from baseline to maximum flow within 15 s of cuff-deflation.

Supplemental Figure 3: Fetal and child growth patterns of boys and girls with highest quarter (squares) or lowest quarter (circles) levels of systolic BP compared with “middle” values (the middle two quarters, represented by the zero-line). Values are mean differences in z-scores at each time point (top panel: linear size*, bottom panel: AC-size*), using separate linear regression analyses.

Filled symbols are when $p \leq 0.01$, semi-filled symbols $p < 0.05$ but > 0.01 and open symbols $p > 0.05$.

Supplementary tables

Table S1a. Associations between linear growth from 19 weeks gestation to 9 years of age, and vascular CVD risk factors at age 9 (using size at 19 GW as starting point and growth through eight time windows).

		19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
	n	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
Systolic BP	587	-0.59 (-1.30, 0.12)	0.1	0.23 (-0.47, 0.92)	0.5	0.69 (0.00, 1.38)	0.05	0.89 (0.20, 1.59)	0.01	0.92 (0.22, 1.62)	0.01	1.70 (1.00, 2.39)	<0.001	0.79 (0.10, 1.47)	0.02	1.23 (0.52, 1.94)	0.001	1.30 (0.60, 2.00)	<0.001
Diastolic BP	587	-0.35 (-0.96, 0.25)	0.3	-0.44 (-1.03, 0.15)	0.1	-0.01 (-0.60, 0.58)	1.0	0.10 (-0.49, 0.70)	0.7	-0.05 (-0.65, 0.55)	0.9	0.61 (0.02, 1.20)	0.04	0.44 (-0.15, 1.02)	0.1	0.57 (-0.04, 1.17)	0.07	0.44 (-0.16, 1.04)	0.2
Carotid IMT	599	0.005 (0.000, 0.011)	0.06	-0.002 (-0.007, 0.004)	0.5	-0.001 (-0.006, 0.004)	0.7	0.003 (-0.003, 0.009)	0.3	0.000 (-0.006, 0.005)	0.9	0.002 (-0.004, 0.007)	0.5	-0.006 (-0.011, -0.001)	0.03	0.003 (-0.003, 0.008)	0.4	0.000 (-0.006, 0.006)	1.0
Carotid-femoral PWV	502	0.00 (-0.05, 0.05)	0.9	0.06 (0.01, 0.11)	0.03	0.02 (-0.03, 0.07)	0.4	0.07 (0.02, 0.12)	0.005	0.04 (-0.01, 0.09)	0.09	0.03 (-0.02, 0.08)	0.2	0.03 (-0.02, 0.08)	0.2	0.05 (0.00, 0.10)	0.07	0.10 (0.05, 0.15)	<0.001
FMD (%)	494	-0.08 (-0.41, 0.25)	0.6	-0.06 (-0.39, 0.27)	0.7	-0.01 (-0.33, 0.32)	1.0	0.02 (-0.31, 0.35)	0.9	-0.25 (-0.58, 0.09)	0.1	-0.22 (-0.54, 0.09)	0.2	-0.24 (-0.56, 0.08)	0.1	-0.06 (-0.39, 0.28)	0.7	0.03 (-0.30, 0.36)	0.9
Reactive hyperemia (%)	485	4 (-19, 26)	0.8	0 (-23, 23)	1.0	-1 (-23, 22)	1.0	0 (-22, 23)	1.0	-10 (-33, 13)	0.4	-8 (-29, 13)	0.5	5 (-17, 27)	0.6	-12 (-35, 11)	0.3	-20 (-43, 3)	0.09

Adjusted for maternal education, prepregnant smoking and BMI and child sex and age at vascular assessment

Table S1b. Associations between linear growth from 11 weeks gestation to 9 years of age, and vascular CVD risk factors at age 9 (using size at 11 GW as starting point and growth through nine time windows).

		11 weeks		11 weeks-19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
	n	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p		
Systolic BP	424	-0.32 (-1.19, 0.54)	0.5	-0.21 (-1.08, 0.66)	0.6	0.16 (-0.67, 1.00)	0.7	0.73 (-0.10, 1.55)	0.08	1.08 (0.23, 1.93)	0.01	0.78 (-0.08, 1.64)	0.08	1.32 (0.47, 2.16)	0.002	0.71 (-0.11, 1.54)	0.09	1.07 (0.20, 1.94)	0.02	1.57 (0.70, 2.43)	<0.001
Diastolic BP	424	-0.15 (-0.87, 0.57)	0.7	-0.29 (-1.02, 0.44)	0.4	-0.73 (-1.43, -0.03)	0.04	0.17 (-0.52, 0.85)	0.6	0.24 (-0.47, 0.95)	0.5	0.01 (-0.72, 0.73)	1.0	0.51 (-0.19, 1.21)	0.2	0.33 (-0.36, 1.02)	0.3	0.44 (-0.29, 1.17)	0.2	0.35 (-0.38, 1.07)	0.3
Carotid IMT	432	0.006 (0.000, 0.012)	0.07	0.001 (-0.005, 0.007)	0.8	-0.003 (-0.009, 0.003)	0.3	-0.002 (-0.008, 0.004)	0.5	0.004 (-0.003, 0.010)	0.3	0.003 (-0.003, 0.010)	0.3	0.003 (-0.003, 0.009)	0.3	-0.007 (-0.013, -0.001)	0.03	0.004 (-0.003, 0.010)	0.2	0.001 (-0.005, 0.008)	0.7
Carotid-femoral PWV	378	0.00 (-0.06, 0.06)	0.9	0.01 (-0.05, 0.06)	0.8	0.07 (0.01, 0.13)	0.02	0.02 (-0.04, 0.07)	0.6	0.09 (0.03, 0.15)	0.002	0.01 (-0.04, 0.07)	0.7	0.03 (-0.03, 0.08)	0.4	0.03 (-0.03, 0.08)	0.4	0.05 (-0.01, 0.11)	0.1	0.09 (0.04, 0.15)	0.001
FMD (%)	361	-0.12 (-0.51, 0.26)	0.5	0.17 (-0.22, 0.57)	0.4	-0.08 (-0.47, 0.30)	0.7	0.11 (-0.28, 0.50)	0.6	-0.03 (-0.41, 0.36)	0.9	-0.12 (-0.51, 0.27)	0.5	-0.34 (-0.71, 0.21)	0.07	-0.17 (-0.55, 0.21)	0.4	0.14 (-0.27, 0.55)	0.5	0.23 (-0.16, 0.61)	0.3
Reactive hyperaemia (%)	358	11 (-16, 37)	0.4	-8 (-34, 19)	0.6	-9 (-35, 18)	0.5	7 (-19, 33)	0.6	-3 (-29, 23)	0.8	4 (-22, 30)	0.8	-13 (-38, 12)	0.3	4 (-22, 29)	0.8	4 (-24, 32)	0.8	-18 (-45, 9)	0.2

Adjusted for maternal education, prepregnant smoking and BMI and child sex and age at vascular assessment

Table S2a. Associations between AC growth from 19 weeks gestation to 8-9 years of age, and vascular CVD risk factors at age 8-9 (using size at 19 weeks' gestation as starting point and growth through eight time windows).

		19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
		B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
Systolic BP	559	-0.04 (-0.75, 0.66)	0.9	0.43 (-0.27, 1.14)	0.2	0.27 (-0.43, 0.97)	0.4	1.04 (0.32, 1.76)	0.005	0.37 (-0.35, 1.08)	0.3	1.16 (0.46, 1.85)	0.001	0.80 (0.10, 1.50)	0.03	2.27 (1.56, 2.98)	<0.001	1.70 (0.98, 2.41)	<0.001
Diastolic BP	559	0.05 (-0.54, 0.65)	0.9	-0.09 (-0.68, 0.50)	0.8	-0.73 (-1.32, -0.14)	0.01	0.38 (-0.23, 0.99)	0.2	0.20 (-0.40, 0.79)	0.5	0.07 (-0.51, 0.65)	0.8	0.05 (-0.54, 0.64)	0.9	0.72 (0.12, 1.32)	0.02	0.51 (-0.09, 1.11)	0.09
Carotid IMT	568	0.009 (0.004, 0.015)	0.001	0.000 (-0.006, 0.005)	0.9	0.002 (-0.004, 0.007)	0.5	0.007 (0.001, 0.012)	0.02	0.003 (-0.003, 0.008)	0.4	0.000 (-0.005, 0.005)	1.0	0.000 (-0.006, 0.005)	0.9	0.002 (-0.004, 0.007)	0.5	-0.001 (-0.007, 0.004)	0.6
Carotid-femoral PWV	480	0.04 (-0.01, 0.09)	0.1	0.02 (-0.03, 0.07)	0.5	0.01 (-0.04, 0.07)	0.6	0.03 (-0.03, 0.08)	0.3	-0.02 (-0.08, 0.03)	0.4	0.03 (-0.02, 0.08)	0.3	-0.04 (-0.10, 0.01)	0.1	0.07 (0.01, 0.12)	0.01	0.06 (0.01, 0.11)	0.03
FMD (%)	465	0.03 (-0.32, 0.38)	0.9	0.02 (-0.32, 0.37)	0.9	0.20 (-0.16, 0.55)	0.3	-0.11 (-0.46, 0.23)	0.5	0.05 (-0.29, 0.40)	0.8	0.07 (-0.27, 0.41)	0.7	-0.14 (-0.48, 0.21)	0.4	0.02 (-0.33, 0.37)	0.9	0.19 (-0.15, 0.53)	0.3
Reactive hyperemia (%)	460	2 (-20, 24)	0.8	16 (-7, 38)	0.2	-11 (-34, 11)	0.3	-1 (-23, 20)	0.9	-8 (-31, 14)	0.5	8 (-13, 30)	0.4	-8 (-30, 15)	0.5	5 (-18, 27)	0.7	-27 (-49, -5)	0.01

Adjusted for maternal education, prepregnant smoking and BMI and child sex and age at vascular assessment

Table S2b. Associations between AC growth from 11 weeks gestation to 8-9 years of age, and vascular CVD risk factors at age 8-9 (using size at 11 weeks' gestation as starting point and growth through nine time windows).

		11 weeks		11 weeks-19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
	n	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p		
Systolic BP	282	-0.08 (-1.19, 1.03)	0.9	0.21 (-0.81, 1.23)	0.7	0.16 (-0.87, 1.20)	0.8	0.83 (-0.21, 1.87)	0.1	0.63 (-0.42, 1.68)	0.2	1.02 (-0.04, 2.07)	0.06	0.56 (-0.46, 1.57)	0.3	0.27 (-0.75, 1.30)	0.6	1.96 (0.88, 3.04)	<0.001	1.42 (0.38, 2.46)	0.008
Diastolic BP	282	-0.07 (-1.01, 0.87)	0.9	0.07 (-0.79, 0.93)	0.9	0.14 (-0.74, 1.02)	0.8	-0.72 (-1.60, 0.16)	0.1	0.32 (-0.56, 1.21)	0.5	0.57 (-0.32, 1.46)	0.2	-0.27 (-1.12, 0.59)	0.5	-0.15 (-1.02, 0.71)	0.7	1.08 (0.17, 1.99)	0.02	0.46 (-0.41, 1.34)	0.3
Carotid IMT	288	0.007 (-0.001, 0.015)	0.09	0.009 (0.002, 0.017)	0.01	-0.005 (-0.012, 0.003)	0.2	0.003 (-0.005, 0.010)	0.5	0.003 (-0.005, 0.010)	0.5	0.004 (-0.003, 0.012)	0.2	0.000 (-0.007, 0.005)	1.0	-0.003 (-0.010, 0.005)	0.5	0.001 (-0.006, 0.009)	0.7	-0.003 (-0.010, 0.005)	0.5
Carotid-femoral PWV	250	0.03 (-0.04, 0.10)	0.5	0.06 (-0.02, 0.13)	0.1	-0.02 (-0.10, 0.06)	0.6	0.04 (-0.04, 0.11)	0.3	0.02 (-0.05, 0.09)	0.6	-0.03 (-0.10, 0.05)	0.5	-0.01 (-0.09, 0.06)	0.8	-0.08 (-0.16, 0.00)	0.05	0.05 (-0.03, 0.13)	0.2	0.05 (-0.03, 0.12)	0.2
FMD (%)	243	0.12 (-0.33, 0.57)	0.6	-0.03 (-0.50, 0.44)	0.9	0.07 (-0.40, 0.54)	0.8	-0.18 (-0.66, 0.30)	0.5	-0.29 (-0.76, 0.19)	0.2	0.00 (-0.47, 0.47)	1.0	-0.09 (-0.54, 0.36)	0.7	0.14 (-0.34, 0.62)	0.6	0.33 (-0.17, 0.83)	0.2	0.35 (-0.11, 0.82)	0.1
Reactive hyperemia (%)	241	15 (-14, 44)	0.3	-22 (-53, 9)	0.2	28 (-3, 59)	0.07	-4 (-36, 28)	0.8	1 (-30, 32)	0.9	-4 (-35, 28)	0.8	9 (-21, 39)	0.6	-28 (-60, 4)	0.08	27 (-7, 60)	0.1	-21 (-51, 9)	0.2

Adjusted for maternal education, prepregnant smoking and BMI and child sex and age at vascular assessment

Table S3.

Fetal and child growth patterns of children with low (lowest quarter) or high (highest quarter) levels of systolic and diastolic BP, cfPWV, cIMT, FMD and RH%, compared with “middle” values (the middle two quarters). Analyses were run in the total sample (n=724). Of these, 686 had linear size and 652 had AC measured at all time points. Regression models for different time points were therefore run on slightly different samples. However, we have rerun the analyses on consistent n's, with almost identical results.

Table S3a. Fetal and child growth patterns in children with low (lowest quartile) or high (highest quartile) systolic BP, compared with “normal” systolic BP (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)		Highest Q (95% CI)		Lowest Q (95% CI)		Highest Q (95% CI)	
		p		p		p		p
19 GW	0.01 (-0.15, 0.17)	0.9	-0.07 (-0.24, 0.10)	0.4	0.02 (-0.15, 0.18)	0.9	0.08 (-0.11, 0.26)	0.4
34 GW	0.01 (-0.17, 0.20)	0.9	0.02 (-0.18, 0.23)	0.8	0.01 (-0.17, 0.20)	0.9	0.14 (-0.07, 0.34)	0.2
Birth	-0.06 (-0.24, 0.12)	0.5	0.15 (-0.05, 0.35)	0.1	-0.04 (-0.21, 0.14)	0.7	0.10 (-0.09, 0.30)	0.3
6 months	-0.24 (-0.44, -0.04)	0.02	0.07 (-0.14, 0.29)	0.5	-0.10 (-0.28, 0.09)	0.3	0.12 (-0.08, 0.33)	0.2
12 months	-0.22 (-0.41, -0.04)	0.02	0.17 (-0.03, 0.37)	0.1	-0.14 (-0.32, 0.05)	0.1	0.14 (-0.06, 0.34)	0.2
2 years	-0.29 (-0.48, -0.10)	0.003	0.30 (0.10, 0.51)	0.004	-0.20 (-0.38, -0.01)	0.04	0.28 (0.08, 0.49)	0.006
3 years	-0.29 (-0.48, -0.10)	0.003	0.33 (0.12, 0.54)	0.002	-0.21 (-0.39, -0.03)	0.02	0.30 (0.10, 0.50)	0.003
6 years	-0.36 (-0.55, -0.16)	<0.001	0.38 (0.17, 0.59)	<0.001	-0.34 (-0.52, -0.17)	<0.001	0.45 (0.26, 0.64)	<0.001
9 years	-0.38 (-0.56, -0.19)	<0.001	0.38 (0.18, 0.58)	<0.001	-0.39 (-0.58, -0.20)	<0.001	0.57 (0.37, 0.78)	<0.001

Table S3b. Fetal and child growth patterns in children with low (lowest quartile) or high (highest quartile) diastolic BP, compared with “normal” diastolic BP (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	0.03 (-0.12, 0.19)	0.7	-0.02 (-0.19, 0.14)	0.8	0.04 (-0.12, 0.21)	0.6	0.21 (0.03, 0.38)	0.02
34 GW	-0.06 (-0.25, 0.13)	0.5	-0.08 (-0.27, 0.12)	0.4	0.06 (-0.13, 0.24)	0.6	0.10 (-0.10, 0.29)	0.3
Birth	0.04 (-0.15, 0.22)	0.7	0.04 (-0.15, 0.23)	0.7	0.10 (-0.08, 0.27)	0.3	-0.02 (-0.21, 0.17)	0.8
6 months	0.03 (-0.17, 0.23)	0.8	0.08 (-0.13, 0.29)	0.4	-0.14 (-0.32, 0.05)	0.2	-0.08 (-0.27, 0.12)	0.4
12 months	0.13 (-0.06, 0.32)	0.2	0.15 (-0.04, 0.35)	0.1	-0.08 (-0.27, 0.11)	0.4	-0.03 (-0.23, 0.16)	0.7
2 years	0.05 (-0.15, 0.24)	0.6	0.16 (-0.04, 0.36)	0.1	0.03 (-0.16, 0.22)	0.7	0.15 (-0.04, 0.35)	0.1
3 years	0.02 (-0.18, 0.21)	1.0	0.15 (-0.05, 0.35)	0.1	-0.05 (-0.24, 0.13)	0.6	0.08 (-0.12, 0.27)	0.4
6 years	0.01 (-0.19, 0.20)	0.9	0.19 (-0.02, 0.40)	0.07	-0.01 (-0.19, 0.18)	1.0	0.21 (0.01, 0.40)	0.04
9 years	-0.03 (-0.23, 0.16)	0.7	0.20 (0.00, 0.40)	0.06	-0.06 (-0.26, 0.13)	0.5	0.25 (0.05, 0.46)	0.02

Table S3c. Fetal and child growth patterns in children with low (lowest quartile) or high (highest quartile) cIMT, compared with “normal” cIMT (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	-0.12 (-0.28, 0.04)	0.1	0.08 (-0.09, 0.25)	0.4	-0.21 (-0.38, -0.04)	0.02	0.13 (-0.05, 0.31)	0.2
34 GW	-0.11 (-0.29, 0.08)	0.3	0.02 (-0.18, 0.22)	0.9	-0.13 (-0.32, 0.06)	0.2	0.10 (-0.10, 0.30)	0.3
Birth	-0.11 (-0.30, 0.07)	0.2	-0.03 (-0.22, 0.16)	0.8	-0.13 (-0.30, 0.05)	0.2	0.08 (-0.11, 0.27)	0.4
6 months	-0.17 (-0.37, 0.03)	0.09	-0.05 (-0.26, 0.16)	0.7	-0.21 (-0.40, -0.02)	0.03	0.16 (-0.04, 0.36)	0.1
12 months	-0.11 (-0.30, 0.08)	0.3	0.04 (-0.16, 0.25)	0.7	-0.17 (-0.36, 0.01)	0.06	0.15 (-0.04, 0.35)	0.1
2 years	-0.07 (-0.26, 0.12)	0.5	0.07 (-0.13, 0.28)	0.5	-0.20 (-0.39, -0.02)	0.03	0.20 (0.00, 0.40)	0.05
3 years	-0.08 (-0.28, 0.12)	0.4	0.02 (-0.19, 0.22)	0.9	-0.18 (-0.36, 0.00)	0.06	0.14 (-0.05, 0.34)	0.2
6 years	-0.09 (-0.29, 0.11)	0.4	0.08 (-0.13, 0.29)	0.5	-0.12 (-0.30, 0.07)	0.2	0.22 (0.02, 0.41)	0.03
9 years	-0.03 (-0.22, 0.17)	0.8	0.12 (-0.08, 0.33)	0.2	-0.03 (-0.23, 0.17)	0.8	0.16 (-0.05, 0.37)	0.1

Table S3d. Fetal and child growth patterns in children with low (lowest quartile) or high (highest quartile) cfPWV, compared with “normal” cfPWV (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)		p		Highest Q (95% CI)		p	
19 GW	0.08 (-0.09, 0.26)	0.4	0.08 (-0.10, 0.26)	0.4	-0.01 (-0.20, 0.17)	0.9	0.05 (-0.14, 0.25)	0.6
34 GW	-0.03 (-0.24, 0.18)	0.8	0.20 (-0.01, 0.42)	0.06	-0.04 (-0.24, 0.17)	0.7	0.02 (-0.19, 0.23)	0.8
Birth	-0.08 (-0.28, 0.12)	0.4	0.01 (-0.20, 0.22)	0.9	-0.01 (-0.21, 0.19)	0.9	-0.02 (-0.22, 0.18)	0.8
6 months	-0.21 (-0.44, 0.01)	0.06	0.15 (-0.08, 0.38)	0.2	-0.08 (-0.30, 0.13)	0.4	0.06 (-0.16, 0.27)	0.6
12 months	-0.17 (-0.37, 0.04)	0.1	0.23 (0.02, 0.45)	0.03	-0.03 (-0.24, 0.17)	0.7	0.01 (-0.20, 0.22)	0.9
2 years	-0.30 (-0.51, -0.09)	0.005	0.19 (-0.03, 0.40)	0.09	-0.07 (-0.28, 0.14)	0.5	0.08 (-0.14, 0.29)	0.5
3 years	-0.28 (-0.49, -0.06)	0.01	0.22 (0.01, 0.44)	0.04	-0.03 (-0.23, 0.18)	0.8	0.03 (-0.18, 0.24)	0.8
6 years	-0.32 (-0.53, -0.11)	0.003	0.26 (0.05, 0.48)	0.02	-0.15 (-0.35, 0.05)	0.1	0.17 (-0.03, 0.37)	0.09
9 years	-0.31 (-0.52, -0.11)	0.003	0.34 (0.13, 0.54)	0.002	-0.14 (-0.35, 0.07)	0.2	0.32 (0.10, 0.53)	0.004

Table S3e. Fetal and child growth patterns in children with low (lowest quartile) or high (highest quartile) FMD, compared with “normal” FMD (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)		p		Highest Q (95% CI)		p	
19 GW	0.09 (-0.09, 0.26)	0.3	-0.02 (-0.20, 0.16)	0.8	0.08 (-0.11, 0.27)	0.4	0.05 (-0.14, 0.24)	0.6
34 GW	0.02 (-0.19, 0.22)	0.9	-0.03 (-0.24, 0.18)	0.8	-0.03 (-0.23, 0.18)	0.8	-0.13 (-0.33, 0.08)	0.2
Birth	-0.09 (-0.29, 0.10)	0.4	-0.11 (-0.31, 0.09)	0.3	-0.13 (-0.32, 0.06)	0.2	-0.01 (-0.20, 0.19)	1.0
6 months	-0.08 (-0.30, 0.14)	0.5	-0.05 (-0.27, 0.17)	0.6	0.01 (-0.20, 0.23)	0.9	-0.01 (-0.23, 0.20)	0.9
12 months	0.03 (-0.18, 0.24)	0.8	-0.08 (-0.29, 0.13)	0.5	-0.07 (-0.28, 0.14)	0.5	-0.06 (-0.28, 0.15)	0.6
2 years	0.02 (-0.19, 0.24)	0.8	-0.16 (-0.38, 0.06)	0.1	-0.14 (-0.35, 0.08)	0.2	-0.01 (-0.23, 0.20)	0.9
3 years	0.02 (-0.19, 0.24)	0.8	-0.17 (-0.39, 0.05)	0.1	-0.01 (-0.22, 0.19)	0.9	-0.08 (-0.28, 0.13)	0.5
6 years	0.02 (-0.20, 0.24)	0.8	-0.13 (-0.35, 0.09)	0.2	0.04 (-0.16, 0.24)	0.7	-0.02 (-0.22, 0.18)	0.8
9 years	-0.01 (-0.23, 0.20)	0.9	-0.12 (-0.34, 0.09)	0.3	0.10 (-0.12, 0.31)	0.4	0.16 (-0.06, 0.38)	0.2

Table S3f. Fetal and child growth patterns in children with low (lowest quartile) or high (highest quartile) reactive hyperaemia, compared with “normal” reactive hyperaemia (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	-0.01 (-0.19, 0.17)	0.9	0.14 (-0.05, 0.32)	0.1	0.01 (-0.18, 0.19)	0.9	0.14 (-0.05, 0.33)	0.1
34 GW	0.04 (-0.17, 0.24)	0.7	0.18 (-0.03, 0.40)	0.09	-0.01 (-0.21, 0.20)	0.9	0.25 (0.04, 0.45)	0.02
Birth	0.02 (-0.17, 0.22)	0.8	0.09 (-0.11, 0.29)	0.4	0.08 (-0.11, 0.27)	0.4	0.09 (-0.10, 0.28)	0.4
6 months	-0.07 (-0.29, 0.15)	0.5	-0.04 (-0.27, 0.18)	0.7	-0.05 (-0.27, 0.16)	0.6	0.07 (-0.15, 0.29)	0.5
12 months	-0.02 (-0.23, 0.20)	0.9	-0.09 (-0.30, 0.13)	0.4	-0.01 (-0.22, 0.21)	1.0	0.04 (-0.17, 0.26)	0.7
2 years	0.06 (-0.16, 0.28)	0.6	-0.05 (-0.27, 0.18)	0.7	-0.14 (-0.35, 0.08)	0.2	0.10 (-0.11, 0.32)	0.3
3 years	-0.01 (-0.23, 0.21)	0.9	-0.05 (-0.27, 0.18)	0.7	0.01 (-0.19, 0.21)	0.9	0.08 (-0.13, 0.29)	0.4
6 years	-0.01 (-0.23, 0.21)	0.9	-0.10 (-0.32, 0.13)	0.4	-0.05 (-0.25, 0.15)	0.6	0.01 (-0.19, 0.22)	0.9
9 years	-0.03 (-0.25, 0.18)	0.8	-0.14 (-0.36, 0.07)	0.2	0.05 (-0.17, 0.27)	0.6	-0.16 (-0.39, 0.06)	0.2

Table S4. Associations with child postnatal BMI

Table S4a Child BMI patterns between 6 months and 8-9 years of age in children with low (lowest quartile) or high (highest quartile) systolic BP, compared with “normal” systolic BP (the middle two quartiles).

	Mean difference in BMI z-score		Mean difference in BMI z-score	
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
6 months	0.00 (-0.18, 0.17)	1	0.27 (0.08, 0.46)	0.006
12 months	-0.04 (-0.22, 0.13)	0.6	0.20 (0.01, 0.40)	0.04
2 years	-0.14 (-0.32, 0.03)	0.1	0.25 (0.06, 0.44)	0.01
3 years	-0.18 (-0.35, -0.01)	0.04	0.27 (0.09, 0.45)	0.004
6 years	-0.30 (-0.46, -0.13)	0.001	0.42 (0.24, 0.61)	<0.001
9 years	-0.43 (-0.62, -0.24)	<0.001	0.56 (0.35, 0.77)	<0.001

Table S4b Child BMI patterns between 6 months and 8-9 years of age in children with low (lowest quartile) or high (highest quartile) diastolic BP, compared with “normal” diastolic BP (the middle two quartiles).

	Mean difference in BMI z-score		Mean difference in BMI z-score	
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
6 months	-0.06 (-0.24, 0.11)	0.5	0.00 (-0.19, 0.19)	1
12 months	-0.11 (-0.29, 0.07)	0.2	0.02 (-0.17, 0.20)	0.9
2 years	-0.13 (-0.30, 0.05)	0.2	0.05 (-0.13, 0.23)	0.6
3 years	-0.13 (-0.30, 0.04)	0.1	0.13 (-0.04, 0.31)	0.1
6 years	-0.05 (-0.22, 0.13)	0.6	0.16 (-0.03, 0.34)	0.09
9 years	-0.11 (-0.30, 0.09)	0.3	0.22 (0.01, 0.43)	0.04

Table S4c Child BMI patterns between 6 months and 8-9 years of age in children with low (lowest quartile) or high (highest quartile) clMT, compared with “normal” clMT (the middle two quartiles).

	Mean difference in BMI z-score		Mean difference in BMI z-score	
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
6 months	-0.15 (-0.33, 0.03)	0.1	0.18 (0.00, 0.37)	0.06
12 months	-0.10 (-0.28, 0.08)	0.3	0.14 (-0.05, 0.33)	0.1
2 years	-0.16 (-0.34, 0.01)	0.07	0.05 (-0.14, 0.24)	0.6
3 years	-0.10 (-0.27, 0.07)	0.3	0.11 (-0.07, 0.30)	0.2
6 years	-0.04 (-0.22, 0.13)	0.6	0.11 (-0.08, 0.29)	0.3
9 years	-0.01 (-0.21, 0.19)	0.9	0.12 (-0.09, 0.34)	0.3

Table S4d Child BMI patterns between 6 months and 8-9 years of age in children with low (lowest quartile) or high (highest quartile) cfPWV, compared with “normal” cfPWV (the middle two quartiles).

	Mean difference in BMI z-score		Mean difference in BMI z-score	
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
6 months	0.04 (-0.16, 0.24)	0.7	0.04 (-0.16, 0.24)	0.7
12 months	0.10 (-0.09, 0.30)	0.3	-0.04 (-0.24, 0.17)	0.7
2 years	0.16 (-0.03, 0.35)	0.1	0.05 (-0.15, 0.25)	0.6
3 years	0.09 (-0.10, 0.28)	0.4	-0.11 (-0.30, 0.09)	0.3
6 years	0.05 (-0.14, 0.24)	0.6	0.08 (-0.11, 0.27)	0.4
9 years	0.01 (-0.21, 0.22)	1	0.15 (-0.07, 0.37)	0.2

Table S4e Child BMI patterns between 6 months and 8-9 years of age in children with low (lowest quartile) or high (highest quartile) FMD, compared with “normal” FMD (the middle two quartiles).

	Mean difference in BMI z-score		Mean difference in BMI z-score	
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
6 months	-0.07 (-0.27, 0.13)	0.5	-0.06 (-0.26, 0.14)	0.6
12 months	-0.01 (-0.21, 0.19)	0.9	0.12 (-0.08, 0.32)	0.2
2 years	-0.06 (-0.26, 0.13)	0.5	0.02 (-0.18, 0.22)	0.8
3 years	-0.10 (-0.29, 0.08)	0.3	0.02 (-0.17, 0.21)	0.8
6 years	0.00 (-0.19, 0.19)	1	0.06 (-0.13, 0.25)	0.5
9 years	0.02 (-0.20, 0.24)	0.9	0.15 (-0.07, 0.38)	0.2

Table S4f Child BMI patterns between 6 months and 8-9 years of age in children with low (lowest quartile) reactive hyperaemia or high (highest quartile) , compared with “normal” reactive hyperaemia (the middle two quartiles).

	Mean difference in BMI z-score		Mean difference in BMI z-score	
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
6 months	0.07 (-0.13, 0.27)	0.5	0.10 (-0.10, 0.30)	0.3
12 months	0.03 (-0.17, 0.22)	0.8	0.12 (-0.08, 0.32)	0.2
2 years	-0.05 (-0.25, 0.14)	0.6	0.07 (-0.13, 0.27)	0.5
3 years	0.04 (-0.14, 0.23)	0.6	0.08 (-0.11, 0.27)	0.4
6 years	0.02 (-0.17, 0.21)	0.8	0.04 (-0.15, 0.24)	0.7
9 years	0.06 (-0.17, 0.28)	0.6	-0.12 (-0.35, 0.11)	0.3

Analyses, (as in tables S1, S2, S3) stratified by sex

Table S5a. Associations between linear growth from 19 weeks gestation to 9 years of age, and vascular CVD risk factors at age 9, **in boys** (using size at 19 GW as starting point and growth through eight time windows).

		19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
	n	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
Systolic BP	293	-0.67 (-1.68, 0.34)	0.2	-0.04 (-1.02, 0.95)	0.9	0.84 (-0.12, 1.80)	0.09	1.03 (-0.05, 2.11)	0.06	1.10 (0.03, 2.17)	0.04	2.05 (1.13, 2.98)	<0.001	0.52 (-0.38, 1.42)	0.3	1.08 (0.11, 2.05)	0.03	1.09 (0.09, 2.08)	0.03
Diastolic BP	293	-0.13 (-0.97, 0.71)	0.8	-0.36 (-1.18, 0.46)	0.4	-0.47 (-1.27, 0.33)	0.3	-0.28 (-1.18, 0.62)	0.5	-0.22 (-1.11, 0.67)	0.6	0.30 (-0.47, 1.06)	0.4	-0.18 (-0.92, 0.57)	0.6	0.45 (-0.36, 1.25)	0.3	0.29 (-0.54, 1.12)	0.5
Carotid IMT	300	0.008 (-0.001, 0.016)	0.07	-0.004 (-0.013, 0.004)	0.3	0.001 (-0.008, 0.009)	0.9	0.002 (-0.007, 0.011)	0.6	-0.005 (-0.014, 0.004)	0.3	0.003 (-0.004, 0.011)	0.4	-0.011 (-0.018, -0.003)	0.006	0.001 (-0.007, 0.009)	0.8	-0.004 (-0.012, 0.004)	0.3
Carotid-femoral PWV	250	-0.03 (-0.10, 0.05)	0.5	0.04 (-0.04, 0.11)	0.3	0.04 (-0.04, 0.11)	0.3	0.08 (0.00, 0.16)	0.04	0.00 (-0.07, 0.07)	1	0.02 (-0.05, 0.09)	0.6	0.00 (-0.07, 0.06)	0.9	0.05 (-0.03, 0.12)	0.2	0.16 (0.08, 0.23)	<0.001
FMD (%)	245	-0.15 (-0.62, 0.32)	0.5	0.02 (-0.43, 0.48)	0.9	0.21 (-0.25, 0.66)	0.4	0.46 (-0.03, 0.94)	0.06	-0.13 (-0.62, 0.35)	0.6	-0.13 (-0.54, 0.29)	0.5	-0.17 (-0.58, 0.25)	0.4	-0.20 (-0.65, 0.24)	0.4	-0.05 (-0.55, 0.44)	0.8
Reactive hyperemia (%)	239	6 (-26, 37)	0.7	-9 (-40, 22)	0.6	-1 (-32, 29)	0.9	20 (-12, 51)	0.2	-20 (-53, 11)	0.2	9 (-18, 36)	0.5	4 (-24, 33)	0.8	-12 (-42, 18)	0.4	-17 (-51, 16)	0.3

Adjusted for maternal education, prepregnant smoking and BMI and child age at vascular assessment

Table S5b. Associations between linear growth from 19 weeks gestation to 9 years of age, and vascular CVD risk factors at age 9 **in girls** (using size at 19 GW as starting point and growth through eight time windows).

		19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
	n	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
Systolic BP	294	-0.43 (-1.46, 0.61)	0.4	0.41 (-0.60, 1.42)	0.4	0.57 (-0.45, 1.59)	0.3	0.79 (-0.15, 1.74)	0.1	0.81 (-0.17, 1.79)	0.1	1.23 (0.16, 2.30)	0.02	1.20 (0.12, 2.29)	0.03	1.29 (0.21, 2.38)	0.02	1.47 (0.41, 2.52)	0.006
Diastolic BP	294	-0.47 (-1.36, 0.42)	0.3	-0.63 (-1.50, 0.24)	0.2	0.44 (-0.43, 1.32)	0.3	0.40 (-0.41, 1.21)	0.3	0.14 (-0.70, 0.98)	0.7	0.89 (-0.03, 1.81)	0.06	1.26 (0.33, 2.19)	0.008	0.89 (-0.04, 1.82)	0.06	0.30 (-0.60, 1.20)	0.5
Carotid IMT	299	0.002 (-0.006, 0.009)	0.6	0.000 (-0.007, 0.008)	0.9	-0.003 (-0.010, 0.005)	0.4	0.003 (-0.003, 0.010)	0.3	0.002 (-0.005, 0.009)	0.5	0.000 (-0.008, 0.007)	0.9	0.000 (-0.008, 0.008)	0.9	0.006 (-0.002, 0.014)	0.1	0.004 (-0.004, 0.012)	0.3
Carotid-femoral PWV	252	0.01 (-0.06, 0.08)	0.7	0.08 (0.01, 0.15)	0.03	0.01 (-0.06, 0.08)	0.8	0.06 (0.00, 0.13)	0.05	0.07 (0.00, 0.14)	0.04	0.06 (-0.01, 0.13)	0.1	0.06 (-0.02, 0.13)	0.1	0.05 (-0.02, 0.12)	0.2	0.06 (-0.02, 0.13)	0.1
FMD (%)	249	-0.04 (-0.51, 0.44)	0.9	-0.18 (-0.66, 0.31)	0.5	-0.25 (-0.74, 0.24)	0.3	-0.32 (-0.79, 0.14)	0.2	-0.29 (-0.77, 0.19)	0.2	-0.29 (-0.79, 0.21)	0.3	-0.27 (-0.79, 0.24)	0.3	-0.02 (-0.54, 0.51)	1	0.17 (-0.31, 0.65)	0.5
Reactive hyperemia (%)	246	2 (-31, 36)	0.9	11 (-23, 46)	0.5	1 (-33, 35)	0.9	-16 (-49, 16)	0.3	0 (-33, 34)	1	-31 (-65, 4)	0.08	12 (-24, 47)	0.5	-19 (-56, 19)	0.3	-20 (-54, 13)	0.2

Adjusted for maternal education, prepregnant smoking and BMI and child age at vascular assessment

Table S5c. Associations between AC growth from 19 weeks gestation to 8-9 years of age, and vascular CVD risk factors at age 8-9 **in boys** (using size at 19 weeks' gestation as starting point and growth through eight time windows).

		19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
		B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
Systolic BP	263	-0.35 (-1.30, 0.59)	0.5	0.26 (-0.73, 1.24)	0.6	0.07 (-0.93, 1.08)	0.9	0.34 (-0.72, 1.41)	0.5	-0.16 (-1.12, 0.80)	0.7	1.76 (0.84, 2.69)	<0.001	1.44 (0.53, 2.35)	0.002	2.14 (1.19, 3.08)	<0.001	1.73 (0.75, 2.71)	0.001
Diastolic BP	263	-0.01 (-0.80, 0.79)	1	-0.28 (-1.11, 0.56)	0.5	-0.67 (-1.52, 0.18)	0.1	0.05 (-0.85, 0.95)	0.9	-0.13 (-0.94, 0.68)	0.8	0.24 (-0.55, 1.02)	0.6	0.13 (-0.64, 0.90)	0.7	0.56 (-0.24, 1.36)	0.2	0.66 (-0.17, 1.50)	0.1
Carotid IMT	269	0.008 (0.000, 0.016)	0.04	0.005 (-0.003, 0.013)	0.2	0.004 (-0.004, 0.012)	0.3	0.009 (0.000, 0.017)	0.04	0.006 (-0.002, 0.013)	0.1	-0.003 (-0.010, 0.005)	0.5	-0.001 (-0.008, 0.007)	0.8	-0.002 (-0.010, 0.005)	0.5	0.001 (-0.007, 0.009)	0.8
Carotid-femoral PWV	228	0.02 (-0.05, 0.09)	0.6	0.03 (-0.05, 0.11)	0.5	0.02 (-0.06, 0.10)	0.7	0.06 (-0.02, 0.14)	0.1	-0.04 (-0.11, 0.03)	0.3	0.01 (-0.06, 0.09)	0.8	-0.05 (-0.12, 0.03)	0.2	0.08 (0.00, 0.15)	0.04	0.08 (0.00, 0.16)	0.05
FMD (%)	219	0.24 (-0.24, 0.71)	0.3	0.06 (-0.43, 0.56)	0.8	-0.01 (-0.56, 0.54)	1	0.30 (-0.21, 0.80)	0.3	-0.24 (-0.72, 0.25)	0.3	0.45 (-0.02, 0.91)	0.06	0.02 (-0.44, 0.48)	0.9	-0.37 (-0.88, 0.14)	0.2	0.27 (-0.21, 0.75)	0.3
Reactive hyperemia (%)	218	-16 (-45, 14)	0.3	13 (-17, 43)	0.4	-30 (-63, 3)	0.08	8 (-22, 37)	0.6	-20 (-49, 9)	0.2	15 (-13, 43)	0.3	12 (-17, 41)	0.4	1 (-30, 33)	0.9	-33 (-61, -4)	0.03

Adjusted for maternal education, prepregnant smoking and BMI and child age at vascular assessment

Table S5d. Associations between AC growth from 19 weeks gestation to 8-9 years of age, and vascular CVD risk factors at age 8-9 **in girls** (using size at 19 weeks' gestation as starting point and growth through eight time windows).

		19 weeks		19 weeks - 34 weeks		34 weeks - birth		Birth - 6 mo		6 mo - 12 mo		12 mo - 2 years		2 - 3 years		3 - 6 years		6 - 9 years	
		B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
Systolic BP	296	0.37 (-0.70, 1.44)	0.5	0.40 (-0.62, 1.43)	0.4	0.27 (-0.73, 1.27)	0.6	1.53 (0.52, 2.53)	0.003	0.83 (-0.24, 1.90)	0.1	0.49 (-0.57, 1.55)	0.4	0.25 (-0.86, 1.37)	0.7	2.11 (1.00, 3.22)	<0.001	1.68 (0.62, 2.75)	0.002
Diastolic BP	296	0.11 (-0.80, 1.02)	0.8	-0.01 (-0.88, 0.86)	1	-0.92 (-1.77, -0.07)	0.03	0.63 (-0.22, 1.49)	0.1	0.49 (-0.42, 1.40)	0.3	-0.09 (-0.98, 0.81)	0.9	0.00 (-0.94, 0.95)	1	0.84 (-0.10, 1.79)	0.08	0.30 (-0.60, 1.20)	0.5
Carotid IMT	299	0.010 (0.002, 0.017)	0.01	-0.005 (-0.013, 0.002)	0.2	0.000 (-0.007, 0.007)	1	0.006 (-0.002, 0.013)	0.1	-0.001 (-0.009, 0.007)	0.8	0.003 (-0.005, 0.011)	0.5	0.000 (-0.008, 0.008)	1	0.009 (0.001, 0.017)	0.03	-0.005 (-0.012, 0.003)	0.2
Carotid-femoral PWV	252	0.07 (-0.01, 0.14)	0.09	0.02 (-0.06, 0.09)	0.6	0.01 (-0.06, 0.09)	0.8	0.00 (-0.07, 0.07)	0.9	0.00 (-0.09, 0.08)	0.9	0.05 (-0.03, 0.12)	0.2	-0.05 (-0.13, 0.04)	0.3	0.06 (-0.01, 0.14)	0.1	0.05 (-0.02, 0.12)	0.2
FMD (%)	246	-0.32 (-0.83, 0.18)	0.2	-0.15 (-0.63, 0.34)	0.5	0.32 (-0.16, 0.79)	0.2	-0.47 (-0.95, 0.01)	0.05	0.29 (-0.20, 0.79)	0.2	-0.20 (-0.69, 0.29)	0.4	-0.29 (-0.82, 0.25)	0.3	0.41 (-0.08, 0.89)	0.1	0.13 (-0.36, 0.62)	0.6
Reactive hyperemia (%)	242	17 (-17, 51)	0.3	17 (-16, 50)	0.3	1 (-31, 33)	1	-12 (-44, 20)	0.5	5 (-30, 39)	0.8	1 (-32, 35)	0.9	-27 (-63, 10)	0.2	2 (-32, 35)	0.9	-14 (-47, 19)	0.4

Adjusted for maternal education, prepregnant smoking and BMI and child age at vascular assessment

Table S6a. Fetal and child growth patterns in **boys** with low (lowest quartile) or high (highest quartile) systolic BP, compared with “normal” systolic BP (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	0.02 (-0.20, 0.24)	0.8	-0.03 (-0.27, 0.21)	0.8	0.15 (-0.10, 0.39)	0.2	0.08 (-0.19, 0.36)	0.5
34 GW	0.08 (-0.18, 0.34)	0.5	0.03 (-0.25, 0.31)	0.8	0.11 (-0.16, 0.38)	0.4	0.17 (-0.13, 0.47)	0.3
Birth	0.00 (-0.26, 0.26)	1	0.19 (-0.09, 0.47)	0.2	0.22 (-0.02, 0.47)	0.07	0.27 (0.00, 0.54)	0.05
6 months	-0.21 (-0.48, 0.05)	0.1	0.00 (-0.29, 0.29)	1	0.08 (-0.17, 0.34)	0.5	0.09 (-0.19, 0.37)	0.5
12 months	-0.21 (-0.45, 0.04)	0.1	0.09 (-0.18, 0.35)	0.5	0.00 (-0.26, 0.26)	1	0.16 (-0.12, 0.45)	0.3
2 years	-0.25 (-0.51, 0.00)	0.05	0.36 (0.08, 0.65)	0.01	-0.19 (-0.45, 0.07)	0.2	0.39 (0.10, 0.68)	0.009
3 years	-0.24 (-0.50, 0.01)	0.06	0.35 (0.07, 0.63)	0.02	-0.17 (-0.44, 0.10)	0.2	0.53 (0.23, 0.82)	0.001
6 years	-0.33 (-0.61, -0.05)	0.02	0.42 (0.11, 0.72)	0.007	-0.26 (-0.51, 0.00)	0.05	0.76 (0.48, 1.04)	<0.001
9 years	-0.31 (-0.58, -0.05)	0.02	0.50 (0.21, 0.78)	0.001	-0.36 (-0.62, -0.10)	0.006	0.87 (0.59, 1.15)	<0.001

Table S6b. Fetal and child growth patterns in **girls** with low (lowest quartile) or high (highest quartile) systolic BP, compared with “normal” systolic BP (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	0.05 (-0.18, 0.28)	0.7	-0.08 (-0.32, 0.16)	0.5	-0.01 (-0.24, 0.21)	0.9	0.13 (-0.10, 0.37)	0.3
34 GW	-0.04 (-0.30, 0.23)	0.8	0.10 (-0.18, 0.38)	0.5	-0.04 (-0.30, 0.21)	0.7	0.20 (-0.06, 0.47)	0.1
Birth	-0.16 (-0.42, 0.09)	0.2	0.03 (-0.24, 0.29)	0.8	-0.29 (-0.54, -0.04)	0.02	-0.01 (-0.28, 0.25)	0.9
6 months	-0.33 (-0.62, -0.04)	0.03	0.01 (-0.29, 0.31)	1	-0.42 (-0.69, -0.15)	0.002	0.07 (-0.21, 0.35)	0.6
12 months	-0.16 (-0.45, 0.12)	0.3	0.26 (-0.03, 0.56)	0.08	-0.34 (-0.59, -0.08)	0.009	0.21 (-0.05, 0.48)	0.1
2 years	-0.30 (-0.58, -0.02)	0.04	0.20 (-0.09, 0.49)	0.2	-0.34 (-0.59, -0.09)	0.009	0.14 (-0.13, 0.41)	0.3
3 years	-0.32 (-0.61, -0.04)	0.03	0.25 (-0.05, 0.54)	0.1	-0.22 (-0.46, 0.03)	0.08	0.18 (-0.08, 0.43)	0.2
6 years	-0.37 (-0.64, -0.10)	0.008	0.31 (0.02, 0.59)	0.03	-0.37 (-0.60, -0.13)	0.003	0.32 (0.07, 0.56)	0.01
9 years	-0.40 (-0.67, -0.13)	0.004	0.31 (0.04, 0.59)	0.03	-0.35 (-0.61, -0.08)	0.01	0.49 (0.21, 0.76)	0.001

Table S6c. Fetal and child growth patterns in **boys** with low (lowest quartile) or high (highest quartile) cIMT, compared with “normal” cIMT (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	-0.11 (-0.33, 0.11)	0.3	0.10 (-0.14, 0.34)	0.4	-0.27 (-0.52, -0.03)	0.03	0.02 (-0.24, 0.29)	0.9
34 GW	0.02 (-0.23, 0.28)	0.9	0.05 (-0.23, 0.33)	0.7	-0.15 (-0.42, 0.12)	0.3	0.16 (-0.13, 0.46)	0.3
Birth	-0.12 (-0.38, 0.14)	0.4	-0.04 (-0.32, 0.24)	0.8	-0.14 (-0.38, 0.11)	0.3	0.10 (-0.17, 0.37)	0.5
6 months	-0.18 (-0.44, 0.09)	0.2	-0.09 (-0.38, 0.19)	0.5	-0.23 (-0.48, 0.02)	0.07	0.24 (-0.04, 0.51)	0.09
12 months	-0.15 (-0.40, 0.10)	0.2	-0.09 (-0.36, 0.18)	0.5	-0.12 (-0.38, 0.13)	0.3	0.43 (0.15, 0.71)	0.003
2 years	-0.15 (-0.41, 0.12)	0.3	0.01 (-0.27, 0.30)	0.9	-0.14 (-0.41, 0.13)	0.3	0.36 (0.06, 0.66)	0.02
3 years	-0.12 (-0.39, 0.14)	0.4	-0.01 (-0.30, 0.28)	0.9	-0.13 (-0.41, 0.14)	0.3	0.27 (-0.03, 0.58)	0.08
6 years	-0.03 (-0.32, 0.25)	0.8	0.09 (-0.22, 0.40)	0.6	0.07 (-0.20, 0.34)	0.6	0.36 (0.06, 0.65)	0.02
9 years	0.04 (-0.24, 0.31)	0.8	0.12 (-0.17, 0.42)	0.4	0.05 (-0.23, 0.34)	0.7	0.26 (-0.05, 0.57)	0.1

Table S6d. Fetal and child growth patterns in **girls** with low (lowest quartile) or high (highest quartile) cIMT, compared with “normal” cIMT (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	-0.07 (-0.30, 0.15)	0.5	0.08 (-0.17, 0.32)	0.5	-0.15 (-0.37, 0.08)	0.2	0.22 (-0.02, 0.47)	0.07
34 GW	-0.14 (-0.40, 0.12)	0.3	0.02 (-0.27, 0.30)	0.9	-0.08 (-0.33, 0.16)	0.5	0.05 (-0.22, 0.32)	0.7
Birth	-0.10 (-0.35, 0.14)	0.4	-0.01 (-0.29, 0.26)	0.9	-0.11 (-0.36, 0.13)	0.4	0.07 (-0.20, 0.34)	0.6
6 months	-0.14 (-0.42, 0.14)	0.3	0.00 (-0.31, 0.31)	1	-0.25 (-0.51, 0.02)	0.07	0.06 (-0.23, 0.35)	0.7
12 months	-0.10 (-0.37, 0.18)	0.5	0.16 (-0.14, 0.47)	0.3	-0.31 (-0.56, -0.07)	0.01	-0.15 (-0.42, 0.12)	0.3
2 years	-0.04 (-0.31, 0.23)	0.8	0.12 (-0.18, 0.42)	0.4	-0.30 (-0.55, -0.06)	0.02	0.02 (-0.25, 0.30)	0.9
3 years	-0.09 (-0.37, 0.18)	0.5	0.03 (-0.28, 0.33)	0.9	-0.21 (-0.45, 0.02)	0.08	0.03 (-0.23, 0.29)	0.8
6 years	-0.15 (-0.42, 0.12)	0.3	0.07 (-0.23, 0.37)	0.6	-0.28 (-0.52, -0.05)	0.02	0.08 (-0.18, 0.34)	0.5
9 years	-0.12 (-0.38, 0.15)	0.4	0.12 (-0.17, 0.41)	0.4	-0.12 (-0.38, 0.15)	0.4	0.07 (-0.22, 0.36)	0.6

Table S6e. Fetal and child growth patterns in **boys** with low (lowest quartile) or high (highest quartile) cfPWV, compared with “normal” cfPWV (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	0.12 (-0.13, 0.37)	0.3	0.08 (-0.17, 0.34)	0.5	-0.01 (-0.29, 0.28)	1	0.04 (-0.26, 0.33)	0.8
34 GW	-0.07 (-0.37, 0.24)	0.7	0.08 (-0.23, 0.39)	0.6	0.02 (-0.29, 0.33)	0.9	0.10 (-0.22, 0.41)	0.5
Birth	0.03 (-0.26, 0.32)	0.8	0.12 (-0.18, 0.42)	0.4	0.01 (-0.28, 0.29)	1	0.05 (-0.24, 0.35)	0.7
6 months	-0.15 (-0.46, 0.15)	0.3	0.07 (-0.24, 0.39)	0.6	0.08 (-0.22, 0.38)	0.6	0.22 (-0.09, 0.53)	0.2
12 months	-0.07 (-0.37, 0.22)	0.6	0.04 (-0.26, 0.34)	0.8	0.10 (-0.20, 0.39)	0.5	0.09 (-0.21, 0.39)	0.6
2 years	-0.22 (-0.51, 0.07)	0.1	-0.09 (-0.38, 0.21)	0.6	-0.03 (-0.33, 0.28)	0.9	-0.02 (-0.34, 0.29)	0.9
3 years	-0.22 (-0.51, 0.07)	0.1	-0.13 (-0.42, 0.17)	0.4	0.06 (-0.25, 0.37)	0.7	-0.03 (-0.35, 0.28)	0.8
6 years	-0.26 (-0.57, 0.05)	0.1	-0.10 (-0.42, 0.21)	0.5	-0.15 (-0.45, 0.15)	0.3	-0.07 (-0.38, 0.23)	0.6
9 years	-0.27 (-0.56, 0.02)	0.07	0.04 (-0.26, 0.34)	0.8	-0.01 (-0.32, 0.30)	0.9	0.34 (0.02, 0.65)	0.04

Table S6f. Fetal and child growth patterns in **girls** with low (lowest quartile) or high (highest quartile) cfPWV, compared with “normal” cfPWV (the middle two quartiles).

	Mean difference in linear z-score				Mean difference in AC z-score			
	Lowest Q (95% CI)	p	Highest Q (95% CI)	p	Lowest Q (95% CI)	p	Highest Q (95% CI)	p
19 GW	0.09 (-0.17, 0.34)	0.5	0.13 (-0.13, 0.38)	0.3	-0.01 (-0.26, 0.24)	0.9	0.17 (-0.09, 0.42)	0.2
34 GW	0.00 (-0.30, 0.30)	1	0.29 (-0.01, 0.59)	0.06	-0.20 (-0.48, 0.08)	0.2	-0.08 (-0.36, 0.19)	0.5
Birth	-0.11 (-0.39, 0.18)	0.5	0.04 (-0.24, 0.33)	0.8	-0.01 (-0.28, 0.26)	0.9	0.00 (-0.27, 0.28)	1
6 months	-0.23 (-0.57, 0.10)	0.2	0.20 (-0.13, 0.54)	0.2	-0.19 (-0.50, 0.13)	0.2	0.01 (-0.31, 0.32)	1
12 months	-0.23 (-0.53, 0.08)	0.1	0.47 (0.17, 0.77)	0.003	-0.10 (-0.39, 0.19)	0.5	0.04 (-0.24, 0.33)	0.8
2 years	-0.29 (-0.59, 0.01)	0.06	0.47 (0.17, 0.77)	0.002	-0.16 (-0.45, 0.14)	0.3	0.17 (-0.13, 0.47)	0.3
3 years	-0.26 (-0.57, 0.04)	0.09	0.58 (0.28, 0.89)	<0.001	-0.09 (-0.37, 0.18)	0.5	0.09 (-0.19, 0.36)	0.5
6 years	-0.27 (-0.56, 0.02)	0.07	0.62 (0.33, 0.92)	<0.001	-0.17 (-0.43, 0.09)	0.2	0.32 (0.06, 0.58)	0.02
9 years	-0.26 (-0.55, 0.03)	0.08	0.61 (0.32, 0.90)	<0.001	-0.20 (-0.50, 0.09)	0.2	0.33 (0.04, 0.63)	0.03