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Iterative Learning Control for Path Following Tasks
with Performance Optimization

Yiyang Chen, Bing Chuand Christopher T. Freeman

Abstract—The classical problem setup of iterative learning
control (ILC) is to enforce tracking of a reference profile specifed
at all time points in the fixed task duration. The removal of the

time specification releases significant design freedom in how the

path is followed, but has not been fully exploited in the literature.
This paper unlocks this extra design freedom by formulating the
ILC task description to handle repeated path following tasks,

explicitly design the speed profile using the measured data v
a feedback control setup, such that the desired path isvfetio
asymptotically even in the presence of model uncertainty. (e
disturbances and parametric model mismatches). However,
these techniques are all specific to vehicle steering pnable
and no performance optimization rather than path followsg

e.g. welding and laser cutting, which aim at following a given considered, which has not fully exploited the design freedo

“spatial” path defined in the output space without any temporal
information. The general ILC problem is reformulated for ILC
design with the inclusion of an additional performance index,

In the area of robotic motion planning, existing researct, e
[5]-[8], has capitalized on this design freedom to optinare

and the class of piecewise linear paths is characterized for the additional benefit while maintaining path following acceya
reformulated problem setup. A Two Stage design framework Since they do not incorporate a learning procedure based on

is proposed to solve the characterized problem, and yields a previous executions of the task, their along the trial perfo

comprehensive algorithm based on an ILC update and a gradient

projection update. This algorithm is verified on a gantry robot
experimental platform to demonstrate its practical efficacy and
robustness against model uncertainty.

Index Terms—iterative learning control; optimization; path
following

[. INTRODUCTION

mance is inevitably limited for repeated path followingkss
Conversely, a framework termed Iterative Learning Control

(ILC) has been formulated to learn repeated tracking tdsks,

has not yet exploited the design freedom of path following.

ILC is suitable for a large class of path following applicats,

e.g. gantry robot [9], mobile robot [10], wafer stage [11Han

stroke rehabilitation [12]. It updates the system inpunalg

at the end of each trial based on the measured data, e.g. the

In a broad class of automation tasks, e.g. assemblingacking error, from the previous trials, which theorellica
welding and drilling, the task design objective is to followeduces the error to zero. See [13]-[17] for detailed oesvsi
a path, which is specified as a set of spatial points withogt ILC. Note that most existing ILC research, e.g. [18]-[20]

temporal information. The concept of “path following” diffs

focuses on tracking a fixed reference profile specified at all

from that of “reference tracking” as it removes all temporgdoints over a predefined time horizon.

tracking information. In other words, it does not specifywho

In the last decade, ILC research has started to remove the

fast the system moves along the given path. In path followipgstulate of a fixed reference profiléehicle path following
problems the speed profile (as a function of time) alongas considered in [21], and a feedforward ILC update law was
the path is considered as a time-varying variable due to theveloped employing the local symmetrical double-integra
elimination of the temporal constraints. This feature asts of the feedback control signal obtained from the previous
significant control design freedom compared to the refexengial. The seminal work in [22] used a P-type ILC algorithm
tracking problem setup with a predefined speed profile, but solve the 2D corner tracking problem using the distance

also leads to substantial difficulties in the control degigase.

between the output trajectory and the desired path for motio

The class of path following problems has been considontrol applications. The research in [23], [24] aimed at
ered in existing research, e.g. [1]-{4], in the applicatioreducing the periodic varying torque ripple and improvihg t
of autonomous air or surface vehicles. They implicitly oadditive manufacturing quality respectively. They rededithe
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system input and output signals using spatial coordinated,
reformulated existing ILC algorithms into the spatial fats

In [25], [26], the minimum time path following problem was
considered for a 2D path by explicitly updating the nominal
system model using the measured data and then solving the
problem using the algorithms in [5], [6], which however has
not inherited the input update procedure of ILC.

The aforementioned ILC approaches are either application
specific or not concerned with path followingn addition,
they only consider path following accuracy, and have ndyful
harnessed the available design freedom in the temporalidoma
to optimize an extra performance index. The optimization of
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such a performance index brings significant practical benefi
such as control effort reduction, machine damage avoidan

/\
and increased manufacturing efficienblpte that the authors’ T r-..' .. 1)
previous work in [27]-[30] has considered optimization o t 1 Ceq
intermediate time instant within point-to-point trackipgob- M

lems and the path following problem with fixed intermediate
time instants. However, they have not formulated a gener
ILC framework to address optimal path following problems
in a principled manner.

To address the above limitations and need, an ILC fram
work is developed in this paper to solve the path followinc
problems for a broad class of systems with high tracking ac r(o).. To
curacy, and simultaneously minimizes a specified perfooman
index of interest, e.g. control effort. The path followingd Fig. 1. An example of paths as set of spatial pointditi.
problem is first defined in Section I, and then reformulated
into an equivalent problem for control design in Section llI
The class of piecewise linear paths is characterized for the(t) € R", ux(t) € R® andy(t) € R™ are the state, input
reformulated problem setup, which comprises a substantld output respectivelyd, B and C' are system matrices of
extension to existing ILC scope involving constraint hamgll compatible _dime_nsio_n;._ At the e|_1d of each trial, the state is
embedded projections and time variable updates. An expand@set to an identical initial value, i.e4(0) = zo. The system
version of the Two Stage design framework proposed in [27]@S an equivalent operator form
[28] is a}pplie.d to solve_ the e.quivale.nt ILC problem. In Sewti s = Gup + d. @)

IV an iterative algorithm is obtained with desired robust

convergence properties, which minimizes the control &ffoin the above operator formy, € L5[0, T, ux € L5[0, T
and ensures path following accuracy. This algorithm isfiegti are the system input and output signalfie output Hilbert
experimentally in Section V on a gantry robot test platfoom tspaceL3*[0, T is defined with inner product and associated
demonstrate its practical efficacy and robustness agaiodéin induced norm

uncertainty. Note that some initial results in this papeveha T

been reported in [31], but do not embed system constraint (z, y)q =/ 2 (#)Sy®)dt, yls = /(v g, (3)
handling or provide the robust convergence properties. 0

The notation used in this paper is standaidis the set in which.S € S, is a weight matrix. The input Hilbert space
of non-negative integer®™ and R™*™ denote the sets of L5[0, 7] is defined in a similar fashion to (3) by replacing
dimensional real vectors andx m real matrices respectively; y and S with w and R € S . The system operato€ :
St , is the set of alln x n real positive definite matrices; L4[0, T] — L3[0, T] and the effect of initial conditions
L4[0, T] denotes the space of functions defined [on 7] d € Ly'[0, T] have analytic forms
whose function value belongs ®’ and2 power is Lebesgue "
integrable; (z, y) is the inner product oft andy in some  (Guy)(t) :/ CeA=9) Buy(s)ds, d(t) = Ce’lazy, (4)
Hilbert spaceX x Y is the Cartesian product of two spaces 0
X andY; Po(x) denotes the projection af onto the set® which are obtained from the state space form \{@ithout loss
in some Hilbert spacelm M andKer M are the image and of generality, zero initial conditions are assumed, &:g= 0

General Path

Piecewise Linear Path

kernel of an operatoM respectively. and thereforel = 0. The results in this paper hold for non-
zero initial conditions, simply by subtractingfrom both the
II. PROBLEM FORMULATION output,y,, and reference.

This section introduces the system dynamics as well as the
path following task design objective, which together form B. Path Following Design Objective
general path following ILC problem. To further exploit the
design freedom, an additional performance index is emhiadqﬁ
as a cost function to be optimized within this problem setup,

Any continuous path can be defined in the output space by
troducing a continuous functior(s) parametrized by spatial
ariables € [0, 1] with each point-(s) € R™. An example of
such a path is shown in Figure 1 as the black curve. Defining
A. System Dynamics a continuous magy from interval [0, 7] to interval [0, 1]
Consider a multi-input, multi-output linear time-invama characterizing the speed profile along the path, i.e.

system given in a state space form s=g(t), telo, T], s €0, 1], 5)

Ly (t) = Azy(t) + Buy(t), o . . .
(1) gives rise to a specific temporal trajectory defined by thefun
yk(t) = Ck(t), tion r(g(t)). As explained in [32]s is termed the progression
wheret € [0, T] is the time instant) < T' < oo denotes the rate, denoting th&% to 100% completion of the whole path.
ILC trial length; the subscript € N denotes the trial number; An example isg(¢t) = t/T corresponding to the case of a
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constant speed profile. L&l be defined as the set of allA. General Problem Reformulation

such continuous maps The setR, can be equivalently defined using a projection
operator P. and a output constrainy € &, to yield a
restatement of problem (11) that is suitable for ILC design

then the set of all admissible trajectories along the santie pgs shown below.
r(s) is given by Proposition 1. If there exist a projection operatoP,

LT[0, T) — L5*[0, T] and a setb,. such that for any* € R,
R,={re L0, T]: 7(t)=r(g(t)), t €[0, T], g€ Gr}. andyec Ly'[0, T]

g:t€l0, T]—s€l0, 1], g(0)=0andg(T) =1, (6)

@) o
The path following design objective is to follow the givertipa Py =B andy € &, <y € Ry, (12)
at any admissible speed profile, i.e. the optimization problem (11) within the general path falo
ing ILC problem of Definition 1 is equivalent to
y=r, 7 E€R,. ]
min flu,y)
¢ 13)

. subjectto y = Gu, Py =P.7, y € ®,., u € Q,
C. Path Following ILC Problem ) Y “ 4 "y “

) ) ) ) wherem is the dimension of the projected space.
In trajectory tracking tasks, the speed profjig) is spec-

ified a priori, which is not the case in path following tasksProof. Note that it is first assumed thdt. C R,, otherwise
Given the infinite speed profile choices, significant desige4 the projection constrainP,y = P.7 may simply be omitted
dom can be unlocked in the control design of path followinffom both (12) and (13). Since the sufficient and necessary
tasks. For example, the inputand outputy can be stipulated condition (12) holds, the general optimization problem)(11
to optimize an addition performance indeiu,y) while can be equivalently written as (13) by replacipg= 7 and

maintaining the path following accuracy. The optimizatain 7 € R, with P,y = P,7 andy € ®,. O
such performanceQindex brings practical benefits. For el@amp
if f(u,y) = |ull. the control effort can be minimizedp  Characterization of Piecewise Linear Paths

while performing the path following task, which significent In general, the projection operat#. can be discontinuous

reduces manufacturing costs or overheads. . . .
In addition, design constraints generally exist in raa:ticand non-linear. However, there are classes of paths whih gi
for robofic a’th follg) i tasksForge am Ig cons'derp'n trise to a linear projection operatd?,. that satisfies condition
uc p wing ’ xampie, consi npu (12) in Proposition 1. An example of such a class is shown in
constraints representing the allowed or safe input loadean

o the next definition.
an example of which is the set: o ] ] ) ) }
Definition 2. The class ofPiecewise Linear Pathds defined

Q= {u(t) e R : \(t) < u(t) < u(t), te [0, T]}. (9) by the following function

. . . §—5;
where < denotes elementwise inequality. r(s)=mri + (H> (rit1 —7i), (14)
Considering an extra input constraint, the path following R
ILC problem is then stated as follows: for s € [si, sit1],@=0,..., M, with transition vertices
Definition 1. The Path Following ILC Problem is to iter- ri=1[rt, 3 T =0, M1, (15)

atively update an input sequenge,} from an initial input _ ) _ o
up €  with the asymptotic property that the outpyt N Cartesian space and a set of spatial variables satisfying
accurately passes through all points along the paite. 0=80 <81 <...<sn < snrg1 =L (16)

lim wuy = u*, (20)
k—o0

The piecewise linear path following problem specifies that
whereu* is the solution of the optimization problem the it" segment of the path is completed before the- 1)t
segment is started. While staying within the exact line seg-
ment, the end-effector can move backwards to save energy.
Such piecewise linear paths are common in manufactur-
ing/construction, e.g. applications such as welding il
ships and buildings, and typically cannot be modified by the
1. PROBLEM REFORMULATION AND SOLUTION designer.The following theorem characterizes the class of
piecewise linear paths to obtain the corresponding operato
In this section the ILC problem stated in Definition 1 isp, and set®, required to satisfy Proposition 1.

reformu_lgted Into_an equwglent form for ”‘C. deS|gn, .anq'heoreml. For the class of piecewise linear paths of Defini-
exemplified through application to the class of piecewisedr tion 2, operatorP, is defined by

paths. A Two Stage design framework is proposed to enable
a tractable solution for the problem. (Py)(t) = Py(t), t € [ti, tiz1], 1 =0,..., M, a7)

min f(u,y) subject toy = Gu, y =7, 7 € R,, u € Q. (11)
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and the output constraint sét. be defined by where (w,v), (i1, \) € H is defined by the following form
(I)r = {y € Lgﬁb[ovT} : az—'rri < a;ry(t) < a;rri-‘rla w = [wo, Wiyenny wA{+1]T7 on = [/Lo, M1y eey /LA,1+1]T7
te[tiv ti+1]’ i:O,...,M}, (18) l/:[l/o, T V]\/I]T, )\:[)\0, Alyenny /\]\/[]T
. (m—1)xm j i i i ~
whereP; € R is a full rank matrix satisfying Herew;, pi € R™, v, \; EAL;”A[ch t],0 depotes the set
Ker P, = Ima,, i =0,..., M, 19) {Qo,---.Qu41, Qo,--.,Qu}, Qi € ST, andQ; € ST
) o h . ) The mapping (23) gives an “extended signgl’ defined
t; is the time instant of the'* transition vertexr;, i.e. to be a “partial projected” signalP¢)(t) plus valuesc (t;)
y(t) =74, i=0,..., M +1, (20) at transition time instants. Using this notation, the “exted”

system dynamics are modelled as
anda; = rj41 — 7, @ = 0,..., M. The ILC problem (13) is
equivalent to yi = Giur = (Guy)® = [FGug, PGu]",  (27)

min f(u,y) wherey° is the extended system output. The subschipof
the extended system operat@f, : L5[0, 7] — H denotes the

subjectto y = Gu, ueQ, ye o,
: v P UET (21) dependence on the unknown transition time instants defised a

Pi (t) = Pﬂ"i,t S [ti,ti+1],i = 0, ey M,
y(t) =714 i =0,..., M + 1. A=T[t,..., tm]" €6, (28)
) where© is the admissible set fak defined as
Proof. See Appendix A.
_ M,
Although the general optimization problem (13) is not O={AeRT:0<h <... <ty <0} (29)
convex, the above theorem characterizes the class of giezew Using the equivalent design constraint (22), the path fol-

linear paths by introducing a linear and continuous pr@ect |qing |L.C problem stated in Definition 1 is reformulated for

operator - and an output constrainj € ®,, which make e class of piecewise linear paths as follows.

the piecewise linear path following problem (21) convex. To 1pe pigcewise Linear Path Following ILC Problemis to

simplify the notation in (21), the projectioRiy(¢) = Firi and  jeratively update the transition time allocatioh, and the

y(t:) = r; in (21) can be equivalently expressed as input signal w;, from initial valuesA, € © anduy, € Q
ye =7r°, (22) Wwith an asymptotic property such that the extended ougput

accurately tracks the extended referentgi.e.
where the mapping € L3*[0, T] — (¢ € H is defined as

¢¢=[F¢ Pq]T, (23)

and the reference € L3*[0, T] is defined as"(T) = ras.1, and (A*,u*) are solutions of the optimization problem
andr(t) =r;, t € [t;, tiy1), fori=0,..., M.

k—o00

In (23), the operatoir’ extracts the elements df at the TT f(w.y)
intermediate time instants;, : = 1,...,M as well as the subject to y = Gu, 31
start/terminal time instantg andt,, 1, and is defined as ye = 1 (31)
FC: [C(to)a"'ac(tl\/[-‘rl)]—ra C(tl) € R™. (24) A€®7 UEQ7 RS q>r~
The operatorP extracts the elements @f along [t;, t;11],
1=0,...,M, and is defined as C. A Two Stage Design Framework
P¢ =[(PQ)o, ..., (PC)M]T, (25) The optimization problem (31) requires simultaneous selec
I . i tion of A and u to optimize the performance indei(u,y)
where (P(); € Ly [ti, ti1] is defined as subject to the tracking requirements. To solve this problem
(PO)i(t) = PC(t), t € [ti, tia]. several extensiqns will bg added to existipg'ILC. frameworks
reported in the literature, i.e. temporal optimizationg drard
The Hilbert spacef is defined as constraint handling.
H = R™x- - xR™ x L Yt ] - L Ytns. ¢ The optimization problem (31) is equivalently stated as
XX XLy to, ta] x---x Ly [ty tarya]
M+2 min {min fluy), sty =7r%y=Gu,u e Dyc CIJT} ,
with the inner product and associated induced norm AcO Lo (32)

MA+1 M X which first optimizes the problem over and then overA.
(@, ), (1 A\)g = w Qipi +Z/ v (£)Q:\i(t)dt, Define a functionf(A) as the minimum value of the inner
i=0 i=0 7t optimization problem in (32), i.e.

lw.)lg = /i@, v), @ ¥)g, @) F(n) = min [f(0,9). 544 = 1,y = Guu e Oy € 8,
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and denote a global minimizer for the inner optimizatiomwhich project the signals onto the sé€tsand ®,. respectively.
problem asu.,(A) : © — L5[0, T]. Combining the above The linear operatol. : Li[0, T] — L3*[0, T] is defined as
notations, the optimization problem (32) is equivalent to

P P (32) is eq (L2)(t) = [1y s 1T 2(t), = 0,0y M + 1,

il f (Uoo (A), G (A)). (33) (L2)(t) = Pr2(t), t € (ti, tign), i=0,.., M, (39)

To solve the original optimization problem (31), a Twawhere the column o+ € R™*! forms the orthogonal basis
Stage design framework inspired by the block coordinatd the null space of?;. Also, the errore; is defined as
descent methods of [33] is employed in this paper, which . . e
reformulates the problem into two stages. It alternates be- ¢k = [efs ek

tween optimizing the variables and A using experimentally gsjng the above notation, the ILC update approach is illus-
obtained data to provide a local minimizer of (33)his {rated in the next theorem.

framework is described as _fOHOWS: L Theoren®2. If Stage One problem (34) has a feasible solution,
o Stage One:Solve the inner optimization problem (32)the system (1) is controllable and is full row rank, the

with a fixed transition time allocation, i.e. problem (34) is iteratively addressed by the ILC update

]T, e, =r°—yi, er =Tk — Yk (40)

rrLin flu,y),st.y® =7r%y=Gu,ueQyed,. (34) 1 = g + G (I + GS.GT)Les, (41)

« Stage TwoCompute the solution of the resulting problem U1 = Po(tks1), Ter1 = Po, (Trs1), (42)
(33). ie. ) with initial valuesug = 0 andry € ®,., and the solution is
min{F(A) = f(uo(A), Gun ()} (35) (M) — w4 G L @)

where the signali(A) is the solution of problem (34) wherew* is the converged value of the sequerfeg} gener-

To exemplify the design framework, the control efforated by the ILC update (41)-(42), i.Bmy_, . up = u*, and
fluy) = Hu||i3 (which is a convex function) is chosen.the continuous signat* € L}[0, T] is the solution of the
Note that the projection operatdt. is linear for the class of optimization problem
piecewise linear paths, so there exists of a unique globad mi .
imizer for Stage One Problem (34), and hence (35) becomes min flu,y)
minaee ||UOO(A)||?{ stu=u*+Au, Au=G 'Lz, Fz=0, y = Gu,

u€eN yeod,. (44)
IV. COMPREHENSIVESOLUTION OF THE TWO STAGE
DESIGN FRAMEWORK

In this section, the solutions of the Two Stage framework amroof. See Appendix B. O
derived to yield an iterative algorithm with robust conwange

performance as well as implementation instructions. Theorem 2 requires Stage One problem (34) to have a

feasible solution, i.e. the path following task should be- pe
_ formed within the given system constraints. This scenagio i
A. Stage One Solution guaranteed by task specifications as normal practice ta@nsu
Stage One problem (34) involves transition position trackhat the task is possible to perforfihe assumption that the
ing, sub-interval tracking and hard output constraintsisplsystem (1) is controllable witke' full row rank ensures the
a minimum control effort requirement. It does not have meference is in the range aof. It is not restrictive, since
direct analytic solution, but can be solved using an ILC #@daa controllable model can always be constructed for a given
approach.To solve this problem, the following notations aresystem and redundant output components can be removed to
first introduced. A linear operatdr?y is defined by make C full row rank.

su=[GSu, Gu|T : L4[0, T] — )i (36) Remark1. To solve Stage Qne problem (34), Fhe pr_oblem
_ _ o _ _ (44) employs the converged input and the one dimensional
end its Hilbert adjoint operator bg". The Hilbert space  signal z with z(¢;) = 0 to remove the constrainf® = ¢ in
is denoted by (34) by constructing thé dimensional input signak = u* +
F m m m— G~ Lz without violating the tracking accuracy. Therefore, its
H=R™x - xR™x LT to, t :
R 3171 lbo, 1] . search space afis L1[0, 7] instead ofZ4[0, T, which is the
s X Lyt [t tara] x 130, T, search space af in (34). Since the system (1) is multi-input
with inner product and associated induced norm naturafjd multi-output, i.e£ > 2, (44) can cut down the search
derived from (3) and (26). The projection operatdts and SPace of (34) significantly (e.g. fdr= 3, the search space is

Py, are defined as reduced by66.7%, and for¢ = 4,the search space is reduced
) by 75%) by at least50%, which reduces the computational
Po(u) = arg inf ||z — ullR, (37)  complexity.
Ps, (y) = arg inf ||z — yHé, (38) Remark2. The update (4;) can be eit_her implemented in a
zed, feedforward manner by direct calculation, or using a causal
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feedback plus feedforward structure in [17] to further em- Based on the above lemma, an iterative approach is devel-
bed potential robust performance in practice. Meanwhiie, toped in the next theorem to solve this problem.

convex optimization problem (44) can be solved via variougheorem3. If the function f(A) is twice continuously differ-
methods, such as the barrier method [34] and the primal-dgghiable, the gradient projection update

interior-point method [35].

The input constraint € 2 represents the allowed range for Aj+1=Po (AJ' - %‘Vf(Aj)) (50)

the input signal, and the output constran€ @, in problem - go|ves the Stage Two optimization problem (35) such that the
(34) has the effect of preventing potential overshoot, the. sequence f(A;)} converges downward to a limitand every

end effector moving beyond the acceptable region. In thé gyt point of the sequencéA,} is a stationary point for the
corollary, an alternative “direct” ILC update is proposex toroblem (35), i.e.

solve problem (34) when the constraints do not engage.

Corollary 1. If the constraintsu € 2 andy € ®, do not 2= Pe(z =V [(z)). (51)
engagethe system (1) is controllable ar@d is full row rank  Here j ¢ N denotes the gradient projection trial number,
Stage One problem (34) is solved by the ILC update the gradient/ f(A;) is obtained using experimental measured

Wer1 = up, + G (I + GS.GS) et (45) data, Po denotes the gradient projection optimal solution

which provides an analytic global solution to (34) as fokow Pe(r) = argmin{|[z — || : z € O}, (52)
Uoo (A) = G (GSGY) e, (46) and~y; > 0 is the generalized Armijo step size defined in (47).

_ Proof. Note that all assumptions in Lemma 1 are satisfied, so
Proof. See Appendix C. [l that the gradient projection update (50) can be applied ¢o th
cngobIem considered in this paper. According to Lemma 1, the

Corollary 1 provides a significantly simpler ILC update t eneralized Armijo step size guarantees the convergence of

that in Theorem 2. The next proposition defines an explitﬁge radient proiection method to a stationary point. L]
example of certain systems, e.g. industrial robots witleigf 9 proj y point.

control, which are compatible with Corollary 1. Since the functiory(A) is bounded below ané is a com-
Proposition 2. If the system is a chain of integratorsi (= pact set, the (global) minimum of the optimization problem
0) without the input constraint € Q2 specified, the solution €xists. In addition, being a stationary point satisfyind)(&
oo (A) satisfiesGu., (A) € @,., and the simplified ILC update @ necessary condition of being a (possibly local) minimum

(45) is directly applicable to Stage One problem (34). point. Therefore, the converged stationary point must lge th
minimum if there exists only one stationary point in problem

Proof. See Appendix D. [ (35). As a consequence, the above algorithm is guaranteed to
converge to the global minimum solution in this case.

B. Stage Two Solution In general, the gradient within (50) does not admit an ana-

Stage Two problem (35) is generally non-linear and nol ytic realization, and can be computed using a computalipna

. NN i ) fficient estimation
convex with respect to the transition time allocatid@nwhich

leads to significant difficulties in obtaining an analytidiso af | F(AT) = F(A) (53)
tion. To solve this problem, the following lemma from [36] is ot; N - 2AT ’

needed. 4 o ' _ 4
Lemmal. Let {A,} be a sequence generated hy,, — Where AT = [Htg, ] + ATty and AT =

Po(A; — v,V f(A;)) where® is a closed convex set ang (11,13, ... t] AT, ..., t3,] T, andAT € R is sufficiently small.
is chosen according to the generalized Armijo step size  The values off (A’") and f(A}") can be obtained using the
solution (41) via experimental implementation or simuati
Vi = a’y, (47) Furthermore, if the system constraints do not engage, the
problem (35) can be expressed analytically as shown in the
following corollary.

F(Aj1) = F(A) <o(VFA)) T (A1 —A;)  (48) Corollary 2. In the absence of the system constraints
andy € ®,., Stage Two problem (35) is transformed as

where 3 is the smallest non-negative integer such that

and0 <o <1,0< a<1andy > 0 are constant scalars.
If there exists somd. > 0 such that i A% = mi = e Gey~lpe | 54
min [[uoo (A)[J7 = min (r¢, (GRGF)™'r¢) (54)

Q
Vi) - Vfy)|<Llz—y|, Yo,y O, (49

then every limit point of the sequende\,} is a stationary Proof. See Appendix E. O

point for problem (35). . .
According to Corollary 2, in the absence of the system con-

Proof. The proof of this lemma is derived in [36] [0 straints, the gradient within (50) can be computed analiftic
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by performing differentiation of the cost function in (54)ch Algorithm 1 lIterative learning control for path following tasks
calculating its partial derivatives. Input: Initial transition time allocatiom\,, system operator
G, extended reference®, admissible set, input con-
straint set(), weighting matricesR, S, Q; and Q, and

Remark 3. The choice of initial allocationA, affects the
convergence performance of (50). It can be chosen arlytrari
from the admissible se© if no information is available. parameter values, 5 and-y.
Alternatively, it can be chosen using the methods, e.g. I0RUIPUt  Optimal solutionsA,,;, and u,

resolution initial allocation, proposed in [27], which appi- 1 Initialization: Gradient projection trial number=0
mate the optimal allocation. 2: Perform (41)-(42) withA = Aq experimentally until

lezll < € and then solve the problem (44) to obtain
Uso (Ag) USING (43); recorcis,(Ag) and f(Ag).
C. A Comprehensive Implementational Algorithm 3 whil(e 0) 9 (43) (R) f(o)
Algorithm 1 is obtained by combining the aforementioned4: ~ Apply (50) with (53) usingr; = G;us(A;).
implementations of the design framework, which are summas: Setj =j+ 1.

rized in the following steps: 6: Perform (41)-(42) withA = A; experimentally until
« Choose the constraint se® and  as well as the llexll < e, and then solve the problem (44) to obtain
weighting parameter®, S, Q; and Q; according to the uso(A;) using (43); recordio, (A;) and f(A;).

application; specify the required tracking accuracy andz:  if |f(A;) — f(Aj_l)’ <4 ‘f(Aj_l)‘, break.
performance improvement threshold as the sufficientlys. end while

small positive scalars and §, for example,e = 0.01 o return Aopt = Aj andugy: = usZ(A;).
and§ = 0.001; choose a suitable initial transition time
allocation Ay, by t; = iT/M, i = 1,..,M, and an

extendeq reference®; set the gradient projection trial datau.o(A;) is applied in Stepi to generate the function
;l-l;mbel’j t? O.h lized ILC und | 41)-(4 cg the desired performance index. Therefore, this algorith
« Then, apply the generalize update law (41)-( % arns by exploiting real data to reduce the effect of mautgll

tqgether with (43), experllmentally b F:urrent Inlouitr'laccuracy. Robustness analysis is shown in the next threore
signal u, and errore; until the accuracye is reached

(Stage One solution), which computes an optimal inpdf1€Crem4. Suppose the system constraints (2 andy € @,

signal u¢®(Ao) with respect toAo. The solution mini- do not engage, the gx_tended operdiqris right invertible and

mizes the optimal performance indgXA,) in practice, (€ System operatdk is denoted as

whose value is recorded. . o G = (I +A)G, (55)
o After that, apply the gradient projection procedure (50)

experimentally to the transition time allocatioh; to where the unknown operatak : L3'[0, 7] — L3'[0, T

update its value to\;;; until the convergence condi- represents the model uncertainty. If operatosatisfies

tion in Step7 is satisfied. Meanwhile, the same Stage I

One solution as explained in the above bullet point is HI— {P} AGGY

performed to compute the optimal input sign&f (A;)

at each gradient projection trial, and the values'@k;) then the sequencée{} generated by the ILC update (45),

<1 (56)

are recorded. monotonically converges to zero, i.e.
« The final values of\; andugZ (A ;) are taken as the output . .
of the algorithm. el < plleill, ¥ k>0, (57)

Note that the experimental tests in Stepand 6 of the \herep < 1 is the spectral radius dff + GRG¢)~n
algorithm (i.e. generalized ILC update) can be replacedh wit |f the operatorGS* (G5 GS*)~! is upper bounded as
simulations, however this will significantly reduce romess

to model uncertainty and this replacement is not suggested i HGj’\*( Af\Gg*)—lre
practice. The gradier¥ f(A;) in (50) is estimated by (53), in

which the values oﬁ”(A;*) and f(A;.*) using the Stage One the functionf(A) generated by the gradient projection update
solution. In addition, the generalized Armijo step size)(#7 (50) is bounded above as

(50) is determined by (48).

/r¢ll <@, VreeH, (58)

F) <@, (59)
D. Robustness Analysis where the upper bound is a positive scalar.
In practice, the nominal system mod@l will not exactly pqof gee Appendix F. O

match the real plant modef. Therefore, it is necessary to

perform robustness analysis to verify the convergence per+rom the above theorem, the Stage One ILC update still
formance of Algorithm 1 in practice. Note that Stage Onachieves perfect path following even with the existence of
update (41)-(42) in Ste and 6 of Algorithm 1 involves model uncertainty, while (56) is satisfied. Moreover, the se

the participation of measured output trajectggyin practical quence{f(Aj)} generated by the Stage Two gradient pro-

implementation. Meanwhile, the experimental obtainecuinpjection update is proved to be bounded above. Therefore,



1€

rr‘( o bve Malb‘b 5}«,-«} _(“A .f‘, dg ,4,‘4[;(6‘15 r-n:,;ojérvl’
7
. . . RPN (
RIPT SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS -UHNOLOGYd‘C F'f""’”e |Av{'7‘ O S&s :-% ron Oﬁg-u lﬂj
e vOES £ he  (seal it (

@ vale ol e unkrm plani, Ak

' Amplifier X o)

Software i |—1| Encoder L i sted
e A O = »/
1 [ [o] 1 .[1
| A Motor ! “f" >
[ =3 AR I A & -
i —do 1 Input Voltage Hardware yesy
1 1—>| 0
: / \ k_ g [l [| |] Position Feedback
:  Computer |  JcpACE

U U

Fig. 3. Overall structure of the gantry robot test platform.

Fig. 2. A multi-axis gantry robot test platform.
direction is placed on the top of the other two axes, and
comprises a linear ball-screw stage driven by a rotary lbessh
Algorithm 1 has attractive robust performance against mMod§c motor. For each axis, a BNC channel sends the input
uncertainty. - ex voltage signal to the motor amplifier, and the displacement
Furthermore, the sequené¢(A;)} has Stm robust con- of each axis is measured as the output trajectory signal by an
vergence propertiegnat certain cases—¥his—means—nat difical incremental encoder installed on the same axis. The
proposed algorithm then solves the optimizatier-probtem) (3nybrid motion of the three axes gives rise to a path of the

wit _ cll as opimizing an a gantry robot end-effector in 3D space.
performance-index-for threse speciat-cases. See the followin This test platform consists of a dSPACE DS1103 micro-

corollary fer-am-exemptary-ease. 03 stodr s controller, Aerotech model BA10 linear amplifiers, and Ren-
Corollary 3. If the model uncertainty is in a constant scalaishaw RGH22 linear encoders with a resolution ofih for

form, i.e. A = k, where k is a constant scalar, then thex-axis and y-axis, and Aerotech rotary encoder for z-axit wi
sequence{f(Aj)} generated by the gradient projection updata resolution of 0.5:m. See Figure 3 for the overall structuge = )

(50) strictly monotonically converges downward to a limit of the gantry robot test platform. QL [¢ f )
i.e. o v
_ ~ . 5=
FAj1) < f(A)), V= 0/2“ Lomit &60) B. Task Design Objective
whoe e equilly bk b ¢ reacked . The control design objective is to use all three axes 3)

to perform a piecewise linear path following task composed
of five line segmentsN/ = 5) with

O
W ncer- "0 © 0.00476 0.00294
tainty, and the ntrol effort IS proportional to ther0 —lo |, r=1 000345 | ,rp= | 0.00905 |,
n y com ch gradient projection 0
i ore, the mon i -

Proof. See Appendix G.

) 0.008 0.01
tr ence of controbrff - -
to a | frmmum  value is i in this —0.00294 —0.00476 0
corollary. rs = | 0.00905 |,rs=| 000345 |.,r5=10 |,
0.01 0.008 0

Remark4. Atthougtrtire—troeoptimat-sotution—is guarameeds shown in Figure 6 (the blue path), during the given tragkin

={6fa, ttime horizon[0, 2], i.e.T" = 2s. In addition, the minimum time
fracki ror_norm converges to zero and the perforrsang@ent between two adjecent transition vertice®.(d.s.

inaex ca e orﬁj shown boundéd for the movre genera| CaseEOf implementation, the Welghtlng matrices are chosen as

of model uncertainties| " Qi = ¢l, Qi = ¢/ and R = 7] whereg;, ¢; and 7 are
(he £ positive scalars. Furthermore, appropriate weightingrices
V. EXPERIMENTAL VERIEICATION are chosen according to the theoretical predictions in {87]

balance convergence speed and robust performance,/ice=
In this section, a three-axis gantry robot is employed as3a, 000 and g; /7 = 3,000, 000.

test platform to validate the performance of Algorithm 1 and
demonstrate its effectiveness in practice.

C. Experimental Performance of Algorithm 1

The robust performance of Algorithm 1 is tested with signif-
icant model uncertainty to replicate an industrial envinemt.
The multi-axis gantry robot shown in Figure 2 has thre&ssume that only three inaccurate nominal models (for ;axi
axes, which are perpendicular to each other. The x-axis ap@xis and z-axis) are available for control design as
the y-axis move in the horizontal plane and are driven by 0.04 0.04 0.04
linear brush-less DC motors. The z-axis with vertical mgvin ~ G, (s) = — Gy(s) = - andG,(s) = —~ (61)

e M wil be
5 o (efl e o P T ~
7o o ((/ ropd SM .

A. Test Platform Specifications
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Fig. 4. A comparison of control effort along the gradient pation trials for Fig. 5. A comparison of transition time allocation along theadient

Algorithm 1, classical ILC and successive projection ILC. projection trials for Algorithm 1, classical ILC and sucsie projection ILC.
H H —— Desired Path

Very accurate high ordgr trgnsfer function models of th T Converged Output Trajectory

same gantry robot are given in [38] and allow the the mode e Transition Vertices

uncertainty operato”A to then be computed. This satisfies
the condition (56) of Theorem 4Algorithm 1 is applied with
the initial transition time allocatiot\, = [0.3,0.7,1.3,1.7] T,
and the gradient projection (50) chooses the parametarsval
to beoc = 0.1, « = 0.5 andvy = 0.05,0.07,0.09 respectively.
The results of control effort and transition time instanter®5

0.012

0.01

0.008

z-axis(m)
o o
o o
o o
S (=

gradient projection trials are shown in Figure 4 antlléte that 0.002
the attempt number of Stage One solution required to obta 0
the generalized Armijo step size satisfying (48) incredsag 001

0 to 7 along the gradient projection trials, and it requires altote
number of8 attempts of Stage One solution to compute the
values off(A%") and f(A%") to hence estimat¥ f(A;) using y-axis(m) o s x-axis(m)
(53) at each trial.

. cor‘_npangon, the_ performance of ClaS,SICal norm Optlm@rb. 6. Desired path and converged output trajectory at thal fjradient
ILC algorithm in [37] is also evaluated using a pre-planneghojection trial for robust test.
speed profile with the same path. As a normal practice, the
pre-planned trajectory is defined by a fixed transition time
[0.4,0.8,1.2,1.6]" and the moving speed of the end-effectolLC (shown as the yellow dashed line in the figure with value
along each line segments is considered as a constant vafi$ed.6) by around8% in terms of control effort reduction.
The final case implemented is to solve optimization probleifhese features demonstrate the advantage of the proposed
(31) offline using the nominal plant model (61), yielding thalgorithm over other ILC algorithms. This advantage will
solution plan[0.50,0.84,1.17,1.50] ', and then to use this asincrease further as the degree of model uncertainty ineseas
a fixed reference in the standard successive projection IIFOr further information, the transition time instants foese
algorithm of [30]. The corresponding results of classical ILGapproaches are shown in Figure 5, where the blue, red, and
and successive projection ILC are plotted in the same figuresagenta curves denote the transition time allocatignat

In Figure 4, the blue, red, and magenta curves denote #wch trial fory = 0.05,0.07,0.09 respectively with the final
minimum control effort f(A;) at each gradient projectionconverged valud,,, = [0.66,0.90,1.09,1.36]" and the green
trial for v = 0.05,0.07,0.09 respectively. Using the proposedand yellow dashed lines represent the constant transitioa t
algorithm, the control effort of the path following task eoninstants of classical ILC and successive projection ILC.
verges over the trials, and the converged minimum controlNote that the above control effort reduction is achieved
effort of 546.9 is independent of the algorithm’s parametewithout compromising the path following accuracy. The ex-
choice ofy. Compared to the standard practice of using @erimental converged output trajectory fag,, is shown in
pre-planned speed profile with a required control effort dfigure 6 with the red dots denoting the transition vertices,
682.4 (shown as the green dashed line in the figure), tland it is clear that the converged output trajectory acelyat
proposed algorithm achieves approximatelys control effort follows the given piecewise linear path. The final converged
reduction. In addition, it outperforms successive projectiomnput and output trajectories of each axis are shown in Eigur
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TABLE | A
10° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ SUMMARY OF EXPERIMENTAL RESULTS WITH DIFFERENTQ;, Q; AND R.
Aopt f(Aopt) | Reduction
-~ 69;41233680&0 [0.65,0.90,1.09,1.36]T| 5451 | 20.12 %
£ T — 9 )
£ q;/7 = 30,000, T o
- a5 000,000 |[0-65:0.90,1.00,1.36]T| 5468 | 19.87 %
© qg/if/r_:szagégogéo 0.65,0.90,1.00,1.35]T| 547.3 | 19.80 %
[ 1 — ) )
g q:/7 = 30,000, - .
2 ii/¥ 210,000,000 [0-66,0.90,1.09,1.35]T| 5465 | 19.92%
@ ) )
(5] S —
= f%’;ﬁ&go&o [0.65,0.90,1.09,1.35] 7| 545.9 | 20.00 %
7 — ) )
q_q/if_:fgégogéo [0.65,0.90,1.09,1.36]T| 544.7 | 20.18 %
k3 — 9 3
il Qf;g ;:3?868?860 0.66,0.90,1.09,1.36]T| 546.6 | 19.90 %

Number of ILC Trials, k

Fig. 7. The mean square path following error along the ILQsri the final  [LC. Experiments using other initial transition allocatjce.g.
gradient projection trial in the robustness test. the low resolution one in [27], have also been performed and
produced similar performance.

s
< 05 _ %1073

Ea E° VI. CONCLUSION AND FUTURE WORK

S s £ ’ This paper develops a general ILC design framework for
g 4 = - S x 8 - - - : repeated path following tasks. It not only guarantees the
s Time, t (s) Time, t (s) path following accuracy, but also minimizes an additional
f“ £ performance index of interest by fully exploiting the con-
g O—J_Ll_f’ o0 trol design freedom. The general path following problem is
S % . . .. . f

z ., 8 reformulated into an equivalent optimization problem gsin

2 05 0 . . . . .

g o P et 2 0 P et 2 a projection operator. The class of piecewise linear paths
g ' is characterized for the reformulated problem setup, and a
z E™ Two Stage design framework is proposed to solve this non-
2 > .. . . . . .

‘—;;‘ ° g 000 trivial problem. This framework yields an iterative algbrn

5 o ] g 0 with robust convergence properties, which incorporates an
I 0 05 1 15 2 0 0.5 1 15 2 . . . . .

= Time, t (s) Time, t (s) ILC update and a gradient projection update. This algorithm

is verified experimentally on a gantry robot test platform to
Fig. 8. Converged input signal (left) and output trajectfmght) at the final demor?s'[rate its significant prgcucal benefits of qontrﬁbref
gradient projection trial in the robustness test. reduction and robustness against model uncertainty.
Although experimental verification of the proposed algo-
rithm has revealed practical efficacy, this paper focuses on

for more informationTo examine convergence in more detailpiecewise linear paths and minimum control effort. In gaher
the mean squared path following errors at the ILC trials féhe optimization problem (31) can be extended to handlerothe
the final gradient projection trial are plotted in Figure 7tloe types of paths, e.g. piecewise arc paths. In this case, the
~ = 0.09 case. This figure shows that it requiresILC trials  Projection operator’. becomes non-linear, and non-linear ILC
for the path following error to decline to a value below th@pproaches using gradient or Newton method can be applied
accuracy value = 10*2mm2_ In the experimentS, it genera”yto solve the prOblem. However, a glObal solution mlght not
requires8 — 12 ILC trials to achieve the desired accuratty. Pe guaranteed due to the non-linearity. In principle, th€ IL

is also worth mentioning that the above results are obtain@@sign framework can be implement to optimize an altereativ
using relatively inaccurate nominal models, illustratittgat Performance index, such as the path following tirveean-

the proposed algorithm has a certain degree of robustn#4yle, a rigorous analysis of the robust convergence ptigger

against disturbance and model uncertainty, which is apmealof the proposed algorithm with respect to iteration varying
in practice. noise or disturbances is needdtese aspects constitute the

Furthermore, experiments with different values @f, 0, focus of future research and will be reported separately.

andR have also been carried out using the parametets). 1,
B8 = 0.5 and vy = 0.07. The corresponding results are APPENDIX
summarized in Table |. From this table, the optimal traositi A. Proof of Theorem 1
time allocation obtained by Algorithm 1 all converge, and ;

- ’ If R.., there existg(t) = t)) and
the minimum control effort results of these cases are all ve y(t) =rlg(t)
approximately20% less than the value obtained from classical y(t;) = r(g(t;)) =r(s;) =r;, i =0,...,M +1, (62)
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by definition. Due to the tracking order, it follows that which is identical to Stage One problem (34). Therefore, its
solution (43) added an offset inputu to the input signal
u* obtained by the ILC update to optimize the performance
Therefore,s; < g(t) < s;41 for t € [t;, t;11], and all the index f(u,y) without violating the perfect tracking error of
pointsy(t) on this sub-interval belong to the line segment set — y¢* = 0 or the system constraints* € Q, y* € &,

m which solves Stage One problem (34).
Ri={yeR":y=rip1—7v(rit1—1), v €10, 1]}, (64) 9 P (34)

and satisfy the relationship,y(t) = P;r;. It follows that

O=to<t1 <...<tpyr1=T. (63)

C. Proof of Corollary 1

Pi(riss —y(riva —ri)) = Pirs, (65) In the absence of the constraints, the ILC update (41)-
which yields P;a; = 0, and further equates to the projectior{42) collapses to the ILC update (45). According to [39], the
operatorP; in (19). Also, ask; is a line segment set, it follows ILC update (45) ultimately converges to provide the optimal
that a hard output constraint exists solution (46) to problem (34) without the constraints.

a; i < aj y(t) <af riga, tE [t tiya], (66)

to prevent overshoot, which yields the det defined in (18). D. Proof of Proposition 2

The above derivations imply the operatBr defined in (17)  The proof by contradiction is used to confirm that the

and the output constrainte @,.. overshoot does not happen whdn= 0, so it is assumed that
If P, is defined by (17) ang € ®,., it follows that the outputGu.,(A) has overshoot at th&" line segment. It
B o is necessary (but not sufficient) that there must exist a time
y(tz) - T(g(tl))7 1= O» ) M + 1. (67) t;k c (ti,—ly tz) SUCh that
Since (Pyy)(t) = Py(t) = Piry, t € [t;, tiy1] andy € P, .
are satisfied, the above steps can be reversed to obtain (Gu™)(t7) = (Gu™)(t:) = 7. (72)
tYER:,. telt:. t: i=0.....M. 68) Since the input constraint is not specified, an input
y( ) iy [ iy Z+1]a ) ) ( )
Therefore, (67) and (68) combine to give ut(t) = {(u ((k))(t) t egzs,e L], (73)
y(t) =r(g(t)), t €0, T1, (69) = ’
for g(t;) = s; and s; < g(t) < sie1s t € [ti, ti0q], which @D be always cons_tructed ¢ 7] based on the assumption
impﬁt(as)y - % s; < g(t) < siva [ti; tisa of overshoot to provide a lower control effort thag, (A), i.e.

%12 2 .
Therefore, the ILC problem (13) is equivalent to the form "Il < lluco(A)[[- From (73), there exists

(21) by substituting the definition (17) aP. and the extra (Gu*)(t) = (Guao(A)(2), t € [0, £1]. (74)
output constrainy € ®,. to replaceP,.y = P,7.
Since A = 0, it follows that
B. Proof of Theorem 2 o .
With the assumptions made in the theorem, the path fol- (Gu™)(t) :/ C’Bu*(s)ds—l—/ CBu*(s)ds
lowing design objective of the problem (34) is within the

range of the ILC problem discussed in [30]. Therefore, the CB (too (A))(5)ds
ILC algorithm proposed in that paper can be applied with o
minor modifications to achieve the design objective with Guoo( N(E) =7, YVt E[t], ti, (75)

desirable convergence properties by setting the apptepria
parameters, which give rise to the ILC update law (41)- (Gu™)(t) :/ CBu*(s)ds+/ CBu*(s)ds
(42). However, it only guaranteeg to converge tor¢, i.e. 0 ti

1 t
limy o yi = y** = r”, rather than an optimal performance _ _
index. (Guoo(A))(:) + s CB(uso(M))(s)ds
The system is invertible since the system (1) is control- = (Guso(A))(2), ¥ t € [ts, T]. (76)

lable. Hence, it follows from the definition of the operator

L in (39) and the signat is continuous that the constraintsThen, it follows that

Au=G™ 'Lz and Fz = 0 give rise to . ,
(Gu*)(t;) =r;, 1=0,.

(GAu)(t:) =0, i=0,..., M +1, (P.Gu*)(t) = Py, t € [ti_l, t], i=1,..M. (77)

PZ(GA'LL)(t) =0, te (ti, ti+1)7 1 =0, 7M (70)
. Hence the input.* not only provides a lower control effort
The above equations are denoted(dsAu = 0. Therefore, han the optimal valuei.,(A), but also satisfies the track-
the problem (44) is equivalent to ing requirementy® = r¢. This obviously contradicts the
min f(u,y) (71) assumption that the optimal input. (A) generates overshoot.
" Therefore, the simplified ILC update (45) provides a sohutio
sty" =y y=Gu, ueQ, yed, satisfying the hard constraigte ®,..
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E. Proof of Theorem 2

12

G. Proof of Corollary 3
Since the system constraints do not engage, the analytidt follows from (83), 7§ = G{uZ(A) andG =

1+ k)G

solution (46) is available. Substitute (46) into the problg85) such that the relationship between the constant vatuand

and use the property of adjoint operator to yield

min oo (A) % = min {(usc(A), uac(A)

—min ((GX(GRGR) ™17, G (GRGE) ),
—min (GRGF (GRGF) ™", (GRGE) 1)
=min (r°, (GRG5)7)g. (78)

which completes the proof.

F. Proof of Theorem 4
Since the real plant: is in a multiplicative form (55), the
measured extended erref is
e o [FGl . [FUI+A)G
e, =rm Pe Uk =T P(I+A)G U
Based on equation (79) and update (45), it follows that
F(I+A)G
P(I+A)G

(79)

(1]

}wk LGP+ G )
[2]

e e
€k+1—T |:

L
— (- m AGGS) (I + G5G5)™ (80)
[3]
E
SinceG¢ is right invertible, it is clear that 4]
|+ GG <p<1, (81)

which with the condition (56) give rise to the monotonic[s]
convergence condition (57) as follows:

(& F ex (& ex)— (&
el <7 [ acex | o+ esesr e
<@+ GRER) [ Hlell < pllekll < llexll- (82)

The error norm is lower bounded by zero, so the sequené@
{ef} converges to zero and the task design objective is
achieved as

= GRugl(A) e
for each gradient projection trial.
It follows from (45) and (80) that the input signal can be

represented as

(83)

Bl

up = ug + Leg [10]
ug = uy + Lej = ug + Lej + LEeg
(11]
k—1
ur =ug+ L Z Eieg (84) 12
. -, =0 . [13]
Since E satisfies||E|| < 1, there exists
lim w, = uo + L(I — E)~ @5
k—o0
Note thatu, = 0, hence the solution is [15]
ult(A) = LI — B)'r* = G (GSGY) ™ (86)

which together with the condition (58) yields the upper kxd1ur1[16]
of f(A) in (59).

with respects to a constant ratio. In this sense

‘%E. herefore the sequendly stric
Fu‘-f <he

onotonica

the numerical computed valug is obtained as

¢ = Gut(A) = (1 + K)GSu(A) = (1 + K)7S,  (87)

which means that the valug at each gradient projection trial
is proportional to the value“. Therefore, the performance
index (7§, (G{G%)~
tional to f(A) as

1fg> optimized at each trial is propor-

1

mf(A)7

("%, (GRGR)™

17q1e\> _

onverges
y decreases.
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