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Iterative Learning Control for Path Following Tasks
with Performance Optimization

Yiyang Chen, Bing Chu∗ and Christopher T. Freeman

Abstract—The classical problem setup of iterative learning
control (ILC) is to enforce tracking of a reference profile specified
at all time points in the fixed task duration. The removal of the
time specification releases significant design freedom in how the
path is followed, but has not been fully exploited in the literature.
This paper unlocks this extra design freedom by formulating the
ILC task description to handle repeated path following tasks,
e.g. welding and laser cutting, which aim at following a given
“spatial” path defined in the output space without any temporal
information. The general ILC problem is reformulated for ILC
design with the inclusion of an additional performance index,
and the class of piecewise linear paths is characterized for the
reformulated problem setup. A Two Stage design framework
is proposed to solve the characterized problem, and yields a
comprehensive algorithm based on an ILC update and a gradient
projection update. This algorithm is verified on a gantry robot
experimental platform to demonstrate its practical efficacy and
robustness against model uncertainty.

Index Terms—iterative learning control; optimization; path
following

I. INTRODUCTION

In a broad class of automation tasks, e.g. assembling,
welding and drilling, the task design objective is to follow
a path, which is specified as a set of spatial points without
temporal information. The concept of “path following” differs
from that of “reference tracking” as it removes all temporal
tracking information. In other words, it does not specify how
fast the system moves along the given path. In path following
problems the speed profile (as a function of time) along
the path is considered as a time-varying variable due to the
elimination of the temporal constraints. This feature releases
significant control design freedom compared to the reference
tracking problem setup with a predefined speed profile, but
also leads to substantial difficulties in the control designphase.

The class of path following problems has been consid-
ered in existing research, e.g. [1]–[4], in the application
of autonomous air or surface vehicles. They implicitly or
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explicitly design the speed profile using the measured data via
a feedback control setup, such that the desired path is followed
asymptotically even in the presence of model uncertainty (e.g.
disturbances and parametric model mismatches). However,
these techniques are all specific to vehicle steering problems
and no performance optimization rather than path followingis
considered, which has not fully exploited the design freedom.
In the area of robotic motion planning, existing research, e.g.
[5]–[8], has capitalized on this design freedom to optimizean
additional benefit while maintaining path following accuracy.
Since they do not incorporate a learning procedure based on
previous executions of the task, their along the trial perfor-
mance is inevitably limited for repeated path following tasks.

Conversely, a framework termed Iterative Learning Control
(ILC) has been formulated to learn repeated tracking tasks,but
has not yet exploited the design freedom of path following.
ILC is suitable for a large class of path following applications,
e.g. gantry robot [9], mobile robot [10], wafer stage [11] and
stroke rehabilitation [12]. It updates the system input signal
at the end of each trial based on the measured data, e.g. the
tracking error, from the previous trials, which theoretically
reduces the error to zero. See [13]–[17] for detailed overviews
of ILC. Note that most existing ILC research, e.g. [18]–[20],
focuses on tracking a fixed reference profile specified at all
points over a predefined time horizon.

In the last decade, ILC research has started to remove the
postulate of a fixed reference profile.Vehicle path following
was considered in [21], and a feedforward ILC update law was
developed employing the local symmetrical double-integral
of the feedback control signal obtained from the previous
trial. The seminal work in [22] used a P-type ILC algorithm
to solve the 2D corner tracking problem using the distance
between the output trajectory and the desired path for motion
control applications. The research in [23], [24] aimed at
reducing the periodic varying torque ripple and improving the
additive manufacturing quality respectively. They redefined the
system input and output signals using spatial coordinates,and
reformulated existing ILC algorithms into the spatial formats.
In [25], [26], the minimum time path following problem was
considered for a 2D path by explicitly updating the nominal
system model using the measured data and then solving the
problem using the algorithms in [5], [6], which however has
not inherited the input update procedure of ILC.

The aforementioned ILC approaches are either application
specific or not concerned with path following.In addition,
they only consider path following accuracy, and have not fully
harnessed the available design freedom in the temporal domain
to optimize an extra performance index. The optimization of
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such a performance index brings significant practical benefits,
such as control effort reduction, machine damage avoidance
and increased manufacturing efficiency.Note that the authors’
previous work in [27]–[30] has considered optimization of the
intermediate time instant within point-to-point trackingprob-
lems and the path following problem with fixed intermediate
time instants. However, they have not formulated a general
ILC framework to address optimal path following problems
in a principled manner.

To address the above limitations and need, an ILC frame-
work is developed in this paper to solve the path following
problems for a broad class of systems with high tracking ac-
curacy, and simultaneously minimizes a specified performance
index of interest, e.g. control effort. The path following ILC
problem is first defined in Section II, and then reformulated
into an equivalent problem for control design in Section III.
The class of piecewise linear paths is characterized for the
reformulated problem setup, which comprises a substantial
extension to existing ILC scope involving constraint handling,
embedded projections and time variable updates. An expanded
version of the Two Stage design framework proposed in [27],
[28] is applied to solve the equivalent ILC problem. In Section
IV an iterative algorithm is obtained with desired robust
convergence properties, which minimizes the control effort
and ensures path following accuracy. This algorithm is verified
experimentally in Section V on a gantry robot test platform to
demonstrate its practical efficacy and robustness against model
uncertainty. Note that some initial results in this paper have
been reported in [31], but do not embed system constraint
handling or provide the robust convergence properties.

The notation used in this paper is standard:N is the set
of non-negative integers;Rn andR

n×m denote the sets ofn
dimensional real vectors andn×m real matrices respectively;
S
n
++ is the set of alln × n real positive definite matrices;

Lℓ
2[0, T ] denotes the space of functions defined on[0, T ]

whose function value belongs toRℓ and2 power is Lebesgue
integrable;〈x, y〉 is the inner product ofx and y in some
Hilbert space;X × Y is the Cartesian product of two spaces
X andY; PΘ(x) denotes the projection ofx onto the setΘ
in some Hilbert space;ImM andKerM are the image and
kernel of an operatorM respectively.

II. PROBLEM FORMULATION

This section introduces the system dynamics as well as the
path following task design objective, which together form a
general path following ILC problem. To further exploit the
design freedom, an additional performance index is embedded
as a cost function to be optimized within this problem setup.

A. System Dynamics

Consider a multi-input, multi-output linear time-invariant
system given in a state space form

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

wheret ∈ [0, T ] is the time instant;0 < T < ∞ denotes the
ILC trial length; the subscriptk ∈ N denotes the trial number;

Fig. 1. An example of paths as set of spatial points inRm.

xk(t) ∈ R
n, uk(t) ∈ R

ℓ and yk(t) ∈ R
m are the state, input

and output respectively;A, B andC are system matrices of
compatible dimensions. At the end of each trial, the state is
reset to an identical initial value, i.e.xk(0) = x0. The system
has an equivalent operator form

yk = Guk + d. (2)

In the above operator form,yk ∈ Lm
2 [0, T ], uk ∈ Lℓ

2[0, T ]
are the system input and output signals.The output Hilbert
spaceLm

2 [0, T ] is defined with inner product and associated
induced norm

〈x, y〉S =

∫ T

0

x⊤(t)Sy(t)dt, ‖y‖S =
√

〈y, y〉S , (3)

in whichS ∈ S
m
++ is a weight matrix. The input Hilbert space

Lℓ
2[0, T ] is defined in a similar fashion to (3) by replacing

y and S with u and R ∈ S
ℓ
++. The system operatorG :

Lℓ
2[0, T ] → Lm

2 [0, T ] and the effect of initial conditions
d ∈ Lm

2 [0, T ] have analytic forms

(Guk)(t) =

∫ t

0

CeA(t−s)Buk(s)ds, d(t) = CeAtx0, (4)

which are obtained from the state space form (1).Without loss
of generality, zero initial conditions are assumed, i.e.x0 = 0
and therefored = 0. The results in this paper hold for non-
zero initial conditions, simply by subtractingd from both the
output,yk, and reference.

B. Path Following Design Objective

Any continuous path can be defined in the output space by
introducing a continuous functionr(s) parametrized by spatial
variables ∈ [0, 1] with each pointr(s) ∈ R

m. An example of
such a path is shown in Figure 1 as the black curve. Defining
a continuous mapg from interval [0, T ] to interval [0, 1]
characterizing the speed profile along the path, i.e.

s = g(t), t ∈ [0, T ], s ∈ [0, 1], (5)

gives rise to a specific temporal trajectory defined by the func-
tion r(g(t)). As explained in [32],s is termed the progression
rate, denoting the0% to 100% completion of the whole path.
An example isg(t) = t/T corresponding to the case of a
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constant speed profile. LetGT be defined as the set of all
such continuous maps

g : t ∈ [0, T ] 7→ s ∈ [0, 1], g(0) = 0 andg(T ) = 1, (6)

then the set of all admissible trajectories along the same path
r(s) is given by

Rr = {r̃ ∈ Lm
2 [0, T ] : r̃(t) = r(g(t)), t ∈ [0, T ], g ∈ GT }.

(7)
The path following design objective is to follow the given path
at any admissible speed profile, i.e.

y = r̃, r̃ ∈ Rr. (8)

C. Path Following ILC Problem

In trajectory tracking tasks, the speed profileg(t) is spec-
ified a priori, which is not the case in path following tasks.
Given the infinite speed profile choices, significant design free-
dom can be unlocked in the control design of path following
tasks. For example, the inputu and outputy can be stipulated
to optimize an addition performance indexf(u, y) while
maintaining the path following accuracy. The optimizationof
such performance index brings practical benefits. For example,
if f(u, y) = ‖u‖

2
R, the control effort can be minimized

while performing the path following task, which significantly
reduces manufacturing costs or overheads.

In addition, design constraints generally exist in practice
for robotic path following tasks.For example, consider input
constraints representing the allowed or safe input load range,
an example of which is the set:

Ω = {u(t) ∈ R
ℓ : λ(t) � u(t) � µ(t), t ∈ [0, T ]}. (9)

where� denotes elementwise inequality.
Considering an extra input constraint, the path following

ILC problem is then stated as follows:

Definition 1. The Path Following ILC Problem is to iter-
atively update an input sequence{uk} from an initial input
u0 ∈ Ω with the asymptotic property that the outputyk
accurately passes through all points along the pathr, i.e.

lim
k→∞

uk = u∗, (10)

whereu∗ is the solution of the optimization problem

min
u

f(u, y) subject toy = Gu, y = r̃, r̃ ∈ Rr, u ∈ Ω. (11)

III. PROBLEM REFORMULATION AND SOLUTION

In this section the ILC problem stated in Definition 1 is
reformulated into an equivalent form for ILC design, and
exemplified through application to the class of piecewise linear
paths. A Two Stage design framework is proposed to enable
a tractable solution for the problem.

A. General Problem Reformulation

The setRr can be equivalently defined using a projection
operator Pr and a output constrainty ∈ Φr to yield a
restatement of problem (11) that is suitable for ILC design
as shown below.

Proposition 1. If there exist a projection operatorPr :
Lm
2 [0, T ] 7→ Lm̂

2 [0, T ] and a setΦr such that for anỹr ∈ Rr

andy ∈ Lm
2 [0, T ]

Pry = Pr r̃ andy ∈ Φr ⇔ y ∈ Rr, (12)

the optimization problem (11) within the general path follow-
ing ILC problem of Definition 1 is equivalent to

min
u

f(u, y)

subject to y = Gu, Pry = Pr r̃, y ∈ Φr, u ∈ Ω,
(13)

wherem̂ is the dimension of the projected space.

Proof. Note that it is first assumed thatΦr ⊂ Rr, otherwise
the projection constraintPry = Pr r̃ may simply be omitted
from both (12) and (13). Since the sufficient and necessary
condition (12) holds, the general optimization problem (11)
can be equivalently written as (13) by replacingy = r̃ and
r̃ ∈ Rr with Pry = Pr r̃ andy ∈ Φr.

B. Characterization of Piecewise Linear Paths

In general, the projection operatorPr can be discontinuous
and non-linear. However, there are classes of paths which give
rise to a linear projection operatorPr that satisfies condition
(12) in Proposition 1. An example of such a class is shown in
the next definition.

Definition 2. The class ofPiecewise Linear Pathsis defined
by the following function

r(s) = ri +

(
s− si

si+1 − si

)

(ri+1 − ri), (14)

for s ∈ [si, si+1], i = 0, . . . ,M , with transition vertices

ri = [r1i , r2i , . . . , rmi ]⊤, i = 0, . . . ,M + 1, (15)

in Cartesian space and a set of spatial variables satisfying

0 = s0 < s1 < . . . < sM < sM+1 = 1. (16)

The piecewise linear path following problem specifies that
the ith segment of the path is completed before the(i+ 1)th

segment is started. While staying within the exact line seg-
ment, the end-effector can move backwards to save energy.
Such piecewise linear paths are common in manufactur-
ing/construction, e.g. applications such as welding panels in
ships and buildings, and typically cannot be modified by the
designer.The following theorem characterizes the class of
piecewise linear paths to obtain the corresponding operator
Pr and setΦr required to satisfy Proposition 1.

Theorem1. For the class of piecewise linear paths of Defini-
tion 2, operatorPr is defined by

(Pry)(t) = Piy(t), t ∈ [ti, ti+1], i = 0, ...,M, (17)
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and the output constraint setΦr be defined by

Φr = {y ∈ Lm
2 [0, T ] : a⊤i ri 6 a⊤i y(t) 6 a⊤i ri+1,

t ∈ [ti, ti+1], i = 0, . . . ,M}, (18)

wherePi ∈ R(m−1)×m is a full rank matrix satisfying

KerPi = Im ai, i = 0, . . . ,M, (19)

ti is the time instant of theith transition vertexri, i.e.

y(ti) = ri, i = 0, ...,M + 1, (20)

and ai = ri+1 − ri, i = 0, ...,M . The ILC problem (13) is
equivalent to

min
u

f(u, y)

subject to y = Gu, u ∈ Ω, y ∈ Φr,

Piy(t) = Piri, t ∈ [ti, ti+1], i = 0, ...,M,

y(ti) = ri, i = 0, ...,M + 1.

(21)

Proof. See Appendix A.

Although the general optimization problem (13) is not
convex, the above theorem characterizes the class of piecewise
linear paths by introducing a linear and continuous projection
operatorPr and an output constrainty ∈ Φr, which make
the piecewise linear path following problem (21) convex. To
simplify the notation in (21), the projectionPiy(t) = Piri and
y(ti) = ri in (21) can be equivalently expressed as

ye = re, (22)

where the mappingζ ∈ Lm
2 [0, T ] 7→ ζe ∈ H is defined as

ζe = [Fζ, Pζ]⊤, (23)

and the referencer ∈ Lm
2 [0, T ] is defined asr(T ) = rM+1,

andr(t) = ri, t ∈ [ti, ti+1), for i = 0, . . . ,M .
In (23), the operatorF extracts the elements ofζ at the

intermediate time instantsti, i = 1, . . . ,M as well as the
start/terminal time instantst0 and tM+1, and is defined as

Fζ = [ζ(t0), . . . , ζ(tM+1)]
⊤, ζ(ti) ∈ R

m. (24)

The operatorP extracts the elements ofζ along [ti, ti+1],
i = 0, . . . ,M , and is defined as

Pζ = [(Pζ)0, . . . , (Pζ)M ]⊤, (25)

where(Pζ)i ∈ Lm−1
2 [ti, ti+1] is defined as

(Pζ)i(t) = Piζ(t), t ∈ [ti, ti+1].

The Hilbert spaceH is defined as

H = R
m×· · ·×Rm

︸ ︷︷ ︸

M+2

×Lm−1
2 [t0, t1]×· · ·× Lm−1

2 [tM , tM+1]

with the inner product and associated induced norm

〈(ω, ν), (µ, λ)〉Q̃ =
M+1∑

i=0

ω⊤
i Qiµi +

M∑

i=0

∫ ti+1

ti

ν⊤i (t)Q̂iλi(t)dt,

‖(ω, ν)‖Q̃ =
√

〈(ω, ν), (ω, ν)〉Q̃, (26)

where(ω, ν), (µ, λ) ∈ H is defined by the following form

ω = [ω0, ω1, . . . , ωM+1]
⊤, µ = [µ0, µ1, . . . , µM+1]

⊤,

ν = [ν0, ν1, . . . , νM ]⊤, λ = [λ0, λ1, . . . , λM ]⊤.

Hereωi, µi ∈ R
m, νi, λi ∈ Lm−1

2 [ti−1, ti], Q̃ denotes the set
{Q0, . . . , QM+1, Q̂0, . . . , Q̂M}, Qi ∈ S

m
++ and Q̂i ∈ S

m−1
++ .

The mapping (23) gives an “extended signal”ζe defined
to be a “partial projected” signal(Pζ)(t) plus valuesζ(ti)
at transition time instants. Using this notation, the “extended”
system dynamics are modelled as

yek = Ge
Λuk = (Guk)

e = [FGuk, PGuk]
⊤, (27)

whereye is the extended system output. The subscriptΛ of
the extended system operatorGe

Λ : Lℓ
2[0, T ] → H denotes the

dependence on the unknown transition time instants defined as

Λ = [t1, . . . , tM ]⊤ ∈ Θ, (28)

whereΘ is the admissible set forΛ defined as

Θ = {Λ ∈ R
M : 0 < t1 < . . . < tM < 0}. (29)

Using the equivalent design constraint (22), the path fol-
lowing ILC problem stated in Definition 1 is reformulated for
the class of piecewise linear paths as follows.

The Piecewise Linear Path Following ILC Problem is to
iteratively update the transition time allocationΛk and the
input signal uk from initial valuesΛ0 ∈ Θ and u0 ∈ Ω
with an asymptotic property such that the extended outputyek
accurately tracks the extended referencere, i.e.

lim
k→∞

(Λk, uk) = (Λ∗, u∗), (30)

and (Λ∗, u∗) are solutions of the optimization problem

min
Λ,u

f(u, y)

subject to y = Gu,

ye = re,

Λ ∈ Θ, u ∈ Ω, y ∈ Φr.

(31)

C. A Two Stage Design Framework

The optimization problem (31) requires simultaneous selec-
tion of Λ and u to optimize the performance indexf(u, y)
subject to the tracking requirements. To solve this problem,
several extensions will be added to existing ILC frameworks
reported in the literature, i.e. temporal optimization, and hard
constraint handling.

The optimization problem (31) is equivalently stated as

min
Λ∈Θ

{

min
u

f(u, y), s.t. ye = re, y = Gu, u ∈ Ω, y ∈ Φr

}

,

(32)
which first optimizes the problem overu and then overΛ.
Define a functionf̃(Λ) as the minimum value of the inner
optimization problem in (32), i.e.

f̃(Λ) = min
u

{f(u, y), s.t. ye = re, y = Gu, u ∈ Ω, y ∈ Φr} ,
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and denote a global minimizer for the inner optimization
problem asu∞(Λ) : Θ → Lℓ

2[0, T ]. Combining the above
notations, the optimization problem (32) is equivalent to

min
Λ∈Θ

f(u∞(Λ), Gu∞(Λ)). (33)

To solve the original optimization problem (31), a Two
Stage design framework inspired by the block coordinate
descent methods of [33] is employed in this paper, which
reformulates the problem into two stages. It alternates be-
tween optimizing the variablesu andΛ using experimentally
obtained data to provide a local minimizer of (33).This
framework is described as follows:

• Stage One:Solve the inner optimization problem (32)
with a fixed transition time allocationΛ, i.e.

min
u

f(u, y), s.t. ye = re, y = Gu, u ∈ Ω, y ∈ Φr. (34)

• Stage Two:Compute the solution of the resulting problem
(33), i.e.

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ), Gu∞(Λ))}. (35)

where the signalu∞(Λ) is the solution of problem (34).

To exemplify the design framework, the control effort
f(u, y) = ‖u‖

2
R (which is a convex function) is chosen.

Note that the projection operatorPr is linear for the class of
piecewise linear paths, so there exists of a unique global min-
imizer for Stage One Problem (34), and hence (35) becomes
minΛ∈Θ ‖u∞(Λ)‖

2
R.

IV. COMPREHENSIVESOLUTION OF THE TWO STAGE

DESIGN FRAMEWORK

In this section, the solutions of the Two Stage framework are
derived to yield an iterative algorithm with robust convergence
performance as well as implementation instructions.

A. Stage One Solution

Stage One problem (34) involves transition position track-
ing, sub-interval tracking and hard output constraints, plus
a minimum control effort requirement. It does not have a
direct analytic solution, but can be solved using an ILC update
approach.To solve this problem, the following notations are
first introduced. A linear operatorGs

Λ is defined by

Gs
Λu = [Ge

Λu, Gu]⊤ : Lℓ
2[0, T ] → H̃ (36)

and its Hilbert adjoint operator byGs∗
Λ . The Hilbert spacẽH

is denoted by

H̃ = R
m × · · · ×R

m × Lm−1
2 [t0, t1]×

· · · × Lm−1
2 [tM , tM+1]× Lm

2 [0, T ],

with inner product and associated induced norm naturally
derived from (3) and (26). The projection operatorsPΩ and
PΦr

are defined as

PΩ(u) = arg inf
z∈Ω

‖z − u‖
2
R , (37)

PΦr
(y) = arg inf

z∈Φr

‖z − y‖
2
S , (38)

which project the signals onto the setsΩ andΦr respectively.
The linear operatorL : L1

2[0, T ] → Lm
2 [0, T ] is defined as

(Lz)(ti) = [1, ..., 1]⊤z(ti), i = 0, ...,M + 1,

(Lz)(t) = P⊥
i z(t), t ∈ (ti, ti+1), i = 0, ...,M, (39)

where the column ofP⊥
i ∈ Rm×1 forms the orthogonal basis

of the null space ofPi. Also, the erroresk is defined as

esk = [eek, eck]
⊤, eek = re − yek, eck = r̃k − yk. (40)

Using the above notation, the ILC update approach is illus-
trated in the next theorem.

Theorem2. If Stage One problem (34) has a feasible solution,
the system (1) is controllable andC is full row rank, the
problem (34) is iteratively addressed by the ILC update

ũk+1 = uk +Gs∗
Λ (I +Gs

ΛG
s∗
Λ )−1esk, (41)

uk+1 = PΩ(ũk+1), r̃k+1 = PΦr
(ỹk+1), (42)

with initial valuesu0 = 0 and r̃0 ∈ Φr, and the solution is

u∞(Λ) = u∗ +G−1Lz∗, (43)

whereu∗ is the converged value of the sequence{uk} gener-
ated by the ILC update (41)-(42), i.e.limk→∞ uk = u∗, and
the continuous signalz∗ ∈ L1

2[0, T ] is the solution of the
optimization problem

min
z

f(u, y)

s.t. u = u∗ +∆u, ∆u = G−1Lz, Fz = 0, y = Gu,

u ∈ Ω, y ∈ Φr. (44)

Proof. See Appendix B.

Theorem 2 requires Stage One problem (34) to have a
feasible solution, i.e. the path following task should be per-
formed within the given system constraints. This scenario is
guaranteed by task specifications as normal practice to ensure
that the task is possible to perform.The assumption that the
system (1) is controllable withC full row rank ensures the
reference is in the range ofG. It is not restrictive, since
a controllable model can always be constructed for a given
system and redundant output components can be removed to
makeC full row rank.

Remark1. To solve Stage One problem (34), the problem
(44) employs the converged inputu∗ and the one dimensional
signal z with z(ti) = 0 to remove the constraintye = re in
(34) by constructing theℓ dimensional input signalu = u∗ +
G−1Lz without violating the tracking accuracy. Therefore, its
search space ofz is L1

2[0, T ] instead ofLℓ
2[0, T ], which is the

search space ofu in (34). Since the system (1) is multi-input
and multi-output, i.e.ℓ > 2, (44) can cut down the search
space of (34) significantly (e.g. forℓ = 3, the search space is
reduced by66.7%, and forℓ = 4,the search space is reduced
by 75%) by at least50%, which reduces the computational
complexity.

Remark2. The update (41) can be either implemented in a
feedforward manner by direct calculation, or using a causal
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feedback plus feedforward structure in [17] to further em-
bed potential robust performance in practice. Meanwhile, the
convex optimization problem (44) can be solved via various
methods, such as the barrier method [34] and the primal-dual
interior-point method [35].

The input constraintu ∈ Ω represents the allowed range for
the input signal, and the output constrainty ∈ Φr in problem
(34) has the effect of preventing potential overshoot, i.e.the
end effector moving beyond the acceptable region. In the next
corollary, an alternative “direct” ILC update is proposed to
solve problem (34) when the constraints do not engage.

Corollary 1. If the constraintsu ∈ Ω and y ∈ Φr do not
engage,the system (1) is controllable andC is full row rank,
Stage One problem (34) is solved by the ILC update

uk+1 = uk +Ge∗
Λ (I +Ge

ΛG
e∗
Λ )−1eek, (45)

which provides an analytic global solution to (34) as follows:

u∞(Λ) = Ge∗
Λ (Ge

ΛG
e∗
Λ )−1re. (46)

Proof. See Appendix C.

Corollary 1 provides a significantly simpler ILC update to
that in Theorem 2. The next proposition defines an explicit
example of certain systems, e.g. industrial robots with velocity
control, which are compatible with Corollary 1.

Proposition 2. If the system is a chain of integrators (A =
0) without the input constraintu ∈ Ω specified, the solution
u∞(Λ) satisfiesGu∞(Λ) ∈ Φr, and the simplified ILC update
(45) is directly applicable to Stage One problem (34).

Proof. See Appendix D.

B. Stage Two Solution

Stage Two problem (35) is generally non-linear and non-
convex with respect to the transition time allocationΛ, which
leads to significant difficulties in obtaining an analytic solu-
tion. To solve this problem, the following lemma from [36] is
needed.

Lemma1. Let {Λk} be a sequence generated byΛj+1 =
PΘ(Λj − γj∇f̃(Λj)) whereΘ is a closed convex set andγj
is chosen according to the generalized Armijo step size

γj = αβγ, (47)

whereβ is the smallest non-negative integer such that

f̃(Λj+1)− f̃(Λj) 6 σ(∇f̃(Λj))
⊤(Λj+1 − Λj) (48)

and0 < σ < 1, 0 < α < 1 andγ > 0 are constant scalars.
If there exists someL > 0 such that

∣
∣
∣∇f̃(x)−∇f̃(y)

∣
∣
∣ 6 L |x− y| , ∀x, y ∈ Θ, (49)

then every limit point of the sequence{Λk} is a stationary
point for problem (35).

Proof. The proof of this lemma is derived in [36].

Based on the above lemma, an iterative approach is devel-
oped in the next theorem to solve this problem.

Theorem3. If the function f̃(Λ) is twice continuously differ-
entiable, the gradient projection update

Λj+1 = PΘ

(
Λj − γj∇f̃(Λj)

)
(50)

solves the Stage Two optimization problem (35) such that the
sequence{f̃(Λj)} converges downward to a limitη and every
limit point of the sequence{Λj} is a stationary point for the
problem (35), i.e.

z = PΘ(z −∇f̃(z)). (51)

Here j ∈ N denotes the gradient projection trial number,
the gradient∇f̃(Λj) is obtained using experimental measured
data,PΘ denotes the gradient projection optimal solution

PΘ(x) = argmin
z

{‖z − x‖ : z ∈ Θ}, (52)

andγj > 0 is the generalized Armijo step size defined in (47).

Proof. Note that all assumptions in Lemma 1 are satisfied, so
that the gradient projection update (50) can be applied to the
problem considered in this paper. According to Lemma 1, the
generalized Armijo step size guarantees the convergence of
the gradient projection method to a stationary point.

Since the functioñf(Λ) is bounded below andΘ is a com-
pact set, the (global) minimum of the optimization problem
exists. In addition, being a stationary point satisfying (51) is
a necessary condition of being a (possibly local) minimum
point. Therefore, the converged stationary point must be the
minimum if there exists only one stationary point in problem
(35). As a consequence, the above algorithm is guaranteed to
converge to the global minimum solution in this case.

In general, the gradient within (50) does not admit an ana-
lytic realization, and can be computed using a computationally
efficient estimation

∂f̃

∂ti

∣
∣
∣
∣
Λj

=
f̃(Λi+

j )− f̃(Λi−
j )

2∆T
, (53)

where Λi+
j = [tj1, t

j
2, ..., t

j
i + ∆T, ..., tjM ]⊤ and Λi−

j =

[tj1, t
j
2, ..., t

j
i−∆T, ..., tjM ]⊤, and∆T ∈ R is sufficiently small.

The values off̃(Λi+
j ) and f̃(Λi−

j ) can be obtained using the
solution (41) via experimental implementation or simulation.

Furthermore, if the system constraints do not engage, the
problem (35) can be expressed analytically as shown in the
following corollary.

Corollary 2. In the absence of the system constraintsu ∈ Ω
andy ∈ Φr, Stage Two problem (35) is transformed as

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈
re, (Ge

ΛG
e∗
Λ )−1re

〉

Q̃
. (54)

Proof. See Appendix E.

According to Corollary 2, in the absence of the system con-
straints, the gradient within (50) can be computed analytically
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by performing differentiation of the cost function in (54) and
calculating its partial derivatives.

Remark 3. The choice of initial allocationΛ0 affects the
convergence performance of (50). It can be chosen arbitrarily
from the admissible setΘ if no information is available.
Alternatively, it can be chosen using the methods, e.g. low
resolution initial allocation, proposed in [27], which approxi-
mate the optimal allocation.

C. A Comprehensive Implementational Algorithm

Algorithm 1 is obtained by combining the aforementioned
implementations of the design framework, which are summa-
rized in the following steps:

• Choose the constraint setsΘ and Ω as well as the
weighting parametersR, S, Qi and Q̂i according to the
application; specify the required tracking accuracy and
performance improvement threshold as the sufficiently
small positive scalarsǫ and δ, for example,ǫ = 0.01
and δ = 0.001; choose a suitable initial transition time
allocation Λ0, by ti = iT/M , i = 1, ...,M , and an
extended referencere; set the gradient projection trial
numberj to 0.

• Then, apply the generalized ILC update law (41)-(42)
together with (43), experimentally to the current input
signal uk and erroresk until the accuracyǫ is reached
(Stage One solution), which computes an optimal input
signal uex

∞(Λ0) with respect toΛ0. The solution mini-
mizes the optimal performance index̃f(Λ0) in practice,
whose value is recorded.

• After that, apply the gradient projection procedure (50)
experimentally to the transition time allocationΛj to
update its value toΛj+1 until the convergence condi-
tion in Step7 is satisfied. Meanwhile, the same Stage
One solution as explained in the above bullet point is
performed to compute the optimal input signaluex

∞(Λj)
at each gradient projection trial, and the values off̃(Λj)
are recorded.

• The final values ofΛj anduex
∞(Λj) are taken as the output

of the algorithm.

Note that the experimental tests in Step2 and 6 of the
algorithm (i.e. generalized ILC update) can be replaced with
simulations, however this will significantly reduce robustness
to model uncertainty and this replacement is not suggested in
practice. The gradient∇f̃(Λj) in (50) is estimated by (53), in
which the values of̃f(Λi+

j ) and f̃(Λi−
j ) using the Stage One

solution. In addition, the generalized Armijo step size (47) in
(50) is determined by (48).

D. Robustness Analysis

In practice, the nominal system modelG will not exactly
match the real plant model̂G. Therefore, it is necessary to
perform robustness analysis to verify the convergence per-
formance of Algorithm 1 in practice. Note that Stage One
update (41)-(42) in Step2 and 6 of Algorithm 1 involves
the participation of measured output trajectoryyk in practical
implementation. Meanwhile, the experimental obtained input

Algorithm 1 Iterative learning control for path following tasks

Input: Initial transition time allocationΛ0, system operator
G, extended referencere, admissible setΘ, input con-
straint setΩ, weighting matricesR, S, Qi and Q̂i and
parameter valuesσ, β andγ.

Output: Optimal solutionsΛopt anduopt

1: Initialization: Gradient projection trial numberj = 0
2: Perform (41)-(42) withΛ = Λ0 experimentally until

‖esk‖ < ǫ, and then solve the problem (44) to obtain
u∞(Λ0) using (43); recordu∞(Λ0) and f̃(Λ0).

3: while
4: Apply (50) with (53) usingri = Giu∞(Λj).
5: Set j = j + 1.
6: Perform (41)-(42) withΛ = Λj experimentally until

‖esk‖ < ǫ, and then solve the problem (44) to obtain
u∞(Λj) using (43); recordu∞(Λj) and f̃(Λj).

7: if
∣
∣
∣f̃(Λj)− f̃(Λj−1)

∣
∣
∣ < δ

∣
∣
∣f̃(Λj−1)

∣
∣
∣, break.

8: end while
9: return Λopt = Λj anduopt = uex

∞(Λj).

data u∞(Λj) is applied in Step4 to generate the function
of the desired performance index. Therefore, this algorithm
learns by exploiting real data to reduce the effect of modelling
inaccuracy. Robustness analysis is shown in the next theorem.

Theorem4. Suppose the system constraintsu ∈ Ω andy ∈ Φr

do not engage, the extended operatorGe
Λ is right invertible and

the system operator̂G is denoted as

Ĝk = (I +∆)G, (55)

where the unknown operator∆ : Lm
2 [0, T ] → Lm

2 [0, T ]
represents the model uncertainty. If operator∆ satisfies

∥
∥
∥
∥
I −

[
F
P

]

∆GGe∗
Λ

∥
∥
∥
∥
6 1, (56)

then the sequence{eek} generated by the ILC update (45),
monotonically converges to zero, i.e.

∥
∥eek+1

∥
∥ 6 ρ ‖eek‖ , ∀ k > 0, (57)

whereρ < 1 is the spectral radius of(I +Ge
ΛG

e∗
Λ )−1.

If the operatorGe∗
Λ (Ĝe

ΛG
e∗
Λ )−1 is upper bounded as

∥
∥
∥Ge∗

Λ (Ĝe
ΛG

e∗
Λ )−1re

∥
∥
∥ / ‖re‖ 6 σ, ∀ re ∈ H, (58)

the functionf̃(Λ) generated by the gradient projection update
(50) is bounded above as

f̃(Λ) 6 σ2 ‖re‖
2
, (59)

where the upper boundσ is a positive scalar.

Proof. See Appendix F.

From the above theorem, the Stage One ILC update still
achieves perfect path following even with the existence of
model uncertainty, while (56) is satisfied. Moreover, the se-
quence{f̃(Λj)} generated by the Stage Two gradient pro-
jection update is proved to be bounded above. Therefore,
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Fig. 2. A multi-axis gantry robot test platform.

Algorithm 1 has attractive robust performance against model
uncertainty.

Furthermore, the sequence{f̃(Λj)} has strong robust con-
vergence properties at certain cases. This means that the
proposed algorithm then solves the optimization problem (31)
with high tracking accuracy as well as optimizing an additional
performance index for these special cases. See the following
corollary for an exemplary case.

Corollary 3. If the model uncertainty is in a constant scalar
form, i.e. ∆ = κ, where κ is a constant scalar, then the
sequence{f̃(Λj)} generated by the gradient projection update
(50) strictly monotonically converges downward to a limitη,
i.e.

f̃(Λj+1) 6 f̃(Λj), ∀ j > 0. (60)

Proof. See Appendix G.

Corollary 3 considers a special case of the model uncer-
tainty, and the actual control effort is proportional to the
numerically computed valuẽf(Λ) at each gradient projection
trial. Therefore, the monotonic convergence of control effort
to a local minimum value is indeed demonstrated in this
corollary.

Remark4. Although the true optimal solution is guaranteed
for this special case of model uncertainty in a scalar form, the
tracking error norm converges to zero and the performance
index can be only shown bounded for the more general cases
of model uncertainties.

V. EXPERIMENTAL VERIFICATION

In this section, a three-axis gantry robot is employed as a
test platform to validate the performance of Algorithm 1 and
demonstrate its effectiveness in practice.

A. Test Platform Specifications

The multi-axis gantry robot shown in Figure 2 has three
axes, which are perpendicular to each other. The x-axis and
the y-axis move in the horizontal plane and are driven by
linear brush-less DC motors. The z-axis with vertical moving

Fig. 3. Overall structure of the gantry robot test platform.

direction is placed on the top of the other two axes, and
comprises a linear ball-screw stage driven by a rotary brushless
DC motor. For each axis, a BNC channel sends the input
voltage signal to the motor amplifier, and the displacement
of each axis is measured as the output trajectory signal by an
optical incremental encoder installed on the same axis. The
hybrid motion of the three axes gives rise to a path of the
gantry robot end-effector in 3D space.

This test platform consists of a dSPACE DS1103 micro-
controller, Aerotech model BA10 linear amplifiers, and Ren-
ishaw RGH22 linear encoders with a resolution of 1µm for
x-axis and y-axis, and Aerotech rotary encoder for z-axis with
a resolution of 0.5µm. See Figure 3 for the overall structure
of the gantry robot test platform.

B. Task Design Objective

The control design objective is to use all three axes (m = 3)
to perform a piecewise linear path following task composed
of five line segments (M = 5) with

r0 =





0
0
0



 , r1 =





0.00476
0.00345
0.008



 , r2 =





0.00294
0.00905
0.01



 ,

r3 =





−0.00294
0.00905
0.01



 , r4 =





−0.00476
0.00345
0.008



 , r5 =





0
0
0



 ,

as shown in Figure 6 (the blue path), during the given tracking
time horizon[0, 2], i.e.T = 2s. In addition, the minimum time
spent between two adjecent transition vertices is0.01s.

For implementation, the weighting matrices are chosen as
Qi = qiI, Q̂i = q̂iI and R = r̂I where qi, q̂i and r̂ are
positive scalars. Furthermore, appropriate weighting matrices
are chosen according to the theoretical predictions in [37]to
balance convergence speed and robust performance, i.e.qi/r̂ =
30, 000 and q̂i/r̂ = 3, 000, 000.

C. Experimental Performance of Algorithm 1

The robust performance of Algorithm 1 is tested with signif-
icant model uncertainty to replicate an industrial environment.
Assume that only three inaccurate nominal models (for x-axis,
y-axis and z-axis) are available for control design as

Gx(s) =
0.04

s
, Gy(s) =

0.04

s
andGz(s) =

0.04

s
. (61)

Bing

Bing
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Bing

Bing
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Bing

Bing

Bing
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Fig. 4. A comparison of control effort along the gradient projection trials for
Algorithm 1, classical ILC and successive projection ILC.

Very accurate high order transfer function models of the
same gantry robot are given in [38] and allow the the model
uncertainty operator∆ to then be computed. This satisfies
the condition (56) of Theorem 4.Algorithm 1 is applied with
the initial transition time allocationΛ0 = [0.3, 0.7, 1.3, 1.7]⊤,
and the gradient projection (50) chooses the parameters values
to beσ = 0.1, α = 0.5 andγ = 0.05, 0.07, 0.09 respectively.
The results of control effort and transition time instants over25
gradient projection trials are shown in Figure 4 and 5.Note that
the attempt number of Stage One solution required to obtain
the generalized Armijo step size satisfying (48) increasesfrom
0 to 7 along the gradient projection trials, and it requires a total
number of8 attempts of Stage One solution to compute the
values off̃(Λi+

j ) andf̃(Λi−
j ) to hence estimate∇f̃(Λj) using

(53) at each trial.
For comparison, the performance of classical norm optimal

ILC algorithm in [37] is also evaluated using a pre-planned
speed profile with the same path. As a normal practice, the
pre-planned trajectory is defined by a fixed transition time
[0.4, 0.8, 1.2, 1.6]⊤ and the moving speed of the end-effector
along each line segments is considered as a constant value.
The final case implemented is to solve optimization problem
(31) offline using the nominal plant model (61), yielding the
solution plan[0.50, 0.84, 1.17, 1.50]⊤, and then to use this as
a fixed reference in the standard successive projection ILC
algorithm of [30].The corresponding results of classical ILC
and successive projection ILC are plotted in the same figures.

In Figure 4, the blue, red, and magenta curves denote the
minimum control effort f̃(Λk) at each gradient projection
trial for γ = 0.05, 0.07, 0.09 respectively. Using the proposed
algorithm, the control effort of the path following task con-
verges over the trials, and the converged minimum control
effort of 546.9 is independent of the algorithm’s parameter
choice of γ. Compared to the standard practice of using a
pre-planned speed profile with a required control effort of
682.4 (shown as the green dashed line in the figure), the
proposed algorithm achieves approximately20% control effort
reduction. In addition, it outperforms successive projection

5 10 15 20 25
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T
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s)
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Fig. 5. A comparison of transition time allocation along the gradient
projection trials for Algorithm 1, classical ILC and successive projection ILC.

Fig. 6. Desired path and converged output trajectory at the final gradient
projection trial for robust test.

ILC (shown as the yellow dashed line in the figure with value
594.6) by around8% in terms of control effort reduction.
These features demonstrate the advantage of the proposed
algorithm over other ILC algorithms. This advantage will
increase further as the degree of model uncertainty increases.
For further information, the transition time instants for these
approaches are shown in Figure 5, where the blue, red, and
magenta curves denote the transition time allocationΛj at
each trial forγ = 0.05, 0.07, 0.09 respectively with the final
converged valueΛopt = [0.66, 0.90, 1.09, 1.36]⊤ and the green
and yellow dashed lines represent the constant transition time
instants of classical ILC and successive projection ILC.

Note that the above control effort reduction is achieved
without compromising the path following accuracy. The ex-
perimental converged output trajectory forΛopt is shown in
Figure 6 with the red dots denoting the transition vertices,
and it is clear that the converged output trajectory accurately
follows the given piecewise linear path. The final converged
input and output trajectories of each axis are shown in Figure 8
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Fig. 7. The mean square path following error along the ILC trials at the final
gradient projection trial in the robustness test.
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Fig. 8. Converged input signal (left) and output trajectory(right) at the final
gradient projection trial in the robustness test.

for more information.To examine convergence in more detail,
the mean squared path following errors at the ILC trials for
the final gradient projection trial are plotted in Figure 7 for the
γ = 0.09 case. This figure shows that it requires10 ILC trials
for the path following error to decline to a value below the
accuracy valueǫ = 10−2mm2. In the experiments, it generally
requires8 − 12 ILC trials to achieve the desired accuracy.It
is also worth mentioning that the above results are obtained
using relatively inaccurate nominal models, illustratingthat
the proposed algorithm has a certain degree of robustness
against disturbance and model uncertainty, which is appealing
in practice.

Furthermore, experiments with different values ofQi, Q̂i

andR have also been carried out using the parametersσ = 0.1,
β = 0.5 and γ = 0.07. The corresponding results are
summarized in Table I. From this table, the optimal transition
time allocation obtained by Algorithm 1 all converge, and
the minimum control effort results of these cases are all
approximately20% less than the value obtained from classical

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS WITH DIFFERENTQi , Q̂i AND R.

Λopt f̃(Λopt) Reduction
qi/r̂ = 30, 000,

q̂i/r̂ = 3, 000, 000
[0.65, 0.90, 1.09, 1.36]⊤ 545.1 20.12 %

qi/r̂ = 30, 000,
q̂i/r̂ = 5, 000, 000

[0.65, 0.90, 1.09, 1.36]⊤ 546.8 19.87 %

qi/r̂ = 30, 000,
q̂i/r̂ = 8, 000, 000

[0.65, 0.90, 1.09, 1.35]⊤ 547.3 19.80 %

qi/r̂ = 30, 000,
q̂i/r̂ = 10, 000, 000

[0.66, 0.90, 1.09, 1.35]⊤ 546.5 19.92 %

qi/r̂ = 30, 000,
q̂i/r̂ = 3, 000, 000

[0.65, 0.90, 1.09, 1.35]⊤ 545.9 20.00 %

qi/r̂ = 30, 000,
q̂i/r̂ = 3, 000, 000

[0.65, 0.90, 1.09, 1.36]⊤ 544.7 20.18 %

qi/r̂ = 30, 000,
q̂i/r̂ = 3, 000, 000

[0.66, 0.90, 1.09, 1.36]⊤ 546.6 19.90 %

ILC. Experiments using other initial transition allocation, e.g.
the low resolution one in [27], have also been performed and
produced similar performance.

VI. CONCLUSION AND FUTURE WORK

This paper develops a general ILC design framework for
repeated path following tasks. It not only guarantees the
path following accuracy, but also minimizes an additional
performance index of interest by fully exploiting the con-
trol design freedom. The general path following problem is
reformulated into an equivalent optimization problem using
a projection operator. The class of piecewise linear paths
is characterized for the reformulated problem setup, and a
Two Stage design framework is proposed to solve this non-
trivial problem. This framework yields an iterative algorithm
with robust convergence properties, which incorporates an
ILC update and a gradient projection update. This algorithm
is verified experimentally on a gantry robot test platform to
demonstrate its significant practical benefits of control effort
reduction and robustness against model uncertainty.

Although experimental verification of the proposed algo-
rithm has revealed practical efficacy, this paper focuses on
piecewise linear paths and minimum control effort. In general,
the optimization problem (31) can be extended to handle other
types of paths, e.g. piecewise arc paths. In this case, the
projection operatorPr becomes non-linear, and non-linear ILC
approaches using gradient or Newton method can be applied
to solve the problem. However, a global solution might not
be guaranteed due to the non-linearity. In principle, the ILC
design framework can be implement to optimize an alternative
performance index, such as the path following time.Mean-
while, a rigorous analysis of the robust convergence properties
of the proposed algorithm with respect to iteration varying
noise or disturbances is needed.These aspects constitute the
focus of future research and will be reported separately.

APPENDIX

A. Proof of Theorem 1

If y ∈ Rr, there existsy(t) = r(g(t)) and

y(ti) = r(g(ti)) = r(si) = ri, i = 0, . . . ,M + 1, (62)



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 11

by definition. Due to the tracking order, it follows that

0 = t0 < t1 < . . . < tM+1 = T. (63)

Therefore,si 6 g(t) 6 si+1 for t ∈ [ti, ti+1], and all the
pointsy(t) on this sub-interval belong to the line segment set

Ri = {y ∈ R
m : y = ri+1 − γ(ri+1 − ri), γ ∈ [0, 1]}, (64)

and satisfy the relationshipPiy(t) = Piri. It follows that

Pi(ri+1 − γ(ri+1 − ri)) = Piri, (65)

which yieldsPiai = 0, and further equates to the projection
operatorPi in (19). Also, asRi is a line segment set, it follows
that a hard output constraint exists

a⊤i ri 6 a⊤i y(t) 6 a⊤i ri+1, t ∈ [ti, ti+1], (66)

to prevent overshoot, which yields the setΦr defined in (18).
The above derivations imply the operatorPr defined in (17)
and the output constrainty ∈ Φr.

If Pr is defined by (17) andy ∈ Φr, it follows that

y(ti) = r(g(ti)), i = 0, . . . ,M + 1. (67)

Since (Pry)(t) = Piy(t) = Piri, t ∈ [ti, ti+1] and y ∈ Φr

are satisfied, the above steps can be reversed to obtain

y(t) ∈ Ri, t ∈ [ti, ti+1], i = 0, . . . ,M. (68)

Therefore, (67) and (68) combine to give

y(t) = r(g(t)), t ∈ [0, T ], (69)

for g(ti) = si and si 6 g(t) 6 si+1, t ∈ [ti, ti+1], which
implies y ∈ Rr.

Therefore, the ILC problem (13) is equivalent to the form
(21) by substituting the definition (17) ofPr and the extra
output constrainty ∈ Φr to replacePry = Pr r̃.

B. Proof of Theorem 2

With the assumptions made in the theorem, the path fol-
lowing design objective of the problem (34) is within the
range of the ILC problem discussed in [30]. Therefore, the
ILC algorithm proposed in that paper can be applied with
minor modifications to achieve the design objective with
desirable convergence properties by setting the appropriate
parameters, which give rise to the ILC update law (41)-
(42). However, it only guaranteesyek to converge tore, i.e.
limk→∞ yek = ye∗ = rr, rather than an optimal performance
index.

The system is invertible since the system (1) is control-
lable. Hence, it follows from the definition of the operator
L in (39) and the signalz is continuous that the constraints
∆u = G−1Lz andFz = 0 give rise to

(G∆u)(ti) = 0, i = 0, ...,M + 1,

Pi(G∆u)(t) = 0, t ∈ (ti, ti+1), i = 0, ...,M. (70)

The above equations are denoted asGe
Λ∆u = 0. Therefore,

the problem (44) is equivalent to

min
u

f(u, y) (71)

s.t. ye = ye∗, y = Gu, u ∈ Ω, y ∈ Φr,

which is identical to Stage One problem (34). Therefore, its
solution (43) added an offset input∆u to the input signal
u∗ obtained by the ILC update to optimize the performance
index f(u, y) without violating the perfect tracking error of
re − ye∗ = 0 or the system constraintsu∗ ∈ Ω, y∗ ∈ Φr,
which solves Stage One problem (34).

C. Proof of Corollary 1

In the absence of the constraints, the ILC update (41)-
(42) collapses to the ILC update (45). According to [39], the
ILC update (45) ultimately converges to provide the optimal
solution (46) to problem (34) without the constraints.

D. Proof of Proposition 2

The proof by contradiction is used to confirm that the
overshoot does not happen whenA = 0, so it is assumed that
the outputGu∞(Λ) has overshoot at theith line segment. It
is necessary (but not sufficient) that there must exist a time
t∗i ∈ (ti−1, ti) such that

(Gu∗)(t∗i ) = (Gu∗)(ti) = ri. (72)

Since the input constraint is not specified, an input

u∗(t) =

{
0, t ∈ [t∗i , ti],

(u∞(Λ))(t), else,
(73)

can be always constructed on[0, T ] based on the assumption
of overshoot to provide a lower control effort thanu∞(Λ), i.e.
‖u∗‖

2
R < ‖u∞(Λ)‖

2
R. From (73), there exists

(Gu∗)(t) = (Gu∞(Λ))(t), t ∈ [0, t∗i ]. (74)

SinceA = 0, it follows that

(Gu∗)(t) =

∫ t∗i

0

CBu∗(s)ds+

∫ t

t∗
i

CBu∗(s)ds

=

∫ t∗i

0

CB(u∞(Λ))(s)ds

= (Gu∞(Λ))(t∗i ) = ri, ∀ t ∈ [t∗i , ti], (75)

(Gu∗)(t) =

∫ ti

0

CBu∗(s)ds+

∫ t

ti

CBu∗(s)ds

= (Gu∞(Λ))(ti) +

∫ t

ti

CB(u∞(Λ))(s)ds

= (Gu∞(Λ))(t), ∀ t ∈ [ti, T ]. (76)

Then, it follows that

(Gu∗)(ti) = ri, i = 0, ...,M,

(PiGu∗)(t) = Piri, t ∈ [ti−1, ti], i = 1, ...,M. (77)

Hence the inputu∗ not only provides a lower control effort
than the optimal valueu∞(Λ), but also satisfies the track-
ing requirementye = re. This obviously contradicts the
assumption that the optimal inputu∞(Λ) generates overshoot.
Therefore, the simplified ILC update (45) provides a solution
satisfying the hard constrainty ∈ Φr.
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E. Proof of Theorem 2

Since the system constraints do not engage, the analytic
solution (46) is available. Substitute (46) into the problem (35)
and use the property of adjoint operator to yield

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈(u∞(Λ), u∞(Λ)〉R

= min
Λ∈Θ

〈
(Ge∗

Λ (Ge
ΛG

e∗
Λ )−1re, Ge∗

Λ (Ge
ΛG

e∗
Λ )−1re

〉

R

= min
Λ∈Θ

〈
Ge

ΛG
e∗
Λ (Ge

ΛG
e∗
Λ )−1re, (Ge

ΛG
e∗
Λ )−1re

〉

Q̃

= min
Λ∈Θ

〈
re, (Ge

ΛG
e∗
Λ )−1re

〉

Q̃
, (78)

which completes the proof.

F. Proof of Theorem 4

Since the real plant̂G is in a multiplicative form (55), the
measured extended erroreek is

eek = re −

[
FĜ

PĜ

]

uk = re −

[
F (I +∆)G
P (I +∆)G

]

uk. (79)

Based on equation (79) and update (45), it follows that

eek+1 = re −

[
F (I +∆)G
P (I +∆)G

]

(uk +Ge∗
Λ (I +Ge

ΛG
e∗
Λ )−1

︸ ︷︷ ︸

L

eek)

= (I −

[
F
P

]

∆GGe∗
Λ )(I +Ge

ΛG
e∗
Λ )−1

︸ ︷︷ ︸

E

eek. (80)

SinceGe
Λ is right invertible, it is clear that

∥
∥(I +Ge

ΛG
e∗
Λ )−1

∥
∥ 6 ρ < 1, (81)

which with the condition (56) give rise to the monotonic
convergence condition (57) as follows:

∥
∥eek+1

∥
∥ 6

∥
∥
∥
∥
I −

[
F
P

]

∆GGe∗
Λ

∥
∥
∥
∥

∥
∥(I +Ge

ΛG
e∗
Λ )−1

∥
∥ ‖eek‖

6
∥
∥(I +Ge

ΛG
e∗
Λ )−1

∥
∥ ‖eek‖ 6 ρ ‖eek‖ < ‖eek‖ . (82)

The error norm is lower bounded by zero, so the sequence
{eek} converges to zero and the task design objective is
achieved as

re = Ĝe
Λu

ex
∞(Λ) (83)

for each gradient projection trial.
It follows from (45) and (80) that the input signal can be

represented as

u1 = u0 + Lee0

u2 = u1 + Lee1 = u0 + Lee0 + LEee0

. . .

uk = u0 + L

k−1∑

i=0

Eiee0. (84)

SinceE satisfies‖E‖ < 1, there exists

lim
k→∞

uk = u0 + L(I − E)−1ee0. (85)

Note thatu0 = 0, hence the solution is

uex
∞(Λ) = L(I − E)−1re = Ge∗

Λ (Ĝe
ΛG

e∗
Λ )−1re. (86)

which together with the condition (58) yields the upper bound
of f̃(Λ) in (59).

G. Proof of Corollary 3

It follows from (83), r̂eΛ = Ge
Λu

ex
∞(Λ) and Ĝ = (1 + κ)G

such that the relationship between the constant valuere and
the numerical computed valuêreΛ is obtained as

re = Ĝe
Λu

ex
∞(Λ) = (1 + κ)Ge

Λu
ex
∞(Λ) = (1 + κ)r̂eΛ, (87)

which means that the valuêreΛ at each gradient projection trial
is proportional to the valuere. Therefore, the performance
index

〈
r̂eΛ, (Ge

ΛG
e∗
Λ )−1r̂eΛ

〉
optimized at each trial is propor-

tional to f̃(Λ) as
〈
r̂eΛ, (Ge

ΛG
e∗
Λ )−1r̂eΛ

〉
=

1

(1 + κ)2
f̃(Λ), (88)

with respects to a constant ratio. In this sense, the sequence
{f̃(Λj)} monotonically converges to a limitη. According
to the condition (48), the equal sign in (60) only holds
when the sequence converges. Therefore, the sequence strictly
monotonically decreases.
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