
Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data
are retained by the author and/or other copyright owners. A copy can be downloaded for per-
sonal non-commercial research or study, without prior permission or charge. This thesis and
the accompanying data cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder/s. The content of the thesis and accompanying
research data (where applicable) must not be changed in any way or sold commercially in any
format or medium without the formal permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be
given, e.g. Thesis: James Snook (2020) “Constructing a New Language to Facilitate Mathe-
matical Proofs In The Event-B Context”, University of Southampton, School of Electronics and
Computer Science, PhD Thesis 190.

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE
School of Electronics and Computer Science

Constructing a New Language to Facilitate Mathematical Proofs In The Event-B
Context

by

James H. Snook
Supervisor: Prof. Michael Butler, Dr. Thai Son Hoang
Examiner: Dr. Andy Gravell, Dr. Yamine Aït Ameur

November 23, 2020

mailto:hjs1m15@soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE
School of Electronics and Computer Science

CONSTRUCTING A NEW LANGUAGE TO FACILITATE MATHEMATICAL PROOFS IN
THE EVENT-B CONTEXT

by James H. Snook

There are many languages used for modelling systems, and verifying the consistency of speci-
fications. Having a valid specification reduces the chances of finding major issues later in the
development process. Many of these systems use a set theoretic syntax, which gives a pow-
erful mathematical system for modelling discrete systems. This thesis focuses on the Event-B
modelling system, although the results could be applied to other set theoretic modelling systems.
The aim of this thesis is to increase the number of mathematical theories available to the Event-
B modeller, as this allows allows more accurate models to be created. The approach taken is
to facilitate the definition of abstract mathematical types such as Monoids, Groups, and Rings
in such a way that they can be built up hierarchically, and concrete mathematical types e.g., the
naturals can use the results of the abstract types.
This work firstly shows how the current set theoretic language (Event-B) can be used to define
abstract mathematical types, and have concrete mathematical types reuse the results of the ab-
stract types. It also demonstrates many difficulties of defining these types using the set theoretic
syntax. To resolve these issues a new language, B♯, is proposed. This language is designed to
facilitate the definition of abstract mathematical types, and translate to the current Event-B syn-
tax. The major additions to the new language to allow the definition of mathematical types are
type classes and subtypes.
At its core the B♯ language is a HOL style language. This work demonstrates how a HOL style
language can be translated into a set theoretic style language. This translation is then extended to
translate all the features of the B♯ language to the Event-B syntax. This allows theorems defined
in the B♯ language to be used by Event-B modellers.
A developer environment to define B♯ theorems is built, and the translation from the B♯ syntax
to the Event-B syntax is implemented. This is used to define several mathematical types, and
demonstrate the practicality of the approach.

mailto:hjs1m15@soton.ac.uk

iv

The approach of adding a translation phase from a new syntax was found to be a safe (incon-
sistencies could not be added to proving mechanisms) and effective way of adding features to
the Event-B toolset. Many additional features and improvements are suggested. This approach
could be used in a similar manner to other theorem provers use of a meta language (ML) to safely
add features without introducing inconsistencies.

Contents

Acknowledgements ix

1 Introduction 1
1.1 System Modelling with Set Theory . 1
1.2 The Theory Plug-in . 2

1.2.1 Theorem Reuse in Mathematics . 2
1.2.1.1 Applying Abstract Types to Concrete Types 4
1.2.1.2 Isomorphisms . 4

1.3 Abstraction in Software . 4
1.4 Limitations of the Rodin platform . 5

1.4.1 PhD Aims . 5
1.4.2 Contributions of this Thesis . 5

1.5 Structure of this Thesis . 6
2 Literature Review 9

2.1 Type Theory and Theorem provers . 9
2.1.1 Higher-Order Logic . 9
2.1.2 Martin-Löf Languages . 11
2.1.3 Algebraic Specifications . 12
2.1.4 Focalize . 13
2.1.5 ACL2 . 13

2.2 Language Features . 13
2.2.1 Datatypes . 13
2.2.2 Predicate Subtypes and Dependent Types 14
2.2.3 Type Classes . 15
2.2.4 Partial Functions . 16

2.3 Modelling In Event-B . 17
2.3.1 Proofs . 17

2.4 Model Structure . 18
2.4.1 Refinement . 20

2.5 The Event-B Mathematical Language . 21
2.5.1 The Type System . 22
2.5.2 Operators . 23
2.5.3 Well-Definedness . 24

2.6 The Theory Plug-in Additions to Event-B . 24
2.6.1 Operators . 25
2.6.2 Theorems . 27

v

vi CONTENTS

2.7 The Rodin Platform . 27
2.7.1 Theory Plug-in Proof Rules . 29

2.8 Conclusion . 30
3 Constructing Mathematical Theories in the Theory Plug-in 33

3.1 Introduction . 33
3.2 Operators . 33
3.3 Monoid . 35
3.4 Naturals . 36

3.4.1 Naturals Definitions . 36
3.5 Back to Monoids . 38
3.6 Binary Numbers . 40

3.6.1 Equivalence Relation . 41
3.6.2 Subtyping for Equality . 44

3.7 Isomorphisms . 45
3.7.1 Defining the Isomorphism . 46
3.7.2 Using the Isomorphism . 47

3.8 Ordering . 48
3.9 Additional Features . 49

3.9.1 Proof Rules . 49
3.9.2 Theory Construction . 50

3.10 Lessons learnt From the Case Study . 51
4 Introducing B♯ 53

4.1 B♯ by Example . 53
4.1.1 Datatypes . 53
4.1.2 Functions . 54
4.1.3 Class Declarations . 56

4.1.3.1 Required Elements . 57
4.1.4 Available Types in B♯ . 59
4.1.5 Instances . 61

4.2 Extensions . 62
4.3 Naming, Scope, and File Structure . 63

4.3.1 Scope . 63
4.3.2 Naming . 63
4.3.3 Imports and Project Structures . 64

4.4 B♯ Language Formal Presentation . 65
4.4.1 Datatypes . 66

4.5 Complete Formalisation . 68
5 Translating B♯ to Event-B by Example 71

5.1 Examples of Translation . 71
5.1.1 Datatypes . 71
5.1.2 Functions . 72
5.1.3 Class Declarations . 74
5.1.4 Quantifiers and Theorems . 74
5.1.5 Required Elements . 75

CONTENTS vii

5.1.6 Methods . 76
5.1.7 Instances . 77

6 Core Translations 79
6.1 Introduction . 79
6.2 Event-B Abstract Syntax . 80
6.3 Translation Language . 80

6.3.1 Data Structures . 80
6.3.2 Translation Functions . 82
6.3.3 Let Statements . 83

6.4 Mapping Declarations . 84
6.4.1 Class Declarations . 84
6.4.2 Mapping Parametric Types and Parameters 85
6.4.3 Datatype Declarations . 87
6.4.4 Function Declarations . 88
6.4.5 Instances . 90
6.4.6 Mapping Types . 90

6.5 Expression Mapping . 93
6.5.1 Booleans to Predicates and Vice Versa 93
6.5.2 Function Calls . 95
6.5.3 Quantifiers . 97
6.5.4 Theorems . 97

6.6 Conclusion . 98
7 Inference and Structure 99

7.1 Generated Statements . 99
7.1.1 Function Typing . 100
7.1.2 Class paraType Inference . 100
7.1.3 paraType Substitution . 102
7.1.4 Instance Statements . 105

7.2 Naming, Scoping and Importing . 105
7.3 Conclusion . 107

8 Implementing B♯ 109
8.1 Implementation Tools . 109
8.2 Concrete Syntax . 110
8.3 Translation . 113

8.3.1 Naming . 114
8.4 Additional Features and Extensions . 116

8.4.1 Syntax Aware IDE . 116
8.4.1.1 Autocomplete . 116
8.4.1.2 Syntax Errors . 117

8.4.2 Imports . 117
8.4.3 Infix Functions . 117
8.4.4 Inferring Supertypes in Instances . 118
8.4.5 If/Else Statements . 118

8.5 Type Classes Implemented in B♯ . 119

viii CONTENTS

8.6 Generated Event-B . 122
8.7 Comparison With Other language . 122
8.8 Lessons and Conclusions . 123

8.8.1 Inheritance Syntax . 123
8.8.2 Type Class Typing . 125
8.8.3 Infix Functions . 125
8.8.4 Obsolete Theorems . 126
8.8.5 Conclusion . 126

9 Future Work 129
9.1 Extending B♯ With Event-B . 129
9.2 Reporting Event-B errors in B♯ . 130
9.3 Facilitating Proofs . 130

9.3.1 Proof Rules . 131
9.3.1.1 Automatically Generated Rules 131

9.3.2 Proof Rules From Expressions . 133
9.3.3 Proof Scripts . 134

9.4 Generating Abstract Event-B Types . 137
9.4.1 Operators From Simple Types . 138
9.4.2 Operators From Non-Simple Types 138

9.4.2.1 Typed With Simple Classes 139
9.4.2.2 Typed With Type Classes 139
9.4.2.3 Functions . 139

9.4.3 Expressions . 139
9.5 Additional Operators . 141
9.6 Translating to Other Provers . 142
9.7 Implementing Future Work . 142

10 Conclusion 145

A Additional Translation Functions 149
A.1 Expanding Parametric Types . 149
A.2 Unary Types . 150
A.3 Finding The Correct Supertype . 151
A.4 Getting Inferred Types for Type Constructors 152

B B♯ Complete Syntax Definition 155

C B♯ Theories 163

References 171

Acknowledgements

Thanks to my supervisors, and Dr. Toby Wilkinson for their help and support with this work.
Also to my wife for being such a fantastic support.

ix

Chapter 1

Introduction

1.1 System Modelling with Set Theory

There are many languages used for modelling systems, and verifying the consistency of speci-
fications e.g., Z [24], B [73], Event-B [57], VDM [49]. The aim of these systems is to remove
errors during the specification of a system. As seen in [54], having a consistent specification
reduces the chances of finding major issues later in the development process. Major issues would
require a redesign of the system, or if not found, the system being produced with flaws. Other
advantages of using formal methods are summarised in [26]. [40] argues that formal verification
is necessary in both software development and mathematics. A similar sentiment is expressed
in the QED Manifesto[88]; that all mathematical proofs should be machine verified. However,
achieving this is proving difficult. Many of the previously mentioned systems use a set theoretic
syntax (Z ,B, Event-B) which gives a powerful system for modelling discrete systems. It is im-
portant to trust the formal method being used. An approach to ensuring this is to formalise the
method itself. For example, B and Event-B and Z have all been formalised [16][72][52] within
Isabell/HOL [62].
This thesis is focused on easing the representation of mathematical structures within the Event-B
modelling system. Unlike the QED manifesto the aim of defining mathematical theories is for
their use in Event-B models. For example, a representation of real numbers can be used in an
Event-B model of a physical system to represent time and space accurately. Whilst this thesis
focuses on the Event-B modelling language, the approach taken could be applied to other similar
set theoretic languages (e.g., Z and B). Event-B was chosen as its system is under continued
development and use (e.g., with extensions such as [22] and [77], and use cases such as [90]).
Previous work on the Event-B platform has also been done to allow mathematical extensions to
the Event-B language (the Theory Plug-in [15]) which provides a good starting point for this
work.
The Event-B language is a system modelling language focused on discrete systems; it is used
to model physical systems, as well as software systems e.g., [13]. It is supported by the Rodin

1

2 Chapter 1 Introduction

platform, an integrated development environment (IDE) designed to facilitate the construction
of Event-B models. The Rodin platform is designed to be extensible, allowing new tools and
language extensions to be added to the Event-B tool set without changing the core Event-B im-
plementation. The ability to write extensions in this manner is valuable to the work in this thesis,
and provided further incentive in the choice of working in Event-B environment.

1.2 The Theory Plug-in

A previous addition to the Rodin environment is the Theory Plug-in [15]. This brings to Rodin
a method to write mathematical theories. These are not specific to a model and can be re-used
in multiple independent models. The ability to define mathematical theories was achieved by
adding an extension to the Rodin platform which extended the Event-B language adding the
abilities to declare recursive datatypes, operators, and polymorphic types (which can be used
within datatypes, operators, and theorems). The addition of operators allows for an axiomatic
definition of the reals as has been done in [14]. The addition of recursive datatypes allows the
definition of many types without the need to introduce additional axioms (which can cause con-
tradictions). Polymorphic types can be instantiated within Event-B statements e.g., a list can
be defined using a polymorphic type (a generic list), we can both define theorems about lists of
naturals as well as theorems about the generic list. Theorems in which polymorphic types are
used can be instantiated during proofs (the polymorphic type can be replaced with a type from
the current context, if a suitable type is available). This allows the use of the theorem without
having to re-declare it, or prove it for the current type.
By allowing Rodin users to define abstract and polymorphic types users can do all of the neces-
sary proofs only on the abstract type. Before the Theory Plug-in it was possible to make such
structures, but the structures were dependent on the type of the object (they were not polymor-
phic). Therefore they had to be redefined for each of the different sets where they were used.
The combination of Event-B’s modelling and a theorem prover creates a powerful tool. As an
example, a theory of two’s-compliment arithmetic can be developed within the Theory Plug-in.
This can then be used by a Rodin machine when modelling a piece of software. Using two’s-
complement arithmetic rather than an approximation, such as the integer numbers, would result in
the user having to prove that their software specification is consistent with the correct arithmetic.
This would include proving that overflow will not occur. This creates a more accurate model of
the environment, and removes possible problems when building a specification.

1.2.1 Theorem Reuse in Mathematics

Event-B is a tool for modelling systems, including physical systems. Many physical systems
require the modelling of continuous mathematics (e.g., real numbers, continuous functions etc.
for modelling time and space). This was seen in [25][10][80]. For example, modelling the real

Chapter 1 Introduction 3

numbers as a field. When looking at a mathematical theory, such as a field, it is useful to examine
how it can be defined from simpler mathematical structures. The more complicated theory can
then use results (theorems and proofs) from the simpler structures and defining the theory can be
easier and faster. As an example of proof reuse, if we want to axiomatically define a field (which
could be used as a representation of the real numbers) from scratch then we need to write all of
the Abelian group axioms for addition, and write all of them again for multiplication (with the
added condition of removing zero). This approach was taken to use Event-B to model the flight
paths of unmanned aerial vehicles (UAVs), to ensure paths generated using a machine learning
algorithm maintained a safe distance [10][90]. If we have built up mathematical structures in-
stead of defining each of these axioms separately, it would be enough to say that a field is a ring
where the multiplicative monoid forms an Abelian group without the additive identity. This def-
inition of a field allows the field to use the results from rings. For instance, given a ring (R,+, ⋅),
with ‘−’ giving the additive inverse of an element and 0, 1 being the additive and multiplicative
identities respectively, the following are theorems:
For all a, b ∈ R:

a ⋅ 0 = 0 ⋅ a = 0 (1.1)
− 1 ⋅ a = −a (1.2)
a ⋅ −b = −a ⋅ b = −(ab) (1.3)
− a ⋅ −b = ab (1.4)
1 = 0 ⇔ R is the zero ring (1.5)

These results are not difficult to prove, and all of these results are usefully inherited by more
complex algebraic structures such as fields and the real numbers. The proofs for these results
also rely on properties and proofs on previous structures, e.g., they rely on the uniqueness of
identity elements, which can be proved for monoids.
Within mathematics this is described as a conservative extension (an extension of a theory which
does not change the theorems that can be proved in the original theory). Within a modelling lan-
guage having inheritance mechanisms which allow these extensions to be represented is useful.
When we find similar structures, we want to be able to define these structures and use any results
that apply to these structures. Often it will require the definition of a more abstract mathematical
theory (one that only defines the mathematical structure), as in the first example.
Conservative extensions can take several forms. The simplest is where the type is extended with
new axioms and operators, i.e., the new type is a subtype of the old type. With the new axioms
we should be able to construct new proofs; this results in the proofs from the old type being
a subset of the proofs in the new type. An example of this is Abelian groups inheriting from
groups, with the additional axiom that the operator is commutative. This results in all Abelian
groups being groups. Any proofs about groups can be applied to Abelian groups, however, not

4 Chapter 1 Introduction

all proofs about Abelian groups can be applied to groups. Similarly we can define monoids from
semi-groups with the addition of an identity.
New abstract types can be defined using several already existing abstract types. For instance
when defining a ring we may want to declare addition and zero as a group and multiplication and
one as a monoid. It is desirable for our tool to be able to define types in this manner.

1.2.1.1 Applying Abstract Types to Concrete Types

If we define a concrete theory e.g., defining the naturals (either with a datatype or axiomatically),
we will want to be able to prove that parts of these theories conform to some of our abstract
mathematical structures. We want to write a theorem saying that part of the theory forms a
mathematical structure. Once we have proved this theorem, we want to be able to use the proofs
and functions from the abstract mathematical structure. A simple example is defining the natural
numbers, and writing a function for addition. We could then prove that zero and addition form a
monoid, and use any results from the monoid theorem with the natural numbers.

1.2.1.2 Isomorphisms

Being able to swap between structures isomorphically reduces proof burdens considerably, as
demonstrating that two structures are isomorphic would allow us to use proofs interchangeably
from other structures.

1.3 Abstraction in Software

The examples in the previous section are focused on mathematics. Event-B developers are in-
terested in this to allow them to better model physical systems. Event-B is also used to model
software systems. Abstract types are becoming a common feature of modern programming lan-
guages. Examples of this are templates in C++ [83], protocols in Swift [45], and interfaces in
Java [34]. These serve two purposes, first many functions can be written on the abstract type, and
concrete types can inherit this work. Second, functions can be written directly about the abstract
types. Any instance of the abstract type can then be used within this function.
A common example of this is having an abstract type for ordering; wewill callOrdered. Ordering
is a very common operation in software, e.g., for organising data. Ordered represents any type
with a less than or equals operator (≤). Within the abstract type it is possible to write all other
ordering operators e.g., greater than a > b = ¬a ≤ b or equality (a = b) = a ≤ b ∧ b ≤ a. These
do not have to be re-implemented in the concrete types. Given the Ordered type, it is possible
to create an ordered list implementation which works for any concrete type that is an instance of
the Ordered type by writing functions about the abstract type, rather than concrete types.

Chapter 1 Introduction 5

Being able to model these abstract types better allows us to model modern software languages
which have these features.

1.4 Limitations of the Rodin platform

The set theory notation used by Event-B and the Theory Plug-in is capable of representing the
desired mathematics (i.e., abstract mathematical types can be defined, and used by concrete types
and other abstract types), however, the design of the language means that the user has to do
considerable extra work to write these theories.
There is currently a standard library available from the Theory Plug-in wiki.1 This library is
fairly sparse compared to comparable libraries in Coq and Isabelle, and has not been constructed
with mathematical extensions in mind. The result of this is that defining a new mathematical
theorem will likely mean defining it from scratch. The language used by the Theory Plug-in is
also not designed with mathematical extensions in mind, therefore, the user is required to do
extra work when writing the mathematical theorems to allow theorems from abstract types to be
used with the more concrete types that can be shown to form the abstract structure.
The Rodin platform tries to do all of the proof management for the user (storage, deletion, and
some editing when a relied upon theory changes). Whilst this can be helpful it can also lead to
unexpectedly losing proofs (and having to re-prove results). There is also no way of scripting the
prover; you can not teach it a new tactic for a general style of proof, such as, teaching it how to
use an isomorphism to prove a result.

1.4.1 PhD Aims

The general aims of the PhD are to provide support for extension of mathematical definition
and proof to avoid unnecessary duplication of effort when developing mathematical theories.
Allowing the construction of a significant library of extensible mathematical theories. This can
then be used by Event-B modellers, increasing the number of systems that can be modelled, and
the ease of modelling.

1.4.2 Contributions of this Thesis

In Chapter 3, a series of Event-B theories are defined which highlight the weaknesses of the
current Event-B syntax for creating mathematical structures. A new language is defined which
can be compiled to the current Event-B syntax, called B♯. This language has dual design aims:

1. To be mappable to the current Event-B syntax used within in the Theory Plug-in.
1http://wiki.event-b.org/index.php/Theory_Plug-in

http://wiki.event-b.org/index.php/Theory_Plug-in

6 Chapter 1 Introduction

2. To have features to facilitate the definition of abstract mathematical types, and their reuse
in concrete types.

To achieve this B♯ adds several language features:

1. type classes
2. subtypes
3. unification of functions and operators to a single type
4. unification of predicates and the boolean type
5. methods, allowing functions to use elements from type classes without explicit declaration

A formal definition of the B♯ syntax is given, followed by using a pseudo language to show the
translation from the B♯ syntax to the Event-B syntax.
Building on the formal definitions, an extension to the Rodin platform is created, allowing the
development of mathematical theorems in the B♯ language, and their translation to the Event-B
syntax. This is used to define several mathematical theorems, which can then be used within the
Event-B environment. This demonstrates the usefulness of the approach of a mapping step for
adding new features in a consistent manner. Many additional features are suggested which could
be added to the B♯ language or B♯ to Event-B mapping to facilitate the definition of mathematical
types.

1.5 Structure of this Thesis

Chapter 2 is a literature review, to examine the way that mathematical structures have been built
in other theorem provers, and how these provers prove theorems about the structures. In Chapter
3 a series of mathematical types are defined to examine the capabilities of the Theory Plug-in for
defining an algebraic hierarchy, and examining how this can be applied to concrete mathemati-
cal objects. The Chapter concludes that it is possible to use the Event-B set theoretical syntax
to represent these structures, however, the syntax was not designed with features to represent
mathematical extensions, which makes representing these structures harder than in other theo-
rem provers. Chapters 4 and 5 are an extension of the work I did in [78]. Chapter 4 proposes
that a new language called B♯ is created, which compiles to the current Event-B syntax. B♯ is
introduced by example, followed by a formal definition of the B♯ abstract syntax. Chapter 5
gives examples of translation from B♯ to Event-B. Chapter 6 introduces a language to describe
the mappings between B♯ and Event-B. It goes on to show how the core features of the B♯ lan-
guage are mapped to Event-B. Chapter 7 describes how B♯ inference works; this is used to make
pre-translation steps, where the B♯ language is first simplified to its core features before being

Chapter 1 Introduction 7

translated to Event-B. The structure of B♯ files is also described. Chapter 8 describes the imple-
mentation of B♯ and its IDE, the mathematical types developed, and the problems found within
the implementation. Chapter 9 describes future work, including many additional features that
could be consistently added using the translation approach. Chapter 10 concludes the work.

Chapter 2

Literature Review

To make it easier to define mathematical structures within the Rodin environment it is necessary
to look at how these structures have been represented in other environments and to have an
understanding of the current Event-B language so that it can be seen how similar notions can be
implemented. This section will:

1. give a brief description of other languages relevant to this work
2. look at the features, type systems and proof mechanisms of other languages
3. describe the Event-B type and proof systems
4. describe the Rodin Theory Plug-in component, and how it extends the Event-B language

2.1 Type Theory and Theorem provers

This section gives a brief overview of some of the theorem provers currently available. A more
detailed comparison of many provers can be found here [87], which compares the same proof in
many different theorem provers (Note Event-B is not included as it was still in development when
the book was written). There is also discussion of the type systems used within these theorem
provers. For a more comprehensive overview of various type systems see [67].

2.1.1 Higher-Order Logic

Church’s simply typed lambda calculus [17] (1940) provides the basis for many of the proof
systems used today. Lambda calculus is the logic of functions. The rules of lambda calculus
describe function application and equivalence. While functions take a single argument, this
does not pose the restriction it initially appears to, as all multi-argument functions can be written
as a sequence of functions that take only a single argument (known as currying) [20]. In untyped

9

10 Chapter 2 Literature Review

lambda calculus functions can be applied to any term, although may not produce anything useful.
In simply typed lambda calculus every element is given a type, functions can then only be applied
to elements of the correct type. There are a series of base types, and a type constructor→, given
base types S and T a new type can be constructed S → T . The type constructor can then also
be used on this new type ((S → T) → T) allowing the construction of infinitely many types. A
function which can be applied to type T resulting in type S has the type T → S.
An early work in building a proof system using typed lambda calculus was LCF (logic of com-
putable functions) [58]. This was based on the work of Scott [74] presented by Milner [59]. LCF
has terms of the form of typed lambda calculus and formula typed as predicates. The LCF also
includes a series of inference rules used within proofs and an outer language for adding axioms
and goals to be proved.
Along with the development of the LCF language was the development of the ML functional
programming language (ML for meta language) [32], which allowed proof rules to be added
in a sound way (being checked by ML’s type system). To reason about sets of types ML had
a Hindley-Milner [42, 60] type system, which extends simply typed lambda calculus with type
variables (parametric polymorphisms), often called generic types.
The HOL [33] language, which was developed from LCF, was originally developed for hardware
verification. It has since been applied to other areas, such as an implementation of floating point
numbers [39] in HOL Light [41], allowing the verification of functions in floating point libraries.
The HOL language is an implementation of higher order logic extended with Hindley Milner
style type variables. This means that within HOL predicates are no longer a separate syntactic
category to expressions. As specified in [33] the defining features of HOL are as as follows:

1. Variables can range over functions and predicates (hence ’higher order’).
2. The logic is typed.
3. There is no separate (from expressions) syntactic category of formulae (terms of type bool

fulfil their role).

HOL languages also inherits the Hindley-Milner type systems used in later versions of LCF. A
general principal within HOL languages is that the logical core of the language is small, and
that all proofs need to go through the small logical core. This approach is facilitated using the
ML meta language allowing the addition of additional features safely which are proved using the
logical core.
Since the initial development of HOL (HOL88) there have been many descendents of the lan-
guage and all of these have extensive libraries built on top of the core code. The ones that are
still currently in use are:
HOL4 [76] which is the direct descendent of the original HOL system (via several other versions
that are no longer in development).

Chapter 2 Literature Review 11

HOL Light [41, 38], an implementation designed to minimise the use of computer resources, at
the time allowing its use on standard personal computers. Along with its light core, it introduced
several new ways to do proofs that were not available in other HOL systems at the time such as
proving theorems in a backward fashion using tactics.
HOL Zero [2], an implementation designed to maximise trustworthiness. It has a simple infer-
ence kernel (core), and its pretty printer is designed to print formula in an unambiguous manner
ensuring the user proved what they thought they had. The source code for HOL Zero is extremely
well documented in an attempt to ensure there are no consistency bugs within the code.
Isabelle/HOL [62] is an implementation of HOL built on the Isabelle platform [66]1, which
provides a generic infrastructure for building deductive systems with a focus on theorem proving
in higher order logic. The aim is to make developing such systems easier than writing them in
pureML. Several logics have been developed using the Isabelle platform including Isabelle/HOL.
Unlike the previously mentioned implementations of higher order logic Isabelle/HOL is not a
descendant of HOL88, leading to larger syntactical differences to other HOL systems in both
developing and proving theorems. Isabelle/HOL provided additional logic automation (inherited
from Isabelle e.g., first order theorem proving tools) that were not available in other HOL systems
at the time Isabelle/HOL was developed.
PVS (Prototype Verification System) [64] is a strongly typed higher order logic, with extensions
(e.g., predicate subtyping, and parameterisation, which are covered in detail in the section below
on language features). In contrast to the HOL family of languages the core of PVS does not at-
tempt to take a minimalistic approach, e.g., the previously mentioned extensions. This increases
the chances that there are inconsistencies in the core of the language. However, there are benefits
to implementing proof automation and the speed (and usability) of the language.

2.1.2 Martin-Löf Languages

Higher order logic is not the only form of type theory used to in proof systems. Martin-Löf type
theory [55] (intuitionistic type theory) , is widely used, including by Coq [8], NuPRL [3] and
Agda [11]. Martin-Löf type theory treats propositions as types, and when a proposition is made,
its type is calculated. Evidence for the proposition is a member of the type calculated for the
proposition i.e., the type calculated for a proposition is the type of its proofs, and any instance
of this type is a proof of the proposition. The advantage of this system is that proofs become
functions within the language, and these functions can be used as algorithms within a program.
For example given:

∀m, n ∈ ℕ ⋅ ∃p, r ∈ ℕ ⋅ r < p ∧ m × p + r = n
1The reference manual for which can be found at https://isabelle.in.tum.de/doc/isar-ref.pdf

https://isabelle.in.tum.de/doc/isar-ref.pdf

12 Chapter 2 Literature Review

a proof object of this statement results in a function that given two integers will calculate a p and
r such that m × p + r = n.
To allow this it is necessary to have several additional type constructors that are not present in
the higher order logic systems, for example a type needs to be given for the proposition:

∀x ∈ A ⋅ B(x)

The type given is∑(A,B), the generalised Cartesian product of B(x) (where B(x) is a new type,
for each member x ∈ A). A member of B(x) is a proof function such that for all x in A, b(x) is
a proof of B(x).
WithinMartin-Löf type theory one can use type variables within expressions. Unlike in Hindley-
Milner style type systems these type variables are themselves typed. Any type can not contain
itself, which leads to the question of the type of Type, the solution is a hierarchy of types, so Type
has the type Type1 and the type of Typei is the type Typei+1.
Martin Löf type theory diverges from classical mathematics by rejecting the law of the excluded
middle i.e., P ∨ ¬P = ⊤. It is instead necessary to demonstrate that there is either a proof for P
or a proof for ¬P . The allows paradoxes caused by statements such as ”this statement is false”
to be resolved, as it is no longer required that this statement is either provably true, or provably
false. Despite this divergence from classical mathematics large mathematical libraries have been
developed such as The CoRn library for Coq [19].

2.1.3 Algebraic Specifications

Algebraic specifications [35] were designed to give descriptions of data types in an implementa-
tion independent manner. An abstract datatype is defined with a series of operations and a series
of axioms to describe the operations. There is also the notion of sufficient completeness for the
axioms, that is, whether or not the axioms provided are sufficient to give semantics to each of
the operations of the datatype.
There are many current specification languages e.g., OBJ3 [30], CASL (common algebraic spec-
ification language) [4], CafeOBJ [23] (which is more focused towards theorem proving). Alge-
braic specification languages have been used for a wide range of applications, including generat-
ing runnable code from specifications to hardware specifications and verification [29]. There are
many parallels between features in modern algebraic specification languages and the previously
described languages. Common feature in modern algebraic specification languages (including
CASL and those based on OBJ3 (BOBJ [31], CAFEOBJ, Maude [18])) include subtyping (in-
cluding with multiple inheritance), and parameterised programming [84], where one algebraic
specification depends on another object determined by an abstract specification.

Chapter 2 Literature Review 13

2.1.4 Focalize

Focalize [37] is a modelling environment used primarily for modelling software. The Focalize
language is constructed from basic building blocks called species. These act in a similar way
to type classes in other languages, where a series of elements (signatures) are grouped together
with a set, and given definitions, e.g., a species could be defined with a signature for equivalence,
this would define a setoid.
Uniquely amongst the languages looked at here Focalize adopts some aspects of object oriented
design e.g., species can have methods, if one species inherits from another, methods can be
overridden. The result of this overriding is that proofs which use methods need to be invalidated
if the method is overwritten. This is handled by the Focalize compiler.

2.1.5 ACL2

ACL2 [44] (A Computational Logic for Applicative Common Lisp) was created with the spe-
cific aim of being a programming language [51] where the models constructed in verification
projects can be executed. This is achieved by taking a subset of common Lisp [44], axiomatising
the primitives and introducing inference rules. This allows programs to be written in the subset
of Lisp, and proofs to be made about these programs. Lisp is an untyped language with partial
functions. The result of this is that functions can be called with arguments on which they are not
defined. To resolve this issue ACL2 introduces the notion of guards which check that arguments
are in the domain of a function. Guards have been identified for each of the common Lisp prim-
itives within ACL2. ACL2 has been used in many Software and Hardware verification projects
many of which are outlined in [44].

2.2 Language Features

This section will look at language features that are present in the languages in the previous section
which facilitate the definition of mathematical libraries.

2.2.1 Datatypes

Datatypes (or recursive datatypes) are a common feature in many languages e.g., HOL4, HOL
light, Isabelle/HOL, Coq, etc. Datatype definitions allow types to be defined by a series of gener-
ator operators, and any element is only a member of the type if it can be defined by the generator
operators. It is necessary to have some base operators (atoms) which do not take an argument,
for this definition to work. Datatypes allow proof by induction (specifically structural induction).
Early work on data types was presented by Burstall [12] and Hoare [43]. Along with the con-
structor operators datatypes also have destructors, allowing elements of the datatypes to be split

14 Chapter 2 Literature Review

into their constituent parts. Language support for datatypes stops the user from having to explic-
itly state induction axioms for a given type saving the user work and removing the possibility of
making mistakes restating axioms.
The existence of datatypes also allows the writing of recursive functions using pattern matching
to match cases of a recursive type. As an example the the naturals can be defined with the
following datatype:

Nat =̂
Constructors:

zero
suc(prev ∶ Nat)

Here the constructors are zero and suc(prev ∶ Nat), and the destructor is prev. This definition,
along with structural equality (two elements are equal if they are constructed using an identical
series of constructors) is enough to satisfy Peano’s natural axioms (along with the induction
principle given by the inductive datatype). Addition can then be defined as a recursive function:

nAdd(x ∶ Nat, y ∶ Nat) =̂
cases[x]

zero → y
suc(xs) → suc(xs nAdd y)

When x matches zero the result is y. When suc(xs) is matched (where xs is an element inNat)
the result is suc(xs nAdd y).
Many languages extend the notion of datatypes to (co)inductive datatypes using an approach
based on least and greatest fixed points of monotonic functions [65] e.g., Isabelle/HOL, Agda,
Coq, BOBJ. Extending datatypes in this way allows the definition ofmutually recursive datatypes,
and infinite datatypes (given with definitions of co-recursive datatypes). By allowing users to
prove operators are monotone rather than having syntactic constraints, a wider range of datatypes
can be defined.

2.2.2 Predicate Subtypes and Dependent Types

Predicate subtypes [70] are types which are defined by restricting a type with a predicate. For
example, the subtype of integers less than 30 could be declared in the following way:

T = {x ∶ ℤ|x < 30}

Chapter 2 Literature Review 15

As noted in [70] and [30] allowing predicate subtypes allows many functions to be specified as
a total functions on subtypes rather than as partial functions. In many cases it is possible for the
type system to determine whether a call to a function that has subtype arguments is well defined,
rather than the user having to manually demonstrate this. Type inference on subtypes is generally
undecidable. To allow better reasoning about subtypes, functions require a return type. If the
return type is a subtype then the type system may infer a weaker type (a less constrained type) as
the result of the function. In this case the system will generate a proof obligation to demonstrate
the return type is correct. Predicate subtypes are included in Obj3 [30], PVS [64], and theorem
provers which use Martin-Löf type theory.
Martin-Löf based type systems take the notion of predicate subtypes further with dependent
types, these allow a type to depend on another variable. Extending the example above we could
have a type as follows:

T [n ∶ ℕ] = {x ∶ ℕ|x < n}

Here T is a family of subtypes of natural numbers, parameterised by n. This paper [46] describes
how dependent types can be translated into higher-order logic. The approach is to define pred-
icate functions to simulate the dependent types, for example m ∶ T [n ∶ ℕ] is simulated by the
function �m ∶ ℕ, nℕ|m < n within theorems this function can then be used in place of the de-
pendent type information. [46] uses this approach systematically, and uses the ML language to
add syntactic and proof features to HOL to handle these types.

2.2.3 Type Classes

Type classes are a mechanism by which a set of types can be grouped by the properties of the
type. The type class describes the properties that a type needs to have to be a member of the type
class. The properties in the type class can be sufficient to prove additional properties of the type
class (e.g., given a monoid type class it would be possible to prove the uniqueness of the identity
element). Type classes can also be used to constrain parametric polymorphisms (type variables),
allowing generic functions to be written about types constrained to members of the type class.
For example a class, called Setoid, could be defined (a type with an equivalence relation) and
from this it would be possible to write a not-equivalent function:

not_equiv⟨T ∶ Setoid⟩(a ∶ T , b ∶ T) ¬(a T .eq b)

Here the type variable T is constrained to types that have an equivalence relation (e.g., T must
be a member of the Setoid type class). The equivalence relation associated with T can then be
used (in the example T .eq is used to access this).

16 Chapter 2 Literature Review

Types shown to have the properties of a given type class can use the theorems relating to the type
class, and have the constrained parametric functions applied to their elements without further
work.
It is worth noting the similarities between type classes and algebraic specification languages
such as OBJ3 based languages and CASL, which utilise parameterised programming. Algebraic
specification languages view datatypes as many sorted algebras e.g., sets equipped with opera-
tions. They provide an abstract specification for these types, while type classes fulfil this role
in purely functional languages. Parameterised programming [84] allow one type to depend on
another, provided the other type conforms to a specification. Given an algebraic specification of
a datatype D another datatype E can be parameterised with (depend upon) this datatype E[D]
and within the definition of E properties of D can be referred to. Any datatype that conforms
to the algebraic specification of D can be used in the place of D. This resembles type classes
specifying properties of types, and being used to constrain parametric polymorphisms. The re-
semblance is strong enough that the system for type checking OBJ3, order sorted unification [56]
can also be used for type inference on type classes [63].
Type Classes were originally proposed by Walder and Blott [85] and have since been used in
many languages such as Haskell [50], Coq [79] and Isabelle [36] [61]. It is of interest that
the original implementation of type classes in [85] is entirely implemented using a preprocessor
on a Hindley-Milner typed language, although it uses features of programming languages (such
as strings and dictionaries). Isabelle/HOL has an implementation of type classes added to the
language based on order sorted unification [56] [63]. It was later shown that type classes could
emerge from higher-order logic [86] demonstrating their soundness in HOL systems.
Type classes also have a first class implementation in Coq, as described in [79], where it is shown
that they emerge from Coq’s underlying logic with minimal changes. [19] describes an extensive
library of abstract mathematical types built using the type classes within Coq.

2.2.4 Partial Functions

Partial functions are functions which are not defined for every value within the type of their
domain, e.g., in Event-B a partial functions is written S →T where S and T are sets. A member
of this type does not have to be defined for every value of S. In HOL style languages and
Martin-Löf languages partial functions are not first class members of the language, instead they
need to be modelled within the language. Partial functions appear as first class members of
VDM (ViennaDevelopmentMethod) [48] a specification languagewhich uses the logic of partial
functions LPF [7], Event-B [1], B [73] (the formal method from which Event-B evolved) and
Z [24] (A formal method based on set theory and first-order predicate logic, closely related to B
and Event-B). An approach to modelling partial functions in other languages with total functions
is to introduce an option type in the following manner:

Chapter 2 Literature Review 17

datatype⟨a⟩ option = Some a |None

A partial function that would return a type T would instead return the type option⟨T ⟩ with the
value None if the arguments to function result in an undefined result. In [71] Event-B’s syntax
is embedded in HOL using this technique. Another approach is to model a partial function
with a similar total function, e.g., passing zero as the result of the division function when the
denominator is zero.
As mentioned previously languages which have predicate subtypes e.g., OBJ3 [30] and PVS [64]
can take a different approach, it is often possible to rewrite a partial function as a total function
on the correct subtype, e.g., in the case of division the denominator could be the subtype ofℝ∕0.

2.3 Modelling In Event-B

In order to understand modelling in Event-B it is useful to have a brief overview of how a user
models a system using the Event-B language, and how it is demonstrated that the model is con-
sistent. A more in depth introduction can be found in [47] or [1].
This section gives an overview of modelling in Event-B. In order to demonstrate that a model is
consistent it is necessary that various properties of the model are proved to be true. The Event-B
language does this by generating proof obligations based on the model. As modelling in Event-B
is described the proof obligations associated with various parts of the model will be discussed.
To aid this discussion it is helpful to know how proofs are reasoned about in Event-B.

2.3.1 Proofs

Proofs constructed in Event-B are done by applying a series of proof rules. These are described
here using proof-theoretic semantics [68, 27]. Proof-theoretic semantics is built on units called
sequents. When describing a proof there is a goal (a predicate that needs to be proved), and a set
of assumptions/hypotheses which are assumed to be true. A sequent expresses this information.
Given a goal G and a set of hypothesesH a sequent is written:

H ⊢ G (2.1)

Given the set of hypothesisH , G should be shown to be true.
To demonstrate that a sequent is valid a series of proof rules can be applied. A proof rule is a
relationship between sequents. Given a set of sequents A (called the antecedent), a sequent C
(called the consequent) and a name n a proof rule is written:

18 Chapter 2 Literature Review

A
C
n (2.2)

This reads as, given proofs of the sequents inA, n yields a proof of the sequentC . As an example:

P ⊢ R Q ⊢ R
P ∨Q ⊢ R

(2.3)

This says that to demonstrate that the hypotheses P orQ give R it is necessary to show that both
P and Q independently give R
To prove a sequent S, a proof rule is chosen with S as the consequent, S is proved when each
of the sequents in the antecedents is proved. Some proof rules may have an empty antecedent,
for example, given an expression E:

E = E
(2.4)

This is an axiom of the system (i.e., it is assumed to be true). A proof of a sequent can then be
viewed as a tree of chosen proof rules. If the proof is valid all of the branches will end with an
axiom (meaning no more sequents need to be proved). The complete list of Event-B proof rules
can be found in [1].
When a proof obligation (generated by an Event-B model) is a sequent. Attempts can then be
made to prove this sequent using the Event-B proof rules.

2.4 Model Structure

Event-B models are split into two different categories, contexts and models.
Contexts contain static statements, they define constants and carrier sets (types). The constants
and carrier sets can then be further defined by adding axioms using the Event-B mathematical
language. For example, a carrier set COLOUR can be defined, and the constants red and green
can be made members of the type with the following axiom:

red ∈ COLOUR ∧ green ∈ COLOUR

Defining a type axiomatically in this manner bears similarity to algebraic specifications [35],
where datatypes (a set with a set of operations) are described by an abstract specification, as a
series of axioms which are implementation independent. A major difference is that Event-B does
not have a notion of datatypes, so that functions are not encapsulated within a type but separate
entities. In Event-B there are no restrictions on axioms (datatypes in algebraic specifications

Chapter 2 Literature Review 19

require the axioms to not contradict each other and to describe the datatype to a level of suffi-
cient completeness, enough to describe meaning to all the operations of the datatype). Event-B
does not enforce any form of completeness, or the axioms to be consistent, instead, it is up to
the model developer to ensure the axioms are consistent, and that they have enough axioms to
complete their proof (each additional axiom should be justified). Note, as the axioms are not
checked in any way the user can introduce contradictions e.g., TRUE = FALSE allowing them
to prove anything. Often one can use a model checker to find instances satisfying the axioms to
demonstrate consistency.
Event-B machines are where the system behaviour is specified. They can see and use constants
and carrier sets from contexts. Machines are made up of events, variables and invariants. Events
provide the mechanism for state change (variables can be changed to different values, but the
type of the variable does not change). Events are made up of the following components:

Parameters: Allow the events to change the state of the machine based on the possible values of pa-
rameters

Guards: A series of predicates that specify under what conditions the event can happen, this in-
cludes restricting values that parameters can take. These predicate statements can be made
up of variables in the machine, context, and the parameters.

Actions: These describe the changes that will apply to variables.

Invariants are predicates that the variables should satisfy in all reachable states. It is required
that this is proved (which may require the user to perform manual proof steps). The result is that
for every event evt a proof obligation is generated for every invariant Inv of the form:

Axioms and theorems

Invariants and theorems

Guards of the event

before-after predicate

⊢

Inv modified

(2.5)

The proof obligation will be called evt-Inv. Here the before-after predicate describe state change
made by an event, e.g., an event could change a variable x ∶= x + 1, the before-after predicate
would write this as x′ = x + 1 where x′ is the after value of x. Inv modified is then Inv except
with the modified state e.g., if the invariant was x ∈ Int the Modified invariant would become
x′ ∈ Int. A second proof obligation is generated to check the feasibility of the change made
by the before-after predicates, i.e., it is checked that given the invariants, theorems, and guards
there is a possible valid change of state:

20 Chapter 2 Literature Review

Axioms and Theorems

Invariants

Guards of the Event

⊢

∃v′ ⋅ before-after predicate

(2.6)

In future proof obligations will be described, but not formalised. The formal definitions of proof
obligations can be found in [1].

2.4.1 Refinement

Event-B supports refinement of machines. This allows the user to start with an abstract model
and incrementally refine it closer to the system the user is trying to model. The refined model
can add new variables, extend events, add new invariants, and define new events. The refined
model must only act in ways that are consistent with the abstract model. What this means is
that events must only occur when the abstract event can occur (guard strengthening). When a
concrete event occurs the state change created by the event must be consistent with state change
of the abstract event. Concrete machines can see the state of the abstract machines. The concrete
machine may want to use new variables to define a more concrete model. To allow this the new
state has to be related to the old state (i.e., concrete variables must have a specified relationship
to abstract ones). This is done by creating new invariants that describe the relationship between
the abstract variables and the concrete ones. These invariants are known as gluing invariants.
Concrete events may want to use different parameters to the abstract events. Similarly it may
be desirable to change parameters in refined events, to do this whilst maintaining the link to
the abstract events predicates need to be added to relate the abstract parameters to the concrete
parameters and state. These predicates are called witnesses.
Where necessary the proof obligations are expanded to include the witnesses, and the invariants
from the abstract model, e.g., these are added to evt-Inv in (2.5). A proof obligation is also added
which requires the user to demonstrate the abstract guard is true whenever the concrete guard is.
This is an incomplete description of the generated proof obligations. For a complete description
see Chapter 5 in [1].
An example from [1] is an island where access is restricted to only a certain number of cars.
There is a single lane bridge to the island, cars on the bridge count as on the island. The initial
(most abstract) model has the following elements:

1. A constant d for the maximum number of cars (declared in a context, all other elements
are defined in a machine).

2. A variable n for the current number of cars on the island (initialised to zero).

Chapter 2 Literature Review 21

3. An invariant n ≤ d

4. An event to increment cars on the island, ML_IN (n ∶= n + 1), guarded with n < d
5. An event to decrement cars on the island, ML_OUT (n ∶= n − 1), guarded with n > 0

This model is then refined to model the traffic on the bridge separately and further refined to
model traffic lights on the bridge.
A machine can only refine at most one other machine. The refinement adds two new features to
the machines:

1. Relating new variables to old ones: In the example above the first refinement introduces
three new variables to model the bridge, The variable a, cars on the bridge travelling to-
wards the island, b cars on the island, and c cars on bridge leaving the island. The gluing
invariant is a + b + c = n i.e., the cars on the bridge count as on the island. This is an
example of a gluing invariant.

2. Refining Events: Each event in the abstract machine can be refined by one or more event
in the concrete machine, refined events in the above example include:

• cars moving onto the bridge (incrementing a) the direct refinement of ML_IN.
• cars moving from the bridge to the island (decrementing a and incrementing b)
• cars moving from the island to the bridge (decrement b increment c)
• cars moving off the bridge (decrement c) the direct refinement of ML_OUT

These refined events also have updated guards for when they can be applied (e.g., the bridge is
only one lane so an invariant is added saying either a or c is zero. An example of a guard needed
to prove this is that a cannot be increment if c ≠ 0). The proof obligations discussed above
are generated to ensure that refined events in the concrete machine do not contradict the abstract
events they refine, and that gluing invariants are not violated.

2.5 The Event-B Mathematical Language

The Event-B language has a typed set theory syntax. Expressions within the Event-B language
are made up variables (members of types), type and set variables, and operators. Operators are
typed using generic types, and the operator is constrained to a type pattern, rather than specific
types (e.g., the union operator S union T requires that S and T are both subsets of the same
complete type). In standard Event-B (the Theory Plug-in extends the Event-B language as will
be seen in 2.6) it is not possible to define new operators.
The rest of this section explores the Event-B language in more detail, starting by looking at the
type system, and then looking at operators available within Event-B.

22 Chapter 2 Literature Review

2.5.1 The Type System

With Event-B there are three ways to define a new type:

1. The introduction of a basic type (carrier set).
2. Using the power set operator ℙ (this also acts as an operator on sets as expected), e.g.,

ℙ(ℤ) gives the type of sets of integers (including the type of ℤ).
3. Using the Cartesian product of two types e.g., ℤ × BOOL

Expressions written in the Event-B language have a type created by one of these rules. The Rodin
platform has a type inference engine, it is often the case that types do not need to be explicitly
given as they can be inferred from other constraints.
In the thesis by Schmalz [72] (where the Event-B logic is embedded in Isabelle/HOL) it is argued
that this type system “closely resembles” higher order logic as in [33] for the following reasons:

• it is possible to quantify sets and sets of set, similar to the ability to quantify over functions
in higher order logic

• the logic is typed
• there is a difference between predicates and expressions, however, as Event-B has a BOOL

type and a bool operator that transforms a predicate into the BOOL type e.g., bool(⊤) =
TRUE 2 with these additions the BOOL type can be used to represent predicates, trans-
forming to predicates as necessary (formula can be transformed to the BOOL type using
the bool function, and the BOOL type can be transformed back to predicates by appending
= TRUE) 3. Resulting in a simple work around for the user to use “predicate” variables.

• Event-B has type variables referred to as carrier sets.

Unlike the type system in higher order logic, Event-B’s logic has support for partial functions.
This is achieved by the use of well definedness predicates, that state when an operator can be
used. Much of the work done by Schmalz is representing Event-B’s partial functions within
Isabelle/HOL.
The Event-B type system makes Event-B more like HOL style languages than axiomatic set
theory. For example, in the early 20th century, Zermelo–Fraenkel set theory (ZF set theory) was
developed [91] [75]. ZF set theory overcomes the problems with naive set theory (Cantor’s set
theory [82]) such as Russell’s paradox, by only allowing sets to contain sets excluding themselves.
Unlike Event-B, ZF set theory allows the union of any two sets to form a new set (in Event-B this

2Notice that the bool function is accepting a predicate as an argument, which is notionally not allowed in Event-B
3Making predicate variables first class would require considerable extra work on the interactive prover

Chapter 2 Literature Review 23

is only allowed if the elements of the set are from the same type). Von Neumann-Bernays-Gödel
(NBG) set theory [28] adds the notion of classes to ZF set theory. This addition is a conservative
extension to ZF set theory. Classes allow collections of sets defined by a formula. Every set is a
class, any class that is not a member of another class is a proper class. Classes allow reasoning
about things bigger than sets e.g., we can have the class of ordinals (well ordered sets), as the
class of well ordered sets is well ordered it would contain itself, so cannot be a set.

2.5.2 Operators

We have already seen the Event-B operators that are able to define new types. This section will
give a description of the other Event-B operators. Event-B operators are largely inherited from
set theory (although there are also a collection of integer operators). The operators can be split
into two groups, predicate operators and expression operators. A complete list of all the operators
can be found here [69].
Of particular interest to this thesis are the lambda operator and the operators for handling subsets.
The lambda operator allows the creation of functions, which given an argument expand to an
expression (like functions in simply typed lambda calculus). Unlike in simply typed lambda
calculus, lambda abstractions in Event-B can be partial. The syntax for the lambda operator is:

�x ⋅ P |E

P is a predicate restricting the values of x, E is an expression which can include the parameter
x (the lambda expression is only well-defined when P (x) is true, and E is well-defined for x
satisfying P). Given a function application (�x ⋅ P |E)(y) instances of x in E will be replaced
by y with the usual substitutions to stop free variables in E conflicting with y. The type of x is
inferred from P and E. If it can not be inferred then the user may need to add more information
to the P expression e.g. ⋯ ∧ x ∈ ℕ.
Event-B has an unusual syntax for pairs, to define a pair the ↦ symbol is used, e.g., a lambda
with two parameters would have the following form:

�x↦ y ⋅ P |E

The pair operator (↦) is left associative so E ↦ F ↦ G is (E ↦ F) ↦ G.
Event-B has a wide range of operators for sets including the operators ⊂, ⊆ ∈, ℙ(…). There is
also support for set comprehension given a set F and a predicate P , {F |P } is the set of all values
of F which satisfy P ({e1, e2,… , en} can also be used to define sets from a series of elements
providing all of the elements have the same Event-B type). Despite many of the same operators
working on types and sets in Event-B sets are not types, for example the in the expression x ∈ ℕ

24 Chapter 2 Literature Review

(x is in the naturals) the type of x will be inferred as as ℤ (the integer type) as in Event-B the
naturals are a subset of the integers, not a type in their own right. A result of this is the need to
add explicit setting predicates e.g., given a function F ∈ ℕ × ℕ → ℕ, the following expression
will never be provable regardless of the function:

∀x, y ⋅ F (x↦ y) = F (y↦ x) (2.7)

As ℕ is not a type, Event-B’s inference mechanism infers the type of x and y to be integers,
and the function F is not defined on negative numbers. To resolve this the user is required to
explicitly define which subsets elements are members of within the expression:

∀x, y ⋅ x ∈ ℕ ∧ y ∈ ℕ ⇒ F (x ↦ y) = F (y↦ x)

An unusual feature of the Event-B language is that operators are not first class entities within
the language, so can only be used within expression with their arguments. For instance given a
functions f ∈ (ℤ × ℤ) × ℤ → ℤ. Invoking f (∗↦ 7) would cause a syntax error, as ∗ is the
multiplication operator, and would expect arguments. This can be resolved by encapsulating the
operator in a lambda abstraction f ((�x↦ y ⋅ ⊤|x ∗ y) ↦ 7).

2.5.3 Well-Definedness

When an expression is written in Event-B, a proof obligation is generated to demonstrate that
the expression is well defined. This is the conjunction of the well-definedness conditions for
each operator used, instantiated with the variables from the equation. For instance, if we have
a function f and an expression E, and we write the new expression f(E) the following well-
definedness (WD) proof obligation will be generated:

E ∈ dom(f) ∧ f ∈ S → T

This is generated because the function operator has a well-definedness clause stating that it is
only well defined for some subset of S (accessed by the dom operator). Without WD conditions
there would need to be some other mechanism to deal with arguments for which the function are
not defined e.g., the optionals discussed in 2.2.4.

2.6 The Theory Plug-in Additions to Event-B

The Theory Plug-in [15] is a plug-in to the Rodin toolset to facilitate the creation of mathematical
types. It extends the Event-B language to allow the user to define new operators. It also extends

Chapter 2 Literature Review 25

the type system with the ability to write datatypes, recursive operators can be written to act on
these datatypes. This creates a powerful additional tool in the Rodin toolset. Datatypes allow
new types to be defined in a consistent manner without the need for user added axioms on the
type. Along with the language features of operators and datatypes, the Theory Plug-in also adds
theorems and allows the user to define proof rules. Proof rules are statements that can be used
within the interactive prover.
The datatypes added by the Theory Plug-in are very similar to the datatype feature already de-
scribed earlier in this Chapter 2.2.1 and are not given further description. The rest of this section
gives a more in depth description of the other features added by Theory Plug-in.

2.6.1 Operators

Operators can be split into two major groups, axiomatically defined operators and operators that
expand to a given expressions (constructive operators).
When defined constructive operators have a set of typed parameters, these parameters are used
in a set of expressions. The constructive operator can then be called with a set of arguments
(Event-B expressions of the correct type). These arguments are substituted into the operators
expression in place of the parameters. Constructive operators can be further split into two defi-
nitions recursive and non-recursive operators.
Non-recursive operators have a single expression within their definition, when called with ar-
guments the operator is expanded using substitution to generate an Event-B expression. For
example:

squared_nat(x ∶ Nat) =̂ x ntimes x

Given an expression E of type Nat:

squared_nat(E) = E ntimes E

Operators can take type variables as arguments, allowing the definition of new type operators
e.g.:

triple(t ∶ ℙ(T))=̂t × t × t

Using the set syntax it is possible to use operators to make dependent subsets, similar to the
dependent subtypes of Martin-Löf languages e.g.,

26 Chapter 2 Literature Review

finiteNat(n ∶ ℕ) =̂{x|x ∈ ℕ ∧ x ≤ n}

However, as previously noted this definition will not create an Event-B type.
Recursive operators work by case matching with the constructors of the recursive type. Each
constructor of the recursive type has an associated expression. When called with arguments
the expression associated with the matched case is expanded. When the matched constructor
is atomic (a constructor that has no parameters) the expanded statement cannot reference the
operator that is being defined. If the matched constructor is non-atomic (has parameters) the
operator being defined can be referenced within the expansion. As an example, consider the
following recursively defined operator:

nAdd(x ∶ Nat, y ∶ Nat) =̂
cases[x]

zero → y
suc(xs) → suc(xs nAdd y)

Here nAdd is referenced within the definition of nAdd, however, it could not have been called in
the zero case as zero is an atomic constructor.
Operators can also be defined axiomatically within the Theory Plug-in. The result of this is very
similar to the axiomatic description of functions in standard Event-B.
The Theory Plug-in also adds the notion of a predicate operator, this is an operator that takes a
series of expressions and returns a predicate.
Finally the Theory Plug-in adds a conditional operator, given an Event-B predicate P and two
expressions e1 and e2, the expression COND(P , e1, e2) represents e1 if P otherwise it represents
e2. In effect this is a convenience operator, as this could have been defined as an operator using
the BOOL type:

ite(P ∶ BOOL, e1 ∶ T , e2 ∶ T)

axiom ∶ ite(TRUE, e1, e2) = e1 ∧ ite(FALSE, e1, e2) = e2

However, the user would have been required to convert arguments from predicates to expressions
as necessary. Note that if the BOOL type had been defined as a Theory Plug-in datatype with
the atomic constructors TRUE and FALSE the ite operator could have been a recursive operator
(as described above) on the BOOL type (when a datatype only has atomic constructors recur-
sive operators reduce to case based operators) and an axiomatic definition would not have been
necessary.
From this point forward when the Event-B language is referred to, it is assumed that it is the
Event-B language with the Theory Plug-in extensions.

Chapter 2 Literature Review 27

2.6.2 Theorems

Theorems are named predicate expression which the user can declare. These expressions can
then be used in the same way as axioms in future proofs. A proof obligation is generated, the
user needs to prove these statements using previously defined operators and theorems. As soon
as theorems have been declared they can be used within the proof of future theorems. This allows
the user to prove theorems in the order they desire. For example, a user may be in the middle of a
proof when they realise they need an additional corollary to ease the proof, this can be declared
immediately as a theorem, allowing the user to continue with their proof, then the corollary can
be proved afterwards (allowing the user to concentrate on the initial proof).
As expected quantification is allowed within theorems:

∀x,y ⋅ x ∈ List(T) ∧ y ∈ List(T)

⇒ list_lengtℎ(appendList(x, y)) = list_lengtℎ(x) pAdd list_lengtℎ(y)

Here T is a generic type. When this theorem is use within the proof of another theorem, the type
T needs to be instantiated with a type available in the context of the theorem being proved. This
can be a datatype (e.g., the natural numbers pNat) or another generic type. The instantiation type
is chosen by the user. It is normally obvious which type to choose. For instance, if the theorem
being proved is a theorem about lists of integer numbers, then the integer numbers type should be
chosen. Having instantiated the types the theorem becomes a sequent within the current proof.
The variables introduced by the universal quantifier can then be instantiated with variables from
within the proof context (multiple times if necessary).

2.7 The Rodin Platform

Modelling in Event-B is facilitated by the Rodin [47] tool set. The Rodin toolset is an extensible
modelling environment built on top of the Eclipse platform [89]. At its core is the implementa-
tion of the Event-B, the proving mechanisms, and Event-B editors. Many additional tools have
been created for the Event-B toolset including code generators, additional proof tactics (such as
using external provers to automatically discharge proofs), and graphical state machine editors.
There are a variety of Event-B text editors which the user can use to write their models. The
editors can have very different forms, this is made possible as Rodin does not save Event-B files
in plain text. Instead the Event-B representation is stored as an abstract syntax tree, this can then
be displayed and edited in multiple different ways by different editors. The user can change the
editor that they use at any point. When an Event-B file is saved the changes are parsed and the
Rodin tool generates any necessary proof obligations.
When a proof obligation is generated an attempt will be made by the Rodin tool to automatically
discharge it. This is done by the invocation of a series of tactics. A tactic is a set of proof rules.

28 Chapter 2 Literature Review

The tactic can use control flow to apply the rules e.g., they can be applied in a loop. The user can
edit the tactics that are automatically applied and the order in which they are applied. Additional
proof tactics can be added programmatically. This must be done with care as an inconsistent
proof tactic would allow anything to be proved.
There have been several proof tactics added, such as the SMT (Satisfiability modulo theories)
proof tactics. SMT solvers work by finding a value that satisfies a series of constraints. If a value
can be found that satisfies the given constraints the system is described as satisfiable. The other
results that can be obtained are unsatisfiable (there is no value that will solve these constraints)
and undecided (no value was found that will solve these constraints). Note that unsatisfiable
is also a useful result, to demonstrate that f (x) < 5 in SMT we instead show that f (x) ≥ 5
is unsatisfiable. This type of constraint solving is useful in resolving types and in the case of
Event-B well-definedness constraints. There are many SMT solvers available e.g., Z3 [21] and
CVC4 [5]. There is also a common language that many SMT solvers use to express constraints
called SMT-LIB [6]. The SMT proof tactic in Rodin translates Event-B to the SMT-LIB syntax,
and then runs one of the SMT solvers (as selected by the user) to see if the SMT solvers can
resolve the proof obligation. This process is designed to make proving easier. This is very
different to the purpose of this thesis which is to ease the definition of theories in Event-B by
translating from a HOL style language.
If the tactic fails the Rodin tool makes it clear to the user that there are proof obligations that
need to be proved. The user can select proof obligations and guide the proof using the interactive
provers, which allows the user to manually apply certain proof rules and tactics. Operators have a
series of associated proof rules, when these proof rules are available, the operator is highlighted,
and the proof rule can be run by clicking on the operator (if there is more than one associated
proof rule, the desired proof rule is selected from a list). As a trivial example we may have the
following proof obligation:

x=y + 1

⊢

y + 1=x

(2.8)

Within the interactive prover the user can click on the = in the list of hypothesis, and select
“Apply equality from left to right” or “Equality from right to left”. This will replace x with
y + 1 in other expression, completing the proof. A second type of proof rule is available, which
allows new hypothesis to be inferred from existing hypothesis, for example given the following
hypothesis:

f ∈ S → T

▾g ∈ T → U
(2.9)

Chapter 2 Literature Review 29

The ▾ can be clicked on by the user to infer the existence of a new total function ℎ ∈ S → U ,
which is added to the hypothesis.
Event-B in its standard form does not give a sound way to extend the language with new proof
rules, to do this requires changing or extending the Rodin toolset using Java. This has a strong
potential to introduce unsound rules, as the rules that are added have no checks other than those
made by the person adding the rule. In contrast HOL users can add proof rules using their meta-
language (ML) and ML’s type system ensures that only logically sound methods can be used
when creating proof rules, ensuring their soundness [33] i.e., Due to the type system in ML it
is only possible to construct new proof rules from already available tactics. This allows HOL
based languages to have small cores which can be extended consistently.

2.7.1 Theory Plug-in Proof Rules

The Theory Plug-in directly adds two new proof rules to the interactive prover, to facilitate proofs
with datatypes. These allow case analysis and induction to be used on variables which are in-
stances of datatypes. The user can click on any variable which is a member of a datatype and
select which of these to apply. The approach of case analysis is that if you can prove the hypothe-
sis for every different case a variable can take then it must be true. Therefore, the user is required
to prove the hypothesis for each of the constructors in the datatype. When induction is selected
the user is required to prove the hypothesis for each of the atomic constructors, followed by prov-
ing the hypothesis for the non-atomic constructors, unlike case analysis the inductive hypothesis
is added to the list of available hypothesis for non-base constructors.
The Theory Plug-in also adds a mechanism for adding proof rules. It allows the addition of
two types of proof rules, re-write rules and inference rules. To define a re-write rule the user
provides an expression which the interactive prover can match, and the expression that it can be
re-written as. This will generate a proof obligation to demonstrate that these two expressions
are equivalent. Inference rules allow the interactive prover to make an inference based on the
current hypothesis. The difference between these and re-write rules is that the user only needs
to demonstrate that the first expression implies the second expression, not that it is equivalent to
it.
Declaring proof rules allows the use of the operator’s properties within the interactive prover. To
define these proof rules we need to declare metavariables. The metavariables for the associative
re-writes are as follows:

Metavariables

op : ℙ(ℙ(T) × ℙ(T) × ℙ(T))
a : ℙ(T)
b : ℙ(T)
c : ℙ(T)

30 Chapter 2 Literature Review

And the Proof rule states:

Given

op(a↦ op(b↦ c))
When

op ∈ AssocOps(ℙ(T))
Rewrite As

op(op(a ↦ b) ↦ c)

When declaring proof rules in the Theory Plug-in the metavariables must be Event-B types rather
than sets. The result of this is that typing must be done in the well-definedness (wℎen) part of
the proof rule definition. In the proof rule declared above, it may appear that a, b, and c, could be
members of different sets, which would mean the proof rule is not true. However, as AssocOps
is only well defined when a, b, and c are members of the same set, the proof rule is provable.

2.8 Conclusion

The languages discussed in this section have much in common, particularly in the structure of
the languages. In the HOL and Martin-Löf Languages functions/datatypes are declared, then
theorems are declared about these. In the case of Event-B the role of functions is replaced by
operators. Unlike functions operators are not first class members of the syntax, they cannot
be used within expressions without their arguments. This inability to use operators within an
expression without its arguments makes it harder to develop theories which make claims about
groups of operators, or define operators which take other operators as arguments. The advantage
of operators is that proof rules can be written about them, which can be used directly in the
interactive prover.
The tools for proving in Event-B work differently from many of the other proof systems. Gen-
erally the approach to proving is to provide a proving language, the user needs to learn this
language, and write a script to prove theorems. Whereas, the Event-B language has an inter-
active prover. This allows the user to explore different approaches by clicking on elements of
an expression, and seeing which rules can be applied. This saves the user needing to learn a
new language, and series of commands. The disadvantage of this approach is that proofs are
less reusable. It is difficult to copy and edit relevant sections of a proof, when proving a similar
result.
Event-B was designed as a system modelling language, with a strong emphasis on refinement,
unlike many of the other languages discussed which were designed as generic theorem provers.
The interactive theorem prover was designed to facilitate proofs for these types of systems. The
result of this is that Event-B and its theorem prover will not be found on any list of top generic
theorem provers.

Chapter 2 Literature Review 31

Unlike the other proving languages, Event-B has a set theoretic syntax at its core (although the
other proving languages have set syntax as an emergent feature, i.e., they represent sets using
predicates which are true for members of the set they wish to represent, and false otherwise.)
Other proving languages are backed by a meta language (ML language), which allows new fea-
tures to be added to the languages in a safe and consistent way. In contrast to add new features to
the Event-B language these have to be added using Java, and there is no guarantee of their con-
sistency. This feature of a meta language has facilitated adding new features to provers to allow
mathematical types to be defined more easily. Examples of this are type classes, co-recursive
datatypes, and set theoretic syntax. These features in other languages have allowed the creation
of large mathematical libraries. Having a consistent way to add these features to the Event-B
environment would allow mathematical types to be more easily defined. These in turn could be
used by Event-B modellers to model a more diverse range of systems.
Many HOL style languages have large libraries of mathematical types demonstrating the power
of these systems. It is mathematical libraries like these that we would like to make available to
the Event-B modeller, to extend the range of systems which can be modelled. Given the similar-
ities between HOL style languages and Event-B discussed in Section 2.5.1 a translation from a
HOL style language to Event-B will facilitate the definition of mathematical types usable by the
Event-B modeller. Event-B has advantages over HOL in the area of modelling discrete systems,
particularly in the area of refinement. It is therefore not desirable to move away from Event-B, a
translation of HOL syntax to Event-B would not require this. The benefits of translating Event-B
to a HOL style language for the purpose of proof facilitation has already been seen in [72].

Chapter 3

Constructing Mathematical Theories
in the Theory Plug-in

3.1 Introduction

The aim of the case study is to look at the capabilities of Event-B and the Theory Plug-in for
defining mathematical objects in a hierarchical and heritable manner. This study also looks at
ways in which this process could be made easier, both in defining theories, and making proofs
about them.
Within this chapter the Theory Plug-in is used to define some basic mathematical structures.1
In the future these mathematical structures, and the theorems and proofs about them will be
described as theories. Within these theories there will be examples of the types of mathematical
extension discussed above. Issues which arise when using the Theory Plug-in are also examined,
and solutions to these issues demonstrated.
Abstract (and reusable) mathematical types and concrete types are represented. It is shown how
the abstract and concrete types can relate to each other. Relating concrete mathematical types
via isomorphisms is also looked at, to see how this relationship could reduce work for the user.

3.2 Operators

To define abstract mathematical types such as monoids and groups it is first useful to have struc-
tures representing the building blocks of these types. This section describes the representation
of generic operators (e.g., functions of the form T × T → T).

1The source code for these mathematical structures can be found in theCase Study Release Branch of the following
repository: https://github.com/JSN00k/RodinMathCase-Study.

33

https://github.com/JSN00k/RodinMathCase-Study

34 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

With the aim of later being able to represent a monoid, it is first useful to have a representation
of an associative operator. There are several ways in which an associative operator could be
defined using the Theory Plug-in, the simplest choice to do this within the Theory Plug-in is an
axiomatic definition:

AssocOp(x, y) ∶ T ;
Axioms:

x, y, z ⋅ x ∈ T ∧ y ∈ T ∧ z ∈ T
⇒ AssocOp(AssocOp(x, y), z) = AssocOp(x,AssocOp(y, z)) //Associative

This defines an abstract representation of an associative operator (e.g., there is no definition of
how this operator works, it is only defined that it is associative). There are, however, problems
with this representation, firstly there is no way of instantiating T to another type, so, for exam-
ple, if it is desired to work to reason about associative operators on the natural numbers, a new
axiomatic definition needs to be given. Secondly there is no way to reuse this definition in later
definitions. For instance to define an Abelian operator (one which is both commutative and as-
sociative) there is no way of re-using the definition of the commutative or associative operator.
Third, if a concrete operator is defined (e.g., addition on the natural numbers) there is no way to
relate this to the abstract definition. As the aim is to produce reusable definitions, this way of
defining operators is not helpful.
The alternative approach taken is to use the Event-B set comprehension syntax for defining sub-
sets, along with the Theory Plug-in operators in the following way:

AssocOp(t ∶ ℙ(T)) =̂ {op | op ∈ (t × t) → t ∧ ∀x, y, z ⋅ x ∈ t ∧ y ∈ t ∧ z ∈ t

⇒ op(x↦ op(y↦ z)) = op(op(x↦ y) ↦ z}

A generic type parameter t is introduced, the type of t is in the powerset of an Event-B generic
type T , this allows the operator to be applied to subtypes (e.g., one may wish to reason about the
naturals which are less than 10; these are not an Event-B type as they are a subtype of the naturals.
Making t ∶ ℙ(T) allows the operator to be applicable to these types). The set theoretic statement
defines the set of all ops such that they are subsets of total functions on pairs of t to t (t × t→ t),
and they are associative, op(x ↦ op(y ↦ z)) = op(op(x ↦ y) ↦ z. This definition solves the
issues of the axiomatic definition. We can instantiate with any type we like by passing that type
to the operator. The operator can be reused by future definitions, for instance the definition of
the set of Abelian operators is:

AbelianOp(t ∶ ℙ(T) =̂ AssocOp(t) ∩ CommOp(t)

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 35

(CommOp is defined extremely similarly to AssocOp except the associative statement is replaced
with one defining commutativity). There is no need to explicitly restate the definition of asso-
ciativity or commutativity here. Concrete operators are able to be associated with the abstract
operator. This is seen later in 3.7.
When proving with the Rodin interactive prover to use the definition of associative operators
within Abelian operators, it is required that you expand the definition of Abelian operators, and
then expand the definition of associative operators. As the mathematical hierarchy builds up, the
definition that you need for a proof may get further and further away. Theories/Proof rules could
be used to bring these definitions forward. However, they would need to be declared and proved
at each level that one wished to use them.

3.3 Monoid

This section looks at how we can define the abstract monoid type. The definition of operators is
a matter of creating a subtype, e.g., the generic type for an operator was (T × T) × T , and this
is subtyped with additional constraints. A monoid on the other hand is a set with an associated
identity and associative operator. An operator to represent a generic monoid can be defined in
the following way:

Monoid(t ∶ ℙ(T)) =̂ {ident↦ op | ident ∈ t

∧ op ∈ AssocOps(t)

∧ ∀x ⋅ x ∈ t⇒ op(ident↦ x) = x ∧ op(x ↦ ident) = x}

(3.1)

this can then be used within theorems in the following way:

∀t,ident, op, oe, x ⋅ t ∈ ℙ(T) ∧ ident↦ op ∈ Monoid(t) ∧ oe ∈ t ∧ x ∈ t

⟹ (op(oe, x) = x⇔ oe = ident)
(3.2)

This theoremmakes a generic monoid with the statement ident↦ op ∈ Monoid(t). The theorem
then goes onto state that an element of t acting as the identity (in this case oe) must be the identity.
Several other theorems were declared about the monoid structure, including theorems about the
uniqueness of the identity, and corollaries used to prove this.
The definition of monoids given in 3.1 can be further subtyped to define new abstract types. For
instance, commutative monoids can be defined with the following statement:

CommMonoid(t ∶ ℙ(T) =̂ {CM | CM ∈ Monoid(t) ∧ prj2(CM) ∈ CommOp(t)} (3.3)

36 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

Here the operator part of the monoid is accessed using the prj2 function from Event-B, which
gets the second part of a pair e.g., if CM is a pair of the form ident↦ op, then prj2(ident↦ op)
gives op. To facilitate writing theorems it is useful to define operators to do this e.g.:

mon_op(m ∶ Monoid(T)) =̂ prj2(m)

Given a monoid this operator will deconstruct it to get the operator part. A similar operator was
defined to access the identity. Whilst this case is simple so working out how to deconstruct the
abstract type is also simple, as the abstract type becomes more complex deconstructing them
also becomes more complex, making these ‘deconstruction’ operators more useful.
When declaring Event-B operators a proof obligation is generated asking the user to prove that
the operator is well defined. These well-definedness proof obligations can be onerous to prove
manually. Fortunately if these operators for defining and deconstructing abstract types are well
defined it should be possible to prove the well definedness obligations by simply expanding the
definitions of the abstract types. Within the interactive prover a tactic was defined to expand
these definitions, causing the well definedness proofs to be discharged automatically.
At this point it would be convenient to define the power operator on the monoids. The simplest
implementation of the power operator is recursive: an = a ⋅ an−1. The Theory Plug-in only
supports recursive function definitions with recursive types. The built in representation of the
naturals used by Event-B is not recognised by the Theory Plug-in as a recursive type, to resolve
this the next section shows how the natural numbers can be defined recursively within the Theory
Plug-in.

3.4 Naturals

Within this section a recursive representation of the natural numbers is defined. This concrete
representation serves three purposes. The first is to demonstrate that concrete mathematical types
can be represented within the Theory Plug-in. The second is to make a recursive representation
of the naturals that can be used in recursive operators and to allow inductive proofs. An example
of this was seen at the end of the last section. The third is to define a type and operators to
demonstrate how concrete types can use inherit results from abstract types, this is demonstrated
by showing that zero and addition form a monoid.

3.4.1 Naturals Definitions

The naturals here are defined with the following datastruture:

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 37

Nat =̂
Constructors:

zero
suc(prev ∶ Nat)

This definition says that a Nat can be constructed either with the zero keyword, or with suc(),
which requires a Natural number as an argument. The inductive hypothesis does not need to be
explicitly stated as this is automatically introduced by the Theory Plug-in datatypes. This along
with structural equality gives the datastructure axioms almost identical to Peano’s natural axioms
(with the exception that Peano’s original axioms started at one not zero). Given this I will refer
to this representation of the natural as the Peano naturals in the rest of this chapter.
From this definition several operators were defined, for instance addition was defined as follows:

nAdd(x ∶ Nat, y ∶ Nat)=̂

cases[x]

zero→ y

suc(xs) → suc(xs nAdd y)

(3.4)

We also defined operators such as: decrement, subtraction, and divmod. These operators are all
defined much as you might expect. During the construction of this theory a soundness issue2 was
discover which required some workarounds. The addition operator defined above (3.4) has been
prefixed with n, this is because names in Event-B are global, and it is likely that in the future
other types will want to define an addition operator (e.g., the integer numbers), this namespacing
issue can be resolved by prefixing operators.
At this point we should have should have enough concrete structures to make use of the abstract
monoid type defined in the last section. Unfortunately, within the Event-B environment the
operators we have been defining are not first class members of the Event-B syntax, and cannot
appear in expressions without their arguments. This means that a theorem such as:

zero↦ nAdd ∈ Monoid(Nat) (3.5)

is not valid Event-B as nAdd is declared without its arguments. To resolve this the nAdd operator
can be wrapped within an Event-B lambda. Given it is likely that this technique will be used
multiple times, this is done within an operator:

nAdd_P =̂ �x↦ y ⋅ ⊤ | x nAdd y (3.6)
2Within the Theories Plug-in associativity is special cased and allows the flattening of equations. If you indicate

that an infix operator is associative, and define an associativity theorem you can use the automatic flattening of the
equation to prove the theorem, and you can use the theorem to prove the associativity of the operator. This means all
operators can be proved associative, even ones that are not.

38 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

When it is desirable to pass addition as a function, the nAdd_P operator can be used in the place
of the nAdd operator. The result is theorem 3.5 can be stated as:

zero↦ nAdd_P ∈ Monoid(Nat) (3.7)

This is now valid Event-B, and means what one may assume was intended by (3.5) . This tech-
nique can be used whenever an operator/function takes a function as an argument to allow an
operator to be passed instead. For each of the operators defined on the Nat type a second opera-
tor was declared to encapsulate the operator as an Event-B function.
Proving theorem (3.7) does not automatically bring any of the work forward from the Monoid
definition to the Nat definition. For instance, theorem (3.2) about the uniqueness of the identity
is not automatically instantiated in the Nat. This theorem is only accessible by instantiating it
with zero and addition, which would then require a proof that zero and addition form a monoid
(which can be done by referencing theorem (3.7)). Rather than do this every time this theorem
is needed the user can manually instantiate it with a new theorem:

∀x, y ⋅ x nAdd y = y⇔ x = zero (3.8)

This theorem can be proved using the instantiation steps outlined above. The theorem can then
be used in later proofs without having to instantiate it from the monoid theorem. This technique
was used multiple times (whenever a theorem from an abstract type was found to be useful in a
proof on a concrete type).

3.5 Back to Monoids

Now that there is a recursive definition of the natural numbers it is possible to define a recursive
operator to represent the power functions on the monoid type class. This was done with the
following declaration:

Pow(ident ∶ T , op ∶ AssocOps(T), a ∶ T , p ∶ Nat)=̂

cases[p]

zero→ ident

suc(ps) → op(a ↦ Pow(ident, op, a, ps))

(3.9)

Along with this operator, the Pow_P operator was added. This wraps the Pow operator in the
same way as was done for the nAdd operator 3.6. Additional theorems can be written about the
Pow operator, e.g.:

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 39

xp ⋅ xq = xp+q (3.10)

Having previously demonstrated that the Nat type forms a monoid it would be nice to be able to
reuse the results about this operator. This can be done by declaring a new operator:

nTimes(x ∶ Nat, y ∶ Nat) ̂=Pow(zero, nAdd_P , x, y) (3.11)

This definition of multiplication allows theorems about the Pow operator to be easily used. How-
ever, using the nTimes operator results in the user having to do extra expansions. An alternative
approach is have an instantiated nTimes operator, and prove it is the same as Pow operator (in a
very similar way that was done previously on theorems). This has an additional overhead for the
user, however, future proofs are then easier.
There are often several ways to define a function. An example of this is that the power operator
on the monoids can be written using a technique called exponentiation by squaring. Instead of
calculating a13 by multiplying a together 13 times we calculate a, a2, a4 (by doing a22 etc), then
multiply together the correct combination of a2n to get the final result a8 ⋅ a4 ⋅ a = a13. This
technique is often used within computing as it is considerably faster than simply using continued
application of an operator and is simple to implement when numbers are represented in a binary
manner (the set bits in the binary number match the a2ns which need to be multiplied together).
There are advantages to having different definitions of the same function:

1. The alternative definition may reflect the way the system that is being modelled works.
Having an implementation which is the same as that of the modelled system means that
the user does not have to justify the difference in the implementations.

2. For proofs involving concrete uses of an operator, the alternative definition may finish in
substantially fewer steps. This will take less time and use fewer of the computer’s re-
sources. Some proofs which require a lot of operator expansions may be impossible to
complete using the previous implementation of the operator.

3. Some proofs may become easier when done with the alternative definition. For example
the concrete implementation of multiplication within the binary naturals may be more
similar to that of multiplication using squaring. This makes it easier to prove equivalences.

An operator sqPow was defined using exponentiation by squaring, along with sqPow_P which
wrapped the sqPow operator in a lambda (as was done for the nAdd operator 3.6). Then the
following theorem was defined to demonstrate its equivalence to the original Pow operator:

Pow_P = sqP ow_P

40 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

Having demonstrated these two definitions are equivalent, theorems from one operator can be
moved to the other. Also within concrete implementations it is possible to use the different
implementations interchangeably (i.e., to use whichever one is best suited to the proof that is
being done).

3.6 Binary Numbers

Having explored the Peano naturals, we now look at an alternative implementation of the natural
numbers. The purpose behind the second representation is to demonstrate the reusability of the
abstract types, and to demonstrate how results can be shared (and work reduced) via isomorphic
relationships.
This section defines an implementation of the binary numbers, which is an interesting represen-
tation of the natural numbers as it is a representation of numbers that is more like the base ten
representation that humans generally use. It is also very similar to the the way that computers
represent the natural numbers. A second advantage to this representation is that operations such
as addition and multiplication are resolved in considerably fewer steps, this can simplify proofs
where there are operations on large numbers.
The binary numbers are represented as lists of Boolean values, with FALSE representing a zero
and TRUE representing a one. Within the Theory Plug-in lists are defined using the following
datatype declaration:

List =̂
Constructors

nil
cons(ℎead ∶ T , tail ∶ List(T))

The representation chosen for the binary naturals has the least significant bit in the leading posi-
tion (i.e., the head of the list is the least significant bit). This makes the definitions of operators
such as addition and multiplication simpler. However, having the least significant bit first is
counter intuitive as the decimal representation that everyone is used to has the most significant
digit first.
Having defined the datatype to represent the binary numbers, several other operators were defined
(including many bitwise operators, andmultiplication). As an example addition was defined with
the following definition:

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 41

bnAdd(x ∶List(BOOL), y ∶ List(BOOL))=̂

cases[x]

nil →y

cons(xB, xs) → if (xB = TRUE ∧ bnLSB(y) = TRUE)

cons(FALSE, bnIncrement(xs bnAdd tail(y)))

else

if (XB = FALSE ∧ bnLSB(y) = FALSE)

cons(FALSE, xs bnAdd bnShiftLeft(y)),

else

cons(TRUE, xs bnAdd bnShiftLeft(y))

(3.12)

This definition of addition uses several helper functions: bnLSB gets the least significant bit of
the list. If the list is empty it returns FALSE (zero). bnIncrement increments the number by
one. bnShiftLeft is almost identical to the list tail deconstructor (i.e., returns a list with the ℎead
element removed), except when the value is nil it returns nil. This is used to continue the addition
process on the rest of the list.
Whilst this definition of addition looks complicated it is in fact how addition is often taught,
the least significant bits are added together, and the result is put in the least significant position,
then the rest of the number is added together with an additional one if the addition of the least
significant bit overflowed.
These operators gave enough of an implementation to be able to relate to the abstract monoid
type, and the previously defined naturals representation.
A representation of numbers in this fashion highlighted a problem that was not seen with the
Peano naturals implementation. This is that numbers represented in this fashion can have ad-
ditional bits that do not change the value of the numbers. This is directly analogous to us con-
sidering 00123 equal to 123. In the binary representation if the list ends in FALSEs (i.e., there
are zeros at the most significant end of the list) these do not change the value of the number. In
previous examples structural equality has been used, but this will not work for the binary num-
bers as 00123 is not structurally identical to 123. Two ways to resolve this issue are explored
below. First, an equivalence relation to use instead of structural equality. The second a subtype
of ‘List(BOOL)’ is defined where the subtype has to have most significant bit set to one.

3.6.1 Equivalence Relation

To define an equivalence relation for binary numbers we need to define an operator, and demon-
strate that it conforms to the axioms of an equivalence relation i.e. for an operator ∼:

42 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

Reflexivity ∀a ⋅ a ∼ a

Symmetry ∀a, b ⋅ a ∼ b⇔ b ∼ a

Transitivity ∀a, b, c ⋅ a ∼ b ∧ b ∼ c ⇒ a ∼ c

To do this an abstract definition of an equivalence relation was defined. For example, here is the
definition of an abstract reflexive relation:

Reflexivity(t ∶ ℙ(T)=̂{refl|refl ∈ ℙ(t × t) ∧ x↦ x ∈ refl} (3.13)

This abstract definition in Event-B does not quite represent a reflexive relation. What it really
represents is a set where x↦ x is a member of the set for all x. The reason for this is that in Event-
B predicates are a separate syntactic category and there is no way to define an Event-B function
of the form T → Pred (note that it is possible to define predicate operators, but, as mentioned
earlier, operators are not functions). It will be seen later how this representation can be used to
represent a relation within Event-B. Symmetric and transitive relations are defined following a
similar pattern. Finally an equivalence relation is defined with the following statement:

EquivRel(t ∶ ℙ(T))=̂ReflexRel(t) ∩ SymmetricRel(t) ∩ TransRel(t) (3.14)

Several theorems about the equivalence relations were defined, for instance x ∼ y∧¬(y ∼ z) ⇒
¬(x ∼ z), expressing this in the set theory syntax results in an expression that like this:

∀t, equ, x, y, z ⋅ t ∶ ℙ(T) ∧ equ ∈ EquivRel(t) ∧ x ∈ t ∧ y ∈ t ∧ z ∈ t

⇒ (x↦ y ∈ equ ∧ y↦ z ∉ equ ⟹ x↦ z ∉ equ)
(3.15)

this theorem example shows how the ∈ operator is used to turn the set notation into predicates
for the purpose of theorems.
An alternate approach to representing relations would be instead to use the set of functions that
map to the Event-B BOOL type. E.g., The definition of the reflexive relation would instead be:

{refl | refl ∈ t × t→ BOOL ∧ ∀x ⋅ x ∈ t⇒ refl(x↦ x) = TRUE} (3.16)

To change these to Event-B predicates you would use a statement such as refl(x ↦ y) = TRUE.
This was the initial approach taken to defining relations, however, this was changed after advice
from colleagues within the Event-B community. It was found that the tools used within Event-B
proving worked considerably better using the newly suggested approach resulting in less work
for the user. Many of the proofs which required manual interaction with the prover in the initial
implementation were discharged automatically in the newer implementation.

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 43

Along with several operators that have been presented before, the definition of the equivalence
relation uses the operators bnIsZero. This operator deconstructs a list checking that each value
is FALSE (i.e., that the list is either nil, or all zeros). The equivalence relation on the binary
naturals is:

bnEq(x ∶ List(BOOL), y ∶ List(BOOL))=̂

nil → bnIsZero(y)

cons(xB, xs) → xB = bnLSB(y) ∧ xs bnEq bnShiftLeft(y)

(3.17)

To inherit the results from the abstract definition it is required that this operator has a set syntax
equivalent, this is achieved with with following statement:

bnEqSet()=̂{x↦ y | bnEq(x, y)} (3.18)

It can now be shown that bnEqSet is an instance of the EquivRel type this is done with the
following theorem:

bnEqSet ∈ EquivRel(List(BOOL)) (3.19)

Once this is proved it is possible for the bnEqSet to inherit results about the EquivRel abstract
type. As was seen before with the Monoid type it is necessary to manually restate these proofs
about the bnEq operator. Proving them can be made easier using theorem 3.19, however, due to
the lack of predicate functions this adds even more additional work.
The additional work of manually having to instantiate theorems reduces the benefit of having the
abstract types available. However, the abstract types still serve a useful purpose of guiding the
user through the proofs they need. For instance in the last example it was desired to prove that
we had an equivalence relation. This requires proving reflexivity, symmetry and transitivity, the
abstract definition encapsulated this information.
Finally, an aim of this section was to see how another type could be associated with the already
defined abstract types. In this case this would mean demonstrating that with the equivalence
relationship and the binary naturals could form a monoid. However, the definition of the monoid
was defined based on structural equality, the result is it is not possible to relate these structures to
the previously defined monoid type. To allow this the monoid type would need to be redefined:

MonoidEquiv(t ∶ ℙ)=̂

{equ↦ ident↦ op | equ ∈ EquivRel(t) ∧ ident ∈ t ∧ op ∈ AssocOp(t, equ)

∧ op(ident↦ x) ↦ x ∈ equ ∧ op(x↦ ident) ↦ x ∈ equ}

(3.20)

44 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

Redefining the monoids like this would include re-writing the associative operator type, and
restating and proving the theorems about the monoid type.

3.6.2 Subtyping for Equality

Rather than defining an equivalence relation we can look at the subclass of binary numbers which
are normal. Normal, here, is defined as having no trailing zeros. We can use an operator to
identify normal numbers:

bn_isNormal(a ∶ List(BOOL) =̂
cases[a]

nil → ⊤
cons(aB, as) → (as = nil ∧ aB = TRUE) ∨ (as ≠ nil ∧ bn_isNormal(as))

From this definition we can use an operator to define a subset of List(BOOL) which contains all
the normal numbers:

Normal_Bin =̂ {num | bn_isNormal(num)}

Once normality is defined we can start making statements about equality rather than equivalence.
An interesting starting point is to look at how equality on the subtype relates to the equivalence
relation. In certain conditions this can allow proofs about equivalence to be reused in the equiv-
alent proofs about equality

∀x, y ⋅ x = y ⇒ x bn_Eq y (3.21)
∀x, y ⋅ bn_isNormal(x) ∧ bn_isNormal(y) ⇒ (x bn_Eq y⇒ x = y) (3.22)

An effective strategy for working with subtypes is to prove that when an operator is applied to
members of the subtype the result is a member of the subtype i.e., the operator is closed with
respect to the subtype. An example of this would be the following theorem:

∀x, y ⋅ x ∈ NormalBin ∧ y ∈ NormalBin ⟹ x bnAdd y ∈ NormalBin (3.23)

This sort of theorem allows the normality of numbers to be followed through an expression. This
facilitates proofs because every number with equal value is also structurally identical, that is,
value and structure become the same. Unfortunately not every operator will produce structurally
identical numbers. An example of this is subtraction, where the most significant bits of a number

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 45

can cancel out leaving a series of trailing zeros. The solution to this problem is either to define a
new operator which does not result in trailing zeros. In the case of subtraction this can be done by
stopping the operations when the remains of the number are identical. However, in other cases
the best approach may be to wrap the operator in a normalisation operator. In the case of the
binary numbers an operator to remove the trailing FALSEs of a list was defined for this purpose.
It was also proved that applying this operator to any binary number resulted in a normal binary
number. With this approach of subtyping it was possible to become a member of the abstract
monoid type. This was done by proving isomorphic properties with the Peano naturals, and is
outlined in the isomorphisms section 3.7.
Both the subtyping and equivalence approaches to working with the binary numbers worked
well, and there were trade offs for both of them. In the case of subtyping there was extra work
demonstrating that operators that worked on the subtype were closed. Proving operators were
closed with respect to normality, allows normality to be easily demonstrated throughout expres-
sions. With the equivalence approach there was additional work demonstrating that the bnEq
operator was an equivalence operator. It was also harder to work with an equivalence relation
than equality. This was due to a lack of support for equivalence relations within the interactive
prover.

3.7 Isomorphisms

In this section isomorphisms between the Peano naturals and the binary naturals are defined. The
aim of doing this is to simplify proofs on the binary naturals (although in some cases it may work
the other way around).
When we define inductive proofs on numbers we assume that the next number is the increment
of the current number. This assumption is justifiable because we know that our number system,
and its operators, are isomorphic to equivalent structures on the Peano numbers. Unless we have
proved such an isomorphism between the Naturals and our binary numbers the only form of
induction that can be used is the induction suggested by the datatype. Given a Boolean list x and
an expression to prove Exp, induction takes the form:

1. Show the Exp is true where x = nil,
2. given Exp is true for x = x_tail show that Exp is true for x = cons(x_ℎead, x_tail), where
x_ℎead can take the value of TRUE or FALSE.

This is the same as, instead of having our inductive step as an increment, having the step as a
multiplication by two, and maybe adding one. In many cases it makes proving results on the
binary naturals harder than their equivalent proof on the Peano naturals.

46 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

Not only does demonstrating an isomorphism between the Binary numbers and the Peano nat-
urals make proving new theorems about the operator easier, it also means that we can use any
proofs that we have already made about the equivalent operator on the other structure. If it is
easier to prove a result on one type then it is worth writing the theorem within that type first.
We have not tried to define an abstract representation of isomorphisms, although this would be
useful work to develop.

3.7.1 Defining the Isomorphism

To define an isomorphism the first step is to define a bijective function between the two structures.
To do this two functions are defined in the following manner:

bnToNat(a ∶ List(BOOL))=̂

cases[a]
nil → zero

cons(aB, as) →

if (aB = TRUE)

onenAdd(bnToNat(as) nAdd bnToNat(as))

else

bnToNat(as) nAdd bnToNat(as)

bnToBin(a ∶ Nat)=̂

cases[a]
zero→ nil ⦂ List(BOOL)

suc(xs) → bnIncrement(bnToBin(xs))

(3.24)

Theorems are added to prove that these functions are the inverses of each other:

bnToNat(bnToBin(x)) = x

bnToBin(bnToNat(x)) bnEq x
(3.25)

(The second statement is also true with equality if x is normal). In the remainder of this work
equivalence will be looked at rather than subtyping. Within the study both approaches were
taken. To demonstrate that this is a bijection it was further required to show that every element
in the Peano naturals had an equivalent element in the binary naturals and vice versa.

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 47

To demonstrate that addition is isomorphic, it was useful to show that the ‘increment’ operator
of the binaries was equivalent to the ‘suc’ operator of the naturals. This was done by proving the
following two theorems:

∀x ⋅ bnToNat(bn_increment(x)) = suc(bnToNat(x)) (3.26)
∀x ⋅ bnToBin(suc(x)) = bn_increment(bnToBin(x)) (3.27)

Using these theorems it was then possible to demonstrate that that every element in Peano natu-
rals had an equivalent in the binary naturals and vice versa, thus demonstrating that the functions
formed a bijection. All that was then required to demonstrate an isomorphism for an operator
was to prove that the operator had a homomorphic equivalent:

∀x, y ⋅ bnToBin(x nAdd y) = bnToBin(x) bnAdd bnToBin(y) (3.28)

Given a bijection it is enough to prove a homomorphism in one direction. If there had been
an abstract theory about isomorphisms, this result could have been included in that, instead the
homomorphism in the other direction was proved independently. Having proved a bijection and
a homomorphism the operators are proved to be bijective to each other.

3.7.2 Using the Isomorphism

Now that it has been demonstrated that addition on the Peano and Binary numbers are isomor-
phic, we can take proofs from the more complete theory (the Peano naturals) and bring them
into the other. This requires re-writing all of the proof rules/theorems that we want to use on the
less complete theory, and then proving the theorems. These proofs all follow the same pattern,
which can be demonstrated by showing that addition is commutative (here it is shown on normal
numbers, the normality part of the proof is emitted). The theorem to prove is:

∀x, y ⋅ x bn_Add y = y bn_Add x

This is proved in the following manner:

1. Expand one side using the bijection:

bnToBin(bnToNat(x bn_Add y)) = y bn_Add x

2. Expand the inner function of the bijection using the homomorphism theorem:

bnToBin(bnToNat(x) nAdd bnToNat(y)) = y bn_Add x

48 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

3. We can now use the property from the more complete theory (in this example to do a
commutative swap around nAdd):

bnToBin(bnToNat(y) nAdd bnToNat(x)) = y bn_Add x

4. Use the other homomorphism to expand the outer function of the bijection:

bnToBin(bnToNat(y)) bn_Add bnToBin(bnToNat(x)) = y bn_Add x

5. Use the bijection this time to remove the bijective functions:

y bn_Add x = y bn_Add x

This process was repeated for many of the properties of the addition operator, including demon-
strating that addition is commutative, and forms a monoid with a nil list. Each of the proofs for
these was almost identical to the proof laid out above.

3.8 Ordering

As described in 1.3, ordering is a common example of the use of an abstract type within computer
science. By having a less than operator, we can write functions for other comparison operators
and use the less than operator to make other types such as ordered lists. To define the less than
relation we first define anti-symmetry:

AntiSymmetry(t ∶ ℙ(T)=̂{anti | anti ∈ ℙ(t × t) ∧

∀x, y ⋅ x ∈ t, y ∈ t⇒ x↦ y ∈ anti⇒ y↦ x ∉ anti}
(3.29)

A less than relation can then be defined as:

lt(t ∶ matℎbbP (T))=̂AntiSymmetry(t) ∩ T ransRel(t) (3.30)

This can then be used to define other ordering operators, such as greater than or equal:

geq(t ∶ T , op ∶ lt(t), x, y)=̂x↦ y ∉ op (3.31)

The less than operator can be used to write functions which can be used to create ordered lists:

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 49

insert(a ∶ T , l ∶ List(T), lessT ∶ lt(T))=̂

match[l]

nil → cons(a, nil)

cons(ℎ, t) → COND(a ↦ ℎ ∈ lessT, cons(a, l), cons(ℎ, insert(a, t)))

(3.32)

Rather than using cons to construct lists, insert can be used and the created list will be ordered.
insert also allows the easy definition of a function to order a list by ordering the tail of a list and
inserting the head.
This definition of ordering will not work with equivalence relations, to reduce the complexity of
the example.

3.9 Additional Features

The main focus of this case study has been the expressiveness of the Event-B language, looking
at the structures to allow the sharing of proofs across types. This has been done with an aim on
developing tools to easy the definition of these types. The expressiveness of the language is not
the only feature that was used within the development of these theorems. This section looks at
the other features of the Theory Plug-in that aided in the development of the case studies.

3.9.1 Proof Rules

An extensive use of the Theory Plug-in proof rules feature was used. This included proof rules
to help with typing, for example:

zero↦ pAdd_P ∈ Monoid(pNat)

This type of proof rule proved very useful when inheriting proofs from the abstractMonoid type,
as the generated proof obligation would require this knowledge, without this proof rule a theorem
would have to be instantiated every time this result was needed (this is extra work for the user).
Proof rules were also used to automatically deconstruct abstract types, for example:

mon_ident(ident↦ op) = ident

This causedmon_ident to automatically expand whenever that was possible again saving the user
from having to manually do trivial proof steps. Many theorems that were defined had equivalent
proof rules to ease use within the interactive prover, an example of this is:

50 Chapter 3 Constructing Mathematical Theories in the Theory Plug-in

x pAdd suc(y) = suc(x pAdd y)

the trivialness of this statement is in a sense what makes it so useful, it comes up all the time, so
it saves a lot of time not having to reprove the result or instantiate a theorem. Many of the proof
rules were initially written as theorems, it was a frustration that they need to be entirely restated
to make them become proof rules. There were also many theorems that could not be adequately
expressed as proof rules due to restrictions on proof rules, such as the typing of proof rules has
to be total Event-B types.

3.9.2 Theory Construction

The theory import mechanism of the Theory Plug-in allows the import of any given theory from
a given project. Once a theory is imported every theory which is imported by the imported theory
is also imported. This also makes every symbol from all the imported theories visible. The result
of this is that operators must be uniquely named, a prefix system was used within this case study.
Circularly importing files is not allowed, the system for checking this within the Theory Plug-in
is unreliable, so it is up to the user to ensure this never happens. This also results in theories
needing to be split in multiple files, for instance, in the case study the naturals need to import the
monoids and to make the Pow operator, the monoids need to import the naturals, this is resolved
by splitting the definition of the naturals and monoids across more than one file. Proof rules
declared within a file are only accessible from other files, these are very useful within proofs,
this encourages the user to make theory files small so the results within the files can easily be
used. To balance these constraints theories were constructed in the following way:

Naturals_T nMinus

nAdd

nTimes

nDivMod

Naturals

NATURALS PROJECT

Chapter 3 Constructing Mathematical Theories in the Theory Plug-in 51

This structure allows the whole of the theory to be imported easily (in this example by importing
the Naturals file), but also allows smaller files to be developed as part of the theory. There may
be several layers in the middle of these structures.

3.10 Lessons learnt From the Case Study

The Theory Plug-in and Event-B language are powerful tools for definingmathematical concepts.
The case study demonstrates that the set theoretic approach allows all of the forms of mathemati-
cal extension and isomorphism that were set out in Section 1.2.1. As a tool the interactive prover
allows the user to explore proving in a way that is not possible in the other languages looked at
(which require one to learn an additional language for proving theorems).
Whilst representing the desired mathematics was possible, there are areas where the user was
required to do substantial amounts of additional work due to the language design:

1. Rather than being able to use the subset as a type the user is required to use the subset’s
super type, and then write additional statements to say when the operator/proof rules can
be used,

2. Concrete operators can not be passed as a type, causing the user to define a new operator
returning a functional representation of the original operator,

3. Operators defined axiomatically can not be instantiated,
4. Demonstrating that a concrete structure is a subset of an abstract structure does not result

in theorems and proofs being inherited. Instead it is necessary to re-write the theorems,
and prove them (although the proofs are trivial),

5. After demonstrating isomorphisms there is still considerable work to move proof rules and
theorems to the new type,

6. Every operator had to be named uniquely. There are cases where, due to accidentally
re-using the same name, sections of code need to be redefined and proved.

7. Predicates being a separate syntactic categories created considerably more work in defin-
ing and instantiating abstract theories about relations.

All of these problems are solvable within the current Event-B language; however, they require
the user to do extra work. Many of these problems are caused by Event-B’s type system being
relatively weak, and operators not being first class types. Changing the Event-B language is
constrained by its more general use in the Rodin tool, and the way the language is interpreted.
This makes it difficult to add complex structures to the language; instead, the user needs to build
these structures.

Chapter 4

Introducing B♯

In the previous chapter several difficulties were highlighted using the current tools and language
to define abstract mathematical types. These issues could be resolved by adding additional op-
erators and proof rules, and much of this additional work is entirely mechanical, and therefore
could be automated. As a result this chapter proposes a language called B♯ (B Sharp). The aim
of this language is to make it easier to develop abstract mathematical types which are usable
within the Event-B environment. To achieve this B♯ will generate Event-B operators, theorems
and proof rules. To ensure the consistency of the generated Event-B, proofs will be done on the
generated Event-B using the current tools (rather than a new system for proving directly on B♯).
This chapter introduces the core of the B♯ language initially by demonstration. It goes on to give
a formal definition of the language. Finally other features of the language are introduced, and
discussed e.g., file and project structures.

4.1 B♯ by Example

4.1.1 Datatypes

B♯ allows the definition of types via datatypes, which are very similar to the datatypes of Event-B.
Here is an example of the definition the Peano naturals:

Datatype pNat

| zero

| suc(prev ∶ pNat) {…}
⏟⏟⏟
Type Body

(4.1)

The primary difference between this and an Event-B datatype is the “Type Body” part of the
expression. Within the “Type Body”, functions and theorems related to the datatype can be

53

54 Chapter 4 Introducing B♯

declared. This works as an import and namespacing mechanism. The pNat type can be imported
by other B♯ files, then zero and suc (and any other functions) within the pNat’s type body are
available within these files. If there is a name clash e.g., another type such as the integers has
also been imported, the clash can be resolved by prefixing, e.g., instead of using zero, pNat.zero
would be used.
As in Event-B datatypes can introduce parametric types, for example, the definition of a list is:

keyword
⏞⏞⏞⏞⏞⏞⏞
Datatype

name
⏞⏞⏞
List ⟨T ⟩

⏞⏞
parametric context

constructors
⎧

⎪

⎨

⎪

⎩

| nil
| cons(ℎead ∶ T , tail ∶ List⟨T ⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
destructors

)

{…}
⏟⏟⏟
Type Body

(4.2)

Again this is very similar to an Event-B datatype declaration. A list can be constructed with either
the nil constructor, or the cons constructor. A list constructed with cons can be deconstructed
with the ℎead and tail destructors (undoing the cons constructor).

4.1.2 Functions

Functions can be declared within a type body. For instance:
function Name
⏞⏞⏞
add2 (x ∶ pNat)

⏟⏞⏞⏟⏞⏞⏟
arguments

∶

return type
⏞⏞⏞
pNat suc(suc(x))

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Function Definition

declares a function that adds two to any naturals.
A function definition can appear anywhere within the body of a type, but is not allowed to be
declared outside of a type body. This is used for namespacing in the same way as with the
datatype constructors.
The return type of a function generates a proof obligation to show that, given the types of the
function arguments, the type returned by the function is the return type e.g., for the function
above the following proof obligation is generated:

∀x ∶ pNat ⋅ add2(x) ∈ pNat (4.3)

Chapter 4 Introducing B♯ 55

In cases with complete types (as above) this will be trivially proved by type-checking. However,
in cases with subtypes (e.g., all the naturals less than ten), manual proof steps may be required.
Functions allow both direct and recursive definitions, for example, the function for addition is
defined recursively as follows:

add(x, y ∶ pNat) ∶ pNat

match x {

| zero ∶ y

| suc(xs) ∶ suc(xs add y)

}

(4.4)

B♯ functions only support primitive recursion, as this is the only recursion supported by the
Theory Plug-in. The focus is on adding type class like features to the Rodin environment and
demonstrate that additional features can be added through a translation phase. In the future, it
should be possible to use the translation phase to add support for general recursive functions,
similar to the way it was done in Isabelle/HOL [53]. Recursive functions in the Theory Plug-in
must produce results all of the same type. The only addition to this added by B♯ is the user is
required to prove that recursive functions produce the return type specified by the user (which
may be a subtype so not checked by the Event-B) type checker.
B♯ functions can introduce parametric types to be used within the function, for instance:

curry2

parametrictypes
⏞⏞⏞
⟨T ⟩ (f ∶ T × T → T , x ∶ T) ∶ T → T

�y ∶ T ⋅ f (x, y)

(4.5)

This function simulates currying for functions with two arguments. As functions are first class
members of the B♯ language previously defined functions can be used as arguments to the curry2
function, for example the curry2 function could be called like this:

curry2⟨pNat⟩(add, suc(suc(zero))) (4.6)

generating an alternative to the add2 function. The condition that a function has to be declared
within a type body seems restrictive for the curry2 function, however, the class bodies are also
used for namespacing (see 4.3). It is therefore still necessary that curry2 is declared in a type
body.

56 Chapter 4 Introducing B♯

4.1.3 Class Declarations

Class declarations allow reasoning about sets of a generic type. For example the followingClass
declaration allows reasoning about the set of all reflexive relations:

keyword
⏞⏞⏞
Class ReflexRel

⏟⏞⏟⏞⏟
name

parametric types
⏞⏞⏞
⟨T ⟩ [r]
⏟⏟⏟

Instance Name

∶

supertypes
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
T × T → Bool where

⏟⏟⏟
keyword

constraints
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∀x ∶ T ⋅ r(x, x){…}

⏟⏟⏟
type body

(4.7)

This statement declares a new class called ReflexRel, the class of all relations (defined by the
supertype) where all elements are related to themselves (defined in the constraints section). The
‘Instance Name’ gives the name of a generic instance of the type, used within the where state-
ment and the type body. This can be seen in the constraints of the above declaration, where r is
an instance of the ReflexRel type.
B♯ also allows multiple supertypes, for instance, the declaration of an equivalence relation is:

Class EquivRel⟨T ⟩[e] ∶ ReflexRel⟨T ⟩, SymmetricRel⟨T ⟩, TransRel⟨T ⟩ {
Theorems {

TransInverse:
∀x, y, z ∶ T ⋅ e(x, y) ∧ ¬e(y, z) ⇒ ¬e(x, z); (4.8)

TransRewrite:
∀x, y, z ∶ T ⋅ e(x, y) ⇒ (e(x, z) ⇔ e(y, z)); (4.9)

}
}

This says that an equivalence relation is a reflexive, symmetric and transitive relation.
This example also shows how to add theorems to a type body. Theorems are declared within
a Theorems block, and class bodies can have multiple theorem blocks. Theorems are named
allowing them to be easily identified during proving. Within the theorems the generic instance
e from the class declaration can be used. Having a generic equivalence relation means that the
equivalence relation does not have to be explicitly quantified over in every theorem, rather, any
theorem that references the instance name will implicitly quantify over a generic equivalence
relation. As the theorems are declared in the EquivRel type it is expected that they are about
equivalence relations.
B♯ also allows quantifiers to have a parametric context, the result is that the above theorem (4.8)
could have been written as follows:

∀⟨T , eq ∶ ReflexRel⟨T ⟩⟩ x, y, z ∶ T ⋅ eq(x, y) ∧ ¬eq(y, z) ⇒ ¬eq(x, z) (4.10)

This makes the quantification over the type explicit, at the expense of removing the focus from
the theorem expression.

Chapter 4 Introducing B♯ 57

4.1.3.1 Required Elements

Along with declaring reasoning about sets of types, the class statements also allow reasoning
about sets which have “required elements”. As an example here is a Setoid declared within B♯:

Class Setoid⟨T ⟩[S] ∶ ℙ(T)

require element
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(equ ∶ EquivRel⟨S⟩){} (4.11)

This is the set of all sets which have an associated equivalence operator. The associated elements
are declared in the required elements. For a type to be a member of the Setoid class it is required
to have an associated equivalence relation represented by equ. Classes which have required
elements are referred to as type classes, as they behave in a similar way to type classes in other
languages, e.g., Coq [8], Isabelle/HOL [62], Haskell [50].
Within B♯, it is possible to restrict generic types to members of the class. As an example, we can
define an operator based on equivalence, rather than equality:

Class baseOp⟨T ∶ Setoid⟩[bOp] ∶ T × T → T

where ∀x, y, z ∶ T ⋅ T .equ(x, y)

⇒ T .equ(bOp(x, z), bOp(y, z)) ∧ T .equ(bOp(z, x), bOp(z, y)){}

(4.12)

Here T must be a member of the Setoid type class, the equivalence relation associated with T is
accessed using T.equ. As can be seen within the where statement. The above definition defines
the class of total functions, such that when they are supplied with equivalent arguments (based
on T ’s equivalence relation), they evaluate to equivalent results.
From baseOp more constrained operators can be defined, e.g., a commutative operator:

Class CommOp⟨T ∶ Setoid⟩[cOp] ∶ baseOp⟨T ⟩

where ∀x, y ∶ T ⋅ T .equ(cOp(x, y), cOp(y, x)){}
(4.13)

Here baseOp is instantiated with the polymorphic type T . To do this T must be a Setoid, T is
declared this way as a parametric type (⟨T ∶ Setoid⟩).
As with the classes previously seen, type classes can inherit from previously declared type
classes:

Class Monoid[M] ∶ SemiGroup (ident ∶M)

where ∀x ∶M ⋅ equ(op(x, ident), x) ∧ equ(op(ident, x), x){…}
(4.14)

The supertype of the Monoid class is a SemiGroup which means that the Monoid class is a
SemiGroup which additionally also requires an associated element, ident. Type classes can use

58 Chapter 4 Introducing B♯

the required elements from their supertypes, in this case an associative operator op, from the
SemiGroup and equ inherited from Setoid (the supertype of the SemiGroup). This can be seen
in the where statement.
Within the body of the Monoid class there are several theorems declared and proved about the
uniqueness of the identity. Within these theorem declarations the elements of the type classes
can be used e.g.:

∀x ∶M ⋅ equ(op(x, ident), ident) ⇔ equ(x, ident) (4.15)
Quantification is implicit for classes with required elements.
As with theorems, functions can use the elements from the type class. When a function does
reference a member of the type class it will be referred to as a method. For example, within the
monoid class the following method is declared:

raiseToL(x ∶M,p ∶ pNat) ∶M

match p {

|zero ∶ ident

|suc(ps) ∶ op(x, raisetoL(x, ps))

}

(4.16)

This method makes reference to the ident and op elements of the monoid class. In this case the
return typeM is not a complete type, so the proof obligation about return types will need to be
proved manually (using an inductive step on p). These method and theorem declarations can be
equivalently written using a function with a polymorphic context:

raiseToL⟨M ∶ Monoid⟩(x ∶M,p ∶ pNat) ∶M

match p {

|zero ∶M.ident

|suc(ps) ∶M.op(x, raisetoL⟨M⟩(x, ps))

}

(4.17)

When methods are used within the type class that declared them (or one of its subtypes) it is not
necessary to make explicit reference to the type class, e.g., ∀x ∶M,p ∶ pNat ⋅ raiseToL(x, p)…
is a valid call. Outside the type body of the monoids, the type needs to be provided explicitly
e.g., raiseToL⟨T ⟩(x, p) where T must be a monoid.
Whilst this function can be used in the same way as the method definition, when a concrete type
becomes an instance of the Monoid type class the method would be inherited by the concrete
type, if declared in the functional way it would not be.

Chapter 4 Introducing B♯ 59

Given a generic instance of a monoidM the method can be accessed usingM.raiseToL(x, p). If
we are in the body of the monoid declaration or one of its subtypes then theM. can be dropped as
this will be inferred. This declaration is equivalent to calling raiseToL⟨M⟩(x, p) on the functional
declaration.

4.1.4 Available Types in B♯

Class and Datatype declarations, and type constructors are the only ways in which types can
be added within B♯. This does not result in a restriction over the current Event-B. In Event-B
types are declared and then axiomatically defined. Types like this can be created in B♯ using the
Class declaration. This is achieved by subtyping a generic type and adding required elements
and where constraints. Using the required elements we can associate elements and functions
with a type. Examples of this were seen in the Monoid declaration 4.14, where the identity
element was added. Within the SemiGroup, an associative operator would have been added to
the required elements using this statement op ∶ AssocOp(SG) (where SG is the instance name of
the SemiGroup type. The where statement can then be used to add axioms (beyond those made
by typing) to the type and its elements.
The Class declaration can also be used to define functions between types. As an example:

Class SToTBaseFunc⟨S ∶ Setoid, T ∶ Setoid⟩[bOp] ∶ S → T

where ∀x, y ∶ S ⋅ S.equ(x, y) ⇒ T .equ(bOp(x), bOp(y){}
(4.18)

This also allows for axiomatic definitions of functions, using the where conditions. An example
would be a function between two Monoids where the function must map the identity of one
monoid to another.
Finite types can be created using a Datatype with only base constructors, e.g.:

Datatype Colour

| RED

| GREEN

| …

{…}

(4.19)

Declaring finite types in this manner allows functions to be written using case matching. An
alternative approachwould be to use aClass declaration to define a finite type axiomatically. This
approach has the disadvantage of meaning that functions also have to be axiomatically defined,
and it is harder to do case analysis in proofs (a tactic automatically available on datatypes).
New types can be created by restricting datatypes, for example:

60 Chapter 4 Introducing B♯

Class ModArith[MA] ∶ pNat where ∀x ∶ MA ⋅ lessThan(x, suc(suc(suc(suc(suc(zero)))))){…}
(4.20)

This creates the type of natural numbers less than 5 (The lessThan is assumed to be a function that
is true if the first argument is numerically less than the second). Functions can then be written
on this to create the naturals modulo 5.
We can use B♯ to define types with an ordering relation:

Class Ordered[O] ∶ Setoid(lt ∶ ltRel(O)) (4.21)

This commonly occurs within software engineering to allow sorting of values and data. This
type can be used to define other ordering functions such as greater than. For example, we can
define an ordering operator on the naturals and show that it is a member of this type class to
make the other ordering operators available within the naturals.
Another possible type would be an ordered list. To achieve this, a function to check the order of
a list would first have to be defined:

isOrdered(l ∶ List⟨T ⟩, lt ∶ ltRel(T)) ∶ Bool

match l{

| nil ∶ ⊤

| cons(ℎ, t) ∶ lt(ℎ, head(t)) ∧ isOrdered(t)

}

(4.22)

Note that a COND statement checking the tail is not empty in the consmatch statement has been
omitted for brevity. The type of ordered lists would be created with a class declaration in the
following way:

Class OrderedList[OL] ∶ List⟨T ⟩ where T ∈ Ordered, isOrdered(OL,T.lt) {…} (4.23)

Functions for inserting and merging ordered list could then be added.
This class could then be used in the creation of a model of units:

Class Units ∶ pNat (l ∶ OrderedList⟨pNat⟩){…} (4.24)

Chapter 4 Introducing B♯ 61

Each value in the ordered list represents a different unit. Addition and multiplication functions
could then be defined such that addition works when the lists are equal, and multiplication multi-
plies the values, andmerges the lists. This example could be further extended by having a rational
type for numbers and fractional type of ordered lists (an ordered list for both the numerator and
denominator).
An effect of the translation to Event-B (discussed in Chapter 6) is that B♯ classes become Event-B
sets with axioms about their elements. The result of this is that if you make a Class declaration
with contradictory axioms, the definition of the set will only be satisfiable with the empty set.
This is in contrast to Event-B axiomatic definitions where contradictory axioms cause a consis-
tency problem in the whole system.
The ability to axiomatically define types, and create inductive datatypes, means that any theories
that can be defined in Event-B can also be defined in B♯. The lack of co-recursive datatypes in
Event-B is carried forward into B♯; the result of this is that without first constructing a theory of
co-recursive datatypes B♯ is not able to represent infinite co-recursive types such as streams.

4.1.5 Instances

Instances allow concrete types to become members of type classes, this allows the type to be
used in the cases where the polymorphic declaration is constrained to a type class. For example,
in B♯ we can assert that pNat, and equality (=) as the equivalence relation satisfy the constraints
of the Setoid class, with the following statement:

Instance Setoid⟨pNat⟩(=) (4.25)

The theorems of the Setoid class can are then inherited by the pNat type.
The instance statement itself makes equality the equivalence relation associated with the pNat
type, changing the pNat type. The pNat type can now be used within B♯ as a Setoid e.g., we saw
in equation 4.13 baseOp instantiated with T where T was declared as a member of the Setoid
class. Due to the instance statement above 4.25 pNat can be used as a Setoid in the same way
i.e., baseOp⟨pNat⟩. A proof obligation is generated with the following form:

[=] ∈ EquivRel⟨pNat⟩)

(In B♯ an infix function is wrapped in square brackets to make it act identically to an prefix
function.) This particular proof obligation is proved automatically in Rodin.
In many cases it is not desirable to make a change to the type, for example, there are several
monoids on the natural numbers e.g., zero and addition, and one and multiplication both form
monoids. It is not clear that either of these should be the default monoid. To resolve this B♯ has
the notion of a named instances as can be seen below in (4.26).

62 Chapter 4 Introducing B♯

An Instance declaration instantiates the theorems from the type class into the conforming class,
this makes finding the theorem, and using it considerably easier within the interactive prover (as
it is now a theorem on the expected type). As an example:

Instance CommMonoid⟨pNat⟩(add, zero)

Inst Name
⏞⏞⏞⏞⏞
addMon

method renaming
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(times = raiseToL) (4.26)

defines an instance called addMon that can be used wherever a member of the CommMonoid
type is expected (or one of its super types). As an example of theorem instantiation, a theorem
with the following form is defined from theorem (4.15):

∀x ∶ pNat ⋅ add(x, zero) = zero⇔ x = zero (4.27)

Methods are also instantiated, and the instantiated methods can be renamed. This is what the
‘method renaming’ section does, above this in effect creates the following function declaration:

times(x ∶ pNat, p ∶ pNat) ∶ pNat

match p {

|zero ∶ zero

|suc(ps) ∶ add(x, times(x, ps))

}

(4.28)

Methods which do not have an entry in the method renaming section are accessed with a com-
bination of the instance name and their original name as such instName.funcName, e.g., the
instance of theMonoid raiseT oR can be accessed as addMon.raiseT oR, as no specific renam-
ing was given.

4.2 Extensions

At the top level of a file Datatypes and Classes can be declared, and other statements appear
within the type bodies of these statements. This system on its own is too restrictive, as it does not
allow types to mutually reference each other (types can only reference types declared above their
current position). This can be seen as a problem in the pNat and Monoid example. To declare
the raiseT oL operator the Monoid type has to know about the pNat type, for add and zero to
become an instance of the Monoid type class the pNat type needs to know about the Monoid
class. This is resolved by the Extend syntax:

Chapter 4 Introducing B♯ 63

Extend pNat (monoids){

Instance CommMonoid⟨pNat⟩(add, zero) addMon (times = raiseToL)

…

}

(4.29)

An Extend statement allows the original type body to be extended, statements within the type
body of the extend statement act like they are in the type body of the extended type (e.g., in
this case they act like they are in the type body of the pNat type). They can also reference
classes/datatypes that have been declared above them. This resolves the circular referencing
problem.

4.3 Naming, Scope, and File Structure

Up to this point it has been assumed that all B♯ has been declared in a single file, and that all
elements such as functions and classes have been uniquely named. However, the language is
designed to allow development across multiple files, and allow certain names to be reused.

4.3.1 Scope

B♯ contains the notion of scoping. This goes some way to allow names to be reused. Whilst this
has not been made explicit, the notion of scoping has been used in previous examples, e.g., the
EquivRel theorems (4.8) the class instance name can be used, because the theorems are in the
scope of the class.
B♯ contains three levels of scope these are:

1. function/lambda/quantifier scope, variables introduced in functions/lambdas/quantifiers
must be unique from each other and are only available within the associated expression
(this follows the same rules as Event-B).

2. Class scope parameters introduced as required elements are available anywhere in the
classes type body, the type body of subtypes, and the type body of extensions.

3. File scope, all class names, datatype names, constructor/destructor names and function
names are available for use anywhere within the file.

4.3.2 Naming

In general it is important that two elements in the same scope do not have the same name, this
is also in general advantageous to the user, and anyone else looking at the developed theories

64 Chapter 4 Introducing B♯

e.g., it would be confusing to have two classes both named Monoid even if the language could
disambiguate them based on context. As such the general rule is that names within a given scope
must be unique. B♯ functions, constructors and destructors have different scoping rules to other
elements. They are declared within Class scope, and within the scope of a class they must be
named uniquely, however, they can be used within the File scope. For example, the following
theorem is declared in an extension to the Monoid type:

Extend Monoid (raiseTheorems){

Theorems{

RaiseToL add Rule ∶

∀x ∶M,p, q ∶ pNat ⋅ op(raiseToL(x, p), raiseToL(x, q)) = raiseToL(x, add(p, q));

}

}
(4.30)

The add function from the pNat type is used within this theorem despite the theorem being in a
different scope to the scope of the pNat type (where add is declared).
This causes a problem where more than one type may have a function with the same name,
e.g., the rational numbers will also have an add function. This is resolved by functions having
full names, the full name of the add function is pNat.add, add is an abbreviation of this, and
when there is only one add function in scope the abbreviation can be used. When there are two
functions with the same abbreviated name in scope, an error is given and the full name is asked
for.

4.3.3 Imports and Project Structures

In B♯, code is split into packages, then files. Packages are achieved using the file structure, and
have the name of the folder that contains all of the related files. For example, there could be a
Monoid folder which would contain the files:Monoid.bs, CommMonoid.bs, SemiGroup.bs etc.
Splitting the B♯ code up this way makes it move navigable, and easier for the user to find the
classes that they want.
The notion of imports is used to bring elements from the scope of another file into the current
file. An Import statement imports a specific top level element, for example:

Import

package
⏞⏞⏞
Monoid .Monoid

⏟⏟⏟
file

.

Top Level Element
⏞⏞⏞⏞⏞⏞⏞⏞⏞
SemiGroup (4.31)

This brings the SemiGroup type and all functions declared within its type body into the current
scope everywhere below the Import statement.

Chapter 4 Introducing B♯ 65

To understand a full example, we can imagine that the definition of pNat is now in its own file, in
a project calledNaturals. Now the raiseTheorems extension (4.32) theorem declared in aMonoid
file will not automatically have access to the pNat type, or addition so it will need to be imported
in the following way:

Import Naturals.pNat.pNat

Extend Monoid (raiseTheorems){

Theorems{

RaiseToL add Rule ∶

∀x ∶M,p, q ∶ pNat ⋅ op(raiseToL(x, p), raiseToL(x, q)) = raiseToL(x, add(p, q));

}

}
(4.32)

The Import statement makes the pNat class available, and any functions declared within the
type body of the pNat class (such as add).

4.4 B♯ Language Formal Presentation

This section will formalise the syntax of the language introduced in the last section. The syn-
tax is formalised in an abstract manner i.e., syntactical separators such as keywords, and com-
mas are not included. Having this formalisation will later allow the translation to Event-B to
be described. As many of the language definitions are mutually dependent, when introducing
a language feature it is often necessary to reference a feature that has not yet been described
(e.g., functions reference expressions, and expressions reference functions, and both can not be
introduced at once).
To present the syntax it is first useful to establish some conventions, this section will present B♯’s
syntax in a similar fashion to BNF (Backus-Naur form) with the following conventions:

• Id: a unique identifier (e.g., a string)
• pattern?: optional
• pattern ∗: zero or more repetitions
• pattern+: One or more repetition
• (pattern): grouping
• pat1 | pat2: choice

66 Chapter 4 Introducing B♯

(pattern, pat1 and pat2 are place holders for an expression built using the rules above).
Finally, there are occasions where elements that have already been defined need to be referenced
(i.e., it is not desired to follow the rule for that element, but, to reference an already defined
member of the element using its identifier). Elements that are references rather than rules will be
subscripted with Id, e.g., datatypeId means the rule expects a datatype identifier, not to follow
the datatype rule.
The language presented is a simplified form of B♯ with many of the elements which are in effect
syntactic sugar not presented e.g., infix functions are not presented, instead they are assumed to be
prefix functions with two arguments. This allows the language to be presented more clearly, and
simplifies the presentation of the translation to Event-B later. The language is initially presented
as if all elements are contained within a single file. The form of the file is:

file ∶∶= (datatype | class | extend)∗ (4.33)

This says that a file is made up of any number (∗) of datatype, class and extend declarations in
any order.
To better understand the formalisation datatypes are formalised below. After this the whole
abstract language is presented, with some further comment.

4.4.1 Datatypes

Previously the example of a list datatype was shown (4.34), with had the following definition:
keyword

⏞⏞⏞⏞⏞⏞⏞
Datatype

name
⏞⏞⏞
List ⟨T ⟩

⏞⏞
parametric context

constructors
⎧

⎪

⎨

⎪

⎩

| nil
| cons(ℎead ∶ T , tail ∶ List⟨T ⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
destructors

)

{…}
⏟⏟⏟
Type Body

(4.34)

The abstract syntax for this statement is as follows:

datatype ∶∶= Id paraT ype∗ constructor+ typeBody (4.35)

Referring back to the list example, the identifier (Id) is the name List, the parametric context is
a list of parametric types (zero or more paraTypes, in this case T), there are then a list of one or
more contructors and a typeBody.

Chapter 4 Introducing B♯ 67

The paraTypes which make up a parametric context can be optionally constrained by a type class,
this is what the typeConstr rule in the definition below allows:

paraT ype ∶∶ Id typeConstr? (4.36)

Parametric types can only be constrained to a single type class, however, new type classes can
be defined to amalgamate previous type classes, resulting in this not being a restriction.
Finally, it is necessary to see how the constructors are made up:

constructor ∶∶= Id deconstructor∗

deconstructor ∶∶= Id constrT ype
(4.37)

A constructor is made up of a series of destructor statements, each of which is made up of a
series of typed elements.
Datatypes require a constructor that does not reference the datatype in which they are declared,
this is called a base constructor. For example, in the declaration of the List type it is required
that at least one of the constructors does not reference the List type, this is fulfilled by the nil
constructor, which has no destructors so does not reference any types. B♯ does not support co-
datatypes as it maps these directly to the current Event-B datatypes which do not support these
e.g., streams are not supported.

68 Chapter 4 Introducing B♯

4.5 Complete Formalisation

Having given an example of how the concrete syntax seen previously in the examples relates to
the abstract syntax the rest of the abstract syntax is presented below in figure 4.1.

file ∶∶= (import | datatype | class | extend)∗

import ∶∶= datatypeId | classId | extendId
datatype ∶∶= Id paraT ype∗ constructor+ typeBody

paraT ype ∶∶= Id (classid constrT ype∗)?

constructor ∶∶= Id deconstructor∗

deconstructor ∶∶= Id constrT ype

constrT ype ∶∶= unaryT ype (constructor constrT ype)?

unaryT ype ∶∶= typeBracket | paraT ypeId | typeConstr | instanceId
typeConstr ∶∶= (datatypeId | classId) constrT ype∗

typeBracket ∶∶= constrT ype

typeBody ∶∶= (function | tℎeorem | instance)∗

function ∶∶= Id paraT ype∗ parameter∗ constrT ype expression

parameter ∶∶= Id constrT ype

tℎeorem ∶∶= Id expression

class ∶∶= Id paraT ype∗ instName constrT ype+ parameter∗ typeBody

instName ∶∶= Id

expression ∶∶= functionCall | quantif ier | lambda

functionCall ∶∶= funcName constrT ype∗ expression∗

functionName ∶∶= parameterId | deconstructorId | functionId | constrT ype

| functionCall | lambda | classId
quantif ier ∶∶= quantT ype paraT ype∗ parameter∗ expression

lambda ∶∶= paraT ype∗ parameter∗ expression

extend ∶∶= Id (classId | datatypeId | extendId) typeBody

instance ∶∶= classId constrT ype∗ expression∗ Id?

Figure 4.1: B♯ language1

It is worth drawing attention to a few elements of the syntax. Firstly in the constrType definition
(which represents types constructed using type constructors e.g., T ×List⟨T ⟩), constructor is not

1Instead of having separate rules for universal and existential quantifiers the quantifier rule uses the quantType
rule which is assumed to define the quantifier as one of these.

Chapter 4 Introducing B♯ 69

defined. B♯’s type constructors are equivalent to Event-B’s set constructor operators (including
the functional types e.g., (T × pNat → T is a type). As described further in the translation
section below there is a one to one mapping between the B♯ constructors and the Event-B set
constructors.
In the definition of a function call there are many elements which can be used as a function
name. This is because functions can be passed as arguments to other functions, allowing function
parameters to be used as function names if they have a functional type. Deconstructors are
treated as functions which take an instance of the type they were declared in as their argument.
Finally, function calls do not require any parametric context (the constrType*) or arguments
(expression*), when there is no parametric context or arguments the functionCall rule acts as
a wrapper for any element that can appear within expressions (which includes elements like
types).

Chapter 5

Translating B♯ to Event-B by Example

This chapter shows examples of the translation from B♯ to Event-B. This is done using examples
to give the reader a strong idea of what the translation is doing. In the next chapter these transla-
tion steps are shown using functions in a pseudo language designed to be expressive enough to
describe the translations.
Along with creating objects usable by the Event-B modeller, the translation has additional goals:

1. Generate Event-B which resembles the original B♯: Proofs will be done in the Event-B
environment and the generated Event-B must be recognisable to the user for this purpose.

2. Generating efficient Event-B: When proving, Event-B works better with some structures
than others, for example Event-B reasons better about sets than functions for Bools. As
discussed in Section 3.6.1, the choice of Event-B representation can make a difference to
the difficulty of the proofs. The correct choice of representation can result in proofs being
discharged entirely automatically.

These additional aims are discussed during the example translations given below.

5.1 Examples of Translation

This section goes through the B♯ examples shown in Chapter 4 and shows how these examples
are mapped to Event-B.

5.1.1 Datatypes

The Event-B code generated by B♯ datatype declarations closely resembles the B♯ from which
it is generated. The most significant difference is in the naming of the datatype constructors.

71

72 Chapter 5 Translating B♯ to Event-B by Example

Within Event-B names are global. The result of this is in Event-B if you define two elements
with the same name, they cannot be visible and used within the same context (i.e., you can only
import one of the files). To resolve this when Event-B is generated the B♯ tool prefixes elements
which could result in a naming clash. The result is the datatype used to declare the B♯ pNat type
(4.1), generates the following Event-B:

Datatype pNat

| pNat_zero
| pNat_suc(pNat_prev ∶ pNat)

(5.1)

In B♯ datatype and class names are required to be unique.
This strategy of prefixing elements to avoid name clashes within Event-B is used extensively.
The prefix is the name of the type in which the element is declared.

5.1.2 Functions

When translating a B♯ function to Event-B two Event-B operators are generated. One gives a
direct definition of the operator using parameters in an expression. When given arguments the
operator can be expanded into an expression by substituting parameters for arguments. Theorems
about the operator can then be stated, and proved with the expansion. The second operator allows
the direct definition operator to be passed as an Event-B functional type (a passing operator). It
takes no arguments, and the operator’s expression wraps the calling operator in a lambda. This
technique was seen in the Event-B case study in 3.4.1.
The mapped functions again need to be prefixed with the name of the class they are declared
in. In the examples of functions from Section 4.1.2, the Event-B operator generated to evaluate
from the B♯ functions is very similar to the B♯ function declarations. For instance, the Event-B
definition of addition is almost identical to the B♯ example (4.4):

pNat_add(x ∶ pNat, y ∶ pNat)=̂

cases[x]

pNat_zero→ y

pNat_suc(xs) → pNat_suc(xs pNat_add y)

(5.2)

The differences are that the B♯ typing is expanded (x, y ∶ pNat becomes x ∶ pNat, y ∶ pNat)
and calls to Event-B operators need to be prefixed. The reason that the expansion is so similar is
because the definition expressions are simple (there are examples of Event-B generated by more
complex expressions below). The passing operator generated by the translation for addition is:

pNat_add_P () =̂ �x↦ y ⋅ x ∈ pNat ∧ y ∈ pNat | pNat_add(x, y) (5.3)

Chapter 5 Translating B♯ to Event-B by Example 73

This operator wraps the evaluation operator in an Event-B lambda expression, the pNat_add_P
operator can therefore be passed like a function. When translating functions within expressions
the correct Event-B operator is chosen based on the context (if the function has arguments the
evaluation operator is used, otherwise the passable operator is used).
Finally an Event-B theorem is generated, to demonstrate the operator returns the return type
specified in the B♯ statement. In cases where the return type is a complete type this theorem will
be proved automatically:

∀x, y ⋅ x ∈ pNat ∧ y ∈ pNat ⇒ pNat_add(x, y) ∈ pNat (5.4)

In the B♯ examples we also saw the curry2(4.5) function which had a parametric context, this
maps to the following Event-B operators:

curry2(T ∶ ℙ(T_EvB), f ∶ T × T → T , x ∶ T) =̂ �y ⋅ y ∶ T | f (x↦ y) (5.5)
curry2_P (T ∶ ℙ(T_EvB)) =̂ �f ↦ x ⋅ f ∈ T × T → T ∧ x ∈ T | curry2(T , f , x) (5.6)

In the first of these equations (5.5) the parametric type introduced in the B♯ definition becomes
the first argument of the generated operator with the statement T ∶ ℙ(T_EvB). In Event-B para-
metric types are introduced at the file level rather than for specific functions/classes (this allows
axiomatic definitions of types, which is not supported in B♯). T_EvB is an Event-B parametric
type. B♯ parametric types map to subsets in Event-B, hence, using the powerset of T_EvB, this
allows reasoning about non-complete types (such as the binary naturals seen in the Event-B case
study).
Note also that as f is an Event-B functional type, rather than an operator, the arguments need to
be passed using the Event-B maplet syntax (↦) for pairs. Whenever a parameter is treated as a
function the B♯ argument list is automatically mapped to the Event-B maplet syntax. Only when
a function is called directly is the operator argument syntax used (a comma separated list).
The second generated Event-B operator allows the curry2 function to be instantiated with a type.
For instance, if another B♯ function had a parameter f ∶ ((pNat × pNat → pNat) × pNat) →
(pNat → pNat), then curry⟨pNat⟩ could be passed as this argument (as this is the type of the
curry2 function in B♯). In Event-B curry⟨pNat⟩ is translated to curry2_P (pNat).

74 Chapter 5 Translating B♯ to Event-B by Example

5.1.3 Class Declarations

Class declarations are mapped to Event-B operators which construct Event-B sets. For instance
the Event-B generated by the ReflexRel declaration (4.7) is as follows:

ReflexRel(T ∶ ℙ(T_EvB)) =̂ {r|r ∈ ℙ(T × T)

∧ ∀x ⋅ x ∈ T ⇒ x↦ x ∈ r}
(5.7)

The operator above is used to type elements in the Event-B representation. For instance a B♯
statement such as r ∶ ReflexRel⟨pNat⟩ would translate to r ∈ ReflexRel(pNat) within Event-B.
Syntactically this is similar to the original B♯ statement, except that in Event-B predicates are a
separate syntactic category. To resolve this a relation is expressed in Event-B as a restricted set
of pairs. The B♯ Boolean statement r(a, b), translates to the Event-B predicate a↦ b ∈ r.

5.1.4 Quantifiers and Theorems

B♯ quantifiers translate to their Event-B equivalents, there are however two additional areas which
complicate the translation. Firstly B♯ quantifiers have a typed parameter list, secondly B♯ allows
quantifiers to have parametric contexts. Examples of both of these were seen in example (4.10):

∀⟨T , equ ∶ ReflexRel⟨T ⟩⟩ x, y, z ∶ T ⋅ equ(x, y) ∧ ¬equ(y, z) ⇒ ¬equ(x, z)

Which translates to the following Event-B:

∀T , equ ⋅ T ∈ ℙ(T_EvB) ∧ equ ∈ ReflexRel(T) ⇒ (∀x, y, z ⋅ x ∈ T ∧ y ∈ T ∧ z ∈ T

⇒ x ↦ y ∈ equ ∧ ¬(y↦ z ∈ equ) ⇒ ¬(x ↦ z ∈ equ))
(5.8)

Here it can be seen that the types in the parametric context are quantified over separately. This
makes instantiation of the parametric types easier when proving. The typed B♯ parameters are
first declared, then the generate expression is prefixed with explicit typing information for the
parameters. It can be seen from this that the B♯ parametric type, and parameter information is
considerably more concise than the Event-B representation. The initial B♯ expression is also
more concise due to the combination of predicates and Booleans.
In the examples theorem (4.8) it was seen that parametric types and generic instances declared
in the class, could be used within the expression. If these types are used within the expression
then B♯ adds them to the parametric context of the quantifier before mapping to Event-B e.g.,
(4.8) becomes identical to (4.10) before being mapped to Event-B. This inference increases the

Chapter 5 Translating B♯ to Event-B by Example 75

conciseness of the B♯ representation, without a loss of clarity as the theorems are declared within
the type body of a type class, having the inferred elements available is expected.
Whilst the verbosity of the Event-B statement makes the generated Event-B difficult to read, it
is not expected that the user will interact directly with the Event-B theorem, instead they will
interact with it via the interactive prover where quantification is stripped away. For example, the
interactive prover will present the following to the user:

Hypotheses:
e ∈ EquivRel_T (T)
x ∈ T
y ∈ T
z ∈ T
x↦ y ∈ e
¬ y↦ z ∈ e
Goal:
¬ x↦ z ∈ e

This is very similar to the original B♯ statement (4.8), except for the previously discussed differ-
ence in the representation of relations.

5.1.5 Required Elements

When a class declaration has required elements as in the case of the Setoid declaration (4.11), the
generated Event-B needs to be able to represent the required elements, and this is done by pairing
the required elements with the supertype. The generated Event-B operator for Setoid class is as
follows:

Setoid(T ∶ ℙ(T_EvB)) =̂ {S ↦ equ | S = T ∧ equ ∶ EquivRel(T)} (5.9)

Along with typing statements, Event-B operators are generated to deconstruct elements of the
type set, to access the required elements, these use the Event-B’s prj1 and prj2 operators to get
the members of pairs constructed with the↦ operator. For example, the setoid type has a single
required element, the deconstructor to access this element has this definition:

Setoid_equ(T ∶ ℙ(T_EvB), S ∈ Setoid(T)) =̂ prj2(S) (5.10)

76 Chapter 5 Translating B♯ to Event-B by Example

These Event-B operators are then used within the generated Event-B expressions. The Event-B
generated from the CommOp (4.13) statement is as follows:

CommOp(T 1 ∶ ℙ(T_EvB), T ∶ Setoid(T 1)) =̂

{cOp | cOp ∈ baseOp(T 1, T)∧

∀x, y ⋅ x ∈ T 1 ∧ y ∈ T 1 ⇒ cOp(x↦ y) ↦ cOp(y↦ x) ∈ Setoid_equ(T 1, T)}
(5.11)

The arguments to the CommOp operator allow a generic setoid to be passed as an argument. The
type has to be passed as a separate argument due to Event-B not allowing subtyping. Within
(4.13) statement T.equ is used to access the equivalence relation of the setoid, in Event-B this
becomes Setoid_equ(T 1, T) using the Event-B deconstructor. Again we see here that the source
B♯ (4.13) is a lot less verbose than the generated Event-B.
When theorems are declared about type classes, the Event-B mapping constructs a generic ver-
sion of the type class in Event-B, which can then be used within the theorem expression. For
example the Event-B generated from identity theorem on theMonoid type (4.15) is:

∀T , equ, op, ident ⋅ T ∈ ℙ(T_EvB) ∧ T ↦ equ↦ op↦ ident ∈Monoid(T) ⇒

(∀x ⋅ x ∈ T ⇒ (op(x↦ ident) ↦ ident ∈ equ⇔ x ↦ ident ∈ equ))
(5.12)

Defining the genericMonoid in this manner results in the theorem expression being very similar
to the B♯ declaration (again with the exception of the representation of the relations, and the
Event-B typing statement). The result is that when interacting with the interactive prover, the
theorem looks very similar to the theorem written in the B♯ syntax.

5.1.6 Methods

Methods (functions which reference the containing type) have a similar naming issue to the theo-
rems discussed above. This is resolved in the same way as theorems, if the type class is used then
a transformation is done on the B♯ to add the type class to the parametric context. So raiseToL
shown in (4.16) is first transformed to (4.17), then mapped to the following Event-B:

raiseToL(T ∶ ℙ(T_EvB),M ∶ Monoid(T), x ∶ T , p ∶ pNat)=̂
matcℎ p
| zero ∶ Monoid_ident(T ,M)
| suc(ps) ∶ Monoid_op(T ,M)(x ↦ Monoid_raiseToL(T ,M, x, ps))

B♯ allows arguments to parametric contexts without arguments being given to parameters, e.g.,
M.raiseToL is valid B♯, and is the raiseToL function for the Monoid M . To facilitate this in

Chapter 5 Translating B♯ to Event-B by Example 77

Event-B a second operator is generated, which is similar to the first-class operator generated for
functions, and has the following definition:

raiseT oL_P (T ∶ ℙ(T_EvB),M ∶ Monoid_T (T))
= �x↦ p ⋅ x ∈ T ∧ p ∈ pNat | raiseToL(T ,M, x, p)

(5.13)

Given a Monoid this definition returns a lambda expression to compute the raiseToL operator
for that monoid. Given a B♯ statement such as raiseToL⟨T ⟩, this operator is used as the passable
function, the type T is expanded to generate the Event-B type arguments. The operators gener-
ated here would be identical to the operators generated by function equivalent (4.17), however,
the difference in declaration does effect the mapping when generating Event-B from instance
statements.

5.1.7 Instances

When an instance is declared in B♯ it is necessary to generate a proof obligation showing that
the concrete type is a member of the type class. After this each of the theorems and methods
from the type class (and its supertypes) are instantiated within the concrete type. In principle,
these do not need to be proved as they have been proved in the abstract type, it is enough to prove
concrete elements form the abstract type.
Note that only functions and theorems that use an implicit reference to the abstract type are
instantiated, if a theorem/function makes no reference to the abstract type it is unclear what
instantiation should happen.
To prove that a concrete type is a member of a type class a new Event-B theorem is generated
stating that the concrete elements form the abstract type, i.e., an ‘instance’ theorem. As an
example the theorem for this generated by statement (4.26) is as follows:

Theorems:
addMon in CommMonoid

pNat ↦ {x↦ y | x = y} ↦ pNat_add_P ↦ zero ∈ CommMonoid(pNat)

The Event-B expression for the instantiated theorems is often considerably simpler than the ab-
stract Event-B expression. For instance the identity theorem on the monoids (5.12) becomes:

∀x ⋅ x ∈ pNat ⇒ (pNat_add(x, zero) = zero⇔ x = zero) (5.14)

This is easier to work with in the interactive theorem prover than directly using the theorem
on the monoids. Directly using the monoid theorem would require instantiation of the monoid
theorem and the instantiation of instance theorem with every use.

78 Chapter 5 Translating B♯ to Event-B by Example

Generated theorems do not in principle need proving, although proving them is a simple process
of instantiating original theorem from the type class with the instance. This results in hypothesis
identical to the proof obligation. The approach of using abstract types is only useful if there are
multiple concrete types which can reuse the results from the abstract types. There are many other
examples of monoids in mathematics, for example, it is also possible to define a commutative
monoid with one and addition, where the instantiated identity theorem becomes:

∀x ⋅ x ∈ pNat ⇒ (pNat_times(x, one) = one⇔ x = one) (5.15)

Again this would lead to the theorems and functions associated with the monoid type class being
instantiated for this new monoid.

Chapter 6

Core Translations

6.1 Introduction

This chapter focuses on the translations from B♯ to Event-B. To allow this, an abstract repre-
sentation of Event-B elements is given. Then a language is defined to describe the translation
between the B♯ and Event-B syntaxes.
Once the tools to describe the translation have been shown, translations of the core elements of
B♯ are shown. As seen in the chapter on translation examples, Chapter 5, there were instances
where the translation were first done using inference to change one B♯ statement to another, these
translations are not included in the core translations, they are described in Chapter 7.
The section on core translations is split into three broad sections:

1. Defining functions useful within the translations
2. Translating declarations: e.g., the declaration of a new function
3. Translating expressions

The later two sections are dependent on each other i.e., declarations contain expressions, and
expressions use the elements defined within a declarations (a function call in an expression uses
a declared function).
B♯ and Event-B have many similar data structures, e.g., they both have a datastructure called
datatype. To make it clear to which datastructures are being referred, Event-B datastructures
will be subscripted with evB (datatypesevB is the Event-B datastructure).

79

80 Chapter 6 Core Translations

6.2 Event-B Abstract Syntax

To show the translation from B♯ to Event-B it is necessary to have an abstract representation
of the Event-B elements generated by the translation. In [57] the concrete syntax for Event-B
elements is described. Based on this description the figure 6.1 below shows the abstract elements.
This uses the same BNF style syntax as was used when presenting the B♯ language elements.

6.3 Translation Language

In order to define the translation from B♯ to Event-B, we introduce a translation language that
operates on the syntax of the source and target language. A pseudo language is chosen to show
the translation as it allows the translation functions to be easily understood and close in format
to the implementation of the translation from B♯ to Event-B. In Chapter 8, we see that the im-
plementation translates B♯ statements directly to concrete Event-B statements. We present the
translation rules as transformations on data structures that represent the syntactic structures in
the source and target languages.
The translation is done in a single pass of the abstract syntax tree with each element having a func-
tion which describes how it is translated. Many of the functions to translate top level elements
(e.g., type bodies) are performed entirely by calling the translation function on their containing
elements. These translation functions are omitted. Within the core translation, theorems and
datatypes translate to Event-B theorems and datatypes, and functions and classes translate to
Event-B operators. Each function translates to two Event-B operators, an operator which gen-
erates a lambda statement, so it can be used without arguments within an expression, and an
operator which can be expanded by substituting parameters with arguments. Each B♯ Class dec-
laration translates to an operator which defines the class in Event-B, and a series of operators to
deconstruct the class (one operator for each required element).

6.3.1 Data Structures

Each of the rules in the abstract syntaxes shown in 4.1 and 6.1 give rise to a data structure in
the translation language. For example, in the B♯ syntax the function syntax has the following
definition:

datatype ∶∶= Id paraT ype∗ constructor+ typeBody (6.1)

This gives rise to a data structure named datatype. The names of the destructors for this data
structure are the same as the rule names for the elements, e.g., given a function d ∶ datatype,
d.typeBody will access the typeBody of d.

Chapter 6 Core Translations 81

datatype ∶∶= Id cT ypeid constructor+
constructor ∶∶= Id destructor ∗
destructor ∶∶= Id ∶ set−expr

op ∶∶= Id param+ expr
pred−op ∶∶= Id param+ pred−expr
param ∶∶= (set−var) set−expr
expr ∶∶= set−comp | lambda | quantif ier | pair−expr | op−call | bool−func

| bracket | set−expr
set−expr ∶∶= set−unary (set−op set−expr)?
set−unary ∶∶= type | power−set | op−call | set−comp | set−varId | set−bracket

type ∶∶= cT ypeid | datatype−constr
datatype−constr ∶∶= datatypeid set−expr∗

set−var ∶∶= Id
dom ∶∶= set−expr
ran ∶∶= set−expr

unary−var ∶∶= Id
var ∶∶= set−var | unary−var

power−set ∶∶= set−expr
set−comp ∶∶= pair−params pred−expr

set−bracket ∶∶= set−expr
lamda ∶∶= pair−params pred−expr expr

quantif ier ∶∶= quant−type pair−params pred−expr
pair−params ∶∶= ident pair−params?

ident ∶∶= Id
pair−expr ∶∶= expr pair−expr
op−call ∶∶= opid expr+

pred−op−call ∶∶= pred−opId expr+
func−call ∶∶= (lambda|op−call|funcCall|paramid|) pair−expr
pred−expr ∶∶=∈ | ∩ | ∧ | pred−op−call | ⇒ | …

∈ ∶∶= expr set−expr, ∩ ∶∶= pred−expr+, ∧ ∶∶= pred−expr+,
⇒ ∶∶= pred−expr pred−expr

bool−func ∶∶= pred−expr

Figure 6.1: Event-B Abstract Syntax

82 Chapter 6 Core Translations

Within the translation it is necessary to construct data structures (mostly the Event-B data struc-
tures that are the output of the translation). To facilitate understanding, data structures are con-
structed using the concrete syntax of the B♯ and Event-B languages. For example to create an
Event-B set comprehension data structure the translation language would use the following:

{pair−params | pred−expr} (6.2)

Where pair−params and pred−expr are correctly typed expressions within the translation lan-
guage (i.e., Event-B datatypes).
In the datatype definition above (6.1), some of the rules will generate multiple elements. Within
the translation language these becomes ordered lists of those elements (e.g., paraType* will
generate a list of paraTypes due to the *). Within the translation language to signify an element
is a list rather than an individual element it is highlighted in bold (d.paraType). For example,
d ∶ List⟨datatype⟩ means that d is a list of datatypes. In the abstract syntax whenever a rule
is suffixed with ∗ or + a list is constructed within the datatype. Within the translation language
single elements are automatically encapsulated in Lists when required.
In (6.1) the paraT ype element is optional (Recall in the abstract syntax ∗ is zero or more, and
? is zero or one). These expressions can be omitted when constructing a datatype. If these
destructors are used and there is no value then they have the value nil.

6.3.2 Translation Functions

The translation rules are defined in translation language as functions which at the top level will
take B♯ datatypes and produce Event-B datatypes (there are also intermediate functions which
take B♯ datatypes and produce other B♯ datatypes). Given a list of typed B♯ and Event-B elements
t1 ∶ Type1,… , tn ∶ Typen, a function in the translation language will have the following form:

functionName(t1 ∶ Type1,… , tn ∶ Typen) → Typereturn{expression} (6.3)

Given a correctly typed set of expressions e1 ∶ Type1,… en ∶ Typen a function call is made with
the following syntax:

functionName(e1,… , en) (6.4)

In the translation language the return type is to show the user what type to expect the function to
return. It should always match the type of the element returned by the function.
As a convenience, functions can take a list of arguments in place of a single argument, this causes
the function to work on each element of the list, and return a list. In effect given the apply map

Chapter 6 Core Translations 83

which applies a function to each element of a list, when a single element function f is called
with a list l the result is apply(f, l) (a list with f applied to each element of l).
Function names can be overloaded (i.e., a function name can be used more than once), and this is
resolved by using the type of the argument to disambiguate the function which should be called.
This reduces conditional statements in the translation language, as the language will choose the
correct function based on type rather than this needing to be stated explicitly.
The expression within a translation language function is made up of function calls, conditionals,
match statements and let statements. These statements all use a fairly standard syntax which the
reader should be familiar with from other languages.
Because the naming rules in Event-B are different to the B♯ naming rules, it is necessary to
generate free variables in Event-B when translating. To resolve this there are a series of special
functions. Functions suffixed with Id generate unique variable names within Event-B using
the arguments to the function. When an Id function is called with the same arguments it will
produce the same Event-B identification. The generated identifier is seen as an implementation
detail and is discussed further in the implementation Chapter 8.

6.3.3 Let Statements

As in other languages, let statements are used to assign a name to the result of an expression.
They also allow a syntax for multiple assignment, this works in the following way:

evBEvalOp(f ∶ function) → opevB{1

let fName⟨T1 ∶ TC1,… Ti ∶ TCi⟩(p1 ∶ P1,… , pj ∶ Pj) ∶ RetType expression = f2

…3

}4

5
6

Line 2 has the effect of making the following statements:

let fName = f.Id

let T1 ∶ TC1,… , Ti ∶ TCi = f.paraType

let p1 ∶ P1,… pj ∶ Pj = f.parameter

let RetType = f.constrT ype

let expression = f.expression

84 Chapter 6 Core Translations

The values on the left of the multiple assignment match the constructors of the abstract type (in
this case f). Lists are unwrapped, and… are used to represent missing elements. This multiple
assignment syntax has the benefit of relating the abstract type to the concrete syntax. This results
in mapping functions being simpler to understand.

6.4 Mapping Declarations

6.4.1 Class Declarations

An initial example of the mapping is how to map a class declaration in B♯ to an Event-B oper-
ator, e.g., such as in the setoid example (5.9). The following function, typeOp, maps a B♯ class
declaration to an Event-B operator declaration:

typeOp(c ∶ class) → OpevB{

let c = Class C ⟨S ∶ TypeS ,… , T ∶ TypeT ⟩[N] ∶ sType1,… , sTypei
(v1 ∶ Sj ,… vi ∶ Sj) where P1;… ;Pk; {…}

let opName = evBTypeId(C) ∕∕ C, The class name becomes the op name

∕∕ Each parametric type can generate several Event-B types

∕∕ s1 ∶ SevB1,… , s ∶ SevBk are the elements constructed by evBParam(S ∶ Types)

let s1 ∶ SevB1,… , s ∶ SevBk,… , t1 ∶ TevB1,… , t ∶ TevBl…

= evBParam(S ∶ Types),… , evBParam(T ∶ TypeT)

let SName = superTypeId(c) ∕∕ SName is an identifier for supertype

let v1 ∶ evB(S1),… , vi ∶ evB(Si) = evBParam(v1 ∶ S1),… , evBParam(vi ∶ Si)

return ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

opName(s1 ∶ SevB1,… , s ∶ SevBi,… , t1 ∶ TevB1,… t ∶ TevBi)

=̂ {SName ↦ v1 ↦⋯↦ vi
| SuperTypeName ∈ evB(sType1) ∩⋯ ∩ evB(sType1)

∧ v1 ∈ evB(S1) ∧⋯ ∧ vi ∈ evB(Si)

∧ evBPred(P1) ∧⋯ ∧ evBPred(Pi)}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

}

(6.5)

The first let statement decomposes the argument c into its constituent elements. The second
statement generates an Event-B name for the operator (in practice the name for the operator can
simply be the name of the class, as in B♯ this has to be unique). Next Event-B parameters for the
Event-B operator are mapped from the B♯ parametric context. This is done with the evBParam
function described below (Section 6.4.2). Each of these calls can generate multiple Event-B
parameters which are added to a single list of B♯ parameters. Next Event-B equivalents to the

Chapter 6 Core Translations 85

required elements are constructed. Finally an Event-B set comprehension expression is defined
to represent the class. Most of this is constructed from elements which are already translated
above, except for the translation of the where predicates, P1…Pk, which is done inline. This
is done with the evBPred function which compiles B♯ expressions to Event-B predicates. The
B♯ expressions must be of type Bool. In essence each part of element of the class statement
is translated into an Event-B component, which are then put together into an Event-B operator
which defines a set comprehension statement. We will now look at how each of the individual
components are translated.

6.4.2 Mapping Parametric Types and Parameters

This section will look at the mappings of parametric types and parameters, these are looked at
together because they both produce Event-B parameters. The function used to generate Event-B
parameters is called evBParam and is overloaded so can be called with B♯ parametric types, or
B♯ parameters/required elements.
When a parametric type (paraType) is mapped to Event-B parameters the types that are needed
to define the class of the paratype are inferred. For example the definition of an associative
operator is as follows:

AssocOp⟨T ∶ Setoid⟩… (6.6)
This is equivalent to:

AssocOp⟨S, T ∶ Setoid⟨S⟩⟩… (6.7)
This is a useful process when the paraTypes of the constraining class do not have any required
elements. However if the paraTypes are constrained to type classes there is no syntactic way to
access the required elements. For example, if a function on associative operators was declared:

opFunc⟨A ∶ AssocOp⟩… (6.8)

Then the following is inferred:

opFunc⟨T , S ∶ Setoid⟨T ⟩, A ∶ Assoc⟨S⟩⟩… (6.9)

The problem is that without the type S being explicitly defined there is no way to access the
equivalence relation of S. In these situations the user will need to declare the function in the
following way:

opFunc⟨S ∶ Setoid⟨T ⟩, A ∶ Assoc⟨S⟩⟩… (6.10)

In the typeOp function (6.5) the parameters of the type class were also turned into a list Event-B
parameters (using the evBParam(c.paramType) function).

86 Chapter 6 Core Translations

The evBParam function first expands the parametric types as in (6.9), and these expanded types
are then easily turned into Event-B parameters. Base types (types with no type class constraint)
become a subset of a complete Event-B type i.e., T in B♯ becomes T ∶ ℙ(TevB). Constrained
classes are defined using the type operators constructed by (6.5) e.g. S ∶ Setoid becomes S ∶
Setoid(T) where T has already been defined when expanding the types, and Setoid(T) is the
typing operator defined for the Setoid type class. This is a recursive process so when we need
to use a type constructor all the types for this type constructor have already been defined. The
definitions for the functions can be found in Appendix A and Section A.1.
Converting B♯ typed elements such as parameters and required elements is much simpler as each
typed element in B♯ maps to a single typed element in Event-B. The process is to generate an
identifier for the Event-B parameter, and type it by converting the B♯ type into an Event-B type.
This is done with the following function:

evBParam(p ∶ parameter) → paramevB{

∕∕ p ∶ Type

return evBId(p) ∶ evB(p.contrT ype) ∕∕ pevB ∶ TypeExpr

}

(6.11)

This completes the function definitions to generate an Event-B typing operator (6.5) from a B♯
class. However, this is not the only function constructed by a B♯ class declaration. Operators
are also constructed to deconstruct an instance of a type class to access the required elements.
This was seen in example (5.10). For each of the class’s required elements (Parameters), the
following function is used to generate an Event-B deconstructor operator:

classDecon(c ∶ Class, r ∶ Parameter) → OpevB{

let Class C ⟨S1 ∶ TC1,… , Ti ∶ TCi⟩[N] ∶ sType1,… , sTypei
(v1 ∶ S1,… vi ∶ Si) where P1;… ;Pi; {…} = c

let T1 ∶ Type1,… , Ti ∶ Typei = evBParam(S1 ∶ TC1,… , Ti ∶ TCi)

let opName = evBId(c, r) ∕∕ Name of the deconstructor op based on class and element.
let typeConstrName = evBId(c) ∕∕ Name of the Event-B type op constructed by (6.5)
let cInstName = evBID ∕∕ A unique ID, the name doesn’t matter
return

(

opName(T1 ∶ Type1,… , Ti ∶ Typei, cInstName ∶ typeConstrName(T1,… , Ti))

=̂ getterExpr(c, r, classInstName)

)

}
(6.12)

The Event-B operator defined takes sufficient arguments to generate an abstract instance of the
class, and the getterExpr then deconstructs the abstract instance to get the correct element. When

Chapter 6 Core Translations 87

a deconstructor is used in B♯ (e.g., S.equ where S is a Setoid) the instance of the class (S) con-
tains enough information to generate all of the arguments to the Event-B deconstructor operator.
The definition of the getterExpr function is:

getterExpr(c ∶ Class, r ∶ parameter, n ∶ exprevB) → exprevB{

let r1 ∶ R1 = r

let Class C ⟨S1 ∶ TC1,… , Ti ∶ TCi⟩[N] ∶ sType1,… , sTypei
(v1 ∶ V1,… vi ∶ Vi) where P1;… ;Pi; {…} = c

if r1 ∶ R1 ∉ {v1 ∶ V1,… , vi ∶ Vi} ∕∕ r isn’t a required element of c so must be an element of a superclass
return getterExpr(sType1, r, prj1(n))

elif r1 ∶ R1 ∈ {v1 ∶ V1,… , vi ∶ Vi}

return prj2(prj1(… prj1(
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

c.parameter.indexof (param) times

(prj2(n)))))

}
(6.13)

The Event-B representation of a type class has the form superT ype↦ (mappedRequiredElements).
If the parameter r is not a required element of the type c but is instead a required element
of its super type, the function above is applied to the super type instead. This is done by
applying getterExpr to prj1(n) (the representation of the supertype). Otherwise prj2(n) (the
mappedRequiredElements) contains the parameter r. Its location depends solely on where the
required element appeared in the declaration of the class prj1 is applied the correct number of
time to find this. Finally , unless the element returned by the prj1s is the first element in the type
class, a final prj2 needs to be applied to get the unique element.

6.4.3 Datatype Declarations

Due to the similarities between datatypes in B♯ and Event-B the translation rules are simple:

88 Chapter 6 Core Translations

evB(d ∶ datatype) → datatypeevB{

let name = evBId(d)

let S1,… , Si = evBParam(d.paramType) ∕∕ d⟨S1,… , Si⟩

let a,… , z = d.constructor ∕∕ The B♯ data type constructors
let da1 ,… , dai = a.destructor ∕∕ The destructors for constructor a
⋮

let dz1 ,… , dzi = z.destructor

return ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

name⟨S1,… , Si⟩=̂

Constructors:
evBId(a)(evBId(da1) ∶ evB(da1 .constrType),… , evBId(dai ∶ evB(dai .constrType)))

⋮

evBId(z)(evBId(dz1) ∶ evB(dz1 .constrType),… , evBId(dzi ∶ evB(dzi .constrType)))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

}
(6.14)

Each B♯ element is translated into their corresponding Event-B element, and they then construct
an Event-B datatype in the same manner as a B♯ datatype. This process is made simpler by
parametric types in the B♯ datatype being constrained to only base types. B♯ does not allow
datatypes to be constructed with a non-base type. If you want to reason about a datatype with a
non-base type, a class declaration can be used to subclass a datatype constraining the base type.
A future version of B♯ could automate this process.

6.4.4 Function Declarations

In the examples it was seen that when mapping a function to Event-B two Event-B operators
are required, one as an expandable operator, and the other a passable operator. The process for
tranlsating to both these types of operators will be looked at. The function for generating the
expandable operator is called evBEvalOp and the function for generating the passable operator
is called evBPassableOp.
The translation function to generate the callable operator has the following definition:

Chapter 6 Core Translations 89

evBEvalOp(f ∶ function) → opevB{

let fName⟨T1 ∶ TC1,… Ti ∶ TCi⟩(p ∶ P1,… pi ∶ Pi) ∶ RetType expression = f

let name = evBEvalID(f)

∕∕ Get parameters from the parametric context
let s1 ∶ S1,… , si ∶ Si = evBParam(T1 ∶ TC1),… evBParam(Tj ∶ TCj)

∕∕ Get parameters from the B♯ parameters
let a1 ∶ A1,… , ai ∶ Ai = evBParam(p1 ∶ P1),… evBParam(pi ∶ Pi)

return
(

name(s1 ∶ S1,… si ∶ Si, a1 ∶ A1,… , ai ∶ Ai)

=̂ evBExpr(f.expression)

)

}

(6.15)

Both the parametric types and the function parameters become Event-B operator parameters. It
is noticeable that at this point in the translation the return type of the B♯ function is not used. It
is seen later (Section 7.1.1) that this defines an Event-B theorem that the function does return
the return type. Later it is seen that this is used to generate an Event-B theorem.
The passable operator is defined with the following mapping function:

evBPassableOp(f ∶ function) → OpevB{

let fName⟨T1 ∶ TC1,… Ti ∶ TCi⟩(p ∶ P1,… pi ∶ Pi) ∶ RetType expression = f

let name = evBPassableId(f)

let evalName = evBEvalId(f)

let s1 ∶ S1,… si ∶ Si = evBParam(T1 ∶ TC1),… evBParam(Ti ∶ TCi) ∕∕ Operator parameters
let q1 ∶ Q1,… qi ∶ Qi = evBParam(p1 ∶ P1),… , evBParam(pj ∶ Pj)

return
(

name(s1 ∶ S1,… , si ∶ Si) =̂

�q1 ↦⋯↦ qi ⋅ q1 ∈ Q1 ∧… qi ∈ Qi | evalName(t1,… ti, p1,… , pi)

)

}
(6.16)

Here only the parametric types become arguments to the Event-B operator. The expression re-
turned by the operator is an Event-B lambda which takes the function parameters, and calls the
callable operator.
Translation is slightly different when mapping B♯ functions that return booleans. This is due
to separation of predicate types within the Event-B language. When translating the expandable
operator the Event-B operator must be declared as a predicate operator, and must be compiled
through a different process that returns an Event-B predicate statement. This is done by chang-
ing function evBEvalOp (6.15) so the expression is compiled with evBPredExpr(f.expression)

90 Chapter 6 Core Translations

instead of evBExpr(f.expression). The difference in expression mappings can be seen in Sec-
tion 6.5.
The predicate mapping for the passable operator replaces the lambda expression from the ex-
pression operator with a set comprehension expression. i.e. the lambda expression in (6.16) is
replaced with:

{p1 ↦⋯↦ pi | p1 ∈ P1 ∧⋯ ∧ pi ∈ Pi ∧ evalName(t1,… , ti, p1,… pi) (6.17)

The result of this is that the return type of the operator is a set. In B♯ this is a function and can
be called e.g. f (a, b, c), the predicate result is obtained with the following expression a ↦ b ↦
c ∈ f . When proving this will reduce to a call to the operator defined by evBEvalOp.

6.4.5 Instances

Instances are mapped in the following way:

evB(i ∶ instance) → exprevB{

let Instance Class⟨T1… Ti⟩ (E1,… , Ei) Name = i

let baseClass = evB(Class⟨T1,… , Ti⟩)

return baseClass↦ evBExpr(E1) ↦⋯↦ evBExpr(Ei)

}

(6.18)

In the examples of Chapter 4 it was seen that instances did considerably more than this. However,
the generation of theorems and operators from instances statements uses large amounts of B♯ to
B♯ mapping and inference which is covered in the next chapter (Chapter 7).

6.4.6 Mapping Types

Due to the similarities between Event-B sets and B♯ types, mapping B♯ types is largely a matter
of mapping the unary types, and mapping the constructor to an Event-B set constructor. For
each B♯ constructor there is an equivalent Event-B set constructor making most of the mapping
simple. It is assumed that evB(c ∶ constructor) returns the equivalent Event-B set−opevB (set
constructor). The B♯ Bool type is mapped to the Event-B BOOL type, however, function types
that return booleans are instead mapped to Event-B sets, e.g., the B♯ type a ∶ S × T → Bool
becomes a ∶ ℙ(S ×T). Now, if a is called in an expression a(s, t) then it is evaluated in Event-B
as s ↦ t ∈ a (this evaluation will be seen in the Expression Mapping section below 6.5). This
allows predicate functions to be succinctly represented in Event-B. The mapping functions are
as follows:

Chapter 6 Core Translations 91

evB(c ∶ cosntrT ype) → set−exprevB{

∕∕ constrType ∶∶= unaryType (constructor constrType)?

∕∕ e.g., (T × T) → T

if c.constructor = ‘ → ’ ∧ constrType = Bool

return ℙ(evB(c.unaryType)) ∕∕ ℙ(T × T)

elif c.constructor ≠ ‘ → ’ ∨ constrType ≠ Bool

let ⋈ = evB(c.constructor) ∕∕ Set constructor equivalent of B♯ type constructor
return evBType(c.unaryType) ⋈ evB(c.constrType) ∕∕ TevB × TevB → TevB

}
(6.19)

The focus on total function constructors (→) is considered because this is the type of B♯ functions.
There is no issue in principal to extending this translation route to other functional constructors.
The unaryType expressions are more complex to translate, as, in B♯ the unary type may be an
instance of a type class (either an instance, a constrained paraType, or a constructed class).
When these types appear in a set expression it is the set the type class is associated with that
must be found. The Event-B representation stores the set information within its construction.
This can be seen in (6.18) and (6.5) where an Event-B type is constructed as the first part of the
paired lists which define the Event-B type. More generally the supertype of the current type is
represented as the first element of the Event-B construction. The result is that to get the Event-B
base type we can recurse up the supertypes until we reach a concrete supertype. We know when
the concrete supertype will have been reached, as we can simultaneously recurse up the B♯ type
hierarchy, until the B♯ base type is reached (a constructed type). The baseTypeForExpr function
is defined to find this type. It recursively descends the B♯ type structure while also finding the
supertypes in Event-B (the first part of the representation). Once the B♯ supertype is not a type
class the Event-B expression will be the base class. This is done using the baseTypeForExpr(e ∶
exprevB, c ∶ class) → set−exprevB, the definition of which is given in Appendix A Section A.2.
This function can then be used to get the Event-B type representation from B♯ parameters and
instances:

evBType(p ∶ parameter) → set−exprevB{

p1 ∶ Class = p

return baseTypeForExpr(evBID(p), Class)

}

(6.20)

The function for getting the Event-B instance is near identical and can be found in A.2.

92 Chapter 6 Core Translations

Due to the similarities between Event-B and B♯ datatypes getting an Event-B type representation
for a B♯ datatype is simple:

evBType(d ∶ datatype,params ∶ List⟨constrType⟩) → set−exprevB{

let d⟨p1,… , pi⟩ = d⟨params⟩

return evBId(d)⟨evBType(p1),… , evBType(pi)⟩

}

(6.21)

Simply construct the Event-B equivalent to the datatype with the types list.
Finally we need to be able to get the Event-B type for a constructed class e.g., Setoid⟨T ⟩ where
T is a type in the local context. To do this T has to be substituted into the Setoids base type.
This is done by descending the B♯ type tree until the base type is found, then substituting into
the type expression the types from the parametric arguments list with the types in the classes
parametric context (when it was defined). B♯ allows multiple supertypes, however, they must
have the same type structure so it does not matter which supertype is used, and we choose to use
the first supertype. The function is defined in the following way:

evBSetForClassConstr(c ∶ class,parametricArgs ∶ List⟨constrType⟩) → set−exprevB{

let sType = ℎead(c.constrType) ∕∕ The First Supertype of the class
if sType isA class
return evBSetForClassConstr(sType,parametricArgs)

elif ¬(sType isA class)
∕∕ In the supertype class expression replace the paraTypes with the parametric Args
return evB(substituteInArgs(sType, c.paraType,parametricArgs))

}
(6.22)

Getting the Event-B type when a class is constructed in B♯ is done with the function (6.22).
Subclassing in Event-B can only add additional constraints and required elements, it does not
change the type of the elements represented within the type class.
There is a second situation in which it is required to build Event-B types from class constructors,
where it is desired to get the type including the representation of the required elements. To do
this the typeOp (constructed by (6.5)) is used to do the typing. This presents two additional dif-
ficulties, firstly, subtypes can be passed in the place of the exact required types, so the parameter
type and the argument type may not match identically. The second is caused by the type inference
done on parametric contexts discussed in 6.4.2. Continuing the example, if there is an instance
of a Setoid, S ∶ Setoid, the associative operators can be defined with AssocOp⟨S⟩, as additional
typing was inferred in the operator declaration. The inferred type also needs to be added as an ar-
gument e.g., as seen in 6.7 the AssocOp constructor actually needs AssocOp⟨S, T ∶ Setoid⟨S⟩⟩.

Chapter 6 Core Translations 93

So when the AssocOp constructor is called with an instance of the Setoid class it is necessary to
also have a type for the first argument (the base type of the Setoid instance).
To resolve the first issue (the argument type not matching the parameter type), a function called
evBClassReprForClass is used to recursively step up the B♯ type hierarchy until the correct type
is found, whilst simultaneously getting the super types of the Event-B representation. Once the
right B♯ type is found we know we have the correct Event-B type. The definition of this function
is in A.3.
To resolve the inferred types it is enough to notice that when a type is created, the required in-
ferred types are declared within the definition. To understand this it is useful to see an example.
Given an instance of a setoid pNat_Setoid, and a call AssocOp⟨pNat_Setoid⟩ the types inferred
are exactly the constrTypes used in the instance declaration to define pNat_Setoid (i.e.:Setoid⟨pNat⟩).
Doing this inference results in the call being equivalent to
AssocOp⟨pNat, pNat_Setoid⟩. A series of getInferredTypes are declared to get the inferred types
from the different unary types in B♯. e.g.,:

getInferredTypes(i ∶ instance, c ∶ class) → List⟨exprevB⟩{

let Instance Class⟨T 1… Ti⟩ (E1,… , Ei) Name = i

let S1,… , Si = getInferredTypes(i.constrType)

let cRepr = evBClassReprForClass(i, c) ∕∕ Event-B instance of c
return S1,… , Si, cRepr ∕∕ Type arguments for an operator

}

(6.23)

Other functions of this form can be found in Appendix A, Section A.4.
These mapping functions are used whenever a parametric context is filled with type arguments.

6.5 Expression Mapping

There are two separate routes for mapping expressions depending on the Event-B context. If the
Event-B context requires an expression then evBExpr is called otherwise evBPred is called. This
can be seen in the mappings above where evBPred or evBExpr are chosen depending on context.
evBPred can only be called on expressions in B♯ that return a Bool. However evBExpr can be
called on any expression.

6.5.1 Booleans to Predicates and Vice Versa

As seen earlier when mapping a function that returns the Bool type, it is transformed into an
Event-B set (using set comprehension). Similarly parameters which are functional types which

94 Chapter 6 Core Translations

returned Bool are mapped to the Event-B power set of the function’s domain type. B♯ lambda
constructs have a similar mapping to the passable functions constructed, so that they produce
Event-B sets when required by the Event-B type system:

evBLambda(l ∶ lambda) → exprevB{

let �⟨T1 ∶ TC1,… , Ti ∶ TCI⟩ p1 ∶ Pi,… pi ∶ Pi ⋅ expr = l

if returnType(expr) ≠ Bool

return evBLambdaExpr(l)

elif returnType(expr) = Bool

return evBLambdaPred(l)

(6.24)

evBLambdaExpr(l ∶ lambda) → lambdaevB{

let �⟨T1 ∶ TC1,… , Ti ∶ TCI⟩ p1 ∶ Pi,… pi ∶ Pi ⋅ expr = l

s1 ∶ S1,… si ∶ Si = evBParam(T1 ∶ TC1),… , evBParam(Tt ∶ TCi)

q1 ∶ Q1,… , qi ∶ Qi = evBParam(p1 ∶ P1,… , pi ∶ Pi)

return � s1 ↦⋯↦ si ↦ q1 ↦⋯↦ qi ⋅ s1 ∈ S1 ∧⋯ ∧ pi ∈ Pi | evBExpr(expr)

}

(6.25)

evBLambdaPred(l ∶ lambda) → set−compevB{

let �⟨T1 ∶ TC1,… , Ti ∶ TCI⟩ p1 ∶ Pi,… pi ∶ Pi ⋅ expr = l

s1 ∶ S1,… si ∶ Si = evBParam(T1 ∶ TC1),… , evBParam(Tt ∶ TCi)

q1 ∶ Q1,… , qi ∶ Qi = evBParam(p1 ∶ P1,… , pi ∶ Pi)

return {s1 ↦⋯↦ qi | s1 ∈ S1 ∧⋯ ∧ qi ∈ Qi ∧ evBPred(l.expression)}

}

(6.26)

As seen above whenever a B♯ parameter (or a lambda expression) has a type of a function to a
Bool it becomes a set expression (rather than an Event-B function). Normally when a parameter
is of a functional type and is called as a function, it is translated to an Event-B expression in the
following way:

evBExpr(p ∶ parameter, args ∶ List⟨expression⟩) → func-callevB{

let pevB = evBId(p)

let arg1 ↦⋯↦ argn = evBExpr(args)

return pevB(arg1 ↦⋯↦ argi)

}

(6.27)

The functional parameter can be called as an Event-B style functional type.

Chapter 6 Core Translations 95

If the parameter is a function type that returns a Bool, the evBId call will give a parameter repre-
sented by a set rather than an Event-B functional type, so the above compilation will not work.
For example, if we have a parameter p ∶ T → Bool in B♯, and an expression of p(t) (where
t ∶ T) then the mapping func−callevB(evBId(p), evBExpr(t)) will not produce valid Event-B (a
typing error will exist). To solve this an ∈evB expression is used instead, e.g. the function call is
mapped to evBExpr(t) ∈ evBId(p). This works fine when translating as a predicate expression,
however, it can also be translated as an expression. In this case the Event-B bool operator is used
to convert it into a boolean bool(evBExpr(t) ∈ evBId(p)). An identical process is used to convert
lambda calls as necessary (replacing p with the lambda expression).

evBParamCallBoolPred(p ∶ parameter, args ∶ List⟨expression⟩) → pred-exprevB{

let pevB = evBId(p)

let arg1 ↦⋯↦ argi = evBExpr(args)

return arg1 ↦⋯↦ argi ∈ pevB

}

(6.28)

The evBParamCallBoolExpr function simply wraps the result of the evBParamCallBoolPred
in an Event-B bool operator. Again this process is identical when calling lambdas. B♯ named
functions (functions that are not lambdas) can also return booleans. As seen previously they
become Event-B predicate operators. When a named function is called it becomes an Event-B
predicate operator call. Again, if it is required to return an expression rather than a predicate it
is wrapped in the Event-B bool function.
It is possible that a B♯ function will be called that returns a Bool and Event-B expects an expres-
sion. The Event-B operator constructed by the B♯ function will return an Event-B predicate. If an
expression is required, the Event-B bool operator is used to turn the predicate into an expression.
If a Datatype is created over the B♯ Bool type (e.g., List⟨Bool⟩) the mapped deconstructors may
return the Event-B Bool type. If this is required to be an Event-B predicate, it is transformed into
a predicate by appending = TRUE to the result of the mapped expression.
From this point on it is assumed that these translations betweenB♯ boolean and Event-B predicates/Bools
are made automatically when required. These are all the additional translations that are necessary
to map B♯ booleans to Event-B. Functional types that do not return a Bool cannot be converted
into an Event-B predicate.

6.5.2 Function Calls

The two routes of translating expressions (evBExpr and evBPred) are near identical with the
exception of the function call i.e., replacing Expr with Pred in the function names. This sec-
tion therefore only presents functions to map B♯ expressions to Event-B expression. The small

96 Chapter 6 Core Translations

differences in the mapping of predicate expressions are explained along the way.

evBExpr(fc ∶ functionCall) → exprevB{

matcℎ fc.functionName

| functionCall

| lambda

| parameter

⎫

⎪

⎬

⎪

⎭

⎛

⎜

⎜

⎜

⎝

let funcNameExpr = evBExpr(fc.functionName)

let arg1 ↦⋯↦ argj = evBExpr(fc.expression)

return funcNameExpr(arg1 ↦ ⋯↦ argj)

⎞

⎟

⎟

⎟

⎠

| deconstrutor ∶
⎛

⎜

⎜

⎜

⎝

let deconName = EvBId(deconstructor)

let arg = evBExpr(fc.expression) ∕∕ Deconstructors take an instance of the datatype
return deconName(arg)

⎞

⎟

⎟

⎟

⎠

| function ∶ ⎛
⎜

⎜

⎜

⎜

⎜

⎝

let funcName = evBEvalId(function)

let TArg1,… ,TArgi = getInferredTypes(fc.ctx, f .function.constrType.class)

let arg1,… , argj = evB(fc.expression)

return funcName(TArg1,… ,TArgi, arg1,… , argj)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

}
(6.29)

There is also an evBPredExpr, which is called when Event-B requires a predicate instead of
an expression. This is almost identical except for the changes discussed in Section 6.5.1, and
let funcName = evBEvalId(function) becomes let funcName = evBPredId(function).
B♯ functions can appear without arguments. If there are no arguments then the constructed
passable operator is used (i.e., let funcName = evBEvalId(function) becomes let funcName =
evBPassableId(function). Other than this the call is the same. The only exception to this is if the
B♯ function does not expect any arguments, in this case the evBEvalId is always used. Only B♯
functions that return Bool can produce Event-B predicates, the result of this is that when translat-
ing a B♯ function call to a predicate expression it is simply necessary to call the Event-B operator
with the correct arguments.
Unlike in object oriented languages, there is no notion of being able to mutate a class or datatype.
The result is that if you have a class with a parametric context, and you create an instance of the
class with the supertype and the subtype, the class created with the subtype is a subtype of the
class created with the supertype (covariance). This is ensured by the translation to Event-B
sets. Functions take covariant arguments (you can call a function with a subtype), and give out
contravariant results (they are only guaranteed to return the supertype). This is not enforced in B♯.
The place where this could become problematic is checking if the result of one function can be the
argument to another function. When the B♯ is translated to Event-B the corresponding Event-B
generates well definedness proof obligations to check the arguments of functions. The result is
that if the type information of the argument says it is a supertype of the function parameter, the
user will be required to prove that the argument is actually the more constrained type required
by the parameter.

Chapter 6 Core Translations 97

6.5.3 Quantifiers

B♯ quantifiers map to their equivalent Event-B quantifier (evB(q ∶ quantT ype) returns the Event-
B equivalent of the quantT ype). When a quantifier has a parametric context, an additional uni-
versal quantifier is constructed to quantify over the parametric types. This results in the following
translation function:

evB(q ∶ quantif ier) → quantif ierevB {

let �⟨T1 ∶ TC1,… T ∶ TCi⟩p1 ∶ P1,… , pj ∶ Pj ⋅ predExpr = q

let s1 ∶ S1,… si ∶ Si = evBParam(T1 ∶ TC1),… , evBParam(Ti ∶ TCi)

let q1 ∶ Q1,… , qj ∶ Qj = evBParam(p1 ∶ P1),… , evBParam(pj ∶ Pj)

let �evB = evB(q) ∕∕ �evB is either ∀ or ∃
return ∀s1 ↦⋯↦ si ⋅ s1 ∈ S1 ∧… si ∈ Si

⇒ �q1 ↦⋯ ↦ qj ⋅ q1 ∈ Q1 ∧⋯ ∧ qj ∈ Qj → evBPred(q.expression)

}

(6.30)

In the case that there are no parametric types in the B♯ quantifier, the first universal quantifier in
the return statement is not generated.

6.5.4 Theorems

Theorem declarations in B♯ and Event-B are almost identical, except in B♯ the expression must
be of type Bool rather than being a predicate expression. The result of this is that the mapping
is very simple:

evB(t ∶ tℎeorem) → tℎeoremevB{

let TheoremName = evBId(t)

let thmExpression = evBPred(t.expression)

return
(

TheoremName ∶

thmExpression

)

}

(6.31)

This demonstrates all of the mapping functions required to map a B♯ expression into an Event-B
expression.

98 Chapter 6 Core Translations

6.6 Conclusion

This chapter has demonstrated how the core elements of B♯ are translated into the Event-B lan-
guage. The largest difference between the B♯ language and the Event-B language is the type
class definitions. It was shown how the type class definitions become Event-B sets, which were
encapsulated in Event-B operators. This allows easy reuse of the definitions e.g., groups can
easily reuse the definitions in Monoids etc. It also allows one type to depend on another e.g., the
type of associative operators depending on the setoid type allowing the use of the equivalence
relation. To allow type class definitions to be separated into their constituent parts deconstructor
operators were also defined.
These type class definitions also created differences between the B♯ and Event-B type systems,
e.g., the Monoid type class is a subtype of the Setoid type class therefore could be passed in the
place of a Setoid. This is not the case with passing the Event-B representation of a type class
to an Event-B operators.. It was shown how the Event-B representation of the type class could
be deconstructed to find the correct representation to pass to operators. A similar approach was
necessary for instances of type classes.
Many elements of expressions translated readily to their Event-B equivalents. Getting associated
variables from type classes was done using the operators generated to deconstruct type classes.
A major difference between the B♯ and Event-B language was the representation of predicates
and booleans. This was resolved by having a separate translation route for B♯ function types that
returned a boolean. This also made it necessary to change the translation when these functional
types were called.

Chapter 7

Inference and Structure

In the previous chapter the core of B♯ was mapped to Event-B. However, this is only part of the
work done during the mapping from B♯ to Event-B. B♯ statements contain additional meaning
which has not been encoded during the expression mapping. For instance, due to B♯ allowing
reasoning about non-complete types, functions have a user defined return type. This return type
information needs to be encoded into the Event-B mapping. This chapter will look at how this
additional information is encoded within Event-B by generating additional Event-B statements.
These additional Event-B statements are used to prove that constraints declared in B♯ are satisfied.
E.g., when a user declares a return type to a function it is necessary to show that the function really
does return this type. This becomes necessary in B♯ as subtying is not decidable. Therefore, an
Event-B theorem is generated requiring the user to show the return type is what they claim.
This chapter then goes on to look at how the structure of B♯ files influences the structure of
the generated Event-B files, e.g., how B♯ method of importing files is translated to Event-B file
inclusion.

7.1 Generated Statements

The approach taken in this section is to generate additional B♯ statements and then assume that
these are mapped to Event-B using themapping functions in the previous section. The statements
are not generated using the concrete B♯ syntax, instead they are generated within the abstract syn-
tax and are not visible to the user. They are considered an intermediate step within the translation.
This approach is taken because it is simpler to generate new B♯ statements from B♯ than it is to
generate Event-B.
In many cases the generated statements are B♯ theorems, e.g., a theorem that demonstrates that
a function returns the type it claims to. These bare similarities to proof obligations generated by
Event-B. The reason for these theorems is to facilitate proving (often discharging the proof obli-
gations generated by Event-B). For example, in Event-B we may have a function F1, where one

99

100 Chapter 7 Inference and Structure

of the arguments is the result of another function F2. Event-B will generate a well-definedness
statement that F2 returns the correct type for the parameter of F1. Already having a theorem
about the returned type of F2 will in many cases make discharging this proof obligation trivial.
Ideally this process could be automated which is discussed further in 9.3. If instead, we gen-
erated Event-B proof obligations we would not be able to use the result the same way in later
proofs.

7.1.1 Function Typing

Function typing is in effect the user stating a theorem that the function returns the type they
believe it does. As subtypes are not in general decidable it can be necessary for the user to prove
that the function returns the expected type. This is done by generating a typing theorem in B♯
using the following translation function:

funcTheorem(f ∶ function) → tℎeorem {

let TypeTheoremName = thmID(d) ∕∕ A B♯ identifier for the theorem
let fName⟨T1 ∶ TC1,… Ti ∶ TCi⟩(p ∶ P1,… pj ∶ Pj) ∶ RetType expression = f

return
⎛

⎜

⎜

⎜

⎝

TypeTheoremName∶

∀⟨T1 ∶ TC1,… , Ti ∶ TCi⟩p1 ∶ P1,… pj ∶ Pj
⋅ fName⟨T1,… , Ti⟩(p1,… , pj) ∈ RetType

⎞

⎟

⎟

⎟

⎠

}

(7.1)

This defines a theorem which quantifies over the parametric types, and the parameters. These
become the arguments to the function, and an ∈ expression is used to make sure the type of the
function with these arguments is the type the user provided. This is then converted into Event-B
using the function from the previous chapter.

7.1.2 Class paraType Inference

The typeBody and instName, and extend ((4.7)) constructs were not included in the coremappings
Chapter 6. Their purpose within the B♯ language can be explained entirely as B♯ to B♯ transla-
tions/inference. To understand the strength of the instance declarations it is important here to
understand this type inference. As discussed in example (4.7) classes introduced instance vari-
ables, which can be used as a generic instance of the class anywhere within the class body (or
one of its extensions). If the instance variable is referenced within an expression, the function or
theorem is re-written to introduce an additional paraType to represent this instance.
For example within the Group type body there is the following theorem:

Chapter 7 Inference and Structure 101

IdentUnique ∶

∀x, y ∶ G ⋅ equ(op(x, y), y) ⇔ equ(x, ident)

This references the containing Group type in several ways firstly the explicit reference to G,
which is the groups instance name. Then there are the references to equ, op and ident which are
the associated elements of the Group. To translate this the implicit reference is made explicit in
the following way:

IdentUnique ∶

∀⟨G ∶ Group⟩x, y ∶ G ⋅ G.equ(G.op(x, y), y) ⇔ G.equ(x, ident)

The type class G ∶ Group is added to the parametric context of the expression.
This paraType will be referred to as ‘the class paratype’. The class paratype is generated with
the following function:

makeInstParaType(C ∶ class) → paraType{

return C.instName ∶ C

}

(7.2)

Functions and theorems appear only within class bodies, however, they may not have any ref-
erences to the class or the classes associated elements. The first step of the process is to search
the theorem and function expressions for references to the type class. This is done with the find-
ParaType function which recurses over the expression tree to see if the class paratype occurs, if
the class paraType is found then the the function/theorem is altered to allow its use, using one of

102 Chapter 7 Inference and Structure

the following functions:

addClassParaToFunc(f ∶ function, C ∶ class) → function{

let fName⟨T1 ∶ TC1,… Ti ∶ TCi⟩(p ∶ P1,… pj ∶ Pj) ∶ RetType expression = f

let I ∶ C = makeInstParaType(C)

return fName⟨I ∶ C, T1 ∶ TC1,… Ti ∶ TCi⟩(p ∶ P1,… pj ∶ Pj) ∶ RetType expression = f

}

(7.3)
addClassParaToTheorem(C ∶ class, t ∶ tℎeorem) → tℎeorem{

let thmName ∶ expr = t

let I ∶ C = makeInstParaType(C)

return ∀⟨I ∶ C⟩ expr

}

(7.4)

addClassParaToFunc prepends the class paraType to the functions list of paraTypes, the addClassT oTℎeorem
function adds a universal quantifier to add the class paraType to the theorem. If the expression
already starts with a universal quantifier the classParaType can be added to this rather than cre-
ating a new quantifier. Once this substitution has been done, the functions and theorems can be
mapped using the core mapping rules.
In the examples the associated elements could be referenced directly within expressions, e.g.,
operators within the monoid class could use the monoid op directly within their expressions. In
practice this is handled by scoping, and the statement op(a, b) is treated identically toM.op(a, b)
(this is covered in more detail in 7.2). The result of this translation is that if an associated element
is referenced within an expression, then the type class has been implicitly referenced and the
classParaType needs to be added to expressions using the one of the functions above.

7.1.3 paraType Substitution

When mapping instance statements to Event-B the theorems and functions from the type class
are instantiated during the mapping (this is covered in more detail in the section below 7.1.4). To
facilitate this mapping B♯ allows paratypes to be substituted with instance types. As an example:

addMon_raiseTo ∶ pNat = raiseT oL⟨M ∶= addMon⟩ (7.5)

Chapter 7 Inference and Structure 103

This substitution is expanded to give:

addMon_raiseTo(x ∶ addMon, p ∶ pNat) ∶ addMon

match p {

| zero ∶ zero

| suc(p) ∶ addMon_raiseTo(x, addMon_raiseTo(x, p))

}

(7.6)

A function subParaType(e ∶ expression,p ∶ List⟨paraType⟩, c ∶ List⟨constrType⟩) → expression
Is used to replace paraTypes with constrTypes within an expression. The expression is descended
recursively, and if a paraType is found that is in the list p, it is replaced by the equivalent con-
strType in c (the constr type with the matching index in the list). This can be used to define
theorems and functions that are instantiated with the instance:
instFunc(f ∶ function,p ∶ List⟨paraType⟩, c ∶ ⟨constrType⟩) → function{

let oldFuncName⟨S1 ∶ STC1,…Si ∶ STCiT1 ∶ TC1⟩(p1 ∶ P1,… pj ∶ Pj) ∶ RetType expr = f

let instFuncId = instFuncId(f,p, c)

let p1 ∶ Psub1… pj ∶ Psubj = p1 ∶ subParaType(P1,p, c),…

let newRetType = subParaType(RetType,p, c)

let newExpr = subParaType(expr,p, c)

return instFuncId⟨T1 ∶ TC1,… , Ti ∶ TCi⟩(p1 ∶ Psub1,… , pj ∶ Psubj) newRetType newExpr

}
(7.7)

Any parametric type that has a concrete replacement is removed from the parametric context of
the function and, where the parametric type was referenced in the rest of the function declara-
tion, it is replaced by the concrete type. The same process is used to instantiated expressions in
theorems where parametric types are introduced by quantifiers.
When substituting paraTypes in expressions there may be function calls made which could be
replaced by a previously instantiated function call. Where possible B♯ will use an instantiated
function, rather than letting the instantiation happen in Event-B. Using a previously instantiated
function eases proofs using the interactive prover, as instantiation and well-definedness proofs
are avoided. If an abstract function is used, then to use a theorem about the function we must
use Event-B instantiation to instantiate the theorem with the correct types. A series of proof
obligations are generated to ensure that the types used in the Event-B instantiation match the
types of any function parameters where they are used as arguments. This results in the user having
to do additional work to discharge these proof obligations. If there is a previously available
B♯ instantiation the well-definedness proof obligations about the parametric type will not be
present as the parametric type will not appear in the Event-B representation (it is removed by

104 Chapter 7 Inference and Structure

the instantiation). The example language used thus far is not sufficient to describe the method of
finding instantiated functions succinctly, instead this is described below using set theory.
Within the translation language the substitution functions took a list of paraType and a list of
constrType, this was really doing the job an unordered map (map) defining a one to one relation-
ship between paraTypess and constrTypes:

map ⊂ paraType × constrType

When the function f is instantiated a new function is created using the map to substitute the
paraTypes in the function expression with the associated constrTypes. The newly instantiated
function it is given a name based on the name of the original function and the instantiation map.
The result is that if the function is used in an expression with the same instantiation map, the
already instantiated function can be used.
If a substitution with a map sub_map, is happening on a function call with f ∶ function and
c ∶ List⟨constrType⟩, it is desirable to use an instantiated function where possible. To do this
we note there are twomaps involved in the function call, the one between the functions parametric
context f.paraType and the constrTypes in the call. These will be called para_map, and the
substitution map sub_map respectively. The goal is to generate a map that can be used to find an
instantiated function inst_map. inst_map is generated in the following way:

restr_map = para_map ⊳ dom(sub_map)
inst_map = {x, y|x ∈ dom(restr_map) ∧ y ∈ sub_map(para_map(x))} (7.8)

If an instantiated function finst is found for a function fc then the function call is modified to the
following (i.e., the instantiated function is used):

functionCall(functionName = finst,

constrType = fc.constrType − dom(para_map),
expresion = fc.expression)

(7.9)

Note the subtraction of the domain of para_map is not recursive, so only removes constrTypes
if they are an exact map for the parametric type in para_map.
Once this transformation has been made the generated function call then has the normal substi-
tution rules applied to it.
This system of finding an already instantiated function is not perfect, as it does not deal with
partial matches e.g., given f instantiated with f ⟨S ∶∶= A, T ⟩ (T is not instantiated) and a
function call f ⟨A,B⟩(…) the map generated by the call is S ∶∶= A, T ∶∶= B only partially
matches the substitution map so it is not instantiated. However, in B♯ instantiation is currently
only used when an instance of a type class is created, and this method of instantiation works well
in this case as there is only one value in the instantiation map.

Chapter 7 Inference and Structure 105

7.1.4 Instance Statements

Along with creating the Event-B representation of an instance a B♯ instance statement will gen-
erate many other statements. The most important of which is a theorem that the defined instance
is an instance of the type class. The expression (pred−exprevB) for this theorem is generated with
the following mapping:

instIn(i ∶ instance) → pred−exprevB{

let Instance Class⟨T1,… , Ti⟩ (e1,… ei) IName = i

return evB(i) ∈ evB(Class⟨T1,… , Ti⟩)

}

(7.10)

This is then wrapped in an Event-B theorem.
To ease proofs within the interactive theorem prover it is useful to have the theorems and func-
tions from the B♯ type class instantiated for the instance (these are instantiated in B♯ then trans-
lated to Event-B). The instantiation reduces the complexity of theorems and methods making
them easier to use within proofs. To instantiate these theorems and proofs the concepts intro-
duced in the previous two sections are used (the class paraType inference 7.1.2 and substitution
7.1.3). In each of the typeBodys associated with the instantiated type class (the type body of
the type class, its supertypes, and any extensions which are in scope) all of the contained the-
orems and functions are instantiated with the mapping of the inferred class parameter to the
instance. The instantiated statements are then mapped to Event-B using the core mappings 6.4.
The function typing theorems are also generated for the mapped function. Provided the theorem
generated to show the instance is a member of the type class is provable, all of the additional
theorems defined are true by construction, and do not need to be proved. These theorems were
proved on the abstract type class, which proved that the theorems were true for all members of
the type class. The initial theorem generated by the instance statement required the user to show
that the instance is a member of the type class. As the theorems being instantiated are true for
all instances of the type class, and the user has had to prove that we have an instance of the type
class, the instantiated theorems must be true.
In the previous section 7.1.3 the issue of trying to find the best instantiated function to use within
a function call was discussed. The instantiation done within an instance statement resolves this
issue as a single paraType is mapped to an instance. The result is that an instantiated function
can either be found or not found (if it does not exist), if it is found then it is used.

7.2 Naming, Scoping and Importing

As seen in the examples 4.3 B♯ has a notion of scopes. A scope defines for how long a named
element is visible, and every B♯ element that itself contains named declarations (declarations

106 Chapter 7 Inference and Structure

with Ids) generates a new scope. For example, given the function declaration:

function ∶∶= Id paraType∗ parameter∗ constrType expression (7.11)

The function element contains named elements paraType and parameter. The names of these
elements become part of the functions scope, and the declared elements can be used within the
function after their declaration. However, they cannot be used outside of the function declaration.
This allows another function declaration to reuse the same names of the paraTypes without any
conflict or confusion. This extends to the general rules of scoping in B♯:

1. Elements which contain other named elements create a new scope, this scope ends when
the rule for the element ends.

2. When a named element is declared its identifier is added to the scope in which it is declared
3. Identifiers are not visible outside the scope they are declared in
4. Every declaration in a scope must have a unique identifier (this does not include declara-

tions within embedded scopes).
5. Subtypes and Extends extend the scope of the classes they subtype/extend. This means

that names from the supertype/extended class cannot be reused.

These rules allow different classes to have required elements with the same names, or different
functions to have parameters with the same name.
An exception to this rule are function declarations, constructors and destructors (which can be
viewed as special functions). These declarations are added to scope of the file element, not the
element they are declared in. This allows them to be used outside of the datatype/class/extend
in which they were declared. This also means that their name must be unique within the file
scope. As outlined in 4.3 it is expected that implementations will use inference to generate the
function identifier from the function name and class name, allowing function names to be reused
as expected. This is covered in detail in the implementation Chapter 8
B♯ theories can be declared in multiple files. This results in it being necessary to reference
theories declared in other files. The system used within B♯ is to allow the import of individual
top level elements (i.e., datatype/class/extend from another file). The result of this import is
similar to redeclaring that top level element in the current file. Imports only include the imported
top level element they import, they do not include other declarations from the same file, this is
important for namespacing. Only elements from the imported top level element are added to the
namespace of the current file. To import a top level element an import statement is used. It uses
an identifier to reference a datatype/class/extend from another file. The result of this is to import
all of the file level statements from the imported elements e.g., if a datatype is imported then the

Chapter 7 Inference and Structure 107

datatype identifier, the constructor and destructor identifiers, and the function identifiers are all
added to the current file scope. This allows them to be used within the current file for defining
new theories.

7.3 Conclusion

The focus of this chapter was how non-core elements of B♯ were translated to core elements
of B♯. Along with this it was seen how additional B♯ statements were generated, representing
theorems about the type systems, and instances. Finally a description of scoping in B♯ was given.
A large part of translating non-core elements to core elements was dealing with type bodies.
Within expressions in type bodies the user can use elements from the type class they are within.
To translate to a core Event-B representation it was shown how the implicit reference to the type
class was made explicit, by adding the type class to the function/quantifiers parametric context.
Many additional B♯ statements were generated. Many of these were translating implicit theo-
rems in B♯ into explicit theorems. This included the return type of functions, and the typing of
Instance statements. Along with this Instance statements also generated many additional B♯
theorems where the theorems of their type classes were instantiated. The result of this was that
these theorems will not need to be instantiated when proving using the interactive prover.

Chapter 8

Implementing B♯

To demonstrate the feasibility of the B♯ language an implementation of the translations intro-
duced in the previous chapters was produced. This chapter discusses that implementation, in-
cluding:

1. Tools used by the implementation
2. The concrete syntax used within the implementation
3. Additional features of the implementation
4. The mathematical types written within B♯ and how successful the translations were.
5. The lessons and improvements learnt from the implementation

8.1 Implementation Tools

This section briefly outlines the tools and techniques used to build a tool to develop mathematical
theories in B♯.
The B♯ implementation was written using a tool called Xtext [9]. Xtext is a tool for creating
domain specific languages, and associated IDEs. It was chosen due to its close integration with
Eclipse and its feature set (allowing many features of modern IDEs to be added with relative
ease). Xtext takes a grammar definition written using an extended BNF style syntax. From
this it generates a parser, allowing statements in the defined language to be transformed into an
abstract syntax tree. In practice this abstract syntax tree is a tree in EMF (Eclipse Modelling
Framework) [81]. The abstract syntax tree is easier to reason about than a raw text file, and is
used to implement many of the features of the B♯ tool, including the translation to Event-B. Many
of the other tools within the Rodin environment use a similar approach of generating an EMF
tree to ease reasoning. This includes the standard Event-B syntax, but not the extended syntax

109

110 Chapter 8 Implementing B♯

used by the Theory Plug-in. Having an abstract syntax tree as the stored representation allows
other tools to translate directly to the Event-B syntax. For example UML-B [77] generates an
EMF tree, which is then translated directly to the EMF which used by standard Event-B with a
series of translation rules. This EMF tree is then used to display the text which the user sees.
Once Xtext has generated an abstract syntax tree it is up to the user to write a program to use the
abstract syntax tree, in our case to define Event-B structures.
Along with the creation of an abstract syntax tree Xtext also automatically adds many IDE fea-
tures such as syntax highlighting, error highlighting, and content assist (suggestions for the next
elements, and autocompletes). These features can be programmatically customised to suit the
language being constructed.
An alternative approach would have been to create an editor for the Event-B syntax, then to have
a feature for adding additional syntax elements using inference rules (in a similar way to ML).
The advantages of the approach taken using Xtext, is that from the language definition it creates
a code editor which plugs directly into the Rodin platform with the features outlined above. It is
also easier to read new definitions in Xtext than using inference rules. The reason that the Xtext
syntax was not used within Chapter 6, is that it includes the concrete syntax definitions which
are not relevant to the translations there.
The features outlined above are used in the rest of the chapter to construct an IDE for the B♯
language, and translate it to Event-B.

8.2 Concrete Syntax

This section formalises the concrete syntax already seen in the examples in Chapter 4. It first
introduces the BNF style syntax used to describe the concrete representation. It then presents an
example of how to read the syntax. Finally it shows the formalised concrete syntax for the core
of the B♯ language.
The concrete syntax is described using a similar syntax to the one used to describe B♯’s abstract
syntax in Chapter 4. In the concrete syntax it is also necessary to introduce separators, scope
markers and keywords to allow the language to be parsed in a unique way. Without these separa-
tors it is in general impossible for a parser to tell the difference between the end of one declaration
and the beginning of the next. Syntax elements are introduced using single quotes, as an exam-
ple in the implementation identifiers are constrained to only contain certain characters, this is
defined with the following rules:

asciiChar ∶∶=‘a’ | … | ‘z’|‘A’ | … | ‘Z’
asciiNum ∶∶=‘0’ | … | ‘9’

name ∶∶=asciiChar (asciiChar | asciiNum | ‘_’)∗

Chapter 8 Implementing B♯ 111

The asciiChar rule tells the parser that the next thing to expect is a ascii letter (in long form it
says that the next character must be an a or a b, … , or a Z). Similarly the asciiNum tells the
parser to expect a number. The name rule says that a name must start with a letter, and can then
continue with any number of letters or numbers. The name rule replaces the abstract notion of an
identifier in the abstract syntax. It defines a name as a single asciiChar, followed by any number
of letters, numbers or underscores.
Within the concrete syntax it is necessary to reference elements that have already been created,
this was seen in the abstract syntax where the subscript Id was used to show the element was
an instance rather than an instruction to call the rule. In the concrete syntax this is replace by
wrapping the rule name in square brackets. When this is done it tells the parser to expect the
name of an already declared element (of the correct type), e.g., [function] tells the parser to
expect the name of an already declared function. It does not tell the parser to expect the function
rule. This syntax was chosen due to its similarity to the Xtext syntax for defining a language.
A common pattern within the rules is to have a list of elements with a separator. An example of
this is the paraArgs rule:

paraArgs ∶∶= ‘⟨’ constrType (‘,’ constrType)∗ ‘⟩’ (8.1)

This rule declares that the parser should expect a constrType optionally followed by a comma
and another constrType, which can be repeated many times.
It is useful before all of the rules to see an example of a declaration rule:

datatype ∶∶=‘Datatype’ name parametricContext?

constructor+ typeBody
(8.2)

This rule states that to declare a datatype one must start with the keywordDatatype, followed by
providing a name (using the previously discussed name rule), followed by a parametric context,
one or more constructors, and a type body.
The rest of the rules for the core B♯ syntax are described in the following Figure 8.1:

112 Chapter 8 Implementing B♯

asciiChars ∶∶= ‘a’ | … | ‘z’|‘A’ | … | ‘Z’
asciiNums ∶∶= ‘0’ | … | ‘9’

name ∶∶= asciiChars (asciiChars | asciiNums | ‘_’)∗
file ∶∶= [datatype] | [class]

datatype ∶∶= ‘Datatype’ name parametricContext?

constructor+ typeBody

parametricContext ∶∶= ‘⟨’ paraType (‘,’ paraType)∗ ‘⟩’
paraType ∶∶= name (‘∶’ [class])?

constructor ∶∶= ‘|’ name destructor (‘, ’deconstrutor)∗
destructor ∶∶= name ‘∶’ constrType

constrType ∶∶= (‘(’ type (‘×’ constrType)? ‘)’) | (type (‘×’ constrType)?)

type ∶∶= [paratype] | ([datatype] | [class]) paraArgs?

paraArgs ∶∶= ‘⟨’ constrType (‘,’ constrType) ∗ ‘⟩’
typebody ∶∶= (function | theoremBody)∗

function ∶∶= name paramList? constrType expression

paramList ∶∶= ‘(’parameter (‘,’ parameter)∗‘)’
parameter ∶∶= name ‘∶’ constrType

theoremBody ∶∶= ‘{’ theorems∗ ‘}’
theorems ∶∶= thmName ‘:’ expression‘; ’

class ∶∶= ‘Class’ name parametricContext? ‘[’ instName ‘]’
(‘:’ constrType (‘,’ constrType)∗)? paramList wℎere? typeBody

wℎere ∶∶= ‘where’ expression (‘; ’ expression)∗)?
instName ∶∶= name

functionCall ∶∶= funcName argList?

argList ∶∶= (‘(’expression (‘,’ expression)∗‘)’)
expression ∶∶= functionCall | quantifier | lambda

functionName ∶∶= [parameter] | [deconstructor] | [function] paraArgs?

| [constrType]

quantifier ∶∶= (‘∀’ | ‘∃’) parametricContext? paramList? ‘⋅’ expression
lambda ∶∶= ‘�’ parametricContext? paramList? ‘|’ expression
extend ∶∶= ‘Extend’ ([class] | [datatype] | [extend]) ‘(’ name ‘)’ typeBody

instance ∶∶= ‘Instance’ [class] parametricContext argList name

Figure 8.1: B♯ language

Chapter 8 Implementing B♯ 113

For a complete description of the B♯ syntax see Appendix B, or the B♯ implementation code. 1

In the complete description there are some small differences in the description of the syntax for
practical reasons. Xtext does not allow left recursion so to resolve this Xtext has a syntax for re-
ordering the generated syntax tree (making the expression syntax more complicated). In Xtext
elements need to be named so they can then be identified in the generated abstract syntax tree,
e.g., in Xtext the parametricContext rule would become:

ParametricContext ∶

‘⟨’paraType+=paraType (‘,’ paraType+=paraType)∗ ‘⟩’ (8.3)

Within the abstract syntax tree this causes a list named paraType to be constructed referencing
the paraTypes.

8.3 Translation

Given the concrete syntax Xtext generates a parser. Using this B♯ statements are parsed and an
abstract syntax tree is generated in the form of an EMF tree. An EMF tree is a series of Java ob-
jects which reference each other with named references. Looking at the previous example (8.3)
a Java object is created called ParametricContext, which contains a reference to a list named
paraType, which contains references to objects of type paraType. The objects in the EMF tree
match up with the datatypes used to describe the translation in chapters 6 and 7. Ideally these
translations could be applied directly to the EMF tree to generate Event-B abstract syntax tree.
Unfortunately the Event-B syntax used in the Theory Plug-in does not also use an EMF repre-
sentation. The internal Event-B representation used in the Theory Plug-in does not generate a
textual representation (so if B♯ were translated directly to this representation the results would
not be examinable by the user). Therefore the decision was taken to produce textual Event-B
statements, and allow the current Rodin toolset to parse these and construct the internal repre-
sentation. The result of this is that Event-B theories generated are visible and modifiable by the
user. However, any modification to Event-B theory will be written over the next time a modifica-
tion is made to the B♯ theory. Possible changes to the translation process to stop this over writing
are discussed in Section 9.1. This is akin to translating to the concrete syntax presented in [57].
For example the code to translate a quantifier uses code similar to the following Java methods:

1 static String evBWithoutParaType() {

List⟨evBAbsParams⟩ absParams = paramsUtil.evBReprParams(parameter);

3 String result = quantString(quantType);

result += paramsUtil.pairedVars(absParams);

5 result += "⋅";

result += paramsUtil.setContainmentPred(params);

1https://github.com/JSN00k/BSharpSource

https://github.com/JSN00k/BSharpSource

114 Chapter 8 Implementing B♯

7 result += "⇒";

result += expression.evBPred();

9 }

11 String evB() {

if (parametricContext != null) {

13 return evBWithoutParaType();

} else {

15 List⟨evBAbsParams⟩ absParaTypes = paramsUtil.evBReprParaType(

paraTypes);

String result = "∀";
17 result += paramsUtil.pairedVars(evBAbsParams);

result += "⋅";

19 result += paramsUtil.setContainmentPred(params);

result += "⇒";

21 result += evBWithoutParaType();

return result;

23 }

}

These methods are comparable to the abstract translation function (6.30). There is an imme-
diate syntactic difference. The code is contained within a Java Class, and uses object oriented
methods. So the quantifier does not need to be passed into a function (as the method is in the
quantifier class). The types which make up the quantifier are directly referenceable (e.g., we can
use parameter instead of q.parameter).
Chapter 7 introduced a series of B♯ to B♯ translations, used to simplify translations and inference.
When implementing this the Java code looks less like the translation functions. This is because
the abstract syntax tree for the translated expression is created directly, rather than generating
concrete B♯ syntax (which is used to create datatypes in the translation language).

8.3.1 Naming

There are several areas in the translations fromB♯ to Event-Bwhere Event-B identifiers need to be
defined. These identifiers need to be unique within the Event-B scope which they are generated
in. A simple approach is taken in the current implementation, and inappropriate naming of
variables can result in naming clashes within the generated Event-B. The general rule for naming
is that an Event-B element will have the same name as the B♯ element. This works well in many
situations where there is a one to one relationship between Event-B elements and B♯ elements.
There are places where a single B♯ statement generates several Event-B statements. In these
cases it is necessary to create new variable names based on the current names.

Chapter 8 Implementing B♯ 115

The most notable example of generating multiple elements is parametric types in B♯. As seen in
the examples of translating a commutative operator 4.13 and 5.11 the B♯ parametric types become
several Event-B types. This expansion of the parametric types is done using the translation rule
A.1. The approach taken to naming is that any additional parametric type defined is given an
index. The final parametric type then has the same name in Event-B as it does in B♯. This
is seen in the example where ⟨T ∶ Setoid⟩ becomes Event-B parameters T 1 ∶ ℙ(T _EvB), T ∶
Setoid(T 1). Whenever a parametric type is used an Event-B parametric type will be required and
this is given the same name as the B♯ type with _EvB appended (as can be seen in the example).
Recall that Event-B parametric types cannot be used directly as this would not allow subtyping.
The current implementation does not check whether or not there are any conflicting B♯ variable
names in scope. Therefore if the user has named a variable the same as a type with an index the
generated Event-B will not be valid. This problem will be clear to the user when looking at the
generated Event-B.
Whenwriting functions in B♯ two Event-B operators are generated, an expandable operator, and a
passable operator (one that can be passed as an Event-B function). As seen in 5.2 using mappings
described in 6.4.4. Naming functions produces two issues. One, in Event-B the function names
are global and therefore all have to have unique names. Two, two Event-B operators are generated
by a single function declaration.
Recall that all functions in B♯ are declared within the type body of a class/datatype, (or the Ex-
tension of one). Classes and datatypes require globally unique names. This resolves the function
naming issue as generated Event-B operators can be prepended with the class/datatype name.
This guarantees their uniqueness. It also matches nicely with the long form of function names.
Recall that if a function cannot be uniquely identified it has a long name e.g., in B♯ the Nat
add function and Int add function may both be visible, to resolve this the Nat add function can
be referenced as Nat.add (similarly Int.add). These long names match nicely with the Event-B
operator name (Nat_add).
To resolve the issue of two operators being generated the expandable operator is given the name
as described above, and the passable operators has _P appended. This presents a possible danger
for the user if they have a B♯ function called foo and one called foo_P, so the user needs to avoid
such clashes.
Finally there are several situations where theorems are generated. Functions generate theorems
that state the return type is the type declared. Given a function name foo the generated theorem
is called foo typing theorem.
Instance statements generate many theorems, the first is a proof that the elements in the instance
statement really generate the instance. Given an instance statement of the form:

Instance CommMonoid⟨Nat⟩([=], add, zero) addMon (8.4)

116 Chapter 8 Implementing B♯

The name of the typing theorem is addMoninCommMonoid.
Instance statements also instantiate theorems from the type they are instances of, e.g., in the
example above the theorems associated with CommMonoid are instantiated as theorems about
Nat. The name of the Nat theorem is prefixed with the name of the Instance so with the example
above the theorem names will be prefixed with addMon. This is important because more than
one instantiation may be made with theorems which have the same name. e.g.:

Instance CommMonoid⟨Nat⟩([=], times, one) timesMon (8.5)

If nothing was done to change the theorem names two, lots of theorems would be generated with
the same names.

8.4 Additional Features and Extensions

Whist implementing B♯ it was possible to add many additional features to B♯ and its tools which
were not part of the specification laid out in Chapters 6 and 7. These further facilitate the con-
struction of mathematical types.

8.4.1 Syntax Aware IDE

8.4.1.1 Autocomplete

The B♯ tool supports the user with autocompletion. At any point when developing theorems the
user can press a key combination, and the IDE will give a list of possible tokens that could appear
in the current location. If the user has started typing the token the IDE will only suggest tokens
which match the string they have currently started typing.
This is particularly useful with Event-B/B♯ where unicode characters are used within the syntax.
The autocomplete syntax can be used to choose the unicode syntax elements (such as ∀). The
most used benefit of autocomplete is the ability to complete function names e.g., starting to type
ra then activating autocomplete will give options to complete with raiseToR and raiseToL, this
reduces the amount of time it takes to type statements into B♯. Along with this it allows the
instant look up of relevant functions, for example, if you activate autocomplete without having
typed any characters a list of relevant functions and syntax elements will be displayed.

Chapter 8 Implementing B♯ 117

8.4.1.2 Syntax Errors

When a token is typed that cannot go in the current location, it is underlined by the IDE to mark
that it is an error. When the user hovers the cursor over the line with the error a list of possible
correct tokens will be displayed so the user knows how to fix these problems.
To generate these features in Xtext it is necessary to have a well defined syntax, and B♯ elements
to be programmatically scoped correctly. As this is necessary for the compilation of the B♯
language these features are in effect given for free.

8.4.2 Imports

In the specification the B♯ import syntax imports a single class/datatype/extension. This is ex-
tended in the implementation to allow multiple classes to be imported at once, and classes from
projects to be imported more easily. The first addition is the From command, this allows the
importing of multiple files from the same project e.g.,:

From Monoid Import SemiGroup.SemiGroup Monoid.Monoid (8.6)

It is not necessary to restate the project in every import.
The second addition is the ∗ syntax, this allows all classes/datatypes/extensions from a file to be
imported in a single command:

From Monoid Import SemiGroup.∗ Monoid.∗ (8.7)

Here everything from the SemiGroup andMonoid files are imported, not just the SemiGroup and
Monoid classes. This additional syntax is optional, as sometimes it is necessary for scoping, or
mapping reasons to only import the correct classes/datatypes/extensions.

8.4.3 Infix Functions

Infix functions with precedence are added as part of the implementation. The following decla-
ration is an example of this:

add(x, y ∶ pNat) ∶ pNat INFIX 100

matcℎ x {

| zero ∶ y

| suc(xs) ∶ suc(xs add y)
}

(8.8)

118 Chapter 8 Implementing B♯

As add takes only two arguments it can be declared as an infix function. This is done with the
INFIX statement, followed by the precedence of the operator. The integer value at the end is
the precedence. Higher precedence functions bind more tightly. For example given a times with
precedence 200, and the expression a add b times c this is treated as a add (b times c). When
generating Event-B appropriate brackets are added (as user declared Event-B infix operators do
not have a notion of precedence).
A practical issue occurs with infix functions. Due to the way they are parsed they expect to have
an argument on their left and right. This causes an issue when one tries to pass them as a function
(parsing can become non-deterministic). To resolve this issue, if a infix function (including ones
inherited from Event-B) is passed as a variable, it must be wrapped in parenthesis e.g., the add
function is passed as [add].

8.4.4 Inferring Supertypes in Instances

Within the implementation when declaring an Instance the user is not required to give all the
operators which make up the instance if these can be inferred. For example, if in the pNat class
a default Setoid instance has been declared, equivalence relation from this can be used in future
Instance statements:

Instance CommMonoid⟨pNat⟩(add, zero) addMon (8.9)

Here the Setoid associated with pNat is used to infer that the equivalence relation is [=]. This
approach has an additional benefit: the Instance statement knows that the theories about Setoids
have already been instantiated, so they do not need to be re-instantiated when generating the
Event-B from the addMon instance.

8.4.5 If/Else Statements

The B♯ language adds additional syntax for doing conditional statements. Along with the COND
function inherited from Event-B (see Section 2.6.1), B♯ adds if/else statements, for example:

if (denom = zero) {

count

} else {

suc(count)

}

(8.10)

This is a syntactic restructuring of the COND function, and can be used in any place where the
COND function is e.g., COND(boolExpr, expr1, expr2) becomes if (boolExpr) expr1 else expr2.

Chapter 8 Implementing B♯ 119

The aim of this is to produce more readable B♯ code that can be better understood. The COND
function is not replaced and can still be used. The COND expression is lazily evaluated. During
proof, once the value of the conditional can be resolved to true or false, the COND expression is
replaced by the relevant expression (expr1 if true and expr2 if false).
As an example the divMod function on the natural numbers was declared in the following way:

divMod(n, d, count ∶ pNat) ∶ pNat × pNat

matcℎ n {

| zero ∶ (zero, zero)

| suc(ns) ∶

if suc(ns) = d {

(suc(count), zero)

} else {

if suc(ns) minus d = zero {

(count, suc(ns))

} else {

divMod(suc(ns) minus d, d, suc(count))

}

}

}

(8.11)

8.5 Type Classes Implemented in B♯

In order to evaluate the advantages of the B♯ language, and to test the tool, a series of mathemat-
ical type classes were defined. The types were based on the types used as examples in Chapters
4 and 5. The following theory files were created:

1. Relations: Definition of Reflexive (ReflexRel type class), Symmetric (SymmetricRel, and
Transitive (TransRel) relations, and the definition of a Setoid type class.

2. SemiGroup: Definition of a SemiGroup (a set with an associative operator) including a
series of theorems about identities.

3. Monoid: Monoid definition, theorems about the identity, definitions of the RasieT o oper-
ators, and theorems about them.

4. CommMonoid: Definition of the CommMonoid type class. A monoid where the operator
is also commutative. Theorem that the raise to operators are then equivalent.

120 Chapter 8 Implementing B♯

5. pNat: A data structure (pNat) is used to define the naturals (zero, suc(x) and structural
equality resulting in axioms identical to Peano’s natural axioms). Various operators are
defined (addition, subtraction, division). Zero and addition is shown to be an instance
of the Monoid type class. Generating multiplication. Theorems about multiplication are
added (distributivity, associativity). One and multiplication are shown to also be an in-
stance of a Monoid.

6. Group: The Group type class is defined a Monoid where each element has an inverse.
Various group theory theorems are declared.

7. AbGroup: The AbGroup (Abelian Group) type class is defined as a subtype of the Group
type class and the CommMonoid type class.

8. Ring: TheRing type class is defined, making use of the AbGroup andMonoid type classes

A concise description of the types is given in Chapters 4 and 5. The types defined in the imple-
mentation have many more functions and theories than those described. See Appendix C for the
complete set of B♯ theories. 2

The basis of the developed abstract theories is the equivalence relations, so this was the first set
of theories defined. Using the Class syntax a Reflexive, Symmetric, and Transitive relation were
defined. These were then used together to define an equivalence relation 4.1.3. These structures
served to test class declarations where there were no required elements. The declaration of the
Equivalence relation tested multiple inheritance of these structures (it inherits from all three of
the previous declarations). Within the Equivalence class theorems were declared to make using
the transitive relation easier. The theorems relied on the automatic quantification of the class,
which resulted in significantly simpler B♯ expression in comparison to their Event-B counter-
parts.
The Transitive relation was then used to define the Setoid class (a set with an associated equiva-
lence relation). This demonstrated the usefulness of classes with associated elements.
Having defined a Setoid, operators could then be built. This cannot be done without the notion
of equivalence as operators require that if they are called with equivalent arguments, they give an
equivalent results. A baseOp class was defined to encapsulate this definition as shown in 4.12.
This tested the notion of having constrained parametric types (⟨T ∶ Setoid⟩).
Having defined operators, a series ofmonoid and group classeswere defined: SemiGroup, Monoid,
CommMon (a commutative monoid), Group, and AbGroup. For example, the definition of the
Abelian group is:

Class AbGroup ∶ Group,CommMonoid {} (8.12)
2The source for these and the Event-B they generated, can be found at https://github.com/JSN00k/

BSharpCaseStudies.

https://github.com/JSN00k/BSharpCaseStudies.
https://github.com/JSN00k/BSharpCaseStudies.

Chapter 8 Implementing B♯ 121

This definition tested multiple inheritance between classes with associated elements. The defi-
nitions and theorems of the Group and the CommMonoid classes were available to the AbGroup
class and its instances.
The final abstract class defined was the Ring class with the following definition:

Class Ring[R] ∶ Setoid (G ∶ AbGroup⟨R⟩,M ∶ Monoid⟨R⟩) where

∀x, y, z ∶ R ⋅ equ(M.op(x,G.op(y, z)), G.op(M.op(x, y),M.op(x, z)));

∀x, y, z ∶ R ⋅ equ(M.op(G.op(y, z), x), G.op(M.op(y, x),M.op(z, x))); {

}

(8.13)

This generates the following Event-B:

Ring(T ∶ ℙ(T _EvB)=̂{R↦ (G ↦M)|R ∈ Setoid(T) ∧ G ∈ AbGroup(T) ∧M ∈ Monoid

∧ ∀x, y, z ⋅ x ∈ T ∧ y ∈ T ∧ z ∈ T ⇒

Monoid_op(T ,M)(x↦ AbGroup_op(T ,G)(y↦ z))

↦ AbGroup_op(T ,G)(Monoid_op(T ,M)(x, y)

↦ Monoid_op(T ,M)(x, z)) ∈ Setoid_equ(T ,R)
∧ ∀x, y, z ⋅ x ∈ T ∧ y ∈ T ∧ z ∈ T ⇒

Monoid_op(T ,M)(AbGroup_op(T ,G)(y↦ z) ↦ x)

↦ AbGroup_op(T ,G)(Monoid_op(T ,M)(y, x)

↦ Monoid_op(T ,M)(z, x)) ∈ Setoid_equ(T ,R)
(8.14)

This is a good example of how the complexity in Event-B increases with complex statements,
whilst B♯ manages this complexity better.
Having defined abstract classes a concrete implementation of the natural numbers was imple-
mented as in (4.1). This demonstrated the use of the Datatype constructor in B♯. Having de-
fined a representation of the naturals, it was then possible to define the raiseT o functions on
the Monoid type. To do this an Extend statement was used to add to the Monoid class. This
imported the pNat type, and defined the raiseT o functions as shown in 4.16. This demonstrated
the use of Extend statements and B♯ methods (elements such as op and ident did not have to be
explicitly declared in the B♯ definitions).
Finally Instance statements were used to define addition and multiplication monoids as de-
scribed in (4.26). This generated the times and power functions on the natural type. It also
generated instantiated theorems from the CommMonoid, Monoid and SemiGroup types.
To demonstrate conformance to an Instance statement it was necessary to demonstrate that the
elements which made up an instance conformed to the relevant type class. As an example, to

122 Chapter 8 Implementing B♯

demonstrate that zero and addition form a monoid, it is necessary to show that addition is asso-
ciative, and that zero acts as the identity under addition. The result is that the defined theories
have more structure than if theorems are added in an entirely ad-hoc manner as required.

8.6 Generated Event-B

The translation of B♯ to Event-B worked well and generated Event-B theories that would be
expected. The instance statements were found to be very effective, where theorems inherited
from type classes were instantiated for concrete classes. In total, B♯ generated 77 Event-B theo-
rems and 121 proof obligations. Of these proof obligations, 108 were proved; 30 of which were
considered true by construction (could be proved simply by instantiating the type class). These
instantiated theorems were then used within many of the remaining proofs, saving the user from
having to re-prove or re-declare them. The remaining 13 proof obligations were not proved due
to difficulties with the current implementation of the interactive theorem prover which got expo-
nentially slower with deeper inheritance. Examples of this were theories on AbGroups, Groups
(Group<-Monoid<-SemiGroup<-Setoid) and Rings made use of the AbGroup type. This slow
down currently restricts the usefulness of B♯ to simple type classes. The cause, at least in part,
is the generation of massive (and very receptive) well-definedness proof obligations. Because of
this, these issues are not seen in other languages, which use their type systems rather than gener-
ating these. It may be possible to resolve these issues with a change to the way Event-B generates
these proof obligations (currently the simple approach of conjoining all well-definedness proof
obligations is used). It has been suggested that the use of the prj1 and prj2 operators also con-
tribute to these problems, and therefore another solution may be to find a different translation
which avoids these operators. This problem could also be partially mitigated by B♯ adding addi-
tional proof rules which would act as a shortcut for the interactive prover. Further discussion of
this can be found in Section 9.3.
As all proofs are done in Event-B, the system used to handle proofs is the Event-B system.
This system is to store proofs in a separate file from the theory, and link the proofs and proofs
obligations using a naming scheme. The result of this is that when a B♯ statement is changed
only the theory file is changed, and the Event-B proofs file remains the same. Therefore, unless
you change the name of the B♯ declaration (e.g., the theorem name), the current proof will be
preserved. This matches the current Event-B behaviour, however, there are problems with the
current Event-B system and possible improvements to this system are suggested in Section 9.3.3.

8.7 Comparison With Other language

The core of the B♯ language is most similar to the core of HOL style languages. In general, these
have small cores (kernels) and additional features are then added which translate to the core of
the language. The result of this is that it is only necessary to trust that the small kernel of the

Chapter 8 Implementing B♯ 123

language is consistent. B♯ takes a similar approach to this, where we translate the core of B♯ to
Event-B and other features can be added using B♯ to B♯ translations. Unlike Isabelle/HOL, B♯’s
core does not have support for let statements, function currying, or function overloading via type
inference. As seen in the section 4.5 example, it is possible to simulate function currying and let
statements can be simulated using function declarations with no arguments. To allow function
overloading in a similar way to HOL additional work needs to be done on B♯’s inference, so
correct functions can be automatically chosen.
Whilst the core of B♯ is similar to HOL style languages most implementations of HOL have had
a long time for theories to be defined and features to be added. The result is that these more ma-
ture languages have many additional features that are not yet available in B♯. Examples of this
were seen in Chapter 2, e.g., co-inductive datatypes, mutually recursive functions, and set rep-
resentation. Along with adding syntax, these features in HOL also have additional proof tactics
which facilitate proving. Possible ways of adding new features and proof tactics are discussed in
Chapter 9.
Class declarations in B♯ are unlike their equivalents in HOL languages as they translate directly
to Event-B rather than the HOL like core of B♯ (they are a core feature of the B♯ language). This
ability to translate directly to Event-B may make adding other features to B♯ easier than in HOL
languages e.g., set notation.
The work on B♯ demonstrates how features can be added safely to the Event-B environment to
make representing mathematical theories easier. There are, however, still many features that
could be added to the language to facilitate the construction of new theories.

8.8 Lessons and Conclusions

The implementation of a B♯ tool demonstrated its feasibility as a language. It showed that using
a translation phase was a consistent and viable way to add language features.
There were many lessons were learnt from the implementation of the B♯ tool. In many cases,
these have already fed back into the previous work and are not included here. However, there
are some outstanding lessons that do need to be commented on. These issues were not critical
to demonstrating the feasibility of a translation phase and have therefore been left for possible
future implementations.

8.8.1 Inheritance Syntax

There are several places in the B♯ language where one class inherits from another (such as Class
declaration statements and Instance statements). These statements need to be extended to allow
inheritance from concrete instances. As an example when developing B♯ classes the following
class was declared:

124 Chapter 8 Implementing B♯

Class NatCommMonoid[M] ∶ CommMonoid⟨pNat⟩ (8.15)

This declaration produced the expected Event-B definitions. However, the aim of declaring this
class was to write and prove a theorem stating the inherited raiseT oL function is associative on
this class.
Unfortunately the declared theorem proved not to be true. To be true there would need to be
restrictions on the equivalence relation being used. To make this declaration true the following
statement could be used:

Class NatCommMonoid[M] ∶ CommMonoid⟨pNat⟩ whereM.equ = [=] (8.16)

Alternatively a more general syntax would be:

Class NatCommMonoid[M] ∶ CommMonoid, pNat.Setoid (8.17)

This statement extends the notion of inheritance to include instances allowing an abstract type
to have concrete components. Much of the implementation for this is already done within the
inference used in Instance statements.
This change would also apply to the syntax of Instance statements. For example the following
declaration:

Instance CommMonoid⟨pNat⟩ (add, zero) addMon (8.18)

Would become:

Instance CommMonoid ∶ pNat.Setoid (add, zero) addMon (8.19)

Previously additional information was being inferred from the parametric context. This does not
scale, for instance, for classes with two parametric types (e.g., a class representing a homomor-
phism), it is no longer possible to do this inference as there is no individual instance to choose
from. When a concrete supertype is given instead the parametric context can always be inferred.
Finally in the statement above 8.19 it is possible to infer that we need a setoid from the pNat
class, so it can be reduced to:

Instance CommMonoid ∶ pNat (add, zero) addMon (8.20)

Chapter 8 Implementing B♯ 125

and B♯ will use the default setoid of the pNat class.
The initial translation is very useful for representing and generating statements that are complex
to express in Event-B such as Rings (Section 8.5).

8.8.2 Type Class Typing

Variables can be typed as an instance of a type class, this was seen in the definition of a ring 8.21
e.g.,G ∶ AbGroup. This approachworked, however, with these definitions themultiplicative part
of the ring wasM.op and the additive part was G.op. These operators names are not descriptive,
and it would be better for the user to be able to give the members of the type classes explicit
names. For example the following syntax could be used:

Class Ring[R] ∶ Setoid ((add, zero) ∶ AbGroup R, (times, zero) ∶Monoid R where

∀x, y, z ∶ R ⋅ equ(times(x, add(y, z)), add(times(x, y), times(x, z)));

∀x, y, z ∶ R ⋅ equ(times(G.op(y, z), x), add(times(y, x), times(z, x))); {

}

(8.21)

This would also allow a change to the mapping to Event-B, e.g., it could generate an Event-B
typing statement with the following form:

{… equ↦ add ↦ zero… |… equ ↦ add ↦ zero ∈ AbGroup(T)…} (8.22)

Note that the new syntax is using multiple inheritance (as described previously 8.8.1). However,
previously the classes are comma separated. Here this would conflict with the comma for sep-
arating variables. To allow this, supertypes could be separated with white space (rather than a
comma).

8.8.3 Infix Functions

It was found that infix functions could not be easily used within other statements. This is because
allowing infix functions to be passed as functional types causes issues parsing expressions, i.e.,
it is difficult to decide if an infix function is being called as a function, or being passed as an
expression to another function. It may be possible to parse the expression tree correctly by taking
more account of typing information. For now the solution employed is to add additional syntax
so that if a infix function is being passed as a function it is first wrapped in square brackets e.g.,
when passing equals as an equivalence relation the following expression is used [=].

126 Chapter 8 Implementing B♯

8.8.4 Obsolete Theorems

Whilst defining mathematical classes it was found that some theorems had the effect of stopping
other theorems being useful. As an example, in the CommMonoid class there is a theorem that
raiseToL = raiseToR. As these are effectively the same function, any instance of a commutative
monoid only needs one of them defined (and only needs theorems about one of them). Currently
instances of the CommMonoid class will instantiate both raiseTo functions, and the theorems
about them. The negative side effect of this is that when proving it is harder to find the desired
theorem due to the clutter. In a future release a syntax could be added to identify such theorems
to resolve this issue.

8.8.5 Conclusion

The implementation of a B♯ tool demonstrated its feasibility as a language. As seen in Section
8.5, B♯ definitions are considerably more concise than the equivalent Event-B, which also makes
them easier to comprehend. The implementation generated valid Event-B statements which had
the expected meaning, given the B♯ statements. . The major factors in this were the explicit
typing of B♯ variables, predicates not being a separate syntactic category, class bodies giving
methods, and implicit quantification in theories.
As all of the proving is done within Event-B, the meaning of B♯ statements is entirely defined by
the translation rules to Event-B. A translation is considered correct if it produces the expected
Event-B. To test the effectiveness and correctness of the translation, many B♯ types were defined
and translated to Event-B as outlined in Section 8.5.
The ability, in B♯, to write higher order functions, demonstrated with the curry2 function (4.5)
should facilitate the embedding of logics within the B♯ language, and somaking it easier to define
a theory of Event-B in a similar way to [72].
A major incentive of the B♯ language was to reduce repeated work via inheritance and instan-
tiation of theorems from abstract classes to concrete classes. This was achieved using the B♯
instance statements. As seen in Section 8.6. These statements worked as expected in the classes
implemented using the B♯ tool. This saved considerable effort re-writing and proving theorems
when defining B♯ models.
In general when proving theorems within the interactive theorem prover the statements that
needed to be proved looked a lot like the B♯ statements. This is because the standard auto-
matic tactics in the interactive theorem prover instantiate the Event-B typing information. This
reduces the hypothesis to one that looksmuch like that declared in B♯. For example, the following
theorem is declared in the EquivRel class:

Chapter 8 Implementing B♯ 127

Trans Rewrite ∶
∀x, y, z ∶ T ⋅ e(x, y) ⇒ e(x, z) ⇔ e(y, z);

(8.23)

When this theorem is seen by the user in the interactive prover it looks like this:

e ∈ EquivRel(T)

x ∈ T

y ∈ T

z ∈ T

x ↦ y ∈ e

⊢

x ↦ z ∈ e⇔ y↦ z ∈ e

(8.24)

The view in the prover and the B♯ statement match well, however, the user does need to know
how B♯ predicates are represented in Event-B. There are larger areas of difference. For instance,
when a B♯ method is used, the class it is declared in is an inferred parameter of the function,
whereas in Event-B this is made explicit. So the following B♯ statement:

raiseToL(x, p) (8.25)

Becomes the following Event-B statement:

T ↦ equ↦ op↦ ident ∈ Monoid(T)

⊢

raiseToL(T , T ↦ equ↦ op↦ ident, x, p)

(8.26)

within in the prover. This statement is less similar to the B♯ that generated it, and requires the
user to understand that a method is a function which takes the class as the first argument.
The work done here shows that an approach of adding a translation phase, allows new language
features to be added in a safe and consistent manner (similar to that achieved using a meta lan-
guage in other proving systems). This opens the possibility of adding many new features to the
B♯ language, and its translation, increasing the ease with which systems can be modelled using
the Event-B toolset.
It is the author’s opinion that the more concise representation of mathematical statements, along
with the IDE features, make developing mathematical theories in the B♯ tool considerably easier
than the equivalent development using the Event-B syntax. The inheritance and instantiation
features of B♯ allowed the extension of theorems, saving a considerable amount of work when

128 Chapter 8 Implementing B♯

defining them. Theorems were instantiated which may have been neglected when similar math-
ematical types are declared in Event-B, easing proofs of future theorems. The language having
features designed for reuse and inheritance encouraged theorems to be designed using these prin-
ciples, resulting in better structured mathematical theorems as seen in Section 8.5.

Chapter 9

Future Work

The approach of having a stage of compilation allows features to be safely added to the B♯ tool
in a consistent manner. This chapter explores some of the additional features that could be added
to the B♯ implementation. These features are focused on the following areas:

1. Allowing B♯ theories to be extended using the current Event-B tools.
2. Easing proofs, by having the B♯ tools interact with the Event-B prover.
3. Increasing the usability of B♯ theories within the Event-B language.

The aim of these additions is to aid the development of theories in B♯, and increase the number
of problems the tool can be applied to.

9.1 Extending B♯ With Event-B

The current approach to the B♯ tooling is that when a B♯ file is saved, new Event-B files are
automatically generated. These files include all of the mapped B♯ statements from the saved
files. The new Event-B files simply replace any previous Event-B theory files. This approach
works reasonably well because proofs are not stored in the current Event-B files, but in a separate
file of their own, and are related to the Event-B via the names of Event-B objects. This means
that regenerating a file and statements (even with additional new statements) will not remove the
proofs which the user has already done. However, if the user has opened the Event-B file and
added any statements, these will be removed the next time B♯ generates this Event-B file because
these statements are not declared in the B♯ syntax. This approach is problematic because not all
features of Event-B are currently available in B♯. For example, in Event-B it is possible to add
proof rules (statements which can be used directly by the interactive prover, both automatically,
and interactively by the user).

129

130 Chapter 9 Future Work

The aim then is to make it so when Event-B is generated by B♯, B♯ only replaces statements
it should, and does not remove other statements. The approach suggested is one used within
the Eclipse Modelling Framework (EMF) [81]. EMF has a similar problem where an abstract
syntax tree of Java classes is generated from a model described graphically using Ecore. When
generating new Java, EMF marks generated statements (e.g., classes and methods) with a tag
(“@generated”) in the comment above the statement. The user can then change the generated
Java, adding new methods and classes. The user can also change generated statements by simply
deleting the tag, before editing the Java. EMF knows when generating Java that it is only allowed
to change statements that it previously generated (i.e., have the generated tag above them).
This approach will work well with the way that Event-B is generated by the B♯ tool. Each of
the generated Event-B declaration statements (operators, theorems, and types) have tightly as-
sociated comments in which the the tag can be added. This approach leaves the user with the
maximum ability to make changes to the Event-B theories. However, this also means that the B♯
and Event-B theories may not correspond entirely. An alternative approach is to programmati-
cally mark generated theories, and make it so the user can only add statements (i.e., generated
statements cannot be changed). This would ensure that B♯ and Event-B theories correspond, but
restricts the freedom of the user to change the generated Event-B.

9.2 Reporting Event-B errors in B♯

Given there is no requirement to demonstrate that a B♯ translation generates valid Event-B, there
is nothing to stop someone creating a B♯ translation that does not always generate valid Event-B.
Having amechanism bywhich problems in Event-B can be reported back and displayedwithin B♯
would be helpful. With the current mechanism for translating this can only be achieved in a very
broad manner, e.g., if the expression for a theorem has a syntax error, this could be recognised
in Event-B during compilation and the theorem could be marked as problematic in B♯. It would
be better to have finer grained error reporting. To allow this would require the translation to
translate directly to the Event-B abstract syntax tree rather than the concrete Event-B syntax.
This could be achieved by having an EMF representation of the Theory Plug-in Event-B syntax
(as there is for the standard Event-B syntax), then errors within specific Event-B nodes could be
propagated back to the B♯ node which initially generated the Event-B.

9.3 Facilitating Proofs

Up to this point the focus has been on generating Event-Bwhich represents abstract mathematical
types. Having generated the Event-B it then becomes necessary to discharge the proof obligations
associated with the generated Event-B. This is done using the interactive prover. This section
will look at different ways in which the Event-B tool can help to facilitate the proving process.

Chapter 9 Future Work 131

9.3.1 Proof Rules

In Chapter 3 the ability to add proof rules (rules which can be used by the interactive prover)
was used to facilitate proofs. In principal B♯ could generate whole series of proof rules which
would greatly ease proofs. In practice due to the implementation of the proof rules within the
Theory Plug-in, and bugs within the Theory Plug-in implementation, a feature generating proof
rules has not yet been implemented.
This section will look at the proof rules which can be generated by the B♯ tool. These proof rules
fall into two broad categories: Proof rules which the tool can generate automatically (with no
user interaction) (such as typing rules) and those where the user explicitly tells B♯ to generate a
proof rule (e.g., the user may want to turn a theorem into a proof rule).

9.3.1.1 Automatically Generated Rules

Anytime an Event-B operator is used within an expression the well definedness proof obligations
for that operator are generated. Some of these well definedness proof obligations are generated
automatically by the Event-B system. For example, when an Event-B operator is declared its
parameters can be typed as members of subsets. When this operator is used a well definedness
proof obligation is generated where the arguments to the operator need to be shown to be in the
correct subset for the associated parameter. This results in the user having to prove statements
such as:

M ∈ Monoid(T)

x ∈ T

y ∈ T

⊢

x ↦ y ∈ dom(Monoid_op(T ,M))

(9.1)

And:

T ↦ equ ↦ op ↦ ident ∈ Monoid(T)

x ∈ T

p ∈ pNat

⊢

Monoid_raiseToL(T , T ↦ equ ↦ op ↦ ident, x, p) ∈ T

(9.2)

These proof obligations are type checking proofs, and can be greatly eased by adding typing proof
rules. In the top example 9.3 the reason this proof obligation is not automatically discharged is
because the the type of Monoid_op(T ,M) is not immediately available within the interactive

132 Chapter 9 Future Work

prover. To resolve this B♯ could automatically generate typing proof rules. In this case the
following rule would make 9.3 instantly provable:

M ∈ Monoid(T)
Monoid_op(T ,M) ∈ ℙ(T × T → T)

(9.3)

Using this proof rule in a forward direction makes the type of the getter immediately available,
causing any well definedness proof obligations about the type to be immediately dischargeable.
The B♯ tool is already able to generate the Event-B type of a getter, making this type of proof
rule easy to generate within the current code base.
When dealing with abstract classes in the interactive prover it is necessary to be able to access
the elements of the type class. The result is that at some point the type class definition needs
to be expanded e.g., if there was the statementM ∈ Monoid(T) to access the operator it would
need to be expanded to equ ↦ op ↦ ident ∈ Monoid(T). This results in the following proof
rules being useful:

T ∈ ℙ(T _EvB), equ↦ op↦ ident ∈ Monoid(T)
equ ∈ EquivRel(T)

(9.4)

and

T , equ↦ op↦ ident ∈ Monoid(T _EvB)
op ∈ ℙ(T × T → T)

(9.5)

The first of these proof rules 9.4 is a shortcut, it allows the definition of the EquivRel to be
accessed without having to expand theMonoid type, then the SemiGroup and Setoid (the deeper
into a class hierarchy, the more steps are needed to access the earlier elements). Along with
being a shortcut for the user this also acts as a shortcut for the automatic provers giving a higher
chance typing proof obligations will be discharged automatically.
The second proof rule 9.5 gives the type of the element without having to manually deconstruct
the elements, this has the same effect as 9.3 allowing the type to be accessed immediately.
Another set of typing proof rules can be generated allowing access to the return types of func-
tions:

T ∈ ℙ(T _EvB),M ∶ Monoid(T), x ∈ T , p ∈ pNat
Monoid_raiseToL(T ,M, x, p) ∈ T

(9.6)

This proof rule will also be generated when functions are instantiated:

x ∈ pNat, p ∈ pNat
times(x, y) ∈ pNat

(9.7)

Chapter 9 Future Work 133

Note that because pNat is an Event-B datatype (not a set) the current Event-B toolset will already
infer the type of this function correctly. This is only true for Event-B types, it does not in general
hold for sets. It is often the case that the instantiated type will be a set in Event-B (not a type),
at which point this proof rule will automatically discharge the associated typing statements.
These additional proof rules start to make B♯ types act as types within the interactive prover. The
user will still have to do some proofs (as it is not generally possible to infer typing of subtypes),
but these will be significantly reduced.

9.3.2 Proof Rules From Expressions

Along with the automatically generated proof rules described above, it is desirable to allow the-
orems to become proof rules in the Event-B environment (in Event-B this requires restating the
theorem as a proof rule, and reproving the theorem). However, it is not desirable to have all the-
orems become proof rules. Firstly, proof rules can be applied automatically, and if all theorems
become proof rules then there is a high chance the automatic provers will get stuck in a loop
(applying a proof rule to get to one state and then applying another which returns the proof to the
original state). Secondly, having too many proof rules will start to make proving harder, as the
user will need to spend time finding the appropriate proof rule, where one proof rule is almost
always the desired one.
In Event-B when adding a proof rule the user can specify if the rule can be applied automatically
by proving tactics. There is also the notion of a rewrite rule. Given two expressions that are
equivalent, i.e., E1 ⇔ E2 they allow the user to click on the first expression E1 and it to be
re-written as the second expression. These work from left to right. They need to be redeclared
the other way round (and reproven) to allow E2 to be rewritten to E1. Finally, ’inference’ rules
can be added, these take the form:

V ,E1,…En
I

(9.8)

where V are typed variables, En are expressions (where the variables can be used) and I is an
inferred expression. When the user uses this type of proof rule the expressions En remain in the
hypothesis, the new expression I is added to the hypothesis.
The aim is then to allow the user to specify what type of Event-B rule to generate from a B♯ state-
ment. Along with theorems it is also useful to allow where expressions from Class declarations
to become proof rules. These are effectively the axioms of a class.
There are then three different forms of B♯ statement which can become proof rules:

134 Chapter 9 Future Work

∀V ⋅E1 ∧⋯ ∧ En ⇒ I (9.9)
∀V ⋅E1 ⇔ E2 (9.10)
∀V ⋅E1 ∧…En (9.11)

To allow the user to direct what type of proof rule should be generated from the B♯ statements
additional keywords are added to the language. The keywords are AXIOM, INFER, REWRITE,
AUTO, FORWARD, BACKWARD, and BOTH. We will now see how these can be used.
In the case of the third statement 9.11, if the statement is followed by the AXIOM keyword
(E1 ∧⋯ ∧ En AXIOM then the 9.11 proof rule is generated. In Event-B this is generated as an
automatic inference rule, where the expression E1 ∧⋯∧En has to appear in the goal. The result
of this proof rule is that if the goal of the current proof is E1∧⋯∧En then the proof is complete
and automatically discharged.
When a statement of the form of 9.9 appears, an inference rule can be generated. To make this
happen the user appends the word INFER at the end of the statement. This will generate a proof
rule of the form seen in 9.8. To make this as efficient in Event-B as possible it is better if the
user splits E1 ∧⋯ ∧ En up into a list of expression E1,… , En which matches 9.9. By default
this proof rule will not be applied automatically by the Event-B tactics. To allow the Event-B
tactics to apply this automatically the AUTO word can be added after INFER.
When there are expressions of the form 9.10 the INFER keyword can still be used, however,
in this case the direction of inference is unknown. This can be specified with the FORWORD
(E1 ⇒ E2) or BACKWARD (E2 ⇒ E1) keywords, or BOTH (which generates both the forward
and backward versions). These then work identically to the previously described inference proof
rules. Expressions like this can also generate rewrite proof rules. This is achieved by replacing
the INFER keyword with the REWRITE one (note that because rewrites are directional it is still
necessary to give the direction (FORWARD etc.).
As proof rules are base on axiomatic parts of type classes, and theorems (which already require
proofs) additional proofs for the proof rules are not necessary. Ideally B♯ will generate a proof
of the proof rule by instantiating the already defined theorem.
Concrete types will inherit proof rules from abstract types, in the same way as is done for the-
orems. As theories get more complex this may result in too many proof rules being generated,
and this design may need to be revisited.

9.3.3 Proof Scripts

In many of the other theorem prover languages looked at, proving is done using a second lan-
guage to write a proof script rather than an interactive prover. As noted in Chapter 2, there are

Chapter 9 Future Work 135

advantages to each of these approaches. Whilst it is not desirable to lose the advantages of the
interactive prover, having the advantages of scripting proofs would be helpful. Specifically, it
would allow proofs of similar theorems to be largely shared (making only small manual adjust-
ments to the proofs). It could also be used to make Event-Bmodels more shareable. Finally proof
scripting could allow direct interaction with the core proof rules of Event-B, currently these are
only available by applying a proving tactic (an indirect approach).
The initial approach to adding proof scripts would be to create a list of interactions with the
interactive prover. For example, given the theorem:

suc out of addition:
∀x, y ⋅ x ∈ pNat ∧ y ∈ pNat ⇒ x pNat_add pNat_suc(y) = pNat_suc(x pNat_add y)

(9.12)
The following interactions were made with the interactive prover:

Default auto tactic profile

apply induction to datatype identifier x

inductive base case (x = zero):

expand pNat_add [0]

expand pNat_add

inductive step case (x = suc(p_prev))

expand pNat_add [0]

expand pNat_add

There are several problems to resolve with this script. The first line of the script applies the
“Default auto tactic profile”. Tactics are entities which can be created and edited by the user.
In this case this is the standard tactic which is available when Rodin is downloaded. On other
peoples machines the tactic may have been edited, which may break this proof script. To resolve
this each project will store the used tactics as text files. When a tactic is referenced the correct
file will be found in the project, and this is the tactic that will be used. A second problem exists
where additional prover plug-ins may have been installed, which are unavailable on other peoples
machines. For example there could be a proof step to run the SMT solvers and if another user
does not have these installed the proof will then fail to be reproduced. As with the tactics the state
of the Rodin platform on which the proof was performed should be made explicit. This could be
achieved by each project having a list of installed plug-ins, and version numbers. Having this as
explicit information would also help with trust of proofs. For instance if a bug came to light in
an earlier version of a prover plugin, it would make it clear that the proof needed to be re-run to
validate it.
The biggest problem with the script above is the current state of the proof is not communicated
(e.g., we cannot see the current goal of the proof). This could be achieved bymaking the B♯ editor

136 Chapter 9 Future Work

interact with the interactive prover, when proving the interactive prover would run the entire proof
script, generating a proof tree. The interactive prover would then display the position in the proof
tree based on the location of the cursor in the B♯ window. As the user is editing a proof script
they would then be able to see the state of the proof within the interactive prover. Ideally the user
would be able to make an action within the interactive prover and this would be instantly added
to the proof script in the B♯ environment.
It is useful to see an example of where having a proof script would help. In theMonoid class the
following theorem is generated:

T ↦ equ↦ op ↦ ident ∈ Monoid(T)

x ∈ T

⊢

Monoid_raiseToL(T , T ↦ equ↦ op↦ ident, x, p) ∈ T

(9.13)

Which can be proved with the following script:

Default auto tactic profile

In hyp[0](T ↦ equ ↦ op↦ ident ∈ Monoid(T)) expand Monoid

In hyp[1](T ↦ equ ↦ op ∈ SemiGroup expand SemiGroup

In hyp[4](op ∈ AssocOp(T) expand AssocOp(T)

In hyp[4](op ∈ baseOp(T , T ↦ equ) expand baseOp

apply induction to datatype identifier p

expand Monoid _raiseToL

expand Monoid _ident

inductive step case (p = suc(p_prev))

expand Monoid _raiseToL

expand Monoid _op

An identical theorem is defined for the typing ofMonoid_raiseToR, in order to prove this second
theorem the proof script forMonoid_raiseToL could be copied and pasted, andMonoid_raiseToL
replaced with Monoid_raiseToR.
In the script above there are several expansions in the hypothesis. These resolve typing and will
not be necessary when the proof rules from section 9.3.1.1 have been added.
Finally with proof scripts it would be possible to allow functions within the scripts. These could
be implemented with text replacement before the script is run by the interactive prover. In the
example above this could be used tomake it so a single function with the argument of the function
name could be used to prove both the Monoid_raiseToR and the Monoid_raiseToL.

Chapter 9 Future Work 137

9.4 Generating Abstract Event-B Types

In Chapter 2 it was seen that the current approach in Event-B is to define a parametric type
and a series of operators and then define these axiomatically. So to define a Ring in Event-
B a parametric type called Ring would be created, then the operators would be created and
axiomatically defined in the following way:

zero() ∶ Ring

one() ∶ Ring

add(x ∶ Ring, y ∶ Ring) ∶ Ring

mult(x ∶ Ring, y ∶ Ring) ∶ Ring

axioms ∶

∀x, y, z ⋅ add(add(x, y), z) = add(x, add(y, z))

∀x, y ⋅ add(x, y) = add(y, x)

∀x ⋅ add(x, zero) = x

∀x ⋅ ∃minusX ⋅ add(x,minusX) = zero

∀x, y, z ⋅ mult(mult(x, y), z) = mult(x,mult(y, z))

∀x, y, z ⋅ mult(x, add(y, z)) = add(mult(x, y),mult(x, z))

∀x, y, z ⋅ mult(add(y, z), x) = add(mult(y, x),mult(z, x))

(9.14)

Despite the problems with this form of definition (the repetition, lack of extensibility and her-
itability), it works well with the current Event-B toolset because the Ring is an Event-B type.
Using the representation generated from B♯ is harder because it creates an Event-B set rather
than type. When modelling it is easier to work with an Event-B type, as the Event-B tools are
better able to reason about Event-B types (e.g., there will be fewer well definedness theorems,
and the tools are better able to infer types).
The Event-B definition above 9.14 has the same axiomatic definition as the B♯ definition 8.21,
with associated elements replaced by operators, and the where statements in the Group and
Monoid replaced by axioms. Where possible a concrete type could be created (e.g., a concrete
implementation of the rational numbers is an instance of a ring), this can be difficult and time
consuming. An alternative solution is to add a second form of instantiation to the B♯ tool, which
directly builds the abstract Event-B type from the abstract B♯ type. This allows the abstract B♯
types to be used directly within Event-B. It would also resolve the issues of the Event-B types
extensibility. If a monoid is desired in Event-B then theMonoid type can be instantiated. As has
been seen this is extended in B♯ to create the AbGroup type. If this type is desired in Event-B it
can be instantiated instead. Because the B♯ can be extended the Event-B does not have to be.

138 Chapter 9 Future Work

9.4.1 Operators From Simple Types

As described above associated elements from B♯ type classes become operators. First we will
look at how elements with simple types are translated into operators. Here by simple type we
mean the elements are not typed with a B♯ type class, e.g., types such as T or T ×T → T . These
are split into two categories, functional types (any type of the form �1 → �2 where �1 and �2 are
type expressions) and non-functional types (any element typed in a different way).
A non-functional associated element of type � will become an Event-B operator which has no
parameters, and has a return type of �. e.g., the Monoid (4.14) type class has an associated
element ident ∶M , this would be represented by the Event-B operator:

ident() ∶ T (9.15)

A functional type e.g., �1 → �2 becomes an operator with parameters generated from �1 and a
return type of �2. The parameters are generated by splitting �1 on the inner product, i.e., given
�1 of the form �3 ×⋯ × �n the parameters are �3,… , �n. As an example the associated element
op ∶ T × T → T becomes the Event-B operator:

op(p1 ∶ T , p2 ∶ T) ∶ T (9.16)

A difficulty with this approach is that in B♯ T may be a constrained parametric type (e.g., we
have seen T ∶ Setoid). This is resolved by instantiating the constraining type first (note that
when mapping, T represents a set of the type for T and all the associated elements of T so T .equ
can be mapped to the generated equ operator). The example used here is a poor example as the
Setoid type is treated as a special case. Whenever a complete Event-B type is instantiate the
Setoid type is ignored as the equivalence relation becomes structural equality and it is therefore
not needed.

9.4.2 Operators From Non-Simple Types

Many associated elements are typed using B♯ classes rather than type constructors. Examples of
this is the op in the SemiGroup definition is typed op ∶ AssocOp⟨SG⟩), or in the Ring definition
there is an associated operator typed M ∶ Monoid⟨R⟩. These can be split into two difference
groups, ones typed with simple classes (classes without associated elements), and ones typed
with type classes (classes with associated elements).

Chapter 9 Future Work 139

9.4.2.1 Typed With Simple Classes

When an element is typed with a simple type class it is initially treated in the same way as typing
the associated element with the base type of the class (the implementation of B♯ already has
functions to get this base type). So the type declaration op ∶ AssocOp⟨SG⟩ becomes the same
as op ∶ SG × SG → SG. This would then generate an operator in the same way as described
above, where SG is the type being used when defining the SemiGroup type. Having constructed
the Event-B operator, the where statements and the theorems associated with it are mapped to
Event-B axioms. This is done by mapping the expressions of thewhere and theorem statements.
Expression mapping is described below 9.4.3

9.4.2.2 Typed With Type Classes

When an associated element is typed with a type class, the whole of the type class is mapped
to Event-B. To distinguish the operators mapped from the associated elements type class and
the type class that is being mapped, the elements from the associated element types name are
changed. e.g., in the case of M ∶ Monoid⟨R⟩ the operators generated for M will all have the
prefixM soM_ident andM_opwill be created. The names of the axioms will also gain the same
prefix.
When a type class is in the process of being mapped from B♯ to Event-B a map of associated
element names in B♯ to the operator names in Event-B is maintained. When possible the op-
erators will have the same names as the associated elements. In the example above when the
monoid is mapped the mapping becomes slightly more interesting. The monoid Ms map is
{ident ∶ M_ident, op ∶ M_op,…}. This mapping is used when compiling expressions to find
the correct Event-B operators.

9.4.2.3 Functions

Functions associated with type classes are mapped to Event-B operators with the same parame-
ters and return type of the function. There is no need to map the definition of the function. The
functions are only defined by the theorems about the functions.

9.4.3 Expressions

Once the operators for type classes have been generated the where and theorem expressions are
mapped to axioms. In principal theorems could be mapped to theorems, however as these have
already been proved in the standard B♯ mapping they do not need to be re-proved so it is easier
to map them as axioms.
As an example in the Group class there is the following theorem:

140 Chapter 9 Future Work

∀x, y ∶ G ⋅ equ(op(x, y), y) ⇔ equ(x, ident) (9.17)

If x acts as the identity on any element it is the identity. This is mapped to the following axiom
in Event-B:

∀x, y ⋅ op(x, y) = y ⇔ x = ident (9.18)

This is achieved by first mapping the B♯ to the simplified form:

∀⟨G ∶ Group⟩x, y ∶ G ⋅ G.equ(G.op(x, y), y) ⇔ G.equ(x,G.ident) (9.19)

Now this is compiled in the same way as B♯ statements have been compiled previously. Except
asG is a complete B♯ type it does not need to be quantified over so this disappears, and whenever
an associated element is mapped (e.g., G.op) the map of associated elements is used to find the
Event-B operator. Finally equ is special cased to become equality on complete Event-B types.
In the Ring type class the following theorem was declared:

∀x ∶ R ⋅ equ(M.op(x,G.ident), G.ident) ∧ equ(M.op(G.ident, x), G.ident) (9.20)

(Multiplication by zero gives zero). This is expanded to:

∀⟨R ∶ Ring⟩x ∶ R⋅equ(R.M.op(x,R.G.ident), R.G.ident)∧equ(M.op(R.G.ident, x), R.G.ident)
(9.21)

In this case when R.M.op is called, R.M finds the monoid mapping forM , so R.M.op finds the
Event-B operator associated with theM element. Which results in the expected expression being
generated.
The complete mapping for the B♯ Ring to an Event-B abstract type is:

Chapter 9 Future Work 141

G_ident() ∶ Ring

G_op(p1 ∶ Ring, p2 ∶ Ring) ∶ Ring

G_raiseToL(p1 ∶ Ring, p2 ∶ pNat) ∶ Ring

G_raiseToR(p1 ∶ Ring, p2 ∶ pNat) ∶ Ring

M_ident() ∶ Ring

M_op(p1 ∶ Ring, p2 ∶ Ring) ∶ Ring

M_raiseToL(p1 ∶ Ring, p2 ∶ pNat) ∶ Ring

M_raiseToR(p1 ∶ Ring, p2 ∶ pNat) ∶ Ring

axioms ∶

∀x, y, z ⋅ G_op(G_op(x, y), z) = G_op(x,G_op(y, z))
All other AbGroup typing, where statements, and theorems as axioms
∀x, y, z ⋅M_op(M_op(x, y), z) = M_op(x,M_op(y, z))
All other Monoid typing, where statements and theorems as axioms
∀x, y, z ⋅M_op(x,G_op(y, z)) = G_op(M_op(x, y),M_op(x, z))
All other Ring typing, where statements and theorems as axioms

(9.22)

Creating a Ring in B♯ and instantiating it means that the axioms of the components of the ring,
and the theorems about these components do not have to be restated and reproved. This is a
considerable saving of effort for the Event-B modeller.
Before implementing this form of instantiation the syntax change suggested in 8.18 (e.g., in
the B♯ definition of the Ring having (add, zero) ∶ AbGroup instead of G ∶ abGroup). This
change could propagate through to the Event-B instantiation, giving nicer names to the associated
elements.

9.5 Additional Operators

In addition to the suggested form of instantiation in the previous section (Section 9.4), there are
many additional keywords which could be added to the B♯ tool to aid both the development of
mathematical theories and Event-B models. For example, a keyword for homomorphisms and
isomorphisms could be added. Given an abstract type (e.g., a Group), an isomorphism keyword
could create a new type class which related the required elements of two Groups with a function
between the Groups. This function would be constrained with where statements such that it
represented a group isomorphism. Additionally, an instance statement could be used to show
that two concrete groups are isomorphic, allowing B♯ to transfer theorems and proofs between
the two isomorphic types.

142 Chapter 9 Future Work

A further possibility would be to add keywords to allow B♯ to contain Event-B model contexts
and syntax. This could be achieved by adding context and machine keywords, which could use
the recently developed XEvent-B1 tool to generate Event-B models. This would allow B♯ to also
add new features to standard Event-B e.g., reasoning about composition and concretisation.

9.6 Translating to Other Provers

The translation has demonstrated how aHOL style language can be translated to the typed set the-
ory syntax of Event-B. A natural question to ask is then is possible to use this similarity to bring
results from a more mature theorem prover such as Isabelle/HOL or HOL light to Event-B. A
couple of reasons why we may want such a translation is to bring features from another language
to B♯ or to help with proofs of theorems generated by B♯.
If the translation from the core of B♯ to Event-B were to be formalised, and a similar translation
to a more mature HOL style language were to be demonstrated, then the more mature HOL style
language could be used to prove the B♯ theorems and the proofs could be trusted within Event-B.
To achieve this, it would be necessary to formalise the semantics at the core of B♯, followed by
formalising the translation to HOL and Event-B. At this point, proofs about B♯ done in HOL
could be used within the Event-B environment. A disadvantage of this is that any future features
added to B♯ which translate directly to Event-B (rather than the B♯ core) would not be able to do
proofs in HOL until similar work had been done to demonstrate semantic alignment (which may
be impossible if the translation does not always generate valid Event-B).
Demonstrating an equivalence between the core of B♯ and the core of a HOL style language
would give the potential to bring features from the HOL style language into B♯. Features in HOL
style languages are added by translating the new features into the small core of the language. A
way to bring these features to B♯ could be to create B♯ to B♯ translations which copy the additional
features in HOL languages. Another alternative is to add a new feature which mirrors the HOL
feature to B♯. This new feature could be implemented by a translation to the HOL language,
then using HOL to reduce it to the core of the HOL language and translating it back to B♯. The
resulting B♯ statements would then be translated to Event-B using the translation described in
Chapter 6. A difficulty with this approach is that the HOL features will also add proving features
which will not be available in the Event-B prover, which may make proofs about these statements
more difficult.

9.7 Implementing Future Work

As a final note on the future work, given the current mappings of B♯ the generated theorems cause
the current Rodin toolset to become slow as the generated theorems increase in complexity. Some

1https://sourceforge.net/projects/rodin-b-sharp/files/Plugin_XEvent-B/

Chapter 9 Future Work 143

of the changes, such as adding more proof rules will help with this situation, as these proof rules
will help to reduce the number of hypothesis the Rodin system has to deal with at any given time.
However, before continuing development on the B♯ tool effort should be put into optimising the
performance of the Event-B tool for use with statements generated by B♯, and fixing bugs within
the Theory Plug-in which increase the complexity of current proofs.

Chapter 10

Conclusion

The primary aim of this thesis was to improve the method by which mathematical types can be
defined within the Rodin toolset, and made available to the Event-B modeller. This has been
achieved by the creation of a new language called B♯, which had many elements in common
with a HOL-style language. Several additional features were included within B♯ such as type
classes, type bodies (used to associate theorems and functions with the classes), and instantiation
(used to associated concrete types to type classes). Due to the additional features of the new
language developing heritable mathematical theorems within B♯ was considerably easier than
within Event-B.
To make the theorems developed in B♯ available to the Event-B modeller a series of mappings
from B♯ to Event-B were declared. Theorems within B♯ could then be translated to Event-B. This
also acted to allow the theorems in B♯ to be proved using the Rodin interactive prover (i.e., the
theorems could be provedwithin the translation), removing the need to construct a specific prover
for B♯. The B♯ instantiation caused theorems and functions within the type classes to be recreated
as theorems and functions within concrete types. This automatic instantiation made proving
within the interactive prover considerably easier as theorems did not have to be instantiated at
the times of the proof. Instantiation at the time of the proof has a second disadvantage, in that
you need to re-instantiate in each different proof.
To test the feasibility of the B♯ language an IDE was created to allow development of B♯ theories.
This IDE also contained a compiler to create Event-B theories from the B♯ ones. Along with the
translation many additional IDE features were added, such as syntax aware completion and error
detection. This eased the creation of theories, as many problems with declarations were noticed
faster than in the equivalent development in Event-B. Several B♯ theories were defined. It was
found that creating heritable theories within B♯ was considerably more concise than creating the
equivalent theorems within Event-B, due to the additions of the following features:

1. type classes
2. subtypes

145

146 Chapter 10 Conclusion

3. unification of functions and operators to a single type
4. unification of predicates and the boolean type
5. methods, allowing functions to use elements from type classes without explicit declaration

Along with a feature allowing the instantiation of functions and theorems using instances, further
benefits, and the evidence for them, was summarised in Section 8.8.5.
In Section 3.10 of Chapter, we saw a list of problems with developing mathematical theories in
Event-B. The table below summarises how these issues were solved within B♯:

Rather than being able to use the subset
as a type the user is required to use the
subset’s super type, and then write ad-
ditional statements to say when the op-
erator/proof rules can be used.

Within B♯ elements can be typed using any class or
datatype. The classes allow the creation of subtypes
which become subsets in Event-B. This includes con-
straining parametric types as seen in the definition of
CommOp (4.13), with translation example (5.11) and
mapping rules (6.4.2). This resolves the issue of long
subsetting statements (3.2). B♯’s parametric type repre-
sentation was seen in the translation of the Ring defini-
tion 8.21. Where B♯ is muchmore concise and readable
than the generated Event-B. As seen in Section 5.8, a
similar process is used when translating typed parame-
ters to Event-B subsets for functions, quantifiers, lamb-
das, and class declarations.

Concrete operators can not be passed as
a type, causing the user to define a new
operator returning a functional repre-
sentation of the original operator.

This was resolved by B♯ translating to two operators,
the additional operator being defined in such a way that
it could be used in Event-B expressions without argu-
ments. When translating, B♯ chooses the correct Event-
B operator based on context. This was seen in example
5.2 with translation example given in 5.1.2 and map-
ping shown in 6.4.4 and 6.5.2. This means the user no
longer has to declare additional operators or wrap op-
erators in lambdas as was seen in Section 3.4.

Operators defined axiomatically can
not be instantiated.

In B♯, rather than axiomatically defining a type, Class
declarations are used. As seen in 4.1.4 abstract types
can be used in the place of axiomatic definitions and
can be instantiated.

Chapter 10 Conclusion 147

Demonstrating that a concrete structure
is a subset of an abstract structure does
not result in theorems and proofs being
inherited. Instead it is necessary to re-
write the theorems and prove them (al-
though the proofs are trivial).

B♯ resolved this using the Instance keyword, which
used a translation to Event-B to instantiate the abstract
classes with concrete types. This resolves the issue dis-
cussed in Section 3.4. The user no longer has to manu-
ally redeclare theorems, reducing work when defining
theories. The example, translation, and mapping can be
found at 4.26, 5.1.7 and 7.1.4 respectively.

After demonstrating isomorphisms,
there is still considerable work to move
proof rules and theorems to the new
type.

It is possible to represent isomorphisms using B♯’s type
class e.g., we can define a type of monoid isomor-
phisms. A potential way of generalising this approach
is discussed in 9.5, such that a new isomorphism type
class does not have to be defined for every abstract
class.

Every operator had to be named
uniquely. There are cases where, due to
inadvertently re-using the same name,
sections of code need to be redefined
and reproved.

This issue was solved in B♯ using a different scoping
and import system to Event-B. As described in Section
4.3, the ability to re-use function names allows them to
be named more intuitively (e.g., we can have add func-
tions on naturals and integers).

Predicates being a separate syntactic
categories created considerably more
work in defining and instantiating ab-
stract theories about relations.

In B♯, predicates are not a separate syntactic category.
This resolved problems discussed in 3.6.1. This can be
seen by comparing the Event-B theorem 3.15 with the
equivalent B♯ theorem 4.8. Examples of the B♯ syn-
tax can be found in Section 5.1.3, with the mapping in
Section 6.5.1.

Along with the improvements above, the additional features added by the Theory Plug-in to the
Event-B language (datatypes and parametric types) are maintained. B♯ allows the axiomatic
definition of types using Class statements (Section 4.1.4). The mapping of these types generates
constrained Event-B subsets. Unlike the axiomatic types in the Theory Plug-in, these cannot
generate consistency errors, however, they are also harder to use directly when modelling in
Event-B. A possible solution of another translation is suggested in 9.4. This would generate
axiomatically defined Event-B types from the B♯ classes.
The approach of having a compilation stage in development of B♯ could be extended to con-
sistently allow many other features to be added to B♯. Any feature that is added to B♯ is given
meaning by its translation to Event-B. If a new feature is inconsistent it will generate inconsistent
Event-B, and the user will not be able to prove the generated Event-B. The translation stage gives
the ability to consistently add features in a similar fashion to the way other languages use a meta
language (ML). Many additional possible features are outlined in the previous chapter.

148 Chapter 10 Conclusion

Finally the translation from B♯ to Event-B showed how a HOL style language could be trans-
lated to a language based on typed set theory (such as Event-B). Using similar techniques it
may be possible to translate theorems from a more mature theorem proving language such as
Isabelle/HOL to Event-B. To get the full benefit from such a translation it would be necessary
to show some form of semantic equivalence rather than reconstructing the proofs within the B♯
environment.

Appendix A

Additional Translation Functions

This appendix contains additional translation functions not contained within chapter 6 or 7.

A.1 Expanding Parametric Types

In section 6.5 it is described how parametric types constrained to type classes need to be ex-
panded to allow compilation to Event-B. The following recursive functions are used to genetate
the additional types required in Event-B.
First a function is defined that can recursively expand the constrained paraType:

expandParaType(p ∶ paraType) → List⟨paraType⟩{

∕∕ T ∶ TypeClass⟨Texpr1,… ., Texpri⟩

∕∕ Id (class contrT ype∗)?

let T ∶ TypeClass⟨Texpr1,… ., Texpri⟩ = p

if (TypeClass = nil) ∕∕ There is no contraining TypeClass
return bSharpId(p) ∕∕ Generates a base bsharp type, easily translatable to Event-B

melif (TypeClass ≠ nil)

∕∕ p.class is a type class with a list of parametric type⟨cp1 ∶ TC1… cpi ∶ TCi⟩

let A ∶ AC,… , Z ∶ ZC = TypeClass.paraType

let a1,… , ai ∶ AC⟨a1… ⟩,… , z1,… , zi ∶ ZC⟨z1… ⟩

= expandParaType(A ∶ AC),… , expandParaType(Z ∶ ZC)

return {a1,… , ai ∶ Ai,… , z1,… , zi ∶ Zi, p ∶ p.class⟨a1,… , ai,… , z1,… zi⟩}

}
(A.1)

149

150 Appendix A Additional Translation Functions

Note that the list of types generated in the penultimate line contains base types (with no con-
traints) e.g., a1, and types contrained by type classes e.g., ai ∶ Ai⟨a1… ⟩. This expansion results
in type statements that match those required by Event-B. The B♯ base types can be turned fairly
directly into Event-B types (a type T becomes an argument T ∶ ℙ(T _evB). The operators gen-
erated by 6.5 can be uesd to contruct the other types (as in S ∶ Setoid⟨T ⟩). This is done with
the following translation function:

evBArgForParaType(p ∶ paraType) → [param]{

let p ∶ Class⟨T1,… , Ti⟩ = p

if Class = nil

return evBId(p) ∶ ℙ(evBT ypeId(p)) ∕∕ p ∶ ℙ(P_evB)
elif Class ≠ nil

let evBOpName = evBId(Class) ∕∕ Event-B class constructor
∕∕ Create the Event-B type with class constructor

return evBId(p) ∶ evBOpName(evBId(a1),… evBId(ai)

}

(A.2)

Due to the expansion done usingA.1 the types a1… ai have already been contructed and therefore
no longer have contraining types of their own (i.e., they are not of the form a ∶ A).
Putting this together when a B♯ object has a parametric context (e.g., class declarations) each pa-
rameter in the context is turned into Event-B parameters with the following translation function:

evBParam(p ∶ paraType) → List⟨[param]⟩{

let T ∶ Class = p

return evBArgsForParam(expandParaType(T ∶ Class)) ∕∕ T1 ∶ TevB1,… Ti ∶ TevBi
}

(A.3)

The types are first expanded, this results in a series of types that can be converted easily to
Event-B sets using the set construction operators already generated.

A.2 Unary Types

Given an Event-B representation of a class, and the B♯ definition of the class it is then possible
to get the Event-B set from the expression as described in 6.4.6. Here an Event-B representation
of a class is deconstructed to find the set type that the type class is associated with.

Appendix A Additional Translation Functions 151

baseTypeForExpr(e ∶ [expr], c ∶ class) → [set−expr]{

let sType = ℎead(c.constrType) ∕∕ The first supertype of the class
if sType isA class

if c.parameter ≠ nil ∕∕ The class has required elements
return baseTypeForExpr(prj1(e), sType)

elif c.parameter = nil ∕∕ The class has required elements
return baseTypeForExpr(e, sType)

elif ¬(sType isA class)

if c.parameter ≠ nil

return prj1(e)

elif c.parameter = nil

return e

}
(A.4)

The functions is slightly more complicated than described within the chapter as. This is because
type classes which add no new required elements have an identical Event-B expression to their
superclass, so the first element of the Event-B expression is not seperated from the Event-B
expression instead the whole Event-B expression is used.
Along with evBType(p ∶ parameter) function (6.20), there are near identical functions for in-
stance and bracket types:

evBType(i ∶ instance) → [set−expr]{

return baseTypeForExpr(evB(i), i.class)

}

(A.5)

evBType(b ∶ typeBracket) → [set−expr]{

return (evBType(b.constrT ype)) ∕∕ Bracketed in Event-B
}

(A.6)

(A.7)

A.3 Finding The Correct Supertype

When in B♯ a type argument is passed in place of one of its supertypes it is necessary to get the
Event-B representation of the supertype (rather than the representation of the current type. The
following functions recursively climb the B♯ type structure to find the correct representation:

152 Appendix A Additional Translation Functions

evBTypeForClassInternal(e ∶ [expr], c ∶ class, d ∶ class) → [expr]{

if c = d

return e ∕∕ e already represents the correct class
elif c ≠ d

if c.parameters ≠ nil

return evBTypeForClassInternal(prj1(e), ℎead(c.constrType), d)

elif c.parameters = nil

return evBTypeForClassInternal(e, ℎead(c.constrType), d)

}

(A.8)

evBClassReprForClass(p ∶ paraType, d ∶ class) → [expr]{

return evBTypeForClassInternal(evBID(p), p.class, d)

}

(A.9)

evBClassReprForClass(i ∶ instance, d ∶ class) → [expr]{

return evBTypeForClassInternal(evB(i), i.class, d)

}

(A.10)

The approach taken is to climb the class hierarchy until the current class c matches the desired
class d, when the current class matches the desired type then the current Event-B [expr] is the
correct representation of the class. When the classes do not match, if the current class introduces
new parameters then the Event-B supertype is represented by prj1 of the current type. If no
required elements are added then Event-B representation of the super type is the same as the
Event-B representation of the current type.

A.4 Getting Inferred Types for Type Constructors

As described in Section 6.4.6. When a class constructor is called with type arguments it is
neccessary to infer additional types from the arguemnts. These functions are used to do that
inferrence for various different unary elements.

Appendix A Additional Translation Functions 153

getInferredTypes(p ∶ paraType, c ∶ class) → List⟨[expr]⟩{

let r ∶ tClass⟨T1,… , Tn⟩ = p

let S1,… , Si = getInferredTypes(T1,… , Ti)

let cRepr = evBClassReprForClass(p, c) ∕∕ Event-B instance of c
return S1,… , Si, cRepr ∕∕ Type arguments for an operator

}

(A.11)

getInferredTypes(t ∶ typeConstr, c ∶ class) → List⟨[expr]⟩{

let T ype⟨T1,… , T i⟩ = t

if T ype isA datatype

let dtName = evBId(T ype)

return dtName⟨evB(T1),… , evB(Ti)⟩

elif T ype isA class

let T1,… , Ti = getInferredTypes(T1,… Ti), T ype.paraType.class)

let typeOpName = evBTypeId(t.class)

return T1,… , Ti, typeOpName(T1,… , Ti)

}

(A.12)

getInferredTypes(b ∶ typeBracket, c ∶ class) → List⟨[expr]⟩{

return getInferredTypes(d.constrT ype, c)

}

(A.13)

getInferedT ypes(ct ∶ constrT ype, c ∶ class) → [expr]{

return evBType(ct)

}

(A.14)

The function to get inferred types on constrT ype is lowest precedence, so where possible one
of the other functions will be called first (as constrT ype could be a wrapper for one of the other
types).

Appendix B

B♯ Complete Syntax Definition

This appendex contains that Syntax definition of B♯, which was used within Xtext to allowing
the parsing of B♯ files.

155

156 Appendix B B♯ Complete Syntax Definition

Appendix B B♯ Complete Syntax Definition 157

158 Appendix B B♯ Complete Syntax Definition

Appendix B B♯ Complete Syntax Definition 159

160 Appendix B B♯ Complete Syntax Definition

Appendix B B♯ Complete Syntax Definition 161

Appendix C

B♯ Theories

This appendix contains the B♯ code written to demonstrate the usefulness of the B♯ language and
tool.
Relations:

package Relations
2

From main Import main.∗
4

Class ReflexRel<T>[r] : T × T→ Bool where ∀ x : T ⋅ r(x, x) { }
6

Class SymetricRel<T>[s] : T × T→ Bool where ∀ x : T, y : T ⋅ s(x, y) ⇒ s(y, x) {
8 Theorems {

sym iff:
10 ∀ x, y : T ⋅ s(x, y) ⇔ s(y, x);

}
12 }

14 Class TransRel<T>[t] : T × T→ Bool where ∀ x, y, z : T ⋅ t(x, y) ∧ t(y, z) ⇒ t(x, z) {
}

16
Class EquivRel<T>[e] : ReflexRel<T>, SymetricRel<T>, TransRel<T> {

18 Theorems {
TransInverse:

20 ∀ x, y, z : T ⋅ e(x, y) ∧ ¬ e(y, z)⇒ ¬ e(x, z);
TransRewrite:

22 ∀ x, y, z : T ⋅ e(x, y) ⇒ e(x, z) = e(y, z);
}

24 }

26 Class Setoid<T>[S] : ℙ(T) (equ : EquivRel<S>) { }

28 Class Totality<T : Setoid>[tOp] : T × T→ Bool where ∀ x, y : T ⋅ ¬ T.equ(x, y) ⇒ tOp(x, y) ∨ tOp(y, x)
{

}
163

164 Appendix C B♯ Theories

30
Class AntiSymmetry<T : Setoid>[lt] : T × T→ Bool where ∀ x, y : T ⋅ lt(x, y) ∧ lt(y, x)⇔ T.equ(x, y) {

32 }

34 Class Orderer<S : Setoid>[lt] : AntiSymmetry<S>, TransRel<S> {
}

Operators:
1 package Operators

3 From Relations Import Relations.Setoid

5 Class baseOp<T:Setoid>[bOp] : T × T→ T where ∀ x, y, z : T ⋅ T.equ(x, y)⇒ T.equ(bOp(x, z), bOp(y,
z)) ∧ T.equ(bOp(z, x), bOp(z, y)) {

Theorems {
7 BaseOpTheorem:

∀ a, b, x, y : T ⋅ T.equ(a, b) ∧ T.equ(x, y) ⇒ T.equ(bOp(a, x), bOp(b, y));
9

BaseOpTheoremSimple Left:
11 ∀ a, x, y : T ⋅ T.equ(x, y)⇒ T.equ(bOp(a, x), bOp(a, y));

13 BaseOpTheoremSimple Right:
∀ x, y, a : T ⋅ T.equ(x, y)⇒ T.equ(bOp(x, a), bOp(y, a));

15 }
}

17
Class AssocOp<T:Setoid>[aOp] : baseOp<T> where ∀ x, y, z : T ⋅ T.equ(aOp(x, aOp(y, z)), aOp(aOp(x, y

), z)) { }
19

Class CommOp<T:Setoid>[cOp] : baseOp<T> where ∀ x, y : T ⋅ T.equ(cOp(x, y), cOp(y, x)) { }
21

Class AssocCommOp<T:Setoid>[Op] : AssocOp<T>, CommOp<T> { }

SemiGroup:
package Monoids

2
From Relations Import Relations.∗

4 From Operators Import Operators.∗

6 Class SemiGroup[SG] : Setoid (op : AssocOp<SG>) {
Theorems {

8 2 left ident no right:
∀ l1, l2 : SG ⋅ (∀ x : SG ⋅ equ(op(l1, x), x)) ∧ (∀ y : SG ⋅ equ(op(l2, y), y)) ∧ ¬ equ(l1, l2)

10 ⇒ ¬(∃ r : SG ⋅ ∀ z : SG ⋅ equ(op(z, r), z));

12 2 right ident no left:
∀ r1, r2 : SG ⋅ (∀ x : SG ⋅ equ(op(x, r1), x)) ∧ (∀ y : SG ⋅ equ(op(y, r2), y)) ∧ ¬ equ(r1, r2)

14 ⇒ ¬(∃ l : SG ⋅ ∀ z : SG ⋅ equ(op(l, z), z));

Appendix C B♯ Theories 165

16 left right ident is unique1:
∀ LRident, Rident : SG ⋅ (∀ x : SG ⋅ equ(op(LRident, x), x) ∧ equ(op(x, LRident), x)

18 ∧ (∀ y : SG ⋅ equ(op(y, Rident), y)))⇒ equ(LRident, Rident);

20 left right ident is unique2:
∀ LRident, Lident : SG ⋅ (∀ x : SG ⋅ equ(op(LRident, x), x) ∧ equ(op(x, LRident), x)

22 ∧ (∀ y : SG ⋅ equ(op(Lident, y), y)))⇒ equ(Lident, LRident);

24 left right ident is unique:
∀ LRident, LorRident : SG ⋅ (∀ x : SG ⋅ equ(op(LRident, x), x) ∧ equ(op(x, LRident), x)

26 ∧ ((∀ y :SG ⋅ equ(op(LorRident, y), y)) ∨ (∀ z : SG ⋅ equ(op(z, LorRident), z))))⇒ equ(LorRident
, LRident);

}
28 }

Monoid:
package Monoids

2
Import SemiGroup.∗

4
Class Monoid[M] : SemiGroup (ident :M)

6 where ∀ x :M ⋅ equ(op(x, ident), x) ∧ equ(op(ident, x), x) {
Theorems {

8 ident is ident left: //Makes this become a theorem with inheritance. TODO:Make axioms become theorems
on inheritance.
∀ x :M ⋅ equ(op(x, ident), x);

10 ident is ident right:
∀ x :M ⋅ equ(op(ident, x), x);

12 ident:
∀ x :M ⋅ equ(op(x, ident), ident)⇔ equ(x, ident);

14
unique ident:

16 ∀ oIdent :M ⋅ (∀ r :M ⋅ equ(op(oIdent, r), r)) ∨ (∀ l :M ⋅ equ(op(l, oIdent), l))⇔ equ(oIdent, ident)
;

}
18 }

20 From pNat Import pNat.pNat

22 Extend Monoid (Pow) {
raiseToL(x :M, p : pNat) :M

24 match p {
| zero : ident

26 | suc(ps) : op(x, raiseToL(x, ps))
}

28
raiseToR(x :M, p : pNat) :M

30 match p {

166 Appendix C B♯ Theories

| zero : ident
32 | suc(ps) : op(raiseToR(x, ps), x)

}
34

Theorems {
36 RaiseToL Equiv Preservation:

∀ x , y:M, p : pNat ⋅ equ(x, y)⇒ equ(raiseToL(x, p), raiseToL(y, p));
38

RaiseToR Equiv Preservation:
40 ∀ x , y:M, p : pNat ⋅ equ(x, y)⇒ equ(raiseToR(x, p), raiseToR(y, p));

42 RaiseToL addRule:
∀ x :M, p, q :pNat ⋅ equ(op(raiseToL(x, p), raiseToL(x, q)), raiseToL(x, p add q));

44 }
}

Commutative Monoid:
1 package Monoids

3 Import Monoid.∗

5 From pNat Import pNat.pNat
From Operators Import Operators.∗

7
Class CommMonoid[M] :Monoid where (∀ x, y :M ⋅ equ(op(x, y), op(y, x))) {

9 Theorems {
LeftPow equals RightPow:

11 ∀ x :M, p : pNat ⋅ equ(raiseToL(x, p), raiseToR(x, p));
}

13 }

Naturals (Satisfying Peano’s axioms):
1 package pNat

3 From main Import main.∗
From Relations Import Relations.∗

5
Datatype pNat

7 | zero
| suc(prev : pNat) {

9 add(x, y : pNat) : pNat INFIX 100
match x {

11 | zero : y
| suc(xs) : suc(xs add y)

13 }

15 add2(x : pNat) : pNat suc(suc(x))

Appendix C B♯ Theories 167

17 apply<T>(f : T→ T, x : T) : T
f(x)

19
Instance Setoid<pNat>([=])

21
Theorems {

23 suc out of addition:
∀ x, y : pNat ⋅ x add suc(y) = suc(x add y);

25 add zero:
∀ x : pNat ⋅ x add zero = x;

27 reduction:
∀ x, y, z : pNat ⋅ x add y = x add z⇔ y = z;

29 Associative:
∀ x, y, z : pNat ⋅ x add (y add z) = (x add y) add z;

31 Commutative:
∀ x, y : pNat ⋅ x add y = y add x;

33 }
}

35
From Monoids Import Monoid.∗

37 CommMonoid.∗

39 Extend pNat (mon_Add) {
Instance CommMonoid<pNat>(add, zero) addMon (times = raiseToL)

41
Theorems {

43 Anything times zero on left:
∀ x : pNat ⋅ times(x, zero) = zero;

45 Zero times anything is Zero:
∀ x : pNat ⋅ times(zero, x) = zero;

47 sucX times Y:
∀ x, y : pNat ⋅ times(suc(x), y) = y add times(x, y);

49 Distrib Left Times:
∀ x, y, z : pNat ⋅ times(x, y add z) = times(x, y) add times(x, z);

51 Distrib Right Times:
∀ x, y, z : pNat ⋅ times(y add z, x) = times(y, x) add times(z, x);

53 Times Associative:
∀ x, y, z : pNat ⋅ times(x, times(y, z)) = times(times(x, y), z);

55 Times Commutative:
∀ x, y : pNat ⋅ times(x, y) = times(y, x);

57 }

59 Instance CommMonoid<pNat>(times, suc(zero)) timesMon (power = raiseToL)
}

61
Extend pNat (minus) {

63 decr(x : pNat) : pNat
match x {

65 | zero : zero
| suc(xs) : xs

67 }

168 Appendix C B♯ Theories

69 minus(x, y : pNat) : pNat INFIX 99
match y {

71 | zero : x
| suc(ys) : decr(x minus ys)

73 }
}

75
Extend pNat (divide) {

77 divMod(n, d, count : pNat) : pNat × pNat
match n {

79 | zero : (zero, zero)
| suc(ns) :

81 if suc(ns) = d {
(suc(count), zero)

83 } else {
if suc(ns) minus d = zero {

85 (count, suc(ns))
} else {

87 divMod(suc(ns) minus d, d, suc(count))
}

89 }
}

91 }

Group:
1 package Groups

3 From Monoids Import Monoid.∗

5 Class Group[G] :Monoid where ∀ x : G ⋅ ∃ y : G ⋅ equ(op(x, y), ident) ∧ equ(op(y, x), ident) {
Theorems {

7 Indent Unique:
∀ x, y : G ⋅ equ(op(x, y), y)⇔ equ(x, ident);

9 Inv unique:
∀ a, b, c : G ⋅ equ(op(a, b), ident) ⇒ equ(op(b, a), ident);

11 Op Inverse:
∀ a, b, x, y : G ⋅ equ(op(a, x), ident) ∧ equ(op(b, y), ident) ⇔ equ(op(op(a, b), op(y, x)), ident);

13 Cancellation Law:
∀ a, b, c : G ⋅ equ(op(a, c), op(b, c))⇔ equ(a, b);

15 a squared equ a implies a equ ident:
∀ a : G ⋅ equ(op(a, a), a)⇒ equ(a, ident);

17 Inverse Func:
∃ inv : G→ G ⋅ (∀ x : G ⋅ equ(op(inv(x), x), ident));

19 }
}

Abelian Group:

Appendix C B♯ Theories 169

package Groups
2

Import Group.∗
4 From Operators Import Operators.∗

From Monoids Import CommMonoid
6

Class AbGroup[AG] : Group, CommMonoid {
8

}

Ring:
1 package Rings

3 From Groups Import AbGroup.∗
From Monoids Import Monoid.∗

5 From Relations Import Relations.∗

7 Class Ring[R] : Setoid (G : AbGroup<R>,M :Monoid<R>) where
∀ x, y, z : R ⋅ equ(M.op(x, G.op(y, z)), G.op(M.op(x, y),M.op(x, z)));

9 ∀ x, y, z : R ⋅ equ(M.op(G.op(y, z), x), G.op(M.op(y, x),M.op(z, x))); {

11 Theorems {
Zero theorem:

13 ∀ x : R ⋅ equ(M.op(x, G.ident), G.ident) ∧ equ(M.op(G.ident, x), G.ident);
}

15 }

References

[1] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press, 2010.

[2] Mark Adams. Introducing hol zero. In Komei Fukuda, Joris van der Hoeven, Michael
Joswig, and Nobuki Takayama, editors, Mathematical Software – ICMS 2010, pages 142–
143, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[3] Stuart F Allen, Robert L Constable, Rich Eaton, Christoph Kreitz, and Lori Lorigo. The
nuprl open logical environment. In International Conference on Automated Deduction,
pages 170–176. Springer, 2000.

[4] Egidio Astesiano, Michel Bidoit, Hélene Kirchner, Bernd Krieg-Brückner, Peter DMosses,
Donald Sannella, and Andrzej Tarlecki. Casl: the common algebraic specification lan-
guage. Theoretical Computer Science, 286(2):153–196, 2002.

[5] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification, pages 171–177, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.
Technical report, Department of Computer Science, The University of Iowa, 2015. Avail-
able at www.SMT-LIB.org.

[7] Howard Barringer, Jen H Cheng, and Cliff B Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21(3):251–269, 1984.

[8] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

[9] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd, 2016.

[10] Chris Bogdiukiewicz, Michael J. Butler, Thai Son Hoang, Martin Paxton, James Snook,
Xanthippe Waldron, and Toby Wilkinson. Formal development of policing functions for

171

172 REFERENCES

intelligent systems. In 28th IEEE International Symposium on Software Reliability En-
gineering, ISSRE 2017, Toulouse, France, October 23-26, 2017, pages 194–204. IEEE
Computer Society, 2017.

[11] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda – a functional language
with dependent types. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, Theorem Proving in Higher Order Logics, pages 73–78, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[12] Rod M Burstall. Proving properties of programs by structural induction. The Computer
Journal, 12(1):41–48, 1969.

[13] M. Butler, D. Dghaym, T. Fischer, T. S. Hoang, K. Reichl, C. Snook, and P. Tummeltsham-
mer. Formal modelling techniques for efficient development of railway control products.
In Alessandro Fantechi, Thierry Lecomte, and Alexander Romanovsky, editors, Reliability,
Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certifica-
tion, pages 71–86, Cham, 2017. Springer International Publishing.

[14] Michael J. Butler, Jean-Raymond Abrial, and Richard Banach. Modelling and refining
hybrid systems in Event-B and Rodin. In Luigia Petre and Emil Sekerinski, editors, From
Action Systems to Distributed Systems - The Refinement Approach., pages 29–42. Chapman
and Hall/CRC, 2016.

[15] Michael J. Butler and Issam Maamria. Practical theory extension in Event-B. In Zhim-
ing Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Programming and Formal
Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, volume
8051 of Lecture Notes in Computer Science, pages 67–81. Springer, 2013.

[16] Pierre Chartier. Formalisation of B in Isabelle/HOL. In International Conference of B
Users, pages 66–82. Springer, 1998.

[17] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68,
1940.

[18] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn Talcott. The maude 2.0 system. In International Conference on
Rewriting Techniques and Applications, pages 76–87. Springer, 2003.

[19] Luís Cruz-Filipe, HermanGeuvers, and FreekWiedijk. C-corn, the constructive Coq repos-
itory at nijmegen. In MKM, volume 3119 of Lecture Notes in Computer Science, pages
88–103. Springer, 2004.

[20] Haskell Brooks Curry, Robert Feys, William Craig, andWilliam Craig. Combinatory logic,
vol. 1. North-Holland Publ., 1958.

[21] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

REFERENCES 173

[22] Dana Dghaym, Matheus Garay Trindade, Michael Butler, and Asieh Salehi Fathabadi. A
graphical tool for event refinement structures in event-b. In Abstract State Machines, Alloy,
B, TLA, VDM, and Z: Proceedings of the 5th International Conference, ABZ 2016, Linz,
Austria, May 23-27, 2016 (23/02/16), pages 269–274, May 2016.

[23] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ report: The language, proof tech-
niques, and methodologies for object-oriented algebraic specification, volume 6. World
Scientific, 1998.

[24] Antoni Diller. Z: An introduction to formal methods. John Wiley & Sons, Inc., 1990.
[25] Guillaume Dupont, Y Aït-Ameur, Marc Pantel, and Neeraj Kumar Singh. Handling refine-

ment of continuous behaviors: A proof based approach with event-b. In 2019 International
Symposium on Theoretical Aspects of Software Engineering (TASE), pages 9–16. IEEE,
2019.

[26] John Fitzgerald, Juan Bicarregui, Peter Gorm Larsen, and Jim Woodcock. Industrial de-
ployment of formal methods: Trends and challenges. In Industrial Deployment of System
Engineering Methods, pages 123–143. Springer, 2013.

[27] Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathematische
zeitschrift, 39(1):176–210, 1935.

[28] Kurt Godel and George William Brown. The consistency of the axiom of choice and of
the generalized continuum-hypothesis with the axioms of set theory. Princeton University
Press Princeton, NJ, 1940.

[29] Joseph Goguen. Theorem proving and algebra. MIT, 1996.
[30] Joseph Goguen, Claude Kirchner, Hélène Kirchner, Aristide Mégrelis, José Meseguer, and

Timothy Winkler. An introduction to obj 3. In S. Kaplan and J. P. Jouannaud, editors,
Conditional Term Rewriting Systems, pages 258–263, Berlin, Heidelberg, 1988. Springer
Berlin Heidelberg.

[31] Joseph Goguen, Kai Lin, and C Rosu. Circular coinductive rewriting. In Automated Soft-
ware Engineering, 2000. Proceedings ASE 2000. The Fifteenth IEEE International Con-
ference on, pages 123–131. IEEE, 2000.

[32] Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C. Newey, and Christopher P.
Wadsworth. A metalanguage for interactive proof in LCF. In Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski, editors, Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson, Arizona, USA, January
1978, pages 119–130. ACM Press, 1978.

[33] Michael JC Gordon and Tom F Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

174 REFERENCES

[34] James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, andAlex Buckley. The Java Language
Specification. Addison-Wesley Professional, 2014.

[35] John V. Guttag and James J. Horning. The algebraic specification of abstract data types.
Acta Informatica, 10(1):27–52, 1978.

[36] FlorianHaftmann. Haskell-style type classes with isabelle. Technical report, Isar. Technical
report, Technische Universität München, 2014. http://www. cl . . . , 2007.

[37] T Hardin, P Francois, W Pierre, and D Damien. Focalize: tutorial and reference manual,
version 0.9. 1. CNAM/INRIA/LIP6, 2016.

[38] John Harrison. HOL light: A tutorial introduction. InMandayamK. Srivas and Albert John
Camilleri, editors, Formal Methods in Computer-Aided Design, First International Confer-
ence, FMCAD ’96, Palo Alto, California, USA, November 6-8, 1996, Proceedings, volume
1166 of Lecture Notes in Computer Science, pages 265–269. Springer, 1996.

[39] John Harrison. A machine-checked theory of floating point arithmetic. In Yves Bertot,
Gilles Dowek, Laurent Théry, André Hirschowitz, and Christine Paulin, editors, Theorem
Proving in Higher Order Logics, pages 113–130, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[40] John Harrison. Formal proof—theory and practice. Notices of the AMS, 55(11):1395–1406,
2008.

[41] John Harrison. Hol light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, pages
60–66, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[42] Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the american mathematical society, 146:29–60, 1969.

[43] Charles Antony Richard Hoare. Recursive data structures. International Journal of Com-
puter & Information Sciences, 4(2):105–132, 1975.

[44] Warren A Hunt Jr, Matt Kaufmann, J Strother Moore, and Anna Slobodova. Industrial
hardware and software verification with acl2. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 375(2104):20150399, 2017.

[45] Apple Inc. The Swift Programming Language. Apple Inc., 2019.
[46] Bart Jacobs and Tom Melham. Translating dependent type theory into higher order logic.

In International Conference on Typed Lambda Calculi and Applications, pages 209–229.
Springer, 1993.

[47] Michael Jastram and Prof Michael Butler. Rodin User’s Handbook: Covers Rodin v. 2.8.
CreateSpace Independent Publishing Platform, 2014.

REFERENCES 175

[48] Cliff B Jones. Systematic software development using VDM, volume 2. Citeseer, 1990.
[49] Clifford B. Jones. Systematic software development using VDM. Prentice Hall International

Series in Computer Science. Prentice Hall, 1986.
[50] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge

University Press, 2003.
[51] Matt Kaufmann and J Strother Moore. Design goals for ACL2. Computational Logic,

Incorporated, 1994.
[52] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of z in isabelle/hol. In

Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim Grundy, and
John Harrison, editors, Theorem Proving in Higher Order Logics, pages 283–298, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[53] Alexander Krauss. Defining recursive functions in Isabelle/HOL. In Proceedings of the
Isabelle Workshop, 2008.

[54] Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying formal specification in
industry. IEEE software, 13(3):48–56, 1996.

[55] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bibliopolis
Naples, 1984.

[56] José Meseguer, Joseph A. Goguen, and Gert Smolka. Order-sorted unification. Journal of
Symbolic Computation, 8(4):383–413, 1989.

[57] Christophe Métayer and Laurent Voisin. The event-b mathematical language. Systerel,
March, 2009.

[58] Robin Milner. Logic for computable functions description of a machine implementation.
Technical report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1972.

[59] Robin Milner. Models of lcf. Technical report, STANFORD UNIV CA DEPT OF COM-
PUTER SCIENCE, 1973.

[60] Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

[61] Tobias Nipkow. Order-sorted polymorphism in isabelle. Logical environments, pages 164–
188, 1993.

[62] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

176 REFERENCES

[63] Tobias Nipkow and Gregor Snelting. Type classes and overloading resolution via order-
sorted unification. In John Hughes, editor, Functional Programming Languages and Com-
puter Architecture, 5th ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Pro-
ceedings, volume 523 of Lecture Notes in Computer Science, pages 1–14. Springer, 1991.

[64] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype verification system.
In International Conference on Automated Deduction, pages 748–752. Springer, 1992.

[65] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In
Alan Bundy, editor, Automated Deduction - CADE-12, 12th International Conference on
Automated Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings, volume 814 of
Lecture Notes in Computer Science, pages 148–161. Springer, 1994.

[66] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer Science
& Business Media, 1994.

[67] Benjamin C Pierce. Advanced topics in types and programming languages. MIT press,
2005.

[68] Dag Prawitz. Natural deduction: A proof-theoretical study. Courier Dover Publications,
2006.

[69] Ken Robinson. A concise summary of the event b mathematical toolkit. Version April,
21:1996–2009, 2009.

[70] John Rushby, Sam Owre, and Natarajan Shankar. Subtypes for specifications: Predicate
subtyping in pvs. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

[71] Matthias Schmalz. Term rewriting in logics of partial functions. In Shengchao Qin and
Zongyan Qiu, editors, Formal Methods and Software Engineering - 13th International
Conference on Formal Engineering Methods, ICFEM 2011, Durham, UK, October 26-28,
2011. Proceedings, volume 6991 of Lecture Notes in Computer Science, pages 633–650.
Springer, 2011.

[72] Matthias Schmalz. Formalizing the logic of Event-B: Partial functions, definitional exten-
sions, and automated theorem proving. PhD thesis, ETH, 2012.

[73] Steve Schneider. The B-method: An introduction. Palgrave, 2001.
[74] Dana S Scott. A type-theoretical alternative to iswim, cuch, owhy. Theoretical Computer

Science, 121(1-2):411–440, 1993. Circulated privately in 1969.
[75] Thoralf Skolem. Einige bemerkungen zur axiomatischen begründung der mengenlehre. In

I̧teskolem:Swl, pages 137–52. 1922.
[76] Konrad Slind and Michael Norrish. A brief overview of hol4. In Otmane Ait Mohamed,

César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, pages
28–32, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

REFERENCES 177

[77] Colin Snook and Michael Butler. Uml-b: Formal modeling and design aided by uml. ACM
Transactions on Software Engineering and Methodology (TOSEM), 15(1):92–122, 2006.

[78] James Snook, Michael Butler, and Thai Son Hoang. Developing a new language to con-
struct algebraic hierarchies for event-b. In International Symposium on Dependable Soft-
ware Engineering: Theories, Tools, and Applications, pages 135–141. Springer, 2018.

[79] Matthieu Sozeau and Nicolas Oury. First-class type classes. In Otmane Aït Mohamed,
César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics,
21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008.
Proceedings, volume 5170 of Lecture Notes in Computer Science, pages 278–293. Springer,
2008.

[80] P. Stankaitis, G. Dupont, N. K. Singh, Y. Ait-Ameur, A. Iliasov, and A. Romanovsky.
Modelling hybrid train speed controller using proof and refinement. In 2019 24th In-
ternational Conference on Engineering of Complex Computer Systems (ICECCS), pages
107–113, 2019.

[81] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse mod-
eling framework. Pearson Education, 2008.

[82] Robert Roth Stoll. Set theory and logic. Courier Corporation, 1979.
[83] Bjarne Stroustrup. The C++ programming language. Pearson Education India, 2000.
[84] James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Data type specification: Pa-

rameterization and the power of specification techniques. In Richard J. Lipton, Walter A.
Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, STOC ’78, pages 119–132. ACM, 1978.

[85] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76. ACM, 1989.

[86] Markus Wenzel. Type classes and overloading in higher-order logic. In International
Conference on Theorem Proving in Higher Order Logics, pages 307–322. Springer, 1997.

[87] F Wiedijk. The seventeen provers of the world. lncs (lnai), vol. 3600, 2006.
[88] Freek Wiedijk. The qed manifesto revisited. Studies in Logic, Grammar and Rhetoric,

10(23):121–133, 2007.
[89] J Wiegand et al. Eclipse: A platform for integrating development tools. IBM Systems

Journal, 43(2):371–383, 2004.

178 REFERENCES

[90] Toby Wilkinson, Michael Butler, Martin Paxton, and Xanthippe Waldron. A formal ap-
proach to multi-UAV route validation. In Fourth International Workshop on Formal Tech-
niques for Safety-Critical Systems (FTSCS 2015), page 143.

[91] Ernst Zermelo. Untersuchungen über die grundlagen der mengenlehre. i. Mathematische
Annalen, 65(2):261–281, 1908.

	Acknowledgements
	1 Introduction
	1.1 System Modelling with Set Theory
	1.2 The Theory Plug-in
	1.2.1 InheritanceTheorem Reuse in Mathematics
	1.2.1.1 Inheritance via ProofApplying Abstract Types to Concrete Types
	1.2.1.2 Isomorphisms

	1.3 Abstraction in Software
	1.4 Limitations of the Rodin platform
	1.4.1 PhD Aims
	1.4.2 Contributions of this Thesis

	1.5 Structure of this Thesis

	2 Literature Review
	2.1 Type Theory and Theorem provers
	2.1.1 Higher-Order Logic
	2.1.2 Martin-Löf Languages
	2.1.3 Algebraic Specifications
	2.1.4 Focalize
	2.1.5 ACL2

	2.2 Language Features
	2.2.1 Datatypes
	2.2.2 Predicate Subtypes and Dependent Types
	2.2.3 Type Classes
	2.2.4 Partial Functions

	2.3 Modelling In Event-B
	2.3.1 Proofs

	2.4 Model Structure
	2.4.1 Refinement

	2.5 The Event-B Mathematical Language
	2.5.1 The Type System
	2.5.2 Operators
	2.5.3 Well-Definedness

	2.6 The Theory Plug-in Additions to Event-B
	2.6.1 Operators
	2.6.2 Theorems

	2.7 The Rodin Platform
	2.7.1 Theory Plug-in Proof Rules

	2.8 Conclusion

	3 Constructing Mathematical Theories in the Theory Plug-in
	3.1 Introduction
	3.2 Operators
	3.3 Monoid
	3.4 Naturals
	3.4.1 Naturals Definitions

	3.5 Back to Monoids
	3.6 Binary Numbers
	3.6.1 Equivalence Relation
	3.6.2 Subtyping for Equality

	3.7 Isomorphisms
	3.7.1 Defining the Isomorphism
	3.7.2 Using the Isomorphism

	3.8 Ordering
	3.9 Additional Features
	3.9.1 Proof Rules
	3.9.2 Theory Construction

	3.10 Lessons learnt From the Case Study

	4 Introducing B
	4.1 B by Example
	4.1.1 Datatypes
	4.1.2 Functions
	4.1.3 Class Declarations
	4.1.3.1 Required Elements

	4.1.4 Available Types in B
	4.1.5 Instances

	4.2 Extensions
	4.3 Naming, Scope, and File Structure
	4.3.1 Scope
	4.3.2 Naming
	4.3.3 Imports and Project Structures

	4.4 B Language Formal Presentation
	4.4.1 Datatypes

	4.5 Complete Formalisation

	5 Translating B to Event-B by Example
	5.1 Examples of Translation
	5.1.1 Datatypes
	5.1.2 Functions
	5.1.3 Class Declarations
	5.1.4 Quantifiers and Theorems
	5.1.5 Required Elements
	5.1.6 Methods
	5.1.7 Instances

	6 Core Translations
	6.1 Introduction
	6.2 Event-B Abstract Syntax
	6.3 Translation Language
	6.3.1 Data Structures
	6.3.2 Translation Functions
	6.3.3 Let Statements

	6.4 Mapping Declarations
	6.4.1 Class Declarations
	6.4.2 Mapping Parametric Types and Parameters
	6.4.3 Datatype Declarations
	6.4.4 Function Declarations
	6.4.5 Instances
	6.4.6 Mapping Types

	6.5 Expression Mapping
	6.5.1 Booleans to Predicates and Vice Versa
	6.5.2 Function Calls
	6.5.3 Quantifiers
	6.5.4 Theorems

	6.6 Conclusion

	7 Inference and Structure
	7.1 Generated Statements
	7.1.1 Function Typing
	7.1.2 Class paraType Inference
	7.1.3 paraType Substitution
	7.1.4 Instance Statements

	7.2 Naming, Scoping and Importing
	7.3 Conclusion

	8 Implementing B
	8.1 Implementation Tools
	8.2 Concrete Syntax
	8.3 Translation
	8.3.1 Naming

	8.4 Additional Features and Extensions
	8.4.1 Syntax Aware IDE
	8.4.1.1 Autocomplete
	8.4.1.2 Syntax Errors

	8.4.2 Imports
	8.4.3 Infix Functions
	8.4.4 Inferring Supertypes in Instances
	8.4.5 If/Else Statements

	8.5 Type Classes Implemented in B
	8.6 Generated Event-B
	8.7 Comparison With Other language
	8.8 Lessons and Conclusions
	8.8.1 Inheritance Syntax
	8.8.2 Type Class Typing
	8.8.3 Infix Functions
	8.8.4 Obsolete Theorems
	8.8.5 Conclusion

	9 Future Work
	9.1 Extending B With Event-B
	9.2 Reporting Event-B errors in B
	9.3 Facilitating Proofs
	9.3.1 Proof Rules
	9.3.1.1 Automatically Generated Rules

	9.3.2 Proof Rules From Expressions
	9.3.3 Proof Scripts

	9.4 Generating Abstract Event-B Types
	9.4.1 Operators From Simple Types
	9.4.2 Operators From Non-Simple Types
	9.4.2.1 Typed With Simple Classes
	9.4.2.2 Typed With Type Classes
	9.4.2.3 Functions

	9.4.3 Expressions

	9.5 Additional Operators
	9.6 Translating to Other Provers
	9.7 Implementing Future Work

	10 Conclusion
	A Additional Translation Functions
	A.1 Expanding Parametric Types
	A.2 Unary Types
	A.3 Finding The Correct Supertype
	A.4 Getting Inferred Types for Type Constructors

	B B Complete Syntax Definition
	C B Theories
	References

