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Abstract

We study a coordination game among agents in a network. The agents choose

whether to take action (e.g., adopting a new technology) in an uncertain envi-

ronment that yields increasing value in the actions of neighbors. We develop an

algorithm that fully partitions the network into communities (coordination sets)

within which agents have the same propensity to adopt. Our main finding is that

a novel measure of network connectedness, which we term “social connectedness”,

determines the propensity to adopt for each agent. Social connectedness captures

both the number of links each agent has within her community (interconnected-

ness) as well as the number of links she has with members of other communities

who have a higher propensity to adopt (embeddedness). There is a single coordi-

nation set if and only if the network is balanced —that is, the average degree of

each subnetwork is no larger than the average degree of the network. Finally, we

demonstrate that contagion is localized within coordination sets, such that a shock

to an agent uniformly affects this agent and all members of her coordination set

but has no impact on the other agents in the network.
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1 Introduction

In numerous real-world situations, agents make binary choices in an unknown state of the

world while being positively influenced by their neighbors. For example, in developing

countries, agents choose whether or not to adopt a new technology, such as a new crop

(Bandiera and Rasul 2006), weather insurance (Cai et al. 2015), or a new rice technology

(Islam et al. 2018), but the value/benefit of the technology is only partially known and

increases with peer adoption. Similarly, individuals decide whether to join a gym (Bab-

cock et al. 2020) or to participate in crime when the proficiency of the criminal, and thus

the likelihood of not getting caught, is unknown and increasing in terms of the criminality

of accomplices (Chalfin and McCrary 2017). In each of these examples, uncertainty in a

common state influences the value of adoption: the underlying value of the technology,

the strength or presence of the police force, and each binary decision is influenced by

peers’ decisions.

This paper is the first to study coordination issues with binary choices in these uncer-

tain environments in a network setting.1 The model employs the tools of global games

embedded in a network game. Players’ positions in the network define their preferences

regarding the action choices of others. Using the language of technology adoption, the

total value an agent receives from adopting the technology increases in the technology’s

underlying value (the state) and in its adoption by neighbors. Agents receive noisy signals

that inform them of the state. In equilibrium, agents further use their private information

to infer the observations and actions of neighboring agents and to anticipate the ultimate

value that they are likely to enjoy from adopting the technology. The classic equilibrium

selection of global games is obtained. In our setting with binary actions, the equilibrium

selected in the noiseless limit comes in the form of cutoff strategies. Agents adopt the

technology when their private signal exceeds their equilibrium cutoff, which is determined

by the agent’s position in the network.

We explore the role of the network’s architecture in determining who coordinates their

adoption choices with whom. Currently, there are no results in the literature describing

exactly who, as a function of the agents’ position in the network, takes a common action

together in the noiseless limit. The main methodological contribution of this paper is

to provide an exact prediction by putting forward the notion of coordination sets, which

provides a unique endogenous partitioning of the agents in a network. Agents within a

coordination set are path-connected and take a common cutoff strategy in order to adopt

the technology together.

Further, we develop an algorithm called the Sequential Average Network Density

(SAND) to fully characterize the equilibrium partitions and thresholds using the primi-

1In numerous situations, agents may have more than two choices. For example, when someone has to
decide whether or not to get insured, she may also decide which insurance to choose from a non-singleton
menu. In this paper, we focus our attention on binary actions because our aim is not to address general
coordination problems in discrete games with an arbitrary number of actions but rather to investigate
the impact of network structure on binary choices in coordination games.
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tives of the model: intrinsic valuations for adoption, network topology, and the strength

of network effects. In order to understand the manner in which the SAND algorithm

works, assume that all agents have the same intrinsic valuations for adoption; thus, their

only heterogeneity stems from their position in the network. First, the SAND algorithm

identifies the community (or coordination set) with the highest interconnectedness —that

is, the highest average number of links— as these members obtain the highest level of

network effects; thus, they will have the highest propensity to adopt in the network.

Then, for the remaining agents in the network, SAND determines the community that

maximizes both interconnectedness and the number of links to the first community; this

is referred to as embeddedness. Indeed, in order to have a high propensity to adopt, agents

need to be part of a well-connected community as well as to have a high average number

of edges with those who have a higher propensity to adopt. Communities that have both

high interconnectedness and embeddedness are referred to as highly socially connected.2

The SAND then continues until every agent in the network is part of a community (or

coordination set). In a nutshell, the SAND algorithm creates an order of a set of play-

ers based on their index of social connectedness and shows how to divide the agents in

terms of their marginal contributions to this index. This order defines a partition of co-

ordination sets within which cutoff strategies are uniform. When we introduce different

intrinsic valuations for adoption, the SAND algorithm proceeds in the same manner but

maximizes the sum of network effects and these valuations.

Contrary to the standard network games with complementarities in actions and per-

fect information (e.g., Ballester et al. 2006; Bramoullé et al. 2014) in which Katz-Bonacich

centrality totally determines agents’ actions, we show that, in certain networks, agents

with a lower Katz-Bonacich centrality can have a higher propensity to adopt if they are

well embedded with agents in coordination sets that have an even higher propensity to

adopt. The novel conceptual contribution of our model is that it enables us to create a

precise connection between network structure and the propensity to adopt; specifically, it

reveals how community structure and an agent’s particular links interact in determining

her “social connectedness.” This provides a more nuanced picture of adoption patterns

under vanishing uncertainty as compared to the conventional Katz-Bonacich centrality

(Ballester et al. 2006). Moreover, the distinction from the Katz-Bonacich centrality pro-

vides a general insight regarding why underlying uncertainty complicates agents’ adoption

decisions and the consequent adoption pattern. Indeed, it turns out that both links within

a coordination set (interconnectedness) and between coordination sets (embeddedness)

are of significance when agents face sufficient incentive to adopt. For the former, agents

must form expectations regarding their neighbors adopting within the same coordination

set, while for the latter, they put a probability of either 0 (lower-propensity coordination

sets) or 1 (higher-propensity coordination sets) on these neighbors adopting. The SAND

algorithmic solution untangles this added complication due to uncertainty by identifying

2Bailey et al. (2018) were the first to empirically introduce the notion of social connectedness; however,
it is not microfounded and corresponds to our notion of embeddedness.
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the community boundaries that are of significance for the adoption decision. In particu-

lar, the notion of “social connectedness” simplifies the network coordination analysis and

enables us to condense the problem down to dividing the network into communities.

We study the role of network structure on adoption by considering the case of homoge-

neous values, where the network alone introduces (ex-ante) heterogeneity across agents.

We provide an exact characterization for which a single coordination set exists in the

network. This condition requires that the network structure must be balanced, that is,

the average degree of each subnetwork (comprising any nonempty subset of agents in the

network) is not greater than the average degree of the entire network.3 This characteri-

zation implies that, remarkably, agents with very different positions in the network may

belong to the same coordination set. For example, in a star network, regardless of the

number of peripheral agents, all agents coordinate together, thereby implying that they

have the same propensity to adopt. The same is true for regular networks, tree networks,

regular bipartite networks, and those that have a maximum of four agents.

Thereafter, we explore the policy implications of our model. We first investigate

how equilibrium coordination is adjusted as intrinsic valuations change. We show that

small shocks to intrinsic valuations do not change the coordination set partition, but

they do change the adoption thresholds for the agents within the coordination sets that

are affected by the shocks. Strikingly, perturbations are shown to influence equilibrium

adoption only across members within the perturbed agents’ coordination set. Thus, the

contagion of such perturbations extends within coordination sets but does not spread

across other coordination sets: contagion is local.

We then study the marginal gains of subsidizing intrinsic valuations to a policy de-

signer aiming at maximizing either (i) ex-ante adoption or (ii) welfare under a budget

constraint. We show that, for a sufficiently small budget, the marginal impact of these

targeted policies is independent of the particular target selected from the target’s co-

ordination set. In other words, optimal policy design becomes a problem of targeting

a given coordination set rather than a particular agent. Strikingly, under certain con-

ditions on primitives, the adoption- and welfare-maximizing planner targets opposite

extremes; the former targets the coordination set where agents take the highest cutoff,

while the latter targets the coordination set where agents take the lowest cutoff. Indeed,

the welfare-maximizing planner incorporates the effect of the intervention on both equi-

librium adoption and externalities, while the adoption-maximizing planner values only

its effect on the former.

We also study policies that aim at changing the structure of the network. First, we

investigate the key-player policy —that is, finding players who, once removed, reduce

3Observe that our balance condition characterizing networks with a single coordination set resembles
the necessary and sufficient conditions for a single social status class to emerge in the setting of Immorlica
et al. (2017) and for the law of one price to hold in Manea (2011). However, these models are rather
different from ours. In Immorlica et al. (2017), the actions are continuous and the information is complete;
thus, there are multiple equilibria, which lead to different implications (see our discussion in Section J).
In addition, the shortage ratio of Manea (2011) shares the averaging functional of our SAND algorithm.
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total crime or adoption the most. In the standard key-player policy (Ballester et al.

2006), what matters the most is the complementarity in actions between agents; thus,

the key players are the agents who generate the highest level of spillovers to themselves

and to others. In our model, we also have complementarity in actions. However, in

addition to this, there is a coordination problem since agents do not know with certainty

whether their neighbors will adopt (or commit a crime); thus, they do not know the level

of complementarity in the actions to which they are exposed. As stated above, the social

connectedness of each agent determines who has the highest propensity to adopt; it also

indicates who the key players are. Second, we determine how adding links in a network

affects adoption. We show that, under certain conditions, adding links between agents

from different coordination sets does not affect the cutoff of agents from the coordination

set with the lower cutoff. However, it reduces the cutoff of agents from the coordination

set with the higher cutoff.

Finally, we show that our results significantly differ from those of the studies on com-

plete information (Milgrom and Roberts 1990; Vives 1990), in which multiple equilibria

prevail and where the customary equilibrium selection, which focuses on either the biggest

or the smallest possible sets of players taking action, is rather arbitrary. Compared to

these studies, we provide a clean, elegant method for selecting equilibria. We show that

our unique equilibrium can correspond to neither the maximum nor minimum equilib-

rium and that the comparative statics properties as well as the policy implications can

be very different in these two types of information settings.

Our paper contributes to the global games literature. Carlsson and van Damme (1993)

first exhibited a selection device for global games of two players and two actions.4 Frankel,

Morris, and Pauzner (2003) extended the result to arbitrary games of strategic comple-

ments. In a two-sided environment, Morris and Shin (1998) provided closed forms to their

common limit-equilibrium cutoff to studying the interaction of a government defending a

currency from a continuum of currency speculators. In the global games literature, most

papers consider binary action global games with symmetric and supermodular payoffs.

However, there are remarkably few papers that look at the extensions with asymmetric

payoffs across players. There are certain papers with heterogeneous payoffs but paramet-

ric assumptions that ensured a single coordination set (Corsetti et al. 2004; Guimaraes

and Morris 2007; Sákovics and Steiner 2012 are examples). In particular, Sákovics and

Steiner (2012) studied the policy impact of a global game with a continuum of agents

who value an agent-weighted average action. However, a number of papers have exam-

ined cases in which there are multiple coordination sets but with different parameterized

classes of payoffs than ours —including Dai and Yang (2019), Abadi and Brunnermeier

(2018), Drozd and Serrano-Padial (2018), and Serrano-Padial (2018).5

4They show that the risk-dominant equilibrium is selected in these games.
5In particular, Dai and Yang (2019) studied a similar model to that of Sákovics and Steiner (2012),

in which the continuum of agents carries private information regarding idiosyncratic costs of adoption,
incorporating multiple cutoffs in the noiseless limit. In this setting, the authors focus on the role of
organizations in mitigating miscoordination.
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Compared to this literature, the network structure introduces heterogeneity through

the agents’ network positions. In addition, the application to a network coordination

setting grounds the abstract results from general global games (e.g., Frankel et al. 2003)

in an interpretable environment that enables us to more clearly interpret the implications

of the global games structure.6

Our equilibrium characterization in terms of coordination sets is also related to other

network models, which also partition agents into endogenous community structures, in-

cluding risk-sharing (Ambrus, Mobius, and Szeidl 2014), information resale and inter-

mediation (Manea 2021), and interaction between market and community (Gagnon and

Goyal 2017). However, the driving forces and policy implications are very different.

More broadly, this paper adds to the growing literature on network games.7 In numer-

ous situations in which networks are of significance, agents make both binary decisions

(extensive margin) and quantity decisions (intensive margin). Consider, for example,

crime. First, an individual has to decide whether to become a criminal; this is a binary

decision (extensive margin). Then, if he becomes a criminal, he must decide how many

crimes to commit (intensive margin). The literature on network games has mostly focused

on the intensive margin by assuming that actions are continuous. With strategic com-

plements in actions and complete information, a unique equilibrium is usually obtained

under certain condition on the eigenvalues of the network (see, e.g., Ballester et al. 2006

and Bramoullé et al. 2014);8 agents with more connections (in terms of degree/Katz-

Bonacich/eigenvector centrality) exert higher effort.9 In the present paper, we focus on

the extensive margin by assuming binary actions. We also assume strategic complements

under incomplete information. We show that, in the noiseless limit of our game, there

is a unique equilibrium that we are able to characterize in terms of coordination sets.

Further, we show that it is not only a larger number of connections (interconnectedness)

but also connections to coordination sets with lower cutoffs (embeddedness) that are of

significance.

Finally, we contribute to the literature on both network and global games by making

predictions in terms of adoption curves that substantially differ from leading alternatives

6Our results also have bearing on those of the studies on network contagion and community structure
(Chwe 2000; Morris 2000; Oyama and Takahashi 2015; Jackson and Storms 2017); however, our focus
is mainly on partitioning the network into coordination sets, while these studies examined coordination
games on a network to determine when a convention spreads contagiously from a finite subset of players
to the entire population in certain networks.

7See Jackson (2008) chapter 9, Jackson and Zenou (2015), and Bramoullé and Kranton (2016) for
surveys.

8Indeed, in network games with strategic complementarities and complete information (e.g., Ballester
et al. 2006), the uniqueness of equilibrium is guaranteed by an (largest) eigenvalue condition, which
requires that the strength of complementarities (positive cross-effects) is smaller than own-concavity.
Ollar and Penta (2017, 2019) generalized this result for general incomplete information structure, both
with and without a common prior, and for general payoff functions that satisfy weak concavity and
smoothness requirements.

9There is also more recent literature on network games with incomplete information (see, in particular,
Calvó-Armengol and de Mart́ı 2007, Galeotti et al. 2010, Calvó-Armengol et al. 2015, de Mart́ı and Zenou
2015, Golub and Morris 2017a,b, Myatt and Wallace 2019, Leister 2020).
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in these two literatures. Indeed, our model generates adoption that is neither smooth nor

fully coordinated but comes in batches. In other words, the share of agents who adopt as

a function of the price is neither a continuous function (as, e.g., in Ballester et al. (2006))

nor a jump at a single threshold (as, e.g., in Sákovics and Steiner (2012)), but instead a

step function. This prediction is unique to our model.

2 Model setup

A finite set of agents N , connected via a network G = (N,E), simultaneously choose

whether or not to adopt a technology.10 E defines the set of edges between unordered

pairs ij taken from N . We assume a connected and undirected graph: i ∈ Nj if and only

if j ∈ Ni, where Ni ≡ {j : (i, j) ∈ E} is the set of i’s neighbors, and di ≡ |Ni| her degree.

Let ai ∈ Ωi ≡ {0, 1} denote agent i’s binary choice: ai = 1 implies that agent i adopts,

while ai = 0 implies that she does not adopt.

Payoffs from adopting the technology depend on the action profile a = (a1, . . . , a|N |) ∈∏
i∈N Ωi and the underlying fundamental state θ ∈ Θ, where Θ is a bounded interval in

R. Specifically, we assume each i obtains the following payoff:11

ui(a, θ) =

{
vi + θ + φ

∑
j∈Ni

aj if ai = 1,

0 if ai = 0,
(1)

where vi ∈ R, and φ > 0. Here, vi provides the intrinsic (state-independent) value to i

from adopting, θ the state dependent value, with the adoption of each of i’s neighbors

having a positive influence on the value of technology. The externality benefit in (1) is

equal to φ
∑

j∈Ni
aj, which is referred to as the local-aggregate model in the network games

literature (Topa and Zenou 2015). Alternatively, we can consider the local-average model,

in which the network externality is equal to the proportion of adopting neighbors rather

than to their absolute number —that is, φ(
∑

j∈Ni
aj)/di. We discuss this alternative

model in Section H.6 in the Online Appendix. In particular, we show that, in the local-

average model, if vi = v for all i, for any network structure, all agents adopt or do not

adopt together.12 Further, a more general model with weighted networks is analyzed in

Section H.3 in the Online Appendix.

Dominance regions and multiplicity of equilibria. In the stage game where θ is commonly

10For the sake of the exposition, we use the example of technology adoption but, of course, all results
subsume arbitrary binary action sets.

11In Section H.4 in the Online Appendix, we consider a slightly different utility function in which agents
face miscoordination costs in their adoption choices, while in Section H.5, we introduce non-strategic
externalities in the utility function. In both cases, we show that our main results still hold.

12Ushchev and Zenou (2020) obtained a similar network-independent result in a continuous action,
local-average network model. Among other things, they showed that, if all agents are ex-ante identical
(vi = v for all i), the network position does not matter, and all agents exert the same effort and adopt
the same social norm.
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known among agents, each agent i has a dominant strategy to adopt (not to adopt) when

θ is sufficiently high (low). For each i, we assume vi and φ are such that there exist θi and

θi in the interior of Θ, such that vi + θ+φdi < 0 when θ < θi and vi + θ > 0 when θ > θi.

Thus, there exist dominant regions [min Θ, θ] and [θ,max Θ], with θ ≡ mini∈N{θi} and

θ ≡ maxi∈N{θi} such that not adopting and adopting the technology (respectively) are

dominant strategies for all players. Obviously, when θ lies within the dominance regions, a

unique Nash equilibrium is obtained; when θ lies outside the dominance regions, multiple

pure strategy Nash equilibria may occur.

In this paper, we adopt the global game approach for equilibrium selection (see, e.g.,

Carlsson and van Damme 1993 and Frankel et al. 2003). In Section G.2 in the Online

Appendix, we provide a detailed discussion and justification of these selection criteria and

present an alternative yet equivalent selection from the perspective of potential games.

Information structure and the perturbed game. Following the global games literature,

we perturb the stage game of complete information into a Bayesian game of incomplete

information. In the perturbed game, the common state, θ, is observed with noise by all

agents.13 Each i receives a private signal si = θ + νεi, ν > 0, where εi is distributed

via density function g and cumulative function G with support [−1, 1]. All signals are

independently drawn across agents conditional on θ. The agents share a common prior

belief regarding θ, which is denoted by the CDF H(·) with continuously differentiable

density h(·) > 0.14 For each ν > 0, we write Γν for the corresponding global game.15 We

are interested in the perturbed game Γν for ν close to zero.16

3 Equilibrium analysis

3.1 Limiting equilibrium and coordination sets

We formally introduce the global games machinery to determine the limiting equilibrium.

We first analyze the Bayesian Nash equilibrium of Γν for each ν > 0. Then, we determine

the limit of the equilibrium as ν approaches zero. Here, we apply standard results in the

literature (see, e.g., Carlsson and van Damme 1993 and Frankel et al. 2003) to obtain

13Here, we introduce small noises to θ but not to {vi}i∈N . In Section I in the Online Appendix, we
consider an extension in which both θ and vi are perturbed. All of our results continue to hold in this
extension as perturbations shrink to zero.

14The prior distribution H is inconsequential for the limiting equilibrium characterized in Theorem 1
(e.g., Sákovics and Steiner (2012) assume agents hold a dispersed prior of θ). However, H affects the
analysis of policy interventions in Section 5.1.

15The assumption of a common noise structure is without loss of generality, as the limit-equilibrium
selection is robust to arbitrary, idiosyncratic Fi (see Section H.2 in the Online Appendix). Moreover, all
results in the limit hold under unbounded supports —for example, Gaussian state and noise (see Section
H.1 in the Online Appendix).

16Because, as in all global games models, we use incomplete information as a means of equilibrium
refinement, the critique of Weinstein and Yildiz (2007) applies here: introducing even small amounts of
higher-order uncertainty can enable us to select other equilibria. This is a common critique of the global
games literature that we acknowledge.
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the existence and essential uniqueness of the limiting equilibrium, thereby deferring the

explicit characterization of the limiting equilibrium to Section 3.2.

A strategy for i is a measurable function πi that assigns a probability mixture on

Ωi = {0, 1} to each signal si of player i in Γν . We let Sνi = [min Θ− ν,max Θ + ν] be the

set of all possible signals for i and Πν
i denote the set of strategies for i, and we write πi(si)

for the probability that πi is assigned to action 1 at si. We write π ≡ (π1, . . . , π|N |).

Let Uν
i (π−i|si) denote the expected payoff for action ai = 1 when agent i observes si

and each j 6= i uses strategy πj:
17

Uν
i (π−i|si) = vi + E [θ|si] + φ

∑
j∈Ni

E[πj(sj)|si].

In other words, i takes expectations of the state and of her neighbors’ actions, conditioning

on her private signal si. Since the payoff for action ai is zero, an optimal strategy for i

is to set πi(si) = 1 when Uν
i (π−i|si) > 0 and to set πi(si) = 0 when Uν

i (π−i|si) < 0. We

use the indicator function

πi(si) = I(si ≥ ci) =

{
1 if si ≥ ci
0 if si < ci

to denote agent i’s cutoff strategy at ci ∈ Sνi . Then, a Bayesian Nash Equilibrium π∗ν of

Γν in cutoff strategies with π∗νi = I(si ≥ c∗νi ) for each i must satisfy18

Ui(π
∗ν
−i|si = c∗νi ) = 0, ∀i ∈ N, (2)

with each i indifferent between adopting and not adopting when observing signal si equal

to her equilibrium cutoff c∗νi . Indeed, a standard fixed-point argument reveals that a

pure Bayesian Nash Equilibrium of Γν in cutoff strategies always exists for ν > 0. The

properties of the limit of π∗ν as ν tends to zero are formally presented in Theorem 1 in

Frankel et al. (2003) (which is stated in Proposition 0 in Appendix B). The vector of

limiting state cutoffs θ∗ = (θ∗1, · · · , θ∗|N |) ≡ (limν→0 c
∗ν
i )i∈N fully determines the limiting

equilibrium π∗ = (π∗1, · · · , π∗|N |), with each i choosing to adopt when θ rises above θ∗i
—that is, π∗i = I(θ ≥ θ∗i ). The uniqueness of π∗ in Proposition 0 in Appendix B implies

that the limiting cutoffs θ∗ are unique.

The ranking of the limiting cutoffs determines who has a higher propensity to adopt

by taking a lower cutoff and who has a lower propensity to adopt with a higher cutoff.

The next definition reveals a nice structure that captures the behavior of agents in the

limiting equilibrium.

17Observe that, in our model, there is no learning over time. Each individual makes a once-and-for-all
decision that involves coordination problems with her friends’ decision. We do not model the learning
and dynamic aspect of this decision. Hak (2019) develops a dynamic learning model by showing how
establishments slowly adopt slot machines over a few years.

18In other words, Ui(π
∗ν
−i|si = c∗νi ) = vi + E [θ|c∗νi ] + φ

∑
j∈Ni

E[I(sj ≥ c∗νj )|c∗νi ] = 0 for every i ∈ N .
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Definition 1 (Coordination sets). The limiting cutoffs θ∗ map to a unique partition

C∗ = {C∗1 , . . . C∗M} of N that satisfy:

(i) ∀m ∈ {1, · · ·M}, ∀i, j ∈ C∗m, we have θ∗i = θ∗j ;

(ii) for all (i, j) ∈ E satisfying θ∗i = θ∗j , there is some m ∈ {1, . . . ,M}, such that

i, j ∈ C∗m.

Each element C∗m, m = 1, 2, · · · ,M, of the partition C∗ is called a coordination set.

This definition (i) implies that agents in the same coordination set have the same cutoffs.

Item (ii) requires that any pair of directly connected agents sharing the same cutoff must

be in the same coordination set. Item (i) guarantees that agents with distinct cutoffs

cannot coexist in the same coordination set, while item (ii) eliminates the fact that one

could have singletons for reasons other than everybody adopting a different threshold.

Obviously, the limiting cutoffs θ∗ naturally map to a unique partition C∗ thereby satisfying

Definition 1 (i) and (ii).19

Remark 1. The global games approach that we employ functions as an equilibrium se-

lection device. Indeed, π∗(θ) is a Nash equilibrium of the stage game (with complete

information) at θ.20

The result of Frankel et al. (2003) proves the existence and essential uniqueness of

the equilibrium, but it cannot be used to derive a characterization of equilibrium cutoffs

and coordination sets in our network setting. This is the subject of the next section.

3.2 An algorithmic approach

We provide an algorithm to explicitly characterize the equilibrium cutoffs. To this end,

we define F (·), a mapping from 2N to R, in the following manner:

F (S) ≡ v(S) + φe(S), for any S ⊂ N, (3)

where v(S) ≡
∑

i∈S vi, and e(S) is the number of edges between members of S. Formally,

e(S) ≡ 1
2

∑
i∈S di(S), where di(S) ≡ |Ni∩S| denotes the within-degree of i, or the number

of edges between i and the members of agent set S. In other words, F (S) captures the

total internal intrinsic value plus network effects for agents in S. The interpretation of

F (·) will be evident after we explain the close link between the equilibrium conditions for

agents at cutoffs and the SAND algorithm introduced below.21

19Since θ∗ is unique according to Theorem 1 in Frankel et al. (2003) (which is stated in Proposition 0
in Appendix B), the partition C∗ is well defined by Definition 1.

20This well-known result follows from the upper semicontinuity of the equilibrium correspondence,
which relies on the continuity of prior density and noise density. In our setting, the selected equilibrium
corresponds to the maximizer of a potential function of the stage game and has several appealing features
(see further discussion in Remark 4 and Section G.3 in the Online Appendix).

21A major property of F (·) is supermodularity. In other words, for any S, T ∈ 2N , F (S∩T )+F (S∪T ) ≥
F (S) + F (T ). See Lemma 4 in Appendix C. Observe that A∗1 is well defined because we prove that, by
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Algorithm 1 (Sequential Average Network Density (SAND)).

Step 1.

A∗1 = argmax
S)∅

F (S)

|S|
.

(If there are multiple maximizers, we set A∗1 to the largest maximizer.

Step k.

A∗k = argmax
S)A∗k−1

F (S)− F (A∗k−1)

|S| − |A∗k−1|
. (4)

(If there are multiple maximizers, we set A∗k to the largest maximizer.)

Continue until A∗k = N .

The SAND algorithm partitions the network into communities or coordination sets

(Definition 1), where, within each community, all agents have the same propensity to

adopt. Indeed, when the noise of the signal vanishes, the total expected value of adoption

within a community S is equal to F (S); thus, F (S)/|S| is the average of this value.

Consequently, the SAND will first search for A∗1, the subset S of agents that maximizes

F (S)/|S|. After knowing A∗1, the algorithm continues and, in step 2, searches for S = A∗2,

a proper superset of A∗1, with the next largest (F (S)− F (A∗1)) /|S −A∗1| conditioning on

the inclusion of A∗1. Indeed, contrary to step 1, in step 2, the algorithm must take into

account the fact that certain members of A∗2\A∗1 have links to members of A∗1 because

the former benefit in terms of network spillovers of being neighbors to agents who have a

higher propensity to adopt. Therefore, the expected value of adoption depends both on

links within the coordination set A∗2\A∗1 and on links between coordination sets —that

is, between A∗2\A∗1 and A∗1. The SAND then continues until step k, when all agents in

the network have been selected —that is, when A∗k = N .

Let t∗[k] denote the maximum value obtained in step k:

t∗[k] =
F (A∗k)− F (A∗k−1)

|A∗k| − |A∗k−1|
. (5)

Observation 1. The SAND algorithm terminates in finite K ≥ 1 steps. Furthermore,

it yields a sequence of strictly nested sets,

∅ ( A∗1 ( A∗2 ( · · · ( A∗K = N, (6)

and a sequence of strictly decreasing numbers,

t∗[1] > t∗[2] > · · · > t∗[K]. (7)

the supermodularity of F (·), the union of any two maximizers is again a maximizer and, therefore, the
maximal maximizer exists; a similar argument holds for each step k (see Observation 3 in Appendix C).
Further, for generic v, multiple maximizers cannot occur and, thus, a unique maximizer is obtained in
each step (see Observation 5 in Appendix C).
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Observation 1 is intuitive. First, 1 ≤ K ≤ |N |, as at each step the cardinality of

A∗k increases by at least one. Second, the strict monotonicity of the maximum value,

t∗[k], in k follows from a simple optimization argument. To illustrate this point, consider

k = 1. Since A∗1 is the largest maximizer in step 1 of the SAND algorithm, A∗2 cannot be

a maximizer in step 1, thereby implying that F (A∗1)/|A∗1| > F (A∗2)/|A∗2|, and t∗[1] > t∗[2].

Extending this logic to any step k yields the monotonicity of sequence t∗[k] in (7). The

sequence of sets in (6) is closely related to coordination sets in Definition 1, while the

sequence of numbers in (7) is tightly linked to cutoffs, as illustrated in Theorem 1.22

Definition 2. Agent i is said to be found in step k if i ∈ A∗k\A∗k−1 (defining A∗0 = ∅).

Theorem 1 (Main Equilibrium Characterization). Suppose agent i is found in step k in

the SAND algorithm. Then, her equilibrium cutoff θ∗i satisfies

θ∗i = −t∗[k]. (8)

Theorem 1 provides a simple algorithmic characterization of the limiting equilibrium

using the model primitives (v, φ,G) and indicates that an agent’s cutoff is exactly equal

to the negative value of the maximum obtained in the step of the SAND algorithm where

she is “found.”

We discuss several features of the SAND algorithm and illustrate how it works in two

examples. The economic and empirical implications of Theorem 1 are investigated in

Section 3.4.

Remark 2. The computational complexity of the SAND algorithm is polynomial, which

is an appealing feature that makes the computation of equilibrium cutoffs and coordination

sets very fast, even for very large networks.23

Remark 3. Theorem 1 also confirms that the limiting equilibrium π∗ is unique and is

independent of the noise distribution, as the algorithm does not use any details about

the noise distribution. Although these uniqueness and noise independence results are

established in a more general setting in Frankel et al. (2003), our approach using the

SAND algorithm provides more direct and informative proofs of such results in our setting.

Remark 4. The SAND algorithm is closely related to an alternative equilibrium charac-

terization using the potential function in Section G.3. By Frankel et al. (2003), the global

game machinery selects the maximizer of the potential P (a, θ) for generic θ (see equation

22Observe that SAND is similar to the algorithms in Manea (2011) and Immorlica et al. (2017) in
that it identifies the players with the most extreme equilibrium actions/payoffs, and then applies the
same procedure to the remaining network, which can either be analyzed independently or taking the
equilibrium actions/payoffs of “extreme” players as given. The measures driving equilibrium outcomes
in our model —interconnectedness and embeddedness— have analogues in the algorithms of these papers:
shortage ratio in the case of Manea (2011) and cohesion in Immorlica et al. (2017).

23Note that, in each step of SAND, the program (4) is a combinatorial optimization problem that is
solvable in polynomial time by supermodularity of F (·) (see, e.g., Fujishige 2005). The total number of
steps, K, is at most |N |. Thus, SAND can be computed in polynomial time.
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(G.7)). Thus, we can effectively infer the cutoffs of agents by identifying the potential

maximizers at every state. In Theorem G2 in the Online Appendix, we formally show

how the SAND algorithm is used to determine the state-wise potential maximizer under

this alternative characterization.

Remark 5. Theorem G1 in the Online Appendix G.1 provides an alternative charac-

terization of the equilibrium thresholds θ∗ by solving a simple constrained convex min-

imization program.24 In contrast to the discrete nature of the SAND algorithm, this

minimization problem is continuous. This program is less demanding to compute than

the SAND algorithm because it is a simple convex program with linear constraints. The

solution can be viewed as the dual to the SAND algorithm and provides an alternative

interpretation to our limit equilibrium.

To illustrate the SAND algorithm, we provide two examples using the networks in

Figure 1. For simplicity, in both examples, we set φ = 1 and vi = 0 for every i, so

F (S) = e(S).

Figure 1: Coordination and network structure

Example 1. For the star network in Figure 1(a), the SAND algorithm terminates in

step 1:25

S {c} {c, 1p} {c, 1p, 2p} N

e(S)/|S| 0 1/2 2/3 3/4

Example 2. For the quad-core-periphery network in Figure 1(b), the SAND algorithm

terminates in two steps. In step 1, A∗1 = {1c, 2c, 3c, 4c}, as shown in the table below:

24In a different context, Nguyen (2015) also developed a new technique based on convex programming
to characterize the unique stationary equilibrium payoff in the setting of Manea (2011).

25There is a unique coordination set as A∗1 = N . Note that t∗[1] = e(N)/|N | = 3/4.
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S {1c, 2c, 3c} {1c,2c,3c,4c} {1c, 2c, 3c, 4c, 1p} N

e(S)/|S| 3/3 6/4 7/5 10/8

In step 2, the algorithm terminates with A∗2 = N .26

3.3 The main idea of the proof of Theorem 1

The intuition underlying Theorem 1 lies in connecting the agents’ indifference conditions

at the equilibrium cutoffs with the combinatorial maximization programs in SAND.

First, each agent i must be indifferent between adopting or not at her cutoff. Taking

the limit of equilibrium condition (2) yields the following equation for i:

θ∗i + vi + φ
∑
j∈Ni

w∗ij = 0, ∀i ∈ N. (9)

In other words, the intrinsic value of adopting vi plus the aggregate of w∗ij over i’s neigh-

bors must equal −θ∗i , the minus of i’s cutoff, where

w∗ij = lim
ν→0

E[I(sj ≥ c∗νj )|si = c∗νi ] (10)

yields the limit of the conditional probability of agent j adopting (i.e., j’s signal sj is

above c∗νj ) when agent i’s signal si is at her cutoff c∗νi . Clearly, 0 ≤ w∗ij ≤ 1.

Lemma 1. For each (i, j) ∈ E,

(i) the following identity holds:

w∗ij + w∗ji = 1, (11)

(ii) If, in addition, θ∗i < θ∗j , then

w∗ij = 0, and w∗ji = 1. (12)

An identity similar to (11) is presented in Carlsson and van Damme (1993) and plays

a key role in the proof of their main theorem of selecting risk dominance equilibrium

in the two-player setting.27 We provide the intuition of (11) along similar lines as in

Carlsson and van Damme, as Lemma 1, similar to their setting, involves a pair of players.

Consider two thresholds x1 and x2, and let ε = ν(ε2 − ε1) be the difference of the two

players’ idiosyncratic signal errors. Let G be the CDF of ε. Upon receiving signal s1 = x1,

agent 1 attaches probability 1−G(x2−x1) to player 2 adopting.28 Upon observing signal

26Note that t∗[1] = e(A∗1)/|A∗1| = 6/4 = 1.5 and t∗[2] =
e(N)−e(A∗1)
|N |−|A∗1 |

= (10− 6)/(8− 4) = 1.
27See equation (4.1) on page 997 and Lemma 4.1 on page 999 in Carlsson and van Damme (1993).

Technically, this Lemma is fundamentally driven by the common belief assumption among players. See
Morris, Shin, and Yildiz (2016) and Morris and Yildiz (2019) for more discussion.

28That is, E[s2 ≥ x2|s1 = x1] = Pr(x1 − νε1 + νε2 ≥ x2) = 1−G(x2 − x1).
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s2 = x2, agent 2 attaches probability G(x2 − x1) to player 1 adopting.29 Thus, these

two probabilities add up to 1. To understand the intuition of (12), assume that θ∗i < θ∗j .

Then, when player i observes the signal at i’s threshold, she infers that the state is almost

θ∗i for ν > 0 small and that j is not going to adopt almost surely (recall j’s threshold is

strictly higher than i’s). Consequently, in the limit as ν → 0, w∗ij = 0.

The pairwise information in Lemma 1 regarding these weights w∗ij is central to our

analysis. We differ from Carlsson and van Damme (1993) with two players in that in

our network setting, we would like to aggregate this pairwise information over a subset

of agents to build a link between the SAND algorithm and equilibrium cutoffs.

Second, we use Lemma 1 to show that, for any S,

F (S)/|S| ≤ −θ[1],

that is, the negative of the lowest cutoff θ[1] ≡ minj∈N θ
∗
j provides an upper bound of the

average F over S. This inequality, shown in Lemma 5 in Appendix C, builds an interesting

link between the lowest cutoff and the maximization program in step 1 of SAND, and it

follows simply by summing up the agents’ equilibrium conditions (equation (9)) over S:

0 =

(∑
i∈S

θ∗i

)
︸ ︷︷ ︸
≥|S|θ[1]

+

(
v(S) + φ

∑
i∈S

∑
j∈Ni

w∗ij

)
︸ ︷︷ ︸

≥v(S)+φe(S)=F (S)

. (13)

The first inequality in (13) is obvious, since θ[1] is the lowest cutoff. The second inequality

follows, as each link among the members of S contributes φ in the double summation

above by Lemma 1, and these extra terms in the summation are non-negative.

In fact, the upper bound −θ[1] is achievable for S = A1 = {i ∈ N |θi = θ[1]} (the set

of agents with the lowest cutoff), as both inequalities in (13) are equalities for A1:

F (A1)

|A1|
= −θ[1] ≥

F (S)

|S|
, ∀S.

In other words, A1, the set of agents who have the highest propensity to adopt (with the

lowest cutoff), is a maximizer to the program in step 1 of SAND. It turns out that A1 is

the largest maximizer, that is, A1 = A∗1.30 Further, the minus of the maximum value in

step 1 corresponds to the lowest cutoff in the equilibrium (θ[1] = −t∗[1]).

After establishing that A1 = A∗1 (i.e., the output in step 1 of the SAND algorithm

is exactly the set of nodes with the lowest cutoff), the algorithm continues and in step

2 selects the subset of nodes with the second-lowest cutoff. The process then continues

until it stops when all the players are included.

29That is, E[s1 ≥ x1|s2 = x2] = G(x2 − x1).
30To show the maximality, we note that the second inequality in (13) is strict whenever S contains

any node with a strictly higher cutoff than the lowest cutoff; thus, such S cannot be a maximizer.
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3.4 Social connectedness in networks

The algorithmic approach in Theorem 1 provides a new method of determining who

has the highest propensity to adopt and why. In the standard network games with

continuous actions (see, e.g., Jackson 2008, Jackson and Zenou 2015, Bramoullé and

Kranton 2016), the most central agents (in terms of degree, Katz-Bonacich, or eigenvector

centrality) or, equivalently, the most interconnected agents are the ones who exert the

highest efforts. This is not necessarily true in our model. In fact, in our model, the agents

with the highest social connectedness —that is, those with high interconnectedness and

high embeddedness— are the ones who have the highest propensity of adopting. Let

us first explain the notions of social connectedness in our framework and then define it

formally.

Consider the network in Figure 2 (for simplicity, we set φ = 1 and vi = 0 for every i;

thus, F (S) = e(S)). The SAND stops in three steps with

A∗1 = S1, A
∗
2 = S1 ∪ S2, A

∗
3 = S1 ∪ S2 ∪ S3 = N,

where S1 = {1, 2, 3, 4, 5, 6}, S2 = {i, j, k}, and S3 = {i′, j′, k′}. Indeed, in step 1, the

SAND algorithm finds the subset that has the highest average degree e(S)/|S|, which

is clearly A∗1 = S1 with t∗[1] = e(S1)/|S1| = 5/2. Next, in step 2, the SAND algorithm

determines the subset S, which has the highest value of
e(S)−e(A∗1)

|S|−|A∗1|
(see (4)). It turns out

that A∗2 = S1∪S2 and t∗[2] = 5/3. In step 3, the SAND algorithm terminates with A∗3 = N

and t∗[3] = 4
3
. Thus, we end up with three coordination sets: C∗1 = S1, C∗2 = S2, and

C∗3 = S3.

Figure 2: Interconnectedness versus embeddeness

What is notable is that agents in S2, instead of S3, are found in step 2 since

t∗[3] =
e(S1 ∪ S3)− e(A∗1)

|S1 ∪ S3| − |A∗1|
=

4

3
<
e(S1 ∪ S2)− e(A∗1)

|S1 ∪ S2| − |A∗1|
=

5

3
= t∗[2].

This implies, in particular, that agent j ∈ S2 has a higher propensity to adopt than agent

i′ ∈ S3, although j has fewer links than i′. Note that this observation holds for any value

of φ in our model (see Remark 6 and footnote 35). On the contrary, using Katz-Bonacich
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centrality (Ballester et al. 2006), i′ is more influential than j when the peer effect is not

overly strong.31

To understand this puzzling observation, we formally define the concept of social

connectedness, which encompasses two (new) notions —interconnectedness and embed-

dedness— through the lens of SAND and show that they are both of significance in

determining who has the higher propensity to adopt in the network. Define L(S ′, S ′′) for

S ′ ∩ S ′′ = ∅ to be the number of links from agents in S ′ ⊂ N to agents in S ′′ ⊂ N .32

Then, for S ) A∗k−1, we have

e(S)− e(A∗k−1) = e(S\A∗k−1) + L(S\A∗k−1, A
∗
k−1),

such that step k in SAND in (4) can be written in the following manner by setting

T = S\A∗k−1:33

max
∅6=T⊆N\A∗k−1

interconnectedness︷ ︸︸ ︷
e(T )

|T |
+

embeddedness︷ ︸︸ ︷
L(T,A∗k−1)

|T |
. (14)

In other words, e(T )/|T |, which measures the average number of links within T = S\A∗k−1,

corresponds to our concept of “interconnectedness,” while L(T,A∗k−1)/|T |, which mea-

sures the average number of links between T and A∗k−1 (note that the agents in A∗k−1 have

lower cutoffs and adopt earlier than those in T ), corresponds to our concept of “embed-

dedness.” Together, the sum e(T ) +L(T,A∗k−1) divided by the size of the set T , captures

our notion of “social connectedness” (see (14)).

Using this new concept, we can now easily explain why agents in S2 have a higher

propensity of adopting than agents in S3. Indeed, S2 is less interconnected than S3, as
e(S2)
|S2| = 2

3
< e(S3)

|S3| = 1, but it is more embedded than S3, as
L(S2,A∗1)

|S2| = 1 >
L(S3,A∗1)

|S3| = 1
3
.

Because 2+3
3
> 3+1

3
, S2 clearly has higher social connectedness than S3.34

We believe that this result —that is, more socially connected groups of people are

more likely to adopt— is demonstrably new and has intuitions that resonate and extend

beyond our specific model. Let us explain this intuition and why it is different from

other standard network games with complementarities, like that of Ballester et al. (2006)

(BCZ hereafter). In BCZ, what matters the most is the complementarity in actions

between agents, so the agents who exert the highest efforts are the ones who generate and

receive the largest spillovers from their neighbors. This is captured by how interconnected

each agent is or, equivalently, her Katz-Bonacich centrality. In our model, we also have

31Ballester et al. (2006) provide a microfoundation of Katz-Bonacich centrality using a network game
with continuous actions. Since i′ has a higher degree than j, i′ has a higher Katz-Bonacich centrality
than j when the peer effect φ > 0 is not too strong (see Ballester et al. 2006).

32Formally, L(S′, S′′) =
∑
i∈S′ di(S

′′), which also equals
∑
j∈S′′ dj(S

′).
33See Observation 2 in Appendix C for the reformulation in the general case with vi > 0 and φ that

can take any value.
34To further see this point, let us consider another subset with three agents, S̃ = {i, k, i′} with e(S̃) = 1

and L(S̃, A∗1) = 3. Note that S̃ is equally embedded as S1 but is less interconnected than S1.
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complementarity in actions but, on top of it, we have a coordination problem since

agents do not know with certainty whether certain neighbors adopt and, thus, the level

of spillovers to which they are exposed. This is why both links within a coordination set

(interconnectedness) and between coordination sets (embeddedness) are of significance.

In the former, agents need to form expectations regarding their neighbors adopting within

the same coordination set (see Lemma 1 (i)), while in the latter, they place a probability

of either 0 (higher-cutoff agents) or 1 (lower-cutoff agents) on their neighbors adopting

within other coordination sets (see Lemma 1 (ii)).

4 Network topology and coordination sets

Throughout this section, we assume that Assumption 1 holds.

Assumption 1 (Homogeneous intrinsic valuations). vi = v for each i ∈ N .

Remark 6. Under Assumption 1, C∗ is independent of v and of φ.

Under homogeneous intrinsic values, scaling the size of common valuation v or the

size of network effects φ has no effect on the coordination sets. Moreover, the cutoff θ∗ is

linearly augmented by v and φ.35 Under such homogeneity, we analyze how the network

topology in and of itself shapes the coordination sets in subsequent subsections.

4.1 Networks with a single coordination set

In this section, we identify which classes of networks have a single coordination set. The

following proposition provides the necessary and sufficient conditions for this property.

Proposition 1 (Single coordination set). Under Assumption 1, a network G yields a

single coordination set if and only if it is balanced, in the sense that for every nonempty

S ⊂ N ,
e(S)

|S|
≤ e(N)

|N |
. (15)

From the lens of the SAND algorithm, the balanced condition in Proposition 1 is a

necessary and sufficient condition for SAND to terminate in one step —that is, K = 1.

The condition in (15) states that a network G is balanced if the average degree of each

subnetwork GS is no greater than the average degree of the original network G. The

following alternative condition for balancedness is useful for certain applications.

Remark 7. G is balanced if and only if there exists w = {wij, (i, j) ∈ E}, such that for

all i, j ∈ N : (i) wij ≥ 0, (ii) wij + wji = 1, and (iii)
∑

k∈Ni
wik = e(N)

|N | .

35Moreover, under Assumption 1, θ∗ = −v1 + φθ̂∗, where θ̂∗ denotes the cutoffs at v = 0 and φ = 1.
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Indeed, suppose G is balanced. Then, the SAND algorithm terminates in one step

and, thus, we set wij equal to the w∗ij defined in (9). Conditions (i), (ii), and (iii) are

then clearly satisfied by Lemma 1 and equilibrium condition (9). Conversely, if there

exists w which satisfies these three conditions, then we can directly verify that

e(S) = 1/2
∑

i,j∈S:(i,j)∈E

(wij + wji) ≤
∑
i∈S

∑
j∈Ni

wij =
∑
i∈S

e(N)

|N |
= |S|e(N)

|N |
, for all S ⊂ N.

The first equality follows by (ii), and the inequality follows by (i). Thus, G is balanced.36

Applying Proposition 1 or Remark 7, we find that seemingly disparate classes of

network structures do satisfy this balancedness condition. Hence, for economies in which

intrinsic valuations are the same across individuals, each of these networks would induce

a single coordination set. Network G is called regular if di = d for all i. A tree is any

connected network without cycles. We say network G is a regular bipartite network with

disjoint within-set symmetric agent sets B1 and B2, with B1 ∪ B2 = N , and of sizes

ns ≡ |Bs| and degrees ds ≡ di for each i ∈ Bs for sides s = 1, 2.

Proposition 2 (Classes of balanced networks). Under Assumption 1, there exists a single

coordination set if G has at least one of the following properties:37

(1) it is a regular network; or

(2) it is a tree network; or

(3) it is a regular bipartite network; or

(4) it has a unique cycle; or

(5) it has a maximum of four agents.

Proposition 2 provides a (non-exhaustive) list of networks that have one coordination

set. Members of all trees, regardless of their size and complexity, adopt together using a

common limit cutoff. This generalizes the star network of Example 1. Parts (2) and (4)

establish the existence of at least two distinct cycles in G as a necessary (but generally

insufficient) condition for multiple limit cutoffs in equilibrium.38 More generally, for any

network of each of these families, there exists no proper subset of agents who have greater

average within-degree (i.e., interconnectedness) than the entire network.

In summary, to determine the (possible) presence of a single coordination set in a

network, the only aspect that needs to be checked is that the balanced condition given

36The w satisfying these three conditions might not necessarily correspond to w∗ defined in (9) using
the equilibrium cutoffs. Moreover, Gale’s Demand Theorem (Gale 1957) provides direct proof of equiva-
lence between condition (15) and the existence of w satisfying (i), (ii), and (iii) (see Section G.4 in the
Online Appendix).

37Note that we assume that G is connected throughout the paper.
38The statement in Proposition 2(4) cannot be extended to networks with multiple non-overlapping

cycles. Certain networks with multiple non-overlapping cycles are balanced, while some are not.
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in (15) or Remark 7 is verified. If this condition is verified for each subset of agents, then

we know that there is a single, network-wide coordination set with a common threshold

given by Theorem 1. If this condition is not satisfied for at least a subset of agents, then

one can use Algorithm 1 (SAND) to construct the coordination sets and cutoffs and the

notion of social connectedness to determine who adopts at each step (see, e.g., Example

2).

4.2 Who has the highest propensity to adopt?

When the balanced condition is met, all the agents adopt together. When this condition

fails, we determine who has the highest propensity to adopt in the network. We provide

a characterization of the first coordination set in the following proposition.

Proposition 3. Under Assumption 1, the set of agents in N who have the highest propen-

sity of adopting, that is, A∗1 is the unique nonempty set A ⊂ N that simultaneously

satisfies the following conditions:

(i) For any nonempty subset A of A, the average density of A is no greater than that

of A, that is,
e(A)

|A|
≤ e(A)

|A|
, ∀∅ ( A ⊆ A.

(ii) For any nonempty subset T of N\A, the average number of links across T and A

is smaller than the difference in average densities between A and T , that is,

L(T,A)

|T |
<
e(A)

|A|
− e(T )

|T |
, ∀∅ ( T ⊆ N\A.

Condition (i) implies that the subnetwork GA itself must be balanced; otherwise,

agents in A cannot adopt together. Condition (ii) states that, for any set of agents who

have a lower propensity of adopting than A, it must be the case that either the den-

sity among themselves (i.e., e(T )
|T | ) is low or the average number of links connecting to

A (i.e.,L(T,A)
|T | ) is small. Interestingly, the former corresponds to our notion of intercon-

nectedness, while the latter corresponds to that of embeddedness. In fact, condition (ii)

is equivalent to saying that, for any strict superset Ā of A, the average density of Ā is

strictly lower than that of A, i.e., e(Ā)

|Ā| <
e(A)
|A| .

Clearly, if A is indeed A∗1 (the agents found in step 1 of the SAND algorithm), then

it has the largest density among all S. In particular, conditions (i) and (ii) must hold.

Interestingly, these two conditions are sufficiently strong to uniquely pin down A∗1. Prac-

tically, Proposition 3 provides a way to determine who has the highest propensity of

adopting by checking these two conditions instead of solving the full limiting equilibrium

and cutoffs.

We revisit Examples 1 and 2 to illustrate Proposition 3. In Example 1, the star

network is balanced; hence, item (ii) is automatically satisfied for A = N . Indeed, all
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agents adopt together. In Example 2, let A = {ic, i = 1, · · · , 4} denote the core nodes.

The subnetwork GA is regular with degree 3; therefore, it is balanced (see Proposition 2

case (1)). Condition (ii) in Proposition 3 also holds, as each spoke node has only one

link to the core, which has an average density of 3/2. Consequently, the members in the

core have the highest propensity of adopting in the unique limiting equilibrium for this

example.

As we have seen, the SAND algorithm is central to our analysis. If we are concerned

about knowing who has the second-highest propensity to adopt, A∗2, we can formulate

similar conditions as those in Proposition 3 using the intuition guided by SAND. Even

though we focus on homogeneous intrinsic values to highlight the impact of network

topology, the analysis throughout this section can easily be extended by incorporating

heterogeneous intrinsic values. To provide an example, the balanced condition with

heterogeneous intrinsic values becomes F (S)
|S| ≤

F (N)
|N | for any S.

5 Policy interventions

In this section, we consider the policy implications of our model by first studying the

changes in the intrinsic valuations and then studying the changes in network structure.

5.1 Changes to intrinsic valuations

We first investigate how the equilibrium adjusts as intrinsic valuations change.

Proposition 4 (Local contagion).

(i) For a generic v, there exists a nonempty open neighborhood N (v) around v, such

that, for any v′,v′′ ∈ N (v), the coordination sets under v′ are the same as those

under v′′.

(ii) The mapping θ∗(v) is piecewise linear, Lipschitz continuous, and monotone. For

generic v, for each i, j ∈ C∗m, and k /∈ C∗m:

∂θ∗j
∂vi

=
−1

|C∗m|
, and

∂θ∗k
∂vi

= 0. (16)

Proposition 4(i) states that, in each step of the SAND algorithm, the solution to

the maximization problem is locally invariant in v. Indeed, v affects the values of F (·)
continuously, while the argument of F (·) is discrete. For generic v, in each step of SAND,

the solution A∗k as well as the partition C∗ remain fixed.

Proposition 4(ii) indicates that, increasing the intrinsic value of agent i, vi, reduces

the common cutoff value θ∗j for any agent j in the coordination set C∗m containing i such

that all these individuals are now more likely to adopt. However, for each k not in C∗m,

the effect of the shock to i does not affect k’s cutoff. Thus, this shock to i remains
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local to i’s coordination set. Strikingly, the effect of increasing vi lowers cutoffs at a rate

inversely proportional to the size of the coordination set, |C∗m|. In other words, as the

number of agents coordinating together increases, the coordination set responds more

slowly to an increase in vi. Intuitively, the agents in C∗m continue to coordinate together

for small shocks (Proposition 4(i)). As we change vi by one (infinitesimal) unit, the

aggregate intrinsic valuations within C∗m adjust by exactly one unit, while the network

effects —captured by the partition— remain the same. Thus, the average incentive to

adopt across the coordination set C∗m increases by exactly one unit.39 We also see with

(16) that the cutoffs depend on network G only through the network’s impact on the

partition C∗.
Our local contagion result in Proposition 4(ii) is related to that of Ambrus et al.

(2014), who developed a model in which the network captures the connections between

individuals and serves as social collateral to enforce informal insurance payments. They

showed that the network can be partitioned into endogenously organized connected groups

called “risk-sharing islands.” This partition has the property that agents fully share

shocks within but only imperfectly across islands; thus, insurance and spillovers are lo-

cal.40

In Proposition 4, we established that, following perturbations to intrinsic value vi,

there is a homogeneous response for members of the same coordination set but unrespon-

siveness to these perturbations for agents outside the perturbed agent’s coordination set.

Given these results, we ask a few important questions from a planner’s perpective. What

marginal benefits are realized with adoption subsidies? And which agents’ adoptions

must be subsidized?

To address these questions, we first put forward the following planner’s problems.

Consider a planner who shares prior H(·) over θ and holds no private information.41

The planner has a fixed budget B to be allocated to the users. Recall that, for each

given v, Theorem 1 explicitly gives the limiting equilibrium π∗ = (π∗1, · · · , π∗|N |), where

π∗i (θ) = I(θ ≥ θ∗i ), i ∈ N . Here, we did not explicitly mention the dependence of θ∗i on v.

39This observation that the size of the coordination set is not relevant for the overall impact of a
marginal subsidy is related to a similar observation in Sákovics and Steiner (2012), who showed that the
population size of the target groups is not relevant for subsidy targeting.

40The local effect of “contagion” is consistent with the results of several empirical studies. For example,
Angelucci et al. (2018) showed that Progresa, a conditional cash transfer program in rural Mexico, had
a positive impact on the consumption of the untreated (i.e., spillover effects), but this was mainly due
to increase in the consumption of households who were relatives of the treated. Similarly, using an
educational program targeted to very young kids (early childhood) in disadvantaged neighborhoods in
Chicago, List et al. (2020) showed that there were very strong spillover effects from treated to untreated
kids, but these spillover effects were local : they mainly operated within a 5 km radius. Rosenthal and
Strange (2008) also indicated that human-capital spillover effects (i.e., proximity to college-educated
workers) attenuate with geographical distance, and most of the spillover effects occur within five miles.

41One can interpret this to capture either the agents’ expertise relative to the planner or the fact that
the policy faced by the planner takes place before the realization of private information.

21



Using this equilibrium, we define TA(v) as the expected aggregate adoption:

TA(v) ≡
∑
j∈N

E[π∗i (θ)] =
∑
j∈N

(1−H(θ∗j )), (17)

and TW (v) as the expected aggregate welfare:

TW (v) ≡ E[W (π∗(θ), θ)], (18)

where W (a, θ) =
∑

i∈N ui(a, θ).

We assume that the planner can subsidize but cannot tax agents. Given a budget

B > 0, the planner can allocate funds subject to the following feasible budget set:

K(v, B) ≡

{
ṽ ∈ R|N | : ṽj ≥ vj,∀j ∈ N, and

∑
j∈N

ṽj − vj ≤ B

}
.

We say that a policy ṽ ∈ K(v, B) is “expended” if
∑

j∈N ṽj − vj = B.

An adoption-maximization planner, henceforth, an “A-planner,” solves maxṽ∈K(v,B) TA(ṽ).

A welfare-maximization planner, henceforth, a “W-planner,” solves maxṽ∈K(v,B) TW (ṽ).

Recall the sequence of nested sets (A∗1, A
∗
2, . . . , N) derived in SAND; we define A∗0 ≡ ∅.

By Proposition 4(i), for generic v, there exists an open neighborhood N (v) of v such

that the coordination sets are locally constant in N (v). When B is sufficiently small, the

solutions to these problems are simple and are characterized as shown below.

Proposition 5 (Optimal policies). For sufficiently small B, the set of solutions to the

A-planner’s problem is given by the set of expended ṽ satisfying ṽi > vi, if and only if i

maximizes H ′(θ∗i ), and the set of solutions to the W-planner’s problem is given by the set

of expended ṽ satisfying ṽi > vi if and only if i ∈ C∗m ⊆ A∗k maximizes:

1−H(θ∗i ) + φ

(
L(C∗m, A

∗
k−1) + e(C∗m)

|C∗m|

)
H ′(θ∗i ). (19)

Let us interpret (19). First, the aggregate marginal welfare is now decreasing in θ∗i
through the direct effect on target i’s ex-ante welfare, quantified by (1 − H(θ∗i )), for

i ∈ C∗m. Second, the W-planner values the additional externalities among members of the

targeted coordination set, as these agents jointly increase their total adoption. Third,

adoption subsidies can generate positive welfare gains to coordination sets that may not

contain the target agent i. More precisely, provided that an agent j is either in C∗m (along

with i) or takes cutoff θ∗j < θ∗i and is a neighbor to a member of C∗m, agent j obtains

additional value in all additional state realizations in which her neighbors in C∗m begin to

adopt. Collectively, these components determine (19).

Remark 8. The targeting problems of the A-planner and the W-planner each reduce to

targeting key coordination sets rather than key players when B is sufficiently small.
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The choice of targeting coordination sets that maximize H ′(θ∗i ) can be interpreted

in the following manner. A subsidy to member i’s adoption increases adoption among

other members of C∗m, while having no influence on members of other coordination sets.

The effect on the adoption of each member of C∗m is inversely proportional to |C∗m| by

Proposition 4. Therefore, the aggregate marginal effect of these adoption-based policies

is left as a function of the targeted coordination set C∗m through the steepness of H at θ∗i
(which captures the probability of occurrence of the state).

The next remark follows immediately as a corollary to Proposition 5. For this, assume

that SAND terminates in K > 1 steps.42

Remark 9. Assume that B is sufficiently small. For H ′(.) decreasing, the A-planner

and the W-planner both target members of A∗1. For H ′(.) increasing, (i) the A-planner

targets members of A∗K\A∗K−1, and (ii) there exists φ̄ > 0, such that, if φ < φ̄, then the

W-planner targets members of A∗1.

The A-planner maximizes adoption and, therefore, H ′(θ∗i ) (Proposition 5), the probability

density function of the occurence of θ. Thus, when H ′(.) is decreasing —that is, low values

of θ are more likely to occur— the A-planner will always subsidize individuals belonging

to the coordination set with the lowest θ and, thus, targets members of A∗1. When H ′(.)

is increasing, the reverse is true and, thus, the A-planner targets members of A∗K\A∗K−1.

The W-planner maximizes welfare, which is equivalent to maximizing (19) (Propo-

sition 5). In other words, contrary to the A-planner, the W-planner takes into account

both the direct effect of the subsidy of individual i on the probability 1 − H(θ∗i ) that

she adopts as well as the indirect effect on the adoption of i’s neighbors, which depends

on φ, the intensity of the spillover effect,
(
L(C∗m,A

∗
k−1)+e(C∗m)

|C∗m|

)
, the social connectedness

of C∗m that contains i, which is the sum of its “interconnectedness” e(C∗m)/|C∗m| and its

“embeddedness” L(C∗m, A
∗
k−1)/|C∗m|, and H ′(θ∗i ), the probability of occurence of θ∗i . If

H ′(·) is decreasing, then the W-planner will always target members of A∗1 since they are

more likely to adopt because the probability that the state θ has a low value is very high.

In this case, only i and members of i’s coordination set A∗1 will benefit from this subsidy

policy since there are no spillover effects to higher coordination sets (local contagion). If

H ′(·) is increasing, then there is trade off. On the one hand, because of the direct effect

of the subsidy, the W-planner wants to target individuals with the lowest θ —that is,

members of A∗1— because they have the highest probability to adopt. On the other hand,

because of the indirect effect of i’s neighbors, the W-planner wants to target members of

the coordination set that has high social connectedness, —that is, numerous links within

the same coordination set C∗m (i.e., high “interconnectedness”) and numerous links with

coordination sets with lower cutoffs (i.e., high “embeddedness”). Remark 9 reveals that,

when φ is sufficiently small, the indirect effect is negligible and only the direct effect

matters. Thus, the W-planner will always target members of A∗1, which is the extreme

opposite of what the A-planner will target in this case.

42By Proposition 4(i), K, like the coordination sets, does not vary with v locally.
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Clearly, when φ is sufficiently large (i.e., φ > φ̄), Remark 9 will no longer hold for

the W-planner when H ′(·) is increasing. The W-planner’s key coordination set will lie in

some A∗k, where the value of k will depend on the social connectedness of the coordination

set. Let us illustrate this with the network in Figure 2 and, for the sake of simplicity,

set vi = 0 for every i, such that F (S) = φe(S). It is evident that the members of

S1 = {1, 2, 3, 4, 5, 6} have the highest propensity of adopting (θ∗1 = −5φ/2), those in

S2 = {i, j, k} have the second highest propensity of adopting (θ∗2 = −5φ/3), and those in

S3 = {i′, j′, k′} have the lowest propensity of adopting (θ∗3 = −4φ/3).

Assume that H ′(.) is increasing (states with higher θ are more likely to occur) and

φ > φ̄. We have seen in Section 3.4 that

L(S2, A
∗
1) + e(S2)

|S2|
=

3 + 2

3
=

5

3
>

4

3
=

1 + 3

3
=
L(S3, A

∗
1) + e(S3)

|S3|
.

In other words, the coordination set S2 has higher social connectedness than S1. Conse-

quently, the W-planner may want to target the coordination set S2 because, compared

to members of S3, they have a higher social connectedness and a higher propensity to

adopt. Further, compared to members of S1, they have a lower probability of adopting

but generate more externalities. Indeed, when the W-planner subsidizes an individual i

member of S2, it reduces the cutoff θ∗i of all members of S2 but also generates positive

externalities on members of S1. On the contrary, when it subsidizes a member of S1, there

are no positive externalities on members of other coordinations sets (local contagion).

Observe that, if the planner had a bigger budget, B, she would then be able to offer

larger subsidies. In this case, the planner would be more likely to subsidize nodes rather

than coordination sets because she will influence the manner in which the coordination

sets are determined. In particular, the planner will subsidize highly interconnected and

embedded agents to maximize either total welfare or total adoption. The problem is that,

in this case, we would not have obtained the simple analytical results as in Proposition

5 and Remark 8.

5.2 Changes to the network structure

In this subsection, we consider two policies that affect the network structure.

5.2.1 Key players

In the previous subsection, we analyze a policy that aims at subsidizing agents in the

network. The network literature has also focused on targets in networks, particularly key

players. In the context of crime, Ballester et al. (2006) defined the key player(s) as the

player who, once removed, reduces total crime the most (see Zenou 2016 for an overview

of the key-player policies). Let us now consider this policy in our model.

Consider a crime model (instead of a technology adoption model) in which ai = 1

implies that agent i commits a crime, and ai = 0 implies that agent i does not commit
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a crime. The objective of the planner is to find the key player(s) —that is, the player(s)

whose removal from the network leads to the highest total crime reduction.

Contrary to Ballester et al. (2006), we cannot calculate a precise formula that deter-

mines the key players in each network (the so-called intercentrality measure). However,

we can still determine the key players using the SAND algorithm. The process is to start

with a network of n players and first remove player 1. Then, run the SAND algorithm,

and obtain the different coordination sets. Then, for a given distribution of H(θ), we

calculate the total expected crime rate. Next, remove player 2 (while adding player 1

back), and proceed in the same manner to determine the total expected crime. Continue

until we reach player n. The key player is the one that leads to the highest reduction in

total expected crime. We then ascribe a key-player ranking of all players in the network

in terms of reduction of total expected crime.

In Appendix E.1, we illustrate this methodology with an example and compare the

rankings of the key players in our model with those in Ballester et al. (2006)’s model. We

show that the key-player rankings are in fact relatively similar but may differ because our

concept of social connectedness (i.e., interconnectedness and embeddedness) is different

but related to the intercentrality measure of key players in Ballester et al. (2006).

5.2.2 Adding links

Next, we investigate how adding a link in the network affects adoption. Consider the

network G+ij, which is defined as the network created by adding the additional link ij in

G, and C∗+ij, which is the limit partition under G+ij. While adding links may affect the

limit partition, SAND can be employed to verify when the coordination set is unchanged

(C∗+ij = C∗) or changed (C∗+ij 6= C∗). Let θ∗k and θ∗k,+ij correspond to the cutoffs of agent

k under networks G and G+ij, respectively.

Proposition 6 (linkage). Take i, j with i ∈ C∗m, ij /∈ E.

(i) Assume that C∗+ij = C∗. If

(i1) j /∈ C∗m with θ∗i > θ∗j , then

θ∗i − θ∗i,+ij = φ
1

|C∗m|
, and θ∗j,+ij = θ∗j ;

(i2) j ∈ C∗m, then

θ∗i − θ∗i,+ij = φ
1

|C∗m|
.

(ii) Assume that C∗+ij 6= C∗. If

(ii1) j /∈ C∗m with θ∗i > θ∗j , then θ∗i > θ∗i,+ij ≥ θ∗j,+ij, where θ∗j,+ij = θ∗j if θ∗i,+ij 6= θ∗j,+ij;

(ii2) j ∈ C∗m, then i and j are in the same coordination set in C∗+ij.
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First, consider part (i) of Proposition 6 when C∗+ij = C∗. We establish a disparity in

the effects of adding links on equilibrium cutoffs. While the addition of a link between

agents belonging to two different coordination sets (part (i1)) unambiguously encourages

adoption among agents who take higher cutoffs, the equilibrium adoption of the agent

taking a lower cutoff is not influenced by the additional link. In other words, the inclusion

of links between agents i and j in distinct coordination sets will likely expand the adoption

outcomes within i’s coordination set, taking a higher cutoff, but have zero influence on

adoption within j’s coordination set, taking a lower cutoff. Now, consider the case in

which the additional link is between agents belonging to the same coordination set (part

(i2)). While the inclusion of link ij for agents i and j in the same coordination set directly

influences incentives to adopt within the coordination set, the decrease in the equilibrium

cutoff is comparable to that resulting from a single link to an agent who takes a lower

cutoff.

Now consider part (ii) of Proposition 6, when C∗+ij 6= C∗. The additional link between

i and j always decreases the cutoff of i, taking a higher cutoff, toward the cutoff of j.

If the link does not bring the two agents into the same coordination set, then j’s cutoff

is unchanged. Otherwise, the link brings the two agents into the same coordination set.

In other words, the addition of a link never causes a linking agent who initially takes

a higher cutoff to jump the other agent’s cutoff. Intuitively, linkage only increases the

incentives of the two agents to coordinate their adoption choices.

We illustrate these results with an example in Appendix E.2 and show the importance

of social connectedness when adding links.

5.3 Complete versus incomplete information

We now explain our contribution with respect to the complete-information case. First, in

most real-world situations, incomplete information is ubiquitous and agents have limited

information on the state variable θ (e.g., the benefits of a new technology, a new crop, or

the value of migrating). Second, in supermodular games with complete information (Top-

kis 1998; Vives 1990; Milgrom and Roberts 1990) —where agents can perfectly observe

the state of the world defined as a common component to the technology’s value— the

set of pure strategy Nash equilibria is a complete, non-empty sub-lattice and contains

the greatest (maximal equilibrium)43 and lowest (minimal equilibrium)44 elements. In

these types of games in which multiple equilibria prevail, the minimal or the maximal

equilibrium is usually selected.45

In Online Appendix J, using a simple example, we show that the unique equilibrium

we select using the global game does not always correspond to the minimal or maximal

43The equilibrium in which the largest possible set of people (in set inclusion) take the action, given
the underlying state of the world.

44The equilibrium in which the smallest possible set of people (in set inclusion) take the action, given
the underlying state of the world.

45For exmple, the selection of extreme equilibrium is employed in Elliott, Golub, and Jackson (2014)
on financial networks and in Immorlica, Kranton, Manea, and Stoddard (2017) on social status.
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equilibrium. We also show that the comparative statics properties of these equilibria can

be rather different between the complete and incomplete information cases.

6 New predictions on adoption

In this section, we compare the predictions of our model (referred to as LZZ) to leading

alternatives in the literature of network games (e.g., Ballester et al. (2006) (BCZ)), and

of global games (e.g., Sákovics and Steiner (2012) (SS)). We introduce prices in these

three models and show that our model generates adoption that is neither smooth nor

fully coordinated but comes in batches.46 In other words, the share of agents who adopt

as a function of the price is neither a continuous function (as in BCZ; see Figure 3) nor

a jump at a single threshold (as in SS; see Figure 4) but instead a step function (Figure

6). We then derive the comparative statics results of these models by showing how the

adoption curves change for increased spillover effects, φ, which is a common parameter

in all three models. We provide the intuition of our results and show how our model can

guide future empirical research.

6.1 Price, aggregate demand, and comparative statics in Ballester

et al. (2006) (BCZ)

In Appendix F.1, we introduce price p in the model of BCZ and derive the aggregate

demand DBCZ(p) (given by (33)). Typically, DBCZ(p) is first linear in p with slope

b(G, φ), the aggregate Katz-Bonacich centrality in the network, and then truncated at

the cutoff point r (see Figure 3), above which the aggregate demand is zero. In particular,

DBCZ(p) is continuous in price p. When the spillover effect φ increases, b(G, φ) increases

and, thus, the demand becomes more responsive to price change as the slope becomes

steeper (see Figure 3).

6.2 Price, aggregate demand, and comparative statics in Sákovics

and Steiner (2012) (SS)

In Appendix F.2, we introduce price p in the model of SS and derive the aggregate demand

DSS(p) in (35) for a given realization of the state θ and for ν → 0. For the adoption

curve, there is a jump at a single threshold p = p∗ (given by (34)), for which all agents

adopt if p is below p∗, and do not adopt otherwise. This feature follows from the common

limiting threshold property in SS. Further, when φ —the benefit of adopting— increases,

the threshold p∗ increases and, thus, the aggregate demand DSS(p) shifts to the right

(Figure 4).

46For the technical details of these three models with price, see Appendix F.
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Demand DBCZ(p)

price pr

low φ

high φ

Figure 3: Aggregate demand in Ballester et al. (2006)

Demand DSS(p)

price pp∗ p∗∗

low φ

high φ

Figure 4: Aggregate demand in Sákovics and Steiner (2012)

28



6.3 Price, aggregate demand, and comparative statics in our

model (LZZ)

In Appendix F.3, we introduce price p in our model and derive the aggregate demand

DLZZ(p) in (36) for a given realization of the state θ and for ν → 0. Unlike SS, in

our model, there are multiple threshold prices p∗[i], where the subscript [i] refers to the

coordination set A∗i . This implies that agents in A∗i all adopt if the adoption price p is

below p∗[i] and none of them adopt if it is above p∗[i]. Consequently, the aggregate demand

DLZZ(p) is a step function with multiple jumps at different thresholds.

For the sake of concreteness, we use one real-world network in rural India, which

is studied in Banerjee et al. (2013) and displayed in Figure 5,47 to plot the aggregate

demand DLZZ(p) in Figure 6. It is evident that small price changes occasionally have no

effect on adoption and other times have large abrupt effects, depending on whether or

not the price change occurs in the vicinity of a threshold p∗[i]. This prediction in terms

of multiple batches of different sizes cannot occur in either BCZ or SS. Indeed, in BCZ,

a change in price always has a small (continuous) impact on aggregate demand (Figure

3). In SS, a small change of p has either no effect or a huge effect (Figure 4).48 When φ

—the intensity of the spillover effects— increases, the demand curve of LZZ shifts to the

right (Figure 6) but the general pattern of multiple jumps remains.

Figure 5: A network from Banerjee et al. (2013)

47In Figure 5, different colors indicate different coordination sets. See Appendix F.3 for details.
48It must be noted that the general pattern of the aggregate demand with mutiple jumps displayed in

Figure 6 will be similar for any network with multiple coordination sets.
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Demand DLZZ(p)

price p

A∗1

p∗[1]

A∗2

p∗[2]

A∗3

p∗[3]

A∗4

p∗[4]

A∗5

p∗[5]

low φ
high φ

Figure 6: Aggregate demand in our model

6.4 Predictions of our model: Intuition and empirical predic-

tions

The predictions of our model in terms of the adoption curve are, thus, very different from

that of BCZ or SS, since adoption is neither smooth (BCZ) nor fully coordinated (SS)

but comes in batches.

Intuition: In our model, in order to have a high propensity to adopt, or, equivalently,

a low price threshold, agents must have a high interconnectedness and embeddedness

—that is, a high social connectedness— because they both generate network effects. In-

terconnectedness is determined by links to agents within the same coordination set, while

embeddedness is determined by links to agents with lower price threshold. Consequently,

all agents belonging to a coordination set whose threshold is below (above) the price p will

(not) adopt, thereby generating adoption curves with multiple batches. This prediction

is unique to our model and did not occur in either BCZ or SS. In particular, BCZ focus

on the intensive margin (continuous decisions), while we focus on the extensive margin

(discrete decisions); moreover, in SS, players consider a common weighted-average action

and, thus, face no heterogeneity in terms of network position.

Empirical predictions: We are not aware of any direct empirical test of our pre-

dictions.49 However, we believe that our model can guide future empirical research on

adoption, particularly on the impact of price on adoption rate. Indeed, to test our model,

one could design a field experiment (or a lab experiment) where the network is measured

as done in Banerjee et al. (2013). At time t, a new technology is introduced in different

49Some papers have tested the impact of prices on adoption but without networks. For example, see
Ashraf et al. (2010) for a field experiment in Zambia of a home water purification solution and Dupas
(2014) for a field experiment in Kenya of a long-lasting insecticide-treated bed net.
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villages at a given price pt. We can design this price such that p∗[2] < pt < p∗[1], where

the subscript [i] refers to the coordination set A∗i . One could record how many people

adopt at time t. We should expect that only agents belonging to coordination set A∗1
adopt. Then, at time t + 1, one could go back to the villages and announce that the

new technology is now available at a lower price pt+1 < pt, such that p∗[3] < pt+1 < p∗[2],

and expect that agents from coordination sets A∗1 and A∗2 adopt. Then, at time t + 2,

we can announce that the new technology is available at a lower price pt+2 < pt+1 and

examine how many new individuals adopt, and so forth. A similar experiment could be

implemented in a laboratory with different rounds at different prices.50 We expect that

price changes lead to adoption that comes in batches, as predicted by our model.

7 Concluding remarks

This paper studies a coordination model in networks within a global game environment.

The main contributions of this paper are to provide a clean and elegant means of selecting

equilibria when information is incomplete by providing an algorithm that computes the

limiting cutoffs and to characterize the properties of the cutoffs as a function of the net-

work structure. This characterization enables a partition of the agents into coordination

sets —that is, sets of path-connected agents with the same cutoffs. In particular, we

show that the individuals who have a higher propensity to adopt are those who have high

social connectedness; these are the agents with a high degree —that is, high intercon-

nectedness— and who are well connected to other individuals belonging to coordination

sets with lower cutoffs —that is, high embeddedness. We also show that there is a single

coordination set if and only if the network is “balanced” —that is, the average degree

of each subnetwork is smaller than the average degree of the full network. Importantly,

the set of coordination sets is revealed to be instrumental to the comparative statics and

welfare properties of the model. In particular, we show that contagion is localized within

coordination sets. We also demonstrate that, with a small budget, the planner is indif-

ferent to whom she wants to subsidize within a coordination set and, therefore, targets

coordination sets rather than individuals. In addition, we derive the key-player policy

and investigate the effect of adding links to the agents’ adoption rate.

A possible direction for future research is to study the effects of signaling (Angeletos

et al. 2006) or signal jamming (Edmond 2013) on equilibrium properties, such as limit

uniqueness and coordination partitioning. Dahleh et al. (2016) studied information ex-

change through a social network in a symmetric global game; however, the implications of

information transmission under a general network game remain an open question. Equi-

librium characterizations under more extensive departures from idiosyncratic noise, like

the introduction of a public signal, also remain a subject for future research.51

50The laboratory can be leveraged to control for potential unobserved confounds (e.g., information
diffusion) by applying price treatments across distinct subject pools for a given network structure.

51See Weinstein and Yildiz (2007) and Morris, Shin, and Yildiz (2016) for contributions.
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APPENDIX

A Auxiliary results

Here, we present some auxillary results that are used in the proofs.

A.1 Preliminary results on supermodularity

Definition 3. X is a finite set. f : 2X → R is supermodular if for any S, T ∈ 2X ,

f(S ∩ T ) + f(S ∪ T ) ≥ f(S) + f(T ).

An equivalent definition of superdmodularity is that for any S ⊆ T ⊆ N\{i}

f(S ∪ {i})− f(S) ≤ f(T ∪ {i})− f(T ).

In other words, the marginal contribution of i to set S: f(S ∪ {i})− f(S), is monotone

in S.

Lemma 2. Suppose f(S) : 2X → R is supermodular. Then A is a maximizer of f over

2X , if and only if

(internal optimality) f(A) ≥ f(A), ∀A ⊆ A.

and

(external optimality) f(A) ≥ f(Ā), ∀Ā ⊇ A.

When the inequalities for internal and external optimality are strict for A 6= A 6= Ā, then

A is the unique maximizer.

Proof of Lemma 2: The only if direction is obvious. For the if direction, suppose

f satisfies both internal and external optimality. Take any set B; we have A ∩ B ⊆
A,A ∪ B ⊇ A. Therefore, f(A ∩ B) ≤ f(A) and f(A ∪ B) ≤ f(A). By supermodularity

of f :

f(B) ≤ f(A ∪B) + f(A ∩B)− f(A) ≤ f(A) + f(A)− f(A) = f(A).

Since the set B is arbitrary, A must be a maximizer of f .

Note that f(B) = f(A) only if f(A ∩ B) = f(A) and f(A ∪ B) = f(A). Therefore,

when the inequalities for internal and external optimality are strict for A 6= A 6= Ā, then

A is in fact the unique maximizer. �

Lemma 3. Suppose f is supermodular with f(∅) = 0. The following statements are true

for the set of maximizers of the program maxA 6=∅
f(A)
|A| .
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(i) Suppose that A1 and A2 are both maximizers of the program maxA 6=∅
f(A)
|A| . Then,

A1 ∪A2 is also a maximizer of maxA 6=∅
f(A)
|A| . If, in addition, A1 ∩A2 is not empty,

A1 ∩ A2 is also a maximizer of maxA 6=∅
f(A)
|A| .

(ii) The largest maximizer exists.

Proof of Lemma 3: For (i), suppose A1 and A2 are both maximizers of the program

maxA 6=∅
f(A)
|A| . Denote β = f(A1)

|A1| = f(A2)
|A2| ; then by optimality of β, f(A1∩A2)) ≤ β|A1∩A2|.

As a result,

f(A1 ∪ A2) ≥ f(A1) + f(A2)− f(A1 ∩ A2)) (20)

≥ β|A1|+ β|A2| − β|A1 ∩ A2| = β|A1 ∪ A2|, (21)

that is, f(A1∪A2)
|A1∪A2| ≥ β. By optimality of β, so, f(A1∪A2)

|A1∪A2| = β, thus A1 ∪ A2 must be a

maximizer too.

When A1 ∩ A2 is not empty, since we know f(A1∪A2)
|A1∪A2| = β,

f(A1 ∩ A2) ≥ f(A1) + f(A2)− f(A1 ∪ A2)) (22)

= β|A1|+ β|A2| − β|A1 ∪ A2| = β|A1 ∩ A2|, (23)

so f(A1∩A2)
|A1∩A2| ≥ β. By optimality of β, A1 ∩ A2, which is not empty by assumption, must

be a maximizer too.

The result in (ii) directly follows from (i). �

B Uniqueness of limit equilibrium

Proposition 0 (Frankel et al. 2003). There exists an essentially unique strategy profile

π∗, which is in cutoff strategies, such that any π∗ν surviving iterative elimination of

strictly dominated strategies in Γν satisfies limν→0 π
∗ν = π∗.52

Any Bayesian Nash equilibrium of Γν obviously survives iterative elimination of strictly

dominated strategies so Proposition 0 applies to π∗ν = (π∗νi = I(si ≥ c∗νi ))i∈N defined by

(2). Given an equilibrium in cutoff strategies in Γν always exists for ν > 0, π∗ is also in

cutoff strategies by Proposition 0.

Though there may exist multiple equilibria in cutoff strategies in Γν for a fixed ν > 0,

Proposition 0 shows that any selection of such equilibria in Γν must converge to π∗ as ν

goes to zero.

52Observe that the elimination of strictly dominated strategies refers to the interim strategic form of
the game.
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C Proof of Theorem 1 and discussions

C.1 Auxiliary results about SAND

We present several preliminary results before proving Theorem 1. We start with some

observations of SAND.

Lemma 4. F (S) ≡
∑

i∈S vi + φe(S) is supermodular in S.

Proof of Lemma 4: For any S not including i,

F (S ∪ {i})− F (S) = vi + φ(e(S ∪ {i})− e(S)) = vi + φdi(S)

Since di(S) = |Ni ∩ S| is obviously increasing in S, F is supermodular. �

Observation 2. For each T ⊆ N\A∗k−1, define

v̂(T ) ≡
∑
i∈T

v̂i, F̂ (T ) ≡ v̂(T ) + φe(T ), (24)

where v̂i = vi+φdi(A
∗
k−1), i ∈ N\A∗k−1. Then we can equivalently reformulate the program

(4) in step k of SAND as follows:

max
∅(T⊆N\A∗k−1

F̂ (T )

|T |
=
v(T ) + φ(e(T ) + L(T,A∗k−1))

|T |
, (25)

Furthermore, A∗k\A∗k−1 is the largest maximizer of (25) and
F̂ (A∗k\A

∗
k−1)

|A∗k\A
∗
k−1|

= t∗[k].

Proof of Observation 2: The reformulation is obtained by changing variables. For

each T ⊆ N\A∗k−1,

F (T∪A∗k−1)−F (A∗k−1) = v(T )+φ(e(T )+
∑
i∈T

di(A
∗
k−1)) = v(T )+φ(e(T )+L(T,A∗k−1)) = F̂ (T ),

and |T ∪ A∗k−1| − |A∗k−1| = |T |. The results just follow by observing
F (T∪A∗k−1)−F (A∗k−1)

|T∪A∗k−1|−|A
∗
k−1|

=

F̂ (T )
|T | . �

Observation 3. The largest maximizers to program (4) exist in step k of SAND.

Proof of Observation 3: We first show the case for k = 1. Since F is supermodular,

the union of two maximizers to the program maxS)∅
F (S)
|S| is also a maximizer by Lemma

3; hence, the largest maximizer must exist. The proof for any k follows similarly, using

the reformulation of the program (4) in step k of SAND in Observation 2 (note F̂ is also

supermodular). �
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Observation 4. For program (4) in step k of SAND, any connected component of sub-

graph GA∗k\A∗k−1
is a maximzier.53 In particular, suppose the subgraph GA∗k\A∗k−1

is not

connected. Then there are multiple maximizers to program (4) in step k.

Proof of Observation 4: We use the reformulation of the program (4) in step k of

SAND in Observation 2 using F̂ . Suppose the subgraph GA∗k\A∗k−1
is not connected; then

we can find B,B′ such that B ∪ B′ = A∗k\A∗k−1, B′ ∩ B = ∅, and L(B,B′) = 0, i.e., the

agents in B are not connected to agents in B′. Then e(B ∪ B′) = e(B) + e(B′), and

F̂ (B ∩B′) = F̂ (B) + F̂ (B′). Therefore,

t∗[k] =
F̂ (B ∪B′)
|B ∪B′|

=
F̂ (B) + F̂ (B′)

|B|+ |B′|
≤ max(

F̂ (B)

|B|
,
F̂ (B′)

|B′|
).

By the optimality of A∗k\A∗k−1|,
F̂ (B)
|B| ≤ t∗[k] and F̂ (B′)

|B′| ≤ t∗[k]. These inequalities together

show
F̂ (B)

|B|
=
F̂ (B′)

|B′|
= t∗[k],

implying B and B′ are also maximizers of (25). Continuing this process yields that each

connected component of subgraph GA∗k\A∗k−1
is in fact a maximizer of (25). The rest just

follows. �

Observation 5. A unique maximizer exists in each step of SAND for any v ∈ R|N |,

with the exception of v in the union of a finite number of hyperplanes in R|N |. Thus for

generic v, there is a unique maximizer in each step of SAND.

Proof of Observation 5: Multiple maximizers exist at v in a step of SAND only

when we can find a triple A,B,B ∈ 2N satisfying (i) A ( B,A ( B′, B 6= B′ and (ii)
F (B)−F (A)
|B|−|A| = F (B′)−F (A)

|B′|−|A| . As the network is finite, there exists a finite number of triple

A,B,B ∈ 2N satisfying condition (1). For each such triple, condition (ii) imposes a linear

restriction defining a hyperplane in the space of v. Together, we show that the set of v

generating multiple maximizers is included in the union of a finite number of hyperplanes;

thus, it has zero measure. The result just follows. �

Observation 6. For generic v, the subnetwork GA∗k\A∗k−1
is connected; hence, A∗k\A∗k−1

is a coordination set by itself, and the partition C∗ = {A∗1, A∗2\A∗1, · · · , A∗K\A∗K−1}.
53Recall that any connected component of subgraph GA∗k\A∗k−1

is a separate coordination set by Lemma

1 and Theorem 1. So each coordination set C∗i contained in A∗k\A∗k−1 must be be a maximzier to program
(4) in step k of SAND, i.e.,

F (C∗i ∪A∗k−1)− F (A∗k−1)

|C∗i |
= t∗[k] =

F (A∗k)− F (A∗k−1)

|A∗k| − |A∗k−1|
.
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Proof of Observation 6: It follows directly from Observations 5 and 4. �

The next Lemma will be used repeatedly in the proof.

Lemma 5. For any S ⊆ N :

−
∑
i∈S

θ∗i ≥ F (S). (26)

Moreover, suppose for any i ∈ S and j ∈ N\S, θ∗i < θ∗j , the above inequality holds with

equality.

Proof of Lemma 5: Taking the summation of (9) over S, we obtain

−
∑
i∈S

θ∗i =
∑
i∈S

vi + φ
∑
i∈S

∑
j∈Ni

w∗ij

=
∑
i∈S

vi + φ
∑
i∈S

∑
j∈Ni∩S

w∗ij + φ
∑
i∈S

∑
j∈Ni∩(N\S)

w∗ij

≥
∑
i∈S

vi + φe(S) = F (S).

The final inequality is obtained by noticing that
∑

i∈S
∑

j∈Ni∩S w
∗
ij = e(S) by Lemma 1

(i) and
∑

i∈S
∑

j∈Ni∩(N\S) w
∗
ij is non-negative and equal to zero when, for any i ∈ S and

j ∈ N\S, θ∗i < θ∗j by Lemma 1 (ii). �

C.2 Proof of Theorem 1

Now we proceed to prove Theorem 1.

Proof of Theorem 1: Given the equilibrium cutoffs (θ∗i )i∈N , we define θ[k], Ak,Bk,
k = 1, 2, · · · as follows:

θ[1] = minj∈N θ
∗
j B1 = {s ∈ N |θs = θ[1]}, A1 = B1, (27)

θ[2] = minj∈N\A1 θ
∗
j B2 = {s ∈ N |θs = θ[2]}, A2 = A1 ∪ B2,

· · · · · ·

Intuitively, θ[1] is the lowest cutoff, while θ[2] is the second-lowest cutoff, and so on:

θ[1] < θ[2] < · · · . And Bk is the agents with cutoff θ[k], while Ak is the agents with cutoffs

in {θ[1], · · · , θ[k]}.
To prove Theorem 1, it suffices to show, for k = 1, 2, · · · ,,

(†) θ[k] = −t∗[k], Ak = A∗k, Bk = A∗k\A∗k−1.

The case with k = 1 is already proven in subsection 3.3. Now we use induction to

show (†). Assume it holds for k−1. To show the case for k, we first need a similar version

41



of Lemma 5: for any T ⊆ N\A∗k−1,

−
∑
i∈T

θ∗i ≥ v(T ) + φ(e(T ) +
∑
i∈T

di(A
∗
k−1))︸ ︷︷ ︸

:=F (T∪A∗k−1)−F (A∗k−1)

(28)

Moreover, suppose for any i ∈ T and j ∈ N\(T ∪ A∗k−1), θ∗i < θ∗j , the above inequality

holds with equality. The proof is exactly parallel to the proof of Lemma 5 with the

exception that each link from i ∈ T to agent j ∈ A∗k−1 contributes φ by Lemma 1 (ii)

(note θ∗i > θ∗j ), which explains the extra term di(A
∗
k−1) in (28).

Following the same logic in step 1 in subsection 3.3 , we show (28) implies

F (T ∪ A∗k−1)− F (A∗k−1)

|T |
≤ −θ[k] =

F (Bk ∪ A∗k−1)− F (A∗k−1)

|Bk|

Therefore, Bk ∪ A∗k−1 is a maximizer in step k of SAND (the fact that it is the largest

maximizer follows the same logic as k = 1). Therefore, (†) is proven for k. �

Remark 10. Although the SAND algorithm does not explicitly generate the equilibrium

w∗ = {w∗ij, (i, j) ∈ E} as outputs, the construction of the algorithm guarantees that such

w∗ always exists and is consistent with θ∗ (Lemma 1).54

D Proofs of other results in the main text

Proof of Observation 1: It follows from the discussion in the main text. �

Proof of Lemma 1: It largely follows from the discussion in the main text.55 �

Proof of Remark 6: Under homogeneous intrinsic values, F (S)/|S| = v + φe(S)/|S|.
Therefore, in step 1 of SAND:

A∗1 = argmax
S)∅

e(S)

|S|
.

Thus, A∗1 is independent of (v, φ), and t∗[1] = v + φe(A∗1)/|A∗1|. Moreover, assume that in

step k > 1, A∗1 through A∗k−1 are each independent of (v, φ). Therefore:

A∗k = argmax
S)A∗k−1

e(S)− e(A∗k−1)

|S| − |A∗k−1|
.

54See also Theorem G1.
55An identity similar to (11) is shown in Carlsson and van Damme (1993) (see equation (4.1) on page

997 and Lemma 4.1 on page 999). We give a detailed proof of Lemma 1 in the working paper version of
this paper (Leister et al. 2019).
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Thus, A∗k is also independent of (v, φ), and t∗[k] = v + φ
e(A∗k)−e(A∗k−1)

|A∗k\A
∗
k−1|

. The result follows

by induction on k. �

Proof of Proposition 1: Under homogeneous intrinsic values, F (S)/|S| = v+φe(S)/|S|.
The rest just follows from observing that the network is balanced if and only if the SAND

algorithm terminates in step 1. In Section G.4 in the Online Appendix, we provide an

alternative proof of Proposition 1 using Gale’s Demand Theorem (Gale 1957). �

Proof of Remark 7: The remark follows from the discussion following Remark 7. �

Proof of Proposition 2: For any regular network with degree d, for any non-empty

subset S, 2 e(S)
|S| =

∑
i∈S di(S)

|S| ≤
∑

i∈S d

|S| = d = 2 e(N)
|N | , so a regular graph is always balanced.

For trees, there are no cycles, so e(N) = N − 1, while for each subset S the resulting

subnetwork GS is still cycle-free. Therefore, the number of edges within S is at most

|S| − 1, so e(S) ≤ |S| − 1; thus:

e(S)

|S|
≤ |S| − 1

|S|
≤ e(N)

|N |
=
|N | − 1

|N |
.

For regular bipartite networks with two disjoint groups B1, B2 with sizes n1, n2 and

degrees d1, d2, clearly d1n1 = d2n2 = e(N). We set wij = n1

n1+n2
if i ∈ B1, j ∈ B2, and

wij = n2

n1+n2
if i ∈ B2, j ∈ B1. We use Remark 7 to check that G is balanced. For each

i ∈ B1: ∑
k∈Ni

wik =
n1

n1 + n2

d1 =
e(N)

n1 + n2

=
e(N)

|N |
.

And for each i ∈ B2: ∑
k∈Ni

wik =
n2

n1 + n2

d2 =
e(N)

n1 + n2

=
e(N)

|N |
.

Therefore, G is balanced.

If G is a network with a unique cycle, then e(N) = N . For each subset S, the resulting

subnetwork GS contains at most one cycle. This means the number of edges within S is

at most |S|, so that e(S) ≤ |S|; thus:

e(S)

|S|
≤ |S|
|S|

= 1 =
e(N)

|N |
.

When G contains at most four nodes, all networks with three or fewer nodes contain at

most one cycle. The only network structures over four nodes that contain more than one

cycle are the circle with a link connecting one non-adjacent pair i and j (two networks)

and the complete network. For the former, we can show these networks to have one

coordination set with weights: wij = wji = 1/2, wki = wkj = 5/8, and wij = wik = 3/8
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for each k 6= i, j. The complete network with 4 nodes and 6 edges is regular; hence, it is

balanced. Note that when N = 5, there exists a network such that two coordination sets

emerge. For example, a core with 4 nodes plus one periphery node has one link to one of

the core nodes. �

Proof of Proposition 3: We can rewrite condition (ii) as F (T∪A)−F (A)
|T | < F (A)

|A| , for

any ∅ 6= T ⊆ N\A, which is equivalent to saying that e(Ā)

|Ā| < e(A)
|A| ,∀Ā ) A. Under

homogeneous intrinsic values, A∗1 is uniquely characterized as the largest maximizer of

the following:

A∗1 = argmax
S)∅

e(S)

|S|
.

Obviously, any solution to the above program, A∗1, must satisfy both conditions stated in

Proposition 3. To prove the other direction, we assume set A satisfies (i) and (ii). Denote

β = e(A)
|A| . Take any set B; we have A ∩ B ⊆ A,A ∪ B ⊇ A, so e(A ∩ B) ≤ β|A ∩ B| by

condition (i)56 and e(A ∪ B) ≤ β|A ∪ B| by condition (ii). By supermodularity of e(·)
(see Observation 4),

e(B) ≤ e(A ∩B) + e(A ∪B)− f(A) < β(|A ∩B|+ |A ∪B| − |A|) = β|B|,

implying that e(B)/|B| ≤ β = e(A)
|A| . Since it holds for any B, it shows that A is indeed

a maximizer. To show that it is in fact the largest maximizer, we need on more step.

Note that for any B such that A ∪ B is a proper superset A, we have a strict inequality

e(A∪B) < β|A∪B| by condition (ii); hence e(B)/|B| < β = e(A)
|A| . This effectively proves

that any B having non-empty intersection with N\A cannot be a maximizer; thus A is

indeed the largest maximizer. �

Proof of Proposition 4:

To prove part (i), we first note that, by Observation 5 in Appendix C, for generic v,

multiple maximizers cannot occur in each step (see also footnote 21). In other words,

in fixing a generic v, suppose SAND gives the sequence of nested sets, A∗1, A
∗
2, · · · , A∗K

at v in K steps; then A∗k is the unique maximizer in step k = 1, · · · , K of SAND. We

claim that for v′ sufficiently close to v, SAND also terminates K steps with (the same)

A∗k being the unique maximizer in step k = 1, · · · , K of SAND at v′ as well. To prove

this claim, we note that, in step 1 of SAND, at v∑
i∈S vi + φe(S)

|S|
<

∑
i∈A∗1

vi + φe(A∗1)

|A∗1|

for any nonempty S that is not equal to A∗1 (the inequality is strict by the uniqueness of

A∗1). Since the above inequality is an open condition on vi for each i, it must hold for

any v′ that is sufficiently close to v, implying A∗1 is the unique maximizer in step 1 for

56Note this also holds even if A ∩B is empty, as e(∅) = 0.
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SAND at v′. By simple induction, we show that by any k = 1, 2, · · · , K,A∗k is the unique

maximizer in SAND at v′ as long as v′ is sufficiently close to v.

Since the coordination sets are uniquely pinned down by the sequences A∗k, k =

1 · · · , K, part (i) is proven.

We now show each claim of (ii) below.

Lipschitz continuity. By Theorem G1 in the Online Appendix G.1, −θ∗(v) is the

projection of 0 onto the space Φ(W):

−θ∗(v) = ProjΦ(W)[0],

where Φ(·) and W are defined in Online Appendix G.1. Since Φ depends on v in a linear

way, we let K = Φ(W) when v = 0. Then for any v:

Φ(W) = v + K.

We can rewrite the projection problem as follows:

−θ∗(v) = argmin
z∈v+K

||z||2 = v + argmin
y∈K

||(−v)− y||2 = v + ProjK[−v].

The projection mapping is nonexpansive (see chapter 1 of Nagurney 1992), i.e: ||ProjK[x]−
ProjK[y]|| ≤ ||x − y||, ∀x,y ∈ Rn. So for any v and v′, we have ||θ∗(v) − θ∗(v′)|| ≤
2||v − v′||. Hence, θ∗(v) is Lipschitz continuous in v.

Comparative Statics. By Lipschitz continuity, q∗(v) is differentiable for almost all

v. By part (i), for generic v, C∗ is locally constant in v, and we have the following

relationship between v and t∗[k]:

t∗[k] =
F (A∗k)− F (A∗k−1)

|A∗k| − |A∗k−1|
=

∑
i∈A∗k\A

∗
k−1

vi + φ(e(A∗k)− e(A∗k−1))

|A∗k| − |A∗k−1|
. (29)

(Recall that from part (i) that the sequences A∗k, k = 1, · · · , K in the above equation do

not vary with v when v changes marginally.) The derivative results follow directly by

differentiating equation (29) and applying Theorem 1.57

Piecewise linearity. This follows from the results of comparative statics.

Monotonicity. ∂θ∗/∂v is nonpositive, so θ∗ is monotonically decreasing in v. �

Proof of Proposition 5 and Remark 8:

57One caveat is that for generic v, A∗k\A∗k−1 is a coordination set by itself, and the partition C∗ =
{A∗1, A∗2\A∗1, · · · , A∗K\A∗K−1} (see Observation 6 in Appendix C).
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Giving v, we choose B > 0, which is small enough that the budget set K(v, B) is

contained in the neighborhood N (v) around v. Such a B always exists as N (v) is open

and nonempty by Proposition 4 (i). Furthermore, by Proposition 4 (ii), θ∗ is linear in v

for v in N (v); hence, it is in K(v, B) as well. From now on, we fix such a B.

First, by Proposition 4 (ii), for any j, we have

∂θ∗j
∂vi

= − 1

|C∗m|
I(j ∈ C∗m), (30)

where C∗m is the coordination set containing i, and I(j ∈ C∗m) is the indicator function,

which equals 1 only when j lies in C∗m, and zero, otherwise.

We use (30) to evaluate the effects of vi on the total adoption TA(v) and total welfare

TW (v). Differentiating TA(v) =
∑

j∈N(1−H(θ∗j )) and using (30) yields

∂TA(v)

∂vi
= H ′(θ∗i )

as a marginal increase in vi affects the cutoffs of agents contained in set C∗m by Proposition

4 (ii) with slopes given by (30).

For TW , we first rewrite it as

TW (v) =
∑
j∈N


∫ ∞
θ∗j

(vj + θ)dH(θ) + φ
∑
k∈Nj

∫ ∞
max(θ∗j ,θ

∗
k)

dH(θ)

 , (31)

where each term in {} corresponds to the equilibrium payoff of agent j. We differentiate

TW (v) and use (30) and Theorem 1 to obtain

∂TW (v)

∂vi
= 1−H(θ∗i ) + φ

(
L(C∗m, A

∗
k−1) + e(C∗m)

|C∗m|

)
H ′(θ∗i )

after some simple algebra.58

Note that the computed formulae for ∂TA(v)
∂vi

and ∂TW (v)
∂vi

are valid as long as v is in

the budget K(v, B) for the selected B. Now we consider the A-planner’s problem. Note

that the marginal effect of increasing vi on TA(v) is given by ∂TA(v)
∂vi

= H ′(θ∗i ). Since

the budget set is a simplex, the A-planner must never allocate positive budget to j that

does not maximize H ′(θ∗i ); hence, the statement for the A-planner in the Proposition is

proven. The solution for a W-planner is similar.

Remark 8 is easy to show. Note that for any i, j in the same coordination set, their

equilibrium cutoffs must be the same, i.e., θ∗i = θ∗j . Therefore, we have ∂TA(v)
∂vi

= H ′(θ∗i ) =

H ′(θ∗j ) = ∂TA(v)
∂vj

, and by the same logic, ∂TW (v)
∂vi

= ∂TW (v)
∂vi

, which implies Remark 8. �

Proof of Proposition 6:

58The middle steps are tedious; hence, they are omitted.
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First, consider part (i) of Proposition 6. Given C∗+ij = C∗, C∗m is unchanged upon

inclusion of link (i, j). Moreover, if θ∗i > θ∗j , then this ordering must be maintained upon

inclusion of (i, j); otherwise, it contradicts C∗+ij = C∗. For i ∈ C∗m ⊆ A∗k from SAND, we

can define A∗0 ≡ ∅ and write:

−θ∗i =
v(C∗m) + φ(e(C∗m) + L(C∗m, A

∗
k−1))

|C∗m|
,

−θ∗i,+ij =
v(C∗m) + φ(e(C∗m) + L(C∗m, A

∗
k−1) + 1)

|C∗m|
,

θ∗j,+ij = θ∗j if θ∗i > θ∗j ,

where the second equality holds whether j /∈ C∗m with θ∗i > θ∗j (for (i1)) or j ∈ C∗m
(for (i2)). Taking differences gives the result. The proof of part (ii) of Proposition 6 is

straightforward and just omitted. �

E Examples: Removing a node (key player) versus

adding a link

E.1 Key players

Consider the network displayed in Figure 7. Assume that all agents have the same

vi = v = 1 and φ = 0.4 (the same parameter values will be used to study the key player

in Ballester et al. 2006) and that H(·) follows a uniform distribution on the support

Θ = [−2, 0]. Since the network is a tree, there is only one coordination set by Proposition

2(2) with t∗[1] = F (N)
|N | = vN+φe(N)

N
= 1 + 0.44

5
= 1.32, so that the common cutoff for all i

is given by θ∗i = −1.32. Assume that H(·) follows a uniform distribution on the support

Θ = [−2, 0], so the probability of adopting for each agent i is equal to 1 − H(θ∗i ) =

−θ∗i /2 = 0.66. The total expected adoption is then equal to 0.66× 5 = 3.3.

Figure 7: A tree network

Let us determine the key players. Let us start with players a2, b3, and b2 (peripheral

agents), so that when one of these players is removed, there is still a connected tree left

and thus one coordination set. The removal of players a2, b3, or b2 leads to a common

cutoff equal to −
(
1 + 0.43

4

)
= −1.30. The probability of committing crime is now equal
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to 0.65, i.e., all agents now have a 65% chance of committing crime, which implies that

the total expected crime is 0.65 × 4 = 2.64. Thus, after the removal of player a2, b3, or

b1, the total expected crime has been reduced by 20%.

Now consider the removal the removal of b1. There will be one network ga consisting of

agents a1, a2, and b3, and one isolated agent b2. The common cutoff for ga is θ∗a = −1.27,

so that the probability of committing a crime is 0.635. The isolated agent will have a

probability of 0.5 of committing a crime. Thus, following the removal of player b1, the

total expected crime is given by 3×0.635+1×0.5 = 2.4. Consequently, after the removal

of player b1, the total expected crime has been reduced by 27.27%. Performing a similar

analysis for the removal of player a1 leads to a reduction of the total expected crime by

33.33%. In summary, the ranking of key players in terms of reduction of total expected

crime is: (1) a1; (2) b1; (3) a2, a3, b2.

Let us now calculate the key-player ranking in Ballester et al. (2006) using the key-

player centralities or intercentralities. It is easily verified that the ranking of key players

is very similar to the one above, that is: (1) a1; (2) b1; (3) a2, a3, (4) b2.59 Indeed,

in Ballester et al. (2006), the key players are the ones that generate the most spillover

effects, so high degree and high Katz-Bonacich centrality agents are good predictors of

key players. In our paper, degree, which is related to “interconnectedness,” matters, but

connections to “higher” coordination sets, as captured by “embeddedness,” also matter.

This is precisely because when we remove a player, we change the network density, which

affects both aspects, and therefore the cutoffs of all agents in the network. Thus, it is

possible that the ranking of key players in Ballester et al. (2006) and in our model differ,

because the concepts of intercentrality and of social connectedness (i.e., interconnected-

ness and embeddedness) are different, albeit related.

E.2 Adding a link

Let us illustrate the results in Section 5.2.2 with an example using the network in Figure

8:

59Assume a standard utility function for player i, i.e., ui = vixi− 1
2x

2
i+φxi

∑
j∈Ni

xj . Assume that vi =
1 for all i and φ = 0.4, which guarantees that there is a unique interior equilibrium. The intercentrality
for each agent i is defined as ci = b2i /mii, where bi is the Katz-Bonacich centrality of player i (see
Ballester et al. 2006). We easily obtain: (ca1 , ca2 , cb3, cb1 , cb2) = (12.43, 6.85, 6.85, 10.00, 5.46) .
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Figure 8: Coordination and bridging

Assume homogeneous values vi = v = 0 for each i ∈ N and φ = 1. Denote S1 =

{1, 2, 3, 4, 5}, S2 = {7, 8, 9, 10} and S3 = {6}, with S1 ∪ S2 ∪ S3 = N . Agents in S1

as well as agents in S2 form cliques with agent 6 bridging the two cliques with varying

connectivity to each clique. We denote `1 as the number of links that 6 has with agents

in S1, and `2 as the number of links that 6 has with agents in S2. Table 1 summarizes

the equilibrium coordination sets and provides the t∗[k] in step k defined in equation (5)

for various values of (`1, `2). Observe that θ∗i = −t∗[k] if agent i is born in step k. Denote

t∗ =
(
t∗[1]; t

∗
[2]; · · · ; t∗[K]

)
.

When agent 6 has either no link or one link, she always adopts last. This is because

she has both low interconnectedness and low embeddedness. When agent 6 has two links,

then it depends on to whom she is linked. If her two links are not with agents in S1, agent

6 stays in the second coordination set with S2. If these two links are with agents in S1,

then she is in the coordination with S1. Eventually, when agent 6 forms two links with

each of the two cliques, all of the agents coordinate together on a common cutoff. While

the total number of links that agent 6 carries with each clique is below the number of

links that members of each respective clique have with other members, agent 6 functions

as a coordination bridge, synchronizing adoption strategies through the economy. When

the number of links to either clique drops below two, agent 6 either coordinates with

one of the two cliques or coordinates with neither when holding only one link. This

illustrates the importance of interconnectedness and embeddedness of each node defined

in Section 3.4 with regard to who adopts earliest and why. In particular, while agent 6 is

less interconnected than clique members, she is well embedded in the network once she

has at least two links.
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(`1, `2) C∗ t∗

(0, 0) (2; 1.5; 0)

(0, 1) {S1, S2, S3} (2; 1.5; 1)

(1, 0) (2; 1.5; 1)

(1, 1) (2; 1.6)

(0, 2) {S1, S2 ∪ S3} (2; 1.6)

(1, 2) (2; 1.8)

(2, 0) {S1 ∪ S3, S2}
(2; 1.5)

(2, 1) (2; 1.75)

(2, 2) {N} (2)

Table 1: Coordination sets C∗ and cutoffs t∗[k] for different link additions in the network
in Figure 8.

Let us now illustrate the results in Proposition 6. First, consider part (i) of this

proposition when C∗+ij = C∗, that is, the addition of a link does not change the network

partition in terms of coordination sets. Start with agent 6 having no link, i.e., (`1, `2) =

(0, 0), so that there are three coordination sets: C∗1 = S1, C∗2 = S2 and C∗3 = S3 = {6}.
Then, when we increase `1 by one or `2 by one, we see that agents in the lower coordination

sets C∗1 and C∗2 are not affected and still have a cutoff of 2 and 1.5, respectively. However,

agent 6 now increases her cutoff from 0 to 1. Indeed, as part (i) of Proposition 6 shows,

the difference in cutoffs for agent 6 is equal to θ∗6 − θ∗6,+1 = φ/|C∗3 | = 1. Likewise, if agent

6 holds two links with clique S1 and no link to S2, i.e., (`1, `2) = (2, 0), there are two

coordination sets: C∗1 = S1 ∪ S3 and C∗2 = S2. Now, if we add a link between agent 6

and S2, the cutoff of individuals in C∗1 is not affected and is still equal to 2. However,

for i ∈ S2, we see a decrease in θ∗i of 0.25 = φ/|S2|, specifically from −1.5 to −1.75, as

predicted by part (i) of Proposition 6.

Now, consider part (ii) of Proposition 6 when C∗+ij 6= C∗, that is, the addition of a link

changes the network partition in terms of coordination sets. For example, when agent

6 holds 0 links to S1 and 1 link to S2, i.e., (`1, `2) = (0, 1), there are three coordination

sets: C∗1 = S1, C∗2 = S2, and C∗3 = S3. Then, when we add a link between agent 6 and

S1, so that (`1, `2) = (1, 1), the partition changes to contain only two coordination sets:

C∗1 = S1 and C∗2 = S2 ∪S3. As predicted by part (ii) of Proposition 6, agents in C∗1 = S1

have the same cutoff 2 and are unaffected by this additional link. Now, however, agents

in C∗2 = S2 ∪ S3 have a cutoff of 1.6; this means that any agent k in S2 sees a decrease in

θ∗k of 0.1 while agent 6 (S3) sees a decrease in θ∗6 of 0.6.
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F New predictions on adoption: Technical details

F.1 Price, aggregate demand, and comparative statics in Ballester

et al. (2006) (BCZ)

Let us introduce price in the model of BCZ. Each agent i chooses effort ai to maximize

the following payoff:

ui(a) = viai −
1

2
a2
i + φ

∑
j∈N

gijaiaj, (32)

where vi = r − p for each i, where p is the (common) price and r > 0 is the marginal

private returns of exerting ai. Observe that, contrary to our model (LZZ), effort ai is

continuous, i.e., ai ∈ R+. BCZ show that, when φλmax(G) < 1, there exists a unique

Nash equilibrium given by:

a∗(p) = (a∗1(p), · · · , a∗n(p))′ =

{
[I− φG]−1(r − p)1 if p ≤ r;

0 if p > r,

This equilibrium determines the individual demand for each player i for a given price p.

Thus, the aggregate demand is equal to:

DBCZ(p) =
∑
i∈N

a∗i (p) =

{
b(G, φ)(r − p) if p ≤ r;

0 if p > r,
(33)

where b(G, φ) = 1′[I − φG]−11 is the (unweighted) aggregate Katz-Bonacich centrality

of G with parameter φ.

F.2 Price, aggregate demand, and comparative statics in Sákovics

and Steiner (2012) (SS)

Let us now introduce price in Sákovics and Steiner (2012). The utility function of agent

i is given by:

ui(a, θ, p) =

{
φi + vi − p if a ≥ 1− θ
vi − p if a < 1− θ

where a =
∫ m

0
wiaidi, vi < 0, φi + vi − p > 0 for all p, and wi > 0. As in our model,

effort ai can only take two values: either adopt (ai = 1) or not adopt (ai = 0), and θ

is the state. Each group g of players has measure mg,
∑

gmg = m,
∑

g wgmg = 1 (a

normalization), and each vi = vj, φi = φj and wi = wj for i, j ∈ g. Players are endowed

with signals si = θ + νεi, ν ∈ (0, 1] and εi follows cdf F (·) with support [−1, 1]. Each

player i’s group membership is private information with Pr(gi = g) = mg/m.
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Sákovics and Steiner (2012) show that, for each ν ∈ (0, 1], there is a unique Bayes-

Nash equilibrium and each player follows the following threshold strategy:

ai(si, g) =

{
1 if si ≥ s∗g
0 if si < s∗g

Moreover, as ν → 0, all thresholds s∗g converge to a common limit θ∗, where:

θ∗ =
∑
g

mg
wg
φg

(p− vg).

For a given realization of θ, as ν → 0, the above maps to a p∗ such that p ≤ p∗ implies

ai = 1 and p > p∗ implies ai = 0 for all i, with

p∗ =
θ +

∑
g
mgwgvg
φg∑

g
mgwg

φg

Under the assumption that, for all g, φg = φ, p∗ becomes:

p∗ = θφ+
∑
g

mgwgvg. (34)

When all players adopt, aggregate demand DSS(p) is equal to m, otherwise demand

is 0. That is, for a given realization of the state θ, as ν → 0,

DSS(p) =
∑
i∈N

a∗i (p) =

{
m if p ≤ p∗;

0 if p > p∗.
(35)

F.3 Price, aggregate demand, and comparative statics in our

model (LZZ)

Let us introduce price p in our model. We consider the following payoff function (see

(1)):

ui(a, θ) = (vi + θ + φ
∑
j∈N

gijaj)ai,

where ai is either 0 or 1 and θ is the state. Assume vi = r − p for each i, where p is

the price and r > 0 is a constant. We can use the SAND Algorithm in Theorem 1 to

characterize the limiting cutoffs for players for a given p and a given realization of θ. The

aggregate demand function in this framework is given by:

DLZZ(p) =
∑
i∈N

a∗i (p) =
∑
i∈N

1{θ+r−p+φq∗i≥0}, (36)
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where q∗ = (q∗1, · · · , q∗n) is computed using the SAND algorithm in Theorem 1 with

vi = 0, φ = 1.60 In other words, all agents i for which p ≤ p∗[i] := θ + r + φq∗i will adopt

while those for which p > p∗[i] := θ + r + φq∗i will not adopt.

As stated in the main text, we use the real-world network in rural India studied in

Banerjee et al. (2013)61 to plot the aggregate demand DLZZ(p) in Figure 6.

This network of 20 agents is displayed in Figure 5 where different colors indicate

different coordination sets. Using the SAND algorithm, we can divide the network into

different coordination sets. Let A∗1 be the set of black nodes who share a common q∗i
value of q∗[1] = 3, A∗2 the set of dark blue and red nodes with the same cutoff q∗[2] = 2.5, A∗3
the set of the single node of light blue color with q∗[3] = 2, A∗4 the set of the green nodes

with q∗[4] = 4/3, and, finally, A∗5 the set of the yellow nodes with q∗[5] = 1. Thus, there are

5 coordination sets.62

60Observe that q∗i = −θ∗i in Theorem 1.
61This is an “help decision” network. The exact question is: “If you had to make a difficult personal

decision, whom would you ask for advice?”
62There is clearly a one-to-one relationship between q∗i and p∗[i] since p∗[i] = θ + r + φq∗i .
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(NOT FOR PUBLICATION) ONLINE APPENDIX

G Alternative equilibrium characterizations and al-

ternative proofs

In this section, we first provide an alternative characterization of the equilibrium cutoffs

by solving a simple constrained convex minimization program (Section G.1). Then, we

provide another characterization of the limiting equilibrium by showing both that the

stage game has a potential function and that the limiting equilibrium coincides with

the strategy profile, which maximizes its potential (Section G.2). In Section G.3, we

discuss alternative equilibrium characterizations. Finally, we provide an alternative proof

of Proposition 1 (balance condition for a single coordination set) using Gale’s Demand

Theorem (Section G.4). Though we employ the SAND algorithm as the main tool for

both equilibrium characterization and comparative statics analysis in the main text, the

results and the techniques behind their proofs reported here are of independent interest.

G.1 Projection mapping and alternative equilibrium character-

ization

In this section, we provide an alternative route to calculating C∗ and θ∗. The solution

can be viewed as the dual to SAND, and provides an alternative interpretation to our

limit equilibrium. Define the set of consistent weighting functions for G:

W ≡ {w = (wij, (i, j) ∈ E)|wij ≥ 0, wji ≥ 0, wij + wji = 1;∀(i, j) ∈ E}. (G.1)

Clearly, W is compact, convex. For each i ∈ N , given the intrinsic value vi, scale factor

φ, and edges E, we can define the affine mapping Φi :W → R:

Φi(w) =: vi + φ
∑
j∈Ni

wij, ∀i ∈ N. (G.2)

Let Φ(W) ⊂ R|N | denote the image of W under the mapping Φ = (Φi)i∈N . Given the

linearity of Φ(·) and the structure of W , it is easy to show that Φ(W) is a compact,

convex polyhedron. Denote 〈·, ·〉 the inner product in Rn and ||x − y|| ≡
√
〈x,y〉 the

Euclidean norm. The following theorem gives the limit cutoffs θ∗.

Theorem G1. For any v, φ, and network G, the equilibrium limit cutoffs θ∗ are given

by:

θ∗i + q∗i = 0, ∀i ∈ N, (G.3)
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where q∗ = (q∗1, · · · , q∗n) is the unique solution to:

q∗ = argmin
z∈Φ(W)

||z||. (G.4)

The program (G.4) in Theorem G1 solves for a set of cutoffs by way of finding the

vector q∗ of minimal Euclidean length. The minimization program in (G.4) is related to

the projection mapping.

Definition G1. Let K be a closed convex set in Rn. For each x ∈ Rn, the orthogonal

projection (or, projection)A1 of x on the set K is the unique point y ∈ K such that:

||x− y|| ≤ ||x− z||, ∀z ∈ K.

We denote ProjK [x] ≡ y = argminz∈K ||x− z||.

Using Definition G1, we observe that the solution vector q∗ to (G.4) is the projection

of the origin onto the compact, convex space Φ(W), which is the image of W under the

mapping Φ. Equivalently, we can reformulate the equilibrium cutoffs as

−θ∗ = q∗ = ProjΦ(W)[0].

Here, we discuss the projection mapping Theorem G1 in more detail. Like the SAND

algorithm, Theorem G1 yields the equilibrium cutoff value for each agent i. The solution

of Theorem G1 is expressed in terms of q∗, which is directly solved for with problem

(G.4). Strikingly, q∗ solves a simple quadratic program with linear constraints. q∗ maps

back to weights w∗, via Φ(·). That is, q∗ = Φ(w∗). In the proof of Theorem G1, we show

that consistency in beliefs (i.e., the conditions imposed on w∗ij defined in (10) by Lemma

1), together with the system of indifference conditions at cutoffs (as shown in (9)), imply

that the cutoffs satisfy the necessary conditions for a simple quadratic minimization

program with linear constraints specified in (G.4). Since the program (G.4) is convex

and constraints are linear, those necessary conditions are also sufficient to show that the

cutoffs indeed solve program (G.4).

In term of computation complexity, for large networks, the quadratic problem (G.4),

which converges in approximately cubic time, can perform much better than SAND.

However, the approach using SAND is more convenient; for example, the comparative

statics analysis using SAND gives the coordination sets directly, which play a key role in

the analysis of shock propagation and policy interventions.

Remark G11. Theorem G1 and SAND in Theorem 1 can now be viewed as dual prob-

lems. The former calculates q∗ yielding the partition C∗ as a bi-product, while the latter

constructs C∗ yielding q∗ as a bi-product. Interestingly, Theorem 1 gives the weights w∗ij

A1 See Chapter 1 of Nagurney (1992) for characterization and properties of this projection operator.
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explicitly in the projection step. Alternatively, in the Algorithm 1, these weights are set

either to either 0 or 1 for agents in different coordination sets by construction, while they

are implied by Gale’s Demand Theorem for agents residing within the same coordination

set.

G.1.1 Proofs

Proof of Theorem G1: Recall Equation (9) for equilibrium cutoff of agent i,

θ∗i + vi + φ
∑
j∈Ni

w∗ij = 0, ∀i ∈ N, (G.5)

where w∗ij = limν→0 E[I(sj ≥ c∗νj )|si = c∗νi ] is defined in (10). Define w∗ = (w∗ij, (i, j) ∈ E),

then w∗ ∈ W since w∗ij + w∗ji = 1 by Lemma 1 (i).

Define q = (q∗1, · · · , q∗N) where q∗i = −θ∗i . Then, by (G.5), q∗i = vi + φ
∑

j∈Ni
w∗ij, ∀i;

hence, q∗ is in Φ(W). Clearly, θ∗i < θ∗j if and only if q∗i > q∗j .

Next, we verify that this q∗ satisfies the two conditions stated in Lemma G6; therefore,

q∗ must be the projection of 0 onto Φ(W) by Lemma G6, which proves the theorem. Now

we check conditions (C1) and (C2) of Lemma G6. Clearly, condition (C1) holds from the

definition of this q∗. Condition (C2) is easy to check. Moreover, for any connected agent

i and j, suppose θ∗i < θ∗j , then q∗i > q∗j , and w∗ij = 0 and w∗ji = 1 by Lemma 1 (ii). �

Lemma G6. Let q∗ denote the projection of 0 onto the Φ(W), i.e.,

q∗ = ProjΦ(W [0].

Then q∗ is uniquely characterized by the following two conditions:

(C1 There exists w∗ ∈ W such that q∗i = vi + φ
∑

j∈Ni
w∗ij, ∀i, so that q∗ ∈ Φ(W).

(C2) In addition, for any edge (i, j) ∈ E and for any zij ∈ [0, 1],

(q∗i − q∗j )(zij − w∗ij) ≥ 0.

Moreover, we can replace (C2) by the equivalent form:

(C2’) (i, j) ∈ E, (q∗i − q∗j ) > 0 =⇒ w∗ij = 0, w∗ji = 1.

Proof of Lemma G6: We first show necessity. Clearly, (C1) is necessary from the

definition of Φ(W). For (C2), for any w′ ∈ W , by optimality of q∗, the following must

be true:

η(t) ≡ ||Φ((1− t)w∗ + tw′)||2 ≥ ||Φ(w∗)||2 = ||q∗||2 = η(0)

for any t ∈ [0, 1].
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Since Φ(·) is an affine mapping, ∂
∂t

Φ((1 − t)w∗ + tw′) = Φ(w′) − Φ(w∗). Taking the

derivative of η(t) at t = 0, we obtain:

0 ≤ η′(0) = 2〈q∗,Φ(w′)− Φ(w∗)〉. (G.6)

Now for any z′ij ∈ [0, 1], we construct a special w′ by only modifying the weights w∗ij
and w∗ji = 1 − w∗ij on the edge between i and j in w∗ to w′ij = zij and w′ji = 1 − zij.

Clearly, w′ is still in W . Inequality (G.6) becomes:

φ(q∗i (zij − w∗ij) + q∗j (zji − w∗ji)) ≥ 0.

However, zji − w∗ji = (1 − zij) − (1 − w∗ij) = −(zij − w∗ij). So the above inequality is

equivalent to:

(q∗i − q∗j )(zij − w∗ij) ≥ 0.

Let us show sufficiency. For any w′ ∈ W , a simple calculation shows that:

〈q∗,Φ(w′)− Φ(w∗)〉 = φ
∑

(q∗i − q∗j )(w′ij − w∗ij) ≥ 0,

as each term in the summation is nonnegative. Therefore, η′(0) ≥ 0; moreover, η(·) is

clearly convex in t ∈ [0, 1].A2 Therefore,

η(1)− η(0) ≥ (1− 0)η′(0) ≥ 0,

that is:

||Φ(w′)||2 ≥ ||Φ(w∗)||2 = ||q∗||2

since w′ is arbitrary, and indeed q∗ is the projection of 0 onto Φ(W).

Now we need to verify that for any edge ij with (i, j) ∈ E, (C2) is equivalent to (C2’):{
(q∗i − q∗j )(zij − w∗ij) ≥ 0,∀zij ∈ [0, 1]

}
⇔
{

(i, j) ∈ E, (q∗i − q∗j ) > 0⇒ w∗ij = 0, w∗ji = 1
}
.

If so, then q∗i > q∗j =⇒ w∗ij = 0 and w∗ji = 1; q∗i < q∗j =⇒ w∗ij = 1 and w∗ji = 0.

From (C2) to (C2’): Suppose q∗i > q∗j , and let zij = 0. We have (q∗i −q∗j )(0−w∗ij) ≥ 0,

and by w∗ij ≥ 0 it must be the case that w∗ij = 0. Similarly, assuming q∗i < q∗j and picking

zij = 1 shows that w∗ij = 1.

From (C2’) to (C2): If q∗i > q∗j and w∗ij = 0, then for any ∀zij ∈ [0, 1], (q∗i − q∗j )(zij −
w∗ij) = (q∗i − q∗j )(zij) ≥ 0. Similarly, if q∗i < q∗j and w∗ij = 1, then for any ∀zij ∈ [0, 1],

(q∗i − q∗j )(zij − w∗ij) = −(q∗i − q∗j )(1− zij) ≥ 0. �

A2 As Φ is affine and ||x||2 is a convex function of x.
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G.2 Potential function and alternative equilibrium characteri-

zation

In this section, we discuss an alternative approach of equilibrium characterization from

the perspective of potential function. Here, we derive the results formally.

Define

P (a, θ) =
∑
i∈N

ai(θ + vi) +
1

2
φ
∑

(i,j)∈E

aiaj. (G.7)

It is easy to check the following

ui(1, a−i, θ)− ui(0, a−i, θ) = P (1, a−i, θ)− P (0, a−i, θ) (G.8)

for any a−1 ∈ {0, 1}|N |−1. In other words, the difference of i’s payoff between adopting

and not adopting is exactly equal to the difference of P , holding other players’ strategy

a−i and state θ fixed. Therefore, P (·, θ) is an exact potential function of the stage game

G at θ (see Monderer and Shapley 1996).

With slight abuse of notation, we also use P (a, θ) by identifying S ⊂ N as the set of

players who choose to adopt under a ∈ {0, 1}N , i.e.,

S ↔ {i ∈ N, ai = 1}.

Using this notation, the potential takes the following form:

P (S, θ) ≡ v(S) + φe(S) + |S|θ = F (S) + |S|θ.

Define the potential maximizer

M(θ) ≡ arg max
S⊂N

P (S, θ). (G.9)

It is possible to have multiple maximizers, in which caseM contains all the maximizers.

Lemma G7. Define θ∗[k] = −t∗[k]. The SAND algorithm finds the potential maximizer M
systematically as follows:

M(θ) =


∅ if θ < θ∗[1]

A∗1 if θ∗[1] < θ < θ∗[2]

· · · · · ·
A∗K = N if θ > θ∗[K].

(G.10)

Moreover, at the cutoffs θ∗[i], there might be multiple maximizers. Indeed, {A∗i−1, A
∗
i } ⊆

Γ(θ∗[i]) for i = 1, 2, · · · , K.

Lemma G8. The following statements are true.
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(i) Except at a finite number of points of θ, the maximizer of (G.9) is unique, soM(θ)

is a singleton.

(ii) For any θ′ < θ′′, M(θ′) ⊆M(θ′′).

P (S, θ) is supermodular in S for each θ, and it satisfies increasing difference in (S, θ).A3

By the Monotone Comparative Statics Theorem (Milgrom and Shannon 1994), Lemma

G8 follows. M is “increasing” in θ in the sense of strong set order. The potential

maximizerM(θ) is monotone in θ. So, for each agent i, if i ∈M(θ) at θ = θ′, it remains

in the setM(θ) for any state θ′′ > θ′ by Lemma G8 (ii). Therefore, the set {θ, i ∈M(θ)}
is an interval by Lemma G8. So we record the smallest state to make i included in the

M as follows:

γi = inf{θ : i ∈M(θ)}.

We call γi the switching point of agent i: when θ is below γi, agent i is not included in

M(θ); however, when θ is above γi, i is included in M(θ). Conversely, we can almost

recover the mapping Γ(·) from these {γi}s by observing that

{k : θ < γk} ⊆ M(θ) ⊆ {k : θ ≤ γk}. (G.11)

When θ is not equal to these cutoff values γk, the left and right sides are the same, which

determines M(θ).

The connection between switching points for the potential maximizer and the limiting

equilibrium threshold characterized in Theorem 1 is present in the following.

Theorem G2.

(1) For every i, the switching point exactly equals the limiting threshold, i.e.,

γi = θ∗i .

(2) The limiting equilibrium selected by the global game π∗(θ) = {I(θ ≥ θi), i ∈ N}
(see Proposition 0) is the maximizer of the potential P for generic θ.A4

Theoretically, we can view Theorem G2 (1) as an equivalent characterization of the

limiting threshold sinceM fully determines the thresholds of every player, and hence the

A3 It is easy to show that:
(1) P (·, θ) is supermodular, at each θ:

P (S ∪ T, θ) + P (S ∩ T, θ) ≥ P (S, θ) + P (T, θ),∀S, T.

(2) P satisfies increasing difference in (S, θ):

P (T, θ′)− P (S, θ′) < P (T, θ′′)− P (S, θ′′), ∀θ′′ > θ′, ∀T ) S.

A4With the exception of θ ∈ {−t∗[1], · · · ,−t
∗
[K]}.
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partition and coordination sets. Formally, for each agent i,

θ∗i = γi = inf{θ : i ∈M(θ)}.

Furthermore, Theorem G2 (2) reveals the special feature of the equilibrium selected by

the global game approach.

The connection between the two theorems (Theorem 1 and Theorem G2) is captured

by the following observation in the global game literature (see Frankel et al. 2003): the

limiting equilibrium for a potential game equals the potential maximizers for generic

θ, as confirmed by Theorem G2 (2). In other words, the SAND can be treated as an

algorithm that gives a systematic solution to M(θ). Due to the combinatorial feature

of the potential maximization problem, finding the maximizer for all θ might not be a

simple task. The SAND algorithm achieves it as a by-product.

Remark G12. The equilibrium we selected using the global game approach is robust in

the sense of Kajii and Morris (1997). Furthermore, the selection is noise-independent.

To see that, recall that our coordination game has a potential P (a, θ) (see (G.7)), which is

supermodular in (ai, a−i) for fixed θ, and strictly supermodular in (ai, θ) for fixed a−i. As

a result, according to Frankel et al. (2003), Oyama and Takahashi (2020), and Basteck

et al. (2013), the game Γ0 has an exact potential; therefore, the maximizer of the potential

is selected by the global game, and this selection is independent of noise distribution F .A5A6

While the potential approach in Theorem G2 requires solving the maximization of

P for each θ, which makes it challenging for comparative statics due to the discreteness

of a, SAND has the advantage in that more precise information about the equilibrium

cutoff points θ∗i is obtained using Theorem 1 and the projection method in Theorem G1.

Moreover, the information about the coordination set, i.e., who coordinates with whom,

is also directly decoded using the cutoff values, which enables us to conduct comparative

statics with respect to network structure and valuations in a much simpler manner.

Proofs of Lemma G7, Lemma G8, and Theorem G2: It is sufficient to prove that

theM takes the specific form given in (G.10) in Lemma G7, as Lemma G8 and Theorem

G2 directly follow from it. Recall P (S, θ) ≡ F (S) + θ|S|, and θ∗[k] and t∗[k] satisfy the

following condition by SAND:

−θ∗[k] =
F (A∗k)− F (A∗k−1)

|A∗k| − |A∗k1|
≡ t∗[k] = max

S)A∗k−1

F (S)− F (A∗k−1)

|S| − |A∗k−1|
.

A5Moreover, Ui (2001) shows that the selected equilibrium is robust in the sense of Kajii and Morris
(1997). See Morris and Ui (2005), Oyama and Takahashi (2020) for further discussions.

A6In the simple case of a two-player, binary action coordination game (dyad case in our paper), as shown
in Carlsson and van Damme (1993), the risk-dominant equilibrium is selected by the global game and it is
independent of noise distribution. Frankel et al. (2003) generalized this result to n-player supermodular
games that yield a potential, which applies to our setting under arbitrary network structures.
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Step 1: Fix θ < θ∗[1], for any nonempty S,

P (S, θ) = |S|(F (S)

|S|
+ θ) ≤ |S|(t∗[1] + θ) < |S| (t∗[1] + θ∗[1])︸ ︷︷ ︸

=0

= 0 = P (∅, θ)

as F (S)
|S| ≤

F (A∗1)

|A∗1|
= t∗[1] by step 1 of the SAND algorithm. So, the unique maximizer is ∅

in such a state, i.e.,

M(θ) = ∅, ∀θ < θ∗[1].

By the continuity of P in θ, ∅ must also be a maximizer when θ = θ∗[1], i.e.,M(θ∗[1]) ⊇ {∅}
(although it may not be the unique maximizer). Moreover, by the definition of θ∗[1], t

∗
[1],

we have

0 = F (A∗1) + θ∗[1]|A∗1|, as θ∗[1] = −F (A∗1)

|A∗1|
= −t∗[1].

Therefore,

P (∅, θ∗[1]) = 0 = P (A∗1, θ
∗
[1]).

In other words, M(θ∗[1]) ⊇ {∅, A∗1}.

Step 2: Next, consider θ∗[1] < θ < θ∗[2]. Then, θ ∈ (−t∗[1],−t∗[2]).

(2a) For any proper subset A1 ⊂ A∗1, we have

P (A1, θ
∗
[1]) ≤ P (A∗1, θ

∗
[1])

by the optimality of A∗1 at θ∗[1]. Then, by increasing difference of F in (S, θ) (see

footnote A3 in the Online Appendix), we have P (A1, θ) < P (A∗1, θ) as θ > θ∗[1].

(2b) Consider any proper superset Ā1 ⊃ A∗1. We have

P (Ā1, θ)− P (A∗1, θ) = (|Ā1| − |A∗1|)(θ +
F (Ā1)− F (A∗1)

(|Ā1| − |A∗1|)
)

≤ (|Ā1| − |A∗1|) (θ + t∗[2])︸ ︷︷ ︸
<0

< 0

as
F (Ā1)−F (A∗1)

(|Ā1|−|A∗1|)
≤ F (A∗2)−F (A∗1)

(|A∗2|−|A∗1|)
= t∗[2] by step 2 of SAND, and θ∗[1] < θ < θ∗[2].

(2c) Combing (2a) and (2b), we apply Lemma 2 to show that A∗1 is the unique maximizer

of P when θ∗[1] < θ < θ∗[2] (recall P (S, θ) is supermodular in S for fixed θ). Therefore,

M(θ) = {A∗1}, ∀θ∗[1] < θ < θ∗[2].
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Again, by continuity of P in θ, A∗1 remains a maximizer of P at θ∗[2]:

M(θ∗[2]) ⊇ {A∗1}.

By the definition of z∗[2] and θ∗[2], we can verify that

P (A∗1, θ
∗
[2]) = P (A∗2, θ

∗
[2]) as θ∗[2] = −F (A∗2)− F (A∗1)

|A∗2| − |A∗1|
= −t∗[2].

As a result,

M(θ∗[2]) ⊇ {A∗1, A∗2}.

The result of the proof follows by the same logic. �

G.3 Discussion of alternative equilibrium characterizations

Here, we briefly discuss two alternative characterizations using different perspectives.

Alternative equilibrium characterization using Projection Theorem G1 in the

Online Appendix G.1 provides an alternative characterization of the equilibrium thresh-

olds θ∗ by solving a simple constrained convex minimization program. In contrast to the

discrete nature of SAND, this minimization problem is continuous. The constraints to

the program are a function of the network structure and the consistency requirements of

Lemma 1. In particular, this program is less demanding to compute than SAND because

it is a simple convex program with linear constraints.

Alternative approach using potential games The global game approach we used

in Section 3.1 gives a selection of equilibrium π∗(θ) for the stage game for each state

θ. To be precise, the adoption profile in which each i adopts if and only if θ ≥ θ∗i is

a Nash equilibrium of the stage game given θ. In fact, as shown in equation (G.7) in

the Online Appendix G.3, our coordination game has an exact potential function. Thus,

sharper predictions about this equilibrium selection using a global game approach can be

established. Formally, in Theorem G2 in the Online Appendix G.3, we prove that the

selected equilibrium exactly corresponds to the unique maximizer of the potential, for

any state. Furthermore, the cutoff for each agent can be decoded from the maximizers

for different states, which provides a new method to determine equilibrium cutoffs.

Observe that the equilibrium we selected using the global game is robust in the sense

of Kajii and Morris (1997). Conversely, any equilibrium in the complete information,

which differs from our equilibrium (the potential maximizer), is not robust (Morris and

Ui 2005). For instance, in Section J, we study the extreme equilibria, i.e., the largest and

the smallest ones. We observe that at least one extreme equilibrium is not robust for all

states, except when there is a unique Nash equilibrium.
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G.4 Alternative proof of Proposition 1 using Gale’s Demand

Theorem

By Theorem G1, the existence of a single coordination set is equivalent to:

T

n
1 ∈ Φ(W),

where T =
∑

i vi + φe(N) = F (N). This can be reformulated as a feasibility condition

to the following linear programming problem:

vi + φ
∑
j∈Ni

wij =
T

n
, ∀i ∈ N,

wij ≥ 0, wij + wji = 1, ∀(i, j) ∈ E,

given vi = v, ∀i, and T =
∑
vi+φe(N) = nv+φe(N). So the above system is equivalent

to: ∑
j∈Ni

wij =
e(N)

|N |
, ∀i ∈ N, (G.12)

wij ≥ 0, wij + wji = 1, ∀(i, j) ∈ E.

To show the necessity, suppose there exists a solution w∗ to system (G.12). Then:

|S|e(N)

|N |
=
∑
i∈S

(
∑
j∈Ni

w∗ij) ≥
∑

i,j∈S:(i,j)∈E

w∗ij = e(S) · (1) = e(S)

where the first inequality is trivial, and the second inequality follows from the fact that

for each edge with two end nodes i, j both in S, w∗ij + w∗ji = 1, there are exactly e(S)

such links in the summation.

To show sufficiency, we first reformulate the above condition as a feasibility condition

to a network flow problem; we then apply Gale’s Demand Theorem (see Gale 1957). From

the original network G = (N,E), we construct a specific bipartite network G̃ = (V,A),

where the set of nodes is the union V = V1 ∪ V2 where V1 = E and V2 = N . The arcs

(flow) in G̃ are only from V1 to V2. In particular, f ∈ E = V1 is connected to i ∈ N = V2

in the bipartite graph G̃ = (V,A), if and only if i is one of the endpoints of this edge f

in the original network G. Clearly, |V1| = e(N), and |V2| = |N |.
Each vertex i ∈ V2 is a demand vertex, demanding di = e(N)

|N | units of a homogeneous

good. Each vertex in j ∈ V1 is a supply vertex, supplying sj = 1 unit of the same good.

Supply can be shipped to demand nodes only along the arcs A in the constructed bipartite

network G̃. Gale’s Demand Theorem states that there is a feasible way to match demand
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and supply if and only if for all S ⊂ V2:∑
i∈S

di ≤
∑

j∈N(S)

sj,

where N(S) is the set of neighbors of vertices in S in G̃. Substituting the values of sj, di
yields the following equivalent condition:

|S|e(N)

|N |
≤ |N(S)|, ∀ ∅ ⊂ S ⊂ V2.

Clearly, the above condition holds when S is either empty or the whole set N . For any

other case of S, from the construction of G̃, the set N(S) is only the edges in E such

that at least one endpoint belongs to S. Therefore:

|N(S)| = e(N)− e(Sc)

where Sc = N\S is the complement set of S. Recall that:

|N | = |S|+ |Sc|, e(N) = |N(S)|+ e(Sc),

It is easy to see that:

|S|e(N)

|N |
≤ |N(S)| ⇐⇒ e(N)

|N |
≤ |N(S)|
|S|

⇐⇒ e(N)

|N |
≤ e(N)− e(Sc)
|N | − |Sc|

⇐⇒ e(Sc)

|Sc|
≤ e(N)

|N |
.

So the feasibility condition is equivalent to the following:

e(Sc)

|Sc|
≤ e(N)

|N |
, ∀ ∅ 6= Sc ⊂ N.

Since S is an arbitrary subset of N , and Sc is also arbitrary, the sufficiency direction is

proven. This establishes Proposition 1. �

H Additional results

We now consider six extensions and variations of our model.

H.1 Unbounded noise

The above model takes agents’ noise supports to be contained within the bounded interval

[−ν, ν].A7 The positive and normative implications of the model are maintained in the

A7This assumption conveniently yields equilibrium properties near the noiseless limit that are com-
mensurate with the properties of π∗. In particular, local contagion (Proposition 4) and the reach of
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noiseless limit under unbounded noise. Consider, for example, the perturbed game where

θ is observed with Gaussian noise by all agents: each i observes signal si = θ + εi,

where each εi ∼ N(0, ν), ν > 0, and all signals are independently drawn conditional on

θ. Theorem G1 continues to describe the limit equilibrium ~π.A8 Therefore, all limiting

characterizations, including those of sticky coordination, linkage, and local contagion, as

well as the model’s welfare properties, are intrinsic to the equilibrium selected from the

complete information game Γ0.

H.2 Noise-independent selection

The equilibrium selection in the noiseless limit is not sensitive to the commonality of

the noise distribution F . Here, we consider the robustness of equilibrium selection to

heterogeneous noise structures. Consider the following extension.A9

Information structure. In the perturbed game, each i realizes signal si = θ + νεi,

ν > 0, where εi is distributed via density function fi and cumulative function Fi with

support within [−1, 1]. Signals are independently drawn across agents conditional on θ.

As shown in Theorem 1, the limiting cutoff θ∗i are fully determined by the parameters

v, φ, and G; in particular, the cutoffs are independent of the noise distribution Fi and

the prior distribution of θ.

H.3 Weighted links

We can extend our results to allow for edge-weights eij > 0 for each (i, j) ∈ E. In this

extension, the noise-independent selection is maintained. All results can be extended

upon adjusting for edge-weights.

First, we write i’s ex-post payoff as follows:

ui(a, θ) = ai(vi + θ + φ
∑
j∈Ni

eijaj). (H.1)

Theorem G1 remains unchanged.A10 We extend the following definitions to allow for

weighted links. First, define i’s weighted degree di(S) ≡
∑

j∈Ni∩S eij. The definitions of

L(·, ·) and e(·) then go through:

L(S, S ′) =
∑
i∈S

di(S
′),

policy interventions (Proposition 5) extend throughout but remain contained within coordination sets,
provided ν is sufficiently small.

A8An analogous proof to Lemma 1 can be constructed. Beyond this, the theorem’s proof is identical.
A9Frankel, Morris, and Pauzner (2003) Section 6 addresses such an enrichment.

A10The proof of Theorem G1 requires only modest adjustments; we leave this for the reader.
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e(S) =
1

2

∑
i∈S

di(S), F (S) = v(S) + φe(S).

Theorem 1 and SAND solving for equilibrium cutoffs and Proposition 1 characteriz-

ing network-wide coordination remain unchanged.A11 Proposition 2 is reserved for un-

weighted graphs, as the following three-agent counterexample can easily be constructed.

If eij � ejk with eik = 0, then agents i and j will coordinate together, and agent k will

take a strictly higher cutoff. And when intrinsic values are heterogeneous, the compara-

tive statics results of Proposition 4 also go through.

Importantly, the noise-independent selection (Section H.2) continues to hold when

links are weighted and symmetric. The relevant potential function becomes:

P (a, θ) ≡
∑
i∈N

(vi + θ)ai +
1

2
φ
∑

(i,j)∈E

eijaiaj, where a ∈ {0, 1}N , (H.2)

and the results of Frankel et al. (2003) and Basteck et al. (2013) carry through.

H.4 Miscoordination costs

We can set vi = v − φdi to give:

ui(1, a−i, θ) = v + θ − φ
∑
j∈Ni

(1− aj). (H.3)

The agents then face miscoordination costs in their adoption choices. More connected

coordination sets take higher cutoffs, and agents’ links to coordination sets taking lower

cutoffs carry zero weight; these miscoordination costs are avoided with a probability

of one. Links to others within one’s coordination set are penalized according to limit

likelihoods placed on the neighbors not adopting. And links to coordination sets taking

higher cutoffs are penalized with a weight of one, with these costs being borne with a

probability of one.

When a single coordination set is obtained, the common cutoff is θ∗1 = (−v + φ e(N)
|N | ),

by Theorem 1. Moreover, one can use the SAND algorithm to reconstruct Proposition 1

as the equivalent condition for a single coordination set. To show this, SAND terminates

in one step if and only if:

F (S)

|S|
=
|S|v − φ

∑
i∈S di + φe(S)

|S|
≤
|N |v − φ

∑
i∈N di + φe(N)

|N |
=
F (N)

|N |
, ∀∅ 6= S ⊂ N,

which, given −
∑

i∈S di + e(S) = −e(S, Sc)− e(S), is equivalent to:

e(S, Sc) + e(S)

|S|
≥ e(N)

|N |
, ∀∅ 6= S ⊂ N.

A11Again, these require modest adjustments to proofs and updated definitions of F (·), e(·), etc.
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Because E = e(S) ∪ e(Sc) ∪ e(S, Sc), for this inequality to hold it must be that:

e(Sc)

|Sc|
≤ e(N)

|N |
, ∀∅ 6= Sc ⊂ N.

As this is true for all nonempty Sc ⊂ N , we are free to drop the complement superscripts.

Thus, Proposition 1 continues to hold.

H.5 Non-strategic externalties

We can incorporate a non-strategic externalties function wi(a−i, θ) to augment both

ui(1, a−i, θ) and the payoffs to not adopting (now equal to wi(a−i, θ) instead of zero).

Under this extension, the equilibrium selected in the limit along with all of the positive

results remain.

H.6 Local-average model

Here, we show the stark result that a single coordination set obtains for all network

structures under homogeneous intrinsic values and when agents value the average of

neighbors’ adoption choices (i.e., the “local-average” model). To be precise, we assume

that agent i holds the payoff function:

ui(a, θ) = ai

(
v + θ + φ

1

|Ni|
∑
j∈Ni

aj

)
. (H.4)

With this payoff function, Uν
i (π−i|si) for action ai = 1 when i observes si and each j 6= i

uses strategy πj takes the form:

Uν
i (π−i|si) = v + E [θ|si] + φ

1

|Ni|
∑
j∈Ni

E[πj(sj)|si].

Now, consider the profile of cutoff strategies in which all neighbors of i take cutoff c.

For the realization si = c, agent i calculates E[πj(sj)|si = c] = 1/2, yielding a posterior

expected payoff to adopting of:

Uν
i (π−i|si = c) = v + E [θ|si = c] + φ

1

2
.

The Bayesian-Nash Equilibrium (BNE) indifference condition is then:

v + E [θ|si = c∗] + φ
1

2
= 0,

which is independent of the number of neighbors that i has. We have verified that a

symmetric BNE in which each player takes cuttoff c∗ solving E [θ|si = c∗] = −(v + φ/2)
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exists. By Theorem 1 of Frankel et al. (2003), the unique limit equilibrium is symmetric

and satisfies θ∗i = θ∗ = −(v + φ/2) for each i ∈ N .

I Private intrinsic values

In this section, we show that our limit equilibrium is robust to private information in

the perturbed game Γ(ν) regarding intrinsic values vi. In the following subsection, we

formalize such an extension. In the second subsection, we show this extension defines a

limiting case of Oury (2013), and apply their main result.

I.1 Model with i.i.d. intrinsic values

Payoffs. Payoffs from adopting the technology are as in the baseline model:

ui(a, θ) = ai

(
vi + θ + φ

∑
j∈Ni

aj

)
, (I.1)

but now with vi treated as a random variable with θ.

Information structure. In the perturbed game, θ is observed with noise by all agents.

Each i realizes signal si = θ+ νεi ∈ S, ν > 0, where εi is distributed via density function

f ε and cumulative function F ε with support [−1, 1]. Each intrinsic value vi is distributed

via density function f v and cumulative function F v with bounded interval support V ⊂
R. Player i privately observes her vi before choosing action ai. All signals s1, . . . , sn
are independently drawn across agents conditional on θ. Intrinsic values v1, . . . , vn are

independent of each other, independent of θ, and independent on all signals.

Dominance regions. For each i, we assume min(V ), max(V ), and φ are such that there

exist θi and θi such that max(V ) + θ + φdi < 0 when θ < θi and min(V ) + θ > 0 when

θ > θi. Thus, there exist dominant regions [min Θ, θ] and [θ,max Θ], with θ ≡ mini{θi}
and θ ≡ maxi{θi}, such that not adopting and adopting the technology (respectively)

are dominant strategies for all players. When the realization of θ is common knowledge

among agents, with φ > 0 there can exist a strictly positive measure of θ realizations

within [θ, θ] at which multiple pure strategy Nash equilibria occur.

I.2 Mapping to Oury (2013)

We now show that the above extension gives a limiting case of the “N -dimensional global

games” setting of Oury (2013). For this, we incorporate a passive (n + 1)’th player by

setting An+1 = {1}, the singleton set. Conceptually, this additional passive player allows

for the state t to incorporate both active players’ private intrinsic values in addition to

the common state θ.
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To facilitate what follows, we adopt the notation of Oury (2013) wherever possible,

and state when otherwise. Bµ(x) gives the (n+ 1)-dimensional ball in Rn around vector

x under euclidean norm || · ||. Gν(u,Φ,Ψ) denotes the perturbed game given ν > 0, where

each player i receives an (n+ 1)-dimensional private signal si = t + νηti of payoff relevant

state t ∈ T ⊆ Rn+1, Φ defines the density function to the errors ηti ∈ Rn+1, and Ψ defines

the prior distribution of t. (ηt1, . . . ,η
t
n) are assumed to be independently distributed.

The density functions Φt
i are assumed to have support within B1/2(0).

We now define θ as in our baseline model and in the extension of the preceding

subsection.A12 For each i = 1, . . . , n we define ti = vi, and set tn+1 = θ. For each i ∈ N ,

we capture i’s private information of vi and θ by assuming that the i’th and (n + 1)’th

components of joint distribution Φt
i have supports within Bδ(0) and Bδ′(0), respectively,

for arbitrarily small but positive δ, δ′ � 1/2, while all other components of Φt
i have

common support B1/2(0). To further capture player i’s highly precise information of vi,

we may further impose that δ � δ′. Indeed, in the limit δ → 0, this model limits on the

above extension where players perfectly observe their own intrinsic values.A13

We can now establish that Gν(u,Φ,Ψ) indeed embeds the complete information game

defined by g in the sense of Oury (2013). For this, we show that for each t? ∈ T ,

we can define a continuous function Γ : Θ 7→ Rn+1 such that (i) Γ(θ?) = t? for some

θ? ∈ Θ, and (ii) Assumptions 1 to 3 specified in Oury (2013) hold for this Γ. For (i),

for any realization of v?, we define Γ(θ) = (v?1, . . . , v
?
n, θ); clearly, Γ(θ?) = t?. For (ii),

we further define gi(·) = ui(·, t?) ≡ ui(·|v?i , θ?) and ∆gi(ai → a′i, a−i). Then, setting

K = 1 satisfies Assumption 1. Assumption 2 follows by definition of the pair θ, θ and

the assumption that these cutoffs are in the interior of Θ. Assumption 3 follows given

strategic complementarities hold for all t.

This notion of embedding applies to our benchmark model if we instead require that

Ψ gives the one-dimensional prior distribution of θ, and vi is fixed for each i ∈ N .

In our model, Ψ corresponds to the distribution H. This one-dimensional embedding

corresponds to the “FMP global games embedding” discussion in Oury (2013) and is

referred to below.

Along with the following definition of noise-independent selection, we now restate the

main result of Oury (2013) verbatim (modulo the above notation).

Definition. We say that the action profile a? is noise-independently selected in the global

games Gν(u,Φ,Ψ) embedding the complete information game g at state parameter t?,

if for each noise structure Φ, there exists ν̂ > 0 such that for each ν < ν̂ and each

strategy profile s, si : Rn+1 7→ {0, 1}, surviving iterative strict dominance in Gν(u,Φ,Ψ),

s(t?) = a?.

In the context of our baseline model, the set of players adopting in action profile a? is

equal to the union of all coordination sets adopting in state θ? in the noiseless limit where

A12Note that in Oury (2013), θ and θ define the lower and upper bounds of θ, while in our setting, these
define the cutoffs to the dominance regions; in our setting, we denote the interval domain of θ by Θ.
A13Moreover, for large ν, their posteriors place high weight on their priors of others’ intrinsic values.
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intrinsic values are set to v?.

Theorem I3 (Oury 2013). The action profile a? is noise-independently selected in all

FMP global games embedding the complete information game g if and only if a? is noise-

independently selected in all multidimensional global games embedding g.

With Theorem 1 of Oury (2013), the unique equilibrium selected in noiseless limit

ν → 0 is equivalent to that selected in the extended model where players hold private

information on intrinsic values.

J Differences betweeen complete and incomplete in-

formation: An Example

Consider the network of five agents depicted in the left panel of Figure J.1. It is easily

verified that the maximal and the minimal equilibria are very different; see the middle

panel of Figure J.1.A14 Indeed, in the minimal equilibrium, all five agents adopt together

when the technology’s value (the state of the world θ) rises above the common threshold

θ− and do not adopt below this value. However, θ− corresponds to the adoption cutoff for

an agent in isolation, without network effects. So, the agents entirely fail to coordinate

and capitalize on the positive externalities between their adoption choices.

In the maximal equilibrium, on the other hand, agents {1, 2, 3, 4} succeed in capital-

izing on their positive network effects. The clique now adopts together for technology

values θ above some cutoff θ+
−5 < θ−, while agent 5 joins for values above θ+

5 , where

θ+
−5 < θ+

5 < θ∗ < θ−. That is, the clique perfectly coordinates their adoption, with agent

5 benefiting as a consequence.

If we now consider our model with incomplete information about the quality of the

technology (state of the world) and agents observe private signals of the state, with even

the mildest noise, things change considerably. In particular, in the noiseless limit, a

unique Nash equilibrium of the complete information game is selected. As depicted in

the middle panel of Figure J.1, the unique global games equilibrium selection involves

all agents adopting when θ rises above the common cutoff θ∗ (note that the network is

balanced). Thus, for each value of θ, such that θ+
−5 < θ < θ−, this equilibrium is distinct

from either the maximal or the minimal equilibrium. Importantly, since there is a unique

equilibrium in the incomplete information case, we do not need to arbitrarily choose the

maximal or the minimal equilibrium, as is usually the case in this literature.

Let us now compare the comparative statics of the maximal or minimal equilibrium

with that of the unique, global games equilibrium.

A14In the middle panel of Figure J.1, the sets of adopting agents in maximal and minimal equilibria
under complete information are depicted in green and red, respectively, while that of the global games
equilibrium is displayed in blue.
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Figure J.1: Complete versus incomplete information

First, the comparative statics of the maximal and minimal equilibria are notably

distinct from each other, as depicted in the right panel of Figure J.1.A15 Indeed, consider

the effect of a small, publicly observed adoption tax on one agent, say agent 1 (see

Figure J.1) in the minimal equilibrium. Because θ− defines the adoption threshold under

isolation, 1’s decreased value to adoption carries no consequence on the adoption choices

of others. In fact, agent 1 herself continues to adopt when the technology value rises

above θ−, because the network effects from agent 1’s neighbors’ adoptions compensate

1 for the tax. As a result, this policy of taxing agent 1 has no effect on the adoption

rate of all agents. Conversely, if agent 1’s adoption is subsidized, 1 will begin to adopt at

values below θ−, which effectively subsidizes others’ adoptions; the intervention affects

all players as they all adopt at a lower threshold than θ−. Moreover, a subsidy to a

second agent only carries an effect once that subsidy rises above the subsidy to agent

1. In summary, we see very different behaviors in the effects of subsidies and taxes to

individual agents in the minimal equilibrium.

Similar distinct behaviors are obtained in the maximal equilibrium, though in a re-

versed manner. A small subsidy to agent 1 carries no effect on equilibrium actions. On

the contrary, a small tax on agent 1’s adoption causes her (who belongs to the clique) to

adopt at values strictly above θ+
−5, which causes the other three agents in the clique to

increase their cutoffs as well. The agents in the clique, who coordinate their adoptions

with agent 1’s adoption, remain unresponsive to taxation until their tax surpasses the tax

on agent 1. Hence, we see a reversal in the effects of subsidy and taxation on adoption.A16

A15In the right panel of Figure J.1, resulting from tax/subsidy to agent 1, comparative statics analyses
of maximal and minimal equilibria under complete information are given by θ+−5 and θ−, respectively,
while that of global games equilibrium is given by θ∗.
A16In Proposition D1 in the Online Appendix of the working paper version (Leister et al. 2019), we
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Second, as depicted in the right panel of Figure J.1, the comparative statics of our

unique equilibrium using global games are far removed from those of the maximal and

minimal equilibria. By Proposition 4, all agents who coordinate with agent 1 respond to

the intervention. In fact, all that is required for an agent to respond to the subsidy/tax is

that she be path connected with the recipient through other agents who also coordinate

their adoptions with the recipient.

formally derive the comparative statics results for the maximal and minimal equilibria in the complete
information case.
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