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Abstract 1 

Colonic crypts are tubular glands that multiply through a symmetric branching process called crypt 2 

fission. During the early stages of colorectal cancer, the normal fission process is disturbed, leading to 3 

asymmetrical branching or budding. The challenging shapes of the budding crypts make it difficult to 4 

prepare paraffin sections for conventional histology, resulting in colonic cross sections with crypts that 5 

are only partially visible. To study crypt budding in situ and in 3D, we employ X-ray micro-computed 6 

tomography to image intact colons, and a new method we developed (3D cyclorama) to digitally unroll 7 

them. Here, we present, verify and validate our ‘3D cyclorama’ method that digitally unrolls deformed 8 

tubes of non-uniform thickness. It employs principles from electrostatics to reform the tube into a 9 

series of onion-like surfaces, which are mapped onto planar panoramic views. This enables the study 10 

of features extending over several layers of the tube’s depth, demonstrated here by two case studies: 11 

(i) microvilli in the human placenta and (ii) 3D-printed adhesive films for drug delivery. Our 3D 12 

cyclorama method can provide novel insights into a wide spectrum of applications where digital 13 

unrolling or flattening is necessary, including long bones, teeth roots and ancient scrolls. 14 

Keywords 15 

Colorectal cancer, Crypt branching, Computed tomography (CT), 3D cyclorama, Digital unrolling, 16 

Digital flattening, Digital straightening.  17 
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Supplementary 18 

S.1 Verification of the 3D cyclorama method 19 

To verify the presented digital volume unrolling method, we generated a 3D digital phantom (see 20 

supplementary Figures S1-S4) in two steps. We first created a 2D grid template in silico, which was 21 

used to create both a deformed cylindrical tube (digital phantom) and a 3D template stack (ground 22 

truth). The digital phantom (see supplementary Figure S2 and Figure S4) was created by rolling and 23 

stretching the 2D grid template (see supplementary Figure S1) by means of an analytical mapping we 24 

devised (see supplementary Figure S3). The 3D template stack or ground truth (see supplementary 25 

Figure S4) was built as a planar version of the digital phantom using the same 2D grid template. We 26 

then applied our 3D cyclorama method to unroll the phantom volume and compare the resulting 3D 27 

cyclorama (see supplementary Figure S4) visually and quantitatively with the 3D template stack as 28 

ground truth. Next we describe this process in detail. 29 



5 
 

 30 

Figure S1: 2D grid template and slices of the 3D cyclorama after unrolling of the digital phantom 31 

(a) The 2D grid template used to create the digital phantom is composed as a greyscale gradient with 32 

superimposed horizontal and vertical bands. These serve both as visual cues and as features for 33 

quantitative evaluation of the image deformation after unrolling. (b-c) Two slices of the 3D cyclorama 34 

after unrolling the digital phantom at 3% (2/113) and 21% (23/113) relative depth level. Dark patches 35 

on the 3% (2/113) slice emerge due to probing of background pixels during the mapping of superficial 36 

surfaces close to the inner boundary. Angular image deformation appears as curved vertical lines on 37 

the 21% (23/113) slice, while image deformation in the radial direction appears as shadows due to 38 

probing of pixels from neighbouring depths. The cycloramas were aligned with respect to the 2D 39 

template, since the cutting edge is defined azimuthally by the arbitrary first point of the contours. 40 

First, we created a 2D grid template image 𝑔𝑔ℎ,𝑗𝑗 with pixel greyscale values according to the following 41 

rule: 42 
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𝑔𝑔ℎ,𝑗𝑗 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑗𝑗 ∙ ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 + ℎ,    𝑗𝑗 = 0 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ − 1, ℎ = 0 … ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 − 1 , (S1) 

where 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 > 0 is an arbitrary positive integer and 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ and ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 are the image width and 43 

height in number of pixels, respectively. In a next step, two single-valued horizontal and three single-44 

valued equidistant vertical stripes with thickness 𝑠𝑠𝑡𝑡 and distance 𝑠𝑠𝑑𝑑 were superimposed in order to 45 

create a rectangular grid (see supplementary Figure S1). The arbitrary offset was chosen to be positive 46 

so that after rolling of the template onto a deformed cylindrical tube (see supplementary Figure S2), 47 

it can easily be differentiated from the background (greyscale value of background = 0). The two 48 

indices  𝑗𝑗 and ℎ introduce a gradient (see supplementary Figure S1) to create features of varying 16-49 

bit greyscale values, necessary for quantitative comparison between the 3D cyclorama (unrolled 50 

version of the deformed cylindrical tube) and the 3D template (ground truth). The horizontal and 51 

vertical boundaries of the stripes create visual cues that help assess the amount of image deformation 52 

in the cycloramas in a qualitative manner. We implemented the 2D grid template image 𝑔𝑔ℎ,𝑗𝑗 (see 53 

supplementary Figure S1) using the following sizes in number of pixels: 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 296, 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 𝐿𝐿 =54 

1200, ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 = 𝐻𝐻 = 500, 𝑠𝑠𝑑𝑑 = 300, 𝑠𝑠𝑡𝑡 = 100. 55 

 56 

Figure S2: Cross sections of the 3D digital phantom 57 
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(a) Cross sections of the digital 3D phantom at incremental heights (0 ≤ ℎ ≤ 499). The inner radius 58 

𝑟𝑟ℎ,𝑗𝑗 is modulated by a sinusoid of changing amplitude and frequency, creating a phantom shape that 59 

is challenging to unroll. Greyscale values of the phantom also change across its wall thickness, with 60 

the outer side being brighter (larger grey values towards the outer boundary) than the inner side 61 

(smaller grey values towards the inner boundary). (b) Electric field lines and contours used to unroll 62 

the digital 3D phantom (only 𝐶𝐶 = 5 depth levels are shown here for visual clarity). 63 

We defined the geometry of a deformed tube (digital phantom) by the outer boundary that was 64 

described as a circle with constant radius across all heights of the tube (see supplementary Figure S3): 65 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 = 𝑥𝑥𝑐𝑐 +  �𝑅𝑅 ∙ cos (𝜃𝜃1,𝑗𝑗)� , (S2) 

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 = 𝑦𝑦𝑐𝑐 +  �𝑅𝑅 ∙ sin (𝜃𝜃1,𝑗𝑗)� ,  𝑗𝑗 = 1 … ⌊2𝜋𝜋𝜋𝜋⌋ (S3) 

with outer radius 𝑅𝑅, centre of the circle (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐), azimuthal angle 𝜃𝜃1,𝑗𝑗 = [0, 2𝜋𝜋) and ⌊ ⌋ denoting the 66 

floor function, while the inner boundary at a certain height ℎ was defined as follows: 67 

𝑥𝑥𝑖𝑖𝑖𝑖,ℎ,𝑗𝑗 = 𝑥𝑥𝑐𝑐 + �𝑟𝑟ℎ,𝑗𝑗 ∙ cos (𝜃𝜃1,𝑗𝑗)� , (S4) 

𝑦𝑦𝑖𝑖𝑖𝑖,ℎ,𝑗𝑗 = 𝑦𝑦𝑐𝑐 + �𝑟𝑟ℎ,𝑗𝑗 ∙ sin (𝜃𝜃1,𝑗𝑗)� , (S5) 

𝑟𝑟ℎ,𝑗𝑗 = 𝑅𝑅 − 𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗 , (S6) 

𝑎𝑎ℎ,𝑗𝑗 = �1+sin (𝑛𝑛∙𝜃𝜃1,𝑗𝑗+𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑1,ℎ))
2

∙ 1+sin�𝜑𝜑2,ℎ�
2

∙ 1+𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃2,𝑗𝑗)
2

� + 1, 𝑗𝑗 = 1 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ, ℎ =

1 …ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 , 𝑛𝑛 ∈ ℕ , 
(S7) 

𝑟𝑟ℎ ∶= min
𝑗𝑗
𝑟𝑟ℎ,𝑗𝑗 = 𝑅𝑅 − 𝑇𝑇 ≤ 𝑟𝑟ℎ,𝑗𝑗 ≤ max

𝑗𝑗
𝑟𝑟ℎ,𝑗𝑗 = 𝑅𝑅 − 𝑇𝑇

2
 ,  𝑗𝑗 = 1 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ ,  ℎ =

1 …ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 , 

(S8) 

with the real maximal tube thickness 0 < 𝑇𝑇 < 𝑅𝑅 and 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = ⌊2𝜋𝜋𝜋𝜋⌋. The real amplitude 𝑎𝑎ℎ,𝑗𝑗 ∈ [1,2] 68 

modulates the inner radius 𝑟𝑟ℎ,𝑗𝑗 of the tube (𝑟𝑟ℎ: minimal inner radius at height ℎ). For 𝑎𝑎ℎ,𝑗𝑗, changes 69 

with angles 𝜃𝜃1,𝑗𝑗 = [0, 2𝜋𝜋) and 𝜃𝜃2,𝑗𝑗 = [−𝜋𝜋,𝜋𝜋) are both linear azimuthal angle sequences with number 70 

of elements equal to 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ, while 𝜑𝜑1,ℎ = [0,𝜋𝜋) and 𝜑𝜑2,ℎ = [−𝜋𝜋, 0) are polar angle sequences with 71 

number of elements equal to ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡. The inner radius 𝑟𝑟ℎ takes values in the range of �𝑅𝑅 − 𝑇𝑇,𝑅𝑅 − 𝑇𝑇
2
�, 72 
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yielding a varying tube thickness of 𝑅𝑅 − 𝑟𝑟ℎ,𝑗𝑗 = 𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗 ∈ �𝑇𝑇

2
,𝑇𝑇�, as if the tube was radially ‘stretched’ 73 

and ‘compressed’, leading to an azimuthally changing tube thickness. Finally, the integer 𝑛𝑛, which is 74 

multiplied with 𝜃𝜃1,𝑗𝑗, defines the frequency with which the inner radius oscillates (see supplementary 75 

Figure S2). In essence, the modulating amplitude 𝑎𝑎ℎ,𝑗𝑗 enforces the tube’s or phantom’s thickness to 76 

change locally, creating a shape that is challenging to unroll. We arbitrarily selected 𝑛𝑛 = 5 to create 77 

the phantom shown in supplementary Figure S2. A 3D image stack 𝐺𝐺ℎ,𝜌𝜌ℎ,𝑗𝑗,𝜃𝜃ℎ,𝑗𝑗, which represents a 78 

deformed tube with the geometry described above, was then created by probing the grey values of 79 

the 2D grid template 𝑔𝑔ℎ,𝑗𝑗 as follows: 80 

𝐺𝐺ℎ,𝜌𝜌ℎ,𝑗𝑗,𝜃𝜃ℎ,𝑗𝑗 = 𝑤𝑤𝜌𝜌ℎ,𝑗𝑗 ∙ 𝑔𝑔ℎ,𝑗𝑗, 𝑗𝑗 = 1 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ, ℎ = 1 …ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡, 𝑤𝑤𝜌𝜌ℎ,𝑗𝑗 ∈ ℝ , (S9) 

where 𝑤𝑤𝜌𝜌ℎ,𝑗𝑗 = �1, 𝑅𝑅 − 𝑟𝑟ℎ,𝑗𝑗� = �1, 𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗� ,   𝑇𝑇

2
𝑎𝑎ℎ,𝑗𝑗  ∈  �𝑇𝑇

2
,𝑇𝑇� is a radius-dependent weight that 81 

introduces a linear scaling of the grey values of the 2D grid template across the depth of the tube (see 82 

supplementary Figure S2), which is proportional to the varying tube thickness (see supplementary 83 

Figure S3). The radius 𝜌𝜌ℎ,𝑗𝑗 = �𝑟𝑟ℎ,𝑗𝑗,𝑅𝑅� = �𝑅𝑅 − 𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗,𝑅𝑅� ranges from the inner to the outer boundaries 84 

of the deformed tube 𝐺𝐺ℎ,𝜌𝜌ℎ,𝑗𝑗,𝜃𝜃ℎ,𝑗𝑗  at height ℎ = [1,ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡] with the azimuthal angle 𝜃𝜃ℎ,𝑗𝑗 defined as 85 

follows: 86 

𝜃𝜃ℎ,𝑗𝑗 = 𝜃𝜃1,𝑗𝑗 + max �𝑅𝑅 − 𝑇𝑇
2
− 𝜌𝜌ℎ,𝑗𝑗, 0� ∙ �𝑎𝑎ℎ,𝑗𝑗 −

3
2
� . (S10) 

Equation (S9) defines a mapping between index 𝑗𝑗 on the grid template and azimuthal angle 𝜃𝜃ℎ,𝑗𝑗  on 87 

the digital phantom, introducing a non-rigid image deformation. Radial and angular image 88 

deformations are introduced to the deformed tube by Equations (S6) and (S10), respectively. These 89 

image deformations mimic the case where a perfect tube with outer radius 𝑅𝑅 and inner radius 𝑅𝑅 − 𝑇𝑇
2
 90 

is non-rigidly deformed by stretching it inwards at specific azimuthal angles. The non-rigid image 91 

deformation that is introduced in this case is implemented analytically by offsetting the angle 𝜃𝜃1,𝑗𝑗 by 92 

max �𝑅𝑅 − 𝑇𝑇
2
− 𝜌𝜌ℎ,𝑗𝑗, 0� ∙ �𝑎𝑎ℎ,𝑗𝑗 −

3
2
�. The first factor max �𝑅𝑅 − 𝑇𝑇

2
− 𝜌𝜌ℎ,𝑗𝑗, 0� makes this offset non-zero 93 

when the tube’s thickness 𝑅𝑅 − 𝑟𝑟ℎ,𝑗𝑗 = 𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗 ∈ �𝑇𝑇

2
,𝑇𝑇� is larger than 𝑇𝑇

2
 and zero elsewhere, thus 94 
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introducing image deformations only at the inner half of the tube’s thickness (see supplementary 95 

Figure S3). The second factor �𝑎𝑎ℎ,𝑗𝑗 −
3
2
� of this offset shifts the mean value of 𝑎𝑎ℎ,𝑗𝑗 to zero, thus 96 

ensuring that the template is compressed (𝜃𝜃ℎ,𝑗𝑗  follows 𝜃𝜃1,𝑗𝑗) when the offset is negative and on the 97 

other hand, stretched (𝜃𝜃ℎ,𝑗𝑗  precedes 𝜃𝜃1,𝑗𝑗) when the offset is positive (see supplementary Figure S3). 98 

Since the deviation of the inner radius 𝑟𝑟ℎ,𝑗𝑗 = 𝑅𝑅 − 𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗 from the midline at radius 𝑅𝑅 − 𝑇𝑇

2
 is 99 

proportional to the offset max �𝑅𝑅 − 𝑇𝑇
2
− 𝜌𝜌ℎ,𝑗𝑗, 0� ∙ �𝑎𝑎ℎ,𝑗𝑗 −

3
2
�, the degree of compression and 100 

stretching follows a similar pattern. We implemented the digital 3D phantom with 𝑅𝑅 = 190 pixels, 101 

𝑇𝑇 = 114 pixels, 𝑛𝑛 = 5, 𝑥𝑥𝑐𝑐 = 𝑥𝑥𝑦𝑦 = 287 pixels, resulting in an image stack of 500 slices, with a 102 

dimension of 573×573 pixels2 each. 103 

 104 

Figure S3: Mathematical description of the 3D digital phantom 105 
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(a) A 3D digital phantom was created as deformed tube (3D image stack 𝐺𝐺ℎ,𝜌𝜌ℎ,𝑗𝑗,𝜃𝜃ℎ,𝑗𝑗) by rolling a 2D 106 

(rectangular) grid template image 𝑔𝑔ℎ,𝑗𝑗 and mapping points (ℎ, 𝑗𝑗) to points �ℎ, 𝜌𝜌ℎ,𝑗𝑗 ,𝜃𝜃ℎ,𝑗𝑗�. (b) The wall 107 

of the digital phantom has a fixed outer radius 𝑅𝑅 and an inner radius 𝑟𝑟ℎ,𝑗𝑗 that follows a sinusoid of 108 

varying angular frequency and amplitude (minimal inner radius 𝑟𝑟ℎ ∶= min
𝑗𝑗
𝑟𝑟ℎ,𝑗𝑗 = 𝑅𝑅 − 𝑇𝑇 ≤ 𝑟𝑟ℎ,𝑗𝑗 ≤109 

max
𝑗𝑗

𝑟𝑟ℎ,𝑗𝑗 = 𝑅𝑅 − 𝑇𝑇
2
), giving rise to a minimum and maximum thickness 𝑇𝑇

2
 and 𝑇𝑇 of the deformed tube, 110 

respectively. The tube is assigned by linearly scaled greyscale values, where brightness levels are 111 

proportional to the radius 𝜌𝜌ℎ,𝑗𝑗 at points �ℎ,𝜌𝜌ℎ,𝑗𝑗,𝜃𝜃ℎ,𝑗𝑗� through sampling of the grid template 𝑔𝑔ℎ,𝑗𝑗. (c) 112 

The undulating inner radius 𝑟𝑟ℎ,𝑗𝑗 ∈ �𝑅𝑅 − 𝑇𝑇,𝑅𝑅 − 𝑇𝑇
2
� results in a varying tube thickness 𝑅𝑅 − 𝑟𝑟ℎ,𝑗𝑗 =113 

𝑇𝑇
2
𝑎𝑎ℎ,𝑗𝑗 ∈ �𝑇𝑇

2
,𝑇𝑇�. The grey midline of this band at radius 1

2
�𝑅𝑅 − 𝑇𝑇

2
+ 𝑟𝑟ℎ� = 𝑟𝑟ℎ + 𝑇𝑇

4
 can be considered as 114 

the boundary of a tube that has been stretched and contracted by pulling and pushing its inner 115 

boundary, resulting in contracted (‘−’ : yellow) and stretched (‘+’: green) volumes inside the wall of 116 

the digital phantom. 117 

Finally, we created the 3D template stack (ground truth) using the same 2D grid template 𝑔𝑔ℎ,𝑗𝑗 : 118 

𝑔𝑔ℎ,𝑗𝑗,𝑘𝑘 = 𝑤𝑤𝑘𝑘 ∙ 𝑔𝑔ℎ,𝑗𝑗 , 𝑘𝑘,𝑤𝑤𝑘𝑘 ∈  ℕ , (S11) 

where ℎ = [1,ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡], 𝑗𝑗 = [1,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ], 𝑘𝑘 = [1,𝑇𝑇] and 𝑤𝑤𝑘𝑘 = 𝑘𝑘 is a depth-dependent weight that 119 

introduces a linear scaling of the grey values of the grid template across the depth 𝑘𝑘 of the 3D template 120 

stack. The implementation of this 3D template stack had 114 slices with a dimension of 1200×500 121 

pixels2 each. 122 

We used this 3D template stack 𝑔𝑔ℎ,𝑗𝑗,𝑘𝑘 (see supplementary Figure S1 and Figure S4) as the ground truth 123 

to evaluate the result of our 3D cyclorama method when applied to unroll the digital 3D phantom 124 

𝐺𝐺ℎ,𝜌𝜌ℎ,𝑗𝑗,𝜃𝜃ℎ,𝑗𝑗. We quantified the quality of unrolling by estimating the non-rigid transform that maps the 125 

resulting 3D cyclorama onto the 3D template stack, by calculating and visualising the local volume 126 

change it introduced. To this end, we used Elastix 1, an open source collection of image registration 127 

algorithms, to non-rigidly register the two 3D image stacks. The software estimates the optimal 128 
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transformation that maps the 3D cyclorama on the 3D template (see supplementary Figure S4) to 129 

maximise their mutual information as an image matching metric. Elastix provides the Jacobian 130 

determinant 𝛼𝛼 of the transformation at each point in space, which quantifies the volume of a 131 

transformed unit cube. In other words, the Jacobian determinant shows how much the space has been 132 

stretched or compressed at each point of the transformed 3D cyclorama to fit the 3D template, 133 

imposed by our digital unrolling at each point in 3D. Identity of the Jacobian determinant means an 134 

exact match, i.e., the 3D cyclorama exactly matches the phantom, while a Jacobian determinant value 135 

𝛼𝛼 ≠ 1 means that the volume of the 3D cyclorama at that voxel is 𝛼𝛼 times smaller (𝛼𝛼 < 1) or larger 136 

(𝛼𝛼 > 1) than the phantom. We chose to use the Jacobian determinant (rather than measuring the 137 

absolute difference between the 3D cyclorama and the 3D phantom) to make the quantification 138 

independent of the absolute greyscale values. 139 

We defined the boundary contours by absolute thresholding of the digital phantom’s grey values 140 

shown in supplementary Figure S2 and Figure S4. Unrolling was performed with 𝐶𝐶 = 114 depth levels 141 

(supplementary Figure S2 shows 𝐶𝐶 = 5 depth levels for visual clarity), 𝐼𝐼 = 100 point-long contours, 142 

an electric field search window of 31 points (𝑤𝑤 = 15), electric field line segment size 𝛿𝛿 = 2 pixels, 143 

maximum number of steps 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 57, minimum electric field line variance 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 10, rigidity equal 144 

to 1, interpolation interval 𝑚𝑚 = 50, and rotation axis origin 𝑂𝑂 = (300, 300). The resulting 3D 145 

cyclorama’s length was 𝐿𝐿 = 1191 pixels, the height was 𝐻𝐻 = 500 pixels, and the depth was 𝐶𝐶 =146 

114 slices. Angular image deformations (see supplementary Figure S1) appear as geometrical 147 

distortion along the horizontal axis of the cycloramas. Radial image deformations appear as shadows 148 

in cycloramas as greyscale values from neighbouring depth levels 𝑐𝑐 of the 3D phantom, resulting in a 149 

diffuse grey level distribution observed in the 2D cycloramas (see supplementary Figure S1). 150 

A few image pre-processing steps needed to be performed prior to comparing the 3D cyclorama 151 

quantitatively and visually with the 3D template stack as ground truth, for verification of the 3D 152 

cyclorama method. As contours begin azimuthally at an arbitrary first point, the 3D cyclorama is not 153 
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necessarily aligned with the 3D template (see supplementary Figure S1). Thus, we firstly manually 154 

aligned the two stacks by rolling the 3D cyclorama (cropping the left part and attaching it to the right) 155 

so that the left side of the 3D cyclorama was aligned with the left side of the 3D template. Cycloramas 156 

close to the deformed tube’s boundaries partially included pixels of the background that appeared as 157 

distinct dark patterns (see supplementary Figure S1). We thus removed cyclorama slices (first four and 158 

last two depth levels 𝑐𝑐 = 0,1,2,3 and 𝑐𝑐 = 112,113) that have previously contained background (black) 159 

pixels from both the 3D cyclorama and the 3D template. Finally, as the cyclorama’s length 𝐿𝐿 is 160 

arbitrarily determined based on the length of the longest contour 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ,𝑐𝑐, it was slightly shorter than 161 

the 3D template (1191 instead of 1200 pixels). Therefore, we scaled the 3D cyclorama (scale function 162 

in Fiji with bicubic interpolation) to fit the template dimensions, in order to obtain a better 163 

initialisation of the subsequent registration process and ensure convergence of the iterative 164 

registration algorithm in Elastix. 165 

 166 

Figure S4: Verification of the cyclorama method using a digital 3D phantom 167 

(a) The 3D template stack (ground truth) or digital 3D phantom consists of a volume with greyscale 168 

gradients making each voxel (except those on the vertical bands) distinct. (b) The digital phantom was 169 

created by digitally rolling a 2D grid template onto a deformed tube that is defined analytically. (c) The 170 
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3D cyclorama after unrolling, manual alignment (and scaling) to the 3D phantom. (d) The Jacobian 171 

determinant of the mapping shows the degree of volume change at each point in space. Identity of 172 

the Jacobian determinant means that the 3D cyclorama exactly matches the phantom, while a 173 

Jacobian determinant value 𝛼𝛼 ≠ 1 means that the volume of the 3D cyclorama at that voxel is 𝛼𝛼 times 174 

smaller (< 1) or larger (> 1) than the phantom. (e) Non-rigid registration of the 3D cyclorama onto 175 

the 3D phantom returned the Jacobian determinant at each point of the 3D template. The mean value 176 

𝛼𝛼 = 1.05 of the Jacobian determinant distribution showed a general preference to preserve the 177 

volume. However, a skew to the right showed a trend of volume enlargement (up to 1.16 times). In 178 

this case, the maximum contraction was given by a Jacobian determinant of 𝛼𝛼 = 0.93. 179 

The registration process returned a 3D image stack with each voxel representing the Jacobian 180 

determinant at the corresponding point of the 3D template. A visual representation of the image 181 

deformation pattern (the value 𝛼𝛼 of the Jacobian determinant) is provided in supplementary Figure 182 

S4, which shows that the image deformation was larger on the side of the inner boundary of the tube. 183 

The mean value 𝛼𝛼 = 1.05 of the Jacobian determinant distribution (see supplementary Figure S4) 184 

shows a general preference to preserve the volume. However, a skew to the right shows a trend of 185 

volume expansion (up to 1.16 times), while the maximum contraction was given by a Jacobian 186 

determinant of 𝛼𝛼 = 0.93. The trend for volume expansion (Jacobian determinant 𝛼𝛼 > 1) shows that 187 

our method produces cyclorama stacks where the volume is locally enlarged. The root of this 188 

observation is our choice of mapping each contour onto a template whose length is equal to the 189 

greatest length among all contours. As discussed in section ‘2.3 Mapping: Generation of 3D 190 

cycloramas’, the mapping from a deformed tube onto an unrolled volume is not unique. Therefore, 191 

certain choices made to design the mapping method (e.g., preserving geodesic distances, mapping 192 

onto the longest contour, etc.) affect the characteristics of the unrolled volume. In our case, there is 193 

a slight preference for volume expansion. Volume contraction (𝛼𝛼 < 1) is introduced due to the radial 194 

image deformation (see supplementary Figure S3) imposed by our reformation of the volume into a 195 

series of re-slicing surfaces. The number of depth levels 𝐶𝐶 essentially defines whether the volume will 196 
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be expanded or contracted in the radial direction. This happens because one 2D cyclorama with a 197 

thickness of one pixel is created for each depth level, resulting in a 3D cyclorama of depth equal to 𝐶𝐶. 198 

Therefore, when the number of depth levels 𝐶𝐶 is smaller than the maximum local thickness 𝑇𝑇, the 199 

volume of the deformed tube will be expanded radially so that the 3D cyclorama depth matches the 200 

maximum local thickness 𝑇𝑇. Similarly, the deformed tube volume will be contracted radially when 𝐶𝐶 201 

is larger than 𝑇𝑇. In our case, where 𝐶𝐶 = 𝑇𝑇 = 114, the observed contraction originates in rounding 202 

errors, where the same voxel of the digital phantom is sampled by two neighbouring contours. The 203 

fact that volume expansion/contraction depends on the choice of an input parameter (number of 204 

depth levels or contours 𝐶𝐶) means that the image deformation pattern would change accordingly and 205 

thus, as discussed in section ‘4. Discussion’, any quantitative measures derived from cycloramas must 206 

be interpreted with care.  207 

S.2 Case study: Human placenta 208 

As our cyclorama method is agnostic of the origin of the specific 3D image dataset under investigation, 209 

it can be used to unroll image stacks that were created using any 3D imaging technique. Palaiologou 210 

and colleagues 2 employed serial block-face scanning electron microscopy (SBF SEM) to study the role 211 

of the human placenta’s microvilli in 3D. The placenta is the organ that connects the mother and her 212 

foetus, and it is responsible for the nutrient exchange and waste disposal between maternal and foetal 213 

blood circulation. Terminal villi on the microvillous membrane of the human term placenta are 214 

thought to be the major site of nutrient exchange through direct contact with the maternal blood 2. 215 

Technical challenges during 3D quantification include the fact that microvilli are highly convoluted, as 216 

well as the fact that the sample can be tilted arbitrarily during embedding (i.e., not aligned with the 217 

axis perpendicular to the image plane). On this account, segmentation of microvilli from SBF SEM data 218 

sets is challenging. We show here how our 3D cyclorama method can be used to work around this 219 

problem. 220 
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Term placental tissue was collected with written informed consent and ethical approval from the 221 

Southampton and Southwest Hampshire Local Ethics Committee (11/SC/0529), and a villous sample 222 

was imaged in 3D using SBF SEM 2 with a cutting thickness of 50 nm (𝑧𝑧-direction) and nominal in-plane 223 

resolution of 4.2×4.2 nm2 (𝑥𝑥𝑥𝑥 plane) (volume of 2806×2684×134 pixels3 or 11.8×11.3×6.7 μm3) (see 224 

supplementary Figure S5).  225 

The 3D image stack was scaled by (𝑥𝑥 ∙ 0.20,𝑦𝑦 ∙ 0.20, 𝑧𝑧 ∙ 2.38) using the scale function in Fiji 3 (ImageJ 226 

version 2.0.0-rc-68/1.52g, Java 1.8.0_66) with bicubic interpolation in order to mimic an isotropic 227 

voxel size (of 21 nm) and reduce the size of the stack to 561×536×319 pixels3 (with an unchanged 228 

volume of 11.8×11.3×6.7 μm3) shown in supplementary Figure S5. Since the microvillous membrane 229 

is not a tubular structure, we defined the boundary contours such that the membrane constituted a 230 

part of a deformed tube. A subset of 221 slices with dimensions of 561×536 pixels2 from the SBF SEM 231 

stack (𝑥𝑥𝑥𝑥 plane) was unrolled (see supplementary Figure S5) with 𝐶𝐶 = 100 depth levels, 𝐼𝐼 = 50 point-232 

long contours, an electric field search window of 31 points (𝑤𝑤 = 15), electric field line segment size 233 

𝛿𝛿 = 2 pixels, maximum number of steps 𝐾𝐾𝑚𝑚𝑎𝑎𝑥𝑥 = 75, minimum electric field line variance 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 50, 234 

rigidity equal to 1, interpolation interval 𝑚𝑚 = 20 and rotation axis origin 𝑂𝑂 = (450,450). The resulting 235 

3D cyclorama’s length was 𝐿𝐿 = 1698 pixels, the height 𝐻𝐻 = 221 pixels, and the depth 𝐶𝐶 = 100 slices. 236 
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 237 

Figure S5: 3D cyclorama to segment placental microvilli 238 

(a) A section from a SBF SEM stack of a human placenta. (b) Virtual electric field lines and the resulting 239 

contours were defined such that the membrane (enclosed in the two yellow lines in a) constituted 240 

part of a deformed cylindrical tube. (c) SBF SEM grey values are shown at 50% relative depth level, 241 

while boundary surfaces are shown transparent. (d) Placental microvilli on one 2D cyclorama. (e) 3D 242 

segmentation of the placental microvilli. (f) A photorealistic 3D rendering of the segmented microvilli 243 

(red) and the SBF SEM stack (grey). (a & e) Scale bars are equal to 1 μm. 244 

The contours shown in supplementary Figure S5 (only 𝐶𝐶 = 5 depth levels are shown for visual clarity) 245 

were used to create re-slicing surfaces perpendicular to the microvilli. Supplementary Figure S5 246 

provides a photorealistic 3D rendering that illustrates the sample’s boundaries and the re-slicing 247 

surface at 50% relative depth level, yielding the probed SBF SEM greyscale values, where the tilt of 248 

these surfaces reveals the shape of the sample. After unrolling of the microvilli, their cross sections 249 

become visible on the cyclorama image (see supplementary Figure S5), while the experimental tilt of 250 

the embedded sample does not influence the shape of these cross sections. The microvilli were then 251 
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segmented on the 3D cyclorama and mapped back onto the initial volume (see supplementary Figure 252 

S5). This allowed visualising the sample and its complex shape in 3D (see supplementary Figure S5). 253 

Our cyclorama method could play an important role in the segmentation process of microvilli, which 254 

is markedly difficult due to the peculiarities of the microvillous membrane’s shape in 3D and the 255 

alignment of the embedded sample for imaging. This case study shows that 3D cycloramas can be 256 

computed on 3D data, which has been retrieved from any 3D imaging technique. 257 

S.3 Case study: Pharmaceutical film 258 

Applications of digital volume unrolling are not confined to biological samples. This case study shows 259 

how our 3D cyclorama method could be useful in the morphological assessment of 3D-printed 260 

adhesive films for drug delivery applications. Gioumouxouzis and colleagues 4 and Eleftheriadis and 261 

colleagues 5 employed fused deposition modelling (FDM 3D printing) in order to develop personalised 262 

drugs with unique properties and drug release behaviour. Eleftheriadis and colleagues subsequently 263 

evaluated the 3D-printed pharmaceuticals using μCT to compare their structure, when compared to 264 

the initial 3D design 5. This process becomes challenging when the 3D-printed object is flexible, as it is 265 

the case for certain pharmaceutical films that the authors are developing for time-controlled drug 266 

administration 5. The 20×20×0.8 mm3 plain film shown in supplementary Figure S6 is composed of 267 

poly(vinyl alcohol) as core polymer and plasticiser, and is designed for unidirectional drug release. μCT 268 

imaging resulted in a stack of 1000×161×901 pixels3 at an (isotropic) pixel size of 22 μm (volume of 269 

22.0×3.5×19.8 mm3). Since the pharmaceutical film was curved (see supplementary Figure S6), it is 270 

difficult to quantify the deposition quality of the different drug layers. To this end, we applied our 3D 271 

cyclorama method to digitally flatten the film. As the pharmaceutical film was not tubular, we 272 

generated the boundary contours around it, such that the film became a section of a deformed tube, 273 

similarly to the previous case study (section ‘S.2 Case study: Human placenta’). 274 
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The μCT stack of 901 slices with dimensions of 1000×161 pixels2 was unrolled (see supplementary 275 

Figure S6) with 𝐶𝐶 = 50 depth levels, 𝐼𝐼 = 100 point-long contours, an electric field search window of 276 

31 points (𝑤𝑤 = 15), electric field line segment size 𝛿𝛿 = 2, maximum number of steps 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 50, 277 

minimum electric field line variance 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 10, rigidity equal to 1, interpolation interval 𝑚𝑚 = 50, and 278 

rotation axis origin 𝑂𝑂 = (340, 40). The resulting 3D cyclorama’s length was 𝐿𝐿 = 2025 pixels, the 279 

height 𝐻𝐻 = 901 pixels, and the depth 𝐶𝐶 = 50 slices. 280 

 281 

Figure S6: 3D cyclorama to unroll a pharmaceutical film 282 

(a) A curved 3D-printed adhesive film for drug delivery imaged by μCT, resulting in planar slices (grey) 283 

that only partially illustrate the film. (b) Flattening onto a 3D cyclorama can undo the curvature and 284 

allow structural analysis of the pharmaceutical film layers, revealing deposition defects such as gaps 285 

in drug distribution (arrow). 286 

The 3D cyclorama (see Supplementary video 3) enables the quantification of the quality of drug 287 

deposition in each layer of the pharmaceutical film, as shown in Figure S6. In other words, after digital 288 

flattening, the 3D cyclorama stack enables examination of individual layers at incremental depths of 289 

the pharmaceutical film. Supplementary Figure S6 shows a deposition defect (gap in drug distribution) 290 
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on a 2D cyclorama emerging out of a photorealistic rendering of the corresponding 3D cyclorama. This 291 

case study shows how the 3D cyclorama method can be employed to flatten 3D image stacks, not 292 

necessarily portraying biological samples, and to qualitatively characterise structures at different 293 

layers of the sample. Naturally, the inverse mapping could be utilised for quantitative morphometric 294 

analysis.  295 
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Supplementary video legends 296 

Video 1: 3D cyclorama of untreated murine colon 297 

X-ray micro-computed tomographic imaging of murine colons and subsequent digital unrolling allows 298 

studying the 3D morphology of the colon in its original 3D shape. Sequential slices of the 3D cyclorama 299 

reveal tissue layers at incremental depths of the colon. Colonic crypt cross sections appear as dark 300 

circular spots, which can be traced through the tissue layers to study the crypt shape in 3D. 301 

Video 2: 3D cyclorama of AOM/DSS-treated murine colon 302 

Sequential slices of the 3D cyclorama reveal tissue layers at incremental depths of the colon. Colonic 303 

crypt cross sections appear as dark spots, which can be traced through the tissue layers to study the 304 

crypt shape in 3D. Crypt budding is readily identified where a single cross section splits to more than 305 

one cross sections in sequential slices. 306 

Video 3: 3D cyclorama of pharmaceutical film 307 

A 3D-printed adhesive film for personalised drug delivery, manufactured with fused deposition 308 

modelling (FDM 3D printing) was digitally flattened with the 3D cyclorama method. After digital 309 

flattening, the 3D cyclorama stack enables examination of individual layers at incremental depths of 310 

the pharmaceutical film. The X-ray micro-computed tomography image data was kindly provided by 311 

Dimitrios G. Fatouros, Georgios K. Eleftheriadis, and Orestis L. Katsamenis.  312 
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