
UNIVERSITY OF SOUTHAMPTON

Formal Treatment of Real-time

Properties in Event-B

by

Chenyang Zhu

Thesis for the degree of Doctor of Philosophy

in the

Faculty of Engineering and Physical Sciences

School of Electronics and Computer Science

July 2020

http://www.soton.ac.uk
mailto:C.Zhu@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Engineering and Physical Sciences

School of Electronics and Computer Science

Doctor of Philosophy

by Chenyang Zhu

Timing and concurrency are two critical properties of Cyber-Physical Systems (CPS).

Functional and timing requirements needed to be satisfied in CPS to avoid unsafe situa-

tions. Formal methods, which are mathematical techniques for specifying and verifying

systems, aid software engineering by ensuring the correctness of the system design.

The Event-B formalism offers a stepwise development approach to manage complexity in

system design. Our work provides formal treatment of real-time properties in Event-B

models from both the semantics perspective and syntax perspective. There is existing

work on treating real-time properties in Event-B but it lacks a semantic treatment in

terms of trace behaviors. Because timing properties require fairness assumptions, we use

infinite traces and develop conditions under which all infinite traces of a machine sat-

isfy trigger-response and timing properties. We present refinement semantics of models

whose behavior traces are infinite. Based on forward simulation, fairness assumptions,

relative deadlock freedom, and conditional convergence are adopted as additional con-

ditions that guarantee infinite trace refinement of timed models.

Also, the existing work that extends Event-B models with discrete timing properties

inadequately represents the communication and competition between concurrent tasks

in concurrent systems. We present the semantics of parameterized real-time trigger-

response properties of Event-B models based on timing invariants. We show a method

of syntactically encoding parameterized real-time trigger-response properties in Event-B

machines. To capture the concurrency between tasks, we distinguish end-to-end tim-

ing properties and scheduler-based timing properties from the perspective of different

system design phases. We model end-to-end timing properties as parameterized timing

properties and scheduler-based timing properties as unparameterized timing properties.

A nondeterministic queue-based scheduling framework is proposed to replace end-to-end

timing properties with scheduler-based timing properties.

Finally, we demonstrate our approach with three real-time case studies. We show how to

treat real-time properties in a stepwise modeling and verification process with Event-B

models.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:C.Zhu@ecs.soton.ac.uk

Contents

List of Symbols xiii

Declaration of Authorship xv

Acknowledgements xvii

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Thesis Outline . 5

1.4 List of Publications . 6

1.4.1 Journal Papers . 6

1.4.2 Conference Papers . 6

2 Timing And Fairness Modeling with Formal Methods 9

2.1 Introduction . 9

2.2 Formal Verification . 10

2.2.1 Model Checking . 10

2.2.2 Theorem Proving . 10

2.3 Refinement . 11

2.3.1 Refinement Mappings . 11

2.3.2 Forward Simulations . 12

2.4 Approaches to Modeling Time . 12

2.4.1 Real-time Specification Patterns 12

2.4.2 Temporal Logic of Actions . 14

2.4.3 Timed Automata . 15

2.4.4 Time Modeling in Event-B . 16

2.4.4.1 Event-B Syntax . 17

2.4.4.2 Abstraction and Refinement 17

2.4.4.3 Convergent Events . 18

2.4.4.4 Proof Obligation . 18

2.4.4.5 Rodin: An Event-B Modelling Tool 18

2.4.4.6 Extend Event-B with Discrete Timing Properties 20

2.4.4.7 Refinement Patterns of Timing Properties 22

2.5 Fairness Modeling . 23

2.5.1 Fairness . 23

2.5.2 Bounded Fairness . 23

2.5.3 Finitary Fairness . 24

v

vi CONTENTS

2.6 Real-time Scheduling . 24

2.6.1 Static Priority Scheduling For Independent Tasks 25

2.6.2 Dynamic Priority Scheduling For Independent Tasks 26

2.6.3 Scheduling Dependent Tasks . 26

2.7 Conclusion . 26

3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 29

3.1 Trace Semantics and Properties of Event-B Models 30

3.1.1 Trace Semantics of Event-B Machine 30

3.1.2 Trace Properties . 31

3.2 Enforcing Real-time Trigger-Response Properties in Event-B Models . . . 34

3.3 Infinite Trace Refinement . 35

3.3.1 Forward Simulation and Infinite State Trace Refinement 36

3.3.2 Hiding Operator . 42

3.3.3 Generic Refinement Semantics . 43

3.4 Conclusion . 46

4 Refinement of Timing Properties in Event-B Models 47

4.1 Refinement Semantics of Real-time Properties 47

4.2 Refining Real-Time Trigger-Response Properties to Sequential Sub-Timing
Properties . 49

4.3 Refining Alternative Timing Properties to Sub-Timing Properties 50

4.4 Two-step Refinement Strategy . 51

4.5 Conclusion . 52

5 Bounded Re-transmission Protocol Case Study 53

5.1 Bounded Re-transmission Protocol . 53

5.2 Modeling the BRP . 55

5.2.1 Abstract Machine . 55

5.2.2 First Refinement . 56

5.2.3 Second Refinement . 58

5.2.4 Third Refinement . 58

5.2.5 Fourth Refinement . 60

5.2.6 Fifth Refinement . 61

5.2.7 Sixth Refinement . 63

5.3 Evaluation and Conclusion . 63

6 Bridge the Gap Between Semantics and Formal Models 65

6.1 Modeling Real-time Specification Patterns with Trigger-Response Prop-
erties . 65

6.1.1 Time Response Patterns . 66

6.1.2 Abort Patterns . 67

6.1.3 Intermediate Patterns . 69

6.1.4 Periodic Patterns . 70

6.2 Patterns to Refine Real-time Properties 71

6.2.1 Sequential Refinement Pattern . 72

6.2.2 Alternative Refinement Pattern . 75

CONTENTS vii

6.3 Applying Real-time Specification Patterns and Refinement Patterns . . . 77

6.4 Conclusion . 78

7 Pacemaker Case Study 81

7.1 Pacemaker System Overview . 81

7.2 Modeling the Pacemaker . 83

7.2.1 Random Heart Model . 83

7.2.2 URI and LRI . 83

7.2.3 AEI and AVI . 85

7.2.4 VRP and PVARP . 86

7.2.5 sAVI and pAVI . 86

7.2.6 VSP . 89

7.2.7 Proof Statistics . 90

7.3 Evaluation and Conclusion . 90

8 Formalization of Parameterized Timing Properties 93

8.1 Parameterized Real-Time Trigger-Response Properties 94

8.2 Replacing Parameterized Timing Property with Unparameterized Timing
Properties . 99

8.3 Conclusion . 102

9 Hierarchical Real-time Scheduling System 105

9.1 Hierarchical Scheduling System . 105

9.2 Formalizing Hierarchical Scheduling with Timing Properties 108

9.2.1 Formalizing TDM and Local Resource Sharing with Mutual Ex-
clusion . 108

9.2.2 End-to-end Timing Properties . 110

9.2.3 Replacing End-To-End Timing Property with Scheduler-Based Tim-
ing Properties . 110

9.2.4 Nondeterministic Queue-Based Scheduling 112

9.2.5 Two Implementations of Nondeterministic Queue-Based Schedul-
ing . 114

9.2.5.1 First In First Out . 115

9.2.5.2 Deferrable Priority Based Scheduling with Aging Tech-
nique . 115

9.2.6 Proof Statistics . 117

9.3 Conclusion . 118

10 Conclusions and Future Work 119

10.1 Main Contributions . 119

10.2 Comparison with Related Work . 120

10.3 Scope . 121

10.4 Future Work . 121

Bibliography 123

List of Figures

2.1 Specification Pattern Classification (Dwyer et al., 1999) 13

2.2 Real-time Specification Pattern Classification (Konrad and Cheng, 2005) . 14

2.3 Counter-Example Guided Abstraction Refinement Loop (Dierks et al.,
2007) . 16

2.4 Tool-Chain in Event-B Core and The User Interface (Abrial et al., 2010) . 19

2.5 Model Timing Properties of Trigger-Response Events with Delay and
Deadline . 21

2.6 Refine an abstract deadline D to sequential sub-deadlines D1..Dn (Sarshogh
and Butler, 2011) . 22

2.7 Interaction between the Scheduler and the Tasks (Alur, 2015) 25

3.1 Forward Simulation . 36

3.2 State Trace Refinement with Deadlock and Infinite New Events 42

5.1 Scheme View of the Bounded Retransmission Protocol 54

5.2 Time Diagram of BRP in Different Refinement Levels 54

5.3 Machine M 0 that Specifies the Abstract BRP Protocol 56

5.4 Machine M 1 that Extends Trigger-Response Property (5.1) with Timing
Properties Specified in TR-1 and TR-2 57

5.5 Machine M 2 that introduces intermediate events to M 1 59

5.6 Machine M 3 that Extends M 2 with Timing Properties Specified In TR-3
and TR-4 . 60

5.7 Machine M 4 that Refines the anticipated Event snd rty to convergent
Event . 61

5.8 Machine M 5 that Extends M 4 with Timing Properties Specified In TR-5
and TR-6 . 62

5.9 Machine M 6 that refines Anticipated Event rcv current pkt to Convergent
Event . 63

6.1 Syntactic Formalization of Timing Property Resp(T ,R,w , d) with Time
Response Pattern . 67

6.2 Syntactic Formalization of Timing Property Abt(T ,R, INT ,w , d) with
Abort Pattern . 68

6.3 Syntactic Formalization of Timing Property Interm(T ,H ,R,w , d) with
Intermediate Pattern . 70

6.4 Syntactic Formalization of Timing Property Prd(T ,w , d) with Periodic
Pattern . 71

6.5 Time Diagram of Refining Abstract Timing Property (6.1) with Concrete
Timing Properties (6.2) . 72

ix

x LIST OF FIGURES

6.6 Refining Time Response Patterns with Sequential Sub-Timing Properties 73

6.7 Time Diagram of Refining Timing Properties (6.3) with Sequential Sub-
Timing Properties (6.4) . 74

6.8 Time Diagram of Refining Timing Properties (6.5) with Sequential Sub-
Timing Properties (6.6) . 75

6.9 Time Diagram of Refining Timing Properties (6.8) with Sequential Sub-
Timing Properties (6.9) . 75

6.10 Time Diagram of Refining Timing Properties (6.1) with Alternative Sub-
Timing Properties (6.10) . 76

6.11 Refining Time Response Patterns with Alternative Sub-Timing Properties 78

7.1 Timing Cycles of Pacemaker under DDD mode 82

7.2 Model Random Heart Model with Periodic Pattern Prd(XS , h min, h max) 84

7.3 Model URI and LRI with Abort Pattern and Response Pattern 85

7.4 Model AEI and AVI with Intermediate Pattern and Response Patterns . . 87

7.5 Extend Model with VRP and PVARP timing properties 88

7.6 Extend Model with sAVI and pAVI timing properties 88

7.7 Extend Model with VSP Time Interval to Avoid Crosstalk 89

8.1 Formalization that Extends the Machine with parameterized timing prop-
erties (8.2) for each trigger-response pair (t .x , r .x) where t ∈ T and r ∈ R 96

8.2 Time Diagram of Replacement of Parameterized Timing Properties to
Unparameterized Timing Properties . 101

9.1 Two-level Hierarchical System . 107

9.2 Refinement Strategy of Two-level Hierarchical System 107

9.3 Initial Context c0 . 108

9.4 Initial Model with TDM and Local Resource Sharing 109

9.5 First Refinement with End-to-end Timing Properties 111

9.6 Second Refinement with Nondeterministic Queue Based Scheduling 112

9.7 Time Diagram of Timing Properties’ Refinement with the Scheduling
Framework . 113

9.8 Replace Task-based Timing Properties with Scheduler-based Timing Prop-
erties . 114

9.9 First In First Out Scheduling Policy . 116

9.10 Deferrable Priority Based Scheduling Policy with Aging Technique 117

List of Tables

2.1 Event-B Proof Obligation Rules (Abrial, 2009) 19

5.1 Proof Statistics of BRP Case Study . 63

7.1 Proof Statistics of Pacemaker Case Study 90

9.1 Proof Statistics of Two-Level Hierarchical Scheduling Case Study 117

xi

List of Symbols

S × T Cartesian product S × T = {x 7→ y | x ∈ S ∧ y ∈ T}
P(S) Powerset P(S) = {s | s ⊆ S}
S ↔ T Relations S ↔ T = P(S × T)

m..n Interval m..n = {i | m ≤ i ∧ i ≤ n}
dom(r) Domain ∀r ·r ∈ S ↔ T ⇒ dom(r) = {x ·(∃y ·x 7→ y ∈ r)}
ran(r) Range ∀r ·r ∈ S ↔ T ⇒ ran(r) = {y ·(∃x ·x 7→ y ∈ r)}
p; q Forward composition ∀p, q ·p ∈ S ↔ T ∧ q ∈ T ↔ U⇒

p; q = {x 7→ y | (∃z ·x 7→ z ∈ p ∧ z 7→ y ∈ q)}
p ◦ q Backward composition p ◦ q = q ; p

id Identity S C id = {x 7→ x | x ∈ S}
r B− T Range subtraction r B− T = {x 7→ y | y ∈ r ∧ y /∈ T}
S C r Domain restriction S C r = {x 7→ y | x 7→ y ∈ r ∧ x ∈ S}
S C− r Domain subtraction S C− r = {x 7→ y | x 7→ y ∈ r ∧ x /∈ S}
r−1 Inverse r−1 = {y 7→ x | x 7→ y ∈ r}
r [S] Relational image r [S] = {y | ∃x ·x ∈ S ∧ x 7→ y ∈ r}
r1 C− r2 Overriding r1 C− r2 = r2 ∪ (dom(r2)C− r1)

S 7→ T Partial functions S 7→ T = {r ·r ∈ S ↔ T ∧ r−1; r ⊆ T C id}
S → T Total functions S → T = {f ·f ∈ S 7→ T ∧dom(f) = S}
S � T Total injections S � T = {f ·f ∈ S 7→ T ∧ f −1 ∈ T 7→ S} ∩ S → T

S →→ T Total surjections S →→ T = {f ·f ∈ S 7→ T ∧ ran(f) = T} ∩ S → T

S �� T Bijections S �� T = S � T ∩ S →→ T

xiii

Declaration of Authorship

I, Chenyang Zhu , declare that the thesis entitled and the work presented in the thesis

are both my own, and have been generated by me as the result of my own original

research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: Zhu et al. (2018b), Zhu et al. (2018a), Zhu

et al. (2019b), Zhu et al. (2020a), Zhu et al. (2020b), Zhu et al. (2020c)

Signed:...

Date:..

xv

mailto:C.Zhu@ecs.soton.ac.uk

Acknowledgements

Firstly, I would like to express my gratitude to my supervisors Professor Michael Butler

and Dr. Corina Cirstea, for their continuous support and guidance for four years. They

have always been inspiring and uplifting and guide me to find the right solutions to

different tackles. I appreciate all the efforts they made to help me walk through my

Ph.D. life.

I would like to extend my thanks the researchers in the Cyber-Physical System group,

Dr. Thai Son Hoang, Dr. Abdolbaghi Rezazadeh, Dr. Dana Dghaym, Dr. Colin Snook,

Dr. Asieh Salehi Fathabadi. I would like to thank Dr. Ping Hua in ORC group. It is

nice to work with them and enjoy my Ph.D. life.

I want to thank my friends for their company during my study, Yang Shi, Chenyan Xu,

Jie Zhan, Runshan Hu, Jia Bi, Qian Ding.

Most importantly, I would like to give a special thank you to my parents Zhengwei

Zhu, Junmin Zhi, and my wife, Yunxin Xie. They have always been supportive and

encouraging, without whom I would never achieve this much. Especially thank my wife

for bringing our first baby Ruixi to the world, which is the best gift for my life. Thanks

for caring our baby girl alone when I’m working on the papers and research.

This thesis is supported in part by the scholarship from China Scholarship Council (CSC)

under the Grant CSC NO.201708060147 and studentship of Department of Electronics

and Computer Science of the University of Southampton under project 5160091087294.

xvii

Chapter 1

Introduction

Cyber-Physical Systems (CPS), which incorporate advanced processors, sensors and

wireless communication technology, have received a significant amount of attention in

recent years owing to their ability to interact with the physical world. CPS is a gen-

eralization that refers to embedded systems that consist of a collection of computing

devices communicating with one another and interacting with the physical world via

sensors and actuators in a feedback loop (Alur, 2015). CPS can be used in a wide

range of fields such as medical monitoring, intelligent transportation and distributed

robotics (Shi et al., 2011; Ahmed et al., 2013). Some of these applications, such as

medical devices and aircraft flight control, are safety-critical, meaning that CPS failure

could result in loss of life or property damage (Knight, 2002).

Timing and concurrency are two critical factors in the implementation of CPS. Timing

properties should be specified when developing the system to guarantee that CPS is

interacting with the environment correctly. Some safety-critical systems must satisfy

certain real-time constraints in order to function as intended. For example, an artificial

pacemaker should deliver therapy according to the misbehavior of the heart at fixed

time intervals. Missing the stimulus deadlines could be catastrophic. Similarly, the

flight control software must be able to distinguish between different flying environments

and respond to different situations within a specific timeframe in order to control the

aircraft safely. Thus CPS must fulfill its functional role in a time-regulated manner in

order to avoid unsafe situations. In addition, the distributed computing devices in CPS

function concurrently in order to work as a whole and achieve the computation goal

of the whole system. The design and analysis of CPS are more challenging regarding

the concurrent functioning of real-time applications when the system execute a set of

concurrent tasks so that all time-critical tasks meet specific deadlines (Choudary et al.,

1996). In concurrent systems, the Worst-Case Execution Time (WCET) is determined

not only by the task itself but also the behavior of other tasks that share the same

resources. Delays caused by the task preemption could also affect the whole performance

of the system (Kopetz, 1997). In CPS, real-time scheduling is often used to optimize the

1

2 Chapter 1 Introduction

real-time performance of the whole system by assigning executable orders to guarantee

that all tasks meet their deadlines (Kim et al., 2012).

With the thriving growth of software technology, much attention has been concentrated

on simplifying the design of software systems while maintaining their usability and de-

pendability. However, the number of system errors increases in proportion to the scale

and complexity of the whole system. Formal methods, which include mathematical

techniques for specifying and verifying systems, help the developers to construct reliable

software systems despite the design complexity (Clarke and Wing, 1996). Woodcock

et al. (2009a) concluded that despite the considerable time and cost needed to develop

industry systems using formal methods, 92% of the industry cases in the research report

an increase in quality compared to other techniques. Formal methods have been used

in different software development life-cycles: requirements specification, system design,

and verification (Woodcock et al., 2009b). Tassey (2002) showed that system errors de-

tected during integration and system test stages cost ten times more to fix compared

with those detected in the requirements specification stage. Thus the early detection

of errors or bugs could help to reduce the cost of software development. However, it is

often challenging to get the specification of the system requirements right, and design

errors are hard to identify during the early stages of the development of a software-based

system (Butler, 2017). Formal modeling that provides mathematical abstractions can

be used to manage the complexity of the system design.

In addition to precise mathematical descriptions, formal modeling is also supported by

verification methods and tools to eliminate design errors in models. However, precise

properties alone do not fully address the problem of modeling large and complicated

systems such as CPS. It is difficult to model a complicated system that incorporates a

range of detailed features in one step using mathematical abstraction. Instead, a step-

wise approach can be adopted to develop formal models to manage the complexity of

system design. In the abstract model, an abstraction of the system that focuses on its in-

tended purpose can be used to simplify the understanding of the system (Butler, 2013a).

Further stepwise refinement models can be used to determine how the intended purpose

is achieved. Formal proofs and invariants can then be used to verify the consistency

between different refinement levels.

Woodcock et al. (2009a) also demonstrated that the demand for modeling real-time ap-

plications using formal techniques is substantial. However, the fundamental problem for

modeling CPS is that it relies on bridging the gap between the modeler and the domain

expert, who is able to specify the functional requirements and the time constraints.

Formal specifications allow the system designer to specify the model of real-time sys-

tems and make timing assertions relating to the system while leaving the verification

and validation to the formal techniques and tools (Choudary et al., 1996). Work has

been carried out to incorporate formal methods with real-time properties, including

temporal logic (Ostroff, 1989; Alur and Henzinger, 1990), timed automata (Alur and

Chapter 1 Introduction 3

Dill, 1994), timed Petri-Nets (Coolahan and Roussopoulos, 1983; Gehlot, 1988), timed

transition systems (Henzinger et al., 1991) and state-based approaches such as B (Butler

and Falampin, 2002) method and Event-B (Sarshogh and Butler, 2011; Sarshogh, 2013;

Sulskus et al., 2016; Sulskus, 2017).

1.1 Motivation

Safety and liveness are two key properties of formal models: a safety property states

that dangerous situations will not arise while a liveness property ensures that something

good will eventually happen (Lamport, 1977). Alpern and Schneider (1985) showed that

all properties exist at the intersection of safety and liveness properties. In real-time sys-

tems, time should progress regardless of what happens in its environment (Ostroff, 1999).

Thus liveness properties should be reasoned together with the real-time systems. Also,

we are reasoning that the behavior traces are infinite since time should always progress.

However, the existing refinement framework in Event-B models does not provide suf-

ficient conditions and assumptions to confirm the trace inclusion of infinite behavioral

traces. Regarding infinite behavioral traces, each refinement step requires that the be-

havior of a refined model should be consistent with the behavior of the model being

refined. However, Event-B models are not concerned with fairness or scheduling spec-

ifications (Méry and Poppleton, 2015). The divergence of introduced new events or a

deadlock in the concrete model would fail the infinite trace simulation.

Work has been done to extend Event-B models with time constraints such as delay, dead-

line, expiry, and intervals (Sarshogh and Butler, 2011; Sarshogh, 2013; Sulskus et al.,

2016; Sulskus, 2017). However the developments have failed to incorporate a proper

treatment of critical issues in timed systems, namely, the divergence of intermediate

events and infeasible responses caused by a lack of progress or conflicting timing con-

straints. In addition, there is a gap between the trace semantics of Event-B models and

syntax that extends Event-B models with time constraints. Work needs to be done to

bridge the gap with formal proofs.

Moreover, existing work does not distinguish between the timing properties of different

system design phases and cannot show the communication and competition between

concurrent tasks in concurrent or distributed systems. In real-time systems, there are

always several tasks running concurrently. High-level time constraints for each task

cannot guarantee the timing behavior of the whole system. Fairness and scheduling

needed to be introduced to the model to guarantee that the time constraints of each

task are satisfied.

To summarize, we mainly address the following research questions in this thesis:

4 Chapter 1 Introduction

• What are the sufficient conditions needed on top of existing refinement framework

in Event-B models to conform the trace inclusion of infinite behavioral traces.

• What are the conditions and fairness assumptions to exclude Zeno behavior in

timed systems.

• How to bridge the gap between real-time specifications with formal models.

• How to refine timing properties from different design phases and capture the com-

munication and competition between concurrent tasks in concurrent or distributed

systems.

1.2 Contributions

From the semantics perspective, we develop proof obligations on Event-B machines

to address a vital issue in timed systems, namely divergence of intermediate events

and infeasible responses caused by conflicting time constraints. Lynch and Vaandrager

(1995) assumed a functional relation between concrete states and abstract states when

reasoning about the consistency between different refinement levels in terms of infinite

traces by using forward simulation. However, the functional relation assumption does

not address all the real-world refinement cases as the concrete states might correspond

to one or more abstract states. Thus our work generalizes the result by using a relational

mapping between concrete states and abstract states to simulate infinite-state traces.

We present infinite trace simulation with gluing relations between abstract and concrete

state traces with formal proofs. In this thesis, we explore sufficient conditions under

which the refinement is valid regarding infinite behavior traces. Sufficient conditions are

also explored under which all the traces of an Event-B model satisfy the real-time trigger-

response property, in the form of Event-B proof obligations and fairness assumptions.

Based on the monotonicity of timing properties in Event-B models, we design a two-

step refinement strategy to extend Event-B models with timing properties. The first step

performs data refinement with no changes to the timing properties. The second step

refines timing properties into sequential or alternative timing properties. A Bounded

Retransmission Protocol (BRP) case study is used to present the two-step refinement

strategy and refinement patterns for real-time systems with unparameterized timing

properties.

From the real-time specification perspective, we present four real-time specification pat-

terns, namely time response pattern, abort pattern, intermediate pattern, and periodic

pattern, to support quantitative reasoning about time. Refinement patterns are also pro-

vided to refine abstract timing properties to concrete timing properties. The real-time

specification patterns are used to model the timing cycles of a dual-chamber pacemaker.

Chapter 1 Introduction 5

Moreover, we distinguish end-to-end timing properties and scheduler-based timing prop-

erties from different system design phases. End-to-end timing properties are defined as

high-level timing properties from the system requirement specification phase, which place

discrete-time properties on individual tasks. To model the behavior of these concurrent

tasks, we defined scheduler-based timing properties as concrete timing properties for

the system design phase, which place discrete-time constraints on the scheduler that

schedules the concurrent tasks. We propose a non-deterministic queue-based scheduling

framework to model the behavior of schedulers. Tasks are placed in a non-deterministic

position in the queue, and once a task enters the queue, it cannot be postponed for-

ever. Additional gluing invariants based on the refinement rule are provided to use

the framework to refine end-to-end deadline constraints with scheduler-based deadline

constraints. A two-level hierarchical scheduling system is formalized to show the re-

finement of end-to-end timing properties to scheduler-based timing properties with the

non-deterministic scheduling framework. The hierarchical scheduling system uses Time

Division Multiplexing (TDM) as the global scheduler. Our work shows that local sched-

ulers are compatible with different scheduling policies refined from the same scheduling

framework.

1.3 Thesis Outline

This thesis is structured into the following chapters:

Chapter 2 overviews several formal modeling approaches, including formal specification

languages, analysis tools, and refinement approaches. This chapter also reviews time and

fairness modeling with different formal specification languages. We present more detail

on the modeling and refinement approaches that extend Event-B models with timing

properties. We then discuss the deficiency of the existing time modeling approach.

Chapter 3 introduces trace semantics of Event-B models. We provide sufficient con-

ditions under which all traces in Event-B models satisfy the trigger-response property.

Also, it provides a formal definition of generic refinement semantics regarding infinite

behavior traces.

Chapter 4 provides refinement semantics for real-time properties. Proofs are also pro-

vided to refine abstract timing properties to sequential or alternative sub-timing prop-

erties.

Chapter 5 uses the Bounded Re-transmission Protocol to demonstrate the required con-

ditions for trigger-response property, which also utilizes the two-step refinement strategy

to model the real-time system.

6 Chapter 1 Introduction

Chapter 6 provides four real-time specification patterns to model time in real-world

systems. Refinement patterns are also provided to refine abstract timing properties to

concrete timing properties.

Chapter 7 models the timing cycles of a dual-chamber pacemaker to illustrate the usage

of real-time specification patterns.

Chapter 8 presents the semantics of parameterized trigger-response properties with re-

finement rules that replace parameterized timing properties to unparameterized timing

properties.

Chapter 9 distinguishes the timing properties from different design phases in a hierar-

chical real-time system. A non-deterministic queue-based scheduling framework is used

based on the refinement rule to refine end-to-end timing properties to scheduler-based

timing properties.

Chapter 10 summarizes our conclusions and outlines future work.

1.4 List of Publications

The contributions of the work in thesis have been published or accepted in the following

papers:

1.4.1 Journal Papers

• Chenyang Zhu, Michael Butler, and Corina Cirstea. Formalizing hierarchical

scheduling for refinement of real-time systems. Science of Computer Program-

ming, page 102390, 2020. (Published)

• Chenyang Zhu, Michael Butler, and Corina Cirstea. Trace Semantics and Refine-

ment Patterns for Real-time Properties in Event-B Models. Science of Computer

Programming, page 102513, 2020. (Published)

1.4.2 Conference Papers

• Chenyang Zhu, Michael Butler, and Corina Cirstea. Refinement of timing con-

straints for concurrent tasks with scheduling. In Abstract State Machines, Alloy,

B, TLA, VDM, and Z: ABZ 2018, volume 10817, pages 219–233. Springer, May

2018. (Published)

Chapter 1 Introduction 7

• Chenyang Zhu, Michael Butler, and Corina Cirstea. Semantics of real-time trigger-

response properties in Event-B. In 2018 International Symposium on Theoreti-

cal Aspects of Software Engineering, Theoretical Aspects of Software Engineering

2018, Guangzhou, China, August 29-31, 2018, pages 150–155, 2018. (Published)

• Chenyang Zhu, Michael Butler, and Corina Cirstea. Towards refinement semantics

of real-time trigger-response properties in Event-B. In 13th International Sympo-

sium on Theoretical Aspects of Software Engineering, Guilin, China, July 2019.

(Published)

• Chenyang Zhu, Michael Butler, and Corina Cirstea. Real-time trigger-response

properties for Event-B applied to the pacemaker. In 14th International Symposium

on Theoretical Aspects of Software Engineering, July 2020. (Accepted)

Chapter 2

Timing And Fairness Modeling

with Formal Methods

2.1 Introduction

Cyber-Physical Systems (CPS) are embedded systems that integrate computation and

physical components seamlessly, with the aim of providing dependable, high-confidence

services to human beings (Nsf, 2019). Since CPS are composed of both cyber com-

ponents and physical components, software failures, sensors failures, or communication

failures exist, some of which can lead to catastrophic consequences (Johnson and Mi-

tra, 2009). Faults in the Ariane 5 application and its environmental requirements, for

example, entailed a loss of 1.9 billion French Francs and a one-year delay for the Ari-

ane 5 programme (Le Lann, 1997). Also, the software-related failure of some medical

devices may lead to death or injury (Wallace and Kuhn, 2001). Recently, formal specifi-

cation and verification have been gaining popularity among industrial-sized case studies

into improving the dependability and availability of the increasingly sophisticated soft-

ware (Gleirscher et al., 2019). In formal methods, formal specifications use mathemati-

cally defined syntax to define system properties such as functional behavior and timing

behavior (Clarke and Wing, 1996). Formal verification is used to verify the correctness

of the formal semantics that describes the behavior of the system. The formal proof

needs to be sound with respect to the semantics to ensure that the system behavior

satisfies the specification (Ostroff, 1992). Abstraction and refinement are used in formal

methods to manage the complexity of the requirements (Butler, 2013b). Refinements

can be used to replace the abstract data structures with concrete ones that are more

easily implemented (Liskov et al., 1986) and add complexity to the system models in

ways that consistency can be verified (Abrial, 2009). In this chapter, we highlight the

Event-B formal specification language and two formal verification approaches, namely

9

10 Chapter 2 Timing And Fairness Modeling with Formal Methods

model checking and theorem proving. Several refinement techniques are also presented

in this chapter.

2.2 Formal Verification

2.2.1 Model Checking

Model checking is one of the well-established approaches for formal verification. Given

a finite-state model of a system, model checking performs an exhaustive state space

search to check whether the model meets some desired property (Clarke and Wing,

1996). Model checking is guaranteed to terminate as the state space is finite. However,

the system state space grows exponentially with the increase in the number of state

variables in the system (Clarke et al., 2011).

Temporal logic is a formalism introduced by Pnueli to express formal requirements such

as safety requirements and liveness requirements of reactive systems (Pnueli, 1977).

Linear Temporal Logic (LTL) is one of the most used temporal logics that model time

as a sequence of states (Pnueli, 1977). LTL uses four temporal operators, namely, �, ♦,

U and©. Given a property ϕ in the state trace s, s |= �ϕ denotes that every state in the

trace satisfies property ϕ; ♦ϕ is satisfied when some state in the trace satisfies ϕ; ©ϕ

states that the next state in the trace satisfies ϕ. An LTL-formula is built up from three

parts: a finite set of typed variables, basic logical operators and basic temporal operators.

For example, �♦ϕ denotes that in a trace ϕ is satisfied repeatedly. And ♦�ϕ denotes

that in a trace ϕ will eventually always be satisfied. Together with these four temporal

operators used by LTL, Computation Tree Logic (CTL) use two path quantifiers, ∀ and

∃, to express the system properties (Clarke et al., 1994). Given the property ϕ, ∀ϕ
denotes that ϕ holds for all computation paths and ∃ϕ holds for some computation

path. Model checking is supported by a number tools, such as SPIN (Holzmann Gerard,

2003), UPPAAL (Behrmann et al., 2011), PRISM (Hinton et al., 2006).

2.2.2 Theorem Proving

Theorem proving is another verification technique that uses mathematical formulas to

express both the system and its desired properties (Clarke and Wing, 1996). The process

of theorem proving is finding the a proof of the system properties based on the defined

axioms and inference rules. Based on induction and deduction rules, theorem proving

is independent of the size of the state space. The development of computer techniques

enables automated theorem proving by combining the inference rules to get the correct

proof (Bibel, 1987). However, proving a mathematical theorem may require deep un-

derstanding of the system properties as well as the inference rules. Several interactive

Chapter 2 Timing And Fairness Modeling with Formal Methods 11

theorem provers that involve both human and computers to generate proofs for specific

properties, such as Isabelle (Paulson, 1994), Rodin (Abrial et al., 2010), CVC3 (Barrett

and Tinelli, 2007) and Z3 theorem prover (De Moura and Bjorner, 2008).

2.3 Refinement

2.3.1 Refinement Mappings

In formal methods, transition systems are used to describe the behavior of discrete

systems (Keller, 1976; Pnueli, 1977). A transition system is defined in Definition 2.1.

The transition system uses a set of states S to interpret the set of variables in the system.

The set of transitions L describes the behavior of the discrete system.

Definition 2.1 (Transition Systems (Abadi and Lamport, 1991)). A transition system

T is a four-tuple < V ,S , I ,K > consisting of

• V : a finite set V of variables;

• S : a set S of states, where each s ∈ S is an interpretation of V ;

• I : a subset I ⊆ S of initial states;

• L: a finite set of transitions L ∈ (S ↔ S);

The refinement calculus is a way of transforming program structure so that correctness is

preserved. This is different to refinement mappings which are for transforming program

state rather than structure. In software engineering, programs or systems can be con-

structed with stepwise refinement, where each refinement step preserves the correctness

of the previous properties of the system. Refinement mappings and forward simulation

have been proved to be useful in proving refinements (Lynch and Vaandrager, 1995).

The refinement mapping of transition systems is defined in Definition 2.2. Similar no-

tions of refinement mapping have been defined in (Lynch and Vaandrager, 1995; Abadi

and Lamport, 1991). The function f is a valid refinement mapping provided the state

traces of T1 and T2 can be mapped with the mapping function. The conditions provided

in Definition 2.2 can be used to infer state trace equivalence between T1 and T2. Abadi

and Lamport (1991) concluded that if there exists a refinement mapping from T1 to T2,

then T2 implements T1.

Definition 2.2 (Refinement Mapping). Given transition systems T1 =< V1,S1, I1,K1 >

and T2 =< V2,S2, I2,K2 >, a refinement mapping from T1 to T2 is a function f from

S1 to S2 that satisfies:

• ∀s ·f (s) ∈ I2⇒ s ∈ I1

12 Chapter 2 Timing And Fairness Modeling with Formal Methods

• ∀s, s ′ ·f (s) 7→ f (s ′) ∈ K2⇒ s 7→ s ′ ∈ K1

To address the problem that a refinement mapping does not exist because the concrete

specification hides the history or future details of the abstract specification, Abadi and

Lamport (1991) proposed to use auxiliary variables such as history variables or prophecy

variables with stuttering to create a valid refinement mapping.

2.3.2 Forward Simulations

Refinement mappings use trace equivalence to prove that some discrete system T2 im-

plements T1. Forward simulations are generalizations of refinement mappings as they

allow for relational relations between states in T1 and T2 instead of functions. For-

ward simulation is defined in Definition 3.16. Given the transition system T1 and T2,

r is a forward simulation from T1 to T2 when r [I1] ⊆ I2 and for all transitions in T1,

there exists a transition in T2 and the corresponding states are related with the relation

r . Forward simulation, defined by Milner (1971), has been applied in cases such as

data type refinements and distributed system refinements (Jifeng, 1989a; Josephs, 1988;

Stark, 1984; Abrial, 2009).

Definition 2.3 (Forward Simulation). Given transition systems T1 =< V1,S1, I1,K1 >

and T2 =< V2,S2, I2,K2 >, a forward simulation from T1 to T2 is a relation r from S1

to S2 that satisfies:

• I2 ⊆ r [I1]

• ∀s, u, u ′ ·u ∈ r [s]∧ u 7→ u ′ ∈ K2⇒∃s ′ ·s 7→ s ′ ∈ K1 ∧ u ′ ∈ r [s ′]

2.4 Approaches to Modeling Time

2.4.1 Real-time Specification Patterns

The gap between informal requirements and formal specifications makes it challenging

for the modelers to build models that describe the system behavior correctly. Dwyer et al.

(1999) provided some specification patterns to guide developers in expressing system re-

quirements directly in a formal specification language with model checkers. Figure 2.1

shows the specification patterns that could be used to describe the system behaviors.

Occurrence patterns are used to represent the occurrence of the given events during

system execution. For example, existence patterns require that events must eventually

occur during system execution; absence patterns demand that the system execution

is free of certain events; universality patterns require events to occur throughout the

Chapter 2 Timing And Fairness Modeling with Formal Methods 13

whole execution; bounded patterns require that the system execution contains conver-

gent events. Instead of specifying the behavior of single events, order patterns describe

the relative order between the given events during system execution. The precedence

pattern illustrates the relationship between a pair of events where the occurrence of the

first event enables the second event. The response pattern requires that an occurrence of

the second event must follow the occurrence of the first event. Based on these specifica-

tion patterns, Abid et al. (2012) extended the patterns to express real-time requirements

in the design of real-time systems by using two kinds of timing modifiers that limits the

time between events, namely Within and Lasting. The Within timing modifier is

used to constrain the delay between two given events and the Lasting timing modifier

is used to constrain the duration which some predicates hold for more than D time units.

Specification

Occurrence

Universality

Absence

Existence

Bounded
Existence

Order

Precedence Response

Category

Pattern

Figure 2.1: Specification Pattern Classification (Dwyer et al., 1999)

Dwyer et al.’s patterns are qualitative patterns rather than quantitative patterns be-

cause such patterns cannot be used to specify real-time properties. Based on these

patterns, Konrad and Cheng (2005) have drawn attention to three kinds of real-time

specifications and created mappings of real-time properties into three real-time tempo-

ral logics. Figure 2.2 shows these three categories of real-time specification pattern,

namely duration ,periodic and real-time order. The minimum and maximum duration

captures the minimum and maximum time a state formula should hold once it becomes

true. The bounded recurrence pattern indicates that an event has to hold at least once

within a bounded period of time. The bounded response pattern defines the deadline

between two events and the bounded invariance specifies the delay between two events.

Their real-time specification patterns contain templates for specifying time properties

using three kinds of temporal logics, namely metric temporal logic (MTL) (Alur and

Henzinger, 1990), timed computational tree logic (TCTL) (Alur, 1991) and real-time

graphical interval logic (RTGIL) (Moser et al., 1997).

14 Chapter 2 Timing And Fairness Modeling with Formal Methods

Real-time
Specification

Duration Periodic
Real-time

Order

Minimum
Duration

Maximum
Duration

Bounded
Recurrence

Bounded
Response

Bounded
Invariance

Category

Pattern

Figure 2.2: Real-time Specification Pattern Classification (Konrad and Cheng, 2005)

2.4.2 Temporal Logic of Actions

Based on the definition of transition systems in Definition 2.1, Henzinger et al. (1991)

generalized the definition by associating minimal and maximum time delays of transi-

tions. The Timed Transition System (TTS) is defined in Definition 2.4. On top of a

transition system T−, the TTS also has a minimum and a maximum delay for each

transition. It is convenient to assume a discrete clock that records the timestamps of

state changes (Alur and Henzinger, 1994). Besides, liveness of this digital clock needs to

be guaranteed as time should always progress (Henzinger, 1991). Several specification

languages are used to reason about the real-time properties of TTS. Alur and Henzinger

(1991) translated the TTS to timed automata and used model checking techniques to

check the properties of TTS. Alur and Henzinger (1994) defined Timed Propositional

Temporal Logic (TPTL) that verifies timing properties of the timed state sequence in

TTS.

Definition 2.4 (Timed Transition System (Henzinger et al., 1991)). A TTS T =<

V ,S , I ,K , l , u > consists of an underlying transition system T− =< V ,S , I ,K > as

well as the minimal delay set l and a maximum delay set u. lk ∈ N and uk ∈ N ∪ {∞}
is defined as the minimal and maximum delay for each transition k ∈ K .

Abadi and Lamport (1994) defined the semantics of Temporal Logic of Actions (TLA),

which uses fairness properties to handle the requirements of liveness for the digital clock

in real-time systems. TLA is structured in four tiers, namely constants with functions

and predicates, state formulas for reasoning about the states, transition formulas for

reasoning about the transition of states and temporal predicates for reasoning about the

behavior traces (Abadi and Merz, 1996). The transition system can be specified with

TLA in the form of Equation (2.1) (Méry and Poppleton, 2015).

φ , Initφ ∧�[Next]f ∧WFf (N1)∧SFf (N2) (2.1)

In the formula, N1 and N2 denotes the system actions and Next denotes the disjunction

of all system actions regarding variables f . The WF and SF are weak fairness and

strong fairness constrains on the actions N1 and N2. To model TTS with TLA, Abadi

Chapter 2 Timing And Fairness Modeling with Formal Methods 15

and Lamport (1994) define variable now with property that it never decreases. State

functions are used to add volatile timers and persistent timers as lower-bound timers

and upper-bound timers on actions. Besides the time constraints on actions, Abadi and

Lamport (1994) also defined a liveness property that asserts that now gets arbitrarily

large, which means that time can always progress. Fairness properties are specified

to rule out the Zeno behavior in real-time systems. Their work put time bounds on

individual actions by using timers to restrict the increase of the global clock. Based on

their work, Zhang et al. (2010) specified time interval between two actions with TLA.

The time specifications are expressed by the TLA+ language (Lamport, 2002), which is

supported by the TLC model checker (Yu et al., 1999). However, the TLC model checker

does not support parameterized specifications and refinement of time specifications.

2.4.3 Timed Automata

Timed automata is a formalism that can be used to model and analyze the timing behav-

ior of real-time systems (Alur and Dill, 1994). In timed automata, systems are modeled

as a state transition system where each state is related to clocks and the transition be-

tween states is also constrained by clocks. A timed transition table ξ is defined with a

tuple < Σ,S , I ,C ,E > (Alur and Dill, 1994), where

• Σ is a finite set of actions of ξ

• S is a finite set of states

• I ⊆ S is a set of initial states

• C is a finite set of clocks

• E ⊆ S × S × Σ× 2C × Φ(C) gives the set of transitions. The edge (s, s ′, a, r , g) from

E is a transition from state s to s ′ with the input symbol a, clock resets r and

clock constraint g over C. The transition from state s to s ′ is constrained by the

clock constraint g and input symbol a. Here the set Φ(C) of clock constraints g

is defined inductively by Formula 2.2, where x is a clock in C and c is a constant.

g := x ≤ c‖c ≤ x‖¬g‖g1 ∧ g2, (2.2)

Timed automata are supported by model-checking tools such as UPPAAL (Larsen et al.,

1997), KRONOS (Yovine, 1997) and PRISM (Hinton et al., 2006). UPPAAL is a toolbox

designed to verify systems that can be modelled as networks of timed automata extended

with integer variables, structured data types and channel synchronization (Behrmann

et al., 2004). It is usually used to model real-time systems. However, many real-life sys-

tems also exhibit stochastic behavior such as component failures and unreliable commu-

nication. So probabilistic verification tools such as PRISM are used to analyze systems

with stochastic behavior (Norman et al., 2012).

16 Chapter 2 Timing And Fairness Modeling with Formal Methods

The state explosion problem is widely agreed to be a major challenge in applying model

checking to large and complex real-world systems (Rozier, 2011). Verification of real-time

system by model checking is more challenging as it introduces time. So an abstraction

refinement procedure is needed when modelling timed systems. However, some widely

used formalism to model real-time systems such as timed automata do not support

refinement of the model, which means that all the details have to be included when

designing the model. Dierks et al. (2007) used the idea of Counter-Example Guided

Abstraction Refinement (CEGAR) (Clarke et al., 2000) to automate all the steps of the

abstraction refinement loop in timed automata. Figure 2.3 shows a fully automated

abstraction refinement loop, which starts with an abstraction model. After performing

model checking some counter examples are found. Then the counterexample analyzer is

used to check what is missing in the abstract model that leads to the counter example.

And a refinement is performed based on the the result of analyzer to get rid of the

counter examples. The termination of this abstraction refinement loop is guaranteed as

each iteration removes at least one of the counter examples. In the CEGAR loop, if an

abstract model satisfies the given specifications, the concrete also satisfies them.

Abstraction

Counterexample
Analysis

Model Checking

Refinement

verification task

true

false

Figure 2.3: Counter-Example Guided Abstraction Refinement Loop (Dierks et al.,
2007)

CEGAR has already been used in refinement based modeling of complex CPS systems

such as heart and pacemaker modelling (Jiang et al., 2013). The heart is modeled

using timed automata based on the physiology of heart, which is abstracted with time

properties. And a CEGAR framework is adapted to refine the heart model to get rid of

spurious counter-examples found by UPPAAL model checker.

2.4.4 Time Modeling in Event-B

Event-B (Abrial, 2009; Event B.org, 2019a) is a formal modelling method based on set

theory and first-order logic, which is usually used for system-level modelling and analysis

with refinement and reasoning on the model (Event B.org, 2019a). Refinement is used

in Event-B to specify a complex system with different abstraction levels to lower the

difficulties to model a sophisticated system in a step-wise way. To verify the consistency

between refinement levels, mathematical proofs are used to do the verification.

Chapter 2 Timing And Fairness Modeling with Formal Methods 17

2.4.4.1 Event-B Syntax

A Event-B model that uses mathematical theory to describe a discrete transition system

usually contains two kind of components: contexts and machines. Contexts specify

the static part of a model whereas machines specify behavioral properties of Event-B

models (Hoang, 2010).

A context may contain carrier sets, constants, axioms, and theorems. Carrier sets are

used to define types used in the model. Carrier sets and constants are constrained by

axioms and theorems that are derived from axioms. A machine may contain variables,

invariants and events. Variables denote the properties of a state of the machine. These

variables are constrained by invariants I (v), where v denotes the constrained variables.

The events describe the changes of the states in a machine. The invariants should be

preserved by all the events of a machine. The most general form of an event is shown

in (2.3) below. Each event consists of a guard G(p, v) as well as a before-after predicate

BA(p, v , v ′). G(p, v) defines the enabledness of the event with the parameter p. If

several events are enabled, at most one of them would be chosen non-deterministically

to occur. BA(p, v , v ′) describes the changes to variables upon event execution where v ′

stands for the variables after the execution of the event.

evt , where G(p, v) then v : |BA(p, v , v ′) end (2.3)

2.4.4.2 Abstraction and Refinement

Formal modelling is used to address the problem of lack of precision of specifications.

However, it does not handle the problem of complex requirements and specifications (But-

ler, 2013a). Using abstraction that focuses on the general goal of the system instead

of those complex details all in one level, makes it easier to model and reason about

the system. However, the complexity of the system is not ignored. Instead, after the

verification of the abstract model, several refinement steps can be carried out. Each step

adds details to the previous step based on the verification proof of the previous one and

proof obligations are proved to verify these refinement steps.

There are two types of refinement for Event-B models. The process that only adds

features to the system by introducing more concrete elements is called superposition

refinement (Abrial, 2009). And the process that transforms some states and events

of the model is called data refinement. Superposition refinement is usually used for

system specifications while data refinement is used to ease the implementation of the

model (Sarshogh, 2013). The variables in the refined machine are linked to the abstract

state variable by using gluing invariants to ensure the consistency of the system.

18 Chapter 2 Timing And Fairness Modeling with Formal Methods

2.4.4.3 Convergent Events

The Event-B notion of convergence requires convergent events to become disabled even-

tually without any fairness assumptions. In Event-B models, not all events are expected

to be convergent. In system modeling, the modeler defines events that must not execute

forever to be convergent. The convergent event must decrease a variant in Event-B mod-

els, whereas anticipated events must not increase the variant. The anticipated events

must become convergent at some stage of refinement.

Definition 2.5 (Convergent Events). A group of events A is defined to be convergent

when

• V (v) is an integer expression.

• Given invariants I (v) and the group of events A is enabled, the variant V (v) is a

natural number.

I (v)∧GA(v)⇒V (v) ∈ N

• An execution of each event e ∈ A decreases V (v).

I (v)∧Ge(v)∧BAe(v , v ′)⇒V (v ′) < V (v)

2.4.4.4 Proof Obligation

In Event-B, Proof Obligations (PO) are used to specify the consistency between different

refinement levels (Abrial, 2009). A brief description of the main PO rules is described

in Table 2.1. These POs are automatically generated by the Rodin tool.

2.4.4.5 Rodin: An Event-B Modelling Tool

Rodin (Event B.org, 2019b) is an Eclipse-based integrated development environment

(IDE) for Event-B, which supports construction and verification of Event-B models (Abrial

et al., 2010). Engineers can use it to find specification errors of a system by checking

proof obligation violations of the model.

The Rodin tool chain contains three components: the static checker (SC), the proof

obligation generator (POG) and the proof obligation manager (POM) (Abrial et al.,

2010). The workflow of Rodin is shown in Figure 2.4. SC checks the syntax errors

of the machine and context and provides feedback to the user. After the check POG

generates POs such as feasibility, refinement and convergence for the model. Some POs

can be discharged automatically, while some POs have to be discharged manually by

using some interactive prover such as Atelier B (ClearSy, 2019). And POM keeps track

of these POs and associate proofs with obligations by constructing proof trees.

Chapter 2 Timing And Fairness Modeling with Formal Methods 19

Table 2.1: Event-B Proof Obligation Rules (Abrial, 2009)

Proof Obligation Rule Description

Invariant Preservation(INV)
Ensures that each invariant in a machine is
preserved by each event.

Feasibility(FIS)
Ensure that a non-deterministic action is
feasible.

Guard Strengthening(GRD)
Ensure that the concrete guards are stronger
than their corresponding abstract ones.

Simulation(SIM)
Ensure that each action in an abstract event is
correctly simulated in the corresponding refinement

Numeric Variant(NAT)
Ensure that a proposed numeric variant is a natural
number under the guards of each convergent or
anticipated event.

Numeric Variant(VAR)
Ensure that each convergent event decreases the
proposed numeric variant

Finite Set Variant(FIN)
Ensure that a proposed set variant is a finite set under
the guards of each convergent or anticipated event.

Theorem(THM)
Ensure that a proposed context or machine theorem
is provable.

Well-definedness(WD) Ensure all elements of the model are well defined.

Figure 2.4: Tool-Chain in Event-B Core and The User Interface (Abrial et al., 2010)

The graphical user interface of Rodin consists of two parts: user interface for mod-

elling (MUI) and user interface for proving (PUI). Figure 2.4 shows the tool chain that

makes up the core of Rodin (Abrial et al., 2010). The PUI can be used to do interactive

proofs. Engineers can use the PUI to prune the proof tree or add new hypotheses and

apply tactics on the hypothesis and goal. MUI can be used to edit the machine and

context in the model.

20 Chapter 2 Timing And Fairness Modeling with Formal Methods

2.4.4.6 Extend Event-B with Discrete Timing Properties

Event-B is a general purpose modeling language that supports model refinement but

lacks explicit support for expressing and verifying timing constraints (Sulskus et al.,

2016). Several studies have developed patterns to extend Event-B models with real-

time properties.

Cansell et al. (2007) developed an action-reaction pattern to model the causal order

between events. Time constraints are imposed between action and reaction events to

model real-time properties. They use variable clock to denote the current time, and

variable at to denote a set of timestamps of future activated events. They use a post

event to create a new timestamp of the activated event in the timestamp set. The tick

event takes a new value of a time in the future that is earlier than any of the active

timestamps and assigns it to the current time. When the current time reaches the active

timestamp, the process event removes the current time from the active timestamp set.

However, refinement patterns are not provided by this approach. Also, this pattern lacks

the ability to model the interrupt behavior between the trigger and response events.

Abrial et al. (1996) proposed an approach to modeling and refining timing properties

in classical B, which adds a clock variable representing the current time and an opera-

tion which advances the clock (Butler and Falampin, 2002). The approach is influenced

by Lamport’s work (Abadi and Lamport, 1994) and ensures the timing properties are

satisfied by preventing behaviors in which the clock advances to a point where dead-

lines would be violated. Based on this approach, Sarshogh and Sulskus added explicit

support for trigger-response properties with deadline, delay, expiry and interval timing

properties (Sarshogh and Butler, 2011; Sulskus et al., 2016).

To formally model the timing properties for the trigger-response pattern in control sys-

tems, Sarshogh and Butler (2011) proposed an approach that categorizes timing con-

straints in three groups: delay, expiry and deadline, which are denoted in (2.4a), (2.4b)

and (2.4c) below. All these three timing constraints follow a trigger-response pattern

where trigger and response events are modeled as events in Event-B. Specification (2.4a)

shows that the Response event can only happen if the delay period has passed following

the occurrence of the Trigger event. Specification (2.4b) shows that if the expiry period

has passed then the Response event can never happen. Specification (2.4c) denotes that

if the Trigger event occurs, then one of the events Response1 to Responsen must occur

before deadline passes. To model these three timing properties in Event-B, a global

clock as well as a tick event are added to model the discrete time.

Delay(Trigger ,Response, delay) (2.4a)

Expiry(Trigger ,Response, expiry) (2.4b)

Deadline(Trigger ,Response1 ∨ .. ∨ Responsen , deadline) (2.4c)

Chapter 2 Timing And Fairness Modeling with Formal Methods 21

Figure 2.5 shows the trigger response pattern as an Event-B machine for the delay and

deadline constraints, where trigger and response are modelled as events. The response

event response must occur within time ddl of trigger event trigger occurring and can only

occur if the delay period has passed. We use tT to refer to the time that a trigger event

happens, and we use tR to refer to the time that a response event happens. Ga(v),

Act a and Gb(v), Act b are the guards and actions of untimed trigger and response

events respectively. Invariant @inv1 and @inv2 specify the delay and deadline timing

property between trigger and response respectively. Guard @grd3 of the response event

guarantees that the response is disabled when the global clock has not passed the delay

period thus preserving @inv1. Guard @grd1 of the Tick event constrains the global

clock not to tick when the response event is missing its deadline thus preserving @inv2.

@inv3 is needed to prove invariant @inv2. When modeling the expiry time constraint,

@grd3 of response event should be clk < tT + expiry to guarantee that the response is

disabled when the global clock has passed the expiry period.

invariants
@inv1 tT<tR⇒tR−tT≥ dly
@inv2 tR≥ tT⇒tR−tT≤ ddl
@inv3 t=TRUE∧r=FALSE⇒clk−tT≤ ddl

event trigger
where

@grd1 t=FALSE
Ga(v)

then
@act1 t:= TRUE
@act2 tT:= clk
Act a

end

event response
where

@grd1 t=TRUE
@grd2 r=FALSE
@grd3 clk≥ tT+dly
Gb(v)

then
@act1 r:= TRUE
@act2 tR:= clk
Act b

end

event Tick
where

@grd1 t=TRUE∧r=FALSE⇒clk+1−tT≤ ddl
then

clk:= clk+1
end

Figure 2.5: Model Timing Properties of Trigger-Response Events with Delay and
Deadline

Sarshogh’s approach handles the system with trigger and response properties without

specifying any possible interrupt events from the environment. To model a more complex

system that supports interrupt events in interrupting current time intervals, Sulskus

et al. (2016) introduced the notion of time interval constraints in Event-B, which is a

higher-level abstraction in terms of state machine.

Interval(T1[, ...,Ti]; R1[, ...,Rj]; [I1, ..., Ik]; TP1(t1)[,TP2(t2)]) (2.5)

The notation of the time interval constraint is presented in (2.5), and consists of three

kinds of events: trigger events: T ∈ T1..Ti ; response events: R ∈ R1..Rj and interrupt

22 Chapter 2 Timing And Fairness Modeling with Formal Methods

events: I ∈ I1..Ik . Each pair of trigger and response events composes an active interval

instance, which is constrained by the timing property TP(t) of duration t . Here TP

stands for deadlines, delays and expiries. The interval can have one of five TP configu-

rations: (i.) Deadline; (ii.) Delays; (iii.) Expiry; (iv.) Delay and Expiry; (v.) Delay and

Deadline (Sulskus et al., 2016). The interrupt event always interrupts an active interval

instance but does not block it if no active interval instance exists. When a trigger event

happens, an active interval instance is created. The response event is constrained by

one or more timing properties. An interrupt event can be executed at any given time

regardless of the state the model is in.

2.4.4.7 Refinement Patterns of Timing Properties

There are several patterns developed by Sarshogh to refine deadlines, delay and ex-

piry (Sarshogh and Butler, 2011). As shown in Figure 2.6, to refine an abstract deadline

D between the trigger-response pair to sequential sub-deadlines D1..Dn , there should

be invariants to ensure the order of sequential sub-deadlines. Also, the sum of the du-

ration of sub-deadlines should be less than the abstract deadline duration. To refine

an abstract deadline to alternative sub-deadlines, a gluing invariant that indicates that

the abstract event is equivalent to the occurrence of alternative sub-events is required

to verify the consistency between refinement levels. To refine alternative sub-deadlines

with sequential sub-deadlines and expiries, the sum of sequential sub-deadline durations

should be less than the abstract deadline duration.

T R
D

T’ R’

D1 D2 Dn-1 Dn …

Figure 2.6: Refine an abstract deadline D to sequential sub-deadlines
D1..Dn (Sarshogh and Butler, 2011)

Sulskus (2017) concluded three refinement transformations for the interval timing prop-

erty, namely alternative interval transformation, sub-interval transformation and abort

to response transformation.

The alternative transformation refines an abstract interval property into several alterna-

tive timing interval properties. The alternative intervals should share the same trigger

event, response event and timing properties. Additional gluing invariants are needed to

verify that the concrete interval properties are consistent with the abstract time interval

property.

Chapter 2 Timing And Fairness Modeling with Formal Methods 23

The sub-interval transformation refines an abstract interval into a sequence of sub-

intervals. The sequential sub-intervals could be connected with a transition event which

is a response event of the preceding interval instance and a trigger event of the succeeding

one. Additional gluing invariants are needed to guarantee that the sum of the delay and

deadline duration of sub-intervals is consistent with the abstract delay and deadline

duration.

The abort-to-response transformation refines the abort event of the abstract interval

into a response event. Moreover, new interrupt events could be introduced in refinement

steps. The transformation also requires that the concrete timing property between

trigger and response events is consistent with the abstract timing property.

2.5 Fairness Modeling

2.5.1 Fairness

In concurrent systems, fairness is an important concept that constrains the selection

of events for execution. Francez (1986) defined fairness as a restriction on some infinite

behavior according to eventual occurrence of some events. Fairness guarantees that every

process, represented by some subset of events, gets a chance to make progress, regardless

of what other processes do. There are two typical fairness assumptions: strong fairness

and weak fairness assumption. Strong fairness requires that a process that is infinitely

often enabled should be executed infinitely often while weak fairness requires a process

that is continuously enabled should be executed eventually.

2.5.2 Bounded Fairness

The fairness assumptions guarantee an eventual occurrence of an event but provide no

bound on how soon the event will occur. However this qualitative specification and

analysis are inadequate for many systems and applications (Pnueli and Harel, 1988).

For example, some process control systems may require that any process pi that wish to

request the resource be granted the resource within the next k times that other processes

arriving after pi are granted with the resource. In this situation, the system with fairness

assumptions cannot meet the requirement. Dershowitz et al. (2003) proposed bounded

fairness (k− fairness) to specify and reason about the frequency of occurrence of events,

which guarantees occurrence of an event within a fixed number of occurrences of another

event.

24 Chapter 2 Timing And Fairness Modeling with Formal Methods

2.5.3 Finitary Fairness

Bounded fairness specifies fairness of a particular event relative to another, while the

interleaving model of concurrency represents the concurrent execution of several inde-

pendent events, where bounded fairness is not applicable in this case. Alur and Henzinger

(1998) proposed the definition of finitary fairness which imposes bounds on the relative

frequency in scheduling of a set of events. Based on their definition, a set of transitions

F in an LTS is weakly k − bounded iff for all transitions τ of F , the transition τ cannot

be enabled for more than k consecutive positions without being taken.

Sekerinski and Zhang (2013) proposed a method for expressing finitary weak fairness in

Event-B. They define a fair event system as follows:

Definition 2.6. A fair event system P is a structure (Q , I ,F ,E ,T) where

• Q is the set of states,

• I is the set of initial states, I ⊆ Q ,

• F is the number of fair events,

• E is the set of all events with card(E) ≥ F ,

• T is the set of transitions, relations over Q ×Q indexed by E

Based on the fair event system, they give the definition of the finitary weakly fair trans-

formation, which expresses finitary fairness by introducing counter variables C1, ...,CF

for each fair event. The counter Ci of event ei for i ∈ 1..F indicates that ei must be

taken or disabled at least once in the next Ci transitions. They also introduce a permu-

tation p which satisfies ∀j ·j ∈ 1..F ⇒ Cp(j) ≥ j to guarantee that only one counter can

be 1. On every transition, the guards of all fair events must be tested: if a fair event is

enabled but not taken, its counter must be decreased by 1, otherwise the counter is reset

to some finite value. However, this stating the existence of a permutation will increase

exponentially with the number of fair events (Sekerinski and Zhang, 2013).

2.6 Real-time Scheduling

Figure 2.7 shows a typical interaction pattern between the scheduler and different

tasks (Alur, 2015). Initially the task is in the idle mode. When the task needs the

processor to do some processing, it sends an event to the scheduler for processing and

changes to the wait mode. When the scheduler decides to allocate the processor to the

task, it notifies the task using the event run and the task changes its mode to running .

After the task finishes its execution and sends a done event to scheduler and changes

Chapter 2 Timing And Fairness Modeling with Formal Methods 25

its mode to idle. During the running of a task, if the processor allows another task

to preempt the current one, then the scheduler sends a preempt event to the task and

the task changes from the running mode to the wait mode. This scheduling is called a

preemptive scheduler. If the scheduler does not allow one task to preempt another, then

this is a non-preemptive scheduler. Most real-time scheduling systems are preemptive

systems which allow tasks with high priorities to preempt tasks with lower priorities.

This allows the tasks with high priorities to finish first. There are two kinds of schedul-

ing policies of preemptive scheduling system for independent tasks, one is static priority

scheduling, another is dynamic priority scheduling. There is also a scheduling policy for

dependent tasks that shared the same resource. All of these three policies are described

in the following section.

Task T+1

!

Scheduler
Task T

Idle

Run

Wait

arrive

done

run

preempt

arrive!

run? preempt?

done!

Figure 2.7: Interaction between the Scheduler and the Tasks (Alur, 2015)

2.6.1 Static Priority Scheduling For Independent Tasks

For a static priority scheduling policy, the tasks are assigned with fixed priorities, and

whenever the scheduler has to make a choice, the task with the highest priority is

chosen (Alur, 2015). Rate-Monotonic (RM) is one of the static priority scheduling

policies that schedule a set of periodic independent hard real-time tasks in a system

with a single CPU (Liu and Layland, 1973). The RM policy assumes that the deadline

of each task is equal to its period. It assigns static priorities based on the task periods.

The tasks with the shortest period gets the highest priority and vice versa. Schedulers

choose the task with highest priority to execute.

26 Chapter 2 Timing And Fairness Modeling with Formal Methods

2.6.2 Dynamic Priority Scheduling For Independent Tasks

A dynamic priority scheduling policy may assign different priorities to the same task at

different times. Earliest Deadline First (EDF) is one of the dynamic priority scheduling

policies, which also schedules a set of periodic independent tasks. However, the task

whose deadline is going to expire first is granted the highest priority. In a periodic job

model, each job is active at different times, so the value of a deadline depends on the

time t . The priority of the same task at different timestamp t may therefore be different.

The scheduler will choose the task with the highest priority to execute.

2.6.3 Scheduling Dependent Tasks

Concurrently executing tasks must exchange information and access common data re-

sources in order to cooperate to achieve the overall system objectives, so scheduling de-

pendent tasks is also important in distributed real-time systems (Kopetz, 2011). When

the task with high priority wants to gain access to a resource which is already acquired

by a task with lower priority, it cannot preempt the lower priority one as this would

cause deadlock. Instead, it should wait for the task with lower priority to release the

resource. A solution developed by Sha uses a priority inheritance protocol to prevent

deadlocks (Sha et al., 1990). The rule of the priority inheritance protocol is to let the

task with lower priorities inherit the highest priority of tasks blocked by the resource it

is acquiring. Then the task with higher priority will not preempt the lower one and no

deadlock will occur.

2.7 Conclusion

In conclusion, formal methods help to verify functional and timing requirements in CPS

with tool support. The TLA approach mainly focuses on reasoning about time bounds on

individual actions. Timed automata produce a finite-state space model to reason about

timing properties in system design. However, refinement is not supported natively by

the UPPAAL model checker. The complexity of system design has to be tackled all at

once. The Event-B formalism uses the deductive verification approach to reason about

timing constraints between different actions in a real-time system. Refinement could be

used to develop the system in a stepwise manner. An unbounded variable is used to

model time, which presents the natural property that time could always progress.

However, existing work lacks formal treatment of the relation between trigger events,

intermediate events and response events in time modeling. Infeasible responses will lead

to the Zeno behavior whereby an infinite number of events occur within a bounded

period of time. Thus additional conditions are required for the correctness of a real-time

Chapter 2 Timing And Fairness Modeling with Formal Methods 27

system. Forward simulations could be used to reason about the consistency between

different refinement levels regarding infinite traces.

Chapter 3

Trace Semantics and Refinement

Patterns for Real-Time

Trigger-Response Properties

As discussed in Section 2.7, existing work lacks a proper treatment of key issues in

timed systems, namely divergence of new events in the refined machine and infeasible

occurrence of events without fairness assumptions. In our setting, the global clock is

constrained by the response events based on the syntax of deadline time constraints.

Infeasible responses will lead to the Zeno behavior whereby an infinite number of events

occur within a bounded period of time. In this chapter we address these problems

with proof obligations and fairness assumptions on intermediate events and response

events. We provide trace semantics for a trigger-response property. We explore sufficient

conditions under which all the traces of an Event-B model satisfy a trigger-response

property, in the form of Event-B proof obligations and fairness assumptions. Also,

we explore sufficient conditions under which the refinement is valid in terms of infinite

traces. Fairness assumptions, relative deadlock freedom, and conditional convergence are

adopted to refine the discrete timed models. We present infinite state trace refinement

with gluing relations between abstract and concrete state traces. The definition of

generic refinement that allows relabelling and stuttering events is presented with event

trace inclusion. We summarize infinite trace properties as well as sufficient conditions

under which timing properties are preserved by refinement.

29

30
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

3.1 Trace Semantics and Properties of Event-B Models

3.1.1 Trace Semantics of Event-B Machine

Event-B is a modeling approach for formalizing discrete transition systems. We abstract

away from the concrete syntax of Event-B and treat a machine as a form of labeled

transition system (Definition 3.1). In the definition, the machine consists of state set S

and initial states init ⊆ S . We use E to denote a set of event labels of the machine M .

The transition relation K is used as a function from event label set E to the relation

between states.

Definition 3.1 (Machine). A machine M is a tuple < S , init ,E ,K > consisting of

• S : a set of states, each state s is a mapping of variables of M to their values;

• init : a set of initial states init ⊆ S ∧ init 6= ∅, which correspond to initial config-

urations;

• E : a set of event labels of the machine M ;

• K : a transition relation K ∈ E → (S ↔ S) that relates pairs of states;

Given the definition of a machine, we define traces(M) of machine M to describe the

infinite behavior of the system in terms of the set of pairs of state trace and event trace

(us , ue), which could be presented as an infinite sequences of alternating states and

events of the form < us(0), ue(0), us(1), ue(1), ... > in Definition 3.2.

Definition 3.2 (Infinite Trace of a Machine). The set of infinite traces traces(M) of a

machine M is defined as:

traces(M) ,{(us , ue) | us ∈ N→ S ∧ ue ∈ N→ E ∧ us(0) ∈ init

∧∀i ·i ≥ 0⇒ us(i) 7→ us(i + 1) ∈ K (ue(i))}

The event traces (Definition 3.3) and state traces (Definition 3.4) of a machine are

defined below; their properties are studied in the next section.

Definition 3.3 (The Set of Event Traces of M). A set of event traces of M is defined

as:

e traces(M) = {ue | ∃us ·(us , ue) ∈ traces(M)}

Definition 3.4 (The Set of State Traces of M). A set of state traces of M for some

event trace ue is defined as:

s traces(M , ue) = {us | (us , ue) ∈ traces(M)}

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 31

Lemma 3.5 shows that the state trace set of an event trace in machine M is not empty.

Lemma 3.5.

ue ∈ e traces(M)⇔ s traces(M , ue) 6= ∅

3.1.2 Trace Properties

We adopt weak fairness assumptions on infinite traces to exclude traces with Zeno behav-

iors, whereby an infinite number of events occur within a finite period. In Definition 3.6,

we extend the machine definition in Definition 3.1 with a set of events F ⊆ E . The traces

of a machine that is weakly fair on the event set F satisfy the property that if F is con-

tinuously enabled from some point, then f ∈ F will eventually occur on the trace. A

machine is defined to weakly fair on F when ∀(us , ue) ∈ traces(M)⇒WFair((us , ue),F).

Definition 3.6 (Machine Traces with Weak Fairness). A machine M with weak fairness

is a tuple < S , init ,E ,K ,F > consisting of a machine < S , init ,E ,K > and a set of

weakly fair events F ⊆ E . The trace (us , ue) ∈ traces(M) is defined as weakly fair on F

as WFair((us , ue),F), formally:

WFair((us , ue),F) ,

∀i ·i ≥ 0∧ us(i) ∈ dom(K (F))⇒∃j ·j ≥ i ∧(ue(j) ∈ F ∨ us(j) /∈ dom(K [F])

The normal Event-B notion of convergence requires convergent events to become dis-

abled eventually without any fairness assumptions. Our work extended the notion of

convergence to conditional convergence to define a set of events are converging under

certain condition Q(v) in Definition 3.7. The notion of conditional convergence is a

generalized version of convergence as it only requires the events to be convergent under

some specific condition. If the condition is not satisfied, then the events do not need to

converge.

Definition 3.7 (Conditional Convergence). A group of events A is defined to be con-

ditional convergent under the condition Q when

• V (v) is an integer expression.

• When the group of events is enabled, the variant V (v) is a natural number.

I (v)∧GA(v)⇒V (v) ∈ N

• An execution of each event e ∈ A decreases V (v) provided Q(v) holds.

I (v)∧Ge(v)∧Se(v , v ′)∧Q(v)⇒V (v ′) < V (v)

32
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

Based on Definition 3.7, we provide the conditional convergence trace property in Def-

inition 3.8 such that event set A must not be executed forever under the condition

Q .

Definition 3.8 (Conditional Convergence Property). Given that machine M is weakly

fair towards A, trace (us , ue) ∈ traces(M) is defined to be convergent as (us , ue) |=
cov(A,Q), formally:

(us , ue) |= cov(A,Q) , ∀i ·(∃j ·j ≥ i ⇒ (us(j) /∈ dom(K (A))∨¬Q))

Abid et al. (2013) proposed a set of specification patterns that can be used to express

real-time requirements in the design of reactive systems, namely existence patterns,

absence patterns, and response patterns. Existence patterns are used to express that

certain events must occur in every trace of the system; absence patterns require that

certain events should never occur in every trace of the system. A trigger-response

pair in Event-B models can be used in these patterns. Details of modeling real-time

specification patterns with trigger-response properties are provided in Section 6.1. In

the trigger-response pair, the trigger event is followed by its possible response events

eventually. Given a machine with events E , a trigger-response pair has the form (T ,R)

where T ⊆ E ∧R ⊆ E ∧T ∩ R = ∅. We define when an event trace of a machine

satisfies the trigger-response property TR(T ,R) as Definition 3.9. An event trace ue

satisfies TR(T ,R) provided that any occurrence of a trigger event t ∈ T is followed

eventually by a response event r ∈ R and the trigger event does not recur within the

trigger-response pair to avoid the recurring delay of response event.

Definition 3.9 (Trigger-Response Property). Given the trigger-response pair (T ,R)

that satisfies T ⊆ E ∧R ⊆ E ∧T ∩ R = ∅∧T 6= ∅∧R 6= ∅, trace ue ∈ N → E is

defined to satisfy the trigger-response property TR(T ,R) as:

ue |= TR(T ,R) ,

∀i ·i ≥ 0∧ ue(i) ∈ T ⇒ (∃j ·j > i ∧ ue(j) ∈ R ∧∀k ·i < k < j ⇒ ue(k) /∈ T)

Given a machine M with event labels E that represent the names of the events in M ,

we provide the syntax of real-time trigger-response properties as Definition 3.10 based

on a trigger-response pair (T ,R), where T ⊆ E are trigger events, R ⊆ E are response

events, and T ∩R = ∅. We use Resp(T ,R,w , d) to denote the timing property between

trigger events T and response events R, where w is the delay constraint and d is the

deadline constraint.

Definition 3.10 (Real-Time Trigger-Response Property). A real-time trigger-response

property Resp(T ,R,w , d) of a machine M with event labels E consists of:

• trigger events T ⊆ E ∧T 6= ∅;

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 33

• response events R ⊆ E ∧R 6= ∅∧T ∩ R = ∅;

• a delay w ∈ N and a deadline d ∈ N.

To model real-time systems, we introduce a special event Tick in event traces to represent

the progress of time. In a real-time system, one essential property requires that time

should always progress. The event traces of real-time systems should always be infinite

traces with infinitely many Tick events. Definition 3.11 provides the timed property of

a timed trace, which guarantees that there is an infinite number of Tick events occurring

in the event trace. Moreover, only a finite number of non − Tick events could occur

between any two Tick events.

Definition 3.11 (Timed Trace). Event trace ue is defined to be a timed trace as

timed(ue) , ∀i ·i ∈ N⇒ (∃j ·j ≥ i ∧ u(j) = Tick)

Given a trigger-response pair (T ,R), we use the number of Tick events between the

trigger event T and response event R to denote the corresponding timing property for

the trigger-response pair. Definition 3.12 shows the bounded real-time property for the

trigger-response pair (T ,R). The number of Tick events between trigger and response

events is restricted by a lower bound w and an upper bound d . The response event R

must occur within time d of trigger event T occurring and can only occur if the delay

period w has passed. Given the event trace ue , the projection ue � A is the event trace

restricted to only those events in A. The length operator #(ue) defines the length of

a finite event trace or the finite sub-trace of an infinite trace. The sub-trace function

ue [i , j] defines the sub-trace between index i and j as < ue(i), ue(i + 1), ..., ue(j) >.

The event trace that satisfies the bounded real-time property should satisfy the trigger-

response property as well as the timed property.

Definition 3.12 (Bounded Timing Property). An infinite event trace ue is said to satisfy

the bounded timing property ue |= Resp(T ,R,w , d) provided the following conditions

hold:

ue |= Resp(T ,R,w , d) , timed(ue)∧∀i ·i ≥ 0∧ ue(i) ∈ T⇒

∃j ·j > i ∧ ue(j) ∈ R ∧∀k ·i < k < j ⇒ ue(k) /∈ T ∧(w ≤ #(ue [i , j] � Tick) ≤ d)

We define the traces of Event-B models with bounded timing properties in Defini-

tion 3.13. Here we use M ∧Resp(T ,R,w , d) to present a machine M that is constrained

to satisfy timing properties Resp(T ,R,w , d).

Definition 3.13 (Machine with Bounded Timing Property).

traces(M ∧Resp(T ,R,w , d)) , {(us , ue) | (us , ue) ∈ traces(M)∧ ue |= Resp(T ,R,w , d)}

34
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

3.2 Enforcing Real-time Trigger-Response Properties in

Event-B Models

In a trigger-response pair, the response event is not necessarily enabled after the ex-

ecution of a trigger event. Instead, there may be a group of intermediate events H

that is enabled by a trigger event t ∈ T and whose execution leads to a response event

r ∈ R being enabled. In this section we explore sufficient conditions under which a

behavioral trace satisfies the trigger-response property. For each trigger and response

pair (T ,R), a set of intermediate events H ⊂ E s.t. T ∩ H = ∅ and R ∩ H = ∅ is

assumed. This set is chosen by the modeler and consists of events that are initiated by a

trigger event and whose execution is intended to lead to a response being enabled. The

intermediate events should converge towards a response event being enabled and should

not be disabled unless the response event is enabled. Weak fairness assumptions on

the intermediate events guarantee that the intermediate events get executed sufficiently

often to lead to the response event being enabled. We require that if a response event

is enabled, it cannot be disabled by any event other than a response event to avoid

the scenario that intermediate events and response events are enabled alternatively but

never get executed under the weak fairness assumption. Weak fairness assumptions on

the response events guarantee that an enabled response event eventually gets executed.

Theorem 3.14 provides additional conditions for the machine to satisfy the trigger-

response property TR(T ,R).

Theorem 3.14. Let M be an Event-B machine, let TR(T ,R) be a trigger-response

property and let H ⊂ E such that T ∩ H = ∅ and R ∩ H = ∅. If the following

conditions 1)-5) are true, then traces(M) satisfies TR(T ,R) when M is weakly fair on

H and R:

1. GR(v)⇒¬GT (v);

2. I (v)∧Gt(v)∧St(v , v
′)⇒¬Gt(v

′)∧(GH (v ′)∨GR(v ′));

3. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GH (v)⇒ (GH (v ′)∨GR(v ′));

4. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GR(v)⇒GR(v ′);

5. The intermediate events H are conditional convergent under the condition that

response events R are disabled;

Proof. Let u ∈ traces(M) and assume ue(i) ∈ T but ∀j ·j ≥ i ∧ ue(j) 6∈ R. Then by

weak fairness of R, R is not continuously enabled at any point after i . That is, R is

infinitely often disabled. Then by condition 4, R is never enabled after position i as if

R was enabled after i , it would be kept enabled. Now by Condition 2 and Condition 3,

either H or R is always enabled after position i . However, based on Definition 3.8 and

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 35

weak fairness assumption on H , both H and R could be disabled at some point after i .

And this can be used to derive a contradiction.

Given that each trigger event would be followed by the corresponding response event,

Condition 1 is then used to avoid the recurring of trigger events between the trigger-

response pair.

3.3 Infinite Trace Refinement

Abstraction and refinement are usually essential to manage the complexity of modeling

and reasoning about a system. Refinement of a system usually involves changing the

variables of the system (Back, 1989). Data refinement is used to add more details to

the data structure in the model, either by replacing existing variables or adding new

variables to the model. In Event-B machines, gluing invariants are used to link the

variables in the refined model to the variables in the abstract model.

We use M =< S ,S0,E ,K > to denote the abstract machine, which is data-refined to

the concrete machine M ′ =< S ′,S ′0,F ,K
′ >. Syntactically the abstract and concrete

state spaces are represented by the possible values of the variables v and w respectively.

S ′0 is defined by a predicate L(w). The transition relation K ′ of an event e ∈ F is

defined by its guard He(w) and action predicate Re(w). In general, gluing invariants

define a relational mapping between concrete and abstract states. Instead of assuming a

mapping function that maps states s ∈ S ′ to states s ′ ∈ S , we assume J ∈ S ↔ S ′ as a

gluing relation that relates the states of M and M ′. Syntactically, J is represented by a

predicate J (v ,w). Event mapping function g ∈ F → E ∪ {skip} is a total function from

refined event labels to abstract event labels and skip. The skip events are mapped from

concrete new events in M ′. In the following section, we lift the event function to event

traces in (3.1). The infinite trace model allows us to give a proper treatment of timed

traces. In the following section we use event trace inclusion to define the refinement

semantics between different machines.

g [v] = u ≡ ∀i ·i ∈ dom(v)⇒ u(i) = g(v(i)) (3.1)

In refinements, additional guards could be imposed on events, which might cause dead-

lock that no events are enabled in the refined machine. To guarantee that the refined

machine models the behavior of real-time systems, we use Lemma 3.15 to show that

traces of the refined machine are infinite traces when M ′ is deadlock free relative to M .

Lemma 3.15. Given that machine M ′ refines M and M is not deadlocked. Then

all traces in traces(M ′) are infinite traces when M ′ is deadlock free relative to M :

J [dom(K)] ⊆ dom(K ′)

36
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

Proof. Assume that there exists one trace v ∈ traces(M ′) that is deadlocked at index l ,

formally presented as vs(l) /∈ dom(K ′).

vs(l) /∈ dom(K ′)

⇒{J [dom(K)] ⊆ dom(K ′)}

vs(l) /∈ J [dom(K)]

≡{us(l) 7→ vs(l) ∈ J}

us(l) /∈ dom(K)

As M is not deadlocked so ∀i ·i ∈ N⇒ us(i) ∈ dom(K), this contradicts the result that

us(l) /∈ dom(K). Thus all traces in traces(M ′) are infinite traces.

We first present the most straight-forward refinement semantics, which assumes that the

concrete model does not introduce new events. Then we generalize the result to allow for

new events. We treat traces for machines as compound traces of states and events. We

first prove state trace refinement with forward simulation and Zorn’s Lemma (Conrad,

2016), which then can be used to prove the event trace refinement.

3.3.1 Forward Simulation and Infinite State Trace Refinement

Forward simulation is a sufficient condition for refinement of systems with finite traces (Abrial,

2009). We show that forward simulation using a relational abstraction relation is suf-

ficient for infinite trace refinement as well. Formally, forward simulation is defined in

Definition 3.16. Figure 3.1 illustrates that the concrete machine M ′ simulates abstract

M provided for each transition in M ′ that may lead from a set of states S ′i to a set of

states S ′i+1, there exists a corresponding transition on the abstract machine M from an

abstract state set Si to a set of states Si+1. The states S and S ′ are gluing related by

J .

Si

Si
′

Si+1

Si+1
′

J J

K(g(e))

K’(e)

Si

Si
′
 Si+1

′

J J

K’(e)

∀e·e ∈ F ∧ g(e) ̸= skip ∀e·e ∈ F ∧g(e) = skip

Figure 3.1: Forward Simulation

Definition 3.16 (Forward Simulation). Let M =< S ,S0,E ,K > and machine M ′ =<

S ′,S ′0,F ,K
′ >. Let the event mapping function be g ∈ F → E ∪{skip}. Let J ∈ S ↔ S ′

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 37

be the gluing relation that relates the states of M and M ′, M is forward simulated by

M ′ under K and K ′ provided:
S ′0 ⊆ J [S0]

∀e ·e ∈ F ∧ g(e) 6= skip⇒ J ; K ′(e) ⊆ K (g(e)); J

∀e ·e ∈ F ∧ g(e) = skip⇒ J ; K ′(e) ⊆ J

Definition 3.17 (Relational Gluing Traces). The infinite state trace us is defined to be

gluing related to infinite state trace vs as J (us , vs), formally:

J (us , vs) , ∀i ·i ∈ N⇒ us(i) 7→ vs(i) ∈ J

In general, gluing invariants define a relational mapping between concrete and abstract

states. We first define relational gluing traces in Definition 3.17 to link the states on the

behavioral traces. J (us , vs) is used to relate the corresponding states in abstract and

concrete traces. The notation J [ts] is used to define the relational gluing trace image of

state trace set ts, formally presented as (3.2).

J [ts] = {vs | us ∈ ts ∧ J (us , vs)} (3.2)

Given that there are no stuttering events in the refinement step, then for any abstract

event trace ue ∈ e traces(M), the corresponding concrete state trace set is the subset

of the relational gluing image of the corresponding abstract state trace set. In other

words, for each concrete state trace vs ∈ s traces(M ′, ue), there exists an abstract state

trace us that is gluing related with vs and it is an abstract trace. For the case where

there is no stuttering in the refinement step, Theorem 3.19 states that infinite state trace

refinement could be proved with forward simulation. Based on the infinite state trace

refinement, we provide the refinement semantics of event traces without new events

in Definition 3.18. The behavior of the refined machine must be consistent with the

behavior of the machine being refined during refinement (Robinson, 2012). Thus we use

the event traces to define the refinement between machines. For machine M ′ to refine

machine M , the concrete event trace set e traces(M ′) must be the subset of the abstract

event trace set e traces(M) provided no new events in the refinement step.

Definition 3.18 (Event Trace Refinement Without New Events). M v M ′ is defined

as e traces(M ′) ⊆ e traces(M).

Theorem 3.19. Assume the event mapping between machine M ′ and M does not in-

troduce new events. Then the state trace set of M ′ and some event trace ve is a subset

of the relational gluing image of the state trace set of M when M is forward simulated

by M ′, formally:

s traces(M ′, ve) ⊆ J [s traces(M , g(ve))] (3.3)

38
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

Proof Outline.

s traces(M ′, ve) ⊆ J [s traces(M , ve)]

≡∀vs ∈ s traces(M ′, ve)⇒∃us ·J (us , vs)∧ us ∈ s traces(M , g(ve))

To prove the above, we outline the proof steps as follows:

• We first construct a set U that contains the infinite abstract state traces or one

of its prefixes related to each vs by gluing invariant J in (3.4).

• Based on S ′0 ⊆ J [S0]∧S ′0 6= ∅ in Definition 3.16, S0 6= ∅. s ∈ S0 is one of the

elements in U . Thus the set U is not empty.

• Lemma 3.22 is constructed to show that infinite state traces in U are in traces(M , g(ve)).

• We then show that any totally ordered set Q ⊆ U has an upper bound in

Lemma 3.24. That is, the main hypothesis of Zorn’s lemma is satisfied.

• We use Zorn’s Lemma to prove the existence of an infinite abstract state trace as

a maximal element uM ∈ U in a set of finite or infinite state traces that match

the given infinite concrete trace in Lemma 3.25. Thus uM is an infinite trace and

uM ∈ U , which shows that uM is an infinite abstract state trace. Then we use

uM as a witness for the existence of us to prove the theorem.

U =

{us | us ∈ N→ S ∧∀i ·i ≥ 0⇒ us(0) ∈ S0 ∧ us(i) 7→ vs(i) ∈ J ∧ us(i) 7→ us(i + 1)

∈ K (g(ve(i)))} ∪ {ws | us ∈ 0..k → S ∧∃k∀i ·k > i ≥ 0⇒ ws ∈ (0..k − 1)→ S

∧ws(0) ∈ S0 ∧ws(i) 7→ vs(i) ∈ J ∧ws(i) 7→ ws(i + 1) ∈ K (g(ve(i)))}
(3.4)

We now proceed with the proof steps just outlined. In the first step, a set U that

contains the infinite abstract traces and their prefixes related to vs by gluing invariant

J , formally presented as (3.4). We write � for the (standard) prefix order on U; that is,

u � v when either u and v are both infinite and coincide, or u is a finite prefix of v . We

define the prefix relation in Definition 3.20. Based on Lemma 3.21, (U ,�) is a partial

ordered set, which is antisymmetric, transitive, reflexive. Based on Definition 3.2, we

show that the infinite traces in U are the state traces of the abstract machine M .

Definition 3.20 (Prefix Relation). We define state trace u as a prefix v as u � v ,

formally:

u � v , u = (0..#(u)− 1)C v (3.5)

Lemma 3.21. (U ,�) is a partial ordered set.

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 39

Proof. We want to prove that (U ,�) is reflexive, transitive and antisymmetric:

• ∀u ·u ∈ U ⇒ u � u

• ∀u, v ,w ∈ U ∧ u � v ∧ v � w ⇒ u � w

• ∀u, v ∈ U ∧ u � v ∧ v � u⇒ u = v

u = (0..#(u)− 1)C u

⇒u � u

u � v ∧ v � w

≡u = (0..#(u)− 1)C v ∧ v = (0..#(v)− 1)C w

≡u = (0..#(u)− 1)C w

≡u � w

u � v ∧ v � u

≡u = (0..#(u)− 1)C v ∧ v = (0..#(v)− 1)C u

⇒u = v

Lemma 3.22. The infinite traces of U are in traces(M , g(ve)).

Proof. The infinite traces us satisfy the trace properties defined in Definition 3.2, thus

any u ∈ {us | ∀i ·i ≥ 0 ⇒ us(0) ∈ S0 ∧ us(i) 7→ vs(i) ∈ J ∧ us(i) 7→ us(i + 1) ∈
K (g(ve(i)))} is in traces(M , g(ue)).

Lemma 3.24 states that any totally ordered chain Q ⊆ U has an upper bound. There

are two cases for the totally ordered set Q . One case is when Q contains only finite

trace. In this case, the upper bound of Q are the traces of size i . The other case is when

Q contains some infinite traces, that is, for each i ∈ N, there exists a partial trace in the

set Q that has size no less than i . To help prove the second case, Lemma 3.23 proves

that if any two state traces in a totally ordered set Q are defined on index i ∈ N, then

the states at index i in the two traces are the same.

Lemma 3.23. Given a totally ordered set Q ⊆ U , ∀i , u, u ′ ·u ∈ Q ∧ u ′ ∈ Q ∧ i ∈
dom(u)∧ i ∈ dom(u ′)⇒ u(i) = u ′(i).

40
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

Proof.

∀i , u, u ′ ·u ∈ Q ∧ u ′ ∈ Q ∧ i ∈ dom(u)∧ i ∈ dom(u ′)

≡{Q is totally ordered set}

{∀u, u ′ ∈ Q ⇒ u � u ′ ∨ u ′ � u}

⇒

u(i) = u ′(i) where u � u ′ ∧ i ∈ dom(u)

u(i) = u ′(i) where u ′ � u ∧ i ∈ dom(u ′)

≡u(i) = u ′(i)

Lemma 3.24. Given U in (3.4), any totally ordered set Q ⊆ U has an upper bound.

Proof. Case 1: Q contains only finite trace. That is, all partial traces in the chain have

size at most i , formally:

∃i ∈ N⇒ (∀u ∈ Q ⇒#(u) ≤ i)

In this case, the upper bound of the chain is the partial trace whose size is with length

i . As the set Q is totally ordered, so ∀u, u ′ ∈ Q⇒ u � u ′ ∨ u ′ � u. If the size of a trace

is larger than i , then it contradicts the assumption that ∀u ∈ Q ⇒#(u) ≤ i .

Case 2: Q contains some infinite traces. For each i ∈ N, there exists a partial trace in

the chain that has size no less than i , formally:

∀i ·i ∈ N, ∃u ∈ Q ∧#(u) ≥ i (3.6)

In this case we define a uω as ∀i , u ·i ∈ N∧#(u) ≥ i ⇒ uω(i) = u(i). uω is well defined

based on Lemma 3.23 as for all traces that are defined in index i , the state in index i is

the same. First we prove that uω ∈ U .

∀i ·i ∈ N,∃u ∈ Q ∧#(u) ≥ i

⇒{Definition for U in (3.4)}

∀i ·i ∈ N,∃u ∧ u(i) 7→ vs(i) ∈ J ∧ u(i) 7→ u(i + 1) ∈ K (g(ve(i)))

≡{let uω(i) = u(i) and uω(i + 1) = u(i + 1) where #(u) ≥ i + 1}

∀i ·i ≥ 0⇒ uω(i) 7→ vs(i) ∈ J ∧ uω(i) 7→ uω(i + 1) ∈ K (g(ve(i)))

Based on the Definition of uω, ∀u ∈ Q ⇒ u � uω. Thus uω is the upper bound for the

totally order set Q .

Given that the set U is a nonempty partially ordered set and every totally ordered set

Q ⊆ U has an upper bound, then there is a maximal element in U based on Zorn’s

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 41

Lemma. Forward simulation is used to prove that the maximal element is an infinite

trace in Lemma 3.25, which can be used to choose us ∈ traces(M , ue).

Lemma 3.25. Assume M is forward simulated by M ′. The set U in Formula (3.4) has

a maximal element and that maximal element is an infinite trace.

Proof. Based on Zorn’s Lemma, then U has a maximal element uM ∈ U . Assume

uM is a finite trace with length k , then uM(k − 1) /∈ dom(K (g(ve(k − 1)))). Given

the infinite state trace vs and forward simulation, we can prove that uM(k − 1) ∈
dom(K (g(ve(k −1)))) with the following proof, which derives a contradiction. Thus uM

is an infinite trace.

{uM ∈ U and vs is infinite}

⇒uM(k − 1) 7→ vs(k − 1) ∈ J ∧ vs(k − 1) 7→ vs(k) ∈ K ′(ve(k − 1))

{Definition 3.16}

⇒∃s ·s 7→ vs(k) ∈ J ∧ uM(k − 1) 7→ s ∈ K (g(ve(k − 1)))

≡uM(k − 1) ∈ dom(K (g(ve(k − 1))))

Proof of Lemma 3.25 means that the proof of Theorem 3.19 is now complete. Then we

use Theorem 3.26 to prove that forward simulation is enough to prove a valid refinement

between abstract and concrete machines.

Theorem 3.26. M v M ′ given M ′ is forward simulated by M and there are no new

events in the refinement step.

Proof.

∀v ·v ∈ e traces(M ′)

≡{Fix v ∈ e traces(M ′)and Lemma 3.5}

s traces(M ′, v) 6= ∅

⇒{Infinite State Trace Refinement: Theorem 3.19}

s traces(M , g(v)) 6= ∅

⇒{Lemma 3.5 and g(v) = u}

u ∈ e traces(M)

42
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

3.3.2 Hiding Operator

In the previous section, we assumed that there are no new events introduced in the

refined machine. In practice, adding new events in the refined model would make the

behavior steps more fine grained. Figure 3.2 shows two cases where the concrete trace

u_s(0)

v_s(0)

u_s(1)

v_s(1)
v_e(0)

u_e(0)

J J

u_s(2)

v_s(2)
v_e(1)

u_e(1)

J

u_s(n)

v_s(n)
v_e(2)

u_e(2)

J

…

…

u_s(n+1) …

u_e(n)

(a) Deadlock in Concrete Trace

u_s(0)

v_s(0)

u_s(1)

v_s(1)
v_e(0)

u_e(0)

J J

u_s(2)

v_s(2)
v_e(1)

u_e(1)

J

u_s(n)

v_s(n)
v_e(2)

u_e(2)

J

…

…

u_s(n+1) …

v_s(n) …
v_e(n)

u_e(n)
skip

J J

(b) Infinite New Events in Concrete Trace

Figure 3.2: State Trace Refinement with Deadlock and Infinite New Events

does not simulate the abstract trace. In the first case, the concrete trace comes to a

deadlock. In our definition of timed systems, time should always progress. So the traces

of the refined model should also be infinite traces. Based on our setting, additional

conditions are required to exclude the behaviors that would cause deadlocks in the refined

machine. In the second case, the introduced new events occur infinitely often from some

point n in the concrete trace, which can only be mapped to the prefix of the abstract

trace. Thus we want to show that the event traces that hide the stuttering skip events

do correspond to abstract traces. Jifeng (1989b) defines a hiding operator on labeled

transition systems and develops simulations that allow the concrete model to have hidden

transitions. Butler shows that in CSP, hiding an infinite behavior causes the process to

diverge (Butler, 1992). Inspired by their work, we define a hiding operator on infinite

event traces by using a hiding function hD on an infinite set D ⊆ N in Definition 3.27.

The hiding function hD defines a bijection function from natural numbers to the infinite

subset D . We define the function recursively. We map hD(0) to the minimal number in

D since D is well-ordered. And hD(n + 1) is mapped to the minimal number in the set

{x | x ∈ D ∧ x > hD(n)}. If D is finite, then hD is not well-defined.

Definition 3.27 (Hiding Function). Given an infinite set D ⊆ N, the hiding function

hD ∈ N��D is formally defined as:hD(n) = min(D), n = 0

hD(n + 1) = min({x | x ∈ D ∧ x > hD(n)}), ∀n ·n ∈ N1

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 43

Firstly we want to prove that the hiding function is order isomorphic. Based on the

order isomorphic function Definition 3.28 defined in (Devlin, 1979), it is clear that the

hiding function is order isomorphic when D is infinite. Here well-ordered sets are totally

ordered sets whose non-empty subsets have a least element in the ordering (Devlin,

1979). Since D and N are well-ordered sets, then hD is unique based on the unique order

isomorphism theorem between well-ordered sets provided in Theorem 3.29.

Definition 3.28 (Order Isomorphic Function (Devlin, 1979)). Let P , Q be well-ordered

sets. A function f ∈ P ��Q is defined as order isomorphism as P ∼= Q iff

P ∼= Q , ∀x , y ·x ∈ P ∧ y ∈ P ∧ x < y ⇒ f (x) < f (y)

Theorem 3.29 (Unique Order Isomorphism between Well-ordered Sets (Devlin, 1979)).

Let P, Q be well-ordered sets. If P ∼= Q, there is exactly one order-isomorphism f ∈
P ��Q.

Then we define the hiding operator in infinite event traces in Definition 3.30 by using

the hiding function to define the event trace ue \ A with all events in A removed in

ue . The hiding operation is the backward composition of a range subtraction and the

hiding function. The range subtraction removes the indexes together with the events in

A. The hiding function hD remaps the natural numbers to the remaining events. We

use Lemma 3.31 to show that ve \A is a well defined infinite trace provided that ve does

not end with an infinite suffix of events in A.

Definition 3.30 (Hiding Operator for Infinite Event Traces). Given an event trace

ue ∈ N → E and a set of events A. Let D = dom(ue B− A), then the event trace ue \ A

is formally defined as:

ue \A , (ue B−A) ◦ hD (3.7)

Lemma 3.31. Given the infinite event trace ve ∈ N→ E, if ve has an infinite suffix of

events in A, then ve \A is a finite trace.

Proof. Given the event trace ve with an infinite suffix of events in A, formally:∃j ∈
N⇒ ∀i ·i > j ∧ ve(i) ∈ A. Then it is clear that ∀k ·k ∈ dom(ve B− A)⇒ k ≤ j . Let

hD(n) = j , then {x | x ∈ dom(ve B− A)∧ x > hD(n)} = ∅. So hD(n + 1) is not well-

defined. Assume ve \A is an infinite trace, then hD is well defined for ∀n ·n ∈ N1, which

derives a contradiction. So ve \A is a finite trace.

3.3.3 Generic Refinement Semantics

In Section 3.3, we assume that the concrete model does not introduce new events. In this

section, we extend the refinement semantics 3.18 with the more generic Definition 3.32

by using the event mapping function g ∈ F → E ∪ {skip}. In the extended definition,

44
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

we show that M v M ′ if for any concrete event trace ve ∈ e traces(M ′), there exists an

abstract trace ue ∈ e traces(M), and g(ve) \ skip = ue .

Definition 3.32 (Generic Event Trace Refinement).

M v M ′ ≡ ∀ve ∈ e traces(M ′)⇒ (g(ve) \ {skip}) ∈ e traces(M)

In timed systems, the behavioral traces are infinite and time should always progress.

There are two properties to be preserved during the refinement step for timed models.

Firstly, the refined behavioral trace should be infinite, provided the abstract trace is

infinite. Secondly, introducing new events in the refinement step should not lead to

divergence. Besides forward simulation, additional conditions are required to preserve

these two properties. To simplify the proof, we construct intermediate traces traces(M ∗)

with stuttering events skip in Definition 3.33. The property that all traces in M ′ are

convergent with respect to new events requires that an intermediate event trace v̂e ∈
e traces(M ∗) does not have an infinite suffix of skip events under the condition that the

abstract machine M is not deadlocked. Based on Lemma 3.31, if v̂e has an infinite suffix

of skip events, then v̂e \ skip is a finite trace, which cannot be a trace of an abstract

machine that is not deadlocked.

Definition 3.33 (Intermediate Traces with Stuttering Events). The set of infinite traces

traces(M ∗) of a machine M ∗ that includes stuttering events is defined as:

traces(M ∗) ,{(v̂s , v̂e) | v̂s ∈ N→ S ∧ v̂e ∈ N→ (E ∪ {skip})

∧ v̂s(0) ∈ init

∧∀i ·i ≥ 0∧ v̂e(i) 6= skip⇒ v̂s(i) 7→ v̂s(i + 1) ∈ K (v̂e(i))

∧∀i ·i ≥ 0∧ v̂e(i) = skip⇒ v̂s(i) = v̂s(i + 1)}

The intermediate event trace maps concrete event labels F to abstract labels E and

skip. We use Lemma 3.34 to show that the concrete event trace set conforms to the

behavior of intermediate event trace set if M ′ is forward simulated by M .

Lemma 3.34. Given machine M and M ′ with relabelling function g that allows new

events, then g [e traces(M ′)] ⊆ e traces(M ∗) provided M is forward simulated by M ′.

Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response
Properties 45

Proof.

∀ve ∈ e traces(M ′)

⇒{Fix ve ∈ e traces(M ′) and Lemma 3.5}

s traces(M ′, ve) 6= ∅

⇒{Infinite State Trace Refinement: Theorem 3.19}

s traces(M ∗, g(ve)) 6= ∅

⇒{Lemma 3.5 and ue = g(ve)}

u e ∈ e traces(M ∗)

Theorem 3.35 is used to show additional rules required to prove M v M ′ and the traces

in M ′ are convergent with respect to new events N . Forward simulation is used to prove

trace inclusion of concrete event traces and the intermediate event traces with stuttering

events. v̂e \ skip is one of the abstract events only if it is an infinite trace. Based on

Lemma 3.31, v̂e \ skip is an infinite trace if v̂e does not have an infinite suffix of skip

events. Conditional convergence and weak fairness conditions are required to prove the

infiniteness of the behavioral trace.

Theorem 3.35. Given M with transition relation K and M ′ with transition relation

K ′. Let F be the set of event labels in M and N be the introduced new events in M ′.

M v M ′ provided the following conditions hold:

• M forward simulated by M ′.

• M ′ is deadlock free relative to M : J [dom(K)] ⊆ dom(K ′).

• M ′ is weakly (F \ N)-fair.

• Events N in machine M ′ are conditional convergent under the condition that

events F \ N are disabled;

Proof Outline. We outline the proof with the following steps:

• We first prove that g [e traces(M ′)] ⊆ e traces(M ∗) provided M ′ is forward simu-

lated by M with Lemma 3.34. Then we prove ∀v̂e ·v̂e ∈ e traces(M ∗)⇒ v̂e \ skip ∈
e traces(M).

• traces(M ′) are infinite traces based on Lemma 3.15.

• We then prove by contradiction that the intermediate event trace v̂e ∈ e traces(M ∗)

does not end with an infinite suffix of skip events. Assume that v̂e ends with an

infinite suffix of skip events. As g(ve) = v̂e , then the concrete trace ve ends with

46
Chapter 3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response

Properties

an infinite suffix of new events N . In the case that (F \ N) is disabled infinite

many times in the suffix, based on the conditional convergence property, the new

events will eventually be disabled and there cannot be an infinite suffix of new

events. In the case that (F \ N) is continuously enabled in the suffix, based on

the weak fairness assumption some event e ∈ (F \ N) will eventually occur. Thus

v̂e does not end with an infinite suffix of skip events. Based on Lemma 3.31, the

intermediate event trace v̂e \ skip is one of the abstract traces.

New variables and events are introduced to Event-B models in data refinements. Based

on the invariants I (v) of machine M and gluing invariants J (v ,w) that relate the ab-

stract and concrete variables between M and N , Abrial (2009) demonstrates how the

translation of the forward simulation rule yields to various proof obligations, such as

invariant preservation (INV), feasibility (FIS), guard strengthening (GRD) and so on,

that are used by the Rodin (Jastram and Butler, 2014) platform. In this section, we

explore the refinement rules in terms of timed systems with infinite traces and infinitely

many Tick events. Besides the forward simulation rule, the relative deadlock freedom

rule, the conditional convergence rule, and weak fairness assumptions are required to

prove that the refinement of a timed system still preserves the property that time can

always proceed. The relative deadlock freeness rule guarantees that the refinement of a

machine with infinite behavioral traces is always a machine with infinite traces. Con-

ditional convergence and weak fairness assumptions are required to prevent new events

from keeping occurring while the global clock can never proceed.

3.4 Conclusion

To summarize, our work with refinement semantics and trace semantics of timing prop-

erties has yielded two main contributions. First, we provided the trace semantics for

trigger-response properties and bounded timing properties. Sufficient conditions were

provided for the traces of an Event-B machine to satisfy these properties. Secondly,

additional conditions were provided to verify refinement in Event-B models in terms of

infinite behavioral traces. Zorn’s Lemma was used together with forward simulation to

prove infinite state/event trace refinement in refinement steps.

Chapter 4

Refinement of Timing Properties

in Event-B Models

Based on the trace semantics that refines Event-B models with real-time trigger-response

properties in Chapter 3, we develop refinement semantics for real-time properties in this

chapter. We first present the refinement semantics of real-time properties. Formal

proofs are presented with the hiding operator to refine the abstract timing properties

into sequential or alternative sub-timing properties. Then a two-step refinement strategy

is developed to refine the timing properties.

4.1 Refinement Semantics of Real-time Properties

Based on Definition 3.13, machines with timing properties could be described with in-

finite traces. In this section, we use Definition 4.1 to define the refinement semantics

of machines with real-time properties. The timed behavior of a concrete timed model

should also be consistent with the timed behavior in the abstract model. In our refine-

ment strategies for timed systems with Event-B models, the abstract machine is extended

with real-time trigger-response properties with no intermediate events between trigger

and response events. Intermediate events are introduced in refinement steps.

Definition 4.1 (Refinement Semantics of Machines with Real-time Properties). Refine-

ment between machines with real-time properties in (4.1) is defined as (4.2).

M ∧Resp(T ,R,w , d) vg M ′ ∧Resp(T ′,R′,w ′, d ′) (4.1)

∀ve ·ve ∈ e traces(M ′)∧ ve |= Resp(T ′,R′,w ′, d ′)

⇒∃ue ∈ e traces(M)∧ ue = (g(ve) \ skip)∧ ue |= Resp(T ,R,w , d)
(4.2)

47

48 Chapter 4 Refinement of Timing Properties in Event-B Models

To account for the infinite behavior of timed traces, we use Lemma 4.2 to show conver-

gence conditions and fairness assumptions under which M v M ′. Based on M v M ′,

we also prove that the traces of the refined machine with intermediate events satisfy

the trigger-response property in Lemma 4.2. Lemma 4.3 is used to show that given

M v M ′, the timed property (that time should always progress) is preserved in the

refinement step.

Lemma 4.2. Let M be an Event-B machine with trigger-response pair (T ,R) and R is

enabled immediately after the execution of an event in T . Let g [T ′] = T and g [R′] = R.

We define H ′ ⊆ F as intermediate events between T ′ and R′ in M ′ and g [H ′] = {skip}.
Assume M is weakly fair with respect to R and M ′ is weakly fair with respect to H ′ ∪R′.

If M ′ simulates M under J , H ′ is convergent under the condition of R′ is disabled and

M ′ is relative deadlock free to M , then M v M ′ and M ′ satisfies TR(T ′,R′).

Proof. H ′ are new events introduced to M ′. Based on Theorem 3.35, M v M ′.

{M v M ′}

≡∀ve ·ve ∈ e traces(M ′)⇒∃ue ·ue ∈ e traces(M)∧ ue = g(ve \ H′)∧ ue |= TR(T ,R)

≡{ Fix ve ∈ e traces(M ′) and Definition 3.9}

∀i ·i ≥ 0∧ ue(i) ∈ T ⇒ (∃j ·j > i ∧ ue(j) ∈ R ∧∀k ·i < k < j ⇒ ue(k) /∈ T)

⇒{ue = g(ve \ H′) , let D = dom(ve B−H ′)}

∀i ·i ≥ 0∧ ue(i) ∈ T ∧ ve(hD(i)) ∈ g−1[T]⇒ (∃j ·j > i ∧ ue(j) ∈ R ∧ ue(hD(j)) ∈ g−1[R]

∧∀k ·hD(i) < k < hD(j)⇒ ue(k) /∈ g−1[T])

≡ve |= TR(T ′,R′)

Lemma 4.3. Given M v M ′ ∧ g−1[Tick] = Tick and ∀ue ·ue ∈ e traces(M)⇒timed(ue),

then ∀ve ·ve ∈ e traces(M ′)⇒ timed(ve).

Proof.

{M v M ′}

≡∀ve ·ve ∈ e traces(M ′)⇒∃ue ·ue ∈ e traces(M)∧ ue = g(ve \ H′)∧ timed(ue)

≡{ Fix ve ∈ e traces(M ′) and Definition 3.11}

∀i ·i ∈ N⇒ (∃j ·j ≥ i ∧ ue(j) = g−1[Tick])

⇒{ue = g(ve \ H′) , let D = dom(ve B−H ′)}

∀i ·i ∈ N⇒ (∃j ·j ≥ i ∧ ue(j) = Tick ∧ ve(hD(j)) = Tick)

≡timed(ve)

Chapter 4 Refinement of Timing Properties in Event-B Models 49

Lemma 4.4 proves that all traces of M ′ that satisfy the timing property Resp(T ′,R′,w ′, d ′)

correspond to traces of M that satisfy the original timing property Resp(g [T ′], g [R′],w , d)

when M v M ′.

Lemma 4.4. Given M v M ′, then M ∧Resp(g [T ′], g [R′],w , d) vg M ′ ∧Resp(T ′,R′,w ′, d ′)

if w ≤ w ′ ∧ d ′ ≤ d.

Proof.

∀ve ·ve ∈ e traces(M ′)∧ ve |= Resp(T ′,R′,w ′, d ′)

≡{Fix ve ∈ e traces(M ′)∧ ve |= Resp(T ′,R′,w ′, d ′)}

∀i ·i ≥ 0∧ ve(i) ∈ T ′⇒

∃j ·j > i ∧ ve(j) ∈ R′ ∧(w ′ ≤ #(ve [i , j] � Tick) ≤ d ′)

⇒{M v M ′ ∧∀ve ·ve ∈ e traces(M ′)}

∃ue ·ue ∈ e traces(M)∧ ue = g(ve \ H′)

⇒{∀ve ·ve ∈ e traces(M ′)∧ ve |= Resp(T ′,R′,w ′, d ′)∧∃ue = g(ve \ H′)

, let D = dom(ve B−H ′)}

∀i ·i ≥ 0∧ ve(i) ∈ T ′ ∧ ue(h−1D (i)) ∈ g [T ′]⇒

∃j ·j > i ∧ ve(j) ∈ R′ ∧ ue(h−1D (j)) ∈ g [R′]∧(w ′ ≤ #(ue [h−1D (i), h−1D (j)] � Tick) ≤ d ′)

⇒{w ≤ w ′ ∧ d ′ ≤ d}

∀i ·i ≥ 0∧ ve(i) ∈ T ′ ∧ ue(h−1D (i)) ∈ g [T ′]⇒

∃j ·j > i ∧ ve(j) ∈ R′ ∧ ue(h−1D (j)) ∈ g [R′]∧(w ≤ #(ue [h−1D (i), h−1D (j)] � Tick) ≤ d)

≡{Lemma 4.3 and Definition 3.12}

ue |= Resp(g [T ′], g [R′],w , d)

4.2 Refining Real-Time Trigger-Response Properties to Se-

quential Sub-Timing Properties

Consider an abstract model M of a system with real-time trigger-response property

Resp(T ,R,w , d) and intermediate events with the event sequence that follows the or-

der T → I → R. We refine the abstract timing property into two sequential sub-

timing properties with Resp(T , I ,w1, d1)∧Resp(I ,R,w2, d2). Lemma 4.5 proves that

the timing property (T ,R,w , d) is sequentially refined by a pair of timing properties

Resp(T , I ,w1, d1) and Resp(I ,R,w2, d2).

Lemma 4.5. Given M v M ′, then (4.3) holds if w ≤ (w1 + w2) and (d1 + d2) ≤ d.

M ∧Resp(g [T ′], g [R′],w , d) vg M ′ ∧Resp(T ′, I ,w1, d1)∧Resp(I ,R′,w2, d2) (4.3)

50 Chapter 4 Refinement of Timing Properties in Event-B Models

Proof.

∀ve ·ve ∈ e traces(M ′)∧ ve |= Resp(T ′, I ,w1, d1)∧Resp(I ,R′,w2, d2)

≡{Fix ve ∈ e traces(M ′)∧ ve |= Resp(T ′, I ,w1, d1)∧Resp(I ,R′,w2, d2)}

∀i ·i ≥ 0∧ ve(i) ∈ T ′⇒

∃j ·j > i ∧ ve(j) ∈ I ∧(w1 ≤ #(ve [i , j] � Tick) ≤ d1)

∧∃k ·k > j ∧ ve(k) ∈ R′ ∧(w2 ≤ #(ve [j , k] � Tick) ≤ d2)

⇒{M v M ′ ∧∀ve ·ve ∈ e traces(M ′)}

∃ue ·ue ∈ e traces(M)∧ ue = g(ve \ H′)

⇒{∀ve ·ve ∈ e traces(M ′)∧ ve |= Resp(T ′, I ,w1, d1)∧Resp(I ,R′,w2, d2)∧ ue = g(ve \ H′)

, let D = dom(ve B−H ′)}

∀i ·i ≥ 0∧ ve(i) ∈ T ′ ∧ ue(h−1D (i)) ∈ g [T ′]⇒

∃k ·k > j ∧ ve(k) ∈ R′ ∧ ue(h−1D (k)) ∈ g [R]

∧(w1 + w2 ≤ #(ve [h−1D (i), h−1D (k)] � Tick) ≤ d1 + d2)

⇒{w ≤ (w1 + w2) and (d1 + d2) ≤ d}

∀i ·i ≥ 0∧ ve(i) ∈ T ′ ∧ ue(h−1D (i)) ∈ g [T ′]⇒

∃k ·k > i ∧ ve(k) ∈ R′ ∧ ue(h−1D (k)) ∈ g [R′]∧(w ≤ #(ue [h−1D (i), h−1D (k)] � Tick) ≤ d)

≡{Lemma 4.3 and Definition 3.12}

ue |= Resp(g [T ′], g [R′],w , d)

4.3 Refining Alternative Timing Properties to Sub-Timing

Properties

In timed systems, there are cases that the response events are two alternative events R1

and R2, where R1 and R2 presents different scenarios of responses with the same timing

property, presented as M ∧Resp(T ,R1 ∪ R2,w , d) where R1 ∩ R2 = ∅. To refine the

high level alternative response events to concrete alternative response events, alternative

intermediate events are required to resolve the nondeterminism of alternative responses.

Lemma 4.6 proves that the alternative timing property Resp(T ,R1 ∪R2,w , d) is refined

by Resp(T , I1 ∪ I2,w1, d1), Resp(I1,R1,w2, d2) and Resp(I2,R2,w3, d3).

Lemma 4.6. Given M v M ′, then (4.4) holds if w ≤ (w1 + w2)∧w ≤ (w1 + w3) and

(d1 + d2) ≤ d ∧(d1 + d3) ≤ d.

M ∧Resp(g [T ′], g [R′1] ∪ g [R′2],w , d) vg

M ′ ∧Resp(T ′, I1 ∪ I2,w1, d1)∧Resp(I1,R
′
1,w2, d2)∧Resp(I2,R

′
2,w3, d3)

(4.4)

Chapter 4 Refinement of Timing Properties in Event-B Models 51

Proof.

M ′ ∧Resp(T ′, I1 ∪ I2,w1, d1)∧Resp(I1,R
′
1,w2, d2)∧Resp(I2,R

′
2,w3, d3)

≡(M ′ ∧Resp(T ′, I1,w1, d1)∧Resp(I1,R
′
1,w2, d2))∨

(M ′ ∧Resp(T ′, Ir ,w1, d1)∧Resp(I2,R
′
2,w3, d3))

⇒{Lemma 4.5}

M ∧Resp(g [T ′], g [R′1] ∪ g [R′2],w , d)∨M ∧Resp(g [T ′], g [R′1] ∪ g [R′2],w , d)

4.4 Two-step Refinement Strategy

Event-B has a strong and flexible refinement strategy described in (Hallerstede et al.,

2013; Schneider et al., 2012). Based on the monotonicity of timing properties in Event-

B models, we design the two-step refinement strategy to refine timed systems. In the

first step, we introduce intermediate events to the abstract model while preserving the

abstract timing properties with a strategy that has the following restrictions on the

machines in the refinement chain M0 v M1 v ... v Mn :

1. Each event of Mi is refined by at least one event of Mi+1;

2. Given Mi , intermediate events are introduced as new events in Mi+1;

3. Mi+1 is deadlock free relative to Mi ;

4. Mi+1 is forward simulated by Mi ;

5. The new events introduced in Mi+1 are either anticipated or conditional convergent

under the condition that the refined response events are disabled, Mi+1 is weakly

fair on these new events;

6. All anticipated events should be refined to conditional convergent events, no an-

ticipated events remain in the final machine;

7. All refinement steps Mi , 0 ≤ i ≤ n are weakly fair on the response events and Tick

events;

In condition 5), new events introduced in the refined step are either anticipated or condi-

tional convergent so that these events are never executed forever. A variant V (v), that

has to be decreased by every convergent event and must not be increased by anticipated

events, needs to be introduced from new proof obligations to prevent the infinite execu-

tion of new events. The details that refine anticipated events to conditional convergent

events could be deferred to later refinement steps. Nevertheless, these anticipated events

52 Chapter 4 Refinement of Timing Properties in Event-B Models

should be eventually refined to convergent events in the refinement chain. To syntac-

tically encode conditional convergent events in Event-B models, we have two versions

of intermediate events included in the machine. The convergent intermediate event has

the guards that indicate that the response events are disabled. The other intermediate

event has the condition under which the response events are enabled is not marked as

convergent. Based on Theorem 3.35 and Lemma 4.2, conditions 3)-7) can be used to

guarantee that for all i ∈ 0..n − 1, Mi v Mi+1 and Mi+1 satisfies the trigger-response

property. Then in the second step, the abstract timing properties could be refined to

sequential or alternative timing properties between trigger, intermediate and response

events.

4.5 Conclusion

Based on the trace semantics and hiding operator defined in Chapter 3, we developed

refinement rules to refine abstract timing properties into sequential or alternative sub-

timing properties. We also provided rules for a two-step refinement strategy to de-

velop real-time systems in a stepwise manner. In Chapter 5, we used the bounded-

retransmission protocol case study to illustrate the refinement conditions and fairness

assumptions applied to the real-time systems.

Chapter 5

Bounded Re-transmission

Protocol Case Study

In this chapter, we present the Bounded Retransmission Protocol (BRP) case study

based on the additional proof obligations, weak fairness assumptions and refinement

strategy proposed in Chapter 4. We first overview the BRP briefly. Then the two-step

refinement strategy is used to model real-time properties in the BRP case study. We

show how to encode the conditional convergent events in Event-B models. The relative

deadlock freeness is encoded as additional invariants to ensure the refined machine sat-

isfies the trigger-response properties. Finally, we compare our work with existing work

and discuss the results.

5.1 Bounded Re-transmission Protocol

The BRP is a file transfer protocol that deals with the fault tolerance of the system

under unreliable network communications (D’Argenio et al., 1997). The schematic view

of the transmission protocol is shown in Figure 5.1. The transmitter sends the file to the

receiver packet by packet through the data channel. As soon as the receiver receives the

packet, it sends back an acknowledgment to the transmitter through an acknowledgment

channel. When the transmitter receives the acknowledgment, it confirms that the packet

is sent out successfully and sends out the next packet. As the data channel and the

acknowledgment channel are not reliable, the packet might be lost, or the transmitter

might not receive the acknowledgment. The transmitter will resend the packet to the

receiver if it has not received confirmation of the same packet within some deadline. In

the case of successive losses of messages, the process of packet re-transmission can be

repeated several times with a retry counter. When the counter reaches a specific limit,

the transmitter and the receiver decides to abort. The two-step refinement strategy

could be used to resolve different levels of nondeterminism of intermediate events.

53

54 Chapter 5 Bounded Re-transmission Protocol Case Study

snd_start

Sender

s+1<=N

Yes

No

Receiver

r+1<=N

Yes

No

Data Channel

Data Channel

f∈ 1..N →D

snd_success rcv_success

Figure 5.1: Scheme View of the Bounded Retransmission Protocol

Figure 5.2 shows the time diagram of BRP in different refinement levels based on the

following timing requirements (TR).

TR-1 The transmitter should send the next packet within pkt ddl once it receives the

acknowledgment of the current packet.

TR-2 If the data channel is broken, the receiver should abort within pkt ddl since the

transmitter receives the acknowledgment of the last packet.

TR-3 If the data channel is working, then it takes at most c ddl time units to transmit

the packet from the transmitter to the receiver.

TR-4 If the data channel is broken, then it takes at most pkt abt duration time units for

the receiver to abort since it receives the last packet.

TR-5 It takes the receiver at least 2 ∗ c dly time units but at most retry ddl time units

before knowing that the transmitter has not sent the new packet.

TR-6 It takes the receiver at least 2∗c dly ∗retry num time units but at most retry ddl ∗
retry num time units to abort during which it has not received any packet.

M1, M2

M1

M5, M6

snd_pkt {rcv_current_ack,rcv_abt}

rcv_current_ackrcv_current_pkt

snd_rty rcv_abt

rcv_current_pkt rcv_abt
…retry_num

[0,pkt_ddl]

[0,c_ddl] [0,c_ddl]

rcv_current_pkt [0,pkt_abt_duration]

[c_dly,rty_ddl]
[c_dly*retry_num,rty_ddl*retry_num]

M3,M4

M3

snd_pkt

snd_pkt

snd_pkt snd_rtysnd_rty

Figure 5.2: Time Diagram of BRP in Different Refinement Levels

Based on the timing requirements, we present our refinement strategy as follows to

formalize BRP in Event-B models.

Chapter 5 Bounded Re-transmission Protocol Case Study 55

M0 specifies the three main components of BRP, namely the transmitter, receiver and

channel;

M1 introduces timing properties to M0 to model TR-1 and TR-2;

M2 introduces intermediate events to denote the packet could either be received by

the receiver or resent by the transmitter;

M3 introduces timing properties to M2 to model TR-3 and TR-4;

M4 refines the anticipated re-send packet event to conditional convergent event;

M5 introduces timing properties to M4 to model TR-5 and TR-6;

M6 refines the anticipated receive packet event to convergent event;

5.2 Modeling the BRP

5.2.1 Abstract Machine

In the abstract machine we specify the two components in BRP with the machine given

in Figure 5.3. The variable s presents the file pointer in the transmitter. The transmit-

ter, receiver have three states, namely working , success, and failure. Success denotes

the state that a file has been transmitted successfully, and the next file is ready to

transmit. Working represents the state that the transmitter and receiver are transmit-

ting the file packet by packet. Failure means that there is something wrong with the

data channel or the acknowledgment channel, and the system has to abort. To start

with the snd start event, the transmitter state s st and receiver state r st are set to

working . In the case the channel is working (snd pkt event), the file pointer is increased

to show that the transmitter transfers the last packet and receives the corresponding

acknowledgment successfully. In the case that the packet or acknowledgment is lost

during transmission, the receiver aborts the transmission with event rcv abt . We use

Property (5.1) to present the trigger-response property that once a packet is transmitted

from the transmitter, either it is transmitted successfully, or the receiver abort. We use

snd finish and rcv finish events to denote that the file is transmitted successfully for

the transmitter and receiver respectively. snd abt and rcv abt events are used to denote

that the transmitter and receiver abort when the channel is broken.

TR(snd pkt , {snd pkt , rcv abt}) (5.1)

56 Chapter 5 Bounded Re-transmission Protocol Case Study

sets STATUS DATA

constants working success failure N file

axioms
@axm0 1 partition(STATUS, {working}, {success}, {failure})
@axm0 2 N∈ N1

@axm0 3 file∈ 1..N → DATA
end

invariants
@r st type r st∈ STATUS
@s st type s st∈ STATUS
@s type s∈ 0..N

event snd start
where

@grd1 s st=success
@grd2 s=0

then
@act1 s st:= working
@act2 r st:= working

end

event snd pkt
where

@grd0 1 s st=working
@grd0 3 s+1≤ N

then
@act0 1 s:= s+1

end

event snd finish
where

@grd2 s st=working
@grd0 4 s=N

then
@act0 1 s st:= success

end

event rcv finish
where

@grd1 r st=working
@grd2 s st=success

then
@act1 r st:= success

end

event rcv abt
where

@grd1 r st=working
then

@act1 r st:= failure
end

event snd abt
where

@grd1 s st=working
then

@act1 s st:= failure
end

Figure 5.3: Machine M 0 that Specifies the Abstract BRP Protocol

5.2.2 First Refinement

The trigger-response property (5.1) is then extended with timing properties specified in

TR-1 and TR-2. Figure 5.4 shows the extended Event-B model as the first refinement.

A new clock variable is added to represent the current time. And we set the timestamps

of snd pkt , rcv abt as pkt tp, pkt tc and abt t respectively. pkt tp denotes the timestamp

of receiving the acknowledgment from the previous packet, pkt tc presents the times-

tamp of current acknowledgment. @inv1 2 and @inv1 4 show the timing property (5.2).

@inv1 1 and @inv1 3 serve as auxiliary invariants to support @inv1 2 and @inv1 4.

Chapter 5 Bounded Re-transmission Protocol Case Study 57

Some infinite event traces of machine M 1 are shown in (5.3). Besides the invariants

related to the time constraints between trigger and response events, we also show that

the refined machine is relative deadlock-free to M 0 with invariant @dlf m1. With all

the proof obligations discharged, we can prove that M 0 is forward simulated by M 1.

We also assume weak fairness on snd pkt , rcv abt and tick events collectively based on

Lemma 4.2. In this refinement, we did not introduce intermediate events so that we do

need to reason about conditional convergence on intermediate events. In later sections,

we will gradually refine the machine with intermediate events with real-time properties.

Also, refinement strategies and additional proof obligations will be presented.

Resp(snd pkt , {snd pkt , rcv abt}, 0, pkt ddl) (5.2)

< snd start , rcv abt , tick , tick , ... >

< snd start , snd pkt , rcv abt , tick , tick , ... >

< snd start , snd pkt , tick , rcv abt , tick , tick , ... >

< snd start , snd pkt , tick , snd pkt , tick , tick , ... >

(5.3)

@inv1 1 s st=working ⇒clk−pkt tc≤ pkt ddl
@inv1 2 pkt tp≤ pkt tc ⇒ pkt tc−pkt tp≤ pkt ddl
@inv1 3 r st=working ⇒clk−pkt tc≤ pkt ddl
@inv1 4 pkt tc≤ abt t ⇒abt t− pkt tc≤ pkt ddl
@dlf m1 (s st=success ∧ s=0) ∨ (s st=working ∧ s+1≤ N) ∨ (s st=working ∧s=N)
∨ (r st=working ∧ s st=success) ∨ (r st=working) ∨ (s st=working) ∨ (s st6=working ∧ r st6=

working)

event snd start extends snd start
then

@act1 1 pkt tc:= clk
@act1 2 pkt tp:= clk

end

event snd pkt extends snd pkt
then

@act1 1 pkt tc:= clk
@act1 2 pkt tp:= pkt tc

end

event rcv abt extends rcv abt
then

@act1 1 abt t:= clk
end

event tick
where

@grd1 1 s st=working ⇒clk+1−pkt tc≤
pkt ddl

@grd1 2 r st=working ⇒clk+1−pkt tc≤
pkt ddl

then
@act1 1 clk:= clk+1

end

Figure 5.4: Machine M 1 that Extends Trigger-Response Property (5.1) with Timing
Properties Specified in TR-1 and TR-2

58 Chapter 5 Bounded Re-transmission Protocol Case Study

5.2.3 Second Refinement

In the second refinement, we first introduce rcv current pkt and snd rty as intermediate

events to represent that the packet could either be received by the receiver or resent by

the transmitter. The nondeterminism choice of intermediate events leads to alternative

responses. The machine M 2, given in Figure 5.5, introduces variables r and rcv file

to indicate that the transmitted file is denoted by rcv file of length r in the receiver

part. We use variable c st to denote the status of the channel. In the case that the

channel is in working state and the receiver receives the packet (rcv current pkt event),

the file pointer r in the receiver is increased by one and the received file rcv file receives

the current packet successfully. In the case that the channel is in failure state then

the transmitter re-sends the packet (snd rty event). By using the two-step refinement

strategy, we first use the Rodin tool to discharge the proof obligations to verify that M 2

forward simulates M 1. Invariant @dlf m2 is used to verify that M 2 M 2 is deadlock-free

relative to M 1. In the refinement, we want the snd rty event to be conditional convergent

when the channel is broken. Thus we encode the snd rty event with one version with

anticipated status and the other version snd rty n with ordinary status. The anticipated

event snd rty would be refined to convergent event in a future refinement step. Also, we

set rcv current pkt as anticipated status so that it is refined to convergent later. Based

on the conditions shown in Lemma 4.2, the behavioral traces of refined machine satisfy

the specified real-time properties under weak fairness assumptions on rcv current pkt ,

snd rty , snd pkt , rcv abt and tick events.

5.2.4 Third Refinement

In M 3, we refine the abstract timing property (5.2) into three sub-timing properties

shown in timing properties (5.5). Specifically, (5.2) is refined to (5.5a) and (5.5b) in

the case that channel is working properly, and (5.5c) in the case that the channel is

broken. We assume that the transmission delay and deadline for the channel are c dly

and c ddl , respectively. Once the receiver received the packet, it should abort within

pkt abt duration if the channel is broken. The relations between these timing properties

are shown in (5.4). 
c ddl > c dly > 0

pkt ddl > 2 ∗ c ddl

pkt abt duration + c ddl < pkt ddl

(5.4)

As shown in Figure 5.6, we use @grd3 1 and @grd3 2 of tick event in M 3 to replace

@grd1 1 of tick event in M 1. @inv3 2 and @inv3 4 are used to show that (5.5a)

and (5.5b) are satisfied in M 3. @inv3 1 and @inv3 3 serve as auxiliary invariants to

support @inv3 2 and @@inv3 4. In the case that the channel is broken, we use @grd3 3

and @grd3 4 of tick event in M 3 to replace @grd1 2 of tick event in M 1. @inv3 6 is

Chapter 5 Bounded Re-transmission Protocol Case Study 59

invariants
@c st type c st∈ STATUS
@inv2 2 r∈ s..s+1
@inv2 3 rcv file=0..r C file
@s1 c st=working⇒r st=working
@dlf m2 (s st=success ∧ s=0) ∨ (s st=working ∧ s+1≤ N ∧ r=s+1 ∧ c st=working)
∨ (r st=working ∧c st=working ∧ s st=working ∧ r<N ∧ r=s)
∨ (s st=working ∧ r st=working ∧ r=s+1) ∨ (s st=working ∧ s=N ∧ s=r)
∨ (r st=working ∧ s st=success)∨ (s st=working ∧ c st=failure ∧ r=s+1)
∨ (r st=working ∧ c st=failure ∧ r=s+1)∨ (s st6=working ∧ r st6=working)

event snd start extends snd start
then

@act2 1 c st:= working
end

event snd pkt extends snd pkt
where

@grd2 1 r=s+1
@grd2 2 c st=working

then
@act2 1 c st:= working

end

event snd finish extends snd finish
where

@grd2 1 s=r
end

event rcv finish extends rcv finish
then

@act2 c st:= success
end

event rcv abt extends rcv abt
where
@grd2 1 c st=failure
@grd2 2 r=s+1
end

event snd abt extends snd abt
where
@grd2 1 c st=failure
@grd2 2 r=s+1
end

anticipated event rcv current pkt
where

@grd2 1 r st=working
@grd2 2 c st=working
@grd2 3 s st=working
@grd2 4 r<N
@grd2 5 r=s

then
@act2 1 r:= r+1
@act2 2 rcv file:= rcv file ∪ {r+1 7→ file(s

+1)}
@act2 3 c st:∈ {working, failure}

end

anticipated event snd rty
where

@grd2 c st=failure
@grd3 s st=working
@grd4 r st=working
@grd5 r=s+1

then
@act1 c st:∈ {working, failure}

end

event snd rty n
where

@grd2 c st=working
@grd3 s st=working
@grd4 r st=working
@grd5 r=s+1

then
@act1 c st:∈ {working, failure}

end

Figure 5.5: Machine M 2 that introduces intermediate events to M 1

60 Chapter 5 Bounded Re-transmission Protocol Case Study

used to present timing property (5.5c). To guarantee that M 3 is relative deadlock free

to M 2, we construct invariant @dlf m3 to verify that the refined machine would not be

deadlocked.

Resp(snd pkt , rcv current pkt , 0, c ddl) (5.5a)

Resp(rcv current pkt , snd pkt , 0, c ddl) (5.5b)

Resp(rcv current pkt , rcv abt , 0, pkt abt duration) (5.5c)

axioms
@axm3 1 pkt ddl>2∗c ddl
@axm3 2 pkt abt duration+c ddl<pkt ddl
invariants
@inv3 1 s st=working ∧ r=s ⇒clk−pkt tc≤ c ddl
@inv3 2 pkt tc≤ pkt rcv t ⇒pkt rcv t − pkt tc≤ c ddl
@inv3 3 s st=working ∧ r=s+1 ⇒clk−pkt rcv t≤ c ddl
@inv3 4 pkt rcv t≤ pkt tc ∧s6=0 ⇒pkt tc − pkt rcv t≤ c ddl
@inv3 5 r st=working ∧ r=s+1 ⇒clk−pkt rcv t≤ pkt abt duration
@inv3 6 pkt rcv t≤ abt t ⇒abt t− pkt rcv t≤ pkt abt duration
@dlf m3 (s st=success ∧ s=0)∨ (s st=working ∧ s+1≤ N ∧ r=s+1 ∧ c st=working)
∨ (r st=working ∧c st=working ∧ s st=working ∧ r<N ∧ r=s)
∨ (s st=working ∧ r st=working) ∨ (s st=working ∧ s=N ∧ s=r)
∨ (r st=working ∧ s st=success) ∨ (s st=working ∧ c st=failure ∧ r=s+1)
∨ (r st=working ∧ c st=failure ∧ r=s+1) ∨ (s st6=working ∧ r st6=working)

event rcv file success extends rcv file success
then

@act5 1 pkt rcv t:= clk
end

anticipated event rcv current pkt extends
rcv current pkt

then
@act5 1 pkt rcv t:= clk

end

event tick refines tick
where

@grd3 1 s st=working ∧ r=s ⇒clk+1−pkt tc
≤ c ddl

@grd3 2 s st=working ∧ r=s+1 ⇒clk+1−
pkt rcv t≤ c ddl

@grd3 3 r st=working ∧ r=s ⇒clk+1−pkt tc
≤ c ddl

@grd3 4 r st=working ∧ r=s+1 ⇒clk+1−
pkt rcv t≤ pkt abt duration

then
@act1 1 clk:= clk+1

end

Figure 5.6: Machine M 3 that Extends M 2 with Timing Properties Specified In TR-3
and TR-4

5.2.5 Fourth Refinement

Timing is important to synchronize the status of transmitter and receiver in BRP. In

M 4, we want to guarantee that the receiver will abort based on the timing information

on its end. In this refinement, we first refine the anticipated event snd rty to convergent

Chapter 5 Bounded Re-transmission Protocol Case Study 61

event by introducing variable rty cnt to denote a retry counter. The transmitter will

decide to abort if rty cnt reaches the constant retry num. As shown in Figure 5.7, we

use retry num − rty cnt as the variant. The convergent event snd rty always decreases

the variant. We also use invariant @dlf m4 to verify that the refined machine is not

deadlocked by the strengthened guards of snd retry .

invariants
@rty cnt type rty cnt∈ N ∧ rty cnt≤ retry num
@dlf m4 (s st=success ∧ s=0) ∨ (s st=working ∧ s+1≤ N ∧ r=s+1 ∧ c st=working)
∨ (r st=working ∧c st=working ∧ s st=working ∧ r<N ∧ r=s)
∨ (s st=working ∧ r st=working ∧ c st=working)
∨ (s st=working ∧ r st=working ∧ c st=failure ∧ rty cnt<retry num)
∨ (s st=working ∧ s=N ∧ s=r) ∨ (r st=working ∧ s st=success)
∨ (s st=working ∧ c st=failure ∧ r=s+1 ∧ rty cnt=retry num)
∨ (r st=working ∧ c st=failure ∧ r=s+1 ∧ rty cnt=retry num)
∨ (s st 6=working ∧ r st6=working)

variant
retry num−rty cnt

convergent event snd retry extends snd retry
where

@grd4 1 rty cnt<retry num
then

@act4 1 rty cnt:= rty cnt+1
end

event snd pkt extends snd pkt
then

@act4 1 rty cnt:= 0
end

event rcv abt extends rcv abt
where

@grd4 1 rty cnt=retry num
end

event snd abt extends snd abt
where

@grd4 1 rty cnt=retry num
end

Figure 5.7: Machine M 4 that Refines the anticipated Event snd rty to convergent
Event

5.2.6 Fifth Refinement

In M 5, we refine timing property (5.5b) to timing property (5.6a) and timing prop-

erty (5.5c) to timing properties (5.6b) and (5.6c). It takes the receiver at least 2 ∗ c dly

time units but at most retry ddl time units before knowing that the transmitter has

not sent the new packet. After the resend attempts, the receiver guarantees that the

transmitter has aborted. Then it aborts after 2 ∗ c dly ∗ (retry num + 1) time units

and within retry ddl ∗ (retry num + 1) time units. Also, the transmitter might need to

resend the packet several times before it receives the acknowledgment from the receiver.

In the model shown in Figure 5.8, we replace @grd3 2 of tick event in M 3 with @grd5 1

of tick event in M 5 with the assumption shown in Equation 5.7. @inv5 2 and @inv5 3

are used to present timing properties 5.6. @inv5 1 serves as the auxiliary invariant for

62 Chapter 5 Bounded Re-transmission Protocol Case Study

@inv5 2. Invariant @dlf m5 is constructed to show that M 5 is not deadlocked because

of the strengthened guard of delay time constraints.

Resp(rcv current pkt , snd pkt , 0, retry ddl ∗ (rty cnt + 1)) (5.6a)

Resp(rcv current pkt , snd rty , 2 ∗ c dly ∗ (rty cnt + 1), retry ddl ∗ (rty cnt + 1))

(5.6b)

Resp(rcv current pkt , rcv abt , 2 ∗ c dly ∗ (retry num + 1), retry ddl ∗ (retry num + 1))

(5.6c)


c ddl ≥ (retry num + 1) ∗ rty ddl

rty ddl > 2 ∗ c dly

pkt abt duration ≥ (retry num + 1) ∗ rty ddl

(5.7)

invariants
@inv5 1 r st=working ∧ r=s+1 ⇒clk−pkt rcv t≤ rty ddl ∗ (rty cnt+1)
@inv5 2 pkt rcv t≤ snd rty t ∧ r=s+1 ⇒ snd rty t− pkt rcv t≤ rty ddl ∗ (rty cnt+1)
@inv5 3 pkt rcv t≤ abt t ⇒ abt t− pkt rcv t≤ rty ddl ∗ (retry num+1)
@dlf m5 (s st=success ∧ s=0)∨ (s st=working ∧ s+1≤ N ∧ r=s+1 ∧ c st=working)
∨ (r st=working ∧c st=working ∧ s st=working ∧ r<N ∧ r=s)
∨ (s st=working ∧ r st=working ∧ c st=working ∧ clk≥ pkt rcv t+ c dly ∧ snd rty t>pkt rcv t⇒clk

≥ snd rty t +2∗c dly)
∨ (s st=working ∧ r st=working ∧ c st=failure ∧ rty cnt<retry num ∧ clk≥ pkt rcv t+ c dly ∧

snd rty t>pkt rcv t⇒clk≥ snd rty t +2∗c dly)
∨ (s st=working ∧ s=N ∧ s=r)∨ (r st=working ∧ s st=success)
∨ (s st=working ∧ c st=failure ∧ r=s+1 ∧ rty cnt=retry num)
∨ (r st=working ∧ c st=failure ∧ r=s+1 ∧ rty cnt=retry num)
∨ ((s st=working ∧ r=s ⇒clk+1−pkt tc≤ c ddl)∧(s st=working
∧ r=s+1 ⇒clk+1−pkt rcv t≤ rty ddl ∗ (rty cnt+1))∧(r st=working ∧ r=s ⇒clk+1−pkt tc≤ c ddl)
∧(r st=working ∧ r=s+1 ⇒clk+1−pkt rcv t≤ rty ddl ∗ (rty cnt+1)))

convergent event snd rty extends snd rty
where

@grd6 1 clk≥ pkt rcv t+ c dly
@grd6 2 snd rty t>pkt rcv t⇒clk≥ snd rty t

+2∗c dly
then

@act6 1 snd rty t:= clk
end

event tick refines tick
where

@grd5 1 s st=working ∧ r=s ⇒clk+1−pkt tc
≤ c ddl

@grd5 2 s st=working ∧ r=s+1 ⇒clk+1−
pkt rcv t≤ rty ddl ∗ (rty cnt+1)

@grd5 3 r st=working ∧ r=s ⇒clk+1−pkt tc
≤ c ddl

@grd5 4 r st=working ∧ r=s+1 ⇒clk+1−
pkt rcv t≤ rty ddl ∗ (rty cnt+1)

then
@act1 1 clk:= clk+1

end

Figure 5.8: Machine M 5 that Extends M 4 with Timing Properties Specified In TR-5
and TR-6

Chapter 5 Bounded Re-transmission Protocol Case Study 63

Table 5.1: Proof Statistics of BRP Case Study

Machine Generated PO Automatically Proved Automatically Proved %

m0 2 2 100
m1 39 39 100
m2 29 29 100
m3 53 53 100
m4 15 12 80
m5 33 28 84.8
m6 13 10 76.9

5.2.7 Sixth Refinement

In the last refinement shown in Figure 5.9, we refine the anticipated event rcv current pkt

to convergent event with the variant N−r . The convergent event rcv current pkt always

decreases the variant. Invariant @dlf m6 is used to verify the refined machine is not

deadlocked.

invariants
@dlf m6 (s st=success ∧ s=0)∨ (s st=working ∧ s+1≤ N ∧ r=s+1 ∧ c st=working)
∨ (r st=working ∧c st=working ∧ s st=working ∧ r<N ∧ r=s)
∨ (s st=working ∧ r st=working ∧ c st=working ∧ clk≥ pkt rcv t+ c dly ∧ snd rty t>pkt rcv t⇒clk

≥ snd rty t +2∗c dly)
∨ (s st=working ∧ r st=working ∧ c st=failure ∧ rty cnt<retry num ∧ clk≥ pkt rcv t+ c dly ∧

snd rty t>pkt rcv t⇒clk≥ snd rty t +2∗c dly)
∨ (s st=working ∧ s=N ∧ s=r)∨ (r st=working ∧ s st=success)
∨ (s st=working ∧ c st=failure ∧ r=s+1 ∧ rty cnt=retry num)
∨ (r st=working ∧ c st=failure ∧ r=s+1 ∧ rty cnt=retry num)
∨ ((s st=working ∧ r=s ⇒clk+1−pkt tc≤ c ddl)∧(s st=working
∧ r=s+1 ⇒clk+1−pkt rcv t≤ rty ddl ∗ (rty cnt+1))∧(r st=working ∧ r=s ⇒clk+1−pkt tc≤ c ddl)
∧(r st=working ∧ r=s+1 ⇒clk+1−pkt rcv t≤ rty ddl ∗ (rty cnt+1)))

variant
N−r

Figure 5.9: Machine M 6 that refines Anticipated Event rcv current pkt to Convergent
Event

5.3 Evaluation and Conclusion

Table 5.1 shows the proof statistics of the BRP model. All the proof obligations related to

the timing properties could be discharged automatically. However, the proof obligations

related to the relative deadlock freeness cannot be proved automatically because the

invariant is too complicated to be proved by the default prover. We proved the invariant

by cases manually and verified the model.

64 Chapter 5 Bounded Re-transmission Protocol Case Study

Our model of the BRP case study is based on Sarshogh’s message passing case study (Sarshogh,

2013) and Sulskus’s parallel message-passing case study (Sulskus, 2017). Sarshogh’s

approach investigated the practicality of their proposed trigger-response pattern and

refinement patterns to model real-time properties. Sulskus’ approach transformed the

single-channel message passing system to a parallel message-passing system with their

proposed time interval pattern. Sulskus’s time interval approach produced a finite-state

space model for model checking purposes. Our approach modeled the real-time system

with the unbounded clock variable and infinite behavioral traces. Neither Sarshogh

nor Sulskus’ approach takes the divergence of introduced new events in the refinement

step into account. Our approach used the two-step refinement strategy to avoid the

divergence of intermediate events and infeasible responses in real-time systems. We en-

coded the conditions such as conditional convergence and deadlock freeness into Event-B

models syntactically. Under weak fairness assumptions and deadlock freeness, we could

guarantee the trigger-response properties of the system.

Chapter 6

Bridge the Gap Between

Semantics and Formal Models

Event-B is a modeling language that supports modeling discrete systems but lacks ex-

plicit support for expressing and verifying timing and liveness properties (Sulskus et al.,

2016). In previous chapters, we mainly focused on exploring additional proof obliga-

tions and fairness assumptions to treat the real-time trigger-response properties properly.

However, there is still a huge gap between the modeler and the domain expert to specify

functional requirements with time constraints. Formal specification patterns can be used

to facilitate the specification process with reuseable patterns and a pre-defined model-

ing strategy. In this chapter, we show how to encode real-time properties in Event-B

models syntactically. Based on the formalization, we present four real-time specifica-

tion patterns, namely time response pattern, abort pattern, intermediate pattern and

periodic pattern, to support quantitative reasoning about time. The new patterns not

only allow modeling of timing properties between trigger and response events, but also

allow modeling of the interrupt and reoccurrence behavior. Templates are provided to

show how to apply the patterns syntactically in Event-B models. Also, we provide some

patterns to refine the real-time specification patterns.

6.1 Modeling Real-time Specification Patterns with Trigger-

Response Properties

In this section, we provide a list of patterns partitioned into four main categories, namely

time response patterns, abort patterns, intermediate patterns and periodic patterns.

We do not define real-time specification patterns for universality pattern and absence

pattern mentioned in Section 2.4.1 as these two patterns are not constrained by timing

properties. We present the patterns with Event-B formalization.

65

66 Chapter 6 Bridge the Gap Between Semantics and Formal Models

6.1.1 Time Response Patterns

The time response patterns are used to specify the time interval between the events that

satisfy trigger-response ordering property, which describes the behavior that when the

trigger event occurs, the corresponding response event will occur with the specified time

interval. In Chapter 3 and Chapter 4, we mainly explore conditions required to model

a real-time system from the semantics perspective. For example, In Theorem 3.14, we

provide additional conditions with which the Event-B machine satisfies trigger-response

properties. In this section, we show how to encode these conditions in Event-B models

syntactically in the way that standard Event-B proof obligations are defined. Based on

Theorem 3.14, we define the trigger-response ordering property defined in Definition 6.1

with Event-B proof obligations. Condition 1 requires that either trigger event or response

event is enabled in the machine, which satisfies Condition 1 in Theorem 3.14. In this

setting, we assume that there are no intermediate events H between T and R, thus

Condition 2 requires that the trigger event enables the response event and disables itself,

which satisfy Condition 2 in Theorem 3.14. Condition 3 requires that the enabledness

of response events are preserved by each e ∈ E \ (T ∪R), which satisfies Condition 4 in

Theorem 3.14.

Definition 6.1 (Trigger-Response Ordering Property). Given an Event-B machine M

with events E and invariants I (v), a trigger-response pair has the form TR(T ,R) where

T ⊆ E are trigger events, R ⊆ E are response events, and T ∩ R = ∅. M is defined to

satisfy the trigger-response ordering property TR(T ,R) when:

1. GR(v)⇒¬GT (v)

2. t ∈ T ∧ I (v)∧Gt(v)∧St(v , v
′)⇒¬Gt(v

′)∧GR(v ′)

3. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GR(v)⇒GR(v ′)

Figure 6.1 depicts the syntactic formalization we use that extends the trigger-response

pair TR(T ,R) to the timing property Resp(T ,R,w , d) with the time response pattern,

where TR(T ,R) satisfies the trigger-response ordering property defined in Definition 6.1,

and w and d define the delay and deadline time interval between trigger and response

events. We asserted that the behaviors of a machine with Resp(T ,R,w , d) should satisfy

two properties: 1) the number of Tick events between trigger events T and response

events R is bounded by the delay time w and deadline time d , and 2) the response

event eventually occurs after the trigger event, and the trigger event does not recur

within the trigger-response pair to avoid the recurring delay of response events. In the

formalization, a new variable clk is used to present the global clock, and the event Tick

is used to proceed the clock. The timestamp variable τT ∈ 0..clk and τR ∈ 0..clk are set

by the before-after predicate in the trigger and response events, respectively. Additional

constraints relating to τT and τR are imposed on R and Tick event to model the time

Chapter 6 Bridge the Gap Between Semantics and Formal Models 67

interval [w , d] between trigger and response events. Guard GR(v)⇒ clk + 1− τT ≤ d of

the Tick event constrains the global clock not to tick when the response event is about

to miss its deadline. Invariant @rsp 2 and @rsp 3 show that the difference between

timestamps of trigger events and response events are bounded by the time interval

[w , d], and Invariant @rsp 1 serves as an auxiliary invariant to prove Invariant @rsp 2.

A parameterized version of proof that proves that Invariant @rsp 3 is preserved by all

the events of the machine with timing encoded is provided in Theorem 8.4 in Chapter 8.

In Theorem 3.14, weak fairness assumption on response events is needed to guarantee the

feasible occurrence of response events. We also assume that the Tick event is weakly fair

so that when it is continuously enabled, it is assumed to fire infinitely often. However,

Event-B is not concerned with fairness specifications. In the syntactic formalization

shown in Figure 6.1, we assume that event R and event Tick are weakly fair.

invariants
@rsp 1 GR(v)⇒ clk − τT ≤ d
@rsp 2 τT < τR⇒ τR − τT ≥ w
@rsp 3 τT < τR⇒ τR − τT ≤ d

event T
where
GT (v)

then
v := ST (v , v ′)
τT := clk

end

event R
where
GR(v)
@grd1 clk ≥ τT+w

then
v := SR(v , v ′)
τR := clk

end

event Tick
where

@grd1 GR(v)⇒ clk + 1− τT ≤ d
then
clk := clk + 1

end

Figure 6.1: Syntactic Formalization of Timing Property Resp(T ,R,w , d) with Time
Response Pattern

6.1.2 Abort Patterns

The abort patterns are used to describe the time interval between the trigger-response

pair, which could be interrupted by the interrupt event INT . This pattern asserts that

when the trigger event occurs, the corresponding response event will occur within the

specified time interval unless some interrupting event occurs in between. We define the

trigger-interrupt-response property as Definition 6.2. The conditions are the same as

Definition 6.1 except Condition 2 and Condition 4. Condition 2 requires that the trigger

event enables not only the response events but also the interrupt events. The interrupt

cannot occur before the trigger event. Condition 4 requires that the interrupt event

enables some predicate Q(v ′). We assume that the system is weakly fair with respect to

the response events so that the trigger event is followed eventually by a response event.

Figure 6.2 presents the formalization that extends (T ,R, INT) to the timing property

68 Chapter 6 Bridge the Gap Between Semantics and Formal Models

Abt(T ,R, INT ,w , d) with the abort pattern. In the formalization, the predicate ¬Q(v ′)

is added on the guard of response event, and Tick event. The occurrence of the interrupt

event will remove the time constraints imposed on response and Tick event. Invariant

@abt 2 and @abt 3 show that the difference between timestamps of trigger events and

response events are bounded by the time interval [w , d] provided the interrupt did not

occur in between. Invariant @abt 1 serves as an auxiliary invariant to prove Invariant

@abt 3.

Definition 6.2 (Trigger-Interrupt-Response Property). Given an Event-B machine M

with events E and invariants I (v), a trigger-interrupt-response pair has the form (T ,R, INT)

where T ⊆ E are trigger events, R ⊆ E are response events, INT are interrupt events.

M is defined to satisfy the trigger-interrupt-response property when:

1. GR(v)⇒¬GT (v)

2. t ∈ T ∧ I (v)∧Gt(v)∧St(v , v
′)⇒¬Gt(v

′)∧GINT (v ′)∧GR(v ′)

3. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GR(v)⇒GR(v ′)

4. i ∈ INT ∧ I (v)∧Gi(v)∧Si(v , v
′)⇒Q(v ′)

invariants
@abt 1 GR(v)∧¬Q(v)⇒ clk − τT ≤ d
@abt 2 GR(v)∧¬Q(v)∧ τT < τR⇒ τR − τT ≥ w
@abt 3 GR(v)∧¬Q(v)∧ τT < τR⇒ τR − τT ≤ d

event T
where

GT (v)
then

v := ST (v , v ′)
τT := clk

end

event INT
where
GINT (v)

then
v := SINT (v , v ′)

end

event R
where

GR(v)∧¬Q(v)⇒ clk ≥ τT + w
then

v := SR(v , v ′)
τR := clk

end

event Tick
where
GR(v)∧¬Q(v)⇒ clk + 1− τT ≤ d

then
clk := clk + 1

end

Figure 6.2: Syntactic Formalization of Timing Property Abt(T ,R, INT ,w , d) with
Abort Pattern

Chapter 6 Bridge the Gap Between Semantics and Formal Models 69

6.1.3 Intermediate Patterns

The intermediate patterns are used to describe the time interval between the cases that

the trigger events do not lead to response events directly. This pattern asserts that

the occurrence of trigger events enables the intermediate events H , which could occur

sufficiently often before the response event occurs. Provided that the intermediate events

are convergent, the repeated occurrence of intermediate events eventually enables the

response events. We define the trigger-intermediate-response property as Definition 6.3.

In the definition, we use GH (v) to denote the disjunction of all Gi(v) with i ∈ H .

Condition 2 requires the occurrence of trigger events that enables one of the intermediate

events or response events. Condition 3 requires that all the other events preserve the

enabledness of intermediate events or response events. We assume that the system

is weakly fair with respect to intermediate events and response events. Condition 4

guarantees that once a response event is enabled, it cannot be disabled by any event

other than a response event, which avoids the scenario that intermediate events and

response events are enabled alternatively but never get executed under weak fairness

assumption. Also, Condition 5 requires that the intermediate events should converge

towards a response event being enabled. Weak fairness assumptions on the intermediate

events guarantee that the intermediate events get executed sufficiently often to lead

to the response event being enabled. Then weak fairness assumptions on the response

events guarantee that an enabled response event eventually gets executed.

Definition 6.3 (Trigger-Intermediate-Response Property). Given an Event-B machine

M with events E and invariants I (v), a trigger-intermediate-response pair has the form

(T ,H ,R) where T ⊆ E are trigger events, R ⊆ E are response events, H are intermedi-

ate events. Given each t ∈ T and r ∈ R, M is defined to satisfy the trigger-intermediate-

response property when:

1. GR(v)⇒¬GT (v);

2. I (v)∧Gt(v)∧St(v , v
′)⇒¬Gt(v

′)∧(GH (v ′)∨GR(v ′));

3. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GH (v)⇒ (GH (v ′)∨GR(v ′));

4. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GR(v)⇒GR(v ′);

5. The intermediate events H are conditional convergent under the condition that

response events R are disabled;

Figure 6.3 shows the formalization that extends the trigger-intermediate-response prop-

erty to the timing property Interm(T ,H ,R,w , d) with the intermediate pattern. Based

on Theorem 3.14, the intermediate events H are conditional convergent to response

events R. Thus two versions of the intermediate events are included in the machine

70 Chapter 6 Bridge the Gap Between Semantics and Formal Models

to encode conditional convergence syntactically in Event-B models. As shown in Fig-

ure 6.3, the H cov event is convergent when the response events are disabled. Event H ,

which has the guard requires response event is enabled, is not marked as convergent. A

new variable inc, increased by the intermediate event H , is added to the machine. The

variant is decreased by the intermediate events H . With the VAR and NAT proof obli-

gations, we can prove that intermediate events are convergent towards disabled response

events. In the formalization, we assume that the machine is weakly fair with respect to

H , R and Tick events.

constants max
variables inc
invariants
@int 1 GR(v)⇒ clk − τT ≤ d
@int 2 GR(v)∧ τT < τR⇒ τR − τT ≥ w
@int 3 GR(v)∧ τT < τR⇒ τR − τT ≤ d
variant max − inc

convergent event H cov
where
GH (v)
¬GR(v)
then
v := SH (v , v ′)
inc := inc + 1
end

event H
where
GH (v)
GR(v)
then
v := SH (v , v ′)
end

event T
where
GT (v)

then
v := ST (v , v ′)
τT := clk

end

event R
where
GR(v)⇒ clk ≥ τT + w

then
v := SR(v , v ′)
τR := clk

end

event Tick
where
GR(v)⇒ clk + 1− τT ≤ d
then
clk := clk + 1
end

Figure 6.3: Syntactic Formalization of Timing Property Interm(T ,H ,R,w , d) with
Intermediate Pattern

6.1.4 Periodic Patterns

The periodic patterns are used to present the time interval in which the event should oc-

cur at least once. We define the repeatable event property in Definition 6.4. Condition 1

requires that events T are initially enabled. Condition 2 requires that the enabledness

of T is preserved by all the events in the model. We call T as repeatable events provided

the two conditions hold. Figure 6.4 shows the formalization that extends the repeatable

event T to timing property Prd(T ,w , d) with periodic pattern. In the formalization,

Chapter 6 Bridge the Gap Between Semantics and Formal Models 71

the timestamp variable τT c denotes the current timestamp that T occurs. Additional

constraints are imposed on T and Tick event to model the time interval [w , d] between

two T events. To describe the time interval with invariants, we add another timestamp

variable τT p to denote the timestamp of the previous T event. τT p is set to τT c by

the before-after predicate in T . Invariant prd 2 and prd 3 show that the time difference

between two adjacent T events are bounded by w and d . Invariant @prd 1 serves as an

auxiliary invariant to prove Invariant @prd 3.

Definition 6.4 (Repeatable Property). Given an Event-B machine M with events E

and invariants I (v), the event T ⊆ E are repeatable events. M satisfies repeatable

property when:

1. I (v)∧Sinit(v , v
′)⇒GT (v ′)

2. e ∈ E ∧ I (v)∧Ge(v)∧Se(v , v ′)∧GT (v ′)⇒GT (v ′)

invariants
@prd 1 GT (v)⇒ clk − τT ≤ d
@prd 2 τT p < τT c⇒ τT c − τT p ≥ w
@prd 3 τT p < τT c⇒ τT c − τT p ≤ d

event T
where

GT (v)
clk ≥ τT c + w

then
v:= ST (v , v ′)
τT c := clk
τT p := τT c

end

event Tick
where

GT (v)⇒ clk + 1− τT c ≤ d
then

clk := clk + 1
end

Figure 6.4: Syntactic Formalization of Timing Property Prd(T ,w , d) with Periodic
Pattern

6.2 Patterns to Refine Real-time Properties

Lemma 4.5 and Lemma 4.6 provide additional conditions to refine abstract timing prop-

erties into sequential or alternative sub-timing properties from semantics perspective.

In this section, we present the patterns to refine abstract timing properties into concrete

timing properties with the syntactic formalization in Event-B. Each pattern is explained

with the cases of refining four real-time properties mentioned in Section 6.1.

72 Chapter 6 Bridge the Gap Between Semantics and Formal Models

6.2.1 Sequential Refinement Pattern

The sequential refinement pattern refines abstract timing properties into a sequence of

sub-timing properties. Based on Lemma 4.5, the sum of the delay and deadline dura-

tion of sub-timing properties should be consistent with the abstract delay and deadline

duration.

Take the timing property (6.1) as an example, we introduce intermediate event H

between the trigger-response pair TR(T ,R) such that (T ,H) and (H ,R) satisfy the

trigger-response ordering property defined in Definition 6.1. We use timing proper-

ties (6.2) to show the delay and deadline time constraints of two trigger response pairs.

Figure 6.5 shows the time diagram that refines abstract timing property (6.1) with

concrete timing properties (6.2).

Resp(T ,R,w , d) (6.1) Resp(T ,H ,w1, d1)

Resp(H ,R,w2, d2)
(6.2)

T R
Resp(T,R,w,d)

Resp(T,H,w1,d1) Resp(H,R,w2,d2)

T RH

Figure 6.5: Time Diagram of Refining Abstract Timing Property (6.1) with Concrete
Timing Properties (6.2)

Figure 6.6 depicts the syntactic formalization of the sequential refinement pattern ap-

plied to refine the machine shown in Figure 6.1. Invariants @rspr 1 and @rspr 2, as well

as events T , R, H and Tick follows the time response pattern shown in Figure 6.1. The

additional axiom @rsp axm is added based on Lemma 4.5 to guarantee the consistency

between the timing properties. In the refinement, we replace @grd1 of Tick event with

@grd1 and @grd2 in the refinement. The GRD proof obligation of Tick event could be

discharged with the following proof:

Chapter 6 Bridge the Gap Between Semantics and Formal Models 73

axioms
@rsp axm w ≤ w1 + w2∧ d1 + d2 ≤ d
invariants
@rspr 1 τT < τH ⇒ τH − τT ≥ w1∧ τH − τT ≤ d1
@rspr 2 τH < τR⇒ τR − τH ≥ w2∧ τR − τH ≤ d2
@dlf GT (v)∨(GR(v)∧ clk ≥ τT + w)∨((GR(v)⇒ clk + 1 ≤ τT + d))⇒
GT (v)∨(GH (v)∧ clk ≥ τT + w1)∨(GR(v)∧ clk ≥ τH + w2)∨
((GR(v)⇒ clk + 1 ≤ τH + d2)∧(GH (v)⇒ clk + 1 ≤ τT + d1))

event T
where
GT (v)

then
v := ST (v , v ′)
τT := clk

end

event H
where
GH (v)
clk ≥ τT + w1

then
v := SH (v , v ′)
τH := clk

end

event R
where
GR(v)
@grd1 clk ≥ τH + w2

then
v := SR(v , v ′)
τR := clk

end

event Tick
where

@grd1 GH (v)⇒ clk + 1− τT ≤ d1
@grd2 GR(v)⇒ clk + 1− τH ≤ d2

then
clk := clk + 1
end

Figure 6.6: Refining Time Response Patterns with Sequential Sub-Timing Properties

Proof. We want to prove that I (v)∧ J (v ,w)∧GR′(w)⇒ GR(v). Assume GR(v), we

have to show clk + 1 ≤ τT + d :

clk + 1

≤{@grd2 : clk + 1− τH ≤ d2}

τH + d2

≤

τT + d2 {τH ≤ τT}

τT + d1 + d2 {τT ≤ τH ∧@rspr1 : τH − τT ≤ d1}

≤

τT + d {@rsp axm : d1 + d2 ≤ d}

τT + d {@rsp axm : d1 + d2 ≤ d}

Based on Lemma 4.2, we require that the refined machine is deadlock-free relative to

the abstract machine. So in the formalization, we construct Invariant dlf to verify the

deadlock freeness of the refined machine. Also, we assume that the refined machine is

weakly fair to H , R and Tick event. If multiple intermediate events exist between the

trigger and response events, we require them to be conditional convergent so that the

74 Chapter 6 Bridge the Gap Between Semantics and Formal Models

response events are feasible. The formalization of conditional convergent events is shown

in Figure 6.3.

This sequential refinement pattern could also be applied to refine the timing properties

modeled with abort, intermediate and periodic patterns.

Given the timing property (6.3) modeled with the abort pattern, the interrupt events

INT could occur between T and R nondeterministically. As shown in Figure 6.7,

when the abstract trigger-response pair TR(T ,R) is refined into two sequential trigger-

response pairs, namely (T ,H) and (H ,R), the INT event not only could occur between

T and H nondeterministically, but also could occur between H and R nondeterminis-

tically. Thus the timing property (6.3) could be refined to sub-timing properties (6.4)

provided the sum of the delay and deadline duration of sub-timing properties is consis-

tent with the abstract delay and deadline duration.

Abt(T ,R, INT ,w , d) (6.3)

 Abt(T ,H , INT ,w1, d1)

Abt(H ,R, INT ,w2, d2)
(6.4)

T R
Abt(T,R,INT,w,d)

Abt(T,H,INT,w1,d1) Abt(H,R,INT,w2,d2)

T RH

INT

INT INT

Figure 6.7: Time Diagram of Refining Timing Properties (6.3) with Sequential Sub-
Timing Properties (6.4)

Figure 6.8 depicts the time diagram of refining timing properties (6.5) with sequential

sub-timing properties (6.6). Based on the refinement pattern, relations between abstract

and concrete timing properties specified in Equation 6.7 need to specified to keep the

consistency.

Interm(T ,H ,R,w , d) (6.5)
Resp(T ,H ,w1, d1)

Prd(H ,w3, d3)

Resp(H ,R,w2, d2)

(6.6)

Chapter 6 Bridge the Gap Between Semantics and Formal Models 75

 w ≤ w1 + w2 + w3 ∗ (n − 1)

d1 + d2 + d3 ∗ (n − 1) ≤ d
(6.7)

T RInterm(T,H,R,w,d)

Resp(T,H,w1,d1) Prd(H,w,d)
T R

HH

H H H

Resp(H,R,w2,d2)

…

Figure 6.8: Time Diagram of Refining Timing Properties (6.5) with Sequential Sub-
Timing Properties (6.6)

Figure 6.9 shows the time diagram that refines timing property (6.8) with sequential

sub-timing properties (6.9). Given that w ≤ w1 + w2 and d1 + d2 ≤ d , the consistency

of timing properties in different refinement levels is preserved.

Prd(T ,w , d) (6.8) Resp(T ,R,w1, d1)

Resp(R,T ,w2, d2)
(6.9)

T T
Prd(T,w,d)

Resp(T,R,w1,d1) Resp(R,T,w2,d2)

T TR

Figure 6.9: Time Diagram of Refining Timing Properties (6.8) with Sequential Sub-
Timing Properties (6.9)

6.2.2 Alternative Refinement Pattern

The alternative refinement pattern refines abstract timing properties into alternative

sub-timing properties. Together with the sequential refinement pattern, the alternative

refinement pattern could be used to resolve different levels of nondeterminism of inter-

mediate events. For example, Figure 6.10 shows the time diagram that refines timing

property (6.1) to alternative timing properties (6.10). In the refined machine, either H 1

event or H 2 event occurs following the trigger event T . Then H 1 and H 2 would lead to

different response events R1 and R2 respectively. Based on Lemma 4.6, equation 6.11

is required to preserve the consistency of timing properties.

76 Chapter 6 Bridge the Gap Between Semantics and Formal Models



Resp(T ,H 1,w1, d1)

Resp(H 1,R1,w2, d2)

Resp(T ,H 2,w3, d3)

Resp(H 2,R2,w4, d4)

(6.10)

 w ≤ (w1 + w2)∧w ≤ (w3 + w4)

(d1 + d2) ≤ d ∧(d3 + d4) ≤ d
(6.11)

T R
Resp(T,R,w,d)

Resp(T,H1,w1,d1) Resp(H1,R1,w2,d2)

T R
Resp(T,H2,w3,d3)Resp(H2,R2,w4,d4)

T RI2

I1

Figure 6.10: Time Diagram of Refining Timing Properties (6.1) with Alternative
Sub-Timing Properties (6.10)

Figure 6.11 depicts the syntactic formalization of the alternative refinement pattern

used to refine the machine shown in Figure 6.1. Additional axioms @alt axm1 and

@alt axm2 is used to keep the consistency of timing property based on Lemma 4.6. In

the refinement, we replace @grd1 of Tick event with @grd1, @grd2, @grd3 and @grd4

in the refinement. The GRD proof obligation of Tick event could be discharged with

the following proof:

Proof. We want to prove that I (v)∧ J (v ,w)∧GR′(w)⇒ GR(v). Assume GR(v), we

have to show clk + 1 ≤ τT + d :

Chapter 6 Bridge the Gap Between Semantics and Formal Models 77

clk + 1

≤

τH1 + d2 {GH1(v) and @grd3 : GR(v)⇒ clk + 1− τH1 ≤ d2}

τH2 + d4 {GH2(v) and @grd4 : GR(v)⇒ clk + 1− τH2 ≤ d4}

≤



τT + d2 {τH1 ≤ τT}

τT + d1 + d2 {τT ≤ τH1,@alt 1 : τH − τT ≤ d1}τT + d4 {τH2 ≤ τT}

τT + d3 + d4 {τT ≤ τH2,@alt 3 : τH2 − τT ≤ d3}

≤



τT + d {@alt axm1 : d1 + d2 ≤ d}

τT + d {@alt axm1 : d1 + d2 ≤ d}τT + d {@alt axm2 : d3 + d4 ≤ d}

τT + d {@alt axm2 : d3 + d4 ≤ d}

In the formalization, we assume that the refined machine is weakly fair with respect to

H 1, H 2, R1, R2 and Tick event. Also, we need to check that the refined machine is

relative deadlock-free to the abstract machine, which could be encoded as invariants in

a machine.

6.3 Applying Real-time Specification Patterns and Refine-

ment Patterns

In this section, we outline how the patterns could be used to develop real-time systems.

Suppose the system is extended with the clk variable and Tick event. Firstly, events

identified as trigger events, response events, intermediate events, abort events, and peri-

odic events should be presented with the guards satisfying the corresponding conditions

in the patterns. Next, the pattern can be adapted by initializing the real-time proper-

ties with the pattern template. For example, new variables presenting the timestamps

of trigger and response events will be added in the time response pattern. Then invari-

ants and additional guards should be added based on the template to present the delay

and deadline between the trigger-response pair. Finally, the refinement patterns men-

tioned above could be used to refine the timing properties to sub-timing properties. In

Chapter 7, we show how to use these patterns to model time constraints in pacemakers.

78 Chapter 6 Bridge the Gap Between Semantics and Formal Models

axioms
@alt axm1 w ≤ w1 + w2∧ d1 + d2 ≤ d
@alt axm2 w ≤ w3 + w4∧ d3 + d4 ≤ d
invariants
@alt 1 τT < τH1⇒ τH1 − τT ≥ w1∧ τH1 − τT ≤ d1
@alt 2 τH1 < τR⇒ τR − τH1 ≥ w2∧ τR − τH1 ≤ d2
@alt 3 τT < τH2⇒ τH2 − τT ≥ w3∧ τH2 − τT ≤ d3
@alt 4 τH2 < τR⇒ τR − τH2 ≥ w4∧ τR − τH2 ≤ d4

event T
where
GT (v)

then
v := ST (v , v ′)
τT := clk

end

event H1
where
GH1(v)
clk ≥ τT + w1

then
v := SH1(v , v ′)
τH1 := clk

end

event H2
where
GH2(v)
clk ≥ τT + w3

then
v := SH2(v , v ′)
τH2 := clk

end

event R1
where

@grd1 clk ≥ τH1 + w2
then
v := SR1(v , v ′)
τR1 := clk

end

event R2
where

@grd1 clk ≥ τH2 + w4
then
v := SR2(v , v ′)
τR2 := clk

end

event Tick
where

@grd1 GH1(v)⇒ clk + 1− τT ≤ d1
@grd2 GH2(v)⇒ clk + 1− τT ≤ d3
@grd3 GR(v)⇒ clk + 1− τH1 ≤ d2
@grd4 GR(v)⇒ clk + 1− τH2 ≤ d4

then
clk := clk + 1
end

Figure 6.11: Refining Time Response Patterns with Alternative Sub-Timing Proper-
ties

6.4 Conclusion

Based on the trigger-response properties in Event-B models, we presented four real-time

specification patterns with syntax to model real-time properties in real-world cases. Our

patterns enable the modelers to express real-time properties that can be verified with

the theorem-proving techniques. Also, we provided the refinement patterns to refine

abstract timing properties modeled with the real-time specifications to concrete timing

properties. Proofs were provided to prove the consistency of timing properties.

We imposed weak fairness assumptions on intermediate events, response events, and the

Tick event to ensure that they do get executed sufficiently often when enabled. However,

our approach does not rule out several rounds of trigger-response events occurring within

one clock tick. One solution to rule out these behaviors is to force the lower bound of

Chapter 6 Bridge the Gap Between Semantics and Formal Models 79

real-time trigger-response property w > 0. In the cases that there is no lower bound

of delay time for trigger-response properties, some stronger fairness restrictions such

as finitary fairness (Alur and Henzinger, 1998) or bounded fairness (Dershowitz et al.,

2003) can be used to guarantee that Tick event gets the chance to proceed.

Chapter 7

Pacemaker Case Study

The safety issue of medical devices has received considerable attention in recent years.

There is a demand for formal approaches and tools to specify and verify the safety

properties in medical devices (Jiang et al., 2012). Pacemakers are electronic devices

implanted in the body to regulate the heartbeat, which should deliver therapies according

to misbehavior of the heart within fixed time constraints (Barold et al., 2010). Missing

the stimulus deadlines could be life-threatening. In this chapter, we use a dual-chamber

pacemaker under DDD mode (Scientific, 2007) as a case study to demonstrate the usage

of our proposed real-time specification patterns in Chapter 6. Models are proved with

the Rodin tool.

7.1 Pacemaker System Overview

Injuries and coronary artery disease might lead to heart arrhythmia that causes the

heart to beat too fast, too slow, or irregularly. The cardiac pacemaker is designed to

deliver timely electrical stimuli over the leads with electrodes in contact with the heart to

regulate the heart beat (Barold et al., 2010). Pacemakers use leads to sense the Atrial

Sense (AS) and Ventricular Sense (VS) generated by local heart tissues and deliver

Atrial Pacing (AP) and Ventricular Pacing (VP) if irregular heart behavior is detected.

Understanding the complexity of timing cycles in pacemakers is essential as missing

stimulus deadlines could cause heart failure and even loss of life. In this effort, we apply

a stepwise development approach to model the random heart model and pacemaker

model with Event-B formalism. The real-time specification patterns are used to model

different timing cycles in the pacemakers. Theorem proving is used to verify the timing

properties of the proposed system.

The pacemaker function mode is characterized by a three-letter code that describes

the chamber paced, chamber sensed, and mode of response, respectively. For example,

81

82 Chapter 7 Pacemaker Case Study

Atrial

Ventricular

AS AS APAP

VP VS VP VP

Random Heart Model (M0)

URI-LRI (M1)

AEI-AVI (M2)

AP

VRP PVARP (M3)

[h_min,h_max]

[URI,LRI]

[AEI_min,AEI_max]

[AVI_min,AVI_max]

PVARP

VRP

sAVI pAVI (M4)

sAVI

pAVI

Interrupt

Interrupt

VSP (M5)

VSP

Figure 7.1: Timing Cycles of Pacemaker under DDD mode

the code DDD describes that the pacemaker is pacing and sensing in both atrium and

ventricle; the pacing is inhibited by the sensed atrial and ventricular event in the atrial

channel. However, the pacing is only inhibited by the sensed ventricular event only in

the ventricular channel. The pacing is triggered by the sensed atrial activity in the

ventricular channel (Barold et al., 2010). We use the pacemaker under DDD mode

as a case study to illustrate the usage of real-time specification patterns in Event-B

models. There are five primary timing cycles of a DDD pacemaker, namely Lower

Rate Interval (LRI), Upper Rate Interval (URI), Ventricular Refractory Period (VRP),

Atrioventricular Interval (AVI) and Postventricular Refractory Period (PVARP) (Barold

et al., 2010). LRI and URI define the longest and shortest interval between VP or VS

and the succeeding VP without intervening VS . VRP defines the interval during which

a new LRI cannot be initiated after a ventricular event. AVI defines the interval between

AS or AP , and the scheduled delivery of VP . PVARP defines the time interval after

the occurrence of a VS or VP , during which the AP cannot initiate a new AVI. These

five timing cycles can be used to derive two other timing cycles, namely Atrial Escape

Interval (AEI) and Total Atrial Refractory Period (TARP). AEI defines the interval

between VS or VP and the succeeding AP providing there is no AS in between. TARP

defines the time interval between two AP . In real cases of heart pacing, crosstalk could

occur when the pacemaker stimulus in one chamber is sensed in the other chamber. The

time interval ventricular safety pacing (VSP) during which the sensed ventricular signal

does not inhibit the DDD pacemaker could be introduced in a refinement step to prevent

the consequence of crosstalk.

Figure 7.1 shows our refinement strategy of timing cycles of pacemaker between atria

and ventricle events. The time intervals in Figure 7.1 could be interrupted. For example,

the time interval [URI ,LRI] between two adjacent VP events could be interrupted by

the nondeterministic VS event, and the time interval between the VS and succeeding

VP should be bounded by [URI ,LRI]. We show our refinement strategy as follows to

formalize the timing cycles of a pacemaker under DDD mode.

Chapter 7 Pacemaker Case Study 83

M0 specifies the random heart model for atrial channel and ventricular channel.

M1 introduces URI and LRI to maintain the ventricular rate within a certain threshold.

M2 formalizes AEI and AVI timing properties by introducing AP into the model.

M3 formalizes VRP and PVARP by putting delay time constraints on VS , VP and

AP that these three events cannot be initiated.

M4 formalizes the sensed AV interval (sAVI) and paced AV interval (pAVI) based on

different types of atrial events that initiate AVI.

M5 introduces the VSP time interval during which the VP would not be triggered.

7.2 Modeling the Pacemaker

7.2.1 Random Heart Model

In the most abstract level M0, the Random Heart Model (RHM) is used to describe the

nondeterministic heart behaviors. We use XS to present the sensed events in either the

atrial or ventricular channel. In the model, the heart generates AS or VS periodically

within the [h min, h max] time interval. The RHM covers both normal and abnormal

behaviors by setting the time interval to [0,∞]. In later refinements, the pacing events

from pacemakers can be introduced to the model to regulate the heart rate. We begin

by modeling the periodic XS events with the periodic pattern Prd(XS , h min, h max)

in our initial model formalized in Figure 7.2. t xs p and t xs c are used to refer to the

time at which previous and current XS event occurs, where XS = {AS ,VS}. The guard

clk ≥ t xs c + h min guarantees that the next XS event should wait h min time units

before it is enabled. Moreover, @grd1 on tick event guarantees that the global clock

does not tick when XS is about to miss the deadline. inv0 2 shows the time interval

between t xs p and t xs c is bounded by h min and h max . @inv0 1 is the auxiliary

invariant to prove inv0 2. In our settings, h min could be set small enough and h max

could be set large enough to present the irregular behavior of hearts. In the refinement,

the pacemaker could sense the irregular behavior and pace the heart to behave regularly.

7.2.2 URI and LRI

The arrhythmias are mainly categorized into two categories, namely tachycardia and

bradycardia. Tachycardia describes the abnormally fast heart rate, and bradycardia

features a slow heart rate. The pacemaker treats tachycardia and bradycardia by main-

taining the heart rate within a time interval, which is not too slow nor too fast. In the

first refinement, we first introduce URI and LRI as the time interval.

84 Chapter 7 Pacemaker Case Study

invariants
@inv0 1 clk−t xs c≤ h max
@inv0 2 t xs p<t xs c ⇒ (t xs c−t xs p≥ h min ∧t xs c−t xs p≤h max)

event XS
where

@grd1 clk≥ t xs c+h min
then

@act1 t xs p:= t xs c
@act2 t xs c:= clk

end

event tick
where

@grd1 clk+1−t xs c≤ h max
then

@act1 clk:= clk+1
end

Figure 7.2: Model Random Heart Model with Periodic Pattern
Prd(XS , h min, h max)

Figure 7.3 shows the formalization that model URI and LRI with abort pattern, time

response pattern and periodic pattern. The time interval [URI ,LRI] between two ad-

jacent VP events could be interrupted by the nondeterministic VS event. The time

interval between VS and the succeeding VP should also be bounded by [URI ,LRI].

The event VS Trig models the point that VS occurs when no VP has ever occurred.

Event VS Abt models the point that VS occurs between two VP events. We then use

VP Trig and VP Resp to distinguish the previous and current VP events. @inv1 4 is

used to guarantee that a ventricle pace can only occur at least URI and at most LRI after

a ventricle event. @inv1 2, @inv1 2 and @inv1 3 serve as auxiliary invariants to prove

@inv1 4. We define the carrier set E to present the atrial and ventricle events. Three

constants vs, vp and us are defined to present the VS event, VP event and unknown

event respectively. In the machine, the variable s is used to present the latest event

that has been observed, which is set to unknown initially. Either VS Trig and VP Trig

could occur at the beginning. The timing property (7.1a) guarantees that VP Resp

event occurs within [URI ,LRI] time interval. In case of VP Trig occurring, the tim-

ing property (7.1b) shows that a VS Abt event could interrupt the timing properties

between VP Trig and VP Resp events, but VP Resp would occur within [URI ,LRI]

after the VS Abt event based on the time response pattern.

Abt(VP Trig ,VP Resp,VS Abt ,URI ,LRI) (7.1a)

Resp({VS Trig ,VS Abt},VP Resp,URI ,LRI) (7.1b)

Chapter 7 Pacemaker Case Study 85

@inv1 1 s=vp⇒clk− t vp c≤ LRI
@inv1 2 s=vs⇒clk− t vs≤ LRI
@inv1 3 s=us⇒clk≤ LRI
@inv1 4 (t vp p<t vp c⇒ t vp c−t vp p≥ URI ∧t vp c−t vp p≤LRI) ∨ (t vs<t vp c⇒t vp c−t vs≥

URI ∧t vp c−t vs≤LRI)

event VS Trig extends XS
where

@grd2 s=us
then

@act4 t vs:= clk
@act5 s:= vs

end

event VS Abt extends XS
where

@grd2 s=vp ∨ s=vs
then

@act4 t vs:= clk
@act5 s:= vs

end

event tick extends tick
where

@grd2 s=vp⇒clk+1− t vp c≤LRI
@grd3 s=vs⇒clk+1− t vs≤LRI
@grd4 s=us⇒clk+1≤LRI

end

event VP Resp
where

@grd1 s=vp ⇒ clk≥ t vp c+URI
@grd2 s=vs ⇒ clk≥ t vs+URI
@grd3 s=vp ∨ s=vs

then
@act1 t vp c:= clk
@act2 t vp p:= t vp c
@act3 s:= vp

end

event VP Trig
where

@grd1 s=us
then

@act1 t vp c:= clk
@act2 t vp p:= clk
@act3 s:= vp

end

Figure 7.3: Model URI and LRI with Abort Pattern and Response Pattern

7.2.3 AEI and AVI

The AVI is used to maintain the appropriate delay between the atrial events (AP and

AS) and the ventricular pacing (VP). If no VS occurred between AP and VP , then the

pacemaker should deliver VP after the AVI has passed. In the second refinement, we

introduce the AP and AS to model the real-time properties AEI and AVI . The AEI and

AVI are specified with time intervals [AEI min,AEI max] and [AVI min,AVI max]

respectively. The timing requirements require that when VP occurs, AP should occur

within [AEI min,AEI max] time interval provided the VS event did not occur. After

AP occurs, the next VP should occur within the [AVI min,AVI max] time interval

provided the absence of VS event. In M1, we use the abort pattern to model the

interrupt event VS between two VP events. In the refined machine, VS still serves as

the abort event between two VP events. We introduce the intermediate event AP Resp

and use the intermediate pattern to model AEI and AVI timing properties. A new

constant ap is added to the context to denote the occurrence of AP event. A new

variable s avi is used to present the latest event that has been observed in the refined

model with new timing properties. The timing property (7.1a) is refined to timing

86 Chapter 7 Pacemaker Case Study

property (7.2a) with the intermediate event AP Resp. The variable s avi is used to

set the guards of AP Resp and VP Resp based on Condition 2 and Condition 3 in

Definition 6.3. Timing property (7.1b) is refined to timing properties (7.2b) and (7.2c)

with the sequential refinement pattern. AS Abt event is used as the interrupt event

to interrupt the AEI time interval. The timing property (7.2b) is used to maintain

synchrony between the atria and the ventricles. In Figure 7.4, the variable t ap denotes

the time at which AP Resp occurs. @inv2 2 shows that the time interval between

t xs c and t ap is bounded by AEI min and AEI max . @inv2 4 shows that the time

interval between t ap and t xs c is bounded by AVI min and AVI max . @inv2 1 and

@inv2 3 serves as auxiliary invariants. @inv2 6 shows that provided AS occurs before

AP , and then the pacemaker should deliver VP within AVI max . In the refinement

step, the sum of AEI and AVI specifies the time interval between two VP events. Thus

AEI min + AVI min ≥ URI and AEI max + AVI max ≤ LRI . Based on this axiom,

we replace @grd2 of tick event in M1 with @grd5-@grd8 in M2.

Interm(VP Trig ,VP Resp,AP Resp,URI ,LRI) (7.2a)

Resp({AP Resp,AS Abt},VP Resp,AVI min,AVI max) (7.2b)

Abt(VS Trig ,AP Resp,AS Abt ,AEI min,AEI max) (7.2c)

7.2.4 VRP and PVARP

The VRP timing property is defined as the period during which the pacemaker is insensi-

tive to incoming signals, which follows the ventricular event to filter out the noises in the

ventricular channel to disable a new LRI interval. The PVARP timing property follows

the ventricular event to eliminates the sensing of retrograde P waves from ventriculoa-

trial conduction (Barold et al., 2010). In this case, we refine the VS Abt , VP Resp with

the delay time VRP , and AP Resp with the delay time PVARP . Figure 7.5 shows the

formalism that extends the model with VRP and PVARP timing properties. @inv3 1

guarantees that provided AP occurs after VP , and the delay should be larger than

PVARP. @inv3 2 denotes that provided either VP or VS occurs after VP , the delay

should be larger than VRP and any ventricular events within VRP should be ignored.

7.2.5 sAVI and pAVI

The AVI timing property can be further classified based on the initiating event. The

sensed AVI initiated by AS could be programmed to a shorter value than the paced

AVI initiated by AP to shorten the TARP during atrial sensing (Barold et al., 2010).

In this refinement, we introduce two constants tsAVI ∈ [AVI min,AVI max] and

Chapter 7 Pacemaker Case Study 87

axioms
@axm1 AEI max+AVI max≤ LRI
@axm2 AEI min+AVI min≥ URI
invariants
@inv2 1 s avi=vp ⇒ clk−t vp c≤ AEI max
@inv2 2 t vp c<t ap⇒t ap−t vp c≥ AEI min ∧ t ap−t vp c≤AEI max
@inv2 3 s avi=ap⇒clk−t ap≤AVI max
@inv2 4 t ap<t vp c⇒t vp c−t ap≥ AVI min ∧ t vp c−t ap≤AVI max
@inv2 5 s avi=as⇒clk−t as ≤AVI max
@inv2 6 s avi=as∧t as<t vp c⇒ t vp c−t as≤AVI max

event VS Trig extends VS Trig
then

@act6 s avi:= vs
end

event VS Abt extends VS Abt
then

@act6 s avi:= vs
end

event VP Trig extends VP Trig
where

@grd2 s 6=as⇒clk≥ t ap+AVI min
then

@act4 s avi:= vp
@act5 t ap:= clk

end

event VP Resp extends VP Resp
where

@grd4 s avi=ap
@grd5 s 6=as⇒clk≥ t ap+AVI min

then
@act4 s avi:= vp

end

event AS Abt extends XS
where

@grd2 s avi=vp ∨ s avi=vs
@grd3 clk≤ t vp c+AEI max

then
@act3 t as:= clk
@act4 s avi:= as

end

event AP Resp
where

@grd1 s avi=vp
@grd3 clk≥ t vp c+ AEI min

then
@act1 t ap:= clk
@act2 s avi:= ap

end

event tick refines tick
where

@grd1 clk+1−t xs c≤ h max
@grd3 s=vs⇒clk+1− t vs≤ LRI
@grd4 s=us⇒clk+1≤ LRI
@grd5 s avi=vp ⇒ clk+1−t vp c≤ AEI max
@grd6 s avi=us⇒clk+1−t vp c≤ AEI max
@grd7 s avi=ap⇒clk+1−t ap≤AVI max
@grd8 s avi=as⇒clk+1−t as ≤AVI max

then
@act1 clk:= clk+1

end

Figure 7.4: Model AEI and AVI with Intermediate Pattern and Response Patterns

88 Chapter 7 Pacemaker Case Study

@inv3 1 t vp c<t ap⇒t ap−t vp c≥ PVARP
@inv3 2 (t vp p<t vp c⇒ t vp c−t vp p≥ VRP) ∨ (t vs<t vp c⇒t vp c−t vs≥ VRP)

event VS Abt extends VS Abt
where

@grd3 clk≥ t vp c+VRP
end

event AP Resp refines AP Resp
where

@grd1 s avi=vp
@grd3 clk≥ t vp c+ PVARP

then
@act1 t ap:= clk
@act2 s avi:= ap

end

event VP Resp refines VP Resp
where

@grd1 s=vp ⇒ clk≥ t vp c+VRP
@grd2 s=vs ⇒ clk≥ t vs+VRP
@grd3 s=vp ∨ s=vs
@grd4 s avi=ap
@grd5 s 6=as⇒clk≥ t ap+AVI min

then
@act1 t vp c:= clk
@act2 t vp p:= t vp c
@act3 s:= vp
@act4 s avi:= vp

end

Figure 7.5: Extend Model with VRP and PVARP timing properties

tpAVI ∈ [AVI min,AVI max] to represent sAVI and pAVI respectively. The tim-

ing property (7.2b) is refined to timing properties (7.3a) and (7.3b) with the alternative

refinement pattern.

Figure 7.6 shows the model that refines AVI with sAVI and pAVI. We use tpAVI and

tsAVI to replace AVI max in @grd7 and @grd8 of tick event. @inv4 2 and @inv4 4 are

used to show timing intervals of (AP ,VP) and (AS ,VP). @inv4 1 and @inv4 3 serves

as auxiliary invariants for @inv4 2 and @inv4 4 respectively.

Resp(AP Resp,VP Resp,AVI min, tpAVI) (7.3a)

Resp(AS Abt ,VP Resp,AVI min, tsAVI) (7.3b)

@inv4 1 s avi=ap⇒clk−t ap≤tpAVI
@inv4 2 t ap<t vp c⇒t vp c−t ap≥ AVI min ∧ t vp c−t ap≤tpAVI
@inv4 3 s avi=as⇒clk−t as ≤tsAVI
@inv4 4 s avi=as∧t as<t vp c⇒ t vp c−t as≤tsAVI

event tick refines tick
where

@grd7 s avi=ap⇒clk+1−t ap≤tpAVI
@grd8 s avi=as⇒clk+1−t as ≤tsAVI

then
@act1 clk:= clk+1

end

Figure 7.6: Extend Model with sAVI and pAVI timing properties

Chapter 7 Pacemaker Case Study 89

7.2.6 VSP

In real-world cases, oversensing in pacemakers would cause underpacing as the pace-

makers assume the heart is behaving correctly. Crosstalk is one of the oversensing cases

when the stimulus in one chamber is sensed in the other chamber when the pacemaker is

operating under DDD mode. Increasing the sensing threshold of the ventricular channel

could prevent false sensing (Jiang and Mangharam, 2011). But VSP is usually used in

pacemakers to prevent crosstalk. In the fifth refinement, we introduce the VSP time

interval into the model to prevent crosstalk. The AP event would trigger the VP event

during the VSP time interval and produce a typical abbreviation of the paced AV inter-

val, and no VS event could be triggered in between. We refine the pAVI timing property

to the VSP time interval, which we define as [VSP min,VSP max]. After AP occurs,

VP should occur within the [VSP min,VSP max] time interval.

Figure 7.7 shows the model that refines pAVI with [VSP min,VSP max]. @inv5 2

verifies the VSP time interval and @inv5 2 serves as the auxiliary invariant to prove

@inv5 2. Also, we replace grd7 in the tick event in M4 with @grd7 in M5 under the

conditon that VSP max < tpAVI .

axioms
@axm5 1 VSP min>0
@axm5 2 VSP max<tpAVI

invariants
@inv5 1 s avi=ap⇒clk−t ap≤ VSP max
@inv5 2 s avi=ap ∧ t ap<t vp c ⇒t vp c−t ap≥ VSP min ∧ t vp c−t ap ≤ VSP max

event VP Resp extends VP Resp
where

@grd7 s avi=ap⇒clk≥ t ap+VSP min
end

event tick refines tick
where

@grd1 clk+1−t xs c≤ h max
@grd3 s=vs⇒clk+1− t vs≤ LRI
@grd4 s=us⇒clk+1≤ LRI
@grd5 s avi=vp ⇒ clk+1−t vp c≤ AEI max
@grd6 s avi=us⇒clk+1−t vp c≤ AEI max
@grd7 s avi=ap⇒clk+1−t ap≤ VSP max
@grd8 s avi=as⇒clk+1−t as ≤ tsAVI

then
@act1 clk:= clk+1

end

Figure 7.7: Extend Model with VSP Time Interval to Avoid Crosstalk

90 Chapter 7 Pacemaker Case Study

Table 7.1: Proof Statistics of Pacemaker Case Study

Machine Generated PO Automatically Proved %

M0 13 13 100
M1 35 35 100
M2 58 58 100
M3 12 12 100
M4 29 29 100
M5 16 16 100

7.2.7 Proof Statistics

Table 9.1 shows the proof statistics of the model. We adopt a stepwise approach to

model the complicated timing cycles of pacemakers with five levels. Results show that

the proof obligations are discharged automatically by using the patterns that encode

real-time properties in Event-B models.

7.3 Evaluation and Conclusion

To date, many studies have attempted to model and verify the control algorithms for

pacemakers. Jiang et al. (2011) used timed automata (Alur and Dill, 1994) to develop

the random heart model and the pacemaker model to reason about the correction al-

gorithms for the endless loop tachycardia (ELT) and pacemaker mode-switch clinical

cases. The model checking tool UPPAAL (Larsen et al., 1997) has been used to reveal

safety violations in the system specification. Méry et al. (2011) developed a single elec-

trode pacemaker system with the Event-B formalization and implemented the different

operating modes of pacemakers in stepwise refinement. An action-reaction pattern was

used to model the causal order between events. Time constraints were put between

action and reaction events to model real-time properties. Based on the action-reaction

pattern proposed by Cansell et al. (2007), Poppleton and Rezazadeh (2012) developed

the pacemaker model under AAI, VVI and VDD mode. Sulskus et al. (2016) presented

a template-based timing constraint modeling scheme that modeled the time interval in

Event-B models and applied the scheme in the pacemaker case study. Their work mainly

focused on the finite-state space model. Model checking was used to verify the correct-

ness of the system. However, our approach modeled the timed system with unbounded

clock variable and uses theorem proving to verify the consistency of timing cycles.

Based on work that provided formal semantics of trigger-response properties in Chap-

ter 4, we made new contributions by providing four generic real-time specification pat-

terns and two refinement patterns that can be used to bridge the gap between informal

requirements and formal specifications. The new patterns not only allow modeling of

timing properties between trigger and response events, but also allow modeling of the

Chapter 7 Pacemaker Case Study 91

interrupt and reoccurrence behavior in real cases. Templates were provided to show how

to apply the patterns syntactically in Event-B models. We showed that the complicated

timing cycles in pacemakers could be developed in a stepwise manner by applying dif-

ferent real-time specification patterns and refinement patterns. The proof results of the

model also showed that the usage of patterns could help to discharge the Event-B proof

obligations automatically in the Rodin tool.

Chapter 8

Formalization of Parameterized

Timing Properties

In Chapter 6, we presented the formalization that extends Event-B models with real-

time trigger-response properties. However, the formalization does not distinguish timing

properties for different system design phases and cannot show the communication and

competition between concurrent tasks in concurrent or distributed systems. In this chap-

ter, we present the formalization of parameterized timing properties in Event-B models

to model end-to-end timing properties. We distinguish end-to-end timing properties and

scheduler-based timing properties from different system design phases. End-to-end tim-

ing properties are defined as high-level timing properties from the system requirement

specification phase, which place discrete time properties on individual tasks. However,

these end-to-end timing properties cannot describe the concurrent behavior of tasks

precisely. In real-time systems, there are always several tasks running concurrently.

High-level time constraints for each task cannot guarantee the timing behavior of the

whole system. To model the behavior of these concurrent tasks, we defined scheduler-

based timing properties as concrete timing properties for the system design phase, which

place discrete time constraints on the scheduler which schedules the concurrent tasks.

And we use unparameterised timing properties to model these scheduler-based timing

properties. In this chapter, we first present a formal definition of parameterized timing

properties together with the primary and auxiliary invariants required to prove that

an Event-B model satisfies specific timing properties. Then we propose a refinement

pattern for generating auxiliary invariants to replace parameterized timing properties to

unparameterized timing properties

93

94 Chapter 8 Formalization of Parameterized Timing Properties

8.1 Parameterized Real-Time Trigger-Response Properties

In Event-B models, parameters of events can be used to treat the concurrency of the

system (Butler, 2009). An Event-B machine first executes the initialization, followed

by nondeterministically executing some enabled event. When modeling a concurrent

system, instead of having separate atomic events for each task of the concurrent system,

parameterized events can be used to model the atomic steps of each task. Additionally,

in concurrent systems, parameterized trigger-response timing properties can be used to

specify the timing properties of each task.

Given an Event-B machine M with event labels E , which contains a trigger-response

pair (T ,R), we extend our definition for the real-time trigger-response properties to

parameterized trigger-response properties as in Definition 8.1. In this definition, we use

X to denote the parameter value set. Assume that event e has a parameter p, e.x is

defined as the semantic label used to represent occurrence of event e with parameter p

instantiated with value x . The representation of a parameterized event e, with parameter

p and operating on state variable v is represented by guard predicate Ge(p, v) and

before-after predicate Se(p, v , v ′). The semantic labels T .x and R.x are used to denote

the occurrence of trigger events T or response events R with parameter p instantiated

with value x , which are formally presented as (8.1a) and (8.1b).

T .x , where GT (x , v) then ST (x , v , v ′) (8.1a)

R.x , where GR(x , v) then SR(x , v , v ′) (8.1b)

Definition 8.1 (Parameterized Trigger-Response Ordering Property). Given an Event-

B machine M with events E and invariants I (v), a parameterized trigger-response pair

has the form (T ,R,X) where T ⊆ E are trigger events with a parameter p, R ⊆ E are

response events with a parameter p, and T ∩R = ∅. M satisfies sequential ordering for

(T ,R,X) provided the following conditions hold.

1. GR(p, v)⇒¬GT (p, v)

2. I (v)∧Gt(p, v)∧St(p, v , v
′)⇒¬Gt(p, v

′)∧GR(p, v ′)

3. e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GR(p, v)⇒GR(p, v ′)

4. I (v)∧Gr (p, v)∧Sr (p, v , v ′)⇒¬Gr (p, v ′)

In Definition 8.1, we use GT (p, v) to denote the disjunction of all Gt(p, v) with t ∈ T

and GR(p, v) to denote the disjunction of all Gr (p, v) with r ∈ R. When extending

Event-B models with timing properties, the five conditions of Definition 8.1 are required

to guarantee the sequential order of parameterized trigger-response pairs. Condition 1

specifies that when a trigger event is enabled, the response events must be disabled.

Chapter 8 Formalization of Parameterized Timing Properties 95

Condition 2 requires that once a trigger event t .x occurs, it disables itself and enables

some response event r .x . Condition 3 requires that each e ∈ E \ (T ∪ R) preserves the

predicate GR(p, v). Condition 4 requires that each response event r disables itself.

Similar to Definition 3.10, we define parameterized real-time trigger-response properties

in Definition 8.2. w and d are total functions from the parameter value set X to the

natural number set N, which define the delay and deadline for each specific parameter

instance.

Definition 8.2 (Parameterized Real-Time Trigger-Response Property). A parameter-

ized real-time trigger-response property has the form:

all x in X Resp(T .x ,R.x ,w(x), d(x)) (8.2)

where delay w ∈ X → N and deadline d ∈ X → N.

Similar to behaviors of a machine with unparameterized timing properties, the behav-

iors of a model with parameterized real-time trigger-response property in (8.2) satisfies

two properties: 1) the number of Tick events between each trigger event T .x and its

corresponding response event R.x is bounded by the delay time w(x) and deadline time

d(x); 2) no two occurrences of T .x are allowed without an occurrence of R.x in be-

tween. In Event-B models, we construct Inv 1 to capture the fact that each unique

trigger-response pair (T .x ,R.x) is bounded by the deadline time d(x). Inv 1 formalizes

the safety property that when a response event occurs, the time between trigger and

response event should be bounded by d(x).

∀x ·x ∈ X ∧ τT (x) ≤ τR(x)⇒ τR(x)− τT (x) ≤ d(x) (Inv 1)

Figure 8.1 shows the formalization we use that extends the untimed machine with

(T ,R,X) to timed machine with parameterized timing properties in (8.2) for each

trigger-response pair (t .x , r .x) where t ∈ T and r ∈ R. The formalism is similar

to the one used to extend the machine with unparameterized timing properties. The

timestamp variable τt ∈ X → N and τr ∈ X → N are set by the before-after predicate

in the trigger and response events respectively. Additional constraints relating to τt(x)

and τr (x) are imposed on the response event R and Tick event. Here GTick (v) in equa-

tion (8.3) denotes the guard of Tick event. In the Gt(p, v) and Gr (p, v) predicate, we

substitute the parameter p with x .

GTick (v) , ∀x ·x ∈ X ∧GR(x , v)⇒ clk + 1 ≤ τT (x) + d(x) (8.3)

With the formalization shown in Figure 8.1, the response is constrained by the guard

clk ≥ τt(x) + w(x), which guarantees that response event R.x can occur only after the

96 Chapter 8 Formalization of Parameterized Timing Properties

event t
any p
where
Gt(p, v)

then
v:= St(p, v , v

′)
τt(p):= clk

end

event r
any p
where
Gr (p, v)
clk ≥ τt(p)+w(p)

then
v:= Sr (p, v , v ′)
τr (p):= clk

end

event Tick
where
∀x·x∈ X ∧ Gr (x , v) ⇒ clk+1
≤ τt(x)+d(x)

then
clk:= clk+1

end

Figure 8.1: Formalization that Extends the Machine with parameterized timing prop-
erties (8.2) for each trigger-response pair (t .x , r .x) where t ∈ T and r ∈ R

delay time w(x) has passed. No additional gluing invariants are required for the delay

constraint. Thus, in this section we focus on deadlines and not the delays. Inv 2 is an

auxiliary invariant that can be used to prove Inv 1, which defines the state where the

trigger event occurred while the response event has not occurred, and the time between

the current time and the timestamp of the trigger event should also be bounded by d(x).

We first construct Lemma 8.3 to prove that Inv 2 is preserved by all the events of the

machine with timing encoded.

∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk − τT (x) ≤ d(x)) (Inv 2)

Lemma 8.3. Given the formalization in Figure 8.1 that extends the machine with

all x in X Resp(T .x ,R.x ,w(x), d(x)), Inv 2 is preserved by all the events in the ex-

tended machine.

Proof. Given Inv 2, the only events that change the variables of the invariant are trig-

ger events t ∈ T and Tick event. Thus in the proof we mainly examine these two events.

For the trigger events, preservation of Inv 2 is represented as follows:

H0 : ∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk − τT (x) ≤ d(x))

H1 : I (v)∧Gt(p, v)∧St(p, v , v
′)

G : ∀x ·x ∈ X ⇒ (GR(x , v ′)⇒ clk ′ − τ ′T (x) ≤ d(x))

Assume x ∈ X and GR(x , v ′), we have to prove clk ′ − τ ′T (x) ≤ d(x).

Chapter 8 Formalization of Parameterized Timing Properties 97

clk ′ − τ ′T (x) ≤ d(x)

〈Case x=p〉
clk ′ − τ ′T (p) ≤ d(p)

≡ 〈St(p, v , v
′) : clk ′ = clk ; τ ′T = (τT C− {p 7→ clk})〉

clk − (τT C− {p 7→ clk})(p) ≤ d(p)

≡ 〈(τT C− {p 7→ clk})(p) = clk〉
clk − clk ≤ d(p)

≡ 〈0 ≤ d(p)〉
>
〈Case x 6= p〉

clk ′ − τ ′T (x) ≤ d(x)

≡ 〈St(p, v , v
′) : clk ′ = clk ; τ ′T = (τT C− {p 7→ clk})〉

clk − τT (x) ≤ d(x)

⇐ 〈H0〉
>

For the Tick event, the preservation of Inv 2 is represented by:

H0 : ∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk − τT (x) ≤ d(x))

H1 : ∀x ·x ∈ X ∧GR(x , v)⇒ clk + 1− τT (x) ≤ d(x)

H2 : clk ′ = clk + 1

G : ∀x ·x ∈ X ⇒GR(x , v ′)⇒ clk ′ − τ ′T (x) ≤ d(x)

∀x ·x ∈ X ⇒GR(x , v ′)⇒ clk ′ − τ ′T (x) ≤ d(x)

≡ 〈clk ′ = clk + 1; τ ′T (p) = τT (p)〉
∀x ·x ∈ X ⇒GR(x , v ′)⇒ clk + 1− τT (x) ≤ d(x)

≡ 〈H1〉
>

In the formalization, clk is increased by the Tick event only. The difference between

τT (p) and τR(p) stands for the number of Tick events between T .x and R.x . When

τT (p) ≤ τR(p), the response event R.x must have occurred after the trigger event.

Therefore, when Inv 1 is preserved by the model, the behavior of the model satisfies

the properties of parameterized timing properties. Hence, we construct Theorem 8.4

to prove that Inv 1 is preserved by all the events in a machine, which shows that the

behavior of the model satisfies the parameterized real-time trigger-response properties.

98 Chapter 8 Formalization of Parameterized Timing Properties

Theorem 8.4. Given the formalization in Figure 8.1 that extends machine M with

all x in X Resp(T .x ,R.x ,w , d), invariant Inv 1 is preserved by all the events in the

extended machine.

Proof. Given Inv 1, the only events that changes the τT variables and τR variables are

t and r events where t ∈ T and r ∈ R. Thus in the proof we only examine these two

events.

For the trigger events, the preservation of Inv 1 is represented by:

H0 : ∀x ·x ∈ X ∧ τT (x) ≤ τR(x)⇒ τR(x)− τT (x) ≤ d(x)

H1 : I (v)∧Gt(p, v)∧St(p, v , v
′)

G : ∀x ·x ∈ X ∧ τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

∀x ·x ∈ X ∧ τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

⇐ 〈x is not free in H0〉
τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

〈Case x=p〉
τ ′T (p) ≤ τ ′R(p)⇒ τ ′R(p)− τ ′T (p) ≤ d(p)

≡ 〈St(p, v , v
′) : τ ′R = τR; τ ′T = (τT C− {p 7→ clk})〉

τ ′T (p) ≤ τ ′R(p)⇒ τR(p)− clk ≤ d(p)

≡ 〈0 ≤ d(p)∧ τR(p) ≤ clk〉
τ ′T (p) ≤ τ ′R(p)⇒> ≡ >
〈Case x 6= p〉

τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

≡ 〈St(p, v , v
′) : τ ′R = τR; τ ′T = (τT C− {p 7→ clk})〉

τT (x) ≤ τR(x)⇒ τR(x)− τT (x) ≤ d(x)

⇐ 〈H0〉
>

For the response events, the preservation of Inv 1 is represented by:

H0 : ∀x ·x ∈ X ∧ τT (x) ≤ τR(x)⇒ τR(x)− τT (x) ≤ d(x)

H1 : I (v)∧GR(p, v)∧Sr (p, v , v ′)

G : ∀x ·x ∈ X ∧ τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

Chapter 8 Formalization of Parameterized Timing Properties 99

∀x ·x ∈ X ∧ τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

⇐ 〈x is not free in H0〉
τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

〈Case x = p〉
τ ′T (p) ≤ τ ′R(p)⇒ τ ′R(p)− τ ′T (p) ≤ d(p)

≡ 〈St(p, v , v
′) : τ ′T = τT ; τ ′R = (τR C− {p 7→ clk})〉

τT (p) ≤ τR(p)⇒ clk − τT (p) ≤ d(p)

⇐ 〈strengthen predicate〉
clk − τT (p) ≤ d(p)

⇐ 〈 Inv 2:GR(p, v)⇒ clk − τT (p) ≤ d(p)〉
GR(p, v)

⇐ 〈H1〉
>
〈Case x 6= p〉

τ ′T (x) ≤ τ ′R(x)⇒ τ ′R(x)− τ ′T (x) ≤ d(x)

≡ 〈St(p, v , v
′) : τ ′T = τT ; τ ′R = (τR C− {p 7→ clk})〉

τT (x) ≤ τR(x)⇒ τR(x)− τT (x) ≤ d(x)

⇐ 〈H0〉
>

8.2 Replacing Parameterized Timing Property with Un-

parameterized Timing Properties

In concurrent computing, concurrent tasks are executed by interleaving the execution

steps of each task, which models tasks in the outside world that happen concurrently.

In real-time systems, scheduling is used to make sure that all tasks meet their dead-

lines (Alur, 2015). A scheduler is used to allocate the resource to a task for some time.

Parameterized timing properties describe time bounds over quantified trigger-response

pairs. This method lacks an adequate representation of the conflicts of timing proper-

ties resulting from the competition between concurrent trigger-response pairs. Global

schedulers are used to schedule the tasks to execute. We employ unparameterized tim-

ing properties Resp(P ,Q , 0,wt) to represent the timing properties of global schedulers,

which can be used to replace end-to-end timing property in (8.4) with additional con-

straints. In this section, we present a pattern for replacing an end-to-end timing property

100 Chapter 8 Formalization of Parameterized Timing Properties

with a collection of scheduler-based timing properties.

all x in X Resp(T .x ,R.x , 0, d(x)) (8.4)

In the refinement, the timing properties at the abstract level could be replaced by other

timing properties at the concrete level. One end-to-end timing property in (8.4) could be

replaced by n scheduler-based timing properties presented in (8.5). Take HS system as

an example, the abstract timing property (9.1b) is replaced by a set of concrete timing

properties (9.2a) and (9.2b). We construct a pattern to replace the timing properties so

that the refinement is preserved.

Resp(P1,Q1, 0,wt1)

Resp(P2,Q2, 0,wt2)

...

Resp(Pn ,Qn , 0,wtn)

(8.5)

As presented in Figure 8.1, the guard of Tick event is determined by the timestamps

of trigger events and the predicate GR. Thus we use the relation between the times-

tamps of P and T and the relation between abstract event set R and concrete event

sets Q1,Q2, . . . ,Qn to construct the gluing invariants that relate the end-to-end timing

properties and scheduler-based timing properties.

When replacing the end-to-end timing properties with scheduler-based timing properties,

the schedulers determine the waiting time of each task based on its scheduling policy.

Thus, for each scheduler-based timing property Resp(Pi ,Qi , 0,wti), where i ∈ 1 . . .n,

that replaces the end-to-end timing property all x in X Resp(T .x ,R.x , 0, d(x)), we use

a function gi(x) to denote the maximum waiting time of each waiting task x for other

tasks to run under the specific scheduling policy. This gi(x) can be provided by modelers

based on different real-time scheduling specifications, which can be used to relate the

timestamps of P and T . We use τT (x) and τR(x) to represent the timestamps of events

T .x and R.x , and τP and τQ to represent the timestamps of events P and Q respectively.

As shown in the formalism presented in Figure 8.1, the timestamps are updated when

the corresponding trigger and response events occur. We require that gi(x) of each x is

updated by the trigger event P simultaneously with τP . It is obvious that gi(x) should

satisfy the condition presented in Equation (8.6), which requires that maximum waiting

time of each task x should be less than its deadline d(x).

∀x ·x ∈ X ∧GR(x , v)⇒ 0 ≤ gi(x) ≤ d(x) (8.6)

Figure 8.2 shows the time diagram of an example that replaces the parameterized timing

Chapter 8 Formalization of Parameterized Timing Properties 101

property in (8.4) with a single unparameterized timing property Resp(P ,Q , 0,wt). As-

sume that tasks are being executed in the order p1 → p2 → p3 and that the worst-case

execution time is wt ∈ N. p3 has to wait for p1 and p2 to finish being executed before it

is executed. In the refined model, some unparameterised event can be used to replace

the parameterized events. For example, in the abstract model we use T .x to denote the

event that some task x wishes to run. τT (x) is used to denote the timestamp of each

T .x event. We also use d(x) to denote the execution deadline for each task. In the

refined model, we use event P to denote the event at which the scheduler allows some

task to run and Q to denote the event that stops executing a running task. When τP

is initially updated, the maximum waiting time for p2 is wt and the maximum waiting

time for p3 is 2 ∗ wt . Thus g(p2) = wt and g(p3) = 2 ∗ wt . After p1 finishes executing,

τP is updated again by the scheduler. In this case p2 does not need to wait and the

maximum waiting time for p3 is wt . After p2 finishes executing, g(p3) = 0.

τT(x) d(x)

Abstract Timeline

Concrete Timeline

g(p3)

τP

wt

g(p2)

Concrete Timeline

τP

g(p3) wt

τP

wt

Concrete Timeline

Figure 8.2: Time Diagram of Replacement of Parameterized Timing Properties to
Unparameterized Timing Properties

Besides the relation between timestamps of trigger events, we also show the relation

between the guards of the response events. For each task x ∈ X , we want to show the

response events R.x could be represented by some response event Qi of the scheduler

where i ∈ 1 . . .n. Based on the above assumptions, we construct Theorem 8.5 to provide

gluing invariants that relate the scheduler-based timing properties and end-to-end timing

properties. We mainly show that the GRD proof obligation of Tick event is discharged

by the additional conditions provided in Theorem 8.5.

Theorem 8.5. Given a machine M with end-to-end timing property in (8.4) to be refined

with a machine N with scheduler-based timing property presented in (8.5). Given that a

function gi(x) that represents the waiting time of each task x under the specific scheduling

policy is provided for each Resp(Pi ,Qi , 0,wti) where i ∈ 1 . . .n. The scheduler-based

timing properties replace the end-to-end timing property when:

102 Chapter 8 Formalization of Parameterized Timing Properties

1. HQi (w)⇒(τPi +gi(x)+wti ≤ τT (x)+d(x)) is a valid invariant for each Resp(Pi ,Qi , 0,wti)

where i ∈ 1 . . .n;

2. ∀p ·GR(p, v)⇒ HQ1(w)∨HQ2(w) . . .∨HQn (w), where GR is the guard of the re-

sponse event of the end-to-end timing property, and HQi is the guard of the re-

sponse event of a timing property Resp(Pi ,Qi , 0,wti) that replaces the abstract

timing property.

Proof. In this proof we want to show that the GRD proof obligation for the Tick event,

formally presented as I (v)∧ J (v ,w)∧HTick (w)⇒GTick (v).

H0 : GR(p, v)⇒HQ1(w)∨HQ2(w) . . .∨HQn (w)

H1 : (HQ1(w)⇒ clk + 1 ≤ τP1 + wt1)∧(HQ1(w)⇒ (τP1 + g1(x) + wt1 ≤ τT (x) + d(x)))

H2 : (HQ2(w)⇒ clk + 1 ≤ τP2 + wt2)∧(HQ2(w)⇒ (τP2 + g2(x) + wt2 ≤ τT (x) + d(x)))
...

Hn : (HQn (w)⇒ clk + 1 ≤ τPn + wtn)∧(HQn (w)⇒ (τPn + gn(x) + wtn ≤ τT (x) + d(x)))

G : ∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk + 1 ≤ τT (x) + d(x))

Assume x ∈ X and GR(x , v). We have to show clk + 1 ≤ τT (x) + d(x)

clk + 1

≤ 〈H0 : ∃i ·HQi with Hi〉
τPi + wti

≤ 〈gi(x) ≥ 0〉
τPi + gi(x) + wti

≤ 〈H0 : ∃i ·HQi with Hi〉
τT (x) + d(x)

8.3 Conclusion

Based on a trigger-response approach to modeling timing properties in Event-B, we

presented the syntax of parameterized real-time trigger-response properties with Event-

B formalization and proofs. Rules and proofs were provided to replace parameterized

timing properties with unparameterized timing properties. To distinguish timing prop-

erties from the perspective of different system design phases, we defined parameterized

timing properties that place discrete-time constraints on individual tasks as end-to-end

Chapter 8 Formalization of Parameterized Timing Properties 103

timing properties, which describe high-level timing properties from the system require-

ment specification phase. These end-to-end timing properties cannot precisely describe

the concurrent behavior of tasks. In real-time systems, schedulers are used to sched-

ule concurrent tasks. To model the behavior of these concurrent tasks, we defined

scheduler-based timing properties with unparameterized timing properties as concrete

timing properties for the system design phase, which places discrete-time constraints

on the scheduler that schedules the concurrent tasks. In Chapter 9, we used the rule

that replaces the end-to-end timing properties with scheduler-based timing properties

to model a two-level hierarchical scheduling system.

Chapter 9

Hierarchical Real-time Scheduling

System

In Chapter 8, we present the syntax of parameterized real-time trigger-response prop-

erties with Event-B formalization and proofs. Rules and proofs are provided to replace

parameterized timing properties with unparameterized timing properties. Based on the

formalization and replacement pattern, we formalize a two-level hierarchical schedul-

ing system that allows compositional scheduling policies in this chapter. Based on the

replacement pattern, we develop a nondeterministic scheduling framework to replace

end-to-end timing properties with scheduler-based timing properties. Then, this frame-

work is refined to two alternative scheduling policies, namely, first-in-first-out (FIFO)

and deferrable priority-based (DPB) scheduler with an aging technique. This chapter

only introduces time-division multiplexing (TDM) as the global scheduler but also com-

bines the two scheduling policies into one refinement to show that the local schedulers

are compatible with different scheduling policies.

9.1 Hierarchical Scheduling System

With the emerging trend in real-time systems toward implementing functionalities in

different levels on a shared platform, hierarchical scheduling (HS) systems are designed

to use compatible schedulers to allocate CPU time so that all real-time applications meet

their deadlines (Stankovic et al., 1998). In concurrent computing, concurrent tasks are

executed by interleaving the execution steps of each task, which models tasks in the

outside world that happen concurrently. When there are more tasks than processors,

time slicing is usually used to simulate concurrency. In real-time systems, scheduling is

used to make sure that all tasks meet their deadlines (Alur, 2015). A scheduler is used to

allocate the resource between tasks with different execution time. Shared memory model

is one of the common models for concurrent systems. In this section, we mainly show how

105

106 Chapter 9 Hierarchical Real-time Scheduling System

to use Theorem 8.5 to replace parameterized timing properties with unparameterized

timing properties. We use a two-level HS system to illustrate the replacement from end-

to-end timing properties to scheduler-based timing properties under two assumptions.

We first assume that the two-level hierarchical scheduling system only has one processor

to run the tasks concurrently. We also assume that only one critical section is used

for local resource sharing and there is no global resource sharing. Figure 9.1 shows a

two-level HS that composes existing applications with different timing characteristics by

using time-division multiplexing (TDM) as the global scheduler. The global scheduler

decides which application should proceed and for how long. Then, each application uses

its local scheduler to select which task to execute next. The TDM scheduler partitions

a period into several time slots and assigns each of them to a single application. Take

Figure 9.1 as an example. The TDM scheduler partitions the period of 50s into five time

slots with 10s for each application. Then each application uses its local scheduler to

schedule the concurrent tasks that might have dependencies on each other. In this case

study, we do not address the cases of global resource sharing in HS systems. Therefore

tasks of the same application might have a shared code segment that accesses shared

variables. We use critical sections to present the code segment, which have to be executed

as an atomic action. Tasks of different applications do not share critical sections. Our

main system requirements (SRs) are as follows:

SR-1 Tasks of different applications do not share critical sections.

SR-2 No more than one application can be in the same time slot at any time.

SR-3 No more than one task of the same application can be in its critical section at any

time.

SR-4 Each application is assigned a time slot to run the tasks.

SR-5 If a task wishes to enter its critical section when the application is running, it will

enter the critical section within a certain deadline.

Figure 9.2 describes our refinement strategy to formalize the two-level HS system. In

the abstract model, we first introduce a TDM global scheduler for applications and tasks

in applications. Then we replace the end-to-end timing properties with scheduler-based

timing properties by using a nondeterministic scheduling framework. This framework

is refined to two alternative scheduling policies, namely, first-in-first-out (FIFO) and

deferrable priority-based (DPB) scheduler with an aging technique. The refinement

strategy is presented as follows:

M0 specifies the local resource sharing system.

M1 introduces end-to-end timing properties for individual tasks and allocates applica-

tions with time slots.

Chapter 9 Hierarchical Real-time Scheduling System 107

Operation System

A1 A2

A3 …

Application A1

Task11 Task12

Task13 …

Application A2

Task21 Task22

Task23 …

…

A1 A3 A2 A1 A2

TDM global scheduler

10s

50s

T21 T23

FIFO local scheduler

T22

run

ready

T13 T11

DPB local scheduler

T12

run

ready

Figure 9.1: Two-level Hierarchical System

M2 formalizes the sequence order of tasks with a nondeterministic queue-based schedul-

ing framework

M3 replaces the end-to-end timing property into scheduler based timing property with

nondeterministic queue-based scheduling framework.

M4 refines the nondeterministic queue-based scheduling framework into two alternative

local schedulers.

abstract model

Nondeterministic
Queue-Based

Scheduling

FIFO Local
Scheduler

DPB Local
Scheduler

refines

refines refines

Task-based
Timing Property

Scheduler-based
Timing Property

TDM Scheduler

+

Figure 9.2: Refinement Strategy of Two-level Hierarchical System

In the next section, we explain these models and refinements in more detail and present

part of our formalization.

108 Chapter 9 Hierarchical Real-time Scheduling System

9.2 Formalizing Hierarchical Scheduling with Timing Prop-

erties

9.2.1 Formalizing TDM and Local Resource Sharing with Mutual Ex-

clusion

In the most abstract level M0, a mutual exclusion model is proposed to address the

dependencies within applications and tasks. The model guarantees that no two appli-

cations can be in the same time slot simultaneously and that no two tasks of the same

application can be in the critical section simultaneously. We begin by defining the initial

context in Figure 9.3. In the context, we define the carrier set APPS and TASKS of

all applications and tasks in the HS system. We define apps as a total surjection from

TASKS to APPS as a task cannot belong to two different applications. Additionally,

the set of tasks of each application is finite, and its value is less than N .

sets APPS TASKS
constants apps N
axioms

@axm0 1 apps∈ TASKS →→ APPS
@axm0 2 ∀a·a∈ APPS ⇒ finite(apps∼[{a}])
@axm0 3 ∀a·a∈ APPS ⇒ card(apps∼[{a}])≤ N
@axm0 4 N>0

end

Figure 9.3: Initial Context c0

In our initial model in Figure 9.4, we formalize the mutual exclusion model by using

app run and task run variables. The variable app run represents the set of applications

that are currently running, whereas the variable task run represents the set of tasks

that are currently being executed. Variables app wait and task wait denote the set of

applications and tasks that are ready to run. The invariants inv0 1-inv0 4 formalize

the relationships between the ready or waiting applications and tasks to the whole set.

The invariants inv0 5-inv0 6 guarantee that only one application and one task can

be executed at any time. inv0 7 guarantees that the tasks that are waiting or being

executed belong to the application that is being executing.

In the abstract model, we use three events, namely, ready , run and finish, to model

the behaviors of applications and tasks ready to run, execute and finish executing, re-

spectively. As the mutual exclusion model is similar for applications and tasks, we take

the events of applications as an example to illustrate the model. Figure 9.4 gives the

abstract mutual exclusion model for applications. Here, we use quantified variable a to

represent an application. The event APP READY (a) models the point at which appli-

cation a is ready to run. Event APP RUN (a) models the point at which the application

Chapter 9 Hierarchical Real-time Scheduling System 109

starts running, while event APP FINISH (a) models the point at which the application

finishes running. We use the same approach to model the behaviors of tasks of an appli-

cation. Since the ready and running tasks should belong to the application that is being

executed, we add an additional guard apps(t) ∈ app run to the TASK READY event

to guarantee inv0 7. Take Figure 9.1 as an example. Applications A1, A2 and A3 wish

to run, and the TDM global scheduler assigns each application a time slot to run. When

application A2 is running, it executes different tasks with the DPB scheduling policy.

For example, tasks T21, T23 and T22 wish to be executed with the TASK READY

event. Then the TASK RUN (T21) event is executed since T21 is at the head of the

queue. After T21 finishes, TASK RUN (T23) is executed.

invariants
@inv0 1 app wait ⊆ APPS
@inv0 2 app run ⊆ APPS
@inv0 3 task wait ⊆ TASKS
@inv0 4 task run ⊆ TASKS
@inv0 5 finite(app run) ∧ card(app run)≤ 1
@inv0 6 finite(task run) ∧ card(task run)≤ 1
@inv0 7 ∀t·t∈ (task wait ∪ task run)⇒apps(t)∈ app run

event APP READY
any a
where

@grd1 a∈ APPS\app wait
@grd2 a∈ APPS\app run

then
@act1 app wait:= app wait∪{a}

end

event APP RUN
any a
where

@grd1 a∈ app wait
@grd2 app run=∅

then
@act1 app wait:= app wait\{a}
@act2 app run:= app run ∪ {a}

end

event APP FINISH
any a
where

@grd1 a∈ app run
@grd2 task wait=∅ ∧ task run=∅

then
@act1 app run:= app run\{a}

end

event TASK READY
any t
where

@grd1 t∈ TASKS\task wait
@grd2 t∈ TASKS\task run
@grd4 apps(t)∈ app run

then
@act1 task wait:= task wait∪{t}

end

event TASK RUN
any t
where

@grd1 t∈ task wait
@grd2 task run=∅

then
@act1 task wait:= task wait\{t}
@act2 task run:= task run ∪ {t}

end

event TASK FINISH
any t
where

@grd1 t∈ task run
then

@act1 task run:= task run\{t}
end

Figure 9.4: Initial Model with TDM and Local Resource Sharing

110 Chapter 9 Hierarchical Real-time Scheduling System

Scheduling is used to allocate the processing time for concurrent tasks to maximize real-

time performance (Alur, 2015). To guarantee that all the high-level timing requirements

of individual tasks are satisfied by the system, we begin by formalizing high-level tim-

ing properties with the parameterized real-time trigger-response properties defined in

Section 8.1. Then, we use different scheduling policies to replace the end-to-end tim-

ing properties with scheduler-based timing properties. Additional gluing invariants are

provided based on the proposed refinement rules.

9.2.2 End-to-end Timing Properties

We define end-to-end timing properties as high-level timing properties to specify the

time constraints of individual tasks in the HS system. Based on the abstract model that

specifies no two tasks of the same application can be in the critical section simultaneously,

we introduce parameterized real-time trigger-response properties to the model as end-to-

end timing properties (9.1a) and (9.1b) in the first refinement. Timing property (9.1a)

ensures that each application occupies the CPU resource for app ddl . For each a in

the APPS set, the time between the occurrence of APP READY .a and APP RUN .a

is bounded below by 0 and above by app ddl . Timing property (9.1b) guarantees that

if a task wishes to enter its critical section, it will enter the critical section within the

specified timing property task ddl . Figure 9.5 shows the refinement with end-to-end

timing property for each application. The timing property of each task can be modeled

with the same pattern. We use @axm1 3 to guarantee that all tasks of one application

finish executing within the application execution time. at(a) models the timestamp at

which application a wishes to occupy CPU time. ar(a) models the timestamp at which

application a gets the CPU to run tasks. tt(t) models the timestamp at which task

t wishes to enter the critical section. tr(t) models the timestamp task entering the

critical section. @inv1 6 and @inv1 8 capture the end-to-end timing property based on

parameterized real-time trigger-response property semantics. Since timed machine of

Figure 9.5 is constructed according to the approaches of Section 8.1, from Theorem 8.4

we have that @inv1 6 to @inv1 9 are preserved.

all a in APPS Resp(APP READY .a,APP RUN .a, 0, app ddl) (9.1a)

all t in TASKS Resp(TASK READY .t ,TASK RUN .t , 0, task ddl) (9.1b)

9.2.3 Replacing End-To-End Timing Property with Scheduler-Based

Timing Properties

In the next refinement of the case study, we specify two scheduler-based timing properties

with unparameterized timing properties (9.2a) and (9.2b). Property (9.2a) requires

Chapter 9 Hierarchical Real-time Scheduling System 111

constants app ddl task ddl
axioms

@axm1 1 app ddl>0
@axm1 2 task ddl>0
@axm1 3 N ∗ task ddl≤ app ddl

invariants
@inv1 6 ∀a·at(a)≤ ar(a)⇒ ar(a)−at(a)≤ app ddl
@inv1 7 ∀a·a∈ app wait⇒clk−at(a)≤ app ddl
@inv1 8 ∀t·tt(t)≤ tr(t)⇒ tr(t)−tt(t)≤ task ddl
@inv1 9 ∀t·t∈ task wait⇒clk−tt(t)≤ task ddl

event APP READY extends APP READY
then

@act2 at(a):= clk
end

event APP RUN extends APP RUN
then
@act3 ar(a):= clk

end

event TICK
where

@grd1 ∀a·a∈ app wait ⇒ clk+1−at(a)≤
app ddl

@grd2 ∀t·t∈ task wait ⇒ clk+1−tt(t)≤
task ddl

then
@act1 clk:= clk+1

end

Figure 9.5: First Refinement with End-to-end Timing Properties

that when the system is idle, one of the requesting tasks will enter the critical section

within idletime. Specifically, there are two cases that trigger the scheduling of the

enter event: 1) a task wishes to enter, and both the queue and the critical section

are empty, and 2) some task leaves the critical section, and there is some other task

waiting in the queue. Observe here that events can act as timing triggers only under

certain conditions; e.g., the wish event is only a timing trigger when the queue and

critical section are empty. To address such conditional triggers, we split the event

into separate refinements representing separate cases. We refine the TASK READY

event into a TASK READY EMPTY event, enabled when the first condition holds,

and a TASK READY NONEMPTY event, enabled when the second condition holds.

Similarly, we split the TASK FINISH event into a TASK FINISH NONEMPTY event,

enabled when the second condition holds, and a TASK FINISH IDLE event, enabled

when the last task in the queue finish executing. The events TASK READY EMPTY

and TASK FINISH NONEMPTY are therefore used as trigger events in (9.2a), whereas

the response event TASK RUN is the event modeling entering the critical section.

(9.2b) requires that once a task enters the critical section, it will leave the critical section

within runtime. Therefore, the trigger event is the TASK RUN event, whereas response

events should correspond to leaving the critical section. As the latter is now captured by

two events, there are two response events in (9.2b). Here, TASK FINISH NONEMPTY

implies that when some tasks finish executing, others are still waiting in the queue.

TASK FINISH IDLE denotes the situation in which the last task in the queue finishes

112 Chapter 9 Hierarchical Real-time Scheduling System

executing.Resp(TASK READY EMPTY ,TASK RUN , 0, idletime)

Resp(TASK FINISH NONEMPTY ,TASK RUN , 0, idletime)
(9.2a)

Resp(TASK RUN ,TASK FINISH NONEMPTY , 0, runtime)

Resp(TASK RUN ,TASK FINISH IDLE , 0, runtime)
(9.2b)

9.2.4 Nondeterministic Queue-Based Scheduling

In our HS system that replaces the end-to-end deadline constraint with scheduler-based

deadline constraints, we propose a nondeterministic queue-based scheduling framework

to address the scheduling order of the sequential execution of a set of events. In this

framework, a queue is used to manage the ready tasks. Each task is formally assigned

a position in the queue: queue ∈ wait � (0..N − 1). When one task is ready, it is

nondeterministically assigned a natural number that is not in the range of the queue.

Only the task in the front of the queue (min(ran(queue))) can get the resource to run.

The dequeue operation will decrease the indexes of all other tasks in the queue by the

index of the front task plus one (min(ran(queue)) + 1) to guarantee that once a task is

added to the queue, and it will eventually have the opportunity to run. In the second

refinement, we use this nondeterministic queue-based scheduling framework to impose

an order on the execution of the concurrent tasks. This refinement prevents a task from

entering the critical section endlessly while also not allowing other tasks to enter the

critical section. The second refinement is shown in Figure 9.6.

invariants
@inv2 1 queue∈ task wait � 0..N−1

event TASK READY extends TASK READY
any i
where

@grd5 i∈ 0..N−1
@grd6 i/∈ ran(queue)

then
@act3 queue(t):= i

end

event TASK RUN extends TASK RUN
any j
where

@grd3 queue 6=∅
@grd4 j∈ ran(queue)
@grd5 j=min(ran(queue))
@grd6 t=queue∼(j)

then
@act4 queue:= (λ q·q∈ dom({t}C−queue) |

queue(q)−j−1)
end

Figure 9.6: Second Refinement with Nondeterministic Queue Based Scheduling

Chapter 9 Hierarchical Real-time Scheduling System 113

Abstract Timeline

Concrete Timeline

idlet

idletimeruntime

t

!"i∈
 ra

n(queue))

queue

Occupied

empty

unknown

tt(t) task_ddl

runt
idler idlet

runr runt
idler idlet

runr runt
idler

Figure 9.7: Time Diagram of Timing Properties’ Refinement with the Scheduling
Framework

Figure 9.7 shows the time diagram of the refinement with the scheduling framework.

Assume that in the abstract machine, the trigger event of one task t occurs at timestamp

tt(t), and the deadline is task ddl . Additional gluing invariants are provided based on

Theorem 8.5. In the refined machine, the trigger event TASK READY EMPTY or

TASK FINISH NONEMPTY starts at timestamp idlet , and its deadline is idletime.

The trigger event TASK RUN starts at timestamp runt , and its deadline is runtime.

The task t has to wait for all the tasks ahead of it in the queue to enter and leave the

critical section. The total waiting time is proportional to its index in the queue, which is

queue(t)∗(idletime +runtime). If the critical section is empty and the time that the last

task leaves the critical section is idlet , then g(t) = queue(t)∗(idletime +runtime). There

might be tasks that have waited queue(t) ∗ (idletime + runtime). Then, task t should

enter the critical section within idlet +queue(t)∗ (idletime + runtime)+ idletime. Given

that the critical section is not empty, g(t) = queue(t)∗(idletime+runtime). Assume that

the time that the last task enters the critical section is runt ; then, task t should enter

the critical section within runt + queue(t)∗ (idletime + runtime) + (idletime + runtime).

Based on Theorem 8.5, the sum of the refined sequential deadline should be less than the

abstract deadline tt(t) + task ddl , which is shown in @inv3 9 and inv3 10 in Figure 9.8.

@inv3 9 and inv3 10 present these two conditions as required gluing invariants. Assume

that there are N tasks, of which the worst case is N − 1 tasks in the waiting list;

thus, max (queue(t)) = N − 1. @axm2 3 and @axm2 4 present the required condition.

Figure 9.8 shows the required axioms and invariants to replace the end-to-end deadlines

to scheduler-based deadlines. @inv3 5 and @inv3 7 present the invariant for scheduler-

based deadlines (9.2b), and @inv3 6 and @inv3 8 present the invariants for scheduler-

based deadlines (9.2a).

114 Chapter 9 Hierarchical Real-time Scheduling System

constants idletime runtime
axioms

@axm2 1 idletime>0
@axm2 2 runtime>0
@axm2 3 ((N−1)∗(idletime+runtime))+idletime≤ task ddl
@axm2 4 N∗(idletime+runtime)≤ task ddl

invariants
@inv3 5 idler≥ idlet⇒ idler−idlet≤ idletime
@inv3 6 runr≥ runt⇒runr−runt≤ runtime
@inv3 7 queue 6=∅ ∧ task run=∅ ⇒ clk−idlet≤ idletime
@inv3 8 task run6= ∅⇒clk−runt≤ runtime
@inv3 9 ∀t·task run=∅∧t∈ task wait⇒idlet+(queue(t)∗(idletime+runtime))+idletime≤ tt(t)+

task ddl
@inv3 10 ∀t·task run6=∅∧t∈ task wait⇒runt+(queue(t)∗(idletime+runtime))+(idletime+runtime)

≤ tt(t)+task ddl

TASK READY EMPTY
extends TASK READY

where
@grd7 task wait=∅∧
task run=∅

then
@act4 idlet:= clk

end

TASK READY NONEMPTY
extends TASK READY

where
@grd7 task wait 6=∅ ∨
task run6=∅

end

TASK RUN extends
TASK RUN

then
@act5 runt:= clk
@act6 idler:= clk

end

TASK FINISH NONEMPTY
extends TASK FINISH

where
@grd2 queue 6=∅

then
@act2 runr:= clk
@act3 idlet:= clk

end

TASK FINISH IDLE extends
TASK FINISH

where
@grd2 queue=∅

then
@act2 runr:= clk

end
TICK refines TICK
where

@grd1 ∀a·a∈ app wait ⇒
clk+1−at(a)≤ app ddl

@grd2 task run=∅ ∧
task wait 6=∅ ⇒ clk+1−
idlet≤ idletime

@grd3 task run6=∅⇒clk
+1−runt≤ runtime

then
@act1 clk:= clk+1

end

Figure 9.8: Replace Task-based Timing Properties with Scheduler-based Timing
Properties

9.2.5 Two Implementations of Nondeterministic Queue-Based Schedul-

ing

The nondeterministic queue-based scheduling framework is a general framework that

nondeterministically assigns indexes to tasks. By applying additional rules to the as-

signment of these indexes, the queue-based scheduling framework can be refined to some

scheduling policies such as the FIFO and DPB scheduling policies. In the model, we

define FIFO and DPB as two scheduling policies of the SCHEDULING carrier set. The

refinement shows that the two scheduling policies are compatible under the HS system.

Each application has either the FIFO or DPB scheduling policy based on the scheduling

constant. As shown in Figure 9.9, we define the constant scheduling as a total function

from APPS to Scheduling . Both refinements refine the nondeterministic queue base

Chapter 9 Hierarchical Real-time Scheduling System 115

scheduling framework by restricting the position of the ready task in the queue. Details

are provided in the following sections.

9.2.5.1 First In First Out

FIFO is one of the scheduling policies that guarantees that the resources are assigned

to each task in the order that they require the resource. The FIFO scheduling policy

handles all tasks without priorities. The queue-based scheduling framework assigns each

task with a corresponding natural number k ∈ N, and the FIFO scheduling policy limits

this natural number to the current size of the queue. Moreover, when the critical section

is empty, the task that is in the front of the queue leaves the queue and enters the critical

section. The indexes of all the other tasks in the queue are reduced by one.

The refinement from the scheduler-based model is shown in Figure 9.9. Assume that the

application that is running is scheduling tasks with the FIFO policy. Initially, the queue

is empty, and qsize is zero. Whenever some task is added to the queue, it is assigned the

number of the queue size, and the queue size increases by one when the scheduling policy

is FIFO . When the critical section is empty, the task in the front of queue queue(0) is

removed from the queue, and the indexes of all the other tasks in the queue are reduced

by one. The queue size also decreases by one. In the nondeterministic queue-based

scheduling policy, the guard for TASK READY is i /∈ ran(queue). @inv4 1 and @inv4 2

are used to to prove that i = qsize ⇒ i /∈ ran(queue). TASK READY NONEMPTY

uses the same refinement strategy as TASK READY EMPTY .

9.2.5.2 Deferrable Priority Based Scheduling with Aging Technique

Fixed priority scheduling policies assign tasks with fixed priorities. In the model, we

use pindex ∈ TASKS → 0..N − 1 to denote the queue position of tasks with different

priorities. Tasks with higher priorities have lower indexes in the queue. The scheduler

will select the tasks with higher priorities to access the system resources before those

with lower priorities. However, there is a disadvantage of these scheduling policies: tasks

with lower priorities may be starved when the tasks with higher priorities keep coming

and jumping the queue. An aging technique is used to ensure that tasks with lower

priorities are eventually executed. The general way to implement an aging technique

is to increase the priorities of tasks with lower priorities while they are waiting in the

ready queue. However, with the increasing priorities of some tasks, aging will allow

tasks with lower priorities to occupy the positions of other tasks. In contrast, deferrable

priority-based scheduling allows a task to be deferred with a random position after its

assigned position when some other tasks occupy the position of that task.

To avoid the starving problem of tasks with lower priorities, we add a rule to priority-

based scheduling: when some other task with lower priority occupies the position of

116 Chapter 9 Hierarchical Real-time Scheduling System

sets SCHDULING

constants FIFO DPB scheduling

axioms
@axm3 2 partition(SCHDULING,{FIFO},{DPB})
@axm3 3 scheduling∈ APPS → SCHDULING

invariants
@inv4 1 qsize∈ 0..N
@inv4 2 ∀i·i≥ qsize∧app run⊆ scheduling∼[{FIFO}]⇒i/∈ ran(queue)

TASK READY NONEMPTY FIFO refines
TASK READY NONEMPTY

any t i
where

@grd1 t∈ TASKS\task wait
@grd2 t∈ TASKS\task run
@grd4 apps(t)∈ app run
@grd5 i=qsize
@grd6 qsize≤ N−1
@grd7 task wait 6=∅ ∨ task run6=∅
@grd8 app run⊆ scheduling∼[{FIFO}]

then
@act1 task wait:= task wait∪{t}
@act2 tt(t):= clk
@act3 queue(t):= i
@act4 idlet:= clk
@act5 qsize:= qsize+1

end

TASK RUN FIFO refines TASK RUN
any t j
where

@grd1 t∈ task wait
@grd2 task run=∅
@grd3 queue 6=∅
@grd4 j∈ ran(queue) ∧ j=0
@grd5 t=queue∼(j)
@grd6 app run⊆ scheduling∼[{FIFO}]

then
@act1 task wait:= task wait\{t}
@act2 task run:= task run ∪ {t}
@act3 tr(t):= clk
@act4 queue:= (λ q·q∈ dom({t}C−queue)|queue(q)−

j−1)
@act5 runt:= clk
@act6 idler:= clk
@act7 qsize:= qsize−1

end

Figure 9.9: First In First Out Scheduling Policy

some high-priority tasks, which means that the lower priority one has waited some time

in the queue, the high-priority one is deferred by some higher random index. Specif-

ically, the indexes of the tasks are decreasing by min(ran(queue)) + 1 when the task

at the front queue, whose index is min(ran(queue)), leaves the queue and enters the

critical section. The enqueue operation will assign the task its corresponding index

in the queue. However, this operation would cause a conflict, as it will make some

tasks occupy the spaces of other tasks. For example, task a’s level is 3, and task

b’s level is 2. One task c is at the front of the queue. When c leaves the queue,

the index of a is reduced to 2. When b wishes to enter the queue, its position is

taken by a. Here, we choose the next available space available in the queue i =

min(k | k ∈ ran(pindex)∧ k /∈ ran(queue)∧ k > pindex (t)). When other tasks do not

take the position, the task takes its assigned position pindex (t). The dequeue opera-

tion is the same as the basic queue-based scheduling framework. Figure 9.10 shows the

refinement from the scheduler-based model with a deferrable priority-based scheduling

policy with aging technique.

Chapter 9 Hierarchical Real-time Scheduling System 117

constants pindex
@axm3 1 pindex∈ TASKS → 0..N−1

TASK READY NONEMPTY DPB refines TASK READY NONEMPTY
any t i
where

@grd1 t∈ TASKS\task wait
@grd2 t∈ TASKS\task run
@grd4 apps(t)∈ app run
@grd5 {k|k∈ ran(pindex)∧k/∈ ran(queue)∧k≥ pindex(t)}6=∅
@grd6 i=min({k|k∈ ran(pindex)∧k/∈ ran(queue)∧k≥ pindex(t)})
@grd7 task wait 6=∅ ∨ task run6=∅
@grd8 app run⊆ scheduling∼[{DPB}]

then
@act1 task wait:= task wait∪{t}
@act2 tt(t):= clk
@act3 queue(t):= i

end

TASK RUN DPB extends TASK RUN
where

@grd7 app run⊆ scheduling∼[{DPB}]
end

Figure 9.10: Deferrable Priority Based Scheduling Policy with Aging Technique

Table 9.1: Proof Statistics of Two-Level Hierarchical Scheduling Case Study

Machine Generated PO Automatically Proved Automatically Proved %

m0 14 12 85.7
m1 34 34 100
m2 6 5 83.3
m3 49 43 87.8
m4 27 27 100

9.2.6 Proof Statistics

Table 9.1 shows the proof statistics of the model. In m3, six proof obligations, all of

which are related to @inv3 9 and @inv3 10, cannot be discharged automatically. As

mentioned in Theorem 8.5, the modeler needs to provide the function g(x) that denotes

the maximum waiting time of each task x based on different scheduling policies. Thus,

the modeler needs to verify that these two invariants are consistent with the whole model.

Then, @inv3 9 and @inv3 10 can be used to discharge the GRD proof obligation of the

Tick event. In m4, we provide @inv4 2 to capture the property that given the FIFO

scheduling policy, any i larger or equal to qsize is not in the range of queue. @inv4 2

helps with the proof obligations to refine the nondeterministic queue-based scheduling

policy to the FIFO policy. Therefore, all proof obligations in m4 are discharged. The

model and the proofs supporting this study are openly available from the University of

Southampton repository at (Zhu et al., 2019a).

118 Chapter 9 Hierarchical Real-time Scheduling System

9.3 Conclusion

In this chapter, we formalized a two-level hierarchical scheduling system that refines

the nondeterministic queue-based scheduling policies to two compatible local schedul-

ing policies to illustrate the pattern that replaces end-to-end timing properties with

scheduler-based timing properties. To model the behavior of these concurrent tasks,

we defined scheduler-based timing properties with unparameterized timing properties as

concrete timing properties for the system design phase, which places discrete-time con-

straints on the scheduler that schedules the concurrent tasks. To replace end-to-end tim-

ing properties with scheduler-based timing properties, we introduced a nondeterministic

queue-based scheduling policy with some additional gluing invariants. We formalized a

two-level hierarchical scheduling system that refines the nondeterministic queue-based

scheduling policies to two compatible local scheduling policies to illustrate the pattern

that replaces end-to-end timing properties with scheduler-based timing properties.

Chapter 10

Conclusions and Future Work

10.1 Main Contributions

To summarize, our work provided formal treatment of real-time properties in Event-B

models from both the semantics perspective and syntax perspective.

In Chapter 3 and Chapter 4, we developed the semantics of real-time properties in Event-

B models regarding behavioral traces in three steps. In the first step, we provided the

trace semantics for trigger-response properties and real-time trigger-response properties.

Then we provided sufficient conditions as well as fairness assumptions for the traces of

Event-B machine to satisfy such properties. In the second step, we explored additional

conditions to verify refinement in Event-B models in terms of infinite behavioral traces.

Zorn’s Lemma was used together with forward simulation to prove infinite state/event

trace refinement in refinement steps. In the last step, we used trace semantics to explore

additional proof obligations to refine timing properties in Event-B models. Based on the

generic refinement semantics and theorems of Event-B models in terms of infinite traces,

we used the bounded retransmission protocol case study in Chapter 5 to demonstrate

the refinement conditions.

In Chapter 6, we provided four real-time specification patterns to represent time in

Event-B models. We presented the specification patterns with Event-B syntax to model

real-time properties in real-world cases. Our patterns enable the modelers to express

real-time properties that can be verified with the Event-B theorem proving technique.

Also, we presented refinement patterns to refine the abstract timing properties modeled

with different specification patterns into concrete sub-timing properties. With the car-

diac pacemaker case study in Chapter 7, we showed that the complicated timing cycles

in pacemakers could be developed in a stepwise manner by combining different real-time

specification patterns. The proof results of the model also showed that the usage of pat-

terns could help to discharge the Event-B proof obligations automatically in the Rodin

tool.

119

120 Chapter 10 Conclusions and Future Work

In Chapter 8, we presented the syntax of parameterized real-time trigger-response prop-

erties with Event-B formalization and proofs based on a trigger-response approach to

modeling timing properties in Event-B. Rules and proofs were provided to replace pa-

rameterized timing properties with unparameterized timing properties. To distinguish

timing properties from the perspective of different system design phases, we defined pa-

rameterized timing properties that place discrete-time constraints on individual tasks

as end-to-end timing properties, which described high-level timing properties from the

system requirement specification phase. These end-to-end timing properties cannot

precisely describe the concurrent behavior of tasks. To model the behavior of these

concurrent tasks, we defined scheduler-based timing properties with unparameterized

timing properties as concrete timing properties for the system design phase, which

places discrete-time constraints on the scheduler that schedules the concurrent tasks.

To replace end-to-end timing properties with scheduler-based timing properties, we in-

troduced a nondeterministic queue-based scheduling policy with some additional gluing

invariants. Then in Chapter 9, we formalized a two-level hierarchical scheduling system

that refines the nondeterministic queue-based scheduling policies to two compatible local

scheduling policies to illustrate the pattern that replaces end-to-end timing properties

with scheduler-based timing properties.

10.2 Comparison with Related Work

Several researchers have explored approaches to modeling real-time properties in Event-

B models. We overview these approaches in section 2.4.4.6. In this section, we mainly

describe the contributions we made to the work done regarding Event-B.

The work of Cansell et al. (2007) does not provide the refinement patterns for timing

properties. Our work not only presents real-time specification patterns to model time

in CPS but also provides refinement patterns to develop the complex real-time systems

in a stepwise approach.

The work of Sarshogh and Butler (2011) classifies the timing constraints into delay,

deadline and expiry and provides refinement patterns to refine the time constraints.

However, their proposed trigger-response pattern lacks a proper treatment of the diver-

gence of intermediate events. Zeno behavior could occur because of infeasible responses

or conflicting timing constraints. Our work addresses these problems with additional

proof obligations and fairness assumptions regarding intermediate events and response

events. We also provide additional conditions for the refinement of timing properties

relating to infinite behavioral traces. We show how to encode these conditions in Event-

B models syntactically in the way that standard Event-B proof obligations are defined.

In addition, we provide refinement rules for replacing parameterized timing properties

with unparameterized timing properties.

Chapter 10 Conclusions and Future Work 121

The work of Sulskus et al. (2016) models the time constraints in Event-B models as

a high-level abstraction in terms of the state machine. Their approach produces a

finite-state space model that allows model checking for the timing properties in Event-

B models. However, our approach models the infinite state-space with the unbounded

clock variable that models the time. Proofs are provided to show that time will always

progress with the fairness assumptions and additional conditions imposed on Event-B

models.

10.3 Scope

Our approach, which extends Event-B models with real-time properties, mainly deals

with discrete-time properties, while the real-world events do not always happen at

integer-value times. Continuous-time can be modeled approximately by choosing the

global clock granularity, which models the timed system with an approximate sense.

There is research that introduces differential equations to model continuous behavior

and discrete behavior in Event-B models. Banach et al. (2015) devised a Hybrid Event-

B extension that accommodates continuous behaviors in between discrete transitions.

Based on this extension, Butler et al. (2016) outlines an approach to modeling and rea-

soning about hybrid systems that uses continuous functions over real intervals to model

the evolution of continuous values over time.

In addition, our theories regarding the trigger-response properties and real-time trigger-

response properties rely on the weak fairness assumptions of specific events. We did

not investigate the fairness refinement rules to prove liveness properties. However, TLA

allows the notion of refinement rules for strong fairness and weak fairness (Méry and

Poppleton, 2015). An integration of TLA and Event-B could be used to verify real-time

properties and liveness properties.

10.4 Future Work

Our work introduces additional proof obligations required to model discrete timing prop-

erties, which are not supported natively by the Rodin platform. A plugin can be built

to extend the Rodin platform to support discrete-time modeling with trigger-response

properties as well as conditional convergent event modeling in Event-B. Based on the

monotonicity of timing properties, the plugin could extend the Event-B models to the

corresponding timed model with the four real-time specification patterns. The plugin

could also support the sequential refinement rules and alternative refinement rules to

refine abstract timing properties to concrete timing properties.

122 Chapter 10 Conclusions and Future Work

To explicitly represent timing properties in a CPS, there are three typical time con-

straints to look into: period, deadline, worst-case execution time. More work can be

done to apply some scheduling policies such as Rate-Monotonic (RM) and priority inher-

itance protocol based on the queue based scheduling framework to analyze the real-time

performance of CPS together with the mentioned time constraints in Event-B. Hoang

et al. (2011) proposed to reuse simple models as patterns to construct larger models.

Our work that refines real-time properties with scheduling framework can also be used

as patterns to refine complicated real-time systems with concurrent tasks.

Bibliography

Mart́ın Abadi and Stephan Merz. On TLA as a logic. In Manfred Broy, editor, Proceed-

ings of the NATO Advanced Study Institute on Deductive Program Design, Markto-

berdorf, Germany, pages 235–271, 1996.

Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical

Computer Science, 82(2):253–284, May 1991. ISSN 0304-3975.

Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM Trans.

Program. Lang. Syst., 16(5):1543–1571, September 1994. ISSN 0164-0925, 1558-4593.

Nouha Abid, Silvano Dal-Zilio, and Didier Le Botlan. Real-time specification patterns

and tools. CoRR, abs/1301.7534, 2013.

Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan. Real-time specification patterns

and tools. In International Workshop on Formal Methods for Industrial Critical Sys-

tems, pages 1–15. Springer, 2012.

Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2009. ISBN

9781139195881.

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad

Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and reasoning

in Event-B. Int J Softw Tools Technol Transfer, 12(6):447–466, April 2010. ISSN

1433-2779, 1433-2787.

J.R. Abrial, A. Hoare, and Pierre Chapron. The B-Book. Cambridge University Press,

October 1996. ISBN 9780521496193, 9780521021753, 9780511624162.

Syed Hassan Ahmed, Gwanghyeon Kim, and Dongkyun Kim. Cyber physical system:

Architecture, applications and research challenges. In 2013 IFIP Wireless Days (WD),

pages 1–5. IEEE, IEEE, November 2013. ISBN 9781479905430.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,

21(4):181–185, October 1985. ISSN 0020-0190.

R. Alur and T.A. Henzinger. Real-time logics: Complexity and expressiveness. In

[1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science,

pages 390–401. IEEE, IEEE Comput. Soc. Press, 1990. ISBN 0818620730.

123

https://doi.org/10.1016/0304-3975(91)90224-p
https://doi.org/10.1145/186025.186058
http://arxiv.org/abs/1301.7534
http://arxiv.org/abs/1301.7534
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1109/wd.2013.6686528
https://doi.org/10.1109/wd.2013.6686528
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1109/lics.1990.113764

124 BIBLIOGRAPHY

Rajeev Alur. Techniques for automatic verification of real-time systems. PhD thesis,

stanford university, 1991.

Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, April 1994. ISSN 0304-3975.

Rajeev Alur and Thomas A Henzinger. Logics and models of real time: A survey. In

Workshop/School/Symposium of the REX Project (Research and Education in Con-

current Systems), pages 74–106. Springer, 1991.

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–203,

January 1994. ISSN 0004-5411, 1557-735X.

Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM Trans. Program. Lang.

Syst., 20(6):1171–1194, November 1998. ISSN 0164-0925.

Ralph-JR Back. Refinement calculus, part II: Parallel and reactive programs. In Work-

shop/School/Symposium of the REX Project (Research and Education in Concurrent

Systems), pages 67–93. Springer, 1989.

Richard Banach, Michael Butler, Shengchao Qin, Nitika Verma, and Huibiao Zhu. Core

hybrid Event-B i: Single hybrid Event-B machines. Science of Computer Program-

ming, 105:92–123, July 2015. ISSN 0167-6423.

S Serge Barold, Roland X Stroobandt, and Alfons F Sinnaeve. Cardiac pacemakers and

resynchronization step by step: An illustrated guide. John Wiley & Sons, 2010.

Clark Barrett and Cesare Tinelli. Cvc3. In International Conference on Computer Aided

Verification, pages 298–302. Springer, 2007.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Lecture

Notes in Computer Science, pages 200–236. Springer Berlin Heidelberg, 2004. ISBN

9783540230687, 9783540300809.

Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang

Yi. Developing UPPAAL over 15 years. Softw: Pract. Exper., 41(2):133–142, January

2011. ISSN 0038-0644.

Wolfgang Bibel. Automated Theorem Proving. Vieweg+Teubner Verlag, 1987. ISBN

9783528185206, 9783322901026.

Michael Butler. Incremental design of distributed systems with Event-B. In Manfred

Broy, Wassiou Sitou, and Tony Hoare, editors, Engineering Methods and Tools for

Software Safety and Security - Marktoberdorf Summer School 2008, pages 131–160.

IOS Press, 2009. Chapter: 4.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/174644.174651
https://doi.org/10.1145/295656.295659
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1002/spe.1006
https://eprints.soton.ac.uk/266910/

BIBLIOGRAPHY 125

Michael Butler. Mastering system analysis and design through abstraction and refine-

ment. In Engineering Dependable Software Systems. IOS Press, 2013a.

Michael Butler. Mastering system analysis and design through abstraction and refine-

ment. In Engineering Dependable Software Systems. IOS Press, 2013b.

Michael Butler. Reasoned modelling with Event-B. In Jonathan P. Bowen, Zhiming Liu,

and Zili Zhang, editors, Engineering Trustworthy Software Systems, volume 10215,

pages 51–109. Springer International Publishing, April 2017. ISBN 9783319568409,

9783319568416. Lecture notes for Spring School on Engineering Trustworthy Software

Systems 2016, Chongqing, China.

Michael Butler, Jean-Raymond Abrial, and Richard Banach. Modelling and refining

hybrid systems in Event-B and Rodin. In Luigia Petre and Emil Sekerinski, editors,

From Action Systems to Distributed Systems, pages 29–42. Chapman and Hall/CRC,

April 2016. ISBN 9781498701587, 9781498701594.

Michael Butler and Jerome Falampin. An approach to modelling and refining timing

properties in b. In Refinement of Critical Systems (RCS), January 2002.

M.J. Butler. A CSP Approach to Action Systems. PhD thesis, Oxford University, 1992.

Dominique Cansell, Dominique Méry, and Joris Rehm. Time constraint patterns

for Event-B development. In International Conference of B Users, pages 140–154.

Springer, 2007.

Alok Choudary, Vijay Geholt, and B. Narahari. Software design for real-time systems

on parallel computers: Formal specifications. 1996.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In International Conference on Com-

puter Aided Verification, pages 154–169. Springer, 2000.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-

tion. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, September 1994. ISSN

0164-0925, 1558-4593.

Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model checking

and the state explosion problem. In LASER Summer School on Software Engineering,

pages 1–30. Springer, 2011.

Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and

future directions. CSUR, 28(4):626–643, December 1996. ISSN 0360-0300.

ClearSy. Atelier B, 2019. Available online at http://www.atelierb.eu/ [Accessed: 9

Mar 2019].

Keith Conrad. Zorn’s lemma and some applications. Expository papers, 2016.

https://eprints.soton.ac.uk/349769/
https://eprints.soton.ac.uk/349769/
https://eprints.soton.ac.uk/349769/
https://eprints.soton.ac.uk/349769/
https://doi.org/10.1007/978-3-319-56841-6_3
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://eprints.soton.ac.uk/256235/
https://eprints.soton.ac.uk/256235/
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
http://www.atelierb.eu/

126 BIBLIOGRAPHY

J.E. Coolahan and N. Roussopoulos. Timing requirements for time-driven systems using

augmented petri nets. IIEEE Trans. Software Eng., SE-9(5):603–616, September 1983.

ISSN 0098-5589.

Pedro R D’Argenio, J-P Katoen, Theo C Ruys, and Jan Tretmans. The bounded re-

transmission protocol must be on time! In International Workshop on Tools and

Algorithms for the Construction and Analysis of Systems, pages 416–431. Springer,

1997.

Leonardo De Moura and Nikolaj Bjorner. Z3: An efficient SMT solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340. Springer, 2008.

Nachum Dershowitz, D.N. Jayasimha, and Seungjoon Park. Bounded fairness. In Lecture

Notes in Computer Science, pages 304–317. Springer Berlin Heidelberg, 2003. ISBN

9783540210023, 9783540399100.

Keith J. Devlin. Fundamentals of Contemporary Set Theory. Springer US, 1979. ISBN

9780387904412, 9781468400847.

Henning Dierks, Sebastian Kupferschmid, and Kim G Larsen. Automatic abstraction

refinement for timed automata. In International Conference on Formal Modeling and

Analysis of Timed Systems, pages 114–129. Springer, 2007.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property

specifications for finite-state verification. In Proceedings of the 21st international

conference on Software engineering - ICSE ’99, pages 411–420. IEEE, ACM Press,

1999. ISBN 1581130740.

Event B.org. Event-B and the Rodin Platform, 2019a. Available online at http://www.

event-b.org [Accessed: 9 Mar 2019].

Event B.org. Rodin Platform, 2019b. Available online at http://wiki.event-b.org/

index.php/Rodin_Platform [Accessed: 9 Mar 2019].

Nissim Francez. Fairness. Springer US, 1986. ISBN 9781461293477, 9781461248866.

V. Gehlot. Performance specification and livelock detection/correction of a protocol

using timed petri nets. In IEEE International Conference on Communications, -

Spanning the Universe., pages 1286–1290. IEEE, IEEE, 1988.

Mario Gleirscher, Simon Foster, and Jim Woodcock. New opportunities for integrated

formal methods. ACM Computing Surveys (CSUR), 52(6):1–36, 2019.

Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. Validation of formal models

by refinement animation. Science of Computer Programming, 78(3):272–292, March

2013. ISSN 0167-6423.

https://doi.org/10.1109/tse.1983.235261
https://doi.org/10.1109/tse.1983.235261
https://doi.org/10.1007/978-3-540-39910-0_14
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
http://www.event-b.org
http://www.event-b.org
http://wiki.event-b.org/index.php/Rodin_Platform
http://wiki.event-b.org/index.php/Rodin_Platform
https://doi.org/10.1109/icc.1988.13758
https://doi.org/10.1109/icc.1988.13758
https://doi.org/10.1016/j.scico.2011.03.005
https://doi.org/10.1016/j.scico.2011.03.005

BIBLIOGRAPHY 127

Thomas A Henzinger. Temporal specification and verification of real-time systems.

Technical report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1991.

Thomas A Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems. In

Workshop/School/Symposium of the REX Project (Research and Education in Con-

current Systems), pages 226–251. Springer, 1991.

Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: A

tool for automatic verification of probabilistic systems. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pages 441–444.

Springer, 2006.

Thai Son Hoang. How to interpret failed proofs in Event-B. Technical report, 672, 2010.

Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B patterns and

their tool support. Softw Syst Model, 12(2):229–244, January 2011. ISSN 1619-1366,

1619-1374.

J Holzmann Gerard. SPIN model checker: The primer and reference manual, 2003.

M. Jastram and P.M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. 2.8covers

Rodin. Createspace Independent Pub, 2014. ISBN 9781495438141.

Zhihao Jiang and Rahul Mangharam. Modeling cardiac pacemaker malfunctions with

the virtual heart model. In 2011 Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society, pages 263–266. IEEE, IEEE, August 2011.

ISBN 9781457715891, 9781424441211, 9781424441228.

Zhihao Jiang, Miroslav Pajic, Rajeev Alur, and Rahul Mangharam. Closed-loop verifi-

cation of medical devices with model abstraction and refinement. Int J Softw Tools

Technol Transfer, 16(2):191–213, September 2013. ISSN 1433-2779, 1433-2787.

Zhihao Jiang, Miroslav Pajic, and Rahul Mangharam. Model-based closed-loop test-

ing of implantable pacemakers. In 2011 IEEE/ACM Second International Confer-

ence on Cyber-Physical Systems, pages 131–140. IEEE, IEEE, April 2011. ISBN

9781612846408.

Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam. Mod-

eling and verification of a dual chamber implantable pacemaker. In Cormac Flanagan

and Barbara König, editors, Tools and Algorithms for the Construction and Analy-

sis of Systems, pages 188–203, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

ISBN 978-3-642-28756-5.

He Jifeng. Process simulation and refinement. Formal Aspects of Computing, 1(1):

229–241, March 1989a. ISSN 0934-5043, 1433-299X.

https://doi.org/10.1007/s10270-010-0183-7
https://doi.org/10.1007/s10270-010-0183-7
https://doi.org/10.1109/iembs.2011.6090051
https://doi.org/10.1109/iembs.2011.6090051
https://doi.org/10.1007/s10009-013-0289-7
https://doi.org/10.1007/s10009-013-0289-7
https://doi.org/10.1109/iccps.2011.28
https://doi.org/10.1109/iccps.2011.28
https://doi.org/10.1007/bf01887207

128 BIBLIOGRAPHY

He Jifeng. Various simulations and refinements. In Workshop/School/Symposium of

the REX Project (Research and Education in Concurrent Systems), pages 340–360.

Springer, 1989b.

Taylor Johnson and Sayan Mitra. Handling failures in cyber-physical systems: Potential

directions. In The Real-Time Systems Symposium. Citeseer, 2009.

Mark B. Josephs. A state-based approach to communicating processes. Distrib Comput,

3(1):9–18, March 1988. ISSN 0178-2770, 1432-0452.

Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):

371–384, July 1976. ISSN 0001-0782.

Jai-Hoon Kim, SH Park, and Geoffery Fox. Real-time scheduling in cyber-physical

systems. In International Conference, CCA, page 69, 2012.

John C. Knight. Safety critical systems. In Proceedings of the 24th international con-

ference on Software engineering - ICSE ’02, pages 547–550. ACM, ACM Press, 2002.

ISBN 158113472X.

Sascha Konrad and Betty H.C. Cheng. Real-time specification patterns. In Proceedings

of the 27th international conference on Software engineering - ICSE ’05, pages 372–

381. ACM, ACM Press, 2005. ISBN 1595939632.

Hermann Kopetz. Design principles for distributed embedded application, 1997.

Hermann Kopetz. Real-Time Systems. Springer US, 2011. ISBN 9781441982360,

9781441982377.

L. Lamport. Proving the correctness of multiprocess programs. IIEEE Trans. Software

Eng., SE-3(2):125–143, March 1977. ISSN 0098-5589.

Leslie Lamport. Specifying systems: The TLA+ language and tools for hardware and

software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. STTT, 1(1-2):

134–152, December 1997. ISSN 1433-2779.

G. Le Lann. An analysis of the ariane 5 flight 501 failure-a system engineering per-

spective. In Proceedings International Conference and Workshop on Engineering of

Computer-Based Systems, ECBS’97, pages 339–346, Washington, DC, USA, 1997.

IEEE Computer. Soc. Press. ISBN 0818678895.

Barbara Liskov, John Guttag, et al. Abstraction and specification in program develop-

ment, volume 180. MIT press Cambridge, 1986.

C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411,

1557-735X.

https://doi.org/10.1007/bf01788563
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/581339.581406
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1109/tse.1977.229904
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/ecbs.1997.581900
https://doi.org/10.1109/ecbs.1997.581900
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743

BIBLIOGRAPHY 129

N. Lynch and F. Vaandrager. Forward and backward simulations. Information and

Computation, 121(2):214–233, September 1995. ISSN 0890-5401.

Dominique Méry, Neeraj Kumar Singh, et al. Functional behavior of a cardiac pacing

system. International Journal of Discrete Event Control Systems, 1(2):129–149, 2011.

Robin Milner. An algebraic definition of simulation between programs. Citeseer, 1971.

L.E. Moser, Y.S. Ramakrishna, G. Kutty, P.M. Melliar-Smith, and L.K. Dillon. A

graphical environment for the design of concurrent real-time systems. ACM Trans.

Softw. Eng. Methodol., 6(1):31–79, January 1997. ISSN 1049-331X, 1557-7392.

Dominique Méry and Michael Poppleton. Towards an integrated formal method for

verification of liveness properties in distributed systems: With application to popula-

tion protocols. Softw Syst Model, 16(4):1083–1115, December 2015. ISSN 1619-1366,

1619-1374.

Gethin Norman, David Parker, and Jeremy Sproston. Model checking for probabilistic

timed automata. Form Methods Syst Des, 43(2):164–190, October 2012. ISSN 0925-

9856, 1572-8102.

Nsf. Cyber-physical systems (CPS), 2019.

Jonathan S Ostroff. Temporal logic for real-time systems, volume 40. Research Studies

Press Advanced Software Development Series, 1989.

Jonathan S. Ostroff. Formal methods for the specification and design of real-time safety

critical systems. Journal of Systems and Software, 18(1):33–60, April 1992. ISSN

0164-1212.

Jonathan S. Ostroff. Composition and refinement of discrete real-time systems. ACM

Trans. Softw. Eng. Methodol., 8(1):1–48, January 1999. ISSN 1049-331X, 1557-7392.

Lawrence C Paulson. Isabelle, volume 828. Springer-Verlag, 1994. ISBN 3540582444.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Founda-

tions of Computer Science (sfcs 1977), pages 46–57. IEEE, IEEE, September 1977.

Amir Pnueli and Eyal Harel. Applications of temporal logic to the specification of

real-time systems. In Systems, Proceedings of a Symposium on Formal Techniques in

Real-Time and Fault-Tolerant Systems, pages 84–98, London, UK, UK, 1988. Springer-

Verlag. ISBN 3-540-50302-1.

Michael Poppleton and Abdolbaghi Rezazadeh. Modelling the pacemaker in event-b:

Towards methodology for reuse. September 2012.

Ken Robinson. System modelling & design using Event-B. The University of New South

Wales. Recuperado en agosto de, 2012.

https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1145/237432.237438
https://doi.org/10.1145/237432.237438
https://doi.org/10.1007/s10270-015-0504-y
https://doi.org/10.1007/s10270-015-0504-y
https://doi.org/10.1007/s10270-015-0504-y
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/s10703-012-0177-x
https://www.nsf.gov/pubs/2019/nsf19553/nsf19553.htm
https://doi.org/10.1016/0164-1212(92)90045-l
https://doi.org/10.1016/0164-1212(92)90045-l
https://doi.org/10.1145/295558.295560
https://doi.org/10.1109/sfcs.1977.32
http://dl.acm.org/citation.cfm?id=646841.706461
http://dl.acm.org/citation.cfm?id=646841.706461
https://eprints.soton.ac.uk/342554/
https://eprints.soton.ac.uk/342554/

130 BIBLIOGRAPHY

Kristin Y. Rozier. Linear temporal logic symbolic model checking. Computer Science

Review, 5(2):163–203, May 2011. ISSN 1574-0137.

Mohammad Reza Sarshogh. Extending Event-B with discrete timing properties. PhD

thesis, University of Southampton, May 2013.

Mohammad Reza Sarshogh and Michael Butler. Specification and refinement of dis-

crete timing properties in Event-B. In AVoCS 2011, September 2011. Event Dates:

September 2011.

Steve Schneider, Helen Treharne, and Heike Wehrheim. The behavioural semantics of

Event-B refinement. Form Asp Comp, 26(2):251–280, October 2012. ISSN 0934-5043,

1433-299X.

Boston Scientific. Pacemaker system specification. Boston Scientific, 2007.

Emil Sekerinski and Tian Zhang. Finitary fairness in action systems. In International

Colloquium on Theoretical Aspects of Computing, pages 319–336. Springer, 2013.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach

to real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185, 1990. ISSN

0018-9340.

Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of cyber-physical sys-

tems. In 2011 International Conference on Wireless Communications and Signal

Processing (WCSP), pages 1–6. IEEE, IEEE, November 2011. ISBN 9781457710100,

9781457710094, 9781457710070, 9781457710087.

John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C. Buttazzo. Dead-

line Scheduling for Real-Time Systems. Springer US, 1998. ISBN 9781461375302,

9781461555353.

Eugene William Stark. Foundations of a theory of specification for distributed systems.

1984.

Gintautas Sulskus. An investigation into Event-B methodologies and timing constraint

modelling. PhD thesis, University of Southampton, September 2017.

Gintautas Sulskus, Michael Poppleton, and Abdolbaghi Rezazadeh. Modelling complex

timing requirements with refinement. In 2016 IEEE 17th International Conference

on Information Reuse and Integration (IRI), volume 9392, pages 292–307. IEEE, July

2016. ISBN 9781509032075.

Gregory Tassey. The economic impacts of inadequate infrastructure for software test-

ing. National Institute of Standards and Technology, RTI Project, 7007(011):429–489,

2002.

https://doi.org/10.1016/j.cosrev.2010.06.002
https://eprints.soton.ac.uk/272480/
https://eprints.soton.ac.uk/272480/
https://doi.org/10.1007/s00165-012-0265-0
https://doi.org/10.1007/s00165-012-0265-0
https://doi.org/10.1109/12.57058
https://doi.org/10.1109/12.57058
https://doi.org/10.1109/wcsp.2011.6096958
https://doi.org/10.1109/wcsp.2011.6096958
https://doi.org/10.1109/iri.2016.23
https://doi.org/10.1109/iri.2016.23

BIBLIOGRAPHY 131

Dolores R. Wallace and D. Richard Kuhn. Failure modes in medical device software:

An analysis of 15 years of recall data. Int. J. Rel. Qual. Saf. Eng., 08(04):351–371,

December 2001. ISSN 0218-5393, 1793-6446.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal

methods. ACM Comput. Surv., 41(4):1–36, October 2009a. ISSN 0360-0300, 1557-

7341.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal

methods. ACM Comput. Surv., 41(4):1–36, October 2009b. ISSN 0360-0300, 1557-

7341.

Sergio Yovine. KRONOS: A verification tool for real-time systems. STTT, 1(1-2):123–

133, December 1997. ISSN 1433-2779.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifica-

tions. In Advanced Research Working Conference on Correct Hardware Design and

Verification Methods, pages 54–66. Springer, 1999.

Hehua Zhang, Ming Gu, and Xiaoyu Song. Specifying time-sensitive systems with

TLA+. In 2010 IEEE 34th Annual Computer Software and Applications Conference,

pages 425–430. IEEE, IEEE, July 2010. ISBN 9781424475124.

Chenyang Zhu, Michael Butler, and Corina Cirstea. Semantics of real-time trigger-

response properties in Event-B. In 2018 International Symposium on Theoretical

Aspects of Software Engineering (TASE), pages 150–155. IEEE, August 2018a. ISBN

9781538673058.

Chenyang Zhu, Michael Butler, and Corina Cirstea. Formalizing hierarchical scheduling

for refinement of real-time systems, September 2019a.

Chenyang Zhu, Michael Butler, and Corina Cirstea. Formalizing hierarchical scheduling

for refinement of real-time systems. Science of Computer Programming, 189:102390,

April 2020a. ISSN 0167-6423.

Chenyang Zhu, Michael Butler, and Corina Cirstea. Real-time trigger-response proper-

ties for Event-B applied to the pacemaker. In The 14th International Symposium on

Theoretical Aspects of Software Engineering. IEEE, March 2020b.

Chenyang Zhu, Michael Butler, and Corina Cirstea. Trace semantics and refinement pat-

terns for real-time properties in event-b models. Science of Computer Programming,

page 102513, 2020c. ISSN 0167-6423.

Chenyang Zhu, Michael J. Butler, and Corina Ĉırstea. Refinement of timing con-

straints for concurrent tasks with scheduling. In Michael J. Butler, Alexander Raschke,

Thai Son Hoang, and Klaus Reichl, editors, Abstract State Machines, Alloy, B, TLA,

VDM, and Z - 6th International Conference, ABZ 2018, Southampton, UK, June

https://doi.org/10.1142/s021853930100058x
https://doi.org/10.1142/s021853930100058x
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1007/s100090050009
https://doi.org/10.1109/compsac.2010.50
https://doi.org/10.1109/compsac.2010.50
https://doi.org/10.1109/tase.2018.00028
https://doi.org/10.1109/tase.2018.00028
https://eprints.soton.ac.uk/434252/
https://eprints.soton.ac.uk/434252/
https://doi.org/10.1016/j.scico.2020.102390
https://doi.org/10.1016/j.scico.2020.102390
https://eprints.soton.ac.uk/439392/
https://eprints.soton.ac.uk/439392/
http://www.sciencedirect.com/science/article/pii/S0167642320301210
http://www.sciencedirect.com/science/article/pii/S0167642320301210
https://doi.org/10.1007/978-3-319-91271-4_15
https://doi.org/10.1007/978-3-319-91271-4_15

132 BIBLIOGRAPHY

5-8, 2018, Proceedings, volume 10817 of Lecture Notes in Computer Science, pages

219–233. Springer, 2018b.

Chenyang Zhu, Michael J. Butler, and Corina Cirstea. Towards refinement semantics of

real-time trigger-response properties in Event-B. In Dominique Méry and Shengchao

Qin, editors, 2019 International Symposium on Theoretical Aspects of Software Engi-

neering, TASE 2019, Guilin, China, July 29-31, 2019, pages 1–8. IEEE, 2019b.

https://doi.org/10.1109/TASE.2019.00-26
https://doi.org/10.1109/TASE.2019.00-26

	List of Symbols
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline
	1.4 List of Publications
	1.4.1 Journal Papers
	1.4.2 Conference Papers

	2 Timing And Fairness Modeling with Formal Methods
	2.1 Introduction
	2.2 Formal Verification
	2.2.1 Model Checking
	2.2.2 Theorem Proving

	2.3 Refinement
	2.3.1 Refinement Mappings
	2.3.2 Forward Simulations

	2.4 Approaches to Modeling Time
	2.4.1 Real-time Specification Patterns
	2.4.2 Temporal Logic of Actions
	2.4.3 Timed Automata
	2.4.4 Time Modeling in Event-B
	2.4.4.1 Event-B Syntax
	2.4.4.2 Abstraction and Refinement
	2.4.4.3 Convergent Events
	2.4.4.4 Proof Obligation
	2.4.4.5 Rodin: An Event-B Modelling Tool
	2.4.4.6 Extend Event-B with Discrete Timing Properties
	2.4.4.7 Refinement Patterns of Timing Properties

	2.5 Fairness Modeling
	2.5.1 Fairness
	2.5.2 Bounded Fairness
	2.5.3 Finitary Fairness

	2.6 Real-time Scheduling
	2.6.1 Static Priority Scheduling For Independent Tasks
	2.6.2 Dynamic Priority Scheduling For Independent Tasks
	2.6.3 Scheduling Dependent Tasks

	2.7 Conclusion

	3 Trace Semantics and Refinement Patterns for Real-Time Trigger-Response Properties
	3.1 Trace Semantics and Properties of Event-B Models
	3.1.1 Trace Semantics of Event-B Machine
	3.1.2 Trace Properties

	3.2 Enforcing Real-time Trigger-Response Properties in Event-B Models
	3.3 Infinite Trace Refinement
	3.3.1 Forward Simulation and Infinite State Trace Refinement
	3.3.2 Hiding Operator
	3.3.3 Generic Refinement Semantics

	3.4 Conclusion

	4 Refinement of Timing Properties in Event-B Models
	4.1 Refinement Semantics of Real-time Properties
	4.2 Refining Real-Time Trigger-Response Properties to Sequential Sub-Timing Properties
	4.3 Refining Alternative Timing Properties to Sub-Timing Properties
	4.4 Two-step Refinement Strategy
	4.5 Conclusion

	5 Bounded Re-transmission Protocol Case Study
	5.1 Bounded Re-transmission Protocol
	5.2 Modeling the BRP
	5.2.1 Abstract Machine
	5.2.2 First Refinement
	5.2.3 Second Refinement
	5.2.4 Third Refinement
	5.2.5 Fourth Refinement
	5.2.6 Fifth Refinement
	5.2.7 Sixth Refinement

	5.3 Evaluation and Conclusion

	6 Bridge the Gap Between Semantics and Formal Models
	6.1 Modeling Real-time Specification Patterns with Trigger-Response Properties
	6.1.1 Time Response Patterns
	6.1.2 Abort Patterns
	6.1.3 Intermediate Patterns
	6.1.4 Periodic Patterns

	6.2 Patterns to Refine Real-time Properties
	6.2.1 Sequential Refinement Pattern
	6.2.2 Alternative Refinement Pattern

	6.3 Applying Real-time Specification Patterns and Refinement Patterns
	6.4 Conclusion

	7 Pacemaker Case Study
	7.1 Pacemaker System Overview
	7.2 Modeling the Pacemaker
	7.2.1 Random Heart Model
	7.2.2 URI and LRI
	7.2.3 AEI and AVI
	7.2.4 VRP and PVARP
	7.2.5 sAVI and pAVI
	7.2.6 VSP
	7.2.7 Proof Statistics

	7.3 Evaluation and Conclusion

	8 Formalization of Parameterized Timing Properties
	8.1 Parameterized Real-Time Trigger-Response Properties
	8.2 Replacing Parameterized Timing Property with Unparameterized Timing Properties
	8.3 Conclusion

	9 Hierarchical Real-time Scheduling System
	9.1 Hierarchical Scheduling System
	9.2 Formalizing Hierarchical Scheduling with Timing Properties
	9.2.1 Formalizing TDM and Local Resource Sharing with Mutual Exclusion
	9.2.2 End-to-end Timing Properties
	9.2.3 Replacing End-To-End Timing Property with Scheduler-Based Timing Properties
	9.2.4 Nondeterministic Queue-Based Scheduling
	9.2.5 Two Implementations of Nondeterministic Queue-Based Scheduling
	9.2.5.1 First In First Out
	9.2.5.2 Deferrable Priority Based Scheduling with Aging Technique

	9.2.6 Proof Statistics

	9.3 Conclusion

	10 Conclusions and Future Work
	10.1 Main Contributions
	10.2 Comparison with Related Work
	10.3 Scope
	10.4 Future Work

	Bibliography

