
Extensible Record Structures in Event-B

Asieh Salehi Fathabadi[0000−0002−0508−3066], Colin Snook[0000−0002−0210−0983],
Thai Son Hoang[0000−0003−4095−0732], Dana Dghaym[0000−0002−2196−2749], and

Michael Butler[0000−0003−4642−5373]

ECS, University of Southampton, Southampton, U.K.
{a.salehi-fathabadi, cfs, t.s.hoang, d.dghaym, m.j.butler}@soton.ac.uk

Abstract. Event-B is a state-based formal method for system develop-
ment. The Event-B mathematical language does not support a syntax
for the direct definition of structured types such as records. This paper
proposes extending the Event-B language with direct record definitions.
A key feature is the ability to extend records with new fields in refine-
ment steps. The XEvent-B tool, which supports a textual representation
of Event-B models, is extended to provide support for direct record def-
inition and automatic transformation of record structures into standard
Event-B elements. We demonstrate this work by modelling of the Toke-
neer case study.

1 Introduction and Motivation
In Event-B [1], system state is modelled using data structures. However, the
Event-B mathematical language does not support a syntax for the direct defini-
tion of record data structures. Record structures result in more readable models
while retaining the ease of refinement and proof. We have extended the Event-B
language to support direct definition of record structures. Our motivation is to
allow modellers to use the familiar concepts of record structured datatypes in
Event-B modelling. Moreover, we aim to have a smooth integration of records
with the step-wise refinement paradigm in Event-B. Here, a record is a collection
of fields of different data types, in fixed number and sequence [7]. In refinement,
we may extend existing records with new fields. This allows us to introduce de-
tails to the structured data in an incremental fashion. Our work is inspired by
[3] but offers an improved translation into Event-B (see discussion in Section 6).

This paper is structured as follows: Section 2 provides background on the
Event-B. Section 3 presents tool support. Section 4 reports of the syntax and
transformation of record structure, followed by application of it in the tokeneer
case study presented in Section 5. Section 6 compares with other data structuring
methods. Finally Section 7 concludes.

2 Background
Event-B [1] is a refinement-based formal method for system development. An
Event-B model contains two parts: contexts for static data and machines for

This work is supported by the HiClass project (113213), which is part of the ATI
Programme, a joint Government and industry investment to maintain and grow the
UK’s competitive position in civil aerospace design and manufacture.

2 A. Salehi Fathabadi et al.

dynamic behaviour. Contexts contain carrier sets s, constants c, and axioms
A(c) that constrain the carrier sets and constants. Machines contain variables v,
invariant predicates I(v) that constrain the variables, and events. Event-B uses a
mathematical language that is based on set theory and predicate logic. Event-B
is supported by the Rodin Platform [2], an extensible open source toolkit which
includes facilities for modelling and verification techniques.

3 Tool: CamilleX

The records feature is based on our EMF framework for Event-B [11] which
uses the Eclipse Modeling Framework (EMF) [13] and provides extension and
translation mechanisms to extend the Event-B language. CamilleX [5] provides
an extensible text representation of Event-B models (as opposed to Rodin XML
files). CamilleX supports two types of text files, XMachine and XContext, which
are automatically translated to the corresponding Rodin machine or context.
We have extended the CamilleX grammar to support the new records extension.
CamilleX uses the XText [4] framework to implement an editor and translation
tool. XText is an EMF-based open source framework for developing domain-
specific languages with a human-readable text persistence. When CamilleX files
are saved, the CamilleX translator calls any extension translators. In our case
a records translator will generate the ‘flattened’ standard Event-B elements in
the target machine and/or context. Records are translated to standard Event-B
and hence direct support for records is not required in the existing Rodin tools.

4 Record Structure

Record Syntax: A record in an Event-B XMachine or XContext text file is
specified using the following syntax:

record record id [extends extended record id]
(field id : [multiplicity] field type)∗
Each record has an identifier, record id, and can optionally extend another

record, extended record id. A record contains zero or more field(s). A record
field has an identifier, field id, an optional multiplicity, multiplicity, and a
data type, field type.

Multiplicity: Multiplicity defines the minimum and maximum number of
times the field element can appear in the record. There are three alternative
multiplicity options for a field: - one: the field contains exactly one value. - opt:
(optional) the field contains zero or one values. - many: the field contains zero
or more values. If no multiplicity option is specified for a field, it is considered
as one. While the one multiplicity is common, our opt and many multiplicities
give modellers the flexibility in defining the cardinality associated with each field
in a record.

Extension: A record can be extended via single inheritance, allowing record
structures to model hierarchies that occur in refining a model. Instances of an
extending record have the fields of the record that they extend as well as the
new fields that they define. Static record fields are specified in a context, while
dynamic record fields are specified in a machine. A record can extend another
record in three ways as follows:

Extensible Record Structures in Event-B 3

- A record specified in a context/machine extends a record specified in the
same context/machine. This approach supports hierarchical definition of data
structures. Where some records share some fields, the common fields can be
specified as a parent record which is extended by child records.

- A record specified in a machine, extends a record specified in a context,
seen by the machine. This is where a record contains both static and dynamic
data, we extend fields of a static record by new dynamic fields.

- A record specified in a refining context/machine, extends a record specified
in the abstract context/machine. This approach supports data refinement where
new fields are defined for an existing abstract record in a refinement level.

Record Transformation: By saving the XText file, a context/machine file
including the translated Event-B elements for specified records are generated.
The translation elements includes sets, constants and axioms in a context and
variables and invariants in a machine. In a context:
- a non-extending record is translated to a set: sets record id
- an extending record is translated to a constant and an axiom, specifying the
record type as a sub-set relation:
constants record id
axioms record id⊆ extended record id
- each field is translated to a constant and an axiom, specifying the field type:
constants field id
axioms field id∈ record id (↔/ 7→/→) field type
There are three alternative relation types for a field depending on its
multiplicity: - “many”: is translated to a relation (↔), -“opt” (optional): is
translated a partial function (7→), -“one”: is translated to a total function (→).
In a machine:
- a record in a machine must extend another record. An extending record is
translated to a variable and an invariant, specifying the record type as a
sub-set relation:
variables record id
invariants record id⊆ extendedc record id
- each field is translated to a variable and an invariant, specifying the field type:
variables field id
invariants field id∈ record id (↔/ 7→/→) field type

5 Case study
The Tokeneer system [8] consists of a secure enclave and a set of system compo-
nents including a card reader and a fingerprint reader. In this paper, we outline
the application of record structures in specifying the system-level states. The
primary objective of the tokeneer system is to prevent unauthorised access to
the secure enclave. A successful scenario involves: arrival of a permitted user at
the door who then presents a card on the card reader and a matching finger
print at the fingerprint reader. The system will then unlock the door allowing
the user to open it and enter the enclave. A card contains a token and a token
includes certificates. Figure 1 presents the hierarchy of certificate types.

4 A. Salehi Fathabadi et al.

Fig. 1: Hierarchy of tokeneer certificate types

The Event-B model of tokeneer includes an abstract level and two levels
of refinement where the door and card specifications are modelled respectively.
The certificate hierarchy types, token and card structures are specified using
record definitions in the context of the second refinement as below (left); and
the machine m2 card, seeing context c2 card, is partly presented below (right):

context c2 card extends c1 door
sets KEYPART PRIVILEGE

CLEARANCE TOKENID
FINGERPRINT

records
record CERTIFICATE

idIssuer: issuer
validityPeriod: time
signature: opt KEYPART

record IDCert extends CERTIFICATE
subject: USER
publicKey: KEYPART

record AttCert extends CERTIFICATE
baseCertId: issuer
tokenId: TOKENID

record RoleCert extends AttCert
role: PRIVILEGE
clearance: CLEARANCE

record PrivCert extends RoleCert
record AuthCert extends RoleCert
record IandACert extends AttCert

fingerprintTemplate: FINGERPRINT
record TOKEN

tokenID: TOKENID
idCert: IDCert
privCert: PrivCert
iandACert: IandACert

record CARD
token: TOKEN

record USER extends USER
fingerprint: FINGERPRINT

end

machine m2 card refines m1 door sees
c2 card

variables validToken
records
record USER extends USER

holds: opt CARD
record TOKEN extends TOKEN

authCert: opt AuthCert
invariants
@inv1: validToken⊆TOKEN
@inv2: holds∼∈ CARD 7→USER
@inv3: ∀tkn. tkn ∈ validToken⇒

baseCertId(privCert(tkn))= idIssuer(
idCert(tkn))∧

baseCertId(iandACert(tkn))=
idIssuer(idCert(tkn))∧

tokenId(privCert(tkn))= tokenID(tkn
)∧

tokenId(iandACert(tkn))= tokenID(

tkn)
events
event holdCard any user crd where
@grd1: user∈USER
@grd2: crd ∈ CARD
@gdr3: user /∈ dom(holds)
@grd4: crd /∈ ran(holds)
@gdr5: token(crd)∈ validToken
@gdr6: fingerprint(user)=

fingerprintTemplate(iandACert(
token(crd))) then

@act1: holds(user) := crd end
end

Record USER, includes the fingerprint field, specified in the context, c2 card,
and is extended in the refining machine, m2 card, to include the CARD field.
We modelled the fingerprint as a static property of a user and holding a card
as an optional dynamic property (i.e., defined in the machine). The holds field
of the USER record is declared as optional, specifying that each user can hold
at most one card. The invariant inv2 specifies that each card can be held by at

Extensible Record Structures in Event-B 5

most one user. This is as example of how we can specify extra properties of a
defined record.

Record TOKEN including a token ID and three static certificates, is ex-
tended to include the dynamic optional authorisation certificate in the machine,
m2 card. During the first attempt to enter the enclave, a valid authorisation
certificate is issued and added to the card. A token is valid if all of the certifi-
cates on it are well-formed: each certificate correctly cross-references to the ID
certificate, and each certificate correctly cross-references to the token ID. This
requirement is specified as an invariant, inv3 ; this is an example of the use of
records in an invariant.

As an example of modification of the field values, we present the event
holdCard here. A set of guards check the validity of the card token, grd5, and
matching fingerprint, grd6. If the guards hold then the record field holds is
updated to include the new pair of user and crd.

6 Comparison with other data structuring methods

Alloy [6] is a lightweight state-based formal modelling language which influ-
enced our approach. Records are similar to Alloy signatures, with the same
notion of extends and fields. We based our syntax for field multiplicity on Alloy
multiplicities (lone=opt, one=one, some=many). Sibling signatures are disjoint
by default and signatures can be marked as abstract indicating that their sub-
signatures form a partition. We did not include disjoint/partition features in
records because it requires all siblings to be declared simultaneously in the same
refinement. Facts can be added to constrain signatures with implicit quantifica-
tion over the instances of the signature. For records, disjointness, partition and
constraints can be specified using axioms or invariants.

Declarative Records A previous attempt [10] to support records (based on [3])
extended the Rodin Event-B notation. Records were converted to ‘plain’ Event-
B by the static checker for proof verification. Records were only available as
constants. Hence fields could not be varied individually. In order to change the
value of a field, a new instance of the record was selected with the desired new
field value and other fields unchanged. However, difficulties were experienced us-
ing the ProB model checker since it has to instantiate possible values of records.
Our new approach supports variable record structures which alleviates the tool-
ing challenges and our implementation is based on the CamilleX framework to
provide human-usable text persistence whereas the previous plug-in persisted
models as XML.

UML-B Class diagrams [9] structure data in a similar way to records. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements that reflect
the data relationships. A class represents a set of instances as does a record and
attributes or associations are similar to fields. However, class diagram models
provide more options (e.g. multiplicity of fields, partitioning of subsets) than are
required in records. Initially, we considered whether a clean human-usable text
persistence for class diagrams might provide an efficient route to textual record

6 A. Salehi Fathabadi et al.

structures. However, the abstract syntax (meta-model) for class diagrams has
been designed to support diagram editors. Since the additional options and struc-
tural differences of class diagrams must be accommodated in the persistence,
they impact the concrete syntax for records. Therefore, while class diagrams
remain an alternative option for data structuring, it is beneficial to provide a
separate textual syntax and tooling for records in Event-B.

7 Conclusion and Future Works
In the Event-B formal language, record structures can be defined using standard
Event-B elements. For example, a dynamic record field can be specified as a vari-
able and an invariant specifying the type of field. However there is no support for
direct definition of record structures. As illustrated by the Tokeeneer case study,
direct definition of records using our approach results in improved readability in
modelling compared with indirect definition in Event-B. In particular, we have
designed a new notation for extensible records, so that records can be smoothly
extended during the refinement process. However when the Event-B model is
refined, records can be refined either by extension (super-position of new fields),
presented in this paper, or data refinement (replacement of fields), which is a
future research direction. Furthermore, record structures will help identifying
program data structures when generating code from Event-B model [12].

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J-R Abrial and et al. Rodin: An open toolset for modelling and reasoning in
Event-B. Software Tools for Technology Transfer, 12(6):447–466, 2010.

3. N. Evans and M. Butler. A Proposal for Records in Event-B. In FM, volume 4085
of Lecture Notes in Computer Science, pages 221–235. Springer, 2006.

4. M. Eysholdt and H. Behrens. Xtext: Implement Your Language Faster Than the
Quick and Dirty Way. In OOPSLA, pages 307–309. ACM, 2010.

5. Thai Son Hoang, Colin Snook, Dana Dghaym, Asieh Salehi Fathabadi, and Michael
Butler. The CamilleX Framework for the RodinPlatform. 2021. accepted in ABZ.

6. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2012.

7. M. Flatt M. Felleisen, R. Bruce Findler and Sh. Krishnamurthi. How To Design
Programs: An Introduction to Programming and Computing. MIT Press, 2001.

8. Praxis. Tokeneer. https://www.adacore.com/tokeneer. Accessed March 2021.
9. C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML.

ACM Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.
10. Colin Snook. Event-B and Rodin Wiki: Records Extension. http://wiki.

event-b.org/index.php/Records_Extension, 2010. Accessed March 2021.
11. Colin Snook and et al. Event-B and Rodin Wiki:. http://wiki.event-b.org/

index.php/EMF_framework_for_Event-B, 2009. Accessed March 2021.
12. Sanjeevan Sritharan and Thai Son Hoang. Towards generating SPARK from Event-

B models. In IFM 2020, Lecture Notes in Computer Science. Springer, 2020.
13. D. Steinberg, F. Budinsky, M. Paternostro, and Ed Merks. Eclipse Modeling Frame-

work. The Eclipse Series. Addison-Wesley Professional, 2nd edition, 2008.

