
Verifying System-level Security of a Smart
Ballot Box

Dana Dghaym, Thai Son Hoang, Michael Butler, Runshan Hu, Leonardo Aniello,
and Vladimiro Sassone

ECS, University of Southampton, Southampton, U.K.
{d.dghaym, t.s.hoang, m.j.butler, rs.hu, l.aniello, vsassone}@soton.ac.uk

Abstract. Event-B, a refinement-based formal modelling language, has
traditionally focused on safety, but now increasingly finds a new role in
developing secure systems. In this paper we take a fresh look at security
and focus on what security means for the system rather than looking at
detailed protocols. We use Event-B for proving security from an abstract
view and refining it towards design details, focusing on the refinement
of the availability property of the system. We define a general approach
to guarantee the availability of events by ensuring the non-strengthening
of their guards, taking into consideration their parameter types. We
illustrate our approach using a smart ballot system, an integral part of
modern voting systems.

Keywords: Event-B; Availability Property; System Security; Refinement;
Voting System

1 Introduction

Event-B [1] is a refinement-based formal method for developing discrete transi-
tion systems. Data refinement is a standard technique in Event-B that requires
relating the abstract variables with the concrete variables using gluing invariants.
To ensure the refinement correctness, a guard strengthening (GRD) Proof Obli-
gation (PO) is generated to verify that if a concrete event is enabled then its
corresponding abstract event is also enabled.

In this paper, we investigate the application of refinement-based formal
modelling in building a correct-by-construction secure system. Our focus is the
refinement of the availability property of secure systems. The availability property
of a refined event can be proved, if conditions under which event is enabled in an
abstract machine are maintained in the refined machine.

We illustrate our approach using a smart ballot box case study. In this case
study we build a secure system by gradually introducing the confidentiality
and integrity properties of the voting system using encryption and message
authentication respectively, while ensuring availability throughout the refinement
process. In the smart ballot box system case study, confidentiality is ensured by
having the voter’s choices not visible to the system, while integrity is ensured by

2 D.Dghaym et al.

only accepting valid ballots and only rejecting invalid ballots. The availability of
the system is guaranteed by not preventing a voter from casting a valid ballot. In
this case study, we also model the intruder’s behaviour and show how encryption
and authentication can provide protection against an intruder behaviour.

We propose an extension to Event-B Proof Obligations (POs) that relates the
enabledness of an event to availability of behaviour according to a new parameter
type, which we call a rigid parameter. This PO will ensure the availability
property of events is preserved by refinement.

The rest of the paper is structured as follows. Section 2 gives an overview of
the smart ballot box case study. Section 3 introduces Event-B formal method.
We propose a new PO to prove the availability of refined events in Section 4.
In Section 5, we present our Event-B development of the case study across the
different refinements. We discuss how model checking improved our development
in Section 6. We compare our approach with other work in Section 7. Finally, we
conclude and present our plans for future work in Section 8.

2 Case study: Smart Ballot Box

The main function of the Smart Ballot Box (SBB) [5] is to inspect a ballot paper
by detecting a 2D barcode, decode it and evaluate if the decoded contents verifies
the paper from a Ballot Marking Device (BMD). If the ballot is valid, then it
can be cast into the storage box. Otherwise, the SBB rejects the paper, that will
be ejected. The SBB does not conduct a full-scale analysis of the document, nor
record the choices of the voters, nor tabulate the votes of the ballots it scans.
The key function of the SBB is to ensure that only valid countable summary
ballot documents that can be tabulated later are included in ballot boxes.

REQ 1 The BMD is used by a voter to make ballot choices and print a summary
ballot. The ballot choices are not recorded by the BMD.

REQ 2 The barcode is created by the BMD as an authenticator so that the SBB
can recognise a legitimate ballot.

REQ 3 The ballot barcode is formed of a timestamp followed by an encoding of
the encrypted ballot and the Message Authentication Code (MAC).

REQ 4 All ballots with invalid or non-existent barcode are rejected by the SBB.

REQ 5 All ballots with a valid barcode are recognized by the SBB.

REQ 6 The user can decide whether to cast or spoil the given ballot. The ballot
is deposited into the ballot box if the voter decides to cast their vote and
subsequently all ballots with the same barcode will be considered invalid.

REQ 7 The user can decide to spoil a valid ballot. In such cases, the ballot is
ejected and returned to the voter, and is subsequently considered invalid.

REQ 8 The ballot box shall reject a ballot with an expired barcode.

Verifying System-level Security 3

REQ 9 The authentication scheme is based on a MAC created with the AES
standard encryption algorithm and a cryptographic key shared by the BMD
and SBB. The SBB authenticates the ballot by recreating the MAC with the
shared key and comparing the result with the MAC encoded in the barcode.
If the two MAC values are equal the ballot is considered valid.

3 Background

Event-B [1] is a refinement-based formal method for system development. An
Event-B model contains two parts: contexts for static data, and machines for
dynamic behaviour specified by variables v, invariant predicates I(v) that con-
strain the variables, and events. An event comprises a guard denoting its enabling
condition and an action describing how the variables are modified when the event
is executed. In general, an event e has the following form, where t are the event
parameters, G(t, v) is the event guard, and v := E(t, v) is the action of the event.

any t where G(t,v) then v := E(t,v) end

Refinement in Event-B is reasoned event-wise where the behaviour of the
concrete or refining machine conforms with the abstract machine. This is ensured
by the refinement rules of guard strengthening and action simulation of the
abstract events by their corresponding refining events. In addition to gluing
invariants that relate the abstract and refined state of the models. In this case,
given the abstract invariant I(v) and gluing invariant J(v,w) (where v and w
are abstract and concrete variables, respectively), the GRD PO will check that
the guards of the concrete event H(q,v,w) are stronger than the guards of its
corresponding abstract event G(p,v) (where p and q are the abstract and concrete
parameters, respectively) as follows:

I(v), J(v,w), H(q, v, w) ` ∃p · G(p,v) ,

The GRD PO will ensure that if a concrete event is enabled, then its corresponding
abstract event must be enabled. In Event-B, an event is enabled if there are
parameter values that satisfy the guard of the event.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches. In this paper we use both Event-B theorem proving
and model checking using ProB [9] for the validation and verification of the SBB.

4 Rigid Events and Parameters

In this section, we first introduce the notion of enabledness with respect to a
set of parameters (Section 4.1). Subsequently, we elaborate on the meaning of
availability properties and introduce the notion of rigid events and parameters
to capture availability properties (Section 4.2). We then address preservation of
availability properties during refinement in Section 4.3.

4 D.Dghaym et al.

4.1 Event Enabledness and Parameters

We extend the notion of event enabledness in Event-B to include the parameters.
Given an event e with parameters p and q (both p and q can be a list of variables)
and G(p, q), the guard of e constraining p and q. We define Enabledp(e) as follows.

Enabledp(e) == ∃q · G(p, q)

In this definition, we explicitly specify the parameters in the enabledness condition
to indicate their scope, i.e., the event e is enabled for all parameters p satisfying
Enabledp(e). Notice that p appears freely in Enabledp(e).

4.2 Specifying Availability Properties with Rigid Events and
Parameters

In Event-B, the availability of an event is determined by its enabledness condi-
tion, e.g., stating that the event must be enabled under certain conditions. As
event guards can be strengthened during refinement, an event available in the
abstraction might no longer be available in the refinement. As a result, we need a
notation to specify which events’ availability we are interested in, and treat them
differently in the refinement. To signify that we are interested in the availability
of event e, we say that event e is a ‘rigid ’ event, denoted as [e].

Of course, the availability of an event also needs to take into account its
parameters. To indicate that we are interested in the availability of the event
with respect to parameters p, we say that p are ‘rigid ’ parameters, denoted as
[p]. Note that only rigid events can have rigid parameters.

In general, consider a rigid event e with rigid parameters rp and other (non-
rigid) parameters op of the following form:1

event [e]
any [rp] op where G(rp, op) then ... end

The above rigid event means that the system satisfies the availability property
stating that “event e must be enabled for any parameter rp satisfying Enabledrp
(e)”.

4.3 Refinement Preserving Availability Properties

We now discuss the refinement of rigid events preserving the associated availability
properties. In a normal Event-B refinement, the guard of a refined event can be
stronger than the abstract guard (and hence restrict the event enabledness). For
a rigid event, on the other hand, we want to ‘preserve’ enabledness, that is do
not strengthen in the refinement the conditions for event enabledness, so that
the availability of the event is maintained by refinement.

1 We use [] to distinguish rigid events and parameters from others.

Verifying System-level Security 5

The syntactic rules are (1) rigid events can only be refined by rigid events,
and (2) the abstract rigid parameters must be retained in the concrete events.

Consider the following abstract rigid event [ae] and concrete rigid event [ce].

event [ae]
any [rp] oap where
Ga(rp, oap, v)

then
// abstract action
...

end

event [ce]
any [rp] ocp where
Gc(rp, ocp, v, w)

then
// concrete action
...

end

Here, [rp] represents the rigid parameters, oap and ocp are respectively the other
abstract and concrete parameters. While v and w are the abstract and concrete
variables.

To ensure that the availability properties are preserved through refinement,
we must prove that the concrete event does not strengthen the enableness of
the abstract event, taking into account the rigid parameters. We propose the
following enabledness preservation PO (denoted as ENBL),

I(v), J(v, w), Ga(rp, oap, v) ` ∃ocp · Gc(rp, ocp, v, w) ,

where I(v) and J(v, w) are the abstract and concrete invariants.

In general, more rigid parameters can be introduced during refinement. Notice
that the ENBL proof obligation depends on the abstract rigid parameters, i.e.,
any rigid parameters newly introduced by a refinement will be treated as non-rigid
parameters for the purpose of the current ENBL PO and will only be relevant for
the ENBL PO in further refinement steps.

In Event-B an abstract event can be refined by a group of concrete events. In
this case, the ENBL PO is generalised accordingly. Given an abstract rigid event
[ae] and concrete rigid events [ce1], [ce2], .., [cen], the ENBL PO is as follows.

∀ rp, oap · Ga(rp, oap)⇒∨
i (∃ ocpi · Gci(rp, ocpi))

In the formula above ocpi and Gci (i ∈ 1 .. n) are the other concrete parameters
and guards of the corresponding concrete event cei.

5 SBB Systems Model in Event-B

In this section, we first present our refinement strategy and then show how
we modelled the SBB system introduced in Section 2 using Event-B. We also
illustrate the reasoning about availability properties using enabledness conditions
based on the approach of Section 4.

6 D.Dghaym et al.

5.1 Refinement Strategy

Our refinement plan consists of an abstract and four refinement levels. Although
our focus is modelling the SBB, it is important to take into consideration how
it interacts with other components of the system, in particular the BMD which
generates the encrypted ballots for authorised voters only.

Abstract Model: We start by modelling an ideal voting system, where legitimate
ballots are created for voters who have not voted before and only legitimate
ballots are cast.

First Refinement: In this refinement we introduce the physical paper ballots and
we distinguish between the different types of ballots according to Figure 1. We
model possible attackers behaviour, where an attacker can produce illegitimate
ballots or duplicate legitimate ballots which can invalidate legitimate ballots.
Voters with valid ballots will have the option to either cast or spoil their ballots.
Ballots which are spoiled, invalid or illegitimate will be ejected by the SBB.

Fig. 1: Different types of paper ballots.

Second Refinement: We introduce time and invalidate ballots with expired
timestamps. We assume synchronised clocks for both the SBB and BMD, but
later we will show how time can be the subject of malicious attacks.

Third Refinement: We data refine the voter information and their votes by
encrypting the ballots using a secret key.

Fourth Refinement: Ensuring the legitimacy of ballots is done through the
Message Authentication Code (MAC), where we compare the computed MAC
using the secret authentication key and the MAC in the ballot barcode.

5.2 Abstract Level: Modelling an Ideal Voting System

An ideal voting system is when each voter can have at most one vote. This is
ensured by the typeof−ballots invariant, where ballots are defined as a partial
function between VOTER and VOTE.

Verifying System-level Security 7

@typeof−ballots: ballots∈ VOTER 7→VOTE
Here, we only allow the creation of ballots for voters who were not issued any

ballots previously. Casting of ballots is only applicable for ballots that are not
invalidated, where the variable cast represents the set of cast ballots cast⊆ ballots.
Thus, we have a perfect secure voting system where we ensure that a voter can
cast at most one valid ballot. At this level we only have three events create ballot,
invalidate ballots and cast ballot.

5.3 First Refinement: Introducing Physical Ballots and Possible
Attacker Capabilities

At this level, we refine ballots and the cast ballots with the physical paper ballots
(papers). These paper ballots are susceptible to attacks, e.g. duplicating paper
ballots, making the voting system insecure. In this section we distinguish between
the different types of papers using disjoint variables as shown in Figure 1. Ballot
papers can be either legitimate or illegitimate, and legitimate papers can be in
turn partitioned as valid, invalid, cast or spoiled which are modelled as disjoint
sets as follows:

– legitimate papers: Ballots created by BMD or copied from one created by
BMD.

– illegitimate papers: Ballots created by the attackers.
– valid papers : Legitimate ballots that have not expired, and have not been

cast or spoiled before.
– invalid papers: Legitimate ballots but invalid either because expired or (a

copy has been) already cast or spoiled.
– cast papers: Legitimate and already cast.
– spoiled papers: Legitimate ballots that are spoiled.

We define the events that lead to creating legitimate and illegitimate ballot pa-
pers and the events that invalidate legitimate ballots. All legitimate valid ballots
are created by the BMD in the event BMD issues paper which refines the abstract
event create ballot. We also define three possible attacks: ATK creates paper cre-
ates an illegitimate ballot; in this case we assume the attacker does not know the
secret keys. On the other hand, both attack events ATK duplicates valid paper and
ATK duplicates invalid paper create legitimate ballots by duplicating existing valid
and invalid ballots respectively; in this case the SBB will only accept one valid
copy from the voter. The abstract event invalidate ballots refers to the ballots that
cannot be cast; here we refine it by two events papers expired and spoil valid ballot
where any ballots that expire or get spoiled cannot be cast anymore. The abstract
event cast ballot is refined by cast paper where only valid papers can be cast. We
also introduce eject paper where only invalid, spoiled or illegitimate ballots are
ejected out of the SBB.

Given the new variables paper voter and paper vote which are projection
functions on papers to represent the voter’s information and choices, the following
invariants should hold. Invariant no valid double voting vote ensures that if two

8 D.Dghaym et al.

valid ballots exist for the same voter, then they are copies of each other. On the
other hand, no cast double voting vote ensures that once a valid ballot is cast,
the voter cannot have any other valid ballot papers. Invariants gluing ballots
and gluing cast are gluing invariants that relate the paper ballot with the logical
ballots and cast variables.2

@no valid double voting vote:
∀b1, b2 · b1∈ valid papers∧ b2∈ valid papers∧ paper voter(b1) = paper voter(

b2)
⇒ paper vote(b1) = paper vote(b2)

@no cast double voting vote:
∀b · b∈ cast papers⇒ paper voter(b) /∈ paper voter[valid papers]

@gluing−ballots:
ballots = {paper · paper∈ valid papers ∪ cast papers

| paper voter(paper) 7→ paper vote(paper)}

@gluing−cast:
cast = {paper·paper∈ cast papers | paper voter(paper) 7→ paper vote(paper)}

At this level, we focus at the main security properties of the SBB:

1. Accept all valid ballots.
2. Reject invalid ballots.

These two goals have different purposes, the first one is concerned with the system
availability, a key security property, where we need to make sure that valid ballots
are not blocked from being cast. On the other hand, the combination of both
goals will ensure the integrity of voting system. The second goal is expressed in
the invariant

ejected papers⊆ (spoiled papers ∪ invalid papers ∪ illegitimate papers)

to ensure that only rejected ballots (invalid or illegitimate) and the ballots the
user choose to spoil will be ejected out of the SBB. Refinement consistency POs
will ensure that this invariant holds across the different refinement levels.

The availability property can be captured by the guard of the relevant events.
In particular, we specify that cast paper is a rigid event and its parameter paper
is also rigid. Using the notation introduced in Section 4, the event cast paper has
the following form.

event [cast paper]
any [paper] where
@valid−paper: paper∈ valid papers

2 where [] is a relational image and { | } is a set comprehension. A concise summary of
Event-B syntax is available at http://wiki.event-b.org/images/EventB-Summary.

pdf.

http://wiki.event-b.org/images/EventB-Summary.pdf
http://wiki.event-b.org/images/EventB-Summary.pdf

Verifying System-level Security 9

then
// actions for casting the ballot
...

end

The above event specifies that the cast paper event must be enabled for any valid
paper, i.e., satisfying the guard paper∈ valid papers.

5.4 Second Refinement: Introducing Time and Availability of
Events

In this refinement, we introduce Time where each ballot has a timestamp defined
as paper time ∈ papers→TIME and current time demonstrates the progression of
time. A ballot can expire after a certain time if it is not cast or spoiled, thus
invalidating a legitimate ballot. Ballots issued in the future are also considered
invalid. We introduce the clock tick event to progress time which also refines
papers expired from Section 5.3.

By introducing time, now we have all the conditions to define a valid ballot
both in terms of duplication and expiry of time stamp. We therefore refine for the
guards of the events that depend on ballot validity, such as casting and ejecting
ballots. These guards will ensure that ballots have not been cast or spoiled before,
have not expired nor have they been issued by an illegitimate source.

The cast paper event, introduced at the previous level, is a rigid event with
the rigid parameter paper. The refinement of the cast paper event is as follow.

event [cast paper] refines cast paper
any [paper] where
@typeof−paper: paper∈ papers
@not−already−expired: paper time(paper)≥ current time− expiry duration
@copy−not−already−cast: paper voter(paper) /∈ paper voter[cast papers]
@copy−not−already−spoiled:
(∀sp · sp ∈ spoiled papers⇒

paper voter(paper) 6= paper voter(sp)∨
paper vote(paper) 6= paper vote(sp)∨
paper time(paper) 6= paper time(sp)

)
@not−illegitimate−paper: paper /∈ illegitimate papers

then
// cast the paper
...

end

This gives rise to the ENBL PO at this refinement. Because ENBL PO is
not yet supported by Rodin, we encode this ENBL PO as the following theorem
(accept−valid−paper) in our model.

theorem @accept−valid−paper: // Encoding of the ENBL PO for cast paper
event

10 D.Dghaym et al.

∀paper · // Universally quantified over abstract rigid
variables

paper∈ valid papers // Guard of the abstract event
⇒
/∗ Guards of the concrete event ∗/
paper∈ papers∧
paper time(paper)≥ current time− expiry duration∧
paper voter(paper) /∈ paper voter[cast papers]∧
(∀sp · sp ∈ spoiled papers⇒

paper voter(paper) 6= paper voter(sp)∨
paper vote(paper) 6= paper vote(sp)∨
paper time(paper) 6= paper time(sp)

)∧
paper /∈ illegitimate papers

Notice that there are no non-rigid parameters for cast paper event, i.e., the right-
hand side of the implication is not existentially quantified. The same applies
to spoil valid paper because the voter should have the option to either cast or
spoil their valid ballot paper, so both events have the same guards or enabling
conditions and the theorem will apply to both events.

As mentioned earlier, if a ballot has been cast or spoiled before, it will be
considered invalid. However, there is a difference here between the two cases, a
voter with a spoiled ballot can be issued another paper if they present a physical
proof to the BMD of the spoiled ballot, whereas a voter with a cast ballot cannot.
Hence the difference between the guards for checking whether a paper has been
cast or spoiled. In the case of a spoiled ballot another ballot belonging to the same
voter can be considered valid if it at least has a different time stamp. Using model
checking it was possible to discover such difference and add this assumption in
the form of guard to BMD issues paper.

Further to the typing invariants related to the new timing variables, the follow-
ing invariants describe the difference between valid and invalid ballots in regards
to time and double voting and can ensure that theorem (accept−valid−paper)
above is true. The last invariant valid−and−spoiled−papers−disjoint was actually
discovered by attempting to prove that there is no valid ballot which is an exact
copy of a spoiled ballot. A voter with a spoiled ballot can get a new legitimate
ballot, but the new ballot will have at least a different time stamp (paper time).

// The valid ballot papers must not have the future time stamps.
@no−future−valid−papers:
∀b·b∈ valid papers⇒ paper time(b)≤ current time

// The valid ballot papers must not expired
@no−expiry−valid−papers:
∀b·b∈ valid papers \ cast papers

⇒ current time− expiry duration≤ paper time(b)

// For two different valid ballot papers, if it is for the same voter then

Verifying System-level Security 11

// they must have the same time stamp, i.e., they are copies of each other.
@no valid double voting time:
∀b1, b2 ·
b1∈ valid papers∧ b2∈ valid papers
∧ b1 6= b2∧ paper voter(b1) = paper voter(b2)
⇒ paper time(b1) = paper time(b2)

// Any invalid paper will either be expired, or a copy has been cast or a
// copy has been spoiled.
@expired−or−cast−or−spoiled−copy−invalid papers:
∀paper · paper∈ invalid papers⇒
current time− expiry duration> paper time(paper)
∨ paper voter(paper)∈ paper voter[cast papers]
∨ (∃sp · sp ∈ spoiled papers

∧ paper voter(paper) = paper voter(sp)
∧ paper vote(paper) = paper vote(sp)
∧ paper time(paper) = paper time(sp)

)

@valid−and−spoiled−papers−disjoint:
∀vp, sp · vp∈ valid papers∧ sp ∈ spoiled papers⇒

paper voter(vp) 6= paper voter(sp)
∨ paper vote(vp) 6= paper vote(sp)
∨ paper time(vp) 6= paper time(sp)

5.5 Third Refinement: Ballot Encryption

At this level we introduce encryption so tat the SBB will not be able to access
the voters information. Consequently, we apply data refinement to replace the
variables paper vote and paper voter with the encrypted ballot. The following
invariants describe ballot encryption and include gluing invariants to relate the
new variable paper encrypted ballot with the disappearing variables paper voter
and paper vote.

@typeof−paper encrypted ballot:
paper encrypted ballot∈ papers→ CYPHER TEXT

@gluing−legitimate−papers:
∀paper·paper∈ legitimate papers

⇒ EncryptionAlgorithm(
paper voter(paper) 7→ paper vote(paper) 7→ EncryptionKey

) = paper encrypted ballot(paper)

@encrypted−ballot−disjoint−cast−valid:
∀p · p∈ legitimate papers

∧ paper encrypted ballot(p) /∈ paper encrypted ballot[cast papers]

12 D.Dghaym et al.

∧ (∀sp · sp ∈ spoiled papers⇒
paper encrypted ballot(p) 6= paper encrypted ballot(sp)
∨ paper time(p) 6= paper time(sp))

∧ paper time(p)≥ current time− expiry duration
⇒ paper voter(p) /∈ paper voter[cast papers]

@gluing encryption voter:
∀ p1, p2· p1∈ legitimate papers∧ p2∈ legitimate papers

∧ paper encrypted ballot(p1) = paper encrypted ballot(p2)
⇒ paper voter(p1) = paper voter(p2)

@inv not already cast:
∀ p· p∈ valid papers

⇒ paper encrypted ballot(p) /∈ paper encrypted ballot [cast papers]

As the SBB cannot access the voter’s information on the ballot directly, the
guards for cast paper need to be refined. As a result, the ENBL PO needs to be
proved for the refinement. In particular, the part of the ENBL PO related to the
refinement is shown below.

theorem @accept−valid−paper:
∀paper · ...∧

(∀sp · sp ∈ spoiled papers⇒
paper voter(paper) 6= paper voter(sp)∨ paper vote(paper) 6= paper vote(

sp)
∨ paper time(paper) 6= paper time(sp))∧ ...

⇒ ...∧
(∀sp · sp∈ spoiled papers⇒
paper encrypted ballot(paper) 6= paper encrypted ballot(sp)
∨ paper time(paper) 6= paper time(sp))∧ ...

Notice that this PO is discharged trivially due to the property of the encryption
function.

5.6 Fourth Refinement: Ballot Authentication

The purpose of ballot authentication is to protect against malicious intruder
behaviour, where an intruder tries to cast a ballot not issued by its only legitimate
source, BMD. These attacks are introduced earlier in Section 5.3 and specified
as the attacker events. We introduce MAC to check the legitimacy of the ballot.
Therefore, all the event guards checking for ballot legitimacy will be replaced by
an equality check of the MAC paper mac with the calculated MAC. The MAC
can be calculated using the MACAlgorithm which requires the secret MACKey.

@typeof−paper mac: paper mac ∈ papers→MAC

@mac−illegitimate papers: ∀paper · paper∈ illegitimate papers⇒
paper mac(paper) 6= MACAlgorithm(

Verifying System-level Security 13

paper time(paper) 7→ paper encrypted ballot(paper) 7→MACKey)

@mac−legitimate papers:
∀paper · paper∈ legitimate papers⇒

paper mac(paper) = MACAlgorithm(
paper time(paper) 7→ paper encrypted ballot(paper) 7→MACKey)

The invariants mac−illegitimate papers and mac−legitimate papers define the
difference between legitimate and illegitimate ballots in relation to MAC. As a
consequence the cast papers guards are refined to check for MAC equality and
the ENBL PO is generated (similarly to the previous section).

In ATK creates paper, we assume the attacker does not know MACKey and
will create illegitimate paper ballots. However, if an attacker compromises key,
they will be able to generate ballots that are accepted by the SBB. It is therefore
crucial to ensure the secrecy of this key. This could be achieved, for example,
using secure hardware which can provide memory protection to the secret keys.

6 Debugging Models using Model Checking

In this section, we discuss the use of model checking to help with debugging our
model. We first discuss the analysis of refinement consistency of the rigid events
in Section 6.1. Subsequently, we analyse the attack on the clocks of the BMD
and SBB in Section 6.2.

6.1 Consistency of the Refinement of the Rigid Events

As presented in the previous section, the consistency of the refinement of the rigid
event cast paper is captured as the theorem accept−valid−paper. The theorem
states that a valid paper will be the one that is not yet expired, the voter on the
ballot has not yet voted, and a copy of the paper has not yet been spoiled. In our
initial model the theorem could not be discharged automatically. ProB Model
checker shows a trace that can violate the theorem as follows.

INITIALISATION
BMD issues paper(PAPER1, VOTER1, VOTE7)
spoil valid paper(PAPER1)
BMD issues paper(PAPER2, VOTER1, VOTE7)

The trace shows a scenario where a VOTER1 got a ballot PAPER1 with VOTE7
from the BMD, subsequently spoils the paper, and get another ballot PAPER2
with the same choice VOTE7. At this point, since PAPER2 is a valid paper, but
it has the same information as the spoiled paper PAPER1 (including the time
stamp), PAPER2 cannot be cast. An important assumption that is missing from
our model is that the papers PAPER1 and PAPER2 must have a different time
stamps. As a result, we strengthen the guard of BMD issue paper to add the
assumption

14 D.Dghaym et al.

@no−clash−spoiled−papers:
∀sp · sp ∈ spoiled papers⇒

voter 6= paper voter(sp)∨ vote 6= paper vote(sp)∨ current time 6=
paper time(sp)

Furthermore, we add an invariant to state the relationship between valid papers
and spoiled papers.

@valid−and−spoiled−papers−disjoint:
∀vp, sp · vp∈ valid papers∧ sp ∈ spoiled papers⇒

paper voter(vp) 6= paper voter(sp)∨ paper vote(vp) 6= paper vote(sp)
∨ paper time(vp) 6= paper time(sp)

Given the above invariant, the theorem for proving the consistency of the refine-
ment of the rigid event is proved automatically.

6.2 Attacks on the Clocks

In Section 5.4, we use one global clock and consider that both the SBB and BMD
are always synchronised with current time. However, this might not be the case
and there can be some attacks on the clocks that can lead to accepting invalid
paper ballots or rejecting valid paper ballots.

To model such attacks, in addition to current time in Section 5.4, we introduce
two clock variables BMD time and SBB time that are synchronised with the global
clock current time. All the invariants related to time will remain the same based
on current time, while the BMD events such as BMD issues paper will use the
BMD time. Similarly, the SBB events, cast paper and eject paper, will use the
SBB time. Therefore, to prove the invariants related to paper time, both clocks
should be equal to current time. The equality invariants cannot be proved, if we
introduce attacker events that can advance or delay the SBB and BMD clocks.

We use the ProB model checker to show how the clock attacks can invalidate
the two main requirements of the case study. To help ProB automatically generate
a counter example: We restrict ProB to one refinement level. We remove the
invariants related to equality of time and relating the validity of ballots and time.
Then, we copy over the ejected papers type invariant that ensure that only invalid,
illegitimate or spoiled ballots are ejected from previous refinement level. The model
checker generates the following counter example: 〈attacker advance bmd clock(3),
BMD issues paper(PAPER1, VOTER3, VOTE1), eject paper(PAPER1)〉

This trace will violate the ejected papers type invariant copied from the
first refinement, because PAPER1∈ valid papers. Therefore, using ProB, we have
shown how an attack on the BMD clock can lead to rejecting a valid ballot that
has not been spoiled. Other clock attacks can be demonstrated in a similar way.

7 Related Work

In this paper we have modelled a smart ballot box of a secure voting system. We
use Event-B to analyse the system level security focusing on the refinement of

Verifying System-level Security 15

the availability property, whereas most security verification tools such as [10, 11]
consider the verification of security protocols.

In [6], the authors also use a correct-by-construction approach using Event-B
to model a secure e-voting system. The authors focus on the recording and the
tallying phases to ensure the verifiability of the system using a decomposition
pattern and a contextualisation technique. Our case study focuses on the smart
ballot box which only allows the casting of valid encrypted ballots. The encrypted
ballots in the SBB can in turn be used for rapid digital tabulation (tallying) and
to provide an evidence-based auditing for the tabulation process. In this model
we do not handle tabulation, but we are considering the extension of our models
to include tabulation as a future work. Similarly, in [4], the authors focus on the
verifiability of a peered web bulletin board for publishing the evidence of voting
and tallying using Event-B.

In order to prove the availability of casting ballots through refinement, we
prove the enabledness preservation of the events. In [12], the authors use enabled-
ness preservation in conjunction with non-divergence to prove the liveness of an
Event-B model. In their case enabledeness preservation can have two notions, in
the weakest notion, the enabledness preservation states if one of the events in the
abstraction is enabled then one or more events in the refinement are also enabled.
While, the strongest notion states if an abstract event is enabled then either
the refining event is enabled or one of the new events are enabled. Even their
strongest notion of enabledness preservation is still weaker than our definition
of enabledness preservation which requires proving the non-strengthening of the
guards of the rigid event. In [7], the authors use enabledness proofs to ensure the
“refinement equivalence” of external events in the shared-variable decomposition
of Event-B models. However, their proposed POs are similar to the standard
Event-B POs. The idea of enabledness preservation has also been considered in
the formal method ASM [3], in the concepts of ground model and refinements
where the abstract and concrete guards are equivalent.

8 Conclusions and Future Work

In this paper, we have shown how the availability property of an event can be
ensured through refinement by preserving the enabledness of its corresponding
refined events. Such property relates to the parameter type where some parameters
are considered rigid and should be preserved through refinement. We provide a
general PO (ENBL) that can be applied to any event with rigid parameters. We
apply ENBL PO by defining a theorem to ensure the availability of casting valid
ballots.

In the future, we will focus on the semantics model to justify the soundness
of the rigid property of events, we can possibly explore failure semantics. We
will also look at how introducing new events in refinement can affect the ENBL
PO. Finally, we plan to provide tool support for the enabledness preservation
PO in Rodin. This can be done by extending the CamilleX [8] textual framework.
In the CamilleX textual editor, the modeller will identify the rigid parameters

16 D.Dghaym et al.

of the event, and the enabledness preservation theorems will be automatically
added to the Event-B generated machine.

Acknowledgement: This work is supported by the HD-Sec project, which was
funded by the Digital Security by Design (DSbD) Programme delivered by UKRI to
support the DSbD ecosystem.

We would like to thank Joseph Kiniry and Daniel Zimmerman from Galois for

providing details of and insights into the case study.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin:
an open toolset for modelling and reasoning in Event-B. STTT, 12(6):447–466,
2010.

3. Egon Börger. The ASM Ground Model Method as a Foundation of Requirements
Engineering, pages 145–160. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

4. C. Culnane and S. Schneider. A peered bulletin board for robust use in verifiable
voting systems. In 2014 IEEE 27th Computer Security Foundations Symposium
(CSF), pages 169–183, Los Alamitos, CA, USA, jul 2014. IEEE Computer Society.

5. Galois and Free & Fair. The BESSPIN Voting System. https://github.com/

GaloisInc/BESSPIN-Voting-System-Demonstrator-2019, May 2019. Accessed:
2021-02-02.

6. J. P. Gibson, S. Kherroubi, and D. Méry. Applying a Dependency Mechanism for
Voting Protocol Models Using Event-B. In Formal Techniques for Distributed Ob-
jects, Components, and Systems, pages 124–138. Springer International Publishing,
2017.

7. S. Hallerstede and T. S. Hoang. Refinement of decomposed models by interface
instantiation. Science of Computer Programming, 94:144–163, 2014. Abstract State
Machines, Alloy, B, VDM, and Z.

8. T. S. Hoang and D. Dghaym. Event-B and Rodin Wiki: CamilleX. http://wiki.

event-b.org/index.php/CamilleX, 2018. Accessed Feb 2021.
9. M. Leuschel and M. Butler. ProB: A model checker for B. In International

Symposium of Formal Methods Europe, pages 855–874. Springer, 2003.
10. G. Lowe. Casper: a compiler for the analysis of security protocols. In Proceedings

10th Computer Security Foundations Workshop, pages 18–30, 1997.
11. B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of diffie-

hellman protocols and advanced security properties. In 2012 IEEE 25th Computer
Security Foundations Symposium, pages 78–94, 2012.

12. D. Yadav and M. Butler. Verification of liveness properties in distributed systems.
In Contemporary Computing, pages 625–636, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
http://wiki.event-b.org/index.php/CamilleX
http://wiki.event-b.org/index.php/CamilleX

	Verifying System-level Security of a Smart Ballot Box

