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Abstract—We investigate massive access in the Internet-of-
Things (IoT) relying on multi-pair two-way amplify-and-forward
(AF) relay systems using massive multiple-input multiple-output
(MIMO). We utilize the approximate message passing (AMP)
algorithm for joint device activity detection and channel estima-
tion. Furthermore, we analyze the achievable rates for multiple
pairs of active devices and derive the closed-form expressions
for both maximum-ratio combining/maximum-ratio transmission
(MRC/MRT) and zero-forcing reception/zero-forcing transmis-
sion (ZFR/ZFT)-based beamforming schemes adopted at the
relay. Moreover, to improve the achievable sum rates, we propose
a low-complexity algorithm for optimizing the pilot length L.
Our simulation results verify the accuracy of the closed-form
expressions of the MRC/MRT and ZFR/ZFT scenarios. Finally,
the proposed pilot-length optimization algorithm performs well
in both the MRC/MRT and ZFR/ZFT scenarios.
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I. INTRODUCTION

In massive machine-type communications (mMTC) in the
Internet-of-Things (IoT), each cell usually supports numerous
devices, but in a coherence time interval, only few of them
are active [1]–[3]. In these scenarios, device activity detection
(DAD) and channel estimation (CE) constitute challenging
issues. When supporting numerous devices, the assignmen-
t of long orthogonal device-specific pilot sequences would
impose an excessive pilot-overhead. Hence, researchers have
put forward the non-orthogonal multiple access (NOMA) to
make full use of the available bandwidth. In these grant-free
NOMA schemes, all devices are assigned non-orthogonal pilot
sequences. Then, the active devices simultaneously transmit
their pilot signals to the base station, which performs joint
DAD and CE.

Due to the sparse nature of access in the IoT, DAD and
CE can be transformed into a compressed sensing problem.
In recent years, researchers have studied many algorithms for
DAD and CE, such as those based on mean-field message
passing [4] or Gaussian message passing [5], [6]. However,
these algorithms do not have a rigorous performance analysis,
which is usually required by researchers to study the system
performance. To solve this problem, Liu and Yu [7], [8]
utilized the approximate message passing (AMP) algorithm for
joint DAD and CE in massive multiple-input multiple-output
(MIMO) systems, and they analyzed the statistical character-
istics of the system. The AMP algorithm has been studied
by many researchers [9]–[15]. These studies proved that the
AMP algorithm has a remarkable capability of balancing its
performance by complexity trade-off.

Given the high number of potential devices in massive
access, there is an urgent need to improve the system’s
capacity and expand its coverage. Relay-aided transmissions
have been shown to be a promising technique of extending
coverage area and increasing the network capacity [16]–[18].
Recently, researchers have devoted considerable efforts to
integrating massive MIMO solutions into multi-pair relaying
for improving the system performance [19]–[21]. Gao et al.
[22] investigated a one-way multi-pair massive MIMO relay
system. In a multi-pair relay system using massive MIMO,
multiple pairs of users exchange their information through
a relay station, which is equipped with numerous antennas.
Furthermore, researchers also conceived a two-way relay sys-
tem, where two communication nodes engage in simultane-
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TABLE I
A BRIEF COMPARISON OF THE RELATED LITERATURE

[7] [8] [15] [27-29] Our work

Massive access
√ √ √ √

Massive MIMO
√ √ √ √ √

Multi-pair
√ √

Two-way relaying
√ √

Achievable rate analysis
√ √ √ √

Pilot length optimization
√ √ √

ous bidirectional data transmission, which can theoretically
double the bandwidth efficiency (BE) compared to one-way
relaying [23]–[26]. The authors of [27] and [28] studied the
power-scaling laws of the multi-pair two-way massive MIMO
(MTMM) relay systems, and the authors of [29] put forward
a beneficial power allocation scheme to maximize the BE.
The above studies show that the MTMM relay substantially
increases the coverage and improves the system capacity.
In a nutshell, Table I boldly and explicitly contrasts our
contributions to the existing literature.

Hence, we are inspired to use an MTMM relay for massive
access in the IoT, where numerous devices are supported, but
only a small fraction of them are active during a coherence
time. Active devices at both sides of the relay establish stable
bidirectional communications through a relay station employ-
ing numerous antennas. A two-phase transmission protocol is
adopted. We utilize the AMP algorithm to perform joint DAD
and CE in the first phase. Then, in the second phase, the active
devices communicate with their paired devices through the
relay. Furthermore, we also study the pilot length optimization
problem. The main contributions of this paper are summarized
as follows:

• We firstly study massive access in the IoT assisted by the
MTMM relay adopting both MRC/MRT and ZFR/ZFT
beamforming schemes. Furthermore, we use the AMP
algorithm for joint DAD and CE in this system.

• We derive the corresponding closed-form achievable rate
expressions for the above linear processing techniques for
multiple pairs of active devices.

• We propose a low-complexity optimization algorithm to
obtain the optimal pilot lengths for joint DAD and CE
by maximizing the achievable rates for both MRC/MRT
and ZFR/ZFT beamforming schemes. We prove that these
pair of optimization problems can be approximated by
convex optimization problems. Then, we propose a binary
search algorithm for solving these problems, and show
that this optimization algorithm has a low complexity.
Our simulation results verify that the proposed opti-
mization algorithm performs well for these two linear
processing techniques.

The rest of this paper is organized as follows. Section II
briefly introduces the MTMM relay system applied in a
massive access scenario. Section III derives the closed-form
expressions for the achievable rates in this access scenario,
when the relay employs both MRC/MRT and ZFR/ZFT pro-
cessing techniques. Section IV solves pilot length optimization
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Fig. 1. System Model

problems, and proposes an algorithm for solving these prob-
lems. The main results of this paper are verified by simulation
results in Section V. Finally, brief conclusions are provided in
Section VI.

Notations: In this paper, matrices are denoted by bold upper
case letters, vectors are denoted by bold lower case letters,
and scalars are denoted by lower case letters. The conjugate,
transpose, conjugate-transpose, and matrix inverse operations
are respectively denoted by the superscripts (·)∗, (·)T , (·)H ,
and (·)−1. Euclidean 2-norm and trace operators are denoted
by ∥·∥ and tr (·), respectively. We use E {·} and Var {·} to
denote the expectation and variance operators, respectively.
And [A]ij is used to denote the (i, j)th element of matrix
A. The matrix IN denotes an N × N identity matrix. In
addition, the distribution of the circularly symmetric complex
Gaussian vector with zero mean and covariance Σ is denoted
by CN (0,Σ).

II. SYSTEM MODEL

We investigate an MTMM relay system in the massive
access scenario shown in Fig. 1, where NA IoT devices
distributed at side A of the relay (R) want to communicate
with NB IoT devices distributed at the other side, i.e., side B.
The total number of the IoT devices is N = NA + NB . We
assume that the single-antenna devices at sides A and B are
too far to establish direct links. Therefore, the devices at sides
A and B can only exchange information via R, which has M
antennas. Furthermore, the relay operates in the half-duplex
mode and under the TDD protocol. The vector gn ∈ CM×1

denotes the channel spanning from device n to R, and gn

obeys the i.i.d. CN (0, βnIM ) with βn being the path loss. We
assume TDD-based channel reciprocity. Then, the downlink
(DL) channel from R to device n (Dn) can be expressed as
gT
n [29].
During the coherence interval, the active devices make

up only a very small part of the total number of devices,
since the IoT devices generate bursts of information [7]. For
convenience, we introduce αn as the device activity factor
with αn = 1, if Dn is active, otherwise, αn = 0. Then for
∀n = 1, 2, ..., N , we have{

Pr (αn = 1) = θ , Dn is active,
Pr (αn = 0) = 1− θ , otherwise, (1)
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where θ stands for the activity probability of each device.
Furthermore, in a coherence time, we use the set K =
{n : αn = 1} to represent the collection of all active devices,
and assume the number of active devices is |K| = K̄.
Additionally, the sets of active devices at sides A and B are
respectively denoted by KA and KB .

In this paper, we divide each coherence interval of T symbol
durations into two phases, one for DAD and CE, while the
other for data transmission.

A. Device Activity Detection and Channel Estimation [7]

For our massive access scenario, we adopt a grant-free
NOMA scheme, since the number of potential devices is larger
than the pilot length, i.e., N > L. Hence it is not feasible to
have unique device-specific orthogonal pilots. For the DAD
and CE phase, different pilot sequences are assigned to each
device n, which is denoted as an = [an,1, an,2, ..., an,L]

T ∈
CL×1 with entries generated from the i.i.d. CN

(
0, 1

L

)
. At the

start of this phase, the active devices simultaneously transmit
their pilot sequences to R. Then, the received pilot signal
Y ∈ CL×M at R is given by

Y =
N∑

n=1

αn

√
ξnang

T
n + Z , AX+ Z, (2)

where A = [a1,a2, ...,aN ] ∈ CL×N , X =
[x1,x2, ...,xN ]

T ∈ CN×M with xn = αn

√
ξngn ∈ CM×1,

ξn = Lpp,n is the transmit energy with pilot power pp,n,
and Z is the additive white Gaussian noise (AWGN) with
entries obeying the i.i.d. CN

(
0, σ2

R

)
. Because very few of

the devices are active, the row vector xn is sparse, and it
obeys a Bernoulli Gaussian distribution:

pxn = (1− θ) δ0 + θpn, (3)

where pn denotes the distribution of vector
√
ξngn ∼

CN (0, ξnβnIM ), and βn is the path loss exponent defined
before. Additionally, δ0 denotes the point mass measure at
zero.

Then, to carry out DAD and CE, we have to recover the
sparse signal X based on the received pilot signal Y, which
can be modeled as a compressed sensing problem. For this
kind of problems, the AMP algorithm has been proved to be an
efficient solution [7], [13], [30]. According to [7], [30], when
the entries of the sensing matrix A are generated according
to the i.i.d. Gaussian distribution, the performance of the
AMP algorithm can be predicted by the state evolution in the
asymptotic regime, where we have L, K̄,N → ∞ with their
ratios converging to some fixed positive values.

We adjust the AMP algorithm of [7] to perform joint DAD
and CE. When the device k is detected to be active, we can
obtain its corresponding channel estimate at the same time as

ĝk =
xt
k√
ξk

, (4)

where xt
k is the estimate of x1 at iteration t of the AMP

algorithm. Then the channel estimation error is given by
ek = gk− ĝk. Moreover, as M becomes large, the covariance
matrices of ĝk and ek can be respectively formulated as [8],

[15]

cov (ĝk, ĝk) =
β2
kξk

βkξk + τ2∞
IM, (5)

cov (ek, ek) =
βkτ

2
∞

βkξk + τ2∞
IM, (6)

where cov (·, ·) denotes the covariance operator. This mean-
s that the vectors ĝk and ek respectively obey ĝk ∼
CN

(
0,

β2
kξk

βkξk+τ2
∞
IM

)
and ek ∼ CN

(
0,

βkτ
2
∞

βkξk+τ2
∞
IM

)
, as M

becomes large. In (5) and (6), the scalar τ2∞ is the solution
converged to the state evolution of the AMP algorithm. In the
high signal-to-noise ratio (SNR) regions, i.e., Lpp,kβ

σ2
R

→ ∞,
when L > K̄, τ2∞ obeys [8], [15]

τ2∞ → Lσ2
R

L− K̄
. (7)

B. Data Transmission

In this scenario, we assume that there are KA = |KA|
active devices at side A as well as KB = |KB | active devices
at side B in a coherence time. We consider the case where
K = min (KA,KB) pairs of active devices establish com-
munication with each other via the relay. When KA ̸= KB ,
we can use some user scheduling schemes to select the same
number of active devices at each side to communicate at each
time [8], [31]. Therefore, we assume KA = KB = K for
convenience, and we have K̄ = 2K in our following paper.

In the data transmission phase, there are basically two
stages. In the first stage, the K pairs of active devices
simultaneously transmit their signals to R. The signal received
by R can be expressed as

yr =
∑
n∈K

gn
√
pd,nsn + nR, (8)

where the vector nR ∼ CN
(
0, σ2

RIM
)

is the AWGN at R,
sn represents the signal transmitted from device n with unit
norm, and pd,n is its corresponding transmit power.

In the second stage, the received signal is processed by the
linear processing technique at R, and then it is transmitted to
K pairs of active devices. The signal transmitted from R can
be expressed as

yt = ρWyr = ρW

(∑
n∈K

gn
√
pd,nsn + nR

)
, (9)

where W is the beamforming matrix at R, which is a function
of the channel estimate, and ρ is chosen to satisfy the transmit
power constraint E

{
∥yt∥2

}
= pr at R. Therefore, the signal

received by the active device k can be expressed as

yk = ρgT
k Wgk′

√
pd,k′sk′︸ ︷︷ ︸

desired signal

+ ρgT
k Wgk

√
pd,ksk︸ ︷︷ ︸

self-interference

+
∑

n∈K/{k,k′}

ρgT
k Wgn

√
pd,nsn︸ ︷︷ ︸

inter-pair interference

+ ρgT
k WnR︸ ︷︷ ︸

noise from the relay

+nk, (10)

where (k, k′) represents a pair of active devices, and nk ∼
CN

(
0, σ2

k

)
is the AWGN noise at the device k. From (10),
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we note that the received signal yk consists of several terms.
The desired signal is the signal transmitted from the active
device k′. The self-interference represents the signal which is
first transmitted from the active device k to the relay, then
retransmitted from the relay to the active device k itself. The
inter-pair interference represents the signals transmitted from
other active devices pairs. The noise contributed by the relay
is generated when the relay receives signals and it is amplified,
when the relay retransmits the received signals.

Based on the channel estimate, the relay transmits the self-
interference cancellation (SIC) coefficient ĝT

k Wĝk for the
active device k. Therefore, the signal received at the active
device k after the SIC is written as

ỹk = ρgT
k Wgk′

√
pd,k′sk′︸ ︷︷ ︸

desired signal

+ ρλk
√
pd,ksk︸ ︷︷ ︸

residual self-interference

+
∑

n∈K/{k,k′}

ρgT
k Wgn

√
pd,nsn︸ ︷︷ ︸

inter-pair interference

+ ρgT
k WnR︸ ︷︷ ︸

noise from the relay

+nk, (11)

where λk = gT
k Wgk − ĝT

k Wĝk.

C. Linear Processing Techniques

We consider a pair of linear processing techniques at the
relay, i.e., MRC/MRT and ZFR/ZFT, similar to those in
[29]. Apart from these two techniques, LMMSE processing
technique is an effective scheme, which has been studied
by many researchers [32]. However, our system is a more
complicated one. In fact, there is even no work on applying
LMMSE scheme to an MTMM relay system. Hence, it is
challenging to apply this scheme in the MTMM relay system.
We will consider that in the future study.

1) MRC/MRT Processing: The MRC/MRT beamforming
matrix is given by

W = Ĝ∗PĜH , (12)

where Ĝ ∈ CM×2K is the matrix of channel estimates. The
first K columns of Ĝ represent the channel estimates of the
K active devices at side A of Fig. 1, while the last K columns
of that represent those of the corresponding K active devices

at side B, and P =

[
0 IK
IK 0

]
is the mapping matrix.

Then, the scalar ρ of the MRC/MRT processing technique is
expressed as

ρ =

√√√√ pr∑
n∈K

pd,nE
{
∥Wgn∥2

}
+ E

{
∥WnR∥2

} , ρmr.

(13)

Lemma 1: The closed-form expression of ρmr is formulated

as

ρmr =

√√√√ pr∑
n∈K

pd,n

(
M(M+1)2β4

nβ
2
n′ξ

2
nξn′

(βnξn+τ2
∞)2(βn′ξn′+τ2

∞)
+ βnη

)
+ σ2

Rη
,

(14)

where we have η =
∑

j∈KA

2M(M+1)β2
jβ

2
j′ξjξj′

(βjξj+τ2
∞)(βj′ξj′+τ2

∞)
.

Proof: See Appendix A.
2) ZFR/ZFT Processing: The ZFR/ZFT beamforming ma-

trix is given by

W = Ĝ∗
(
ĜT Ĝ∗

)−1

P
(
ĜHĜ

)−1

ĜH . (15)

For convenience, we introduce the matrices Ḡ, P̄ and the
vector s̄, where Ḡ ∈ CM×2K represents the real channel
matrix of the active devices corresponding to Ĝ. Furthermore,
the matrix P̄ ∈ C2K×2K is a diagonal matrix, and its diagonal
elements represent the square roots of the transmission power
of the active devices. Finally, the elements of the vector
s̄ ∈ C2K×1 represent the unit-norm signals of the active
devices. Substituting (15) into (9) and combining it with
the transmit power constraint, the scalar ρ of the ZFR/ZFT
processing technique is formulated as

ρ =

√
pr

E
{∥∥WḠP̄s̄

∥∥2}+ E
{
∥WnR∥2

} , ρzf . (16)

Lemma 2: The closed-form expression of ρzf is given by

ρzf =

√√√√ pr∑
n∈K

(
pd,n′ (βnξn+τ2

∞)

(M−2K−1)β2
nξn

+
γpd,nβnτ2

∞
βnξn+τ2

∞

)
+ σ2

Rγ
, (17)

where we have γ =
∑
j∈K

2(βjξj+τ2
∞)(βj′ξj′+τ2

∞)
(M−2K)(M−2K−3)β2

jβ
2
j′ξjξj′

.

Proof: See Appendix B.

III. RATE ANALYSIS FOR LARGE-SCALE IOT ACCESS

In this section, we aim for investigating the achievable
rates of the active devices. Explicitly, we derive the closed-
form expressions of the achievable rates for MRC/MRT and
ZFR/ZFT processing adopted at the relay.

Given (11), the achievable rate of the active device k may
be formulated as (18) at the bottom of this page. Then, we use
a similar method to that in [33], [34] for deriving the lower
bound of the achievable rate at the active device k for further
insightful analysis. Therefore, ỹk in (11) can be re-written as

ỹk = ρE
{
gT
k Wgk′

}√
pd,k′sk′ + ñk︸︷︷︸

effective noise

, (19)

R̄k=
T − L

2T
E

log2

1+
pd,k′

∣∣gT
k Wgk′

∣∣2
pd,k|λk|2+

∑
n∈K/{k,k′}

pd,n
∣∣gT

k Wgn

∣∣2+∣∣gT
k WnR

∣∣2+ 1
ρ2 |nk|2


 . (18)
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where the effective noise ñk is

ñk = ρgT
k Wgk′

√
pd,k′sk′ − ρE

{
gT
k Wgk′

}√
pd,k′sk′

+ ρλk
√
pd,ksk +

∑
n∈K/{k,k′}

ρgT
k Wgn

√
pd,nsn

+ ρgT
k WnR + nk. (20)

Based on (19) and (20), the lower bound of the achievable
rate of the active device k can be obtained as

Rk =
T−L

2T
log2

(
1+

DSk
GUk+SIk+IPk+NRk+NDk

)
, (21)

with DSk, GUk, SIk, IPk, NRk, and NDk representing respec-
tively the desired signal, the gain uncertainty, the residual self-
interference after SIC, the inter-pair interference, the amplified
noise emanating from the relay and the noise at the device k,
which are expressed as

DSk = pd,k′
∣∣E{gT

k Wgk′
}∣∣2, (22)

GUk = pd,k′Var
{
gT
k Wgk′

}
, (23)

SIk = pd,kE
{
|λk|2

}
, (24)

IPk =
∑

n∈K/{k,k′}

pd,nE
{∣∣gT

k Wgn

∣∣2}, (25)

NRk = E
{∣∣gT

k WnR

∣∣2} , (26)

NDk =
1

ρ2
E
{
|nk|

2
}
. (27)

A. MRC/MRT Processing

When the MRC/MRT beamforming matrix is adopted at the
relay, based on (21), we derive a closed-form expression for
the achievable rate of the active device k in the following
theorem.

Theorem 1: In the multi-pair massive access scenario using
MRC/MRT processing, when L > 2K, the SNR is high and
M tends to infinity, the achievable rate of the active device k
is lower bounded by

Rmr
k =

T−L

2T
log2

(
1+

DSmr
k

GUmr
k +SImr

k +IPmr
k +NRmr

k +NDmr
k

)
,

(28)

where the terms DSmr
k , GUmr

k , SImr
k , IPmr

k , NRmr
k , and NDmr

k

are expressed in the following equations. And in (29)-(33), the
value of the term τ2∞ equals to Lσ2

R

L−2K , i.e., τ2∞ =
Lσ2

R

L−2K .

DSmr
k =

pd,k′M2(M + 1)
2
β4
kβ

4
k′ξ2kξ

2
k′

(βkξk + τ2∞)
2
(βk′ξk′ + τ2∞)

2 , (29)

GUmr
k = pd,k′βkβk′η +

pd,k′M(M+1)
2
β3
kβ

3
k′ξkξk′

(βkξk+τ2∞)(βk′ξk′+τ2∞)

×
(

βkξk
βkξk+τ2∞

+
βk′ξk′

βk′ξk′+τ2∞

)
, (30)

SImr
k =

pd,kβkτ
2
∞

βkξk + τ2∞

(
4M(M + 1)

2
β4
kβ

2
k′ξ2kξk′

(βkξk + τ2∞)
2
(βk′ξk′ + τ2∞)

+
2βkτ

2
∞η

βkξk + τ2∞
+

4β2
kξkη

βkξk + τ2∞

)
, (31)

IPmr
k =

∑
n∈K/{k,k′}

(
M(M + 1)

2
pd,nβnβ

4
kβ

2
k′ξ2kξk′

(βkξk + τ2∞)
2
(βk′ξk′ + τ2∞)

+
M(M+1)

2
pd,nβkβ

4
nβ

2
n′ξ2nξn′

(βnξn+τ2∞)
2
(βn′ξn′+τ2∞)

+pd,nβnβkη

)
, (32)

NRmr
k =

M(M + 1)
2
β4
kβ

2
k′ξ2kξk′σ2

R

(βkξk + τ2∞)
2
(βk′ξk′ + τ2∞)

+ σ2
Rβkη, (33)

NDmr
k =

1

ρ2mr

σ2
k. (34)

Proof: See Appendix C.

B. ZFR/ZFT Processing
For ZFR/ZFT processing, we derive a closed-form expres-

sion for the achievable rate of the active device k in the
following theorem.

Theorem 2: In the multi-pair massive access scenario using
ZFR/ZFT processing, when L > 2K, the SNR is high and
M > 2K tends to infinity, the achievable rate of the active
device k is lower bounded by

Rzf
k =

T−L

2T
log2

(
1+

DSzfk
GUzf

k+SIzfk+IPzf
k+NRzf

k+NDzf
k

)
,

(35)
where the terms DSzfk , GUzf

k , SIzfk , IPzf
k , NRzf

k , and NDzf
k are

respectively given by the following equations. And in (37)-
(40), we have τ2∞ =

Lσ2
R

L−2K .

DSzfk = pd,k′ , (36)

GUzf
k =

pd,k′τ2∞
M − 2K − 1

(
1

βk′ξk′
+

1

βkξk

)
+

pd,k′βkβk′τ4∞γ

(βkξk + τ2∞) (βk′ξk′ + τ2∞)
, (37)

SIzfk =
pd,kβ

2
kτ

4
∞γ

(βkξk+τ2∞)
2 +

4pd,k
(
βk′ξk′ + τ2∞

)
βkτ

2
∞

(M−2K−1)(βkξk+τ2∞)β
2
k′ξk′

, (38)

IPzf
k =

∑
n∈K/{k,k′}

(
pn,dβkβnτ

4
∞γ

(βkξk + τ2∞) (βnξn + τ2∞)
+

pn,dτ
2
∞

(M−2K−1)

×
( (βk′ξk′+τ2∞

)
βn

(βnξn+τ2∞)β2
k′ξk′

+

(
βn′ξn′+τ2∞

)
βk

(βkξk+τ2∞)β2
n′ξn′

))
, (39)

NRzf
k =

σ2
R

(
βk′ξk′ + τ2∞

)
(M − 2K − 1)β2

k′ξk′
+

βkτ
2
∞σ2

Rγ

βkξk + τ2∞
, (40)

NDzf
k =

1

ρ2zf
σ2
k, (41)

Proof: See Appendix D.
For these two massive IoT access scenarios, Theorem 1 and

Theorem 2 indicate that system performance mainly depends
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on the system parameters: L, 2K, M , pp,j , pr, pd,j , and
βj , where j ∈ K. It can be readily seen that the achievable
rate of the active device k increases with pr and pd,k′ . By
contrast, it decreases with pd,j when j ̸= k′, since the self-
interference and the inter-pair interference increase with pd,j .
When pd,j , j ∈ K increases, the channel estimation error
decreases, so the achievable rate increases. It can also be
concluded from Theorem 1 and Theorem 2 that the achievable
rate increases with M for both MRC/MRT and ZFR/ZFT
processing. Additionally, the achievable rate of the active
device k apparently decreases with K. Finally, the achievable
rate is a complex function of L, which will be further discussed
in the next section.

IV. OPTIMIZATION OF PILOT LENGTH

When L > 2K, the SNR is high and M goes to infinity,
according to equations (5)-(7), we observe that the pilot
length L has an impact on the channel estimate and hence
on the estimation error. A larger L improves the accuracy
of the channel estimation leading to an increased rate, but
naturally, it reduces the useful data transmission duration
within a coherence time, hence reducing the rate, and vice
versa. Therefore, the optimization of the pilot length L is
necessary to strike a balance between these two effects. For the
simplicity of the ensuing analysis in this section, we assume
βk = β, pp,k = pp, pd,k = pd and σ2

R = σ2
k = 1, for ∀k.

First, we consider the MRC/MRT processing case. The
optimization problem for the pilot length L to get the maximal
achievable rate can be expressed as

max
L

∑
k∈K

Rmr
k

s.t. 2K < L < T, L is an integer.
(42)

Theorem 3: In Problem (42), the objective function can be
approximated as a concave function over L in the range of
2K < L < T , when L is a real variable.

Proof: To deal with this problem, we reformulate the
expression of

SNRmr
k

∆
=

DSmr
k

GUmr
k + SImr

k +IPmr
k +NRmr

k +NDmr
k

(43)

into a more tractable form. After some simplifications, we
arrive at

SNRmr
k =

a3
a2χ2

mr + a1χmr + a0
, (44)

where χmr =
1

(L−2K)ppβ
. In (44), a0, a1, a2, a3 > 0 represent

the coefficients that are independent of the pilot length L,
which are given by

a0 =

(
4β2 +

4β

pr

)
K2 +

(
6β2 +

2β

pd
+

2

prpd
+

2β

pr

)
K

+

(
4Kβ2 +

2Kβ

pr
+ 2β2 +

β

pd

)
M + 2β2 +

β

pd
, (45)

a1 =

(
8β2+

8β

pr

)
K2+

(
12β2+

4β

pd
+

4

prpd
+4β2+

12β

pr

)
K

+

(
4Kβ2 +

2Kβ

pr
+ 6β2 +

β

pd

)
M + 6β2 +

β

pd
, (46)

a2 =

(
4β2 +

4β

pr

)
K2 +

(
6β2 +

2β

pd
+

2

prpd

)
K, (47)

a3 = M (M + 1)β2. (48)

Since the objective function of Problem (42) associated with
SNRmr

k given in (44) is still complicated, we consider its upper
bound for simplicity, which is given by

SNRmr
k <

a3
a1χmr + a0

=
a3

a1

(L−2K)ppβ
+ a0

. (49)

Since a0, a1 and a2 have values of the same order, when
χmr is small enough for ensuring that χ2

mr is many orders of
magnitude smaller than χmr, the term a2χ

2
mr in (44) can be

ignored. Thus, the above upper bound is tight, when χmr is
very small. Note that at high SNRs, where Lppβ → ∞, the
variable χmr =

1

(1− 2K
L )Lppβ

converges to zero, provided that
L is not close to 2K. According to [8], the cost of DAD is
large when L is close to 2K, which degrades the sum rate.
This will be verified later in Section V. Hence, the optimal L
is not close to 2K. Therefore, when we are searching for an
optimal L, we consider the case where χmr is small and the
upper bound is tight. More explicitly, our simulation results
will show that the values of the two sum rates are tight when
L is not too close to 2K. In addition, a larger pilot length
L and a higher pilot power pp leading to a higher SNR, will
make the curves of the two sum rates to appear to be tighter.

Based on (49), the objective function of Problem (42) is
simplified to

max
2K<L<T

T − L

2T

∑
k∈K

log2

(
1 +

a3
a1

(L−2K)ppβ
+ a0

)
. (50)

When L is considered in the real field in the range of 2K <
L < T , we define

f (L) = log2

(
1 +

a3
a1

(L−2K)ppβ
+ a0

)
, (51)

g (L) =
T − L

T
f (L) . (52)

The first-order and second-order derivatives of f (L) are given
respectively by

f ′ (L) =
a0a3

(a20+a0a3)ppβ(L−2K)
2
+(a1a0+a1a3)(L−2K)+

a2
1

ppβ

, (53)

f ′′ (L) =

− a0a3
(
2
(
a20+a0a3

)
ppβ (L−2K)+a1a0+a1a3

)(
(a20+a0a3)ppβ(L−2K)

2
+(a1a0+a1a3)(L−2K)+

a2
1

ppβ

)2 . (54)

When L is in the range of 2K < L < T , it can be observed
that f ′ (L) > 0 and f ′′ (L) < 0. Next, we focus our attention
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on the characteristics of the function g (L). We obtain the
second-order derivative of g (L) in (52) as

g′′ (L) =
−2f ′ (L) + (T − L) f ′′ (L)

T
. (55)

When L is in the range of 2K < L < T , substituting the
results f ′ (L) > 0 and f ′′ (L) < 0 into (55), we can then
obtain that g′′ (L) < 0. Therefore, when L is in the real field,
the objective function of Problem (50) is a concave function
of L, provided that 2K < L < T .

Next, the ZFR/ZFT processing scenario is considered. The
optimization problem of the ZFR/ZFT processing scenario is
to get the maximal achievable rate over the pilot length L,
which can be expressed as

max
L

∑
k∈K

Rzf
k

s.t. 2K < L < T, L is an integer,
(56)

where Rzf
k is given in (35).

Theorem 4: In Problem (56), the objective function can be
approximated as a concave function over L in the range of
2K < L < T , when L is a real variable.

Proof: Following some simplifications, we arrive at

SNRzf
k

∆
=

DSzfk
GUzf

k + SIzfk +IPzf
k +NRzf

k +NDzf
k

, (57)

which can be reformulated as

SNRzf
k =

b3
b2χ2

zf + b1χzf + b0
, (58)

where χzf = 1
(L−2K)ppβ

. Furthermore, b0, b1, b2, b3 > 0
represent the coefficients that are independent of L, which
are given by

b0 =
2c1
pdpr

K +

(
2K

pr
+

1

pd

)
βc2, (59)

b1 =

(
4pdβ

pdpr
K +

4

pdpr
+

2β

pd

)
Kc1

+

((
2

pr
+ 4β

)
K + 2β +

1

pd

)
βc2, (60)

b2 =

((
4β2 +

4pdβ

pdpr

)
K +

2

pdpr
+

2β

pd

)
Kc1, (61)

b3 = β2, (62)

where c1 = 1
(M−2K)(M−2K−3) and c2 = 1

(M−2K−1) .
Similarly, we also consider its upper bound, which is given

by

SNRzf
k <

b3
b1χzf + b0

=
b3

b1
(L−2K)ppβ

+ b0
. (63)

We will verify in Section V that the above upper bound is
tight, when we are searching for the optimal L. Then, using
a procedure similar to that we used for the MRC/MRT case,
we obtain Theorem 4.

Theorem 3 and Theorem 4 show the optimizations of the
pilot length L. To elaborate, maximizing the achievable rates
of the MRC/MRT and ZFR/ZFT processing techniques can be

Algorithm 1 Binary Search for The Optimal Pilot Length
Input: Objective function: u (L).

Variable: The pilot length L.
Output: The optimal pilot length Lopt.

1: Initialize the search range [Lmin, Lmax], where Lmax =
T − 1 and Lmin = 2K + 1.

2: loop
3: if Lmax − Lmin > 2 then
4: Set the feasible solution Lopt = ⌊(Lmax + Lmin)/2⌋.
5: Calculate the values of the objective function in

u (Lopt − 1), u (Lopt) and u (Lopt + 1).
6: if u (Lopt − 1) > u (Lopt) then
7: Set Lmax = Lopt − 1.
8: else if u (Lopt + 1) > u (Lopt) then
9: Set Lmin = Lopt + 1.

10: else
11: break.
12: end if
13: Update the search range [Lmin, Lmax].
14: else
15: Find the Lopt that maximizes u (L) by exhaustive

search method in the range [Lmin, Lmax].
16: break.
17: end if
18: end loop

approximated as convex optimization problems. We propose
the low-complexity procedure of Algorithm 1 to solve these
two optimization problems. For the MRC/MRT processing
scenario, the value of the term u (L) in Algorithm 1 is set
to u (L) =

∑
k∈K

Rmr
k , where Rmr

k is expressed as in (28). By

contrast, for ZFR/ZFT processing, the value of the term u (L)
in Algorithm 1 is set to u (L) =

∑
k∈K

Rzf
k , where Rzf

k is defined

in (35).
The corresponding computational complexities of both the

exhaustive search algorithm and of Algorithm 1 (namely our
proposed binary search algorithm) are respectively shown as
follows:

• The exhaustive search algorithm: Since L is in the
range of [2K,T ], the computational complexity is on the
order of O (T − 2K).

• The proposed binary search algorithm (Algorithm 1):
Since a binary search is used, the computational com-
plexity is on the order of O (log2 (T − 2K)).

Thus, Algorithm 1 (our proposed binary search algorithm)
has a moderate complexity. Furthermore, we test the running
time of both the exhaustive search algorithm and of Algorith-
m 1 in simulation. Table II compares the running times of
these two algorithms. It further shows that our algorithm has
a low complexity.

V. NUMERICAL RESULTS

In this section, we present our numerical results. We assume
that there are N = 1000 devices at each side of Fig. 1, and
the activity probability is θ = 0.05. Hence the number of
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TABLE II
A BRIEF COMPARISON OF THE RUNNING TIME FOR THE ALGORITHMS

The number of simulations
MR running time (s) ZF running time (s)

Exhaustive algorithm Algorithm 1 Exhaustive algorithm Algorithm 1

100 15.473 0.633 16.328 0.709

500 77.470 3.024 81.435 3.124

1000 153.137 6.055 162.323 6.108

2000 327.793 13.924 346.955 12.478
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Fig. 2. The sum rate versus pr with N = 1000, θ = 0.05, L = 150, and
M = 512.
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Fig. 3. The sum rate versus M with N = 1000, θ = 0.05, L = 150, and
pr = 23 dBm.

active devices at each side is around K = 50. We assume
each coherence interval has T = 1000 symbols [7], [15].
The path loss model of the wireless channel for device n is
βn = −128.1− 36.7 log (dn) in dB, ∀n, where dn denote the
distance between device n and the relay, which is in the range
of [0.1km, 1km]. Additionally, we set σ2

R = σ2
k = −109 dBm,

pd = pr

2K , and pp = 13 dBm. Furthermore, the numerical
results in this section are obtained by averaging over 1000
channel realizations.

In Fig. 2 and Fig. 3, we portray the MR and ZF simu-
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Fig. 4. The sum rate versus L in the MRC/MRT case with N = 1000,
θ = 0.05, and M = 256.

lation curves by substituting the MRC/MRT and ZFR/ZFT
beamforming matrices into (18), respectively. Additionally, the
MR and ZF approximation curves are respectively obtained
according to Theorem 1 and Theorem 2. In Fig. 2, we set
L = 150 and M = 512. It is readily seen that the sum rate
in Fig. 2 varies with pr and pd, as expected. We see that
in both the MRC/MRT and ZFR/ZFT scenarios, the sum rates
increase with pr and pd, when pr and pd are low. When pr and
pd become higher, the ZFR/ZFT scenario still performs well,
but the MRC/MRT scheme exhibits saturation. This is because
the MRC/MRT processing neglects the inter-pair interference
effect, which becomes excessive with high pr and pd. In
Fig. 3, we set L = 150 and pr = 23 dBm, where the sum
rate varies with M . We find that in both the MRC/MRT and
ZFR/ZFT scenarios, the sum rates increase with M , as expect-
ed. Additionally, the sum rate of the ZFR/ZFT processing is
higher than that of the MRC/MRT processing. This is because
the ZFR/ZFT processing focuses on eliminating the multi-
user interference, which is large especially in the massive
access scenario, while the ZFR/ZFT processing focuses on
maximizing the desired part of the received signal.

In the massive access scenario, DAD will impose a sum
rate erosion, which is the cost of DAD. Herein, the sum
rates obtained by the MR and ZF schemes are compared
to the sum rates obtained in the perfectly known activity
scenarios, where the estimated channel and the channel es-
timation error of device k can be assumed respectively as
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Fig. 5. The sum rate versus L in the ZFR/ZFT case with N = 1000,
θ = 0.05, and M = 256.
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ĝk ∼ CN
(
0,

β2
kLpp

βkLpp+σ2
R
I
)

and ek ∼ CN
(
0,

βkσ
2
R

βkLpp+σ2
R
I
)

.
In Fig. 4 and Fig. 5, we set the powers as pr = 23 dBm,
pd = pr

2K and pp = pd to gain further insights. Observe for
both the MRC/MRT and ZFR/ZFT cases that the cost of DAD
is evident when L is close to 2K, especially in the ZFR/ZFT
case. Additionally, the cost of DAD is falling fast when L
increases, as expected. Specifically, when L = 120, the DAD
rates have a 7.29% drop for MR scheme and a 62.24% drop for
ZF scheme, compared to the known activity rates. However,
when L = 200, the rate drops are 1.33% for MR scheme
and 14.17% for ZF scheme. We also find that the maximal
sum rates of MRC/MRT processing for the cases with and
without known device activity at the relay are closer than that
of ZFR/ZFT processing. This means that the cost of realistic
imperfect DAD in the MRC/MRT case is lower than that in
the ZFR/ZFT case. However, in the ZFR/ZFT case in Fig. 5,
the achievable sum rate is dramatically improved compared to
the MRC/MRT case in Fig. 4.

In Section IV, we utilize upper bounds for the sum rates
to solve the problems in (42) and (56). Herein, the sum rates
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Fig. 7. Pilot length optimization in the ZFR/ZFT case with background
settings N = 1000, θ = 0.05, M = 256 and pr = 23 dBm

obtained by the proposed upper bound are compared to the
sum rates obtained by MR and ZF simulation. Fig. 6 shows
that the upper bound in the MRC/MRT scenario is close
to the simulation result. Additionally, the gap between the
two sum rates becomes smaller, when L becomes larger and
pp becomes higher, as expected. Observe in Fig. 7 that the
situation is similar for the ZFR/ZFT case. Furthermore, we
use Algorithm 1 to obtain optimal points for the sum rates. As
is seen in Fig. 6 and Fig. 7, Algorithm 1 performs well. The
optimal points obtained by Algorithm 1 for both MRC/MRT
and ZFR/ZFT processing are close to the optimal points in the
simulation results, when pp = −26.9 dBm. Furthermore, the
optimal points become the same, when pp = −16.9 dBm.

VI. CONCLUSION

In this paper, we first applied an MTMM AF relaying
system in a single-cell massive access scenario. Using the
AMP algorithm for DAD and CE, we derived the closed-form
ergodic achievable rate expressions for both MRC/MRT and
ZFR/ZFT processing, which depend on the system parameters:
L, 2K, M , pp,j , pr, pd,j , and βj , where j ∈ K. Additionally,
we found that in the MRC/MRT case, the cost of DAD is
lower, while in the ZFR/ZFT case, the sum rate is much higher.
Furthermore, for both MRC/MRT and ZFR/ZFT cases, we ap-
proximated the non-convex pilot length optimization problems
of maximizing the sum rate by tractable convex optimization
problems. Finally, we solved them by the proposed algorithm.

APPENDIX A
PROOF OF LEMMA 1

First we briefly review some known results concerning
random vectors [35], [36] that will be useful in the following
derivations. Given mutually independent random vectors x ∈
CM×1 and y ∈ CM×1 with the distributions CN

(
0, σ2

xIM
)

and CN
(
0, σ2

yIM
)

respectively, it can be concluded that

E
{∣∣xHy

∣∣2} = Mσ2
xσ

2
y, (64)
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E
{
xxHxxH

}
= (M + 1)σ4

xIM . (65)

To simplify the expressions for the following procedures of
calculations, from (5) and (6), we define the terms σ2

g,k and
σ2
e,k as

σ2
g,k , β2

kξk
βkξk + τ2∞

, (66)

σ2
e,k , βkτ

2
∞

βkξk + τ2∞
. (67)

Then, we commence by calculating ρmr in (14). Note that we
have to calculate two terms E

{
∥Wgn∥2

}
and E

{
∥WnR∥2

}
to complete the proof. Firstly, we rewrite the MRC/MRT
beamforming matrix based on (12) as follows:

W =
∑
j∈KA

(
ĝ∗
j′ ĝ

H
j + ĝ∗

j ĝ
H
j′
)
. (68)

Next, we focus on calculating the term E
{
∥WnR∥2

}
shown

below

E
{
∥WnR∥2

}
= σ2

Rtr
(
E
{
WHW

})
= σ2

Rtr

(
E
{ ∑

i∈KA

(
ĝi′ ĝ

T
i + ĝiĝ

T
i′
)∑
j∈KA

(
ĝ∗
j′ ĝ

H
j + ĝ∗

j ĝ
H
j′
)})

(a)
= σ2

R

∑
j∈KA

tr
(
E
{(
ĝj′ ĝ

T
j +ĝj ĝ

T
j′
)(
ĝ∗
j′ ĝ

H
j +ĝ∗

j ĝ
H
j′
)})

. (69)

Step (a) is justified, because when i ̸= j, the expectation
equals to zero. Based on (64), and exploiting the facts that
tr (AB) = tr (BA) and

(
xTy

)T
= xTy, we obtain

tr
(
E
{(

ĝj′ ĝ
T
j + ĝj ĝ

T
j′
) (

ĝ∗
j′ ĝ

H
j + ĝ∗

j ĝ
H
j′
)})

= tr
(
E
{
ĝj′ ĝ

T
j ĝ

∗
j′ ĝ

H
j

})
+ tr

(
E
{
ĝj′ ĝ

T
j ĝ

∗
j ĝ

H
j′
})

+ tr
(
E
{
ĝj ĝ

T
j′ ĝ

∗
j′ ĝ

H
j

})
+ tr

(
E
{
ĝj ĝ

T
j′ ĝ

∗
j ĝ

H
j′
})

= 2M (M + 1)σ2
g,jσ

2
g,j′ . (70)

Therefore, we have

E
{
∥WnR∥2

}
= σ2

R2M(M+1)
∑
j∈KA

σ2
g,jσ

2
g,j′ , σ2

Rη1. (71)

Finally, we calculate the other term E
{
∥Wgn∥2

}
as follows:

E
{
∥Wgn∥2

}
= E

{̂
gH
n WHWĝn

}
+E
{
eHn WHWen

}
. (72)

The term E
{
ĝH
n WHWĝn

}
in (72) is expanded as

E
{
ĝH
n WHWĝn

}
= E

{
ĝT
n

(
ĝn′ ĝT

n + ĝnĝ
T
n′

) (
ĝ∗
n′ ĝH

n + ĝ∗
nĝ

H
n′

)
ĝ∗
n

}
+
∑

j,j′ ̸=n

E
{
ĝT
n

(
ĝj′ ĝ

T
j + ĝj ĝ

T
j′
) (

ĝ∗
j′ ĝ

H
j + ĝ∗

j ĝ
H
j′
)
ĝ∗
n

}
, (73)

which can be calculated in a way similar to (70). Additionally,
the second term E

{
eHn WHWen

}
can be obtained similarly

to (71). Thus, we arrive at

E
{
∥Wgn∥2

}
= M(M + 1)

2
σ4
g,nσ

2
g,n′ + βnη1. (74)

Based on (66), (67), (71), and (74), we obtain (14), which

completes this proof.

APPENDIX B
PROOF OF LEMMA 2

The derivation of obtaining ρzf in (17) includes the cal-
culation of the terms E

{∥∥WḠP̄s̄
∥∥2} and E

{
∥WnR∥2

}
.

We will use (66) and (67) to simplify the expressions for the
following procedures of calculations. We first calculate the
second term as

E
{
∥WnR∥2

}
= σ2

Rtr
(
E
{
WHW

})
=σ2

Rtr

(
E

{(
ĜHĜ

)−1

P
(
ĜT Ĝ∗

)−1

P

})
= σ2

Rtr
(
E
{
ÂPÂ∗P

})
= σ2

R

∑
j∈K

∑
i∈K

E
{
âj,i′ â

∗
i,j′
}
, (75)

where we define Â
∆
=
(
ĜHĜ

)−1

and
[
Â
]
i,j

∆
= âi,j . Note

that ĜHĜ is a center Wishart matrix obeying the distribution
W2K

(
M, Σ̂

)
, where Σ̂ is the covariance matrix of the row

vectors in the estimated channel matrix Ĝ. According to the
properties of the Wishart matrix given in [36], we have

E

{(
ĜHĜ

)−1
}

=
Σ̂−1

M − 2K − 1
. (76)

Furthermore, the matrix Â =
(
ĜHĜ

)−1

follows an inverse

Wishart distribution denoted by W−1
2K

(
M, Σ̂−1

)
. Given the

definition
[
Σ̂−1

]
i,j

∆
= ςi,j , an essential property [29], [37],

[38] of the inverse Wishart matrix Â can be formulated as

cov(̂ai,j , âk,l)=
2ςi,jςk.l+(M−2K−1)(ςi,kςj.l+ςi,lςk.j)

(M−2K)(M−2K−1)2(M−2K−3)
. (77)

Since âi,j is real and ςi,j satisfies that ςi,j = σ−2
g,j if i = j

and ςi,j = 0 if i ̸= j, the terms E
{
âj,i′ â

∗
i,j′

}
are divided into

three groups. When i = j, we obtain

E
{
|âj,j′ |2

}
= cov (âj,j′ , âj,j′) + |E {âj,j′}|2

=
σ−2
g,jσ

−2
g,j′

(M − 2K) (M − 2K − 1) (M − 2K − 3)
, (78)

When i = j′, we have

E
{
âj,j â

∗
j′.j′
}
= cov

(
âj,j , â

∗
j′.j′
)
+ E {âj,j}E

{
â∗j′.j′

}
=

2σ−2
g,jσ

−2
g,j′

(M−2K)(M−2K−1)2(M−2K−3)
+

σ−2
g,jσ

−2
g,j′

(M−2K−1)2
. (79)

Otherwise, it is noted from (77) that

E
{
âj,i′ â

∗
i,j′
}
= 0, if i ̸= j and i ̸= j′. (80)

Therefore, substituting (78), (79) and (80) into (75), we arrive
at

E
{
∥WnR∥2

}
=σ2

R

∑
j∈K

2

(M−2K)(M−2K−3)σ2
g,jσ

2
g,j′

,σ2
Rγ.

(81)
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Second, the other term E
{∥∥WḠP̄s̄

∥∥2} is calculated as

E
{∥∥WḠP̄s̄

∥∥2}
=tr

(
E
{
P̄ĜHWHWĜP̄

}
+E

{
P̄ΞHWHWΞP̄

})
=tr

(
E

{(
ĜT Ĝ∗

)−1

PP̄P̄P

})
+

tr

(
E

{
Ĝ
(
ĜHĜ

)−1

P
(
ĜT Ĝ∗

)−1

P
(
ĜHĜ

)−1

ĜHΞP̄P̄ΞH

})
,

(82)

where Ξ is the channel estimation error matrix defined by
Ξ = Ḡ − Ĝ. Therefore, the first term in the second line of
(82) is derived as

tr

(
E

{(
ĜT Ĝ∗

)−1

PP̄P̄P

})
=tr

(
E

{(
ĜT Ĝ∗

)−1
}
E
{
PP̄P̄P

})
=
∑
n∈K

pd,n′

(M−2K−1)σ2
g,n

. (83)

Furthermore, the second term is obtained as

tr

(
E

{
Ĝ
(
ĜHĜ

)−1

P
(
ĜT Ĝ∗

)−1

P
(
ĜHĜ

)−1

ĜHΞP̄P̄ΞH

})
= tr

(
E

{(
ĜHĜ

)−1

P
(
ĜT Ĝ∗

)−1

P

})∑
n∈K

pd,nσ
2
e,n

= γ
∑
n∈K

pd,nσ
2
e,n. (84)

According to (16) and (82), we can obtain (17) by substituting
(66), (67), (81), (83), and (84) into (16). Thus, this proof is
completed.

APPENDIX C
PROOF OF Theorem 1

In order to obtain (28), we should derive the closed-form
expressions of the terms DSk, GUk, SIk, IPk, NRk, and NDk,
when the relay utilizes the MRC/MRT processing technique.
We will use (66) and (67) to simplify the expressions for the
following procedures.

a) The term DSmr
k : We start with the following calcula-

tion:

E
{
gT
k Wgk′

}
=E

{(
ĝT
k+eTk

)[∑
j∈KA

(
ĝ∗
j′ ĝ

H
j +ĝ∗

j ĝ
H
j′
)]
(ĝk′+ek′)

}
=E
{̂
gT
k

(
ĝ∗
k′ ĝH

k+ĝ∗
kĝ

H
k′

)
ĝk′
}

=E
{∣∣ĝH

k ĝk′
∣∣2}+E

{
ĝT
k ĝ

∗
k

}
E
{
ĝH
k′ ĝk′

}
= Mσ2

g,kσ
2
g,k′+M2σ2

g,kσ
2
g,k′ = M (M+1)σ2

g,kσ
2
g,k′ . (85)

Thus we have

DSmr
k =pd,k′

∣∣E{gT
k Wgk′

}∣∣2=pd,k′M2(M+1)
2
σ4
g,kσ

4
g,k′ .

(86)
b) This term GUmr

k : The term can be expressed as

GUmr
k = pd,k′Var

{
gT
k Wgk′

}
= pd,k′E

{∣∣gT
k Wgk′

∣∣2}− pd,k′
∣∣E{gT

k Wgk′
}∣∣2. (87)

Therefore, we only have to derive the expression for
E
{∣∣gT

k Wgk′
∣∣2}, which is given by

E
{∣∣gT

k Wgk′
∣∣2}

= E
{(
ĝT
k +eTk

)
W(ĝk′+ek′)

(
ĝH
k′+eHk′

)
WH(ĝ∗

k+e∗k)
}

(a)
= E

{
ĝT
k Wĝk′ ĝH

k′WH ĝ∗
k

}
+E
{
ĝT
k Wek′eHk′WH ĝ∗

k

}
+ E

{
eTkWĝk′ ĝH

k′WHe∗k
}
+E
{
eTkWek′eHk′WHe∗k

}
. (88)

Since the random vectors ĝk, ĝk′ , êk and êk′ are mutually
independent, step (a) can be carried out, where the term
E
{
ĝT
k Wĝk′ ĝH

k′WH ĝ∗
k

}
in (88) is expressed as

E
{
ĝT
k Wĝk′ ĝH

k′WH ĝ∗
k

}
= E

{
ĝT
k

(
ĝ∗
k′ ĝH

k+ĝ∗
kĝ

H
k′

)
ĝk′ ĝH

k′

(
ĝk′ ĝT

k+ĝkĝ
T
k′

)
ĝ∗
k

}
+
∑

j,j′ ̸=k

E
{
ĝT
k

(
ĝ∗
j′ ĝ

H
j+ĝ∗

j ĝ
H
j′
)
ĝk′ ĝH

k′

(
ĝj′ ĝ

T
j+ĝj ĝ

T
j′
)
ĝ∗
k

}
. (89)

The calculation of the first term at the right hand side of (89)
can be divided into four parts

E
{
ĝT
k

(
ĝ∗
k′ ĝH

k + ĝ∗
kĝ

H
k′

)
ĝk′ ĝH

k′

(
ĝk′ ĝT

k + ĝkĝ
T
k′

)
ĝ∗
k

}
= E

{
ĝT
k ĝ

∗
k′ ĝH

k ĝk′ ĝH
k′ ĝkĝ

T
k′ ĝ∗

k

}
+ E

{
ĝT
k ĝ

∗
k′ ĝH

k ĝk′ ĝH
k′ ĝk′ ĝT

k ĝ
∗
k

}
+ E

{
ĝT
k ĝ

∗
kĝ

H
k′ ĝk′ ĝH

k′ ĝkĝ
T
k′ ĝ∗

k

}
+ E

{
ĝT
k ĝ

∗
kĝ

H
k′ ĝk′ ĝH

k′ ĝk′ ĝT
k ĝ

∗
k

}
. (90)

The term E
{
ĝT
k ĝ

∗
k′ ĝH

k ĝk′ ĝH
k′ ĝkĝ

T
k′ ĝ∗

k

}
in (90) can be derived

as

E
{
ĝT
k ĝ

∗
k′ ĝH

k ĝk′ ĝH
k′ ĝkĝ

T
k′ ĝ∗

k

}
= E

{∣∣∣∣ ĝH
k ĝk′

∥ĝk′∥

∣∣∣∣4∥ĝk′∥4
}

= E

{∣∣∣∣ ĝH
k ĝk′

∥ĝk′∥

∣∣∣∣ ĝk′

∣∣∣∣4
}
E
{
∥ĝk′∥4

}
(a)
=2M(M+1)σ4

g,kσ
4
g,k′ , (91)

where ĝH
k ĝk′
∥ĝk′∥

∣∣∣ ĝk′ can be regarded as a complex-valued Gaus-

sian random variable with the distribution CN
(
0, σ2

g,k

)
. Step

(a) is obtained by using (65) and the fact that if a com-
plex Gaussian random variable ϖ follows the distribution
CN

(
0, σ2

)
, then E

{
|ϖ|4

}
= 2σ4. Then, we calculate the

last three terms at the right hand side of (90). Based on (65)
and the facts that tr (AB) = tr (BA) and x = xT when x is
a scalar, the second term can be expressed as

E
{
ĝT
k ĝ

∗
k′ ĝH

k ĝk′ ĝH
k′ ĝk′ ĝT

k ĝ
∗
k

}
= E

{
ĝT
k ĝ

∗
k′

(
ĝH
k ĝk′ ĝH

k′ ĝk′

)T
ĝT
k ĝ

∗
k

}
= E

{
ĝT
k ĝ

∗
k′ ĝT

k′ ĝ∗
k′ ĝT

k′ ĝ∗
kĝ

T
k ĝ

∗
k

}
= tr

(
E
{
ĝ∗
k′ ĝT

k′ ĝ∗
k′ ĝT

k′ ĝ∗
kĝ

T
k ĝ

∗
kĝ

T
k

})
= tr

(
E
{
ĝ∗
k′ ĝT

k′ ĝ∗
k′ ĝT

k′

}
· E
{
ĝ∗
kĝ

T
k ĝ

∗
kĝ

T
k

})
= tr

(
(M + 1)σ4

g,k′IM · (M + 1)σ4
g,kIM

)
= M(M + 1)

2
σ4
g,kσ

4
g,k′ . (92)
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In a similar way, the third and the fourth terms can be
formulated respectively as

E
{
ĝT
k ĝ

∗
kĝ

H
k′ ĝk′ ĝH

k′ ĝkĝ
T
k′ ĝ∗

k

}
= E

{
ĝT
k ĝ

∗
k

(
ĝH
k′ ĝk′ ĝH

k′ ĝk

)T
ĝT
k′ ĝ∗

k

}
= E

{
ĝT
k ĝ

∗
kĝ

T
k ĝ

∗
k′ ĝT

k′ ĝ∗
k′ ĝT

k′ ĝ∗
k

}
= tr

(
E
{
ĝ∗
kĝ

T
k ĝ

∗
kĝ

T
k ĝ

∗
k′ ĝT

k′ ĝ∗
k′ ĝT

k′

})
= tr

(
E
{
ĝ∗
kĝ

T
k ĝ

∗
kĝ

T
k

}
· E
{
ĝ∗
k′ ĝT

k′ ĝ∗
k′ ĝT

k′

})
= tr

(
(M + 1)σ4

g,kIM · (M + 1)σ4
g,k′IM

)
= M(M + 1)

2
σ4
g,kσ

4
g,k′ , (93)

E
{
ĝT
k ĝ

∗
kĝ

H
k′ ĝk′ ĝH

k′ ĝk′ ĝT
k ĝ

∗
k

}
= E

{
ĝH
k′ ĝk′ ĝH

k′ ĝk′ ĝT
k ĝ

∗
kĝ

T
k ĝ

∗
k

}
= E

{
ĝH
k′ ĝk′ ĝH

k′ ĝk′

}
· E
{
ĝT
k ĝ

∗
kĝ

T
k ĝ

∗
k

}
= M2(M + 1)

2
σ4
g,kσ

4
g,k′ . (94)

Thus, we obtain (90) as

E
{
ĝT
k

(
ĝ∗
k′ ĝH

k + ĝ∗
kĝ

H
k′

)
ĝk′ ĝH

k′

(
ĝk′ ĝT

k + ĝkĝ
T
k′

)
ĝ∗
k

}
= M (M + 1)

(
M2 + 3M + 4

)
σ4
g,kσ

4
g,k′ . (95)

Furthermore, similar to (70), the second term at the right side
of (89) can be obtained as∑

j,j′ ̸=k

E
{̂
gT
k

(
ĝ∗
j′ ĝ

H
j +ĝ∗

j ĝ
H
j′
)
ĝk′ ĝH

k′

(
ĝj′ ĝ

T
j +ĝj ĝ

T
j′
)
ĝ∗
k

}
=
∑

j,j′ ̸=k

2M (M+1)σ2
g,kσ

2
g,k′σ2

g,jσ
2
g,j′ . (96)

When substituting (95) and (96) into (89), we arrive at

E
{
ĝT
k Wĝk′ ĝH

k′WH ĝ∗
k

}
= σ2

g,kσ
2
g,k′η

+M(M+1)
(
M2+3M+2

)
σ4
g,kσ

4
g,k′ . (97)

The other three terms at the right hand side of (88) can be
obtained by using similar steps to those used for the derivation
of the first term. Therefore, the term E

{∣∣gT
k Wgk′

∣∣2} is
obtained as

E
{∣∣gT

k Wgk′
∣∣2} = βkβk′η +M(M+1)

2
σ2
g,kσ

2
g,k′

×
(
(M+2)σ2

g,kσ
2
g,k′+σ2

g,kσ
2
e,k′+σ2

g,k′σ2
e,k

)
. (98)

After substituting (98) and (85) into (87), we obtain GUmr
k in

(30).
c) The terms SImr

k , IPmr
k and NRmr

k : The derivation of
these terms can be obtained by using similar steps used for
deriving the expression of GUmr

k .
d) The term NDmr

k : Since nk is the AWGN at device k,
(34) can be readily obtained.

Then, (66) and (67) is substituted into above equations, and
we can obtain (28). Accordingly, we complete this proof.

APPENDIX D
PROOF OF Theorem 2

Similarly, for the ZFR/ZFT processing scenario, we have to
derive the equations (36)-(41) in order to prove (35). We will
use (66) and (67) to simplify the expressions for the following
procedures. Note that for the ZFR/ZFT beamforming matrix
W given in (15), we have

ĝT
k Wĝk′ = ĝT

k′Wĝk = 1, (99)

ĝT
k Wĝk = ĝT

k′Wĝk′ = 0. (100)

Then, we give the detailed derivation in the following:
a) The term DSzfk : We first calculate

E
{
gT
k Wgk′

}
= E

{(
ĝT
k + eTk

)
W (ĝk′ + ek′)

}
= E

{
ĝT
k Wĝk′

}
+ E

{
eTkWek′

}
= 1. (101)

Then, the term DSzfk can be obtained as

DSzfk = pd,k′
∣∣E{gT

k Wgk′
}∣∣2 = pd,k′ . (102)

b) The term GUzf
k : The term can be expressed as

GUzf
k = pd,k′Var

{
gT
k Wgk′

}
= pd,k′E

{∣∣gT
k Wgk′

∣∣2}−pd,k′
∣∣E{gT

k Wgk′
}∣∣2, (103)

where the term E
{∣∣gT

k Wgk′
∣∣2} in (103) can be derived as

(104) at the bottom of this page. In step (a), the vectors ik
and ik′ are the column vectors of I2K in the same location as
the vectors ĝk and ĝk′ in matrix Ĝ, respectively. This is due

to the fact that ĜT Ĝ∗
(
ĜT Ĝ∗

)−1

=
(
ĜHĜ

)−1

ĜHĜ =

I2K . Step (b) is obtained by (75) and by using some further
simplifications, while step (c) is based on (76).

E
{∣∣gT

k Wgk′
∣∣2} = E

{(
ĝT
k + eTk

)
W (ĝk′ + ek′)

(
ĝH
k′ + eHk′

)
WH (ĝ∗

k + e∗k)
}

= E
{
ĝT
k Wĝk′ ĝH

k′WH ĝ∗
k

}
+ E

{
ĝT
k Wek′eHk′WH ĝ∗

k

}
+ E

{
eTkWĝk′ ĝH

k′WHe∗k
}
+ E

{
eTkWek′eHk′WHe∗k

}
= 1 + σ2

e,k′E
{
ĝT
k WWH ĝ∗

k

}
+ σ2

e,kE
{
ĝH
k′WHWĝk′

}
+ σ2

e,kσ
2
e,k′tr

(
E
{
WWH

})
(a)
= 1 + σ2

e,k′E

{
iTkP

(
ĜHĜ

)−1

Pik

}
+ σ2

e,kE

{
iTk′P

(
ĜT Ĝ∗

)−1

Pik′

}
+ σ2

e,kσ
2
e,k′tr

(
E

{(
ĜHĜ

)−1

P
(
ĜT Ĝ∗

)−1

P

})
(b)
= 1+σ2

e,k′

[
E

{(
ĜT Ĝ∗

)−1
}]

k′,k′
+σ2

e,k

[
E

{(
ĜT Ĝ∗

)−1
}]

k,k

+ σ2
e,kσ

2
e,k′

∑
j∈K

2

(M − 2K) (M − 2K − 3)σ2
g,jσ

2
g,j′

(c)
= 1 +

σ2
e,k′

(M − 2K − 1)σ2
g,k′

+
σ2
e,k

(M − 2K − 1)σ2
g,k

+ σ2
e,kσ

2
e,k′γ. (104)
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c) The terms SIzfk , IPzf
k and NRzf

k : Similar to the steps
we use for deriving GUzf

k , the expressions in (38), (39) and
(40) can be obtained.

d) The term NDzf
k : The expression in (41) is valid

because nk is the AWGN at device k.
Finally, we substitute (66) and (67) into above equations,

hence accordingly, we obtain (35). Thus, this proof is com-
pleted.
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