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Multiphysics Finite Element Modelling of the AC Power Loss, Fault Response and

Recovery of First Generation Superconducting Cables

by Alexander Petrov

The fault response of superconducting cables is of significant importance to their wider

adoption in power grids. In particular, it is useful to understand how to most efficiently

and accurately simulate the fault response and time of recovery after a high through fault

overcurrent. To achieve that, rigorous modeling techniques must be established, which

is done over several steps. A successful numerical model of magnetic field dependent

behaviour of a Bi-2223 superconducting tape has been demonstrated. This model has

been used to redefine and verify a homogenization technique for multifilamentary tapes

that decreases the computation time by simplifying the geometry with a minimum to no

accuracy penalty. Afterwards, the simulation of AC power losses in twisted tapes and

cables is investigated, with reference models coming from literature and custom-built

3D models. The investigation produced methods to efficiently estimate the losses of

multi-layer twisted in 2D FEM without resorting to 3D. Finally by capitalizing on the

techniques established prior, a multiphysics model is built — electro-magneto-thermal

— in three different space domains in order to simulate the AC losses, temperature

and heat transfer in all important cable components. It is shown this type of complex

multiphysics model can be set up to run and may produce fairly accurate results. One

FEM simulation of the multiphysics model takes no more than 3 days to complete on a

standard PC.
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Nomenclature

A Magnetic vector potential (Wb/m)
Ac Hydraulic cross-sectional area (m2)
As Hydraulic cross-sectional area of the supply flow channel (m2)
Ar Hydraulic cross-sectional area of the return flow channel (m2)
At Area of the tape’s cross-section (m2)
Ahom Area of the tape’s homogenized domain (m2)
AAg Area of the tape’s actual matrix (silver) material (m2)
Ahts Area of the tape’s actual superconducting material (m2)
Ak Cross-sectional area of phase k (2D-axisymmetric)(m2)
B Magnetic field (T)
Bc2 Upper critical magnetic field (T)
B0 Kim-Anderson parameter, such that Jc(B0) = Jc0/2 (T)
Bx Perpendicular (along x -axis) component of the magnetic field (T)
B⊥ Same as Bx (T)
By Parallel (along y-axis) component of the magnetic field (T)
B‖ Same as By (T)

Bext Total external magnetic field (T)
B⊥max Maximum (peak) value of the perpendicular applied magnetic field (T)
Cp Specific heat capacity (J/kgK)
Cp,ln Specific heat capacity of the liquid nitrogen (J/kgK)
Cp,hts Specific heat capacity of the superconductor (J/kgK)
Cp,Ag Specific heat capacity of the silver matrix (J/kgK)
Cp,con Effective specific heat capacity of the monoblock (J/kgK)
Cp,hom Effective specific heat capacity of the homogenized domain (J/kgK)
ck Layer circumference taken through the middle of the phase (m)
d Hydraulic diameter (m)
ds Hydraulic diameter of the supply flow (m)
dr Hydraulic diameter of the return flow (m)
E Electric field (V/m)
Ec Electric field at the critical current criterion (V/m)
f Frequency of AC current/magnetic field (Hz)
Fs Corrugated pipe surface factor (m2/m)
H Magnetic field strength (A/m)
Hc Critical magnetic field strength (A/m)
Hc1 Lower critical magnetic field strength (A/m)
Hc2 Upper critical magnetic field strength (A/m)
ht Tape thickness (m)
Hm−x Local parallel component of the magnetic field (A/m)
Hm−y Local perpendicular component of the magnetic field (A/m)
hs Heat transfer coefficient for the supply flow (W/(m2K))
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xviii NOMENCLATURE

hr Heat transfer coefficient for the return flow (W/(m2K))
h∗s Modified heat transfer coefficient of the supply flow (W/(m2K))
i Normalized current, i = Itransport/Ic (A)
Ic Critical current (A)
Itransport Applied transport current (A)
Ic0 Critical current at self-field and temperature of 77 K (A)
It−2D Peak applied current in a 2D cross-section of a twisted tape (A)
Ik Instantaneous current flowing in each phase (A)
J Current density (J/m2)
Jc Critical current density (J/m2)
Jc0 Critical current density at self-field and temperature of 77 K (J/m2)
Jn Normal current density/the vector sum of all current components (J/m2)
k Thermal conductivity (W/mK)
kln Thermal conductivity of the liquid nitrogen (W/mK)
khts Thermal conductivity of the superconductor (W/mK)
kAg Thermal conductivity of the silver matrix (W/mK)
Lgrid Inductance of the upstream power grid (Ω)
LHTS Inductance of the superconducting cable (Ω)
l Cable model length (m)
ldz Length of each section in the cable model (m)
lk Actual length of each phase k=1;2;3 (m)
n Power index (dimensionless)
n0 Power index at self-field and temperature of 77 K (dimensionless)
ns Superelectron density
Pc Hydraulic perimeter (m)
Pr−o Perimeter of the inner cryostat wall (m)
Pr−i Perimeter of the wall between the cable and the return flow (m)
Ps Perimeter of the wall between the cable and the supply flow (m)
Pr Prandtl’s number (dimensioness)
pk Pitch length of each phase k=1;2;3 (m)
Qh Hysteresis (magnetization) AC loss (W/m3)
Qe Eddy current AC loss (W/m3)
q Heat energy intake from neighbouring domains (J)
Qleak Heat lost through the cryostat of the cable (W/m)
qleak The heat flux lost through the cryostat of the cable (W/m2)
qr−i Heat flux crossing between the cable wall and the return flow (W/m2)
qs Heat flux crossing between the cable wall and the supply flow (W/m2)
Qk,y Heat generated in the c-section at a length y for phase k (W/m)
Qk,axi Heat generated along the cable length in each phase k (W/m3)
Rgrid Resistance of the upstream power grid (Ω)
RHTS Resistance of the superconducting cable (Ω)
rs Outer radius of former (m)
rr−i Inner radius of annular LN2 channel (m)
Rr−o Inner radius of cryostat (m)
Re Reynolds number (dimensionless)
Res Reynolds number of the supply flow (dimensionless)
Rer Reynolds number of the return flow (dimensionless)
Rk,hts Average resistance/metre of the cable’s HTS, k – phase (Ω/m)
Rk,Ag Average resistance/metre of the cable’s Ag, k – phase (Ω/m)
Rk The resistance of each phase k=1;2;3 (Ω)



NOMENCLATURE xix

Rk,tot The total resistance in phase k including the cable and the grid (Ω)
S The surface on which the transport current is applied (m2)
Seq Area of the filamentary-equivalent domain (m2)
SHTS Area of a tape taken from a perpendicular cross-section (m2)
ss Former (corrugated pipe) wall thickness (m)
shts Fraction of superconductor in the tape’s cross-section (dimensionless)
shom,ag Fraction of silver within the homogenized domain (dimensionless)
t Time (s)
T Temperature (K)
T Current vector potential (A/m)
Tc Critical temperature (K)
TLN2 Temperature of liquid nitrogen (K)
tgr Former (corrugated pipe) groove depth (tube width) (m)
Ts Temperature of the supply flow of liquid nitrogen (K)
Tr Temperature of the return flow of liquid nitrogen (K)
Twall,s Temperature of the cable wall touching the supply flow (K)
Twall,r Temperature of the cable wall touching the return flow (K)
Tln,s Temperature of the liquid nitrogen in the supply flow (K)
Tln,r Temperature of the liquid nitrogen in the return flow (K)
T0 Temperature of the cable in the 2D-axisymmetric model (K)
T0(wall,i) Temperature of the cable wall touching the supply flow (K)

T0(wall,o) Temperature of the cable wall touching the return flow (K)

TLN2 The reference temperature for critical current calculations (K)
Thts Temperature of the HTS material (2D cross-section) (K)
TAg Temperature of the silver (2D cross-section) (K)
Ts,k Temperature of the supply flow at length k (m)
Tr,k Temperature of the return flow at length k (m)
V Voltage (V)
Vt Volume of interest (m3)
Vs Voltage source (circuit) (V)
v Fluid velocity (m/s)
vs Coolant velocity in the supply flow (m/s)
vr Coolant velocity in the return flow (m/s)
Vs,k Instantaneous supply voltage for each phase k=1;2;3 (V)
ws Filamentary-equivalent (superconducting) domain width (m)
wt Tape width (m)
wt−2D Width of the tape taken from a perpendicular cross-section (m)
Z Impedance (Ω)
Zload Steady-state load impedance (Ω)
α Twist angle (rad)
ρn Resistivity of the superconductor in normal state (Ωm)
γ Anisotropy factor (dimensionless)
β Rapidity of reduction of Jc (dimensionless)
σ Conductivity (S/m)
σsc Conductivity of superconductor (S/m)
σAg Conductivity of silver (S/m)
σfc Flux creep conductivity (S/m)
Φ Electric scalar potential (V)
φr Angle of rotation (rad)
ω Magnetic scalar potential (H)



xx NOMENCLATURE

ρ Resistivity (Ωm)
µ Total magnetic permeability, µ = µ0µr (H/m)
µ0 Magnetic permeability of free space (H/m)
µr Relative permeability (dimensionless)
νLN2

Viscosity of liquid nitrogen (Pa s)
ρ0 Thermally activated flux flow resistance (Ωm)
ρsilver Resistivity of silver (Ωm)
ρff Flux flow resistivity (S/m)
ρv Mass density (kg/m3)
ρv,ln Mass density of the liquid nitrogen (kg/m3)
ρv,hts Mass density of the superconductor (kg/m3)
ρv,Ag Mass density of the silver matrix (kg/m3)
ρv,con Effective mass density of the monoblock (kg/m3)
ρv,hom Effective mass density of the homogenized domain (kg/m3)
ρv,ln Mass density of liquid nitrogen (km/m3)
ρhts Resistivity of the superconducting material (Ωm)
ρplaw Resistivity of the HTS material as defined by the power law (Ωm)
ρhom Resistivity of the mixed material within the homogenized domain (Ωm)
ρAg Resistivity of the matrix (silver) material (Ωm)
ρn Normal state resistivity (Ωm)
ρk,hts,ave Avg. value of the resistivity within the homog. domain, k – phase (Ωm)
ρk,Ag,ave Avg. value of the resistivity within the silver material, k – phase (Ωm)
λfr Fraction of superconductor in the filamentary region (dimensionless)
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Chapter 1

Introduction

An unavoidable power engineering problem is that all conducting materials possess in-

herent resistivity. Consecutively, the flow of current through power transmission and

distribution lines produces Ohmic losses. In 2015, the House of Commons Energy and

Climate Change Committee reported that these losses are between 3% and 10%, depend-

ing on the region [1]. In 2018, the total electricity losses amounted to 7.6% of electricity

demand [2]. While this may appear to be negligible, it amounted to 27 TWh [2] —

worth 2% of the entire UK greenhouse gas emissions for the same year [3]. Power lost

in transmission not only does not offer anything useful to society like residential and in-

dustrial demand does, but it leads to financial losses and waste of resources. A decrease

in either transmission or distribution losses could offer more cost-effective solutions, as

well as conserve resources, thus decreasing the energy industry’s environmental impact.

Knowing this, part of the power engineering community had been excited to develop

superconducting transmission cables with near-zero resistance. A serious research effort

was in place during the 1960s and 70s to develop sustainable cables [4]. Despite the

apparent technological success of certain projects, they were deemed too complex and

expensive to put into practice. Their manufacturing costs and the serious cooling power

required to keep the long cables at as low as 4.2 K, which was the highest practical

superconductor temperature at the time, were not acceptable.

After the discovery of superconductors able to operate well over 77 K (the boiling tem-

perature of liquid nitrogen), there was a renewed interest in superconducting cables.

The increased current capacity means easier meeting of the increasing demand in urban

areas, as well as the possibility of bringing the MV distribution voltage down and skip-

ping the installation of otherwise expensive transformers. Furthermore, superconducting

cables become highly resistive under large fault currents, which may be used to limit

said currents.

Since the year 2000, over 25 projects [4] have sought to develop a superconducting cable

primarily at distribution level, and half of those have been installed in a real grid. Only

1



2 Chapter 1 Introduction

a few projects, however, have been installed permanently. This is due to the relatively

new superconducting technology, which network operators would be reluctant to install

without sufficient knowledge of its unconventional operation. In particular, if a through

fault is experienced by the cable, the fault current would generate heat that could be

enough to push the superconducting material into its normal resistive state, which in turn

would generate even more heat. After the fault is cleared, a conventional cable would

be immediately ready to conduct electricity again. A superconducting cable, however,

needs some time for the coolant to bring the temperature back into working range. How

long this time is depends highly on individual cable designs, as well as the magnitude and

duration of the fault current. Creating a practical study to experimentally determine

the effect of those parameters would require a considerable amount of money in order

to manufacture, install and test all possible combinations. The alternatives are two —

analytical model or a numerical simulation. While analytical equations are fast and

often reliable, they are not capable of describing the multiphysics at every point within

the cable. Modern computational power provides a versatile tool, capable of calculating

large numerical studies in a relatively short time. However, with the large nonlinearity

of the superconducting material and the necessary mesh density, an accurate simulation

is not the fastest, not only in 3D but also in 2D.

There is a need for multiphysics models that can simulate both steady-state and transient

conditions within a reasonable amount of time [5]. Such efficient models may be useful

for the commercial implementation of superconducting cables as they will facilitate the

theoretical design and understanding of how a particular design will behave in all possible

situations.

The aim of this work is to investigate ways to speed up the finite element modelling of

the overcurrent response and recovery of first generation cables, as well as to show that

it is possible to accurately simulate the entire range of transport currents (from zero

to high transients) in one single model. To achieve that, it is shown how to efficiently

simulate the AC power loss in multifilamentary first generation tapes, and then how to

simulate them when these tapes are wound and twisted over a former to construct an

actual cable. The final model is built as illustrated in Figure 1.1 and verified against

literature.

Furthermore, the techniques used could serve as a stepping stone for future design studies

of cables for installation in a particular grid section.

Thesis structure:

• Chapter 2 is a brief summary of the background theory of the superconducting

phenomenon, important materials and loss mechanisms.

• Chapter 3 provides a literature review of the existing recent and relevant experi-

mental and numerical works on superconducting cable fault response, quench and
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thermal recovery, and identifies the research questions.

• Chapter 4 introduces the physics that are needed for FEM simulation within COM-

SOL, then proceeds to verify the models with existing peer-reviewed measurements

and simulations.

• Chapter 5 proposes and verifies a homogenization technique for improving the

computational time when simulating the AC loss in multifilamentary tapes.

• Chapter 6 discusses a technique for the 2D AC power loss estimation of tapes

twisted around a former. The Chapter also discusses how to model the power loss

in cables which are made of more than one layer and solves the problem of what

length along the cable should a cross-section be taken. The proposed techniques

are verified against 3D models and results from literature.

• Chapter 7 focuses on the overcurrent response and recovery of a power cable de-

scribed in literature. Additional physics are discussed and implemented together

in a complex multiphysics model in COMSOL and are accompanied by supple-

mentary variables and equations.
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Figure 1.1: A flowchart with an overview of the final multiphyiscs model.



Chapter 2

Theory of high temperature

superconductors

2.1 Brief theory of superconductivity

Superconductivity was first discovered in 1911 by Kamerlingh Onnes [6], who observed

that a number of metals exhibit a significant drop of resistivity under a material-specific

critical temperature Tc. That behaviour is called superconducting state in comparison

to the otherwise common normal state [7]. Currents have been observed to travel unob-

structed and unaided for years, which implies a near-perfect conductivity [8]. However,

they are not perfect conductors and do not possess infinite conductivity — merely a

very large one.

There is a large volume of physics trying to explain the microscopic behaviour of su-

perconductivity. This work, however, is focused on macroscopic behaviour and as such,

the following very brief background theory is provided primarily for understanding the

underlying concepts that dictate how superconducting materials behave.

Summary of the Critical Variables

Superconductors have three important parameters, above which superconductivity is

destroyed and the material enters a ”normal” state — critical current Jc, dependent

on temperature and magnetic field, critical magnetic field Bc (or upper critical field,

which will be discussed later), also dependent on temperature, and critical temperature

Tc. The critical current and the critical magnetic field are to an extent interchangeable

variables due to the Maxwell Equations.

Meissner Effect

Perfect conductivity means that an already fully penetrating magnetic flux would be

trapped inside while a newly applied one would be repelled by introducing screening

5



6 Chapter 2 Theory of high temperature superconductors

currents [7, 8]. In 1933, Meissner and Ochensfeld [4, 9] suggested experimentally that

superconductors (type I, more on that further on) possess perfect diamagnetism (e.g.

B = 0 inside the superconductor). Perfect conductivity and perfect diamagnetism are

different.

To establish the perfect diamagnetism property, Meissner and Ochensfeld performed the

following two experiments. If a superconducting material in normal state is subjected to

a constant magnetic field H and then cooled down below Tc (field-cooled experiment),

the magnetic flux will be expelled entirely from the body of the superconductor once

T = Tc. Furthermore, if a superconducting material is first cooled down to below Tc

and then subjected to a constant magnetic field H (zero-field-cooled experiment), the

magnetic flux will be expelled in the same manner.

In the zero-field-cooled experiment, a material in possession of (near-)perfect conduc-

tivity would repel the magnetic flux. Since a magnetic field is introduced to an already

superconducting material, a field gradient dH/dt will be introduced [4]. This was veri-

fied to behave as predicted.

On the other hand, in the field-cooled experiment, the material is not in superconduct-

ing state once the field is applied. Thus the fully penetrating magnetic flux would be

trapped inside if the material possessed only near-perfect conductivity. However, in

practice a complete expulsion of the magnetic flux is observed.

The perfect diamagnetism of superconductors is called the Meissner Effect.

Bardeen-Cooper-Schrieffer Theory

No proposed microscopic theory that explains the features of superconductivity has

been universally accepted [4]. The first quantum mechanical theory was proposed by

Bardeen, Cooper and Schrieffer (BCS) in 1957 [10], for which they received a Nobel

prize in physics in 1972.

The BCS theory states that the mechanism of superconductivity is governed by an

electron-lattice-electron interaction, activated by phonons in the material. If an electron

deforms the lattice by interacting with it, another electron can detect the change of

energy redistribution and readjust. Electrons experiencing this interact with each other

in pairs, through the phonons, and these pairs are called Cooper pairs. It is believed any

pairing mechanism is capable of inducing the attraction, and that it is likely something

else in addition to phonons is behind it.

The Mixed State and Type II Superconductors

Coherence length has been described as the distance that electrons can ”see” each other

to form a Cooper pair [11], the distance over which a Cooper pair can exist [4] and

the distance over which the density of superelectrons varies from its maximum value

(superconductivity) to zero (normal state) [7]. A considerable change in the density of
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”superelectrons” ns is only possible within the coherence length ξ [4].

Initially, superconductors had been observed to possess perfect diamagnetism up un-

til their superconductivity is lost above a critical magnetic field Hc. New materials,

called Type II superconductors, were discovered, which experienced a gradual increase

in magnetic flux penetration above a lower critical magnetic field Hc1 without losing

superconductivity. This gradual increase of flux penetration lasts until an upper critical

field Hc2, above which the material enters a normal state, losing all superconductivity.

Thus, a magnetic field H such that Hc1 < H < Hc2 gives rise to a combination between

the superconducting and normal states, called mixed state [12]. Hc1 and Hc2 are also de-

pendent on temperature [11]. Mathematically, the mixed state was first described by the

Ginzburg-Laundau theory. Superconductors can be classified, depending on the value

of the Ginzburg-Landau parameter, which was introduced by Abrikosov in 1957 [13]:

κ =
λL(T )

ξ(T )
(2.1)

where λL is the London penetration depth [11] – the distance from the surface of the

superconductor at which the magnitude of the penetrating magnetic field has decreased

to 1/e from the value at the surface. For κ < 1
√

2, the material is a Type I superconduc-

tor. For κ > 1
√

2, the material is a Type II superconductor [4]. It should be noted that

both the coherence length and the penetration depth are dependent on temperature [14]

but that dependence is nearly identical [7].

Type I superconductors are only metallic elements, while type II can include metal alloys,

pure metals and oxide compounds. Those with Tc < 30 K are metals and metallic alloys,

labelled low-temperature superconductors (LTS). Those with Tc ≥ 30 K are usually

oxide compounds and are called high-temperature superconductors (HTS) [12]. High

temperature superconductors are all Type II.

Characteristics of Type II Superconductors

In the mixed state of type II superconductors, the magnetic flux penetrates the material

in the form of what is described as flux tubes [7], or ”super-current vortices” [15], that

carry an equal amount of magnetic flux, similarly to energy quanta. The magnetic field

experiences what is called flux pinning — the flux vortices are not allowed to move

under the Lorentz force. This allows large DC currents to flow without any resistance

for a very long time; for an AC current and its corresponding magnetic field to exist,

the vortices cannot remain stationary. In that case the pinning force must be overcome,

which introduces some power loss which is called hysteresis loss [15] (a discussion about

all loss mechanisms can be found in Section 2.3).

Flux pinning exists due to microscopic barriers that are usually structural imperfections,

chemical impurities, or grain boundaries [11]. Somewhat counter-intuitively, the more

impurities a superconductor has, the higher currents it would be able to sustain [12].
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The flux vortices can also escape pinning centres under thermal activation [11]. Let the

energy required for a flux vortex to jump from the energy potential well of a pinning

centre to the closest position of energy equilibrium be ∆W . Then, if ∆W � kT , the

mechanism of flux depinning is called thermally activated flux creep, which occurs at

low temperatures; the simplest explanation of flux creep is in the work of Anderson

and Kim [16], and a more complex vortex glass theory has been developed in [17]. If

∆W � kT , the mechanism is called flux flow, which occurs at high temperatures and

exhibits lower pinning energy, usually due to the Lorentz force overcoming the pinning

strength [12]; the first theory of flux flow has been presented in [18].

Figure 2.1: E-J characteristic of HTS [15] c© 2014 IEEE.

Critical State Model

The next step in the description of the electromagnetic behaviour of superconductors

was the Bean Critical State Model (CSM) from 1962 [19]. It assumes that the current

density within a superconductor can only be equal to ±Jc in regions where B 6= 0 T

and 0 when B = 0 T. This has been found useful for low-temperature superconductors

with large power index n, but is not acceptable enough for HTS materials, which often

have a smoother transition between superconducting and resistive state. Moreover, the

CSM cannot model overcurrent [15] which is a chief reason the nonlinear E-J method

is preferred in the present work. The CSM allows for analytical solutions using approx-

imations and simple geometries [11] and is valid on a macroscopic scale that does not

take into account individual flux pinning vortices [15].

2.2 Overview of sueprconducting materials for power ap-

plications

In 1987 the first HTS material with Tc above the boiling point of liquid nitrogen (77

K, LN2) was discovered. This is the material YBa2Cu3O7 (“YBCO-123”) and it has
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Figure 2.2: First generation multifilamentary conductor, produced from
Bi-2223 superconducting material (dark filaments) and filled with Ag or

similar [23] c© 2004 IEEE.

Figure 2.3: First generation multifilamentary conductor, produced from
Bi-2212 superconducting material (dark filaments) and filled with Ag or

similar [24] c© 2019 IEEE. a) 18 groups with 37 filaments each; b) 18 groups
with 55 filaments each.

a critical temperature of 93 K [20]. It has further been identified that the yttrium

component in the above compound could be replaced successfully with any other rare

earth material while the properties would not vary significantly [4]. Many other materials

have been discovered to exhibit HTS properties [4]. The most notable ones are within the

Bi-Sr-Ca-Cu-O system [21, 22]: Bi2Sr2Ca2Cu3O10+x (Bi-2223) and Bi2Sr2CaCu2O10+x

(Bi-2212).

2.2.1 1st Generation HTS – Bi-2223 and Bi-2221

Superconducting wires, produced from a composite between silver and Bi-2223 or Bi-

2212 are referred to as First Generation. Typically, the structure of a Bi-2223 wire is

in the area of 0.2 mm by 4 mm, constructed of between 30 and 61 tape-shaped Bi-2223

filaments, 10 µm thick and up to 200 µm wide each, embedded in a silver alloy matrix

(Figure 2.2). Silver, or an alloy that includes silver, fills the gaps between the filaments

and provides electrical and mechanical stabilization as well as facilitating the production

process [23].

Meanwhile, the typical structure of a Bi-2212 conductor (Figure 2.3) is an isotropic

round wire, consisting of a a large number of superconducting filaments, arranged sym-

metrically in arrays and embedded in a matrix material. A typical diameter is around

1-1.5 mm [4].

Due to their microstructure, the Bi-2223 and Bi-2212 materials are spatially anisotropic,

thus grains are required to be aligned in the direction of expected current flow. In
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Figure 2.4: Second generation composite conductor, produced from REBCO
superconducting material. Not to scale [4] c© 2015 Elsevier.

industry, until 2004 the most widely accepted method for manufacturing Bi-2223 tapes

was the ‘powder in tube’ technique [25], and after 2004, a technique called ‘controlled

overpressure sintering’ gained substantial popularity [26, 27]. The notable similarity

between the two is that the result of both is flat tapes. This is a direct link to the fact

that grain alignment of Bi-2223 is easiest during the rolling process [4], which is the last

stage of the aforementioned methods.

Despite this, research has shown that producing round Bi-2223 in laboratory conditions

is possible [28]. Bi-2223 has intrinsic anisotropy of all of its electromagnetic properties

[12].

The Jc of each wire is largely dependent on its size, manufacturer and manufacturing

process. Typical engineering Jc of first generation wire are 130-180 A/mm2 [23,29] and

350-400 A/mm2 for Bi-2212 [29, 30], however these numbers are likely to increase with

the advancement of technology.

2.2.2 2nd Generation HTS – YBCO

Second generation superconducting wires are based on REBa2Cu3O7-x (REBCO) family

where RE is any Rare Earth material, commonly yttrium. 2G is reported to have a

higher current density and better price forecast than first generation [4]. YBCO is

less anisotropic than Bi-2223 [12]. All coated conductors include a flexible substrate,

preferably of strong and nonmagnetic or weakly magnetic metal, on top of which is a

multifunctional oxide barrier or buffer layer, on top of which is the superconducting

YBCO layer. A thin protective Ag layer and a thicker Cu protection and stabilization

layer must also appear [23].

Stabilization layers are used to carry the burden of overcurrent and thus protect the

superconducting layer from damage once it has ”quenched” – i.e. become highly resistive

due to the overcurrent. Despite that superconductivity in REBCO was discovered before

superconductivity in Bi-2223, manufacturing of sufficiently long wires had been a difficult

challenge for decades. In 2003, it was proven via different methods that wires of length

can be produced of lengths up to 50 metres, in a configuration, based on the one displayed

in Figure 2.4; this length has increased in the subsequent years. An observed tape
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engineering Jc is 205 A/mm2 for YBCO 2G [4,26].

Counter-intuitively, the ”generation” does not refer to better quality or bigger potential

for the material. It simply refers to the fact that the first time YBCO has been put in

tapes was after Bi-2223.

2.2.3 MgB2

The Magnesium diboride superconductor possesses a critical temperature of 39 K, which

puts it in the unique position of sitting between HTS and LTS, but it is still classified as

low temperature. Its superconductivity was discovered in 2001. Similarly to Bi-2212, for

applications the typical shape of a MgB2 wire is usually round (but may take the shape

of a tape, Figure 2.5), containing superconducting filaments, embedded in a conducting

matrix made of metallic material or alloy. For cable applications, round wires can be

prepared by the power-in-tube technique, mentioned above [4, 26].

2.2.4 Low temperature superconductors

Some of the most common LTS materials still in use are Niobium-Titanium (NbTi) and

Niobium-tin (Nb3Sn), each with a critical temperature of 10.2 K and 18.3 K, respectively.

LTS have been used for decades and are still widely adopted due to being relatively cheap

and easy to manufacture [4]. Cross-sections of the two most common materials can be

seen in Figure 2.6.

2.2.5 Why use HTS and not LTS?

A large barrier to the integration of LTS materials, including MgB2, into power grid

applications is the low critical temperature (20-30 K) far under the operational temper-

ature of liquid nitrogen (65-78 K). This prevents the deployment of cryogenic systems

with liquid nitrogen and instead forces the use of supercooled or liquid helium, which

Figure 2.5: A selection of MgB2 cross-sections. A) Flat tape conductor; B)
and C) Sandwich type conductor; D) low-AC loss multifilamentary tape; E)
high current tape conductor; and F) Round wire for cable application [26].
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Figure 2.6: The cross-section of a NbTi wire (left) and a Nb3Sn wire (right).
Diameter roughly 0.8 mm, wires are multifilamentary. [4]

introduces a large cost of refrigeration and handling of ambient heat as well as heat

from AC losses [4]. The vast majority of power grid superconducting cable projects and

research are now done with HTS materials.

2.3 AC power loss mechanisms and their calculation

Four primary AC loss mechanisms have been identified in high temperature supercon-

ducting tapes [15]. Analytical calculations of hysteresis losses in particular are exten-

sively described in [14] and [15].

Magnetization (hysteresis) loss. As discussed in Section 2.1, hysteresis losses arise

from the phenomenon where the oscillation of the applied magnetic field (through the

applied current) must overcome the pinning of the flux vortices.

Instantaneous power dissipation at a point in a Type II superconductor can be calculated

numerically by Qh = J · E [15];

Eddy current loss. Eddy currents are induced in the conducting materials within

superconducting tapes (copper, silver, etc.) by an applied AC magnetic field or the self-

field of an applied AC transport current. Thus, Ohmic (resistive) losses are accumulated

[12] and Qe = J ·E is used to numerically calculate the instantaneous losses at a point;

Coupling loss. This occurs when under the effect of a sufficiently high time varying

magnetic field, a current loop jumps through the metal matrix between individual fil-

aments, thus generating Ohmic (resistive) losses. Simulations in this work deal with

transport currents and as such the resulting magnetic field is not significant enough and

the coupling losses may be considered negligible [15];

Ferromagnetic loss. Arises from the presence of ferromagnetic materials within the

tape structure. µr [15]. Simulations in this work do not include ferromagnetic materials,

thus this loss mechanism has not been investigated.



Chapter 3

Literature review

3.1 Chronological review of previous research into the sim-

ulation of overcurrent and fault response of HTS cables

The study performed by a research group in Tohoku University, Japan (Hu et al [33]),

adopts a temperature-dependent analytical AC loss generation equation. The heat trans-

fer equations are standard. The paper investigates a 66 kV Triax cable. Important

conclusion is that the thickness of insulation (PPLP) is approximately linearly propor-

tional to the recovery time of the cable. In Triax, this poses a potential problem at

higher voltages due to the sandwiched phase in the middle that is without direct access

to coolant flow. Furthermore, the study confirms that the middle phase inevitably does

reach higher temperatures and achieves longer recovery time.

This study is preceded by an earlier work by Hu et al [34], which investigates the ef-

fect of the thickness of the stabilizer that exists next to each superconducting phase

layer. Intuitively, their discovery is that thicker stabilizers provide the conditions for

lesser temperature increase. In addition, a later study from the same authors [31] builds

on the previous studies to include a model of flowing coolant liquid and combine heat

transfer in both radial and longitudinal directions; see Figure 3.1. The model is built via

finite differences. In this paper, the magnitude and duration of the applied fault current

is based on recommendations from a Japanese electric power company, in contrast to the

vast majority of other studies that do not specify how their fault current was derived.

Highly descriptive temperature profiles within the cable are presented, with liquid ni-

trogen outlet temperatures being compared based on length of the cable and velocity

of coolant flow. A counter-intuitive discovery is that higher velocity of coolant flow can

produce higher maximum temperature. However, the paper has not investigated how

the velocity affects the recovery time, since maximum temperature and recovery time

may not necessarily be proportional. Despite the lack of results of such investigation,

the authors conclude, intuitively, that faster coolant flow would indeed result in faster

recovery time.

13
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Figure 3.1: The general structure of an HTS cable in the Triax configuration,
as seen in Hu et al [31] c© 2013 Elsevier. This Triax cable operates a parallel

coolant configuration where the inner and outer coolants are flowing in the
same direction, with an external return flow.

Shu et al [36] implement an equivalent circuit model to simulate overcurrent and over-

voltage in all three phases of a 1-kilometre-long 110 kV cable. As an extension of this

study, equivalent π circuit model of a 110 kV, 3-phase cable has been developed by Li

et al [37]. Presented are results for both a short circuit fault and electrical breakdown

fault; it does not become clear how the fault current is determined.

Another full model of a 3-phase, 22.9 kV Triax cable under a three phase fault has been

developed in Sun-Kyoung et al [32] (see Figure 3.2). The methods utilized include an

electrical model in PSCAD/EMTDC, coupled with heat transfer equations. However,

there is lack of information about how exactly the temperature increase affects the

overcurrent development in the model, but the publication considers in detail the design

of superconducting cables. It draws attention to the design challenge of ensuring the

current flow in each layer of a phase is balanced. A particular conclusion is that the

middle phase in a Triax design would experience the highest temperature increase due

to the decreased access to cooling, which makes it a particular point of interest in that

design type.

A unique model to consider the gaps that are between the individual layers of tapes

within a phase has been built in Fang et al [38]. The model used is once again equivalent

circuit equation, combined with heat balance and transfer. Presented is a dependency

of the maximum temperature in the cable on the heat transfer coefficient.

A series of papers have been published by researchers from the China Electric Power

Research Institute (CEPRI) and associated institutions, which investigate the coupling
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Figure 3.2: The design of an HTS cable in the Triax configuration, as seen in
Sun-Kyoung et al [32] c© 2013 IEEE. This Triax cable operates a counter-flow

coolant configuration where the inner and outer coolants are flowing in the
opposite direction, thus the return of mass happens within the cable structure.

of the thermal and electromagnetic studies on a 110 kV, 3 kA rated superconducting

cable under a fault current. In essence, the complete model is a mathematical equivalent

circuit together with heat transfer equations.

The most recent paper that provides results on both temperature and current distribu-

tion is the work of Li et al [39]. They simulate a 10 metre, 110 kV cable in MATLAB

and ANSYS and apply a through fault current. Provided are cable dimensions, but

there is no discussion of any methodology. This seems to be based on earlier work done

in CEPRI [40]. Here, a complete mathematical breakdown of the equivalent circuit

method, as well as the thermal model, is provided. Key findings includes that the fault

current distribution between all layers, this including the stabilizer and former, and the

time needed for this distribution to be reached, depends greatly on the resistances that

the materials possess when subjected to said fault current. It also demonstrates the

reason why the part of HTS cables, called former, is required — 96% of the fault current

in the study is reported to have been eventually redirected to the former.

A similar study by the same research group [35] describes a 2D finite element model of

the same problem and cable, implemented in ANSYS together with an equivalent circuit

model. The model presents a table with the thermal properties on a number of materials

at cryogenic temperatures, which are otherwise difficult to obtain.

Figure 3.3 presents a flow chart of the program used in [35]. This serves as a confirmation

of the proposed final product flow chart as seen in Figure 1.1.
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Figure 3.3: An electro-thermal coupled simulation program flowchart [35] c©
2013 IEEE.

Yin et al [42] look at the overcurrent distribution in a single core HTS cable. The

investigation is purely electromagnetic, and uses an equivalent circuit model. While there

are mentions of magneto-thermal coupling, no methods or results regarding temperature

are presented. For the simulations, two currents — one value below the critical current,

and one value above — have been used. It demonstrates a successful implementation

of the equivalent circuit model for an HTS cable, and points out that the design of the

cable’s copper stabilizer (former) plays an important part in the current distribution in

case of a fault.

A research group from Waseda University, Japan, together with other institutions, have

published a recent series on the temperature and pressure changes in cables, cooled by

liquid nitrogen. Their research follows a structure of developing a finite differences com-

puter model for heat transfer and fluid flow [43], and it’s subsequent improvements and

verifications with real or analytical 1.5-metre [44], 20-metre 275 kV [45, 46], 40-metre

66 kV [47] and 3-kilometre 66 kV [48] cables. Their research does not incorporate any

electromagnetic phenomena calculations and relies on 1D discretization. Moreover, the

transient fault current — whenever a part of a study — is not calculated within the

simulation but usually a value of the heat generated in the conductor is provided.

The 20-metre long 275 kV cable [45] is with central coolant flow, single phase and of

concentric design. Besides an insight into possible solutions of the problem that is the

heat transfer between solids and the coolant, the results display how an overcurrent can

increase the temperature of the conducting material noticeably. The research on that
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Figure 3.4: This photograph from [41] c© 2015 IEEE shows a single phase of a
50 MVA HTS cable. First generation tapes can be seen (23 in the conductor,
19 in the shield, silver-coloured, 4.3 mm by 0.22 mm) for both the conductor
and the shield, and an electrical insulation in between. Copper stabilizers are

also present in the form of tapes (for the shield) and wound wire (for the
conductor). This particular design does not have an internal channel, so the
coolant flows outside of the shield. The inner diameter of the conductor is 16

mm and the inner diameter of the shield is 25.88 mm [41].

cable is continued with [46], where a fault’s effect on the temperature of the conducting

layers and coolant is analysed. The conclusions drawn are from the perspective of post-

fault recovery.

The 40-metre long 66 kV cable [47] is again single phase, but without a central coolant

flow. It is noted that the temperature of the inlet of coolant flow (before any contact

with the superconducting cable) may rise due to joule heating of the normally conducting

parts in the joint, and that it is possible in long cables that the coolant would evaporate

when approaching the outlet.

The 3-km long 66 kV cable [48] is a three-core cable. The finite difference method has

solved for the properties of the LN2 before, during and after a short-circuit fault. It is

concluded that for long cables, all AC, dielectric and joint losses have to be taken into

account.

The research team from Waseda Univeristy has examined HTS cables previously. Wang

et al [49] measure a 2-metre-long 66 kV second generation HTS cable under fault con-

ditions, then proceed to numerically estimate the losses via 3D finite element analysis.

An equivalent circuit is introduced to consider the magnetic coupling between the shield

and conducting layers. The power law used appears to be simplified and does not take

into account temperature, which does not seem to introduce a significant error. Despite

the authors’ conclusion that the models match well, some variables see a considerable

unexplained difference between simulation and experiment.

This study is preceded by [50], where the same problem is tackled for a 20-metre cable

with similar specifications. This paper is valuable as it presented detailed dimensions
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for the model cable, as well as thermal properties of liquid nitrogen around boiling tem-

perature. However, the numerical model presented is not verified with experiment, as

far as the publication is concerned.

Within the same research group [51], a 275 kV cable, also of 2-metre length, has been

investigated both experimentally and numerically. The methods are the same as the

studies above, and particular attention is paid to the thickness of the copper stabilizers.

A more detailed temperature and pressure model has been published by Shabagin et

al [52], such that a cross-sectional temperature profile is coupled with the longitudinal

coolant temperature profile, producing a 3D distribution. They consider the AmpaCity

[53] project cable for their calculations, which is of a Triax design, and suggest that

boiling of the liquid nitrogen can be prevented (to an extent) by controlling the pressure

of coolant at the inlet. The authors present their temperature and pressure calculation

methods with excellent detail, but the current (steady-state) is once again calculated by

an analytical method.

Miyagi et al [54] have recently shown a Triax cable can achieve a longer length per

cooling station than its corresponding three-core counterpart, within a set diameter

limit. The necessary calculations have been achieved via analytical formulas while a

number of useful parameters and material properties are provided.

A 22 kV, 3 kA, 2G Triax HTS cable intended to be used as a busbar, has been developed

in [55]. Then, it has been subjected to a short circuit fault both experimentally and

numerically, while a bypass copper cable exists in parallel. For the numerical model, an

equivalent circuit has been used, while the common heat equation is used for thermal

modelling. The conclusions of this study are that by having a bypass cable, the post-fault

recovery time can be decreased significantly.

In [56] by de Sousa et al, a cooling method with an external return flow tube is proposed

and the results indicate it is feasible. Analysis of the thermal response under both

normal and fault conditions is performed via a finite differences method. This is based

on a heat source being the transport current, but no details about the electromagnetic

modelling are presented.

Again by de Sousa et al [57], a finite difference model is introduced for the simulation of

the transient fault response and recovery of the first generation AmpaCity cable. The

paper offers an excellent opportunity for verification of any FEM models built within

this study due to its detailed description of parameters and results.

3.2 Overview and research questions

As discussed in the previous section, the state of the recent literature (2009 onwards)

shows there are few studies that explicitly examine the recovery time of cables. The links

to realistic power grids are limited. The most commonly utilized electromagnetic model

is an equivalent circuit model. Meanwhile, there is solid research into the temperature
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Figure 3.5: The three options for spatial design of 3-phase HTS cables. Not to
scale; for illustrative purposes only.

distribution and coolant flow, all of which favours classical heat transfer and fluid flow

equations. It is easily seen there is very little work done in the past 10 years regard-

ing the multiphysics FEM modelling of superconducting cables both at the steady-state

level (normal operation at currents below critical) as well as at the transient level. The

term ”multiphysics model” in the scope of this study is defined as a model built by

two or more different physics (i.e. heat transfer, electromagnetics and fluid dynamics)

coupled together such that simulating the model provides a better and more accurate

understanding of the system behaviour than if only one of the physics was used.

There exist three possible spatial designs for 3-phase superconducting cables. For illus-

trative purposes, those are presented in Figure 3.5. From the review of the literature,

it becomes clear there is no model that uses a finite element method or equivalent to

introduce a multiphysics model of any of the three possible designs, particularly for first

generation tapes.

Work on the finite element models is focused on cables made up from the second gen-

eration tapes [58–61]. While it may be argued that the second generation has gained

significant popularity in the past decade and displays excellent potential, first gener-

ation technology is still widely adopted and continiously improved [62] and the HTS

cable projects with longest cable lengths deployed have been made with Bi-2223 tapes

(AmpaCity [63] and LIPA [64]). Hence it would not be unreasonable to focus on the

tape which is less researched.

If the time needed for a superconducting cable to be ready for operation after a significant

through fault is to be examined, there is one primary question that has to be answered

— ”How fast can the materials that an HTSC is built of be cooled down to operational

temperature?”. While the answer would depend greatly on design specifications and
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the power grid, this can be further dismantled into further questions, such as — ”What

electromagnetic response does a cable exhibit when subjected to a current, substantially

larger than its rated current?”, ”How does the temperature affect the electromagnetic

response and vice versa?” and ”How fast could a multiphysics model of the transient

response and recovery of a 1G HTS cable be simulated?”.

The unique question this thesis will probe is ”Can a single model be made which can

accurately simulate the whole operational range of a 1G HTS power cable in a reasonable

amount of time?”. A single model that may simulate the AC losses during both steady-

state and transient operation is not demonstrated in literature; a combined model would

ease the effort required to theorize a new power cable for installation in a real grid.

To be able to answer the set questions, consideration must be made of the steps that

might be necessary to construct the model. Section 3.3 describes the previous research

in homogenizing the large amount of filaments in a 1G tape, and Section 3.4. describes

the previous research in attempting to model in 2D the losses incurred in an inherently

3D twisted tape. Both steps are taken in order to simplify the geometry and speed up

the simulation.

3.3 Existing techniques for homogenization of multifila-

mentary tapes

A number of papers note the similarities between the measured losses in some mul-

tifilamentary tapes and tapes with an elliptical monofilament [65], as well as Norris’s

elliptical model [66,67]. This arises from the fact that in densely packed multifilamentary

tapes, a strong magnetic coupling exists between the filaments such that the filaments

experience the magnetic field as one entity. Therefore, it may be reasonable to assume

the superconducting domain can be modelled as a single uniform domain, instead of its

actual multifilamentary geometry.

Researchers in [68], [69] and [70] use a homogeneous model to represent the superconduc-

tor in their numerical models. However, a description of their homogenization method-

ology is not provided. Hence, replication of these numerical models is not possible. [71]

uses a technique where the filamentary region is assumed to be a uniform superconduc-

tor. The matrix material is ignored in the AC loss modelling and, naturally, there is

no investigation of overcurrent with that model. Furthermore, the description of the

technique is minimal. The same technique is briefly explained in [72], but not in the

context of AC loss modelling.

The only full AC power loss homogenization technique that has been identified is de-

scribed in [73]. In it, the material within the multifilamentary region is represented as

a mixture between the matrix (silver) and the superconductor (Figure 5.1). Its conduc-

tivity is then defined as:

σ = λfrσsc + (1− λfr)σAg (3.1)
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where λfr is the fraction of superconductor in the filamentary region (e.g. the ratio

of the total area of the superconducting filaments and the area of the multifilamentary

region), σAg and σsc are the conductivities of the silver (or any other material) matrix

and superconducting material, respectively.

The drawback of this model is that it requires drawing a shape that may be a mix

between an ellipse and a rectangle. This is not straightforward, because λfr is directly

linked to the area of that shape and any errors may noticeably change the model output.

The verification of the prediction of AC losses using that homogenization technique is

not directly presented — however, another paper by the same authors references the

same tape. The results from the simulation are presented and compared with this

work’s homogenization technique in Figure 5.5. Lastly, the technique does not seem to

be implemented in modelling systems of tapes.

3.4 Existing techniques for estimating the losses in twisted

tapes and cables

There is limited literature available regarding the finite element modelling of twisted

cables and twisted tapes. The majority of developed techniques concern themselves with

the modelling of twisted-filament tapes and wires, which are widely used to decouple

the filaments but are not the focus in this work.

A reduced 3D model proposed in [74] utilizes a conductivity matrix with anisotropy to

model a multi-layer first generation HTS power cable. The conductivity matrix uses

trigonometry to influence the direction of current flow based on the twist angle of each

layer. However, the underlying construction of the model appears to rely on a monoblock,

which may be insufficient to model overcurrent situations.

A similar model is utilized in [75]. Amemiya et al [73,76] have developed a technique for

the 2D finite element modelling of twisted tapes under an applied magnetic field, which

entails representing Ohm’s law in 3D via a tensor equivalent conductivity.

Helicoidal symmetry is explored in [77] where a methodology is introduced for simu-

lating the twisted filaments of a superconductor in 2D. This appears to be directed at

investigating the properties of the filaments within twisted superconductors rather than

the modelling of systems of tapes. Another helicoidal tehcnique for twisted filaments is

shown in [78], however in this case the model remains in the 3D domain.

The methods described above chiefly explore multifilamentary conductors in external

field or conductors for magnetic applications. Furthermore, they are not straightforward

to apply and may not be possible to be adapted for the simulation of power cables.

3D modelling of multi-layer cables results in high computation power requirements even

with a relatively coarse mesh [15] which can be thought to render 3D models impractical.

A full 3D model of the shielding layer in a real 1G power cable was made in [79],



22 Chapter 3 Literature review

including the multifilamentary structure of each tape. The purpose of the model was

to estimate the magnetic shielding capability of the shielding layers. No comment is

made whether a 2D model exists that would be able to accomplish the same task for

Bi-2223 superconductors. However, mathematically-derived 1D and 2D approximations

for coated conductors (second generation) do exist [15].

In [15] it is simply stated that simulation of the AC loss in Bi-2223 cables requires a

3D model. Using a cross-section is argued can only be used for conductors of infinite

length and geometries with cylindrical symmetry. It can be speculated this is true in

the general case where no supplementary mathematical or analytical calculations and

simplifications are made to introduce this infinitely-long cylindrical symmetry.

However, in [80] it is stated HTS power cables can be modelled in 2D with an acceptable

error when the twist angle is ”relatively small” due to the negligible axial (longitudinal)

magnetic field. It is not clarified how small the angle must be. This is supported

by [81], where several second generation cables are modelled in the 2D domain, as a

reference point for further 3D studies. A simple cross-section is taken without further

considerations. The results show that the shorter the twist pitch is (thus the larger

the twist angle), the less accurate the 2D model is in simulating AC loss. This work

capitalizes on the principal findings of these studies.



Chapter 4

Numerical modelling of

superconducting tapes using the

finite element method

4.1 Physics

4.1.1 The Power Law

From a macroscopic electrical engineering perspective, superconducting materials are

special primarily based on their E-J characteristic, the slope of which is known as re-

sistivity. For ’normal’ materials the resistivity usually obeys the linear Ohm’s Law, but

for superconductors it is highly non-linear.

As discussed in the previous chapter, the CSM is not accurate enough for HTS. It has

been shown by Rhyner [82] that the superconductor’s resistivity conforms to the so-called

E-J Power Law, in vector notation:

~E = Ec ×

(
|J |
Jc

)n−1
×

~J

Jc

In the general form:

E = Ec ×

(
J

Jc

)n
(4.1)

where E is the electric field variable, Ec is a constant of the electric field at which the

DC critical current is defined (Ec = 1 × 10−4 V/m being the most widely used critical

current criterion [15, 73, 83]), J is the current density variable, Jc is the critical current

density, and n is the power index.

23
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Thus, the conductivity can be expressed as:

σfc =
J

E
=

Jc

E
1/n
c

× E
1−n
n (4.2)

This equation is descriptive for the so-called flux creep state. It is valid for a broad

range of E, but once the current density reaches the flux flow regime [15], the resistivity

has been expressed as [84]:

ρff =
∆E

∆J
≈ ρn

B

Bc2
(4.3)

where ρn is the resistivity in normal state and Bc2 is the upper critical magnetic field.

It is still difficult to determine universally when exactly the flux creep ends and flux

flow starts. Equation 4.1 cannot be used when J � Jc(B, T ) because this would result

in an unlimited value for the superconductor’s resistivity. The addition of the super-

condcuting material’s normal state resistivity ρns(T ) (e.g. the resistivity above critical

temperature/critical field, which would itself be temperature dependent) in parallel with

the resistivity from Equation 4.1 can represent more accurately the real behaviour of

the material [85]:

ρtot =
ρHTS(B, T )ρns(T )

ρHTS(B, T ) + ρns(T )
(4.4)
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Figure 4.1: This graph shows how Equation 4.4 dampens the unlimited
increase of resistivity observed under the power law. The dotted red line

represents the resistivity of the superconducting material of one of the tapes
used in Chapter 5 (Choi et al, Table 5.3). The dashed orange line represents
the normal state resistivity (an example value of 3× 10−6 Ωm) at constant

temperature.
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where ρHTS(B, T ) is the resistivity of the superconducting material from the power law.

An illustration of this concept, for constant temperature, is shown in Figure 4.1.

Magnetic Field Dependence of the Critical Current Density

As discussed in the previous chapter, the critical current density depends on the ma-

terial, as well as on the magnetic field it is subjected to and its temperature. Hence,

Equation 4.1 would be incomplete.

There are different methods to model the magnetic field dependence of the critical

current.

The most accurate is to use an interpolated function of the magnetic field dependent

critical current density, taken from measured data points. In such case a piecewise cubic

interpolation of the data in literature can be performed (easily in COMSOL), with the

following equation for the critical current density:

Jc(B) = Jc0 × f(B⊥)g(B‖) (4.5)

where Jc0 is the local critical current density at self-field; 0 < f(B) ≤ 1 and 0 < g(B) ≤ 1

are the interpolated functions calculating the local critical current density as a function

of the perpendicular and parallel magnetic field in Tesla, respectively, normalized by Jc0;

B‖ is the parallel component and B⊥ is the perpendicular component of the magnetic

field density with respect to the wide face of the tape, respectively (see Figure 4.2).

The same equation may be applied to the n-index [83].

No proposed analytical function has been universally accepted as an accurate model of

the magnetic field dependence. One of the first models has been proposed by Kim [86]

Figure 4.2: Spatial definitions for the 2D FEM model.
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and refined by Anderson [87], and is widely referred to as the Kim-Anderson relation [11]:

Jc(B, T ) =
Jc0(T )

1 + |B|B0
(4.6)

nc(B, T ) =
n0(T )

1 + |B|B0
(4.7)

where B0 is a constant, |B| is the magnitude of the field and Jc0(T ) and nc0(T ) are the

temperature-dependent self-field critical current density and power index, respectively.

This model has been shown to fit measured data poorly in some instances [11] and

especially at higher magnetic fields above 4 mT [83]. An option in numerical analysis is

a model based on Gaussian distribution of the misalignment of the grains [88]:

Ic(B)

Ic(0)
=

1 + (B/B1)
p1 + (B/B3)

p3 × F (α, z1)

1 + (B/B2)p2 + [(B/B4)p4 + (B/B5)p5 ]× F (α, z1)
(4.8)

where B is again the magnitude of the magnetic field, F is a smoothing function and

α is the direction angle of magnetic field. This method is reported to be very accurate,

but complex due to the presence of numerous constants and an additional function that

need to be determined.

A more straightforward polynomial fit has been derived in [12] which inherently takes

into account the direction of the magnetic field by splitting it into components:

Jc(B) =
Jc0

a1 + b1e
−B‖ + c1e−B⊥

(4.9)

nc(B) =
n0

a2 + b2e
−B‖ + c2e−B⊥

(4.10)

where Jc0 and nc0 are the self-field critical current density and power index respectively,

with B‖ and B⊥ representing the parallel component and perpendicular component of

the magnetic field, respectively.

The reference here is to the ab-planes, which in tapes for power transmission applications

in a Cartesian coordinate system are usually correspondent to the zx -planes, where z -

direction is in the length of the tape, or otherwise the direction of current flow, the x -

direction is the width and y-direction is the thickness of the tape. Thus, B‖ corresponds

to Bx and B⊥ corresponds to By (see Figure 4.2).

Gömöry et al [84] have proposed an expanded formula, based on the Kim-Anderson

approximation, to consider the magnetic field dependence in a Bi-2223 superconductor,

as follows:

Jc(B) =
Jc0[

1 +
(√

γ2B2
‖ +B2

⊥

)
/B0

]β (4.11)

where Jc0 is the proportionality factor for the growth of the pinning force in very low

fields [84] and can be assumed to be critical current density at self-field as per the
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Kim-Anderson equation; B0 is the cut-off value at low fields, otherwise described as the

value at which Jc = 0.5 × Jc0 [83]; β is a parameter that can describe varying field

dependencies [84] and manifests itself via the rapidity of reduction of Jc [15]; γ is the

anisotropy factor, which allows to take into consideration that the pinning of flux lines

is anisotropic, thus a magnetic field does not affect the superconductivity properties

of the material equally in every direction; B‖ is the parallel component and B⊥ is the

perpendicular component of the magnetic field, respectively.

This may be rewritten as:

Jc(B) = Jc0 ×

(
B0

B0 +
√
γ2B2

‖ +B2
⊥

)β
(4.12)

It has been shown that Equation 4.12 is capable of simulating the effect on the critical

current density of various magnetic fields applied under a range of angles. While only

Equation 4.11, which deals with the critical current density, is proposed in [84], the

original Kim-Anderson relation of Equation 4.7 suggests that the same extension could

be applied to the power index:

n(B) = n0 ×

(
B0

B0 +
√
γ2B2

‖ +B2
⊥

)β
(4.13)

where n0 is the self-field power index.

Temperature Dependence of the Critical Current Density

To achieve even better accuracy, the model can also be extended to include tempera-

ture dependence. This is essential for modelling overcurrent response due to the large

quantity of resistive dissipation associated with transient faults.

The equations representing the dependence of the critical current on temperature for

Bi-2223 [89] and for YBCO [90] superconductors are reported to be of the following

form:

Jc0(T ) = Jc0(0K)×

(
1− T

Tc

)
(4.14)

where Tc is the critical temperature of the superconducting material (Bi-2223 or YBCO)

and T is the temperature of the material. However, in [90], the considered temperature

range is up to 80 K, which is below the critical temperature of YBCO. Thus, a substantial

part of the tape behaviour is unconfirmed. A full working range of YBCO is presented

in [91], who confirm the following formula:

Jc0(T ) = Jc0(0K)×

(
1− T

Tc

)3/2

(4.15)
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Equation 4.14 is linear while Equation 4.15 has a non-linear zone when T is approaching

Tc. An assumption will be made that Bi-2223 as well as YBCO superconductors can

be described via Equation 4.15, which is supported by Jc(T ) measurements in [52]; fur-

thermore, such an assumption would be in line with the fact that both the Power Law

and the magnetic field dependencies described above can be used for both Bi-2223 and

YBCO materials. This can be modified to refer to the critical current at liquid nitrogen

temperature [92]:

Jc0(T ) =
Jc0(TLN2)

(1− TLN2/Tc)
3/2
×

(
1− T

Tc

)3/2

(4.16)

where TLN2 = 77 K is the most common reference temperature for high temperature

superconducting properties. In addition:

n0(T ) = n0(TLN2)
TLN2

T
(4.17)

In contrast with the magnetic field dependence, the temperature dependence equation

is widely accepted in literature.

Formulation Constitutive Equations Definitions

Vector and scalar potential µσ∂A/∂t−∇×∇×A = −∇Φ B = ∇×A

A− Φ E = −∂A∂t−∇Φ

σ = σ(E)

Current potential ∇2ω = 0 J = ∇×T

T− ω ∇× ρ∇×T = −µ∂(T−∇ω)/∂t H = T−∇ω
ρ = ρ(J)

E-field ∇×∇×E = −µ∂(σE)/∂t ∂B/∂t = −∇×E

σ = σ(E)

H-field ∇× ρ∇×H = −µ∂H/∂t J = ∇×H

ρ = ρ(J)

Table 4.1: Different formulations utilized to solve Maxwell’s equations [93].

4.1.2 Electromagnetics

Different formulations exist for the solution of Maxwell’s Equations, see Table 4.1 [93].

Any one of these can fully describe the electromagnetic state of a point in space.

The H-formulation was selected primarily due to its successful implementation in COM-

SOL [94–96] for both 2D and 3D. Furthermore, there is a number of other advantages

to be considered.



Chapter 4 Numerical modelling of superconducting tapes using the finite element
method 29

In 3D problems, the A − Φ and T − ω formulations have four variables while the H-

formulation only has three spatial variables, depending on the coordinate system [93,

94, 97]. Using H-formulation for 2D allows taking advantage of the fewer variables in

3D by simply expanding the formulation instead of replacing with a completely new

formulation. On the other hand, it may be necessary to consider both transport current

and applied magnetic field. In this case, an H-formulation provides direct means to

set the boundary values of the magnetic field. Furthermore no differentiation of vector

potentials is required as this condition is automatically obtained via first-order edge

elements, which improves the accuracy [93, 94] and implicitly satisfies the condition of

zero divergence of the magnetic field [93]. In addition, A − Φ formulation is shown to

be prone to instability since a small change of E will produce a significant change of J .

The H-formulation is reported to effectively avoid non-convergence [94].

Writing down Ampere’s Law:

∇×H =
∂D

∂t
+ J (4.18)

where H is the magnetic field, J is the current density and D is the time-changing

electric displacement field. D is neglected once it is assumed there are no displacement

currents in the given problem, which produces:

∇×H = J (4.19)

Writing down Faraday’s Law:

∇× E = −∂B
∂t

(4.20)

where B is the magnetic field.

Faraday’s Law can also be written in terms of the magnetic field:

∇× E = −µ0µr
∂H

∂t
(4.21)

where µ0 is the magnetic permeability of free space and µr is the relative permeability

of the material.

The following relation is also known:

J =
E

ρ
(4.22)

where ρ is the resistivity of the material.

Substituting 4.22 into 4.19:

∇× ρH = E (4.23)

Substituting 4.23 into 4.21 gives:

∇× (ρ∇×H) + µ0µr
∂H

∂t
= 0 (4.24)
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4.24 is the general form PDE that has to be solved for. Since the magnetic field H is

the variable, it is what is called an H-formulation, and it is valid for both 2D and 3D

models.

4.2 Implementation of 2D physics within COMSOL with

focus on tapes

4.2.1 H-formulation

An H-formulation for COMSOL has been successfully introduced by [96].

Equation 4.24 is not directly created in COMSOL. Faraday’s Law (Equation 4.21) is

implemented via the ’General Form PDE’ module. The field is discretized using first

order curl elements [98]. In the same time, Ampere’s Law (Equation 4.19), Jc(B, T ),

n(B, T ) and Ohm’s Law (Equation 4.22) are implemented via a variable definition en-

compassing all domains. The operator nojac(n(B, T )) is used to exclude the variable

from the Jacobian and thus avoid undefined equations in the stiffness matrix that arise

from the quick changes of n(B, T ) and its usage as a power index.

Initial Conditions

The Initial Values definition includes all the magnetic field variables and their first

derivatives. This is set to 0, which is also what COMSOL adds by default.

H =

[
Hx

Hy

]
=

[
0

0

]
(4.25)

∂H

∂t
= 0 (4.26)

This is the simplest option considering the non-uniform magnetic field that develops

within the domains [99].

Boundary Conditions

Electromagnetic simulations must obtain results for infinity, however this is impossible

and instead it is assumed that some boundary conditions exist at a sufficiently large

distance from the area of interest (the tape, or superconducting cable).

A boundary condition must be implemented on all external boundaries. COMSOL adds

a Neumann boundary condition by default (Zero Flux), which enforces ∂H/∂t = [0, 0]T ,

where H = [Hx, Hy]
T , via E = 0. This can be used only in the absence of external

magnetic field [96], and it is used in that capacity within this study.

Introducing external magnetic fields is possible by explicitly defining a Dirichlet Bound-

ary Condition, which overrides the Zero Flux condition. To introduce a magnetic field,
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such that in standard Cartesian notation in 2D Euclidean space ~Bext = Bx~i +By~j:

~H =

[
Bx/(µ0µr)

By/(µ0µr)

]
(4.27)

where µr is the relative permeability of the material at the boundary, which is treated

as air, hence µr = 1. If Bx = By = 0, then the Dirichlet condition can be used for

applied transport current. The practical difference between the Dirichlet and Neumann

conditions is that the former specifies a value at the model boundary, while the latter

specifies a derivative — a rate of change. By setting the rate of change of the magnetic

field at the model boundary to zero, the boundary can be assumed to be infinitely far

away from the area of interest where no change to the variable is observed. Regardless,

insignificant effect on AC losses has been observed when changing between the two

condition types. Further to that, decreasing the resistance of air to as low as ρair =

1× 10−4 Ωm in favour of computation speed produces a negligible difference; this is due

to the very large conductivity of the superconductor even at critical currents — even

the resistivity of silver is 5 orders of magnitude smaller.

To introduce a current source, the current density on the contact surface can be inte-

grated to determine the total current on that surface:∫
S
JndS = Itransport (4.28)

where S is the surface on which the current is applied to the model, Jn is the normal

component of the current density on this surface and Itransport is the total transport

current. Eddy currents do not affect this because the result of integrating them over the

entire surface is equal to zero.

Equation 4.28 is implemented within COMSOL via a pointwise constraint such that the

integration is performed over the tape’s total cross-section. This method can be applied

to any surface [94].

Mesh

The meshing used for 2D simulations of superconductors needs to consider the area of

the largest interest. This would be the superconducting material itself, and a relatively

fine mesh (element size of 0.02—0.08 mm depending on the element location) is required

in that region, so that all fast variations in the dependent and independent variables

may be captured. It has been recommended [11] that a mapped mesh should be used.

For example, [11] uses a 20x3 mapped mesh within the filaments of a 37-filament tape.

However, these have a rectangular shape and a mapped mesh may not be suitable for

non-rectangular domains. It was observed that sufficiently accurate results are obtained

from a mesh with well-sized triangular elements, while a mapped meshing inside the

multifilamentary tapes increases the size of the problem significantly. This is supported
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by findings in [12], however the author does give merit to finer meshes for obtaining the

current density profile in a tape.

For the air around the model tape, very coarse meshing (element size between 0.4 mm

and 1 cm) can be used, because the magnetic field distributions far from the tape are

not of interest. The silver matrix is not an area of quick spatial change of variables thus

its mesh does not require special attention, however it’s minimum density is constrained

by the density of the superconductor mesh, especially in multifilamentary tapes.

In any case, the necessary mesh density has to be evaluated on a case-by-case basis.

Furthermore, care must be taken to ensure that areas with extremely rapid spatial

changes of the variables have an adequate mesh density. This usually is around the

edges of a domain, especially when low current is applied.

Solver, Timestepping and Tolerance

For this Chapter, The COMSOL 5.2a default direct MUMPS solver has been used —

later Chapters use COMSOL 5.4’s MUMPS (for studies with electromagnetics) and

PARDISO (for heat transer only). The solver has been allowed to do free timestepping,

with 100-200 recorded time steps per cycle and a relative tolerance of 1.0 × 10−4. It

has been reported the recommended value is 1.0 × 10−5 [94]. However, decreasing it

to this value already increases the size of the problem, the significance of the increase

being problem-dependent. Furthermore, sufficiently accurate results are obtained from

1.0× 10−4, and a trade-off must occur between computation time and accuracy.

Power Law

Considering that E = ρJ , the Power Law (Equation 4.1) can be written in it’s resistivity

form:

ρHTS =
Ec × |J/Jc(B, T )|n

J
+ ρ0 (4.29)

That can be modified with the following result:

ρHTS =
Ec

Jc(B, T )
×
∣∣∣∣ J

Jc(B, T )

∣∣∣∣n−1 + ρ0 (4.30)

where ρ0 is a term, added for numerical stability when passing through zero, such that

ρ0 ≤ 10−2×Ec/Jc [100]. This can be interpreted as a thermally-activated resistance and

typical values for Bi-2223 are 10−14− 10−15 [73,83,97]. ρ0 was originally introduced for

improving convergence in the A−V formulation [97] and may not always be required in

the H-formulation. An investigation of 2D models showed there is at most 1% influence

on the value of the simulation results with no observed instability.
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The bounding of the resistivity for high current densities is achieved via Equation 4.4

with an effect as seen in Figure 4.1. Meanwhile, from Equation 4.16:

Jc(B, T ) =
Jc0(0T, TLN2)

(1− TLN2/Tc)
3/2
×

(
1− T

Tc

)3/2

× P (B) (4.31)

and from Equation 4.17:

n(B, T ) = n0(0T, TLN2)× TLN2

T
× P (B) (4.32)

where P (B) could be as per Equation 4.12 (Kim-Anderson) or Equation 4.5 (data in-

terpolation), depending on the choice of the critical current dependence model. Equa-

tion 4.30 is implemented via a domain-restricted variable — no COMSOL ’Materials’

are used anywhere within the model. The remaining domains are occupied by their

respective material’s linear resistivity constant.

4.2.2 AC losses

The instantaneous AC loss is computed in the unit of W/m3, via the already discussed

equation [15]:

Q = J · E (4.33)

This equation is utilized to calculate the instantaneous power losses in both the super-

conducting material and the silver matrix. Q will subsequently be inserted as a heat

source in the heat transfer equations.

To calculate the total losses, a global equation is employed in the following notation [101]:

dQtot
dt

= 2Q (4.34)

The total power losses Qtot (J/m/cycle) [15] are integrated over the 3rd half-cycle to

avoid transient terms that arise from the initial conditions [11, 99] and over the entire

surface of the tape St, then doubled to minimize simulation time:

Qtot = 2

∫ 1.5/f

1/f

∫
St

Qdt (4.35)

Regardless of the above consideration, in [65, 66, 94] the time integration starts from

t = 0.

A reasonable assumption is that all losses in the tape are converted to heat — any

vibrational or acoustic losses would be insignificant. So Equation 4.35 describes the

heat generated by the current inside the tape.
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4.3 Verification of physics models

The physics implementation in this chapter requires to be verified against published

data. This was accomplished by simulating several models and comparing them to

existing data. The data was obtained manually via the free online graph data extractor

WebPlotDigitizer. This introduces a small error in the extracted data both for x -axis

and y-axis data due to human imprecision.

Furthermore, these are isothermal experiments, performed in a constant 77 K and thus

all temperature dependencies have been neglected.

The models are built in 2D space, with x-axis and y-axis being the horizontal and

vertical spatial direction respectively. The z-axis is the out-of-plane direction, in other

words into the screen. Any transport currents are applied in the z-direction, while

any external magnetic fields are applied in the x-direction (parallel B‖ fields) or the

y-direction (perpendicular B⊥ fields). The tape in each simulation is placed such that

the wide face is lying on the x-axis and the short face is lying on the y-axis (Figure 4.3).

4.3.1 Single filament, Bi-2223, Ag-sheathed tape

The first verification of the H-formulation is against an A − Φ method together with

practical measurements, as described by Nibbio [83]. The B-dependent Jc and n are

utilized using the simplified Equation 4.36 and Equation 4.37. Jc0 = Ic/S where S is

the cross-sectional area of the superconductor (Table 4.2). The geometry is a rectangle

of superconducting material surrounded by a coating of silver.

The resistivity of silver for the single filament is ρsilver = 2.7× 10−9 Ωm [102].

Figure 4.3: Spatial definitions for the 2D FEM model.
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Figure 4.4: The 50x20 nodes mesh used for all simulations of the single
filament.

For fields, applied only perpendicularly to the tape, it is possible to simplify Equa-

tion 4.12 with the function [12,83] which is essentially the Kim-Anderson relation (Equa-

tion 4.6 and Equation 4.7):

Jc(B) = Jc0 ×
B0

B0 +By
(4.36)

and n with the function n(B):

n(B) = n0 ×
B0

B0 +By
(4.37)

where Jc0, n0 and B0 are material constants., and By is the magnetic field in the y-

direction. Jc0 and n0 can be interpreted to be the self-field critical current density and

self-field power index, respectively. This can be argued acceptable since the transport

current used to measure Jc would always produce self-field, which cannot be eliminated

experimentally.

Applied AC transport current

Using a pointwise constraint integral, Equation 4.28 is applied. This forces a current in

the form It sin(2πft), where f = 59Hz and It is the amplitude of the current source.

Tape Bi-2223 Bi-2223 Ic n B0 f

Dimensions Dimensions # Nodes (B = 0) (B = 0)

2.75× 0.36 mm 2.2× 0.16 mm 50× 20 19 A 19 21 mT 59 Hz

Table 4.2: Parameters for single filament verification.
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Figure 4.5: Comparison between the simulated AC transport losses and the
numerical results of Nibbio et al.

The results are shown in Figure 4.5, compared with the Kim-Anderson numerical results

of Nibbio et al [83]. Around critical current, the simulated values are between 1% and

5% higher than the ones from Nibbio et al, with the losses becoming underestimated at

low currents, e.g. under 0.25× Ic, to an error of about two times less than actual losses.

In [83], it is shown that the numerical results in fact are somewhat overestimating the

actual measurements for currents larger than 0.15× Ic.

Applied AC transport current in a DC magnetic field

Using a Dirichlet boundary condition, as described in Equation 4.27, a magnetic field

perpendicular to the wide face of the tape (along the y-axis) may be applied, such that

~Bext = By~j.

The results are displayed in Figure 4.6. When the model for Jc(B) and n(B) is used,

the predicted losses are severely underestimated (Figure 4.6a). It appears that with

the increase in current, the underestimation also increases. The reason for this is the

inaccuracy of the fit of the simplified critical current dependency and n-index model.

When an interpolation of the field-dependent properties as provided by [83] is used in

the simulation, the gap between the published measurements and the simulated losses

is visibly decreased (Figure 4.6b). This shows that, despite all of the remaining three

cases of the paper reviewed agree very well with the original experiment, some cases

require a precise knowledge of the field-dependent parameters in order to predict the

losses accurately. Using an interpolation function may be better than the Kim-Anderson

law especially for DC applied fields.
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Figure 4.6: Comparison between the simulated AC transport losses in a DC
magnetic field and the numerical results of Nibbio et al.

Applied AC perpendicular magnetic field

Using a Dirichlet boundary condition, as described in Equation 4.27, a magnetic field

perpendicular to the wide face of the tape (along the y-axis) may be applied, such that

~Bext sin(2πft) = By sin(2πft)~j.

Figure 4.7 displays the results of the simulation, which provides a very tight fit with less

than 2% difference between the H-formulation and the simulated values in [83].

0.00 0.02 0.04 0.06 0.08 0.10
10-4

10-3

A
C

 L
o
ss

es
 (

J/
m

/c
y
cl

e)

Applied Magnetic Field Density (T)

 Simulation by Nibbio et al

 H-formulation

Figure 4.7: Comparison between the simulated and experimental values of the
magnetization AC losses in perpendicular magnetic field without any

transport current.
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Figure 4.8: Comparison between the experimental AC losses in [83] and the
ones simulated in COMSOL, for an applied AC magnetic field together with a

transport current. The current is extracted from the relevant figure in the
literature.

Applied AC transport current in external AC magnetic field

The principles described via Equation 4.27 and Equation 4.28 are combined to create a

situation where an AC transport current and AC magnetic field are applied together, in

phase. The results of these simulations are shown in Figure 4.8 and explained below.

In [83], the transport current is applied via a voltage source, which can be applied out-

of-plane in a 2D model only by specifying the electric field. Since there was no published

data on the length of the sample, using a voltage source was not possible. Additionally,

there was no known method, at the time of modelling, to impose a voltage source on a

2D H-formulation model in COMSOL. Instead, the currents at a given (1 mV) applied

voltage were extracted from the literature and simulated directly in order to verify the

present modelling technique.

Using precisely the values of the extracted currents (Figure 4.8), the difference between

the experimental data and the simulation is between 0% and 8%, with the estimated

losses at 1 mT being 20% larger. Hence, the physical model demonstrates acceptable

accuracy. The results confirm what is observed in [83] that in higher magnetic fields,

the dominating loss is magnetization loss, while the transport loss is almost negligible.
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4.3.2 Multifilamentary, Bi-2223, Ag-sheathed tape

The second verification of the H -formulation is against experimental measurements and

T −Ω numerical simulations, as described by Amemiya et al [103]. The Kim-Anderson

extended relations for B -dependent Jc and n by Gömöry et al [84] are used for the

simulations. Parameters for this tape are shown in Table 4.3.

Due to lack of specific information on the aspect ratio of the 61 filaments or their

spatial distribution, the geometry was assumed to consist of equally sized rectangles

of superconducting material, the distribution of which is symmetrical around the x -axis

and y-axis. These are embedded in a silver matrix of overall rectangular shape (summary

in Table 4.4 and Figure 4.9). It has been reported that the shape of the filaments does

practically matter, so long that the HTS to silver ratio of the tape and the number of

filaments is the same [69]. Furthermore, the shape shown in Figure 4.9 is such due to the

difficulty associated with constructing each filament manually; it is not representative

of any general model of a tape’s multifilamentary region.

The ratio of transport current to critical current is i = It/Ic, the current and the

magnetic field are in phase; and f = 50 Hz for the case of transport current only and

f = 60 Hz where external field is applied.

Figure 4.9: The geometry of the multifilamentary tape used in verifications of
the H -formulation.

Figure 4.10: The mesh used in the case of multifilamentary tape, used in
verifications of the H -formulation.

Tape Bi-2223 Filam. Jc n σsilver

Dimensions Total Area # (B = 0) (B = 0)

3.5× 0.25 mm 2.2× 10−7 m2 61 2× 108 A/m2 19 3.33× 108 S/m

Table 4.3: Parameters for multifilamentary verification.
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Aspect Width Thickness B0 Anisotropy β

Ratio (x -direction) (y-direction) γ

13 216.53 µm 16.66 µm 0.05 T 0.15 1

Table 4.4: Properties of a filament for the multifilamentary verification.

Fitting of the critical current’s magnetic field dependence

The magnetic field dependence of the critical current density and the power index is

presented in [103] in the form of a graph. The model used to approximate these data

was the extended Kim-Anderson-Gömöry relation from Equation 4.12.

Data extraction software was once again used for obtaining the numerical values and

using them for plotting a comparison to simulated values. The accuracy of the extracted

data presented in Figure 4.11a and Figure 4.11b is subject to the resolution of the image

it was sourced from and to a minimal human error in selecting the data points.

The anisotropy coefficient γ was manually adjusted for the best fit for both the critical

current density and the power index, and the value of γ ≈ 0.15 was reached. It was

observed that increasing or decreasing the value of the anisotropy factor improved the

accuracy of one variable and worsened the accuracy of the other variable. Possible

solution to this may be using separate anisotropy factors to fit both the critical current

density and the power index, however this has not been explored. Any exploration

of such an option would suggest research into whether the anisotropy factor must be

different for Jc and n in the general case of Bi-2223 behaviour or if it is an isolated

occurrence.

For the parameter B0, it was sought to be observed at what value of the perpendicular

magnetic field does Jc equal half of Jc0. It is clear from Figure 4.11a that B0 ≈ 0.05 T.
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Figure 4.11: Comparison between the measured values in [103] and those
plotted with Equation 4.12, with β = 1 and γ = 0.15.
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Figure 4.12: Comparison between the simulated and measured values of the
AC losses under applied transport current for a range of i.

The power constant β is simply β = 1. Summary of the parameters for using the

Kim-Anderson-Gömöry relation is in Table 4.4.

Applied transport current

Using a pointwise constraint integral, Equation 4.28 is applied. This forces a current in

the form It sin(2πft), where f = 60 Hz and It is the amplitude of the current source.

Figure 4.12 shows the summary of simulations where a transport current is applied via

a current source. The results show a close match with both measured and numerically

calculated losses. Achieved were results that are larger than the numerical simulations

by 20% for i = 0.9 and 10% for i = 0.2, which can be explained by the imprefect critical

current dependence approximation. Meanwhile, when compared to the measurements

presented, the results demonstrated an underestimation, typically around 14-23%. Un-

der i = 2.5, the measured losses become smaller. There are no suggestions for this

behaviour in [103].

Applied AC transport current in external AC magnetic field

Using a Dirichlet boundary condition, as described in Equation 4.27, a magnetic field of

~Bext sin(2πft) = Bx sin(2πft)~i, parallel to the wide face of the tape (along the x -axis)

may be applied, or perpendicular to the wide face of the tape (along the y-axis), so that

~Bext sin(2πft) = By sin(2πft)~j.
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Figure 4.13: Comparison between the simulated and measured values of the
AC losses in AC magnetic field for i = 0.1, 0.5, 0.9.
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Figure 4.14: Zoomed-in comparison between the simulated and measured
values of the AC losses in parallel magnetic field for i = 0.9 and i = 0.1.

The simulated values for AC loss in a parallel field are in close match with the measured

values, as shown in Figure 4.13a. The largest difference between simulated and exper-

imentally measured data from the literature is when i = 0.9, where the differences are

of about 8% to up to 30% in one case. With decreasing the current, the difference also

decreases. The difference for all other cases varies between 0% and 16% overestimation,

while in only one case when Bext = 0.2 T the losses were underestimated out of line

with the remaining cases. The positioning of the filaments and their aspect ratio could

affect the losses as well. For the perpendicular field, from Figure 4.13b it can be seen

that the simulated values produce a close match with measured values. The error for

all cases varies between 1% and 12% overestimation, while in some cases the losses were

underestimated.

In Figure 4.14a, a close-up view of the results for large (i = 0.9) and very small current

(i = 0.1) are shown when the applied magnetic field is parallel to the tape. Figure 4.14b

shows the same when the magnetic field is parallel to the tape.



Chapter 5

The homogeneous

multifilamentary domain

The majority of this chapter, in the shape of a full-length research article, has been

published in the journal Physica C: Superconductivity and its Applications [104]. An

abstract about the same content was presented as an oral presentation at the 6th In-

ternational Workshop on Numerical Modelling of High Temperature Superconductors,

25th-29th June 2018.

Modelling of first generation tapes can be noticeably time-consuming due to the fila-

ments’ large number and small size. This is largely caused by the requirement to simu-

late their exact shape and positioning. Since first generation superconducting cables can

have from dozens up to hundreds of tapes, the work required to build the whole cable

structure with the help of computer-aided design may be very significant. There are

several reasons for that. Firstly, each filament can have an irregular shape, which may

not be the same for each tape. Secondly, the construction of hundreds of small domains

is cumbersome and prone to errors. Furthermore, and perhaps more importantly, the

small size of the filaments enforces very small mesh elements to be used within the super-

conducting domains in order to capture the correct field penetration. This introduces

large amounts of nodes across the entirety of the tape. So the simulation, especially

when performed over a useful time in the context of fault response, becomes extremely

time-consuming and computationally expensive. On top of that, higher magnetic fields

have been observed to increase computation time [94].

At this point, an engineer should ask the question whether it is better to use analytical

equations or any other type of numerical modelling technique instead of FEM. From

a modelling perspective, the two main issues for the long computational time of first

generation tape models are the non-linearity of the superconducting material’s E-J re-

lation, and the degrees of freedom (DoF) of the model. The DoF are directly related

to the number of dependent variables, mesh nodes and the order of mesh elements. In

43
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(a) Quarter-tape cross-section micrograph of the tape by Amemiya [73]

(b) Quarter-tape cross-section homogenized domain of the tape by Amemiya [73], including
shading for current density distribution at It/Ic = 0.5. The darkest areas represent 0 A/m2,

and the brightest areas represent 8× 107 A/m2.

Figure 5.1: The micrograph and homogenized model of Amemiya [73] c© 1998
Elsevier. The width of the displayed quarter of the tape is 1.75 mm and the

thickness is 0.125 mm, details in Table 5.1.

turn, the mesh nodes are proportional to the level of detail of the applied mesh, and to

properly discretize each filament a very detailed mesh is required. A way to loosen that

requirement is to simplify the geometry, or in other words, to homogenize the supercon-

ducting filaments into one large domain. Such a homogenized domain may noticeably

decrease the computation time not only for first generation tapes and cables, but also

any other first generation multi-tape devices.

The objective of this chapter is to characterize a homogenization technique for AC

power loss estimation of multifilamentary first generation tapes with straight filaments,

such that it decreases the problem size compared to a full multifilamentary model. In

addition, the level of accuracy it provides in the calculation of the AC transport current

loss over a range of applied currents is investigated.

5.1 Proposed homogenization technique

The homogeneous technique for modelling Bi-2223 tapes, described in this section, can

be found originally in [71], where the matrix material is ignored in AC loss modelling.

It is also briefly explained in [72], but not in the context of AC loss modelling.

Appropriate homogeneity can be obtained when the simulated superconducting domain

has the approximate shape of the real tape’s multifilamentary region. For simplicity

and where applicable, the multifilamentary region can be approximated to be a classical

ellipse, and its dimensions can be obtained from the tape’s micrograph (Figure 5.3

— the shaded areas in both (a) and (b) represent the homogeneous superconducting

domain). These dimensions must be such that all filaments are located within the

rectangle, described by them. Since here the cross-sectional area of the homogenized

domain is larger than the real area of superconductor, it must be ensured that the

current is correctly distributed in the cross-section. This can be achieved by scaling the
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local critical current density in self-field Jc0 in all cases such that:

Jc0 = Ic/Seq (5.1)

where Seq is the area of the filamentary-equivalent domain used in the model and Ic

is the critical current for the given tape. The scaling ensures that the current in any

part of the homogenized domain is very similar to the average current in equivalent part

of the real tape. Therefore, the homogenization model should correctly describe local

magnetic field.

It is expected that the shape of the homogeneous region is linked to the shape of the

multifilamentary region, particularly when exposed to external magnetic fields (i.e. a

rectangular homogeneous region will represent a rectangular multifilamentary region;

however, this has not been proven or disproven).

To verify the homogenization method, the prediction can be compared with published

experimental data. Of particular interest are studies with AC loss measurements in

external field and studies with more than one tape.

This homogenization technique is not applicable to tapes with decoupled filaments, such

as those with twisted filaments.

To verify the homogenization method, the loss prediction can be compared with pub-

lished experimental data. The requirements for tapes from the literature to be modelled

are the presence of sufficient data about the geometry, the magnetic field dependence

of the critical current, and the transport current losses within the tape. Micrographs,

numerical models and measurements in applied external field would also be beneficial,

but not essential. The majority of papers that investigate AC power losses do not pro-

vide either one or more parameters, which means scientifically sound verification of the

homogenization technique would not be possible.

5.2 2D verification of the homogenization technique

The most important parameters of the modelled tapes are listed in Table 5.1, 5.3 and 5.4.

They have been taken directly from the literature and some of them have been derived

from other known parameters. In all tapes, the superconductor is straight Bi-2223 and

the sheath is silver, unless specified otherwise.

The critical current dependence of the magnetic field was implemented via an interpo-

lation function of the data in literature (Figure 5.4), as described in Section 4.2.1. In

all of the AC transport current in self-field simulations in this study, the largest local

magnetic field does not exceed 30 mT.

Different meshing densities were used, as seen in Figure 5.2. The purpose was to quantify

the difference in degrees of freedom and simulation time between meshes with different

number of nodes. It could have been possible that an accurate simulation may require
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a significant number of degrees of freedom regardless of the homogenization, and it

must be ensured that the proposed techniques offer a noticeable computational benefit

compared to the fully multifilamentary models.

The simulations in this chapter were performed on a desktop PC with Intel i7-6700 CPU,

3.40GHz, with 16 GB of RAM.

5.2.1 61-filament, Bi-2223, Ag-sheathed tape — Amemiya et al

Description

The first tape is one by the research group of Amemiya et al [73, 103], and is hereafter

referred to as ”Amemiya”. It is the same tape as in Subsection 4.3.2, used for initial

verification of the numerical technique.

The provided resistivity of silver in [103] is 3 × 10−9 Ωm. Amemiya et al also provide

the area of the superconductor, as well as the area of the multifilamentary region, but

(a) 80 elements on edge (b) 120 elements on edge

(c) 160 elements on edge (d) 200 elements on edge

(e) 240 elements on edge (f) Multifilamentary

Figure 5.2: Comparison between mesh densities in Amemiya et al, as in Table
5.2. The presented images display only the right end of the tape.
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(a) Quarter-tape cross-section, Amemiya et al [73] c©1998 Elsevier. The width of the displayed
quarter of the tape is 1.75 mm and the thickness is 0.125 mm, details in Table 5.1.

(b) Full tape cross-section, Choi et al [68] c© 2004 IEEE. The width of the displayed full tape
is 3.1 mm and the thickness is 0.17 mm, details in Table 5.3.

Figure 5.3: Micrographs of the tapes, by Amemiya et al and Choi et al. No
micrograph available by Ryu et al. The shaded red areas (original work)

represent the homogenized superconducting domain.
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Figure 5.4: Measured by Amemiya [103] magnetic field dependency of the
critical current. The y-axis is normalised by the critical current density at zero

field.

do not provide the dimensions for it. Thus, the dimensions were obtained from the

micrograph in Figure 5.3a. Provided are also AC total losses of the tape when subjected

to an external magnetic field (see Figure 5.4 for the Jc dependence on the field), and

appropriate models have been built and simulated to explore the filamentary-equivalent

domain’s accuracy in this case.

Results

In terms of AC transport current losses, at It/Ic = 0.94 the model provides 0.327

mJ/m/cycle while the original measured loss is 0.349 mJ/m/cycle. This accuracy is

maintained for peak transport currents above It/Ic = 0.3. As it can be seen in Figure
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Figure 5.5: Comparison between the AC transport current losses in [103] and
the simulations. The mesh has 240 boundary mesh elements as in Figure 5.2e.

5.5, the losses at peak transport currents under It/Ic = 0.3 of the transport current are

somewhat overestimated. This has been noted in [103] but no explanation is provided.

A similar result is obtained from the fully multifilamentary model and the slope of the

numerical model by Amemiya et al closely resembles the slope of the homogenized model,

but is displaced uniformly towards lower values of the loss. This means this discrepancy

is not connected to the homogenization model but rather numerical simulation as a

whole, perhaps model input data or the physical equations. Since loss measurements at

low currents are very sensitive, it is also a possibility that the authors’ experiment has

underestimated the losses.

Tape dimensions, wt × ht 3.5 mm×0.25 mm

Superconducting area, SSC 2.2× 10−7 m2

Critical current, Ic 44.66 A

Amemiya n-index 19

[103] Number of filaments 61

Frequency (It only) 60 Hz

Frequency (with Bext) 50 Hz

Resistivity of silver 3× 10−9 Ωm

Multifilamentary region size 3.23 mm×0.2 mm

Multifilamentary region type Ellipse

Table 5.1: Parameters for the tape by Amemiya [103].
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Figure 5.6: Predicted AC total losses in the Amemiya tape in applied external
magnetic field. The mesh has 240 boundary mesh elements as in Figure 5.2e.

Mesh Density Time (seconds) Degrees of Freedom

Amemiya

Homogenized 314 5512

Multifilamentary 2406∗ 16894

Choi

Homogenized 668 12952

Multifilamentary 2406∗ 35307

Table 5.2: Time and degrees of freedom required in simulations of the
homogenized and multifilamentary model in Amemiya and Choi with

transport current equal to the critical current, in self-field.
* - the numbers are the same, which is coincidental and not an error.

Figure 5.6 compares the results from the homogeneous model with measurements from

literature, subjected to perpendicular and parallel magnetic field with It/Ic = 0.9, 0.1.

Figure 5.7 illustrates the current distributions (based on the same superconducting area)

in the homogeneous and the multifilamentary tape at B⊥ = 0.1 T and It/Ic = 0.9 — it

demonstrates that the same current distribution can be achieved in both models.

At the beginning of the cycle (assume t = 0 s and the simulation has already been

running for at least one cycle), there is no current and the applied magnetic field

B⊥(0) = B⊥max sin(0) = 0 where B⊥max = 0.1 T is the peak value of the applied

field, though there is still a field gradient dB⊥/dt ∝ B⊥max cos(0), which, together with

the superconductivity, induces a perfectly symmetrical current within the superconduct-

ing domain. As the transport current in the tape starts to rise, it expands the zone of

current flow that matches the direction of the transport current while decreasing the

zone of current that flows in the opposite direction. This can be illustrated by the red
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Figure 5.7: Comparison between the current densities in the homogenized and
multifilamentary model of Amemiya’s tape when the peak applied magnetic

field is equal to B⊥max = 0.1 T and It/Ic = 0.9 at various times. The
frequency is 60 Hz and thus one period is 0.02 s. The current density in the
homogenized part of the figure is multiplied by (Seq/Shts) where Shts is the
total area of the superconducting material in the multifilamentary model —

this allows for the values of J to be compared directly.

area expanding: it contains both the transport current and the part of the induced cur-

rent that matches the direction of the transport current. Since the transport current is

sufficiently below critical, it is not required to distribute uniformly.

Once the peak of the wave of the current/applied field is reached at t = 0.005 s, the

applied field begins to decrease, and under the principle of electromagnetic induction

the direction of the induced current flips. This change of direction, together with the

decrease of transport current, explains why the red zone (positive current flowing into

the screen) moves to the other half of the tape and itself starts to decrease. Once the

transport current is equal to zero at the half-period (t = 0.01 s), the induced currents

are symmetrical within the tape.
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The observed magnitudes of induced current at maximum applied field (t = 0.005) and

at zero applied field (t = 0 s and t = 0.01 s) are consistent with the principle of elec-

tromagnetic induction. As the derivative of sin(t) is cos(t), the largest rate of change is

offset by quarter of a period (0.005 s). Then, the highest EMF is induced when the rate

of change of the magnetic field is the highest, and the lowest EMF is induced when the

rate of change of the magnetic field is the lowest.

At Bext = 0.05 T and It/Ic = 0.9, the value of the simulated loss is 7620 J/m3/cycle and

of the measured loss is 8463 J/m3/cycle for perpendicular field (10% underestimation);

under the same conditions but for parallel field, the simulated loss is 705 J/m3/cycle

and the measured loss from literature is 618 J/m3/cycle, giving 13% overestimation.

To demonstrate the efficiency of the proposed homogenization, the simulation time was

considered at It = Ic for a number of mesh densities and for a full multifilamentary

model. It is evident from Table 5.2 that the filamentary-equivalent domain model is

significantly faster than the full multifilamentary model. All mesh densities achieve

an accuracy of 5% or better when compared to the measurements from [103] when

the simulations were repeated with It/Ic = 0.95. A bottom limit for achieving well-

matching losses is at as little as 40 boundary elements. The selection of mesh density

has implications beyond accuracy, as insufficiently fine meshing can even fail to converge

when there are very large gradients in the geometry it is discretizing. Furthermore, it

was observed that the time taken to simulate the model is directly proportional to the
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Figure 5.8: Measured by Choi [68] magnetic field dependency of the critical
current. The y-axis is normalised by the critical current density at zero field.
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Tape dimensions, wt × ht 3.1 mm×0.17 mm

Critical current, Ic 78 A

Choi n-index 20

[68] Number of filaments 55

Frequency 50 Hz

Resitivity of silver [102] 2.7× 10−9 Ωm

Superconducting area, SSC 1.84× 10−7 m2

Multifilamentary region size 2.94 mm×0.12 mm

Multifilamentary region type Ellipse

Table 5.3: Parameters for the tape by Choi [68].

applied current (observations made up to critical current).

5.2.2 55-filament, Bi-2223, Ag-sheathed tape — Choi et al

Description

The second tape is by the research group of Choi et al [68,105] (referred to as ”Choi”),

where the authors examine the transport losses of three identical tapes, attached to each

other with their short sides. The authors provide the dimensions of the superconducting

region, but not the area of the superconductor itself. Instead of using this data, the

fraction of the superconductor of the whole tape’s cross-section and the multifilamentary

region’s dimensions was obtained via image analysis of the micrograph (Figure 5.3b).

See Figure 5.8 for the Jc dependence on the field.

Results

Figure 5.9 displays the total transport current losses, compared to the measurements

from the literature. There is practically no difference (less than 1%) between the homo-

geneous model and both the experimental measurements and the data from simulation

in the literature. This demonstrates that the homogenization technique can be used to

accurately model the total losses in more than one tape, however the literature does not

provide useful data about the loss distribution between the tapes.

To demonstrate the efficiency of the proposed homogenization, the simulation times and

degrees of freedom of the homogenized and full multifilamentary model of the Amemiya

and Choi tapes are presented in Table 5.2. It is clear that the filamentary-equivalent

domain model is significantly faster than the full multifilamentary model even at a

relatively fine mesh such as the one from Figure 5.2e.
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Figure 5.9: Comparison between the AC transport current losses in [68,105]
and the simulations. The mesh has 240 boundary mesh elements as in Figure

5.2e.

5.2.3 Circular multi-tape conductors — Ryu et al

Description

The third and fourth tape are described by Ryu et al [106] and Ma et al [70] and are

named ”Ryu-A” and ”Ryu-B” for the lower and higher critical current carrying tape,

respectively. The configuration of these tapes is a circular conductor of 10 non-twisted

tapes, arranged such that the tapes form a regular decagon (Figure 5.11). Then, a

number of modes are provided, of which two are the most interesting — Single Mode

and Simultaneous Mode. Single Mode is where only one tape, called Tape 1, has been

energized. Simultaneous Mode is similar to a cable conducting current, as it is where

all tapes have been energized; only the losses in Tape 1 are considered.

The authors provide the area of the superconductor and the dimensions of the multifil-

amentary regions, but no micrographs. Hence, the homogenized region has only been

simulated via the provided values. Furthermore, in these two tapes, the anisotropy of the

magnetic field dependence is not provided, and thus, it is assumed to be approximately

equal to 0.12 as it is the average value between Amemiya and Choi. See Figure 5.10 for

the Jc dependence on the field. The sheaths in Ryu-A and Ryu-B are made from an Ag

alloy, but due to lack of more information are assumed to be silver only. The resistivity

of silver is assumed to be ρsilver = 2 × 10−9 Ωm [102]. The former, i.e. the supporting

core of the tapes, is reported to be made of plastic [107], albeit the study in question
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Figure 5.10: Measured by Ryu [106] magnetic field dependency of the critical
current. The y-axis is normalised by the critical current density at zero field.
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Figure 5.11: The cross-section of the configuration of the 10-tape conductor,
as per Ma et al [70]. The shape is a regular decagon.
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Tape dimensions, wt × ht 3.9 mm×0.3 mm

Superconducting area, SSC 3.159× 10−7 m2

Multifilamentary region size 3.7 mm×0.26 mm

Ryu-A Critical current, Ic 24.2 A

[70,106] n-index 10.4

Number of filaments 37

Frequency 500 Hz

Tape dimensions, wt × ht 4.1 mm×0.21 mm

Superconducting area, SSC 3.27× 10−7 m2

Multifilamentary region size 3.9 mm×0.154 mm

Ryu-B Critical current, Ic 129.85 A

[70,106] n-index 16.18

Number of filaments 55

Frequency 300 Hz

Table 5.4: Parameters for the tapes by Ma [70] and Ryu [106].

does not use exactly the same tapes. Due to material properties of the plastic not being

available, the former has been assumed to be air.

Results

According to Ma et al [70], Single Mode is similar to a single tape in self-field. If in

Single Mode simulations the pointwise constraint integrals in the remaining tapes are

left undefined, net flowing currents will be induced in the neighbouring tapes. This

would of course be impossible, as these tapes are not part of a closed circuit. In turn,

this will increase the mutual inductance and decrease the critical current density in

Tape 1, especially around the edges of the tape that are closest to its neighbours. To

avoid loss distortion, the model should put the non-energized tapes floating via setting

the pointwise constraint current integrals to zero, such that only induced eddy currents

could flow.

The simulation results for the Ryu tapes are presented in Figure 5.12. The losses in both

Single and Simultaneous mode of Ryu-A are noticeably overestimated approximately

equally throughout the range of transport currents. In contrast, the estimated losses in

Ryu-B for both modes display close agreement with measurements from literature.

A possible cause for the discrepancy between the predicted losses and the losses provided

by the literature may be the assumption that the tapes’ matrices are entirely made of

silver, while in fact they are made out of unspecified (different) alloys that may possess

different resistivity. Moreover, the former’s material and dimensions would influence

the current distributions within each tape, and thus — losses. Additionally, the setups
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Figure 5.12: Measured by experiment in [70] and simulated (original) AC
losses in Ryu-A (hollow symbols) and Ryu-B (filled symbols). 240 boundary

mesh elements.

used are in the high frequency range, which may introduce further complications, such

as noticeable skin effect or increased eddy current loss, which has not been taken into

account. Finally, the measurements of the AC losses in [70] are performed via the
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Figure 5.13: The equivalent circuit arrangement of the MATLAB model.

voltage tap method, which is suited for transport loss measurement [108]. Hence, in

this particular case it might not have captured fully the effect that circulating currents,

resulting from the electromagnetic interaction with neighbouring tapes, would have on

the total losses. This may be contributing to the discrepancy between measured and

predicted values of the loss, especially considering that Ryu tapes are the least well

characterized tapes of those presented in this paper.

5.3 The homogenization technique at currents above crit-

ical current

The results from modelling transport power loss in multiple first generation tapes, includ-

ing in applied field and in cable configurations, suggest the homogenization technique

is appropriate for modelling large devices such as power cables. However, the result of

Ryu-A is not satisfactory, and therefore further investigation may be necessary. In this

section, the results of the constant critical current loss simulations in COMSOL of a

sample power cable using the homogenization technique are compared to an analytic

equivalent circuit calculation of the same cable, built in MATLAB.

5.3.1 Equivalent circuit modelling of a superconducting cable

Approximating transport current losses of an HTS cable via equivalent circuit is nar-

rowed down to determining constants (i.e. geometry and inductances) and dynamic

variables (conductivity of superconductor), as well as defining the relationship between

them; finding the current distribution in the conductor layers (applicable to conductors

with more than 1 layer) and hence their resistance at every point in time; and calculating

the real loss (mostly converted to heat) in the cable via I2R.

Most single phase HTS cables consist of one to several layers of conductor and one to

several layers of shield, essentially making it a coaxial cable. In order to find the values
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of the self and mutual inductances of each layer of that cable, the following equations

have been used [109]:

Li =
µ0πr

2
i

l2p
+
µ0 ln(D/ri)

2π
(5.2)

Mi,j = Mj,i = αiαj
µ0πr

2
i

lpilpj
+
µ0 ln(D/ri)

2π
(5.3)

where Li, ri and li are the self-inductance, outer radius and twist pitch of the i-th layer

respectively, Mi,j – mutual inductance between the i-th and j-th layer, D – the distance

between the i-th layer and the centre of the return path (the shield layer which confines

the magnetic field [11]), α = −1, 1 – an indicator of the direction of twist pitch of the

corresponding layer. Derivations of these equations can be found in [109].

For the general case of a cable with n conducting and m shield layers, Kirchoff’s Law is

represented in matrix form in Equation 5.4 [35,109]:



Zc−1 ... jωMc−1,c−k jωMc−1,s−1 ... jωMc−1,s−m
...

. . .
...

...
. . .

...

jωMc−k,c−1 ... Zc−k jωMc−k,s−1 ... jωMc−k,s−m

jωMs−1,c−1 ... jωMs−1,c−k Zs−1 ... jωMs−1,s−m
...

. . .
...

...
. . .

...

jωMs−m,c−1 ... jωMs−m,c−k jωMs−m,s−1 ... Ls−m

1 ... 1 0 ... 0

0 ... 0 1 ... 1


·



Ic−1

...

Ic−k

Is−1

...

Is−m


=



Vdp

...

Vdp

0

...

0

It

−It


(5.4)

Zc−k = Rc−k + jωLc−k (5.5a)

Zs−m = Rs−m + jωLs−m (5.5b)

whereRc−k, Lc−k are the per metre resistance and self-inductance of the n−th conductor;

Rs−m, Ls−m are the per metre resistance and self-inductance of the shield, Mc−k,s−m

is the per metre mutual inductance between two layers (shield or conductor) and Vdp is

the per metre voltage drop across the cable.

The first k rows represent Kirchoff’s law for the conductor layers, where the voltage

drop is Vdp. The next m rows show that there is no voltage drop across the shield. The

last two rows force the sum of the currents in the conducting layer to be equal to the

total transport current at a given time, and the sum of the currents in the shield layer to

have an equal magnitude but opposite direction to the current in the conducting layers
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at the same time:

Ic−1 + Ic−2 + ...+ Ic−k = It (5.6a)

Is−1 + Is−2 + ...+ Is−m = −It (5.6b)

In these calculations, It can easily be substituted with any function describing periodic

AC current, e.g. current magnitude multiplied by a sine function. This representation

is according to Figure 5.13, where the conductor resistance is composed by the HTS and

silver resistances connected in parallel:

Rc−k =
1

(1/RHTS + 1/RAg)
(5.7)

and similarly for the shield resistance. RAg can be calculated from the real cross-sectional

area of the silver material — not from the homogenized model. The skin effect pene-

tration depth δ = 1/
√
πfµσ, where σ = 3.7 × 108 S is the conductivity of silver at 77

K (from Table 5.3) and f = 50 Hz is the power frequency, is equal to 3.69 mm. This is

larger than the width of the tape (3.1 mm). Therefore, it may be assumed the current

in the silver material is uniformly distributed.

The resistance of the superconducting material of each layer is expressed similarly to

Equation 4.22 as:

RHTS =
E0

Ic

(
IHTS
Ic

)(n−1)

(5.8)

where RHTS is the per metre resistance of the superconducting material, E0 is the critical

current criterion in V/m, IHTS is the magnitude of the transport current passing through

the superconducting material of the given layer at a given time (A) and Ic is the critical

current of the layer (A).

The calculation of current distribution between each conductor layer is achieved by solv-

ing Equation 5.4 and its supportive equations at every timestep. This is not necessary

when dealing with a single-layer cable. However, it is always needed to be able to cal-

culate the current sharing between the silver matrix material and the superconducting

material within each conductor layer. This is unavoidable when considering currents

above critical, where the matrix starts to bear significant amounts of current.

A current divider equation for a conducting layer in line with Figure 5.13:

IHTS =
Ic−kRAg

RHTS +RAg
(5.9)

IHTS + IAg = Ic−k (5.10)
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Figure 5.14: The symmetry arrangement of the COMSOL model.

Substituting for RHTS from Equation 5.8 into Equation 5.9 and simplifying yields:

E0I
n
HTS +RAgI

n
c IHTS − Ic−kRAgInc = 0 (5.11)

The above polynomial is of a very high order, and therefore can only be solved numeri-

cally. In this work, a Newton iteration method for MATLAB [110] is used to solve it for

IHTS .

The instantaneous loss can be calculated at every timestep over one cycle via I2c−kRc and

then integrated as discrete data using a MATLAB function to give the loss per cycle.

Alternatively, it can also be calculated via I2HTSRHTS + I2AgRAg.

5.3.2 Verification of the homogenization technique for a single layer

HTS cable subjected to currents above the critical current

The Bi-2223 tape used here for the purposes of modelling of the sample cable is one

fully characterized by Choi et al [68] (Figure 5.3). In the present study, these tapes

are arranged in one conductor layer, the losses of which are the main point of interest,

and one shielding layer. This means straight tapes can be used. The dimensions of

the cable are shown in Table 5.5 and the configuration is similar to the one in Figure
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# of conductor layers 1

# of shield layers 1

Conductor inner radius 19.695 mm

Conductor outer radius 19.865 mm

Shield inner radius 29.576 mm

Shield outer radius 29.746 mm

Conductor pitch length ∞
Shield pitch length ∞
# tapes in conductor 40

# tapes in shield 60

AC frequency 50 Hz

Table 5.5: Specification of the sample cable construction.

5.11, albeit with more tapes and a shield layer. The design of this cable only serves

the investigation of its sample electromagnetic properties, and gives little consideration

to insulation, stabilization, protection, design optimisation, or any specific device. The

COMSOL simulations take advantage of rotational symmetry to model one quarter of

the cable as in Figure 5.14. The MATLAB code follows the equations described in the

previous subsection.

Two cases are considered. The first one models the single layer cable with the ho-

mogenization technique with a constant critical current; together with the equivalent

circuit model. The second one takes into account the critical current dependence of the

magnetic field and compares the homogenized tape with a tape with multiple separate

filaments (Section 4.3.2). The purpose of this is to investigate whether, at currents well

above critical, any effects arising from having a smaller cross-sectional area of the silver

material in the homogenized model are neutralized by the lower critical current density

within the homogeneous superconducting domain.

The results of the simulations in COMSOL and calculation in MATLAB are compared

graphically in Figure 5.15. The demonstrated agreement between the homogenized

model (orange) and the reference multifilamentary model (red) can be seen through-

out the entire simulated range. The behaviour of the multifilamentary model and the

homogenized model at currents below critical current was verified in Section 4.3.2 and

Section 5.2, respectively. When comparing the COMSOL model with the equivalent

circuit built in MATLAB (green), an agreement is observed at currents close to critical

current and at currents much higher than the critical current.

The difference at It/Ic = 1 in Figure 5.15 may be attributed to the difference in nature

of the macroscopic (equivalent circuit, total current is important) MATLAB model and

microscopic (electromagnetic fields, current density distribution is important) COMSOL
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Figure 5.15: Simulation results of the homogenized model and the calculation
of the analytical model with constant critical current.
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Figure 5.16: Simulation results of
the numerical models with
interpolated magnetic field
dependent critical current.
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Figure 5.17: Simulation time of
the homogenization and reference

multifilamentary COMSOL
model with field-dependent

critical current.

model. Therefore, the MATLAB model does not take into account current distribution.

When comparing the multifilamentary and homogenized models that are with a magnetic

field dependent critical current (Figure 5.16), a near perfect agreement can be seen.

In Figure 5.17 the simulation times of the two COMSOL models are compared, consid-

ering the times presented are for 1 cycle. Improvement in computational speed is 5 to 7

times.
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5.4 Summary

A homogenization method was revisited in terms of its potential use for prediction of

AC losses. It was verified via simulating a number of tapes in single or multiple tape

configurations and with or without an external magnetic field, and comparing them

with existing experiments. It was shown the method decreases the size of the problem

considerably and displays a close fit with losses measured in literature.

To establish the quantitative accuracy and suitability of these models at a large scale and

for transient analysis, more experimental data about cables and multi-tape conductors

must appear in the literature. Such data must be accompanied with sufficiently detailed

information about the tape properties and properties of any surrounding material.

Contributions

• Reintroducing a domain homogenization method for the estimation of AC power

loss of multifilamentary tapes with fully-coupled filaments, as well as cables built

with multifilamentary tapes.

• The majority of this chapter was published in the form of a full length research

article in Physica C: Superconductivity and its Applications under the title ”Re-

visiting the homogenized domain model for fast simulation of AC transport power

losses in first generation high temperature superconducting tapes and cables” [104].





Chapter 6

Estimation of power loss in

twisted multi-layer Bi-2223 cables

via 2D modelling

The work in this Chapter was presented in poster form on the 14th European Conference

on Applied Superconductivity, 1st-5th September 2019, Glasgow, and was published in

the conference proceedings at IOP Publishing [111]. This chapter explores a technique

for simulating first generation tapes and power cables with common twist angles that

follows from the assumption the axial field can be neglected. Then the methodology is

verified against several 3D models and measurements from literature taken from a real

power cable.

6.1 Method for estimation of the power loss

6.1.1 Method description

The proposed model in this chapter seeks, based on the multifilamentary region model

from Chapter 5, to provide an easy-to-build and fast-to-simulate tool to estimate effects

that are otherwise heavily dependent on 3D geometries and variables. The computa-

tional and time cost of finite element modelling can then be greatly reduced, enabling

FEM to be easily used for AC loss calculations, and may be the base for further multi-

physics studies.

A critical limitation of the method is that it may not predict the current sharing between

the individual superconducting layers. When the current sharing is known and imposed

on the 2D model, whether by experiment, by induction matching of the layers [109] or

by coupling with an external MATLAB evaluation of the current sharing, this limitation

is minimized. A remaining consideration is that in currents above critical the resistivity

may, in theory, reach values comparable with the inductivity and thus influence the

65
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Figure 6.1: A top-down view of a small section of the 3D geometry of a power
cable, the piece shaded in blue is a twisted tape. This is an illustration of the

trigonometric relationship between It and It−2D.

current sharing. For this Chapter, it is assumed the current is equally shared between

all layers.

This is not a substitute for a proper 3D study, but is rather an opportunity to achieve

a time-efficient FEM simulation via an approximation.

Mathematics

The essence of the proposed model is applying a current through a 2D cross-section,

such that the magnitude of this applied current is equal to the total current flowing

through the cross-section, and not the total current of the tape (Figure 6.1).

If the peak transport current flowing in a twisted tape is It and the twist angle is α,

then the peak applied current in the 2D cross-section is:

It−2D =
It

cosα
(6.1)

Furthermore, the critical current density at zero field at any point of the 2D cross-

section remains at the value prescribed by examining a straight tape via Jc0 = Ic/SHTS

(Ic – critical current at self field, SHTS – area of the tape taken from a perpendicular

cross-section).

Additionally, each tape of a particular layer in the 2D model has its width wt modified

by the cosine of the twist angle α of that layer. Displayed in Figure 6.2, similarly to

Equation 6.1:

wt−2D =
wt

cosα
(6.2)

Constructing the 2D model

A single cross-section in a 2D model cannot represent the various positions a tape from

one layer can have in relation with a tape from another layer. Therefore, it would not

be able to truly estimate the electromagnetic relationship between every twisted layer.

However, in a sufficiently long cable, it may be assumed that every possible cross-section
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Figure 6.2: Visual description of the modification a tape’s width must undergo
for the method to work — from ωt (above – in blue) to ωt−2D (below).

(a) ’Tape-on-gap’ cross-section

(b) ’Tape-on-tape cross-section

Figure 6.3: Illustration of the two types of cross-section used for
approximating 3D losses.

is repeated an equal number of times. From that, it is proposed that the total AC loss in

the cable is equal to the average value of the AC loss calculated by the 2D models using

the ”lower and upper extremes”. It is already known that the AC loss in a practical

cable must fall between the losses in the two extremes [112].

In an alternating cross-section, otherwise known as ”tape-on-gap”, each cable layer is

rotated such that the center of a tape from any given layer will be above the gap between

the tapes of the layers above and below (Figure 6.3a). This type of cross-section was

observed to achieve the lowest losses and lowest internal magnetic fields in 2D of all

other possible cross-sections, and as such is considered the ”lower extreme”.

Similarly, in the aligned cross-section, otherwise known as ”tape-on-tape”, the centres

of the tapes in all layers are stacked on top of each other (Figure 6.3b). This type of

cross-section was observed to achieve the highest losses and highest internal magnetic

fields in 2D of all other possible cross-sections, and as such is considered the ”upper

extreme”.

The need for these two cross-sections is most easily understood using two-layer cables,

but the principle is applicable to cables with more than two layers.



68
Chapter 6 Estimation of power loss in twisted multi-layer Bi-2223 cables via 2D

modelling

6.1.2 Handling the critical current density’s dependence of the mag-

netic field in twisted tapes in 2D and 3D

When a piece of tape is twisted, its axes — along the tape, perpendicular to the wide

face and to the short face — no longer correspond to the axes of the global coordinate

system. Then, the direction of the ”magnetic field perpendicular to the tape” vector may

no longer match any of the unit vectors of the coordinate system. This can introduce

complications when the anisotropic dependence of the critical current density on the

magnetic field is calculated in models where the twist of the tape with respect to the

coordinate system is not taken into account.

In standard Cartesian 2D, the correction is fairly easy. There are two magnetic field

components, Hx and Hy. If the magnetic field dependence on the field perpendicular to

the tape’s wide face is considered, the contribution from the Hy component is maximum

and from Hx is zero when the wide face of the tape is lying on the x-axis. Then, the

contribution from the Hy component is zero and from Hx is maximum when the wide face

of the tape is lying on the y-axis — a ±90-degree turn. Similarly for the dependence

on the field parallel to the tape’s wide face, the maximum contribution from the Hx

component is maximum and from Hy is zero when the wide face of the tape is lying on

the x-axis, and the contribution from the Hy component is maximum and from Hx is

zero when the wide face of the tape is lying on the y-axis.

This can be seen in Figure 6.4. It is achieved mathematically via the method widely

known as rotation of base vectors — representing an arbitrary vector expressed in terms

of the base vectors ~x0, ~y0 of the global coordinate system into the terms of the base

vectors ~xn, ~yn of the local system of each tape. The representation is made via the

following trigonometric formulas:

Hm−x = Hx cosφr −Hy sinφr (6.3)

Hm−y = Hx sinφr +Hy cosφr (6.4)

φr = tan−1

(
x

y

)
(6.5)

where Hm−x is the component of the magnetic field perpendicular to the wide face of

the tape and Hm−y – the component parallel to the wide face of the tape. φr is the

angle of rotation of the tape (clockwise) — conditional formulas must be added to find

the quadrant of the point in order to determine the absolute rotation. x and y are

the Cartesian coordinates of point at which the effective magnetic field is calculated,

assuming that the cable is centered on x = 0, y = 0.

In 3D, a decision must be made what effect the longitudinal magnetic field, in this case

Hz, would have on the critical current density. It has been shown that the longitudinal

field Hz has a slightly smaller contribution to the critical current dependence than the
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Figure 6.4: Illustration of the relationship between Hm−x, Hm−y and the axes
of the coordinate system in 2D.

field parallel to the wide face of the tape [113]. For simplicity, it has been assumed it

bears the same contribution. In such case, Hz is added as-is to the calculation of the

total magnitude of Hm−x.

This is represented mathematically via the following trigonometric formula:

Hm−x =
√

(Hx cosφr −Hy sinφr)2 +H2
z (6.6)

Hm−y = Hx sinφr +Hy cosφr (6.7)

Inspecting Equations 6.3 and 6.6, it is immediately seen that the addition of the longi-

tudinal field in such a manner should lead to results that cannot be similar. It may be

possible to estimate the value of Hz by knowing the twist angle. However, after review of

the evidence collected in the next section, it can be seen that the average values of Hm−x

and Hm−y in both 2D and 3D (volumetric) are similar. Since the value of the current

used in the 2D model is based on the cross-section inflow, which is larger than the actual

transport current, the magnitude of the longitudinal field can be said to ”redistribute”

into the remaining two field components. However, due to the complex interactions in

3D, this is not always true when the pitch length approaches 0.1 m. This is a source of

error, but it is not significant.

6.1.3 Notes on layer twist

It has already been mentioned that the twisting of a layer is necessary to ensure the

current flowing through it is evenly distributed with all other layers of the same phase.

Equation 5.2 shows how to calculate the self-inductance of a given conductor layer, and

Equation 5.3 shows how to calculate the mutual inductance between that layer and

another layer. In both equations, the twist pitch of the layer is a variable. If Kirchoff’s

law for each conducting layer is written in a system of equations (such as Equation 5.4),

and the currents flowing in each layer are declared equal, the only unknown is the twist

pitch of each layer. As there are n layers with a total of n twist pitches in n number of

equations, the system can be solved for the twist pitch at equal current distribution.
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# of conductor layers 2

# of shield layers 0

# tapes in layer 1 12

Common values # tapes in layer 2 12

for all cables Extrusion length 35 mm

AC frequency 50 Hz

Total Ic 1872 A

Tape Choi [68]

Pitch length, layer 1 300 mm (+)

Cable 1 Pitch length, layer 2 300 mm (-)

Layer 1 inner radius 5.8289 mm

Layer 2 inner radius 6.3389 mm

Pitch length, layer 1 300 mm (+)

Cable 2 Pitch length, layer 2 100 mm (-)

Layer 1 inner radius 5.8289 mm

Layer 2 inner radius 6.3389 mm

Pitch length, layer 1 100 mm (+)

Cable 3 Pitch length, layer 2 100 mm (-)

Layer 1 inner radius 6.2224 mm

Layer 2 inner radius 6.8174 mm

Table 6.1: Specifications of the 3D cables used in verifying the 2D
approximation method. The (+) and (-) signify twist direction.

The value of twist pitch in each layer of a cable would vary widely depending on the

number of layers and their radii. In terms of practical twist pitches, the shortest can be

as little as 115 mm [114] and the the longest can be as long as 795 mm [115], as well as

anything in between.

6.2 Method verification

The proposed method is tested in three sample 2-layer cables, modelled in 2D and 3D,

and one real 4-layer cable, modelled in 2D and compared with the losses from literature.

The homogenization model from Chapter 5 is applied for all models, both 3D and 2D.

6.2.1 Construction of sample 3D cables

Three cables with two layers each are proposed, their details are shown in Table 6.1.

The tape used in these cables is the Choi tape [68], described in Table 5.3. Each of these

three cables has been simulated in 3D by taking a length of 3.5 cm. A control sample

of longer lengths did not produce different results.
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(a) From above

(b) Along the tapes

Figure 6.5: Illustration of the twist and meshing of the two layers in Cable 2.

Firstly, the 2D geometry is built by drawing each layer separately using its radius and

twist angle, and putting it together with the other layers, according to Equation 6.2.

The tape geometry is left rectangular, thus no curving is applied within the cross-section.

This does not matter when the corresponding 2D model is also built the same way.

To build the geometry for the 3D models, each already-made 2D layer is sweep-extruded

along a parametric curve, described mathematically by the pitch length and radius of

each layer. The 3D model simulations are run on the High Powered Computing Cluster

IRIDIS 4, located at the University of Southampton. They are simulated using an H -

formulation as described in Chapter 4.2.1, adapted for 3D by adding a third dimension

variable, which is also described in detail in [94]. The transport current is forced to be

equally spread between the layers via pointwise constraint integration, applied on the
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# of conductor layers 4

# of shield layers 2

# tapes per conductor layer 13

Cable details # tapes per shield layer 26/27

[114] Conductor outer radius 10 mm

Shield outer radius 18.5 mm

Conductor pitch lengths, mm 130(+), 305(+), 400(-), 115(-)

Shield pitch lengths, mm 350(-), 530(+)

Total Ic ∼ 2700 A

Tape dimensions 0.24 mm×3.8 mm

Tape Ic and n 52 A, 10.5∗

Table 6.2: Specification of the real 2D cable used in verifying the 2D
approximation method.

*- the value for n is extracted from the E-V characteristic in [114].

contact surface of each layer; no restrictions are enforced on the individual tapes.

The AC loss is taken twice, firstly from the volume of the entire model, and secondly

from a small central section of the volume that should not experience any end effects:

Qtot = 2

∫ 1/f

0.5/f

∫∫∫
Vt

Qdt (6.8)

where Vt is the volume of interest, Q = JE is the AC loss.

Swept meshing is used in all domains as a compromise between a sufficiently fine mesh

within the superconducting domain and a reasonable amount of degrees of freedom

(Figure 6.5). However, with the twisting of each layer being different, the two swept

meshes would not be able to join. Then, adding buffer domain(s) where the mesh is free

tetrahedral becomes necessary.

It was observed that adding more sections of swept mesh would calculate AC loss values

that display a trend of plateauing after a certain density is reached. This is expected

since the more sections the swept mesh has, the closer the mesh is to representing the

real twisting of the tapes.

To be able to achieve convergence, the Jacobian was set to be updated once per timestep,

up from the default ”minimal” setting. This improves the Newton Method’s ability to

calculate in the presence of very large non-linearities, but it is more computationally

expensive.

6.2.2 Construction of a 2D model based on a real cable

A cable, installed and tested in laboratory environment [114] has been selected to be

modelled in 2D due to the existence of sufficient detail of its specifications and AC loss
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(a) ”Alternating”, or tape-on-gap cross-section

(b) ”Aligned”, or tape-on-tape cross-section

Figure 6.6: The two cross-section types as applied to the 2D cable from [114].

data. It is a 66 kV, 100-metre long cable in a 3-cores-in-1-cryostat configuration. The

details relevant to the AC loss simulations are provided in Table 6.2. (+) and (-) signify

the direction of the twist of each layer, which does not have any effect on the proposed

method, provided that: 1) the design of the cable is such that equal current flows in

each layer due to balanced inductance values, or 2) the values of the currents flowing in

each layer of the model are the same as their corresponding values in the real cable. An

H -formulation is used, which has been described in detail in previous chapters.

The 2D geometry is built by drawing each layer separately using its radius and twist

angle, and putting it together with the other layers. Each tape of a particular layer has

its width wt modified by the cosine of the twist angle α of that layer, as in Equation 6.2.

As in the 3D case, the tape geometry is left rectangular, thus no curving is applied

within the cross-section. This is not anticipated to be a problem due to the very small

difference between the geometry of a curved and non-curved tape.

Due to the information about layer radial positioning being limited to the inner and

outer radii of the conductor and shield, the layers were placed evenly within these radii.

The 2D model of the cable by [114] can benefit from symmetry along the y-axis or

x -axis. Only half the tapes are simulated, using an appropriate symmetry boundary

condition — in this case for symmetry along the y-axis — Hy = 0. Then, the value of

any calculated losses is doubled to compensate.
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(c) Cable 3

Figure 6.7: The simulated AC losses from the 3D models and the 2D models,
compared by cable.

There is lack of information about the critical current dependence of the magnetic field

and the proportion of silver to HTS material within a tape. Hence, it is assumed the

tapes exhibit a field dependence and silver to HTS ratio common with other tapes from

the beginning of the 21st century — the Amemiya [103] and Choi [68] tapes. Their

dependencies are plotted in Figures 5.4, 5.8 and 5.10. The silver to HTS ratio has a

limited effect at transport currents below critical, since the vast majority of the current

flows inside the superconductor. At currents above critical the effect should be more

prominent, but these are not simulated for this cable.



Chapter 6 Estimation of power loss in twisted multi-layer Bi-2223 cables via 2D
modelling 75

Figure 6.8: Displaying the location of the points in Figure 6.9.

6.2.3 Results analysis

Three two-layer cables, simulated in 3D and 2D

The three cables have been built and simulated as per the provisions of the previous

sections. The results of the simulations are available in Figure 6.7.

The highest difference between the losses in the 2D and 3D (from the central volume)

models in Cable 1 being 8%, in Cable 2 – 19%, and in Cable 3 – 20%. This can be seen

in Figure 6.7.

It was observed the shorter the pitch length of a layer, i.e. the sharper the twist,

the denser the swept mesh has to be in order to capture the smoothness of the twist

realistically. This is the most likely cause of the fact that Cable 3 (lowest pitch length)

produces the worst match with the 2D model. Coincidentally, it was also observed

that with increasing the density of the swept mesh, the 3D calculated loss values were

approaching those calculated by the 2D model; finally plateauing at the values presented

in Figure 6.7.

To confirm that the model does exhibit a symmetrical 3D cable, the following criteria

are examined in post-processing: 1) consistency of current densities on points along a

path, parallel to the length of the same tape; 2) symmetry of magnetic fields at the same

points of every tape within a layer; 3) direction of the current density magnitudes inside

each tape. Comparisons are presented here only for Cable 3, as it bears the lowest pitch

length and therefore exhibits 3D effects more strongly.

Looking at the consistency of current density along the length of a tape (i.e. investigating

continuity along a current flow line), it was noticed that unless the point was defined

explicitly at the geometry building stage, it is difficult to ensure it lies on the same

line. This is because in a swept mesh, the detail of the mesh, length-wise, is relatively

coarse in order to achieve a trade-off with simulation time (Figure 6.5). This prevents
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(b) Cable 3, It/Ic = 1.2.

Figure 6.9: Current density at three points on the same position within the
same tape with respect to the cross-section, but at different longitudinal

positions. Both figures present the current at a point in the outer layer as well
as in the inner layer. The discontinuity around t = 0.019 s in (b) is discussed

in the text.

examining the values of the current density along a given current flow line, as it simply

isn’t sufficiently well represented by the mesh. The mesh cannot be improved to a

sufficiently high standard as it will be very expensive computationally. The values of

current density on three points along the central section of two tapes are presented in

Figure 6.9 for the negative half-cycle, where it is shown there is a strong consistency

between them. Figure 6.9 also compares the current densities at the points from the

3D model with the value of the current density for the same point, in the corresponding

2D, averaged between the tape-on-tape and tape-on-gap methods. It can be seen that
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(a) Cable 3, It/Ic = 0.8
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(b) Cable 3, It/Ic = 1.2.

Figure 6.10: Current density at twelve points on the same position within the
the twelve tapes, with respect to the cross-section, and at the same

longitudinal positions. Both figures present the current at a point in the outer
layer only. The discontinuity around t = 0.019 s in (b) is discussed in the text.

the current density in the 2D model reaches zero before the current density in the 3D

model, which must be a local 3D effect, but the reason is unknown. However, there is

an excellent match at the peak values of current density, and the ”delay” between the

2D waveforms perfectly matches the ”delay” between the 3D waveforms.

Similarly for the current densities on the same point of a tape, taken from each of the

12 tapes in a layer, a near perfect symmetry can be seen (Figure 6.10). For the cable at

It/Ic = 1.2 in both Figure 6.9b and Figure 6.10b, there is a sharp discontinuity, which is

a result of taking the magnitude of the total current Jn =
√
J2
x + J2

y + J2
z and plotting it

as Jnx where x = ±1 depending on whether Jz > 0 or Jz < 0. There is no discontinuity

in the individual current components Jx, Jy or Jz; there is also no discontinuity when

Jn itself is plotted. Instead, this is attributable to a numerical effect arising from the

mesh quality in combination with the higher transport current that makes Jx or Jy

temporarily larger than the primary current carrier Jz.

The average magnetic field density of Cable 3 for three values of the transport current

can be seen in Figure 6.11. As expected, the magnetic fields from each model are very

similar for the same transport current, and the average magnetic field in the ’tape-on-

tape’ cross-section model is the highest.

Lastly, the direction of the current is observed in Figure 6.12. It can be seen to follow

the tape as expected, and that behaviour is the same throughout all tapes.

A real four-layer cable simulated in 2D

Following the provisions in the previous sections of this chapter, the cable from [114]

was simulated for 8 values of the peak transport current. These values were extracted

from the AC losses figure from the relevant publication using a graph data extractor.

Each phase in [114] has a different critical current. Therefore, they are not identical and

each phase must be simulated with separate critical current density. Then, the resulting
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Figure 6.11: The average value of the magnetic field magnitude within the
HTS material of all tapes of Cable 3, for three values of the transport current.

The frequency is 50 Hz, thus the period is 0.02 s. The graph starts at the
half-period t = 0.01 s; the observed difference of the average field magnitude

between the data sets at that time can be explained by the fact that a residual
magnetic field remains even when the transport current is equal to zero, and

that a higher transport current means a higher average residual field.

Figure 6.12: The direction of current flow in Cable 3 at peak transport current
of 0.8 times the critical current. Each arrow represents the vector of current

obtained by plotting the three current density components as each mesh node.

AC power losses from each phase can be summed together.

The results from this simulation are summarised in Figure 6.13. As expected, the ’tape-

on-tape’ cross-section simulation produces power loss with increasing current at a larger

rate than the ’tape-on-gap’ cross-section. This is because stacking current carriers (tapes

– Figure 6.6b) above each other produces a stronger local magnetic field, due to super-

position. Figure 6.6b would also remind of a coil configuration, where such stacking is

used deliberately for increasing the magnetic field intensity.
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Figure 6.13: Simulated total AC losses in the 2D cable from [114], compared
with measurements from literature.

Averaging the AC loss values of the ’tape-on-tape’ and ’tape-on-gap’ cross-section mod-

els produces a difference with the values measured in [114] of no more than 5% when

approaching critical current. Below half the critical current, the overall simulation dis-

plays inaccuracy that can be attributed to the numerical model as a whole. The existing

inaccuracy may be due to the fact the Ic dependency on the magnetic field was assumed,

the lack of specific data about the exact spatial positioning of each layer, and the lack

of information about the material make-up of the tape’s cross-section.

There is very little to no effect on the above observations when the simulations use the

critical current dependence on the magnetic field from either Amemiya or Choi.

6.3 Summary

A method for approximating the total AC power loss of first generation twisted-layer

cables under transport current conditions in 2D has been presented.

It has been verified against 3D models of three sample 2-layer cables with different pitch

lengths, with the results achieving a match with differences within the range of 5%−10%,

and no more than 20%.

Models built with this method are easier and faster to construct and simulate than a

corresponding 3D model, which can have significant implications when the level of detail

of a FEM model is desirable but has previously been impractical to obtain.

Furthermore, the good match (within 5% at It/Ic > 0.5) of the results for the real cable

is promising. It may, however, be necessary to simulate the AC loss of several other real
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cables before concluding the proposed method is valid. Such data, however, is scarce in

literature.

These results show that the longitudinal magnetic field existing in a cable can be assumed

to be negligible in many cases (as already stated in [15] and shown in [81]), since of

importance to the tape’s performance are the effective magnetic field values (Equations

6.3-6.7) rather than magnetic field components themselves. It would also be beneficial

to observe how useful the averaged cross-sections model is when observing other effects

within the cable, or attempting to simulate longitudinal and radial temperature rise.

Contributions

• A method for approximating the losses of tapes wound over a circular former,

taking into account the twist angle, is developed and verified.

• The introduction and verification of a technique for the estimation of AC power

loss of multi-layer power cables with layers with varying twist pitches in a purely

2D cross-sectional model.

• Achieving in COMSOL a smooth and continuous split of the magnetic field into

parallel and perpendicular components over the full rotation of a cross-section, in

order to effectively take into account the anisotropy of the tape.

• Constructing and simulating the AC power loss in a single-phase two-layer power

cable in 3D for a range of transport currents including above critical.

• The majority of this Chapter is published in the form of a conference paper at

the IOP Conference Series under the title ”2D finite element modelling of the AC

transport power loss in multi-layer Bi-2223 cables” [111].



Chapter 7

Transient fault simulations using

COMSOL

In this chapter, a finite element solution to the problem of HTS cable response to and

recovery from a transient short circuit fault is discussed. The constructed model is split

in three distinct stages:

1. Temperature profile – where the model of the cable is built and the steady state

of the temperature within the cable during normal operation is found. This is

achieved via a 1D coolant and a 2D-axisymmetric model;

2. Overcurrent response – using the steady state temperature profile as initial condi-

tions, the electro-magneto-thermal solution due to the fault current is calculated.

This is achieved primarily via a 2D cross section model;

3. Fault recovery – after the fault has been cleared, the cable system must return

to normal temperature. This is again achieved via a 1D coolant and a 2D-

axisymmetric model.

First, further modelling techniques that are required in this chapter are presented. Sec-

ond, the background of the real cable to be modelled is laid out together with its most

important properties. Third, as an original contribution, the cable model is built, sim-

ulated and results are reviewed.

The majority of this Chapter has been submitted for review in IEEE Transactions on

Applied Superconductivity under the title ”Efficient multiphysics finite element simula-

tion of a transient fault in a first generation HTS power cable”.

81
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7.1 Further modelling theory

7.1.1 Modelling of the fault current waveform

In three phase systems, a short-circuit can occur between one or more phases and/or the

ground. This leads to development of a short-circuit current, which may be extremely

large compared to the normal operation current, depending on system properties. The

largest short-circuit currents are developed during the three-phase fault [116] where, at

the fault location, the three phases and the ground short all at once. When this fault is

downstream from the superconducting cable, the cable will experience the fault current

until it is cleared on its own or by a circuit breaker.

In power systems protection engineering where, due to the scale of the system, power

equipment is treated as a black box, variables of interest such as ’initial peak current’,

’RMS fault current’ and ’fault level’ are pinpointed [117]. In the numerical modelling

of said power equipment, the full transient current waveform must be used. The way

a three-phase fault develops may be described with a simplified RL circuit diagram,

as seen in Figure 7.1 [118]. The voltage source Vs represents the power stations, with

φ indicating the phase delay (0, −2π
3 , 2π

3 ). Rgrid and Lgrid are the lumped upstream

resistance and inductance of the power grid, RHTS and LHTS are the resistance and

inductance of the superconducting cable. RHTS is practically equal to zero during

normal operation and increases significantly with the onset of overcurrent — this is how

superconducting fault current limiting is achieved. The load impedance during normal

operation is represented via Zload, which is immediately bypassed at the beginning of a

short-circuit fault (switch S closing) [57].

If:

R = Rgrid +RHTS (7.1)

L = Lgrid + LHTS (7.2)

Figure 7.1: Circuit diagram of a power system under short circuit fault.
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Then, the development of a short circuit fault follows Kirchoff’s Law [118]:

Vs sin(ωt+ φ) = RI + L
dI

dt
(7.3)

where I is the total current flowing in the circuit. Assuming that the current in each

phase at fault start is negligibly small compared to the developed fault current, the

initial conditions for Equation 7.3 are I(0) = 0, dI/dt(0) = 0.

It can be inferred directly from the Equation above that the highest initial peak is

achieved when the fault begins at the time when the voltage passes through zero.

Solving the ODE in Equation 7.3 at each time step provides the fault current waveform.

RHTS is dynamically updated at each time step to ensure the increasing superconductor

resistance is captured and its effect observed. This equation can be solved numerically

in COMSOL via the General Equation node under the General Form PDE module.

Solving it numerically is unavoidable due to the high non-linearity of the superconduct-

ing resistivity (Private communication, Dr Wescley Tiago Batista de Sousa, Karlsruhe

Institute of Technology, October 2019).

It can be seen, however, that Equation 7.3 has only the self-inductance of the line, but

does not include any mutual inductances with the other phases. In this work, for the

purposes of transient fault calculation, it is assumed the effect of the mutual inductances

is negligible in light of the large grid inductance (0.58 Ω) and the significant increase

of resistance of the power cable. This is done to avoid the need to create a system of

ODEs.

7.1.2 Heat transfer in solids

Modelling of the temperature evolution in a superconductor is no different than any

other material. Using the 2D equation for conductive heat transfer:

ρvCp
dT

dt
= k

(
d2T

dx2
+
d2T

dy2

)
+Q− q (7.4)

where ρv – mass density, Cp – specific heat capacity, T – temperature, k – thermal

conductivity (isotropic), Q – heat energy from local heat source (equal to zero in

insulation/non-conductive domains, and equal to JE in conducting domains), q – heat

energy intake from neighbouring domains. The equation is implemented via COMSOL’s

Heat Transfer module.

7.1.3 Heat transfer in fluids

In fluids, heat transfer generally occurs via conduction and convection. Particularly in

cooling systems, heat is moved by forced convection that depends on the velocity of the

fluid and other factors. The COMSOL module Heat Transfer in Fluids provides the 1D
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equation to be used in this chapter:

ρvCp
dT

dt
+ vρvCp

dT

dz
= k

d2T

dz2
− q (7.5)

where v – the velocity of the fluid in the pipe or channel, and the other variables are as

described after Equation 7.4.

7.1.4 1D fluid flow approximation

Superconducting power cables need to be cooled continuously to ensure their temper-

ature does not increase beyond the permissible boundaries. In cables with high tem-

perature superconducting wires, the cooling is achieved via forced convection of liquid

nitrogen.

In practice, the flow of LN2 can be either laminar or turbulent, as indicated by the

Reynolds number, which develops a velocity front in the flow channel. Due to the

inherent 2D/3D nature of a velocity front, a computational fluid dynamics (CFD) model

requires at least a 2D-axisymmetric model to simulate the entire length of the cable.

Furthermore, LN2 has a discrete radial thermal conductivity, which means that the

radial temperature rise within the coolant cannot be instantaneous.

In order to simplify the simulation and reduce computation time, it is possible to use

a 1D model instead [52]. In this model, there is no velocity front and the thermal

conductivity of LN2 does not play a role. All heat transferred into the liquid is immedi-

ately spread through the entire width of the coolant channel (the physical system of the

coolant, keeping in mind the model is 1D) and is carried away via forced convection. A

possible shortcoming of this approach is a potentially unrealistic temperature profile of

the LN2 (but the temperature at the outlet is not affected). Despite this, the omission

of CFD offers a valuable speed-up and, in this work, it is important to verify the used

electromagnetic techniques against those in literature before introducing CFD. Using

CFD instead of 1D heat transfer in the coolant should be done as part of future work,

where the simulation could ideally be verified against measurements.

This 1D model is achievable with the Heat Transfer in Fluids module in COMSOL. The

module allows for the LN2 velocity to be specified. As the model has less dimensions

than the real system, it is important to use the correct values for the channel’s cross-

section perimeter and area as they are key in calculating the amount of heat that crosses

between the solid material and the liquid.

7.2 The AmpaCity cable

The AmpaCity project with its thousand metres length [53] is the longest superconduct-

ing power cable installed in a real power grid to date. It is a three phase, tri-axial cable,

consisting of first generation tapes spread into three phases with one layer per phase.
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The geometric and operational characteristics of the cable are described in Table 7.1

and Table 7.2, respectively. In Table 7.4, the material specifications in relation to heat

transfer are displayed — these are assumed to be temperature-independent. Several

published papers make it possible for a FEM model to be developed and verified against

other models and real test results.

The cable is constructed in the following way [57]. A former lies in the centre of the

structure. It is constructed from a hollow corrugated steel tube with parameters as in

Table 7.3. The supply flow of the coolant flows within this tube, also called the tubular

duct.

Above the former lies the first superconducting phase — as the other two, it consists of

standard first generation tapes, formed of Bi-2223 filaments in a silver matrix. Between

each phase lies a PPLP insulation layer, and between each phase and adjacent insulation

there is a semiconductor layer. For the purposes of this chapter, it is assumed that

semiconductor layer is absorbed into the PPLP.

After the third phase lies another insulation layer, followed by the neutral conductor,

made of copper. Outside of the copper neutral is the annular duct, where the return

flow of the coolant flows. The annular duct is bound by the inner wall of the cryostat.

The actual cable can be seen in Figure 7.2 [63].

7.3 Temperature profile of the AmpaCity cable

To obtain the steady-state temperature along the width and length of the cable, two

separate components must be constructed and coupled — a 1D liquid nitrogen model,

and a 2D-axisymmetric conductor/insulation model. Subsequently, these will be used

for the recovery simulations as well.

Figure 7.2: The geometry and layout of the AmpaCity Triax cable. From [63]
c© 2013 IEEE.
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# of phases 3 [52,57]

# of layers per phase 1 [52,57]

Ph 1: 22

# tapes per layer Ph 2: 26 [52,57]

Ph 3: 30

Twist angle 16◦ (all phases) [119]

Outer radius of former (rs) 17 mm [57]

Inner radius of 1st phase 17 mm [57]

Inner radius of 2nd phase 20.61 mm [57]

Inner radius of 3rd phase 24.22 mm [57]

Inner radius of copper neutral 27.83 mm [57]

Inner radius of annular LN2 channel (rr−i) 30.83 mm [57]

Inner radius of cryostat (rr−o) 40 mm [57]

Thickness of PPLP insulation layer 3.4 mm [57]

Cable length 1000 m [52,53,57]

Tape width 4 mm [57]

Tape thickness 0.21 mm [57]

Ratio of HTS to total area 0.3 private comm.

Ratio of Ag to total area 0.7 private comm.

Table 7.1: Geometric specification of the AmpaCity cable. Information is
extracted from [52,53,57,119].

7.3.1 Modelling of the coolant

The 1D Heat Transfer in Fluids handles the temperature of the liquid nitrogen inside

both the supply and return flows; the standard equation is presented in subsection 7.1.3

and the basic principle of the 1D approximation is discussed in section 7.1.4.

A 1D component is defined within COMSOL. Then, a domain (a line) is built, with a

length l equal to that of the cable (l = 1000 metres for AmpaCity). A point is defined

at each ldz = l/5 = 200 m along the length. This geometry is shared between two ’Heat

Transfer in Fluids’ physics — one solving for the temperature within the supply flow Ts

and the other solving for the temperature within the return flow Tr.

Boundary conditions

The geometry and all boundary conditions can be seen in the infographic in Figure 7.3.

Each variable requires two boundary conditions. At z = 0 m, Ts is equal to the inlet

temperature of 68 K via the Inflow boundary condition, while for Tr the Outflow bound-

ary condition is used. At z = 1000 m, Ts needs the Outflow boundary condition, while

Tr(1000) = Ts(1000) — e.g. the outflow temperature of the supply flow is fed back into

the return flow.
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Tape Ic(77K, 0T ) 200 A

Tape n(77K, 0T ) 14

Ph 1: 4400 A

Total Ic Ph 2: 5200 A

Ph 3: 6000 A

RMS phase voltage 10,000 V

LN2 input temperature 68 K

Mass flow rate 0.425 kg/s

Cryostat heat leakage 1.7 W/m

Rgrid 0.04 Ω

Lgrid 0.58 Ω

Viscosity νLN2 166.678× 10−6 Pa s

Fault duration 0.1 s

Table 7.2: Operational specification of the AmpaCity cable. Information is
extracted from [57] and obtained through private communication (Dr Wescley

Tiago Batista de Sousa, Karlsruhe Institute of Technology, October 2019)

Wall thickness 0.3 mm ss

Surface factor 0.146 m2/m Fs

Groove depth (tube width) 1 mm tgr

Table 7.3: Parameters of the corrugated tube in the AmpaCity cable.
Information is extracted from [52]

k (W/mK) Cp (J/kgK) ρv (kg/m3)

Bi-2223 150 200 5600

Silver 480 225.2 10470

St. Steel 1 200 7900

Copper 534.186 244.6 8960

PPLP 0.147051 430 1098

LN2 0.147051 2024.95 811.229

Table 7.4: Thermal parameters of the materials of the AmpaCity cable. All
values are obtained through private communication with Dr Wescley Tiago

Batista de Sousa from KIT in relation to [57].

Each of the two physics modules requires the hydraulic cross-sectional area Ac (the area

of the cross-section where the fluid is flowing) and that area’s perimeter Pc to be en-

tered. For Ts, Pc = 2π(rs − tgr/2) = Ps and Ac = π(rs − tgr/2)2 = As. (rs − tgr/2)

is the averaged radius of the steel former, considering its corrugated structure. For Tr,

Pc = 2πrr−o = Pr−o and Ac = π(r2r−o − r2r−i) = Ar.

The inflow of heat from outside the cryostat wall into the return flow is calculated using
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the specified value of Qleak = 1.7 W/m. It is implemented on the inner wall of the

cryostat via the ’Out-of-plane Heat Flux’ node by specifying the general inward heat

flux qleak in W/m2:

qleak =
Qleakl

Pr−o
= 6.8397 (7.6)

where l is the length of the cable and Pr−o is the perimeter of the inner cryostat wall.

The heat transfer between the cable materials and the coolant is dependent on the

respective heat transfer coefficient — hs for the supply flow and hr for the return flow.

However, as described above, COMSOL’s 1D Heat Transfer in Fluids module allows for

only one value for the channel surface perimeter to be specified. This is because the

software expects a ”solid” structure with only an outer wall for the channel, as opposed

to a ”hollow” structure with an inner and outer wall, such as an HTS cable’s annular

duct. The heat flux crossing the cable’s wall from outside the cable into the return flow

is defined in the following way:

qr−i = Pch(Twall,r − Tln,r) (7.7)

If Pc = Pr−o (the return flow channel’s outer boundary perimeter) in order to fit the

external heat leak condition, the perimeter of the return flow channel’s inner boundary

Pr−i must be inserted by another method:

h = hr
Pr−i
Pr−o

(7.8)

qr−i = Pr−ihr(Twall,r − Tln,r) (7.9)

Figure 7.3: The geometry of the physics in the 1D coolant simulation. The
blue and red circles indicate a point boundary condition; the thick coloured

lines indicate a cable-long domain boundary condition; the thin black line with
dots on it is the actual 1D domain — each dot is 200m apart.
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For the supply flow, no modifications to the ’Out-of-plane Heat Flux’ node are needed:

qs = Pshs(Twall,s − Tln,s) (7.10)

where Twall,s is the temperature of the cable’s solid part at the boundary with the supply

flow, and Twall,r is the temperature of the cable’s solid part at the boundary with the

return flow.

Heat transfer coefficients

The heat transfer coefficients hs and hr must be calculated accurately depending on the

system properties. A procedure for doing so is described in [120]. Firstly, it must be

determined whether the flow is laminar or turbulent, through the Reynolds number:

Re =
ρv,lnvd

νln
(7.11)

where ρv,ln is the density of the liquid nitrogen, v – average velocity of the fluid in the

channel, d – hydraulic diameter of the channel, νln – liquid nitrogen viscosity.

Since the mass flow of the coolant is assumed constant, but there are two channels with

a different geometry and hydraulic area, the average velocity (m/s) in each channel will

be different:

vs =
m

Asρv,ln
(7.12)

vr =
m

Arρv,ln
(7.13)

Returning to the Reynolds number equation:

Res =
ρv,lnvsds
νln

= 98380 (7.14)

Rer =
ρv,lnvrdr
νln

= 11459 (7.15)

As for this model both Reynolds numbers are visibly larger than the turbulent flow value

of 4000 (for pipes), the flow in both supply and return flow is turbulent.

Then, the formula for the heat transfer coefficient in turbulent flow is as follows [121]:

h =
kln0.023

d
Pr0.4Re0.8 (7.16)

Where Pr is Prandtl’s number:

Pr =
νlnCpln
kln

(7.17)

and Cpln – specific heat capacity and kln – thermal conductivity of the liquid nitrogen.

As the steel former is in fact a corrugated tube, it is needed to modify the heat transfer

coefficient to take this into account within the calculation. According to [52], the new
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value for the supply flow heat transfer coefficient h∗ is:

h∗s = hs
Fs

π(2rs − ss)
(7.18)

where Fs is the surface factor of the corrugated tube and ss is the wall thickness.

If ds and dr are the hydraulic diameters of the supply and return flow respectively, the

final equations are:

hr =
kln0.023

dr

(
νlnCpln
kln

)0.4(
ρv−lnvrdr

νln

)0.8

(7.19)

h∗s =
kln0.023

ds

(
νlnCpln
kln

)0.4(
ρv−lnvrds

νln

)0.8
Fs

π(2rs − ss)
(7.20)

Mesh and discretization

The domain is divided into 1-metre-long elements. For the AmpaCity cable, it means a

total of 1000 elements. The discretization is linear. It is a very simple implementation

with few required settings, however there are several component couplings which will be

explored in detail further down in this section.

7.3.2 Modelling of the temperature along the total width and length

of the cable

A problem exists of how exactly to simulate the temperature distribution within the

cable, both in the radial and the longitudinal direction. Examining the literature, it can

be seen that full-length 2D models built with finite differences ( [121] and subsequently

other studies) may serve as a stepping stone to developing and describing a FEM 2D-

axisymmetric model to achieve the same purpose.

Firstly, a 2D-axisymmetric component is created within COMSOL. The only physics

within this component is the ’Heat Transfer in Solids’ module, with the temperature

variable T0. The standard equation is presented in subsection 7.1.2.

The geometry consists of the former, insulation and conduction layers, as well as the

neutral conductor — their specifications are listed in Table 7.1. They are built for the

entire length l = 1000 m of the cable and a compressed, not-to-scale representation of

the final geometry can be seen in Figure 7.4. As in the 1D model, the whole geometry

is divided into five parts via lines every 200 metres.

Each phase is assumed to be a monoblock where the material is a mixture of HTS and

silver. If shts is the fraction of superconductor in the tape’s cross-section, the effective
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specific heat capacity is:

Cp,con = Cp,htsshts + Cp,Ag(1− shts) (7.21)

And the effective mass density:

ρv,con = ρv,htsshts + ρv,Ag(1− shts) (7.22)

The thermal conductivity of the monoblock is assumed to be equal to the thermal

conductivity of the HTS material, in line with literature.

Boundary conditions

At the beginning (zero metres) and the end of the cable (l = 1000 m), the simplest

’Thermal Insulation’ (total heat transfer through the boundary equal to zero) is applied

along the radial direction.

At the longitudinal boundaries, ’Heat Flux’ boundary conditions using convective heat

flux are applied. At the inner boundary, towards the supply flow, the heat transfer coef-

ficient h∗s is applied (Equation 7.20) and the ’external’ temperature at the given length

is equal to Ts – the temperature of the supply flow coolant. At the outer boundary, to-

wards the return flow, the coefficient is hr (Equation 7.19) and the external temperature

Figure 7.4: The geometry of the physics in the total width and length of the
cable. The solid red lines indicate the thermal insulation boundaries at the

beginning and end of the cable; the blue line is the convective heat flux
boundary between the cable and the coolant’s return flow; the green line is the

convective heat flux boundary between the cable and the coolant’s supply
flow. The cable is split into five, 200-metre-long domains.
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is Tr. This setup is identical with the heat transfer in the 1D coolant physics, which

ensures the conservation of heat once the models are coupled together.

Mesh and discretization

The mesh is divided, as in the 1D coolant physics, into 1-metre-long sections. A mapped

mesh is used in order to minimize the size of the model. Within the larger domains of

the insulation and the neutral conductor, 25 elements per edge (radially) are introduced.

For the smaller domains of the former and HTS layers, 4 elements per edge are used.

Due to the extremely high heat gradient once each phase starts heating up, care must

be taken around the borders between each phase and the surrounding material. If the

mesh is too coarse, numerical errors may be introduced that can result in calculation

inaccuracies, including the introduction of regions with abnormal and unrealistic tem-

perature decrease. To combat this, a boundary layer can be introduced on the edges on

each side of each phase. It may be necessary to use at least 4 or 5 boundary layers and

improve the surrounding mesh in order to achieve good numerical accuracy.

In order to minimize the degrees of freedom, a linear discretization is used — even then

there are 720,000 domain elements and over 50,000 boundary elements.

7.3.3 Coupling of the coolant and cable body heat transfer physics

So far three variables have been defined — the temperature of supply flow Ts, the

temperature of return flow Tr and the temperature within the body of the cable T0.

Within COMSOL, these variables use one physics module each for a total of three

modules, and these are spread between two components.

These variables do not share the same geometry, nor dimensions. In order to be able to

simulate them together, it is necessary — regardless of the FEM software — to couple

them. In COMSOL, this is achieved by coupling the separate components together via

so-called ”component couplings”, which include operators, extrusions and projections.

In the given model, the coupling is achieved via a linear extrusion that maps the walls

of the 2D-axisymmetric cable geometry onto the 1D domain and vice-versa.

As described in the previous subsection, the supply flow strictly exchanges heat with

the inner wall of the cable itself (Ts � T0), and the return flow strictly exchanges heat

with the outer wall of the cable body (Tr � T0), both while ensuring the conservation

of energy holds. Both achieve this via a convective heat transfer boundary condition.

The heat transfer into the supply flow (and into the cable is the negative value) is:

qs = h∗s(T0(wall,in) − Ts)Ps (7.23)

And the heat transfer into the return flow (once again the heat into the cable will be

the negative value) is:

qr−i = hr(T0(wall,out) − Tr)Pr−i (7.24)



Chapter 7 Transient fault simulations using COMSOL 93

T0(wall,in) and T0(wall,out) can be seen as the green and blue boundary conditions in Figure

7.5, respectively. The couplings are also illustrated in Figure 7.5.

7.3.4 Simulation of the steady state

A steady state temperature distribution of the coolant along the AmpaCity cable is

simulated in [52] and subsequently reused in [57].

To achieve the simulation, it is necessary to run the coupled physics described above, in

a time-dependent solver. A PARDISO or MUMPS direct solver with a Fully Coupled

approach are enough; the solver itself can do free timestepping and the relative tolerance

is 0.0001. The solver must simulate for a sufficiently long time to ensure the temperature

has settled in a steady-state; it was observed that 1e6 seconds is long enough for that

to happen. Only the starting (0 seconds) and ending (1e6 seconds) points in time need

be saved, as nothing else but the end point is required once the onset of steady state is

determined. A simulation on a desktop PC with Intel i7-6700 CPU, 3.40GHz, with 16

GB of RAM, managed to solve for all 735,000 degrees of freedom in 3 minutes and 18

Figure 7.5: The coupling of the coolant supply and return flow temperatures
and the body temperature.
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Figure 7.6: The steady-state temperature along the AmpaCity cable. The
comparison is between the simulated values via FEM and the finite differences

model in [57].

seconds.

The result of the simulation, together with the extracted data from [57], is available in

Figure 7.6. The same profile has been observed elsewhere in literature as well [122]. The

temperature of the coolant at the outflow of the cable is 70.07 K, marginally above the

prescribed value of 70 K; the maximum temperature is 70.8 K which is a little under

the 70.85 K from the FD model in [57]. The length at which the maximum temperature

occurs is 562 metres instead of 610-620 metres, and the temperature at the end of the

cable is 70.37 K instead of 70.42 K.

The inequalities may be attributed to the different model construction. Furthermore,

the temperature at the end of the cable (turn-around point for the coolant flow), but

not the temperature at the return flow outlet, is influenced significantly by the thermal

conductivity of the PPLP insulation.

7.4 Overcurrent response of the AmpaCity cable

The main goal of the model is to utilize 2D FEM physics to simulate the overcurrent

response using tape homogenization as described in Chapter 5. As such, at the core of

the entire model are the H-formulation (’General Form PDE’) and the ’Heat Transfer

in Solids’ physics module. The former introduces the in-plane magnetic field defined by

Hx, Hy, and the latter contains the local cross-sectional temperature T .
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7.4.1 Construction of the 3-phase cable and physics

Only one quarter of the AmpaCity’s cross-section is simulated, due to symmetry. Other

cable models may be require the simulation of one half depending on the number of

tapes and layers.

The geometry is built step-by-step to ensure it conforms to Table 7.1.

The H-formulation used in this Chapter is defined in Chapter 4.2.1 and used in sub-

sequent Chapters via the ’General Form PDE’. The symmetry conditions are imple-

mented via Dirichlet boundary conditions on the x (Hx = 0) and y (Hy = 0) axes. The

H-formulation starts with Hx = 0; Hy = 0 and dHx/dt = 0; dHy/dt = 0 everywhere.

Heat transfer

Heat transfer is again implemented in accordance with Equation 7.4 in the ’Heat Transfer

in Solids’ module. The simulated domains are only the three phases, the insulation

and the neutral conductor. Then, there are three boundary conditions — the thermal

insulation along the symmetry boundaries, the convective heat flux towards the supply

flow (Ts � T ) and the convective heat flux towards the return flow (Tr � T ). The

latter two are again implemented via the ’Heat Flux’ nodes. Heat generation within the

conductors is achieved via the product of current density and electric field JE.

Regarding the convective heat flux boundaries, the heat transfer coefficients are h∗s and

hr as calculated in the previous section. The external temperature at the boundaries is

equal to the liquid nitrogen temperature of the supply Ts or return flow Tr, which are

taken at the corresponding (six) points along the length of the cable.

qs = h∗s(Ts − T ) (7.25)

qr−i = hr(Tr − T ) (7.26)

If the values above are positive, heat is flowing into the cable, and if they are negative,

heat is flowing into the coolant. An illustration of all boundary conditions in the system

is shown in Figure 7.7.

As the initial conditions are calculated using the 1D coolant model and the 2D-axisymm-

etric model, there is no temperature distribution within the 2D cross-sectional model

initially. The cross-sectional model needs to somehow obtain that distribution at the

correct location along the cable. To achieve this, only the heat transfer module is allowed

to run from T (0) = 68K, using the final values of Ts and Tr at the appropriate length

along the cable as boundary conditions, until steady state is reached.
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7.4.2 Equivalent resistance and temperature dependencies

Let At – area of a tape’s cross-section, Ahts – area of the tape’s actual superconducting

material, Ahom – area of the tape’s homogenized superconducting domain, AAg – area

of the tape’s actual matrix material (silver).

Critical current and resistivity

The local critical current of the superconductor is, based on Equation 4.5 and [123]:

Jc(B, T ) =

0, if T ≥ Tc
Jc0 × f(B⊥)g(B‖)m(T ), otherwise

(7.27)

which is essentially the same equation as in Equation 4.31 but with an added condition

that when the temperature is higher than the critical temperature, the critical current

density is zero. Here m(T ) is the critical current temperature dependence function as

Figure 7.7: The 2D cross-section for H-formulation and heat transfer,
including boundary conditions.
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per Equation 4.16 but normalized by Jc0:

m(T ) =
TLN2

(1− TLN2/Tc)
3/2
×

(
1− T

Tc

)3/2

(7.28)

where TLN2 is the reference temperature.

When applying Equation 7.27 in COMSOL, internal conditions may be necessary in

order to ensure that no numerical problems are caused by T ≥ Tc and Jc(B, T ) = 0.

The value of the exponent n is as in Equation 4.32 but with the expanded field depen-

dence:

n(B, T ) =

3, if T ≥ Tc
n0 × f(B⊥)g(B‖)

TLN2
T , otherwise

(7.29)

Let ρhom be the resistivity that the H-formulation model uses within the homogenized

superconducting domain, ρn(T ) – the normal state resistivity of the superconducting

material, ρhts – the resistivity of the actual superconducting material, ρAg(T ) – the

resistivity of the silver matrix material.

Then, if ρplaw holds the power law:

ρplaw =
Ec

Jc(B, T )

∣∣∣∣ J

Jc(B, T )

∣∣∣∣n−1 (7.30)

The resistivity of the actual superconducting material ρhts follows Equation 4.4 and the

provisions in Section 4.1.1:

ρhts =
ρplawρn
ρplaw + ρn

(7.31)

If shom,ag is the fraction of silver in the domain:

shom,ag =
Ahom −Ahts

Ahom
(7.32)

Then:

ρhom =
1

(1− shom,ag)/ρhts + shom,ag/ρAg
(7.33)

ρhom is used within the model to calculate the resistivity within the homogenized domain

and ρhts is used within the macroscopic resistance equations in order to estimate the

correct value of the cable’s resistance. This separation is needed because the homoge-

nized domain approximation only makes sense within the FEM environment, and using

circuit equations requires the values for the material’s cross-sectional area and resistance

as they would be in reality. Equation 7.31 is in line with Equations 4.4 and 4.30.

Additionally, the temperature dependencies of the normal state resistivity ρn and silver

resistivity ρAg must be defined:

ρn = aThts + b (7.34)
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ρAg = cTAg + d (7.35)

Where Thts and Tag are the temperatures of the HTS and silver material, respectively.

Also, a = 4.53 × 10−8, b = 1.15 × 10−6, c = 7 × 10−11 and d = −2 × 10−9. All these

values are graciously provided by Dr Wescley Tiago Batista de Sousa from KIT through

private communication.

The last remaining question is what effective values to assign the homogenized HTS

domain for the thermal capacity khom, specific heat Cp,hom and density ρv,hom. The

weighed values are taken based on the fraction of each material within the homogenized

domain:

Cp,hom = Cp,hts(1− shom,ag) + Cp,Agshom,ag (7.36)

ρv,hom = ρv,hts(1− shom,ag) + ρv,Agshom,ag (7.37)

And finally, the thermal conductivity of the homogenized domain is allowed equal to the

superconductor value, such that khom = khts as per [52].

Resistance of the cable

The average resistance per metre of the superconductor material of the cable Rk,hts at a

given time can be found by obtaining the average value of the resistivity ρk,hts,ave within

the homogenized superconducting domain. Then:

Rk,hts =
ρk,hts,ave
nAhts

(7.38)

where k = 1; 2; 3 indicates the phase and n = 22; 26; 30 is the corresponding number of

tapes per phase.

Similarly, for the matrix material:

Rk,Ag =
ρk,Ag,ave
nAAg

(7.39)

where ρk,Ag,ave is the average value of the resistivity within the silver matrix material.

Then, the total resistance of a phase k can be expressed as two resistances connected in

parallel:

Rk = lk
Rk,htsRk,Ag
Rk,hts +Rk,Ag

(7.40)

where lk is the actual length of the tapes within the cable. When the layers are twisted,

lk is always a little larger than the total length of the cable:

lk =
l

pk

√
p2k + c2k (7.41)

where pk is the pitch length of the layer k and ck is the layer circumference (where the

radius is taken through the exact middle of the layer).
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The resistance with which the transient fault is simulated Rk,tot must also include the

lumped resistance of the grid upstream from the HTS cable Rgrid:

Rk,tot = Rk +Rgrid (7.42)

7.4.3 Solving for the duration of the fault

As was mentioned before, the cable was split in five equal parts of 200 m each. These are

bounded by six individual cross-sections, and each one of these is modelled separately.

Such a split is required since the temperature rise along the cable may differ. There are

two ways to simulate these six cross-sections.

1. Distributed parametric sweep, simulated in parallel (requires computing cluster

for effective speed-up). Here, each cross-section is decoupled from the rest and

assigned a parameter. The difference between the values of the calculated damped

transient current between each cross-section is assumed negligible — calculation

for the current value at each cross-section is done solely within that cross-section.

2. Simultaneously running all six cross-sections within one simulation. Here the cur-

rent depends on the whole cable, which is more accurate, but at the cost of sim-

ulation time and model complexity. Each cross-section requires its own variables,

e.g. Hx1, Hx2, Hx3..., Hy1, Hy2, Hy3..., T1, T2, T3..., J1, J2, J3..., which increases the

number of physics nodes. The solution may take advantage of the segregated solver

option in COMSOL to simulate all H-formulation variables first and all temper-

ature variables second, in order to speed up timestepping and decrease memory

usage. On an office PC with Intel i7-6700 CPU, 3.40GHz, with 16 GB of RAM,

the simulation completed in 55 hours, compared to 15 hours for the parallel-solved

parametric sweep on a cluster. However, if a cluster is not available, then a si-

multaneous simulation would be considerably faster than a parametric one. In the

case of the AmpaCity cable, simultaneously solving all cross-sections did not yield

any noticeable differences in the results compared to the parallel simulation.

If the first option is chosen, six parameters are introduced: p0, p200, p400, p600, p800, p1000.

Each parameter can take the value of 1 or 0 and the number in the subscript indicates

the distance from the beginning of the cable (coolant inlet). If pk = 1 then all other

parameters are equal to 0 and the cross-section presently simulated is at length l = k.

This is implemented in the model via modifying Equations 7.25 and 7.26:

qs = h∗s[(Ts,0 − T )p0 + (Ts,200 − T )p200 + (Ts,400 − T )p400+

(Ts,600 − T )p600 + (Ts,800 − T )p800 + (Ts,1000 − T )p1000]
(7.43)

qr−i = hr[(Tr,0 − T )p0 + (Tr,200 − T )p200 + (Tr,400 − T )p400+

(Tr,600 − T )p600 + (Tr,800 − T )p800 + (Tr,1000 − T )p1000]
(7.44)
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Figure 7.8: The simulated full and limited fault currents in the AmpaCity
model.

Here Ts,k and Tr,k indicate the temperature of the supply and return flows, respectively,

at length l = k. This allows a parametric sweep to be performed easily.

The default MUMPS solver in COMSOL can efficiently perform the simulation without

further settings. However, care must be taken to ensure the correct values are used for

the initial conditions.

In Figure 7.8 the values of the simulated currents are presented for the entire duration

of the fault. The values are very close to those obtained in [57], with the first peak of the

limited current being calculated as 30,420 V and the value from literature equal to about

32,000 V. This also shows the method of calculation of the resistance is reasonable.

However, on Figure 7.8 there is a phase angle shift between the predicted transient

current and the limited fault current. This phenomenon can be best explained by the

change of the X/R ratio of the cable, and in particular the change of the resistance R.

As per Section 7.1.1, Equation 7.3 describes Kirchoff’s Law for a simple cable system:

Vs sin(ωt+ φ) = RI + L
dI

dt
(7.45)

The general solution to this first-order ordinary differential equation is (via substitution

and integration by parts where necessary):

I(t) =
Vs

R2 + L2ω2
(R sin(ωt+ φ)− Lω cos(ωt+ φ)) +Ae−

R
L
t (7.46)
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where A is a constant, residual from integration. The value of A may be calculated by

assuming that at t = 0, I(0) = 0, but doing so is beyond the scope of this explanation.

Let Lω = X Ω (reactance):

I(t) =
Vs

R2 +X2
(R sin(ωt+ φ)−X cos(ωt+ φ)) +Ae−

R
L
t (7.47)

Modifying the above equation via a number of arithmetic and trigonometrical transfor-

mations leads to:

I(t) =
Vs√

R2 +X2
sin

(
ωt+ φ− tan−1

(
X

R

))
+Ae−

R
L
t (7.48)

Here, it can be easily seen that the phase of the fault current is directly influenced by

the X/R ratio, which changes as the resistance of the HTS cable increases.

As per Equation 7.3 and considering the variables described throughout the previous

sections:

Vs,k sin(ωt+ φk) = Rk,totIk + L
dIk
dt

(7.49)

φk is the phase shift and φk = 0◦; 120◦; 240◦ for k = 1; 2; 3 respectively. Ik is the total

current flowing in each phase, calculated by integration over all tapes of that phase,

as described in Equation 4.28 (and multiplying the result by four to account for 1/4

symmetry). The inductance L includes both the inductance upstream along the grid

and the inductance of the cable. Neither of these values are dependent on current or

temperature and as such L is constant for the purposes of this study.

In COMSOL, the above equation is implemented via a Global Equation subnode within

the General Form PDE.

If Rk,tot = Rgrid, then the non-damped transient fault current can be obtained.

7.4.4 Temperature distribution within the 2D-axisymmetric model

To effectively analyze the temperature profiles in the coupled 1D-to-2D-axisymmetric

system, similarly to Section 7.3, it is needed to adapt the results of the discrete simulation

of each cross-section.

The 2D-axisymmetric model is already split in five sectors, that is one less than the

number of cross-sections — each sector is bound by an upper (towards the end of the

cable) and lower (towards the beginning of the cable) cross-section. The heat generated

along the cable length in phase k in each of those sectors can be defined in the following

way:

Qk,axi(y, z) =
Qk,y
Ak
× y − z

ldz
+
Qk,(y+ldz)

Ak
× 1 + (z − y)

ldz
(7.50)

where z is the longitudinal spatial variable (the equation does not depend on the radial

distance), Ak is the cross-sectional area of the phase k as seen in the 2D-axisymmetric

model, ldz = 200 in metres is the distance between each simulated cross-section, y =
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200; 400; 600; 800; 1000 is the location of the upper boundary of the sector for which the

heat generation is currently analyzed, and Qk,y is the heat generated in the cross-section

at a length y metres for phase k.

To break down Equation 7.50: it has two main arguments, divided by the plus sign:

The first argument decreases in value with increasing length and the second argument

increases with increasing length — this is a type of interpolation. If y = 200, the first

sector is being analyzed — that is between z = 0 and z = 200 metres — and the idea is

the same for all other sectors.

At a length z = 0, the first argument is (200 − 0)/ldz = 1 while the second is 1 + (0 −
200)/ldz = 0, hence the function takes the value of the first argument Qk,axi(y, z) = Qk,y.

On the other hand, at a length z = 200, the first argument is (200− 200)/ldz = 0 while

the second is 1 + (200− 200)/ldz = 1 and thus the value of the function is equal to the

value of the second argument: Qk,axi(y, z) = Qk,(y+ldz).

If the length is 0 < z < 200, an interpolation between the two times is taken.

Qk,axi(y, z), in W/m3, is entered as a heat source in each phase of the cable (in COMSOL

via the General Source option within the Heat Source domain node); it is also possible

to obtain the heat generation within the neutral conductor via the same method.

If the cross-sections are simulated using a distributed parametric sweep, because of the

full decoupling of each cross-section it is impossible to obtain Qk,axi(y, z) during the

simulation — the results become available only after all simulations have concluded.

To overcome this, the heat generation in the 2D-axisymmetric model may be raised

”post-factum”, e.g. through looking up the already calculated values of generated heat

in each parametric cross-section simulation at specified times t such that 0 ≤ t ≤ 0.1

seconds. This is achievable in COMSOL via the ”withsol” operator. If the value of

heat is required at a time that falls between two stored timesteps, the operator uses

interpolation.

The 1D heat transfer in fluids model is ran in conjunction with the 2D-axisymmetric

model, simulating for the temperature of the coolant.

Results

The temperature distribution along the cable is shown on Figures 7.9 and 7.10, for three

instances in time while the duration of the fault is on-going. The solid lines represent

the simulated temperatures along the cable in the 2D-axisymmetric model, the dashed

— the values for the temperatures from literature, and the crosses — the maximum

phase temperatures in the 2D cross-section model at the corresponding length.

Each phase’s temperature increase is predicted in line with literature.

The first phase sees the largest increase due to having the lowest critical current; this is

also recognized in [57]. Experiencing the highest initial peak does not contribute greatly

to the generated heat in the first phase, as in this case the initial peaks in the other
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Figure 7.9: The temperature distribution in each phase along the cable length
for two times during the fault, taken from the 2D-axisymmetric solution (solid
lines) and the 2D-cross-section solution (crosses), compared with the published

values from [57] (dashed lines).

two phases are not significantly smaller (in phase three due to its phase delay the initial

peak is smaller than the second peak). Another result coming from the lower critical

current is that the first phase also experiences the strongest current limitation.

Phase two generates heat faster than the third phase and slower than the first. This

holds true from the onset of the fault to its clearing.

The calculated temperature at the time of clearing of the fault is higher than the results

presented in literature.

Notably, the expected difference between the phase temperatures at the beginning and

at the end of the cable has not materialized. The literature suggests a 10-25 K differ-

ence along the length of the cable for phase one, however the simulation shows only 5

K. This temperature difference of 5 K is in line with the difference along each phase,

before the onset of the fault, of about 2 K. The result is not affected by the approxima-

tion that the current may be simulated within each cross-section without regard to the

remaining parts of the cable (running all cross-sections as one model, as opposed to a

decoupled parametric sweep, yielded results with negligible change). This shows that a

single cross-section may be more than sufficient to simulate fault current in the entire

cable, however, this may not be the case for other cable designs or for simulating normal

operation.

Otherwise, the difference with calculated temperatures at distance where the temper-

ature from the literature is highest is 1.5%, 4.9%, 1.4% for phases one through three

respectively; and at the beginning of the cable is 8.9%, 10.7%, 5.9%.

Another notable result is the visibly higher temperature obtained from the cross-section

model when compared to the axisymmetric model.

This is to be expected, since the way the two models handle the area of conducting
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Figure 7.10: The temperature distribution in each phase along the cable
length at the time of clearing the fault (t = 0.1 s), taken from the

2D-axisymmetric solution (solid lines) and the 2D-cross-section solution
(crosses), compared with the published values from [57] (dashed lines).

material differs. In the cross-section model, each tape is defined and has finite dimen-

sions, while in the axisymmetric model, the conducting material is approximated as a

monoblock mixture of silver and HTS taking the shape of a hollow cylinder. As this hol-

low cylinder is a solid body, its cross-sectional area is larger than the area of individual

tapes that, in reality, occupy that space. So, when a certain amount of heat (in Watts)

that is generated in the surface area of Ahts m2 is applied on a larger area, for example

1.5Ahts m2, the resulting maximum temperature would be lower in the domain with the

larger area.

However, if it is kept in mind that the actual temperature within each phase may be

higher than the one predicted by the axisymmetric model, it is a reasonable approxi-

mation for the purposes of identifying the cable’s recovery time. That is so due to the

fact the amount of heat is kept constant throughout the models and therefore the same

amount of heat generated in the cross-sectional model will eventually be transferred to

the coolant.

7.5 Recovery of the AmpaCity cable

After the fault has been cleared, the cable can begin recovery. The temperature of the

superconducting material must drop to a value sufficiently below its critical value (100-

110 K for first generation materials), while the temperature of the coolant must remain

under its boiling value (78 K for liquid nitrogen). To meet this condition it may be
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necessary to not allow any current to flow, or an upper value of permissible current may

be obtained for which the cable can return to steady-state conditions.

Simulating the recovery process does not require the introduction of physics not already

used. Just as in Section 7.3, a 1D heat transfer in fluids model coupled with a 2D-

axisymmetric heat transfer in solids model is required. The settings of these physics

remain the same as previously, with the exception of the initial conditions, which are of

course set to begin the simulation from the results at t = 0.1 s.

The simulation reaches t = 8 hours and a number of steps are taken before that time is

reached, in line with the results from [57]. The simulated versus literature temperature

of each phase after the fault has been cleared is shown on Figure 7.11. Observing the

obtained results (solid lines), the behaviour of the cooling of each phase is as expected.

The first phase, being closest to the supply flow, has the highest rate of cooling. This

is followed by the third phase. The second phase’s position in the middle of the cable,

sandwiched between the other phases and surrounding insulation, takes the longest to
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(c) t = 5 s
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(d) t = 10 s

Figure 7.11: The recovery of the temperature, and its distribution, in each
phase along the cable length for four times after the fault has been cleared,

taken from the 2D-axisymmetric solution (solid lines) and compared with the
published values from [57] (dashed lines).
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cool down.

The same behaviour can be observed in the results obtained from [57] (dashed lines).

However, the rate of cooling of all phases is visibly lower in the literature. This is par-

ticularly visible for the second phase which practically does not decrease in temperature

between t = 0.5 and t = 1 seconds. Due to PPLP’s low thermal conductivity, it would

be extremely unlikely for the surrounding insulation to heat up and saturate to the value

of the temperature of the second phase in less than one second. This is corroborated in

the FEM model. What this observation may suggest is there is a difference between the

finite element and finite difference model when it comes down to solving this problem,

and that the way space is discretized can be very important. The finite difference model

in literature may lump each material layer into a separate 1D approximation, in which

case the insulation layers are more likely to saturate in the observed way. The same

argument may be used to suggest why all three phases recover slower in [57] than in the

simulation.

The literature suggests all phases have returned to below their critical temperature (100

K) at about 20 seconds. The simulation, on the other hand, finds that happens at about

5 seconds and by the tenth second, each phase has comfortably recovered. It must be

kept in mind that the temperatures in the 2D-axisymmetric model are lower than the

actual temperatures of the cable, as described at the end of Section 7.4.4. Hence, a

further study may be necessary to determine the actual recovery of each phase.

Once the phases have returned to a temperature below critical, they may be subjected

to current again. The magnitude of that current will dictate whether the cable will

quench again or slowly return to steady state temperatures, and if it returns to steady

state then how fast it will do so.

7.5.1 Very little or no current during recovery

If no current or current considerably smaller than the critical current (such as It = 283

A peak or 200 A RMS) is applied, there will be a negligible amount of heat generated

(Figure 7.13). This is investigated in [57] and it is discovered the temperature of the

cable’s liquid nitrogen approaches steady state after around 5 hours, and has practically

reached steady state after around 8 hours.

The results are illustrated in Figure 7.12. The predicted temperature distributions via

the coupled FEM model strongly resemble the results from literature. Both models

agree — at no point does the coolant temperature exceed 77.5 K. What they disagree

on are the temperatures at the end of the cable (where supply and return flow join),

and at the cable outlet. The modelled temperature decreases somewhat faster than the

results from [57], with the difference being comparable to the difference in the steady

state results. Notably, by hour 8, the disagreement has completely vanished.

The observed temperature ”peak” at the 1000 m point of the coolant between 20 seconds

and 3 minutes, as seen on Figure 7.12, is essentially a temperature front. Since phase 1
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(d) t = 15 min
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Figure 7.12: The recovery of the temperature, and its distribution, in the
coolant along the cable length for six instances in time after the fault has been

cleared, taken from the 1D solution (solid lines) and compared with the
published values from [57] (dashed lines).

is a lot closer to the former (and the supply flow) than phase 3 is to the annular (return

flow), the supply flow will experience temperature rise quickly along its entire length

almost immediately. At the 1000 m point, the mass flowing in the supply tube turns

and joins the return flow. Once returning, the velocity of the fluid is standing at 0.26
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m/s (calculated from the constant mass flow and the geometry of the tubular channel).

So after 60 seconds, the hot fluid will have moved only 15.6 meters, which is consistent

with the inset graph in Figure 7.12b. Considering that the hot fluid meets a colder cable

wall along those 15 or so meters, some of the heat is returned to the cable.

A similar reasoning can be used successfully for the ”slope” seen between 0-14 m for the

supply flow in Figure 7.12a. Analysis of the heat flux at the boundary between the cable

and the supply flow shows that the highest value of heat flux is seen immediately after

the fault is cleared (at 0.1 s). Afterwards the heat flux decreases because the source

of heat is removed while fresh coolant comes through the supply flow which removes

more heat from the cable with each passing second. This allows for the temperature

increase in the supply flow to develop a temperature front. For the coolant in the supply

channel, the mass velocity is 0.61 m/s and so it is capable of covering the 14 m in 20-23

seconds (the difference between the velocities of the supply and return flows is due to

the different geometries of the each channel and the constant mass flow).

All differences are directly linked to the rate of cooling of each phase (Figure 7.11), and

it was discussed above that the 2D-axisymmetric FEM model achieves a faster cooling

rate. This, naturally, projects onto the temperature profile of the liquid nitrogen.

7.5.2 Large current during recovery

An investigation is performed to see how the cable’s operation will be affected during

recovery if the applied current is non-negligible. Four RMS transport current values

are selected: 900 A, 1500 A, 2200 A and 3000 A. These correspond to 0.29, 0.48, 0.70

and 0.96 of phase one’s 4400 A peak critical current, respectively. The 2D cross-section

model is then used to estimate the losses in W/m in each phase while under isothermal

conditions for temperatures from 75 K to 97.5 K with a step of 2.5 K. An interpolated
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Figure 7.16: The temperature of
each phase for 900 s across
several values for transport

current. Current is applied at 60
seconds.

function can be extracted from these results, for the purposes of obtaining the value

of losses against temperature, for each phase for a given transport current. Such an

approximation for the AmpaCity cable from [52, 57] is displayed in Figure 7.13, where

the datapoints are transformed into a continious function through a piecewise cubic

interpolation (COMSOL Interpolation function).

The computationally expensive simulation of the H-formulation for periods longer than

several cycles can now be avoided; the remaining simulation can be entirely performed

using the 2D cross-section Heat Transfer model. Only one cross-section needs to be

simulated as it was shown the longitudinal change in temperature of each phase was

insignificant in the FEM model — the cross-section at 600 metres was chosen as it is

closest to the peak temperature from both literature and this work.

If a review of the coolant recovery is needed, it can be achieved similarly to previous

sections by applying the same amount of generated heat in the axisymmetric model as

in the cross-section model.

It is very important to note that if the axisymmetric model is allowed to generate

its own heat, the final results may inaccurately show a current may run without re-

quenching the cable. This is discussed in the previous sections — it is because the

axisymmetric model underestimates the maximum achievable temperature due to the

difference between conductor areas.

Let current be applied at t = 20 s. 900 A and 1500 A may run effectively without a

noticeable change in temperature — thus, in practice they do not affect the recovery

of the cable (Figure 7.15). However, at the next simulated value (2200 A), the heat

generated becomes large enough to throw off the thermal balance and quench the su-

perconductor. A closer look at the temperature rise shows that the rise is driven by

the second (middle) phase, because it has the highest temperature. This can be seen
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in Figure 7.14 — portrayed are the temperature recoveries during a 1500 A and 2200

A. The heat generated in phase two of the 2200 A simulation increases the temperature

steadily.

The actual upper limit of current that would not re-quench the superconductor is be-

tween 1500 A and 2200 A, and its value may be determined more precisely if necessary.

Let current be applied at t = 60 s. At that point in time, the temperature of each layer

has dropped sufficiently and no re-quench occurs even with the highest value of 3000

A RMS. However, as illustrated in Figure 7.16, the introduction of the 3000 A current

increases the temperature in each layer such that the recovery takes longer than when

a lower current value is applied.

7.6 Summary

This Chapter discussed the finite element multiphysics modelling of a three-phase cable

in the Triax configuration. Using existing publications in literature, it was shown that

a FEM model is viable and may be constructed robustly using existing COMSOL tools.

No external additions are necessary. Moreover, the simulation may be performed over a

reasonable amount of time using low computational resources when certain approxima-

tions are exploited.

Contributions

• Constructing a multiphysics model through a novel combination of existing mod-

ules and techniques as well as implementing new techniques.

• Estimating the cable’s total resistance, per phase, at any given point during a

transient fault simulation in a finite element environment. Particularly when a

homogenized model for first generation superconductors is used.

• Achieving a sufficiently accurate simulation of both cable and coolant using a

finite element model in a reasonable amount of time, through the application of

moderate approximations.

• The majority of this Chapter has been submitted for review in IEEE Transactions

on Applied Superconductivity under the title ”Efficient multiphysics finite element

simulation of a transient fault in a first generation HTS power cable”.
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Conclusion

This thesis follows through the necessary steps to construct a full-fledged and efficient

multiphysics model.

Firstly, an H-formulation was built in COMSOL. Published literature provides the infor-

mation required to build that formulation, which can be used to simulate an individual

tape. The main obstacle in first generation tapes is the large number of filaments, and

it was shown that it can be overcome by adapting an existing technique — the homog-

enized multifilamentary domain — from other areas of modelling into the area of AC

power loss estimation. The technique uses one homogeneous domain to represent all su-

perconducting filaments and essentially takes the shape of the multifilamentary region,

though it may be approximated as an ellipse. Overall, the homogenization technique

was proven to work with more than one tape and just as well as a fully multifilamentary

model, yet being considerably faster and easier to construct.

Once a tape can be robustly simulated, the model can be scaled up to systems of

tapes and cables. Here, to achieve a balanced current distribution in a power cable,

each layer must be twisted at a varying angle which also introduces a geometry that is

inherently 3D. In order to ensure the model is computationally efficient, 3D modelling of

superconductors is not admissible. Using simple mathematical adjustments to account

for the twist of each layer can allow it to be approximated in a simple 2D cross-section.

The results of that research show the widely known rule claiming layer twist requires 3D

modelling [15] may be bypassed — most common angles of twist used in power cables

could be simulated accurately, yet with increasing angle the inaccuracy of the result also

increases. This also expands on the result in [81] which shows the longitudinal magnetic

field may sometimes be neglected. Models built with this method are easier and faster

to construct and simulate than a corresponding 3D model, which can have significant

implications when the level of detail a FEM model can provide is desirable but has

previously been impractical to obtain.

Another question is, given the different twist angle of each layer, at what length along a

111
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multi-layer cable should its cross-section be taken for simulation in order to achieve an

accurate 2D cross-sectional model. This question was also answered.

The last and most important stage of this thesis is the simulation of the response of

the power cable when a transient fault current has flown through it and its recovery

once the fault has been cleared. Using the knowledge accumulated in the previous

two stages of the thesis allows for the construction of a 2D electromagnetic model of

the AmpaCity cable [52, 53, 57]. Heat transfer within the cable and the coolant must

accompany the electromagnetic model, and are introduced to the model through using

existing COMSOL physics and component couplings such that the entire model can run

from steady-state initialization before the fault to full recovery. Estimating the effective

resistance of the cable from a 2D cross-section model so that the fault current limitation

may be calculated accurately while using the homogenization technique and the twisted-

tape approximation is an important challenge that has been overcome. Other important

questions that have been answered are how to achieve in practice the above mentioned

coupling between the physics and how to split the model in a way that may be readily

simulated in a distributed parametric sweep on a computing cluster.

The response and recovery of the AmpaCity cable [57] was modelled successfully and

the results were compared with literature; additionally the recovery of the cable under

varying transport current was investigated. The simulation time of the entire model

was within 1 day when a computing cluster was used and less than 3 days otherwise,

which is objectively acceptable. The same model may easily be used to simulate both

steady-state and transient conditions.

The main contributions of this thesis may be summarised as follows:

• Showing the Kim-Anderson approximation may introduce an error, which is no-

ticeable in DC applied fields, and that using an interpolation for the critical current

dependence on the magnetic field will result in more accurate simulations.

• Reintroducing a domain homogenization method for the estimation of AC power

loss of multifilamentary tapes with fully-coupled filaments, as well as cables built

with such.

• A method for approximating the losses of tapes wound over a circular former,

taking into account the twist angle, is developed and verified.

• The introduction and verification of a technique for the estimation of AC power

loss of multi-layer power cables with layers with varying twist pitches in a purely

2D cross-sectional model.

• Achieving in COMSOL a smooth and continuous split of the magnetic field into

parallel and perpendicular components over the full rotation of a cross-section, in

order to effectively take into account the anisotropy of the tape.
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• Constructing and simulating the AC power loss in a single-phase two-layer power

cable in 3D for a range of transport currents including above critical.

• Constructing a complex multiphysics model in COMSOL through a novel combi-

nation of existing modules and techniques as well as implementing new ones.

• Estimating the cable’s total resistance, per phase, at any given point in time during

a transient fault simulation in a finite element environment (particularly with a

homogenized multifilamentary domain) which allows for the live calculation of the

fault current limiting ability of the cable.

• Achieving a sufficiently accurate simulation of both cable and coolant using a

finite element model in a reasonable amount of time, through the application of

moderate approximations based on modelling experience.

Publications

The majority of Chapter 5, in the shape of a full length research article, has been

accepted in Physica C: Superconductivity and its Applications [104]. An oral presenta-

tion at the 6th International Workshop on Numerical Modelling of High Temperature

Superconductors, 25th-29th June 2018, addressed one part of the publication, and the

other part was presented as a poster at the Applied Superconductivity Conference, 29th

October to 2nd November 2018.

The research described in Chapter 6 was be presented in poster format at the 14th

European Conference on Applied Superconductivity, 1st—5th September 2019. A confer-

ence paper is published at the IOP Conference Series under the title ”2D finite element

modelling of the AC transport power loss in multi-layer Bi-2223 cables” [111].

A full length research article under the name ”Efficient multiphysics finite element sim-

ulation of a transient fault in a first generation HTS power cable”, covering Chapter 7,

is under review at the IEEE Transactions on Applied Superconductivity.

Future work

• This thesis as well as models from literature assume the coolant to be a 1D body,

which may not necessarily be an accurate approximation in all cases and applica-

tions — a temperature rise is not instantaneous across the entire channel width.

It would be interesting to introduce complete fluid flow physics together with heat

transfer in fluids, in the coolant model. A particular challenge observed while

working on this thesis is that low viscosity materials can cause very long simula-

tion times or outright numerical instability in COMSOL.
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• The extension of the knowledge from Chapters 6 and 7 may be applied to the

simulation of second generation tapes and cables, which may bear an immediate

application in the modelling of power cables.

• The element order of the physics in the models, particularly in the H-formulation,

influences the accuracy of the results as well as the simulation time. Its influence

on the multiphysics model at hand may be investigated in the future.

• The circuit equation for the transient fault current estimation assumes the mutual

inductances of each phase are negligible when compared to the grid inductance

and the rise of the resistance in the superconductor. Future work may explore

whether the addition of mutual inductances to the circuit equations of each phase

may provide different results.
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