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University of Southampton
Abstract

Faculty of Engineering and Physical Sciences

Electronics and Computer Science

Thesis for the Degree of Doctor of Philosophy

Multiphysics Finite Element Modelling of the AC Power Loss, Fault Response and

Recovery of First Generation Superconducting Cables

by Alexander Petrov

The fault response of superconducting cables is of significant importance to their wider
adoption in power grids. In particular, it is useful to understand how to most efficiently
and accurately simulate the fault response and time of recovery after a high through fault
overcurrent. To achieve that, rigorous modeling techniques must be established, which
is done over several steps. A successful numerical model of magnetic field dependent
behaviour of a Bi-2223 superconducting tape has been demonstrated. This model has
been used to redefine and verify a homogenization technique for multifilamentary tapes
that decreases the computation time by simplifying the geometry with a minimum to no
accuracy penalty. Afterwards, the simulation of AC power losses in twisted tapes and
cables is investigated, with reference models coming from literature and custom-built
3D models. The investigation produced methods to efficiently estimate the losses of
multi-layer twisted in 2D FEM without resorting to 3D. Finally by capitalizing on the
techniques established prior, a multiphysics model is built — electro-magneto-thermal
— in three different space domains in order to simulate the AC losses, temperature
and heat transfer in all important cable components. It is shown this type of complex
multiphysics model can be set up to run and may produce fairly accurate results. One
FEM simulation of the multiphysics model takes no more than 3 days to complete on a
standard PC.
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Chapter 1

Introduction

An unavoidable power engineering problem is that all conducting materials possess in-
herent resistivity. Consecutively, the flow of current through power transmission and
distribution lines produces Ohmic losses. In 2015, the House of Commons Energy and
Climate Change Committee reported that these losses are between 3% and 10%, depend-
ing on the region [1]. In 2018, the total electricity losses amounted to 7.6% of electricity
demand [2]. While this may appear to be negligible, it amounted to 27 TWh [2] —
worth 2% of the entire UK greenhouse gas emissions for the same year [3]. Power lost
in transmission not only does not offer anything useful to society like residential and in-
dustrial demand does, but it leads to financial losses and waste of resources. A decrease
in either transmission or distribution losses could offer more cost-effective solutions, as

well as conserve resources, thus decreasing the energy industry’s environmental impact.

Knowing this, part of the power engineering community had been excited to develop
superconducting transmission cables with near-zero resistance. A serious research effort
was in place during the 1960s and 70s to develop sustainable cables [4]. Despite the
apparent technological success of certain projects, they were deemed too complex and
expensive to put into practice. Their manufacturing costs and the serious cooling power
required to keep the long cables at as low as 4.2 K, which was the highest practical

superconductor temperature at the time, were not acceptable.

After the discovery of superconductors able to operate well over 77 K (the boiling tem-
perature of liquid nitrogen), there was a renewed interest in superconducting cables.
The increased current capacity means easier meeting of the increasing demand in urban
areas, as well as the possibility of bringing the MV distribution voltage down and skip-
ping the installation of otherwise expensive transformers. Furthermore, superconducting
cables become highly resistive under large fault currents, which may be used to limit

said currents.

Since the year 2000, over 25 projects [4] have sought to develop a superconducting cable

primarily at distribution level, and half of those have been installed in a real grid. Only

1
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a few projects, however, have been installed permanently. This is due to the relatively
new superconducting technology, which network operators would be reluctant to install
without sufficient knowledge of its unconventional operation. In particular, if a through
fault is experienced by the cable, the fault current would generate heat that could be
enough to push the superconducting material into its normal resistive state, which in turn
would generate even more heat. After the fault is cleared, a conventional cable would
be immediately ready to conduct electricity again. A superconducting cable, however,
needs some time for the coolant to bring the temperature back into working range. How
long this time is depends highly on individual cable designs, as well as the magnitude and
duration of the fault current. Creating a practical study to experimentally determine
the effect of those parameters would require a considerable amount of money in order
to manufacture, install and test all possible combinations. The alternatives are two —
analytical model or a numerical simulation. While analytical equations are fast and
often reliable, they are not capable of describing the multiphysics at every point within
the cable. Modern computational power provides a versatile tool, capable of calculating
large numerical studies in a relatively short time. However, with the large nonlinearity
of the superconducting material and the necessary mesh density, an accurate simulation

is not the fastest, not only in 3D but also in 2D.

There is a need for multiphysics models that can simulate both steady-state and transient
conditions within a reasonable amount of time [5]. Such efficient models may be useful
for the commercial implementation of superconducting cables as they will facilitate the
theoretical design and understanding of how a particular design will behave in all possible

situations.

The aim of this work is to investigate ways to speed up the finite element modelling of
the overcurrent response and recovery of first generation cables, as well as to show that
it is possible to accurately simulate the entire range of transport currents (from zero
to high transients) in one single model. To achieve that, it is shown how to efficiently
simulate the AC power loss in multifilamentary first generation tapes, and then how to
simulate them when these tapes are wound and twisted over a former to construct an
actual cable. The final model is built as illustrated in Figure 1.1 and verified against
literature.

Furthermore, the techniques used could serve as a stepping stone for future design studies

of cables for installation in a particular grid section.
Thesis structure:
e Chapter 2 is a brief summary of the background theory of the superconducting
phenomenon, important materials and loss mechanisms.

e Chapter 3 provides a literature review of the existing recent and relevant experi-

mental and numerical works on superconducting cable fault response, quench and
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thermal recovery, and identifies the research questions.

e Chapter 4 introduces the physics that are needed for FEM simulation within COM-
SOL, then proceeds to verify the models with existing peer-reviewed measurements

and simulations.

e Chapter 5 proposes and verifies a homogenization technique for improving the

computational time when simulating the AC loss in multifilamentary tapes.

e Chapter 6 discusses a technique for the 2D AC power loss estimation of tapes
twisted around a former. The Chapter also discusses how to model the power loss
in cables which are made of more than one layer and solves the problem of what
length along the cable should a cross-section be taken. The proposed techniques

are verified against 3D models and results from literature.

e Chapter 7 focuses on the overcurrent response and recovery of a power cable de-
scribed in literature. Additional physics are discussed and implemented together
in a complex multiphysics model in COMSOL and are accompanied by supple-

mentary variables and equations.
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Figure 1.1: A flowchart with an overview of the final multiphyiscs model.



Chapter 2

Theory of high temperature

superconductors

2.1 Brief theory of superconductivity

Superconductivity was first discovered in 1911 by Kamerlingh Onnes [6], who observed
that a number of metals exhibit a significant drop of resistivity under a material-specific
critical temperature T,.. That behaviour is called superconducting state in comparison
to the otherwise common normal state [7]. Currents have been observed to travel unob-
structed and unaided for years, which implies a near-perfect conductivity [8]. However,
they are not perfect conductors and do not possess infinite conductivity — merely a

very large one.

There is a large volume of physics trying to explain the microscopic behaviour of su-
perconductivity. This work, however, is focused on macroscopic behaviour and as such,
the following very brief background theory is provided primarily for understanding the

underlying concepts that dictate how superconducting materials behave.
Summary of the Critical Variables

Superconductors have three important parameters, above which superconductivity is
destroyed and the material enters a "normal” state — critical current J., dependent
on temperature and magnetic field, critical magnetic field B, (or upper critical field,
which will be discussed later), also dependent on temperature, and critical temperature
T.. The critical current and the critical magnetic field are to an extent interchangeable

variables due to the Maxwell Equations.
Meissner Effect

Perfect conductivity means that an already fully penetrating magnetic flux would be

trapped inside while a newly applied one would be repelled by introducing screening
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currents [7,8]. In 1933, Meissner and Ochensfeld [4,9] suggested experimentally that
superconductors (type I, more on that further on) possess perfect diamagnetism (e.g.
B = 0 inside the superconductor). Perfect conductivity and perfect diamagnetism are
different.

To establish the perfect diamagnetism property, Meissner and Ochensfeld performed the
following two experiments. If a superconducting material in normal state is subjected to
a constant magnetic field H and then cooled down below T, (field-cooled experiment),
the magnetic flux will be expelled entirely from the body of the superconductor once
T = T.. Furthermore, if a superconducting material is first cooled down to below T,
and then subjected to a constant magnetic field H (zero-field-cooled experiment), the

magnetic flux will be expelled in the same manner.

In the zero-field-cooled experiment, a material in possession of (near-)perfect conduc-
tivity would repel the magnetic flux. Since a magnetic field is introduced to an already
superconducting material, a field gradient dH/dt will be introduced [4]. This was veri-
fied to behave as predicted.

On the other hand, in the field-cooled experiment, the material is not in superconduct-
ing state once the field is applied. Thus the fully penetrating magnetic flux would be
trapped inside if the material possessed only near-perfect conductivity. However, in

practice a complete expulsion of the magnetic flux is observed.
The perfect diamagnetism of superconductors is called the Meissner Effect.
Bardeen-Cooper-Schrieffer Theory

No proposed microscopic theory that explains the features of superconductivity has
been universally accepted [4]. The first quantum mechanical theory was proposed by
Bardeen, Cooper and Schrieffer (BCS) in 1957 [10], for which they received a Nobel
prize in physics in 1972.

The BCS theory states that the mechanism of superconductivity is governed by an
electron-lattice-electron interaction, activated by phonons in the material. If an electron
deforms the lattice by interacting with it, another electron can detect the change of
energy redistribution and readjust. Electrons experiencing this interact with each other
in pairs, through the phonons, and these pairs are called Cooper pairs. It is believed any
pairing mechanism is capable of inducing the attraction, and that it is likely something

else in addition to phonons is behind it.
The Mixed State and Type II Superconductors

Coherence length has been described as the distance that electrons can ”see” each other
to form a Cooper pair [11], the distance over which a Cooper pair can exist [4] and
the distance over which the density of superelectrons varies from its maximum value

(superconductivity) to zero (normal state) [7]. A considerable change in the density of
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”superelectrons” ng is only possible within the coherence length & [4].

Initially, superconductors had been observed to possess perfect diamagnetism up un-
til their superconductivity is lost above a critical magnetic field H.. New materials,
called Type II superconductors, were discovered, which experienced a gradual increase
in magnetic flux penetration above a lower critical magnetic field H.; without losing
superconductivity. This gradual increase of flux penetration lasts until an upper critical
field H.s, above which the material enters a normal state, losing all superconductivity.
Thus, a magnetic field H such that H.; < H < H gives rise to a combination between
the superconducting and normal states, called mized state [12]. H.; and H. are also de-
pendent on temperature [11]. Mathematically, the mixed state was first described by the
Ginzburg-Laundau theory. Superconductors can be classified, depending on the value

of the Ginzburg-Landau parameter, which was introduced by Abrikosov in 1957 [13]:

(2.1)

where Az, is the London penetration depth [11] — the distance from the surface of the
superconductor at which the magnitude of the penetrating magnetic field has decreased
to 1/e from the value at the surface. For k < 1v/2, the material is a Type I superconduc-
tor. For k > 11/2, the material is a Type II superconductor [4]. It should be noted that
both the coherence length and the penetration depth are dependent on temperature [14]
but that dependence is nearly identical [7].

Type I superconductors are only metallic elements, while type II can include metal alloys,
pure metals and oxide compounds. Those with T, < 30 K are metals and metallic alloys,
labelled low-temperature superconductors (LTS). Those with 7, > 30 K are usually
oxide compounds and are called high-temperature superconductors (HTS) [12]. High

temperature superconductors are all Type II.
Characteristics of Type II Superconductors

In the mixed state of type Il superconductors, the magnetic flux penetrates the material
in the form of what is described as flux tubes [7], or "super-current vortices” [15], that
carry an equal amount of magnetic flux, similarly to energy quanta. The magnetic field
experiences what is called flux pinning — the flux vortices are not allowed to move
under the Lorentz force. This allows large DC currents to flow without any resistance
for a very long time; for an AC current and its corresponding magnetic field to exist,
the vortices cannot remain stationary. In that case the pinning force must be overcome,
which introduces some power loss which is called hysteresis loss [15] (a discussion about
all loss mechanisms can be found in Section 2.3).

Flux pinning exists due to microscopic barriers that are usually structural imperfections,
chemical impurities, or grain boundaries [11]. Somewhat counter-intuitively, the more

impurities a superconductor has, the higher currents it would be able to sustain [12].
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The flux vortices can also escape pinning centres under thermal activation [11]. Let the
energy required for a flux vortex to jump from the energy potential well of a pinning
centre to the closest position of energy equilibrium be AW. Then, if AW > kT, the
mechanism of flux depinning is called thermally activated fluz creep, which occurs at
low temperatures; the simplest explanation of flux creep is in the work of Anderson
and Kim [16], and a more complex vortex glass theory has been developed in [17]. If
AW < kT, the mechanism is called fluz flow, which occurs at high temperatures and
exhibits lower pinning energy, usually due to the Lorentz force overcoming the pinning

strength [12]; the first theory of flux flow has been presented in [18].

E
flux fl
CSM —— /“X o
flux creep
I )
7

Figure 2.1: E-J characteristic of HTS [15] © 2014 IEEE.

Critical State Model

The next step in the description of the electromagnetic behaviour of superconductors
was the Bean Critical State Model (CSM) from 1962 [19]. It assumes that the current
density within a superconductor can only be equal to +.J. in regions where B # 0 T
and 0 when B = 0 T. This has been found useful for low-temperature superconductors
with large power index n, but is not acceptable enough for HT'S materials, which often
have a smoother transition between superconducting and resistive state. Moreover, the
CSM cannot model overcurrent [15] which is a chief reason the nonlinear E-J method
is preferred in the present work. The CSM allows for analytical solutions using approx-
imations and simple geometries [11] and is valid on a macroscopic scale that does not

take into account individual flux pinning vortices [15].
2.2 Overview of sueprconducting materials for power ap-
plications

In 1987 the first HT'S material with T, above the boiling point of liquid nitrogen (77
K, LN2) was discovered. This is the material YBagaCuzO7 (“YBCO-123") and it has
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Figure 2.2: First generation multifilamentary conductor, produced from
Bi-2223 superconducting material (dark filaments) and filled with Ag or
similar [23] © 2004 IEEE.

Figure 2.3: First generation multifilamentary conductor, produced from
Bi-2212 superconducting material (dark filaments) and filled with Ag or
similar [24] © 2019 IEEE. a) 18 groups with 37 filaments each; b) 18 groups
with 55 filaments each.

a critical temperature of 93 K [20]. It has further been identified that the yttrium
component in the above compound could be replaced successfully with any other rare
earth material while the properties would not vary significantly [4]. Many other materials
have been discovered to exhibit HT'S properties [4]. The most notable ones are within the
Bi-Sr-Ca-Cu-O system [21,22]: BisSroCagCusOio4x (Bi-2223) and BiaSraCaCuaO194x
(Bi-2212).

2.2.1 1st Generation HTS — Bi-2223 and Bi-2221

Superconducting wires, produced from a composite between silver and Bi-2223 or Bi-
2212 are referred to as First Generation. Typically, the structure of a Bi-2223 wire is
in the area of 0.2 mm by 4 mm, constructed of between 30 and 61 tape-shaped Bi-2223
filaments, 10 pm thick and up to 200 pum wide each, embedded in a silver alloy matrix
(Figure 2.2). Silver, or an alloy that includes silver, fills the gaps between the filaments
and provides electrical and mechanical stabilization as well as facilitating the production

process [23].

Meanwhile, the typical structure of a Bi-2212 conductor (Figure 2.3) is an isotropic
round wire, consisting of a a large number of superconducting filaments, arranged sym-
metrically in arrays and embedded in a matrix material. A typical diameter is around
1-1.5 mm [4].

Due to their microstructure, the Bi-2223 and Bi-2212 materials are spatially anisotropic,

thus grains are required to be aligned in the direction of expected current flow. In
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Stabilizer layer: (25-100 pm) — Ag, Cu, SS, brass;

HTS layer: (1-2 um) — REBCO (RE -, Gd, Dy, etc.);

Buffer layer (~200-250 nm) — MgO, LaMnOs3, Y203,
YSZ, CeOy;

Substrate: (25—-75 pm) — Hastelloy, SS, Niw;

Stabilizer layer: (25-100 pm) — Ag, Cu, SS, brass

Figure 2.4: Second generation composite conductor, produced from REBCO
superconducting material. Not to scale [4] © 2015 Elsevier.

industry, until 2004 the most widely accepted method for manufacturing Bi-2223 tapes
was the ‘powder in tube’ technique [25], and after 2004, a technique called ‘controlled
overpressure sintering’ gained substantial popularity [26,27]. The notable similarity
between the two is that the result of both is flat tapes. This is a direct link to the fact
that grain alignment of Bi-2223 is easiest during the rolling process [4], which is the last
stage of the aforementioned methods.

Despite this, research has shown that producing round Bi-2223 in laboratory conditions
is possible [28]. Bi-2223 has intrinsic anisotropy of all of its electromagnetic properties
[12].

The J. of each wire is largely dependent on its size, manufacturer and manufacturing
process. Typical engineering J.. of first generation wire are 130-180 A/mm? [23,29] and
350-400 A/mm? for Bi-2212 [29, 30], however these numbers are likely to increase with

the advancement of technology.
2.2.2 2nd Generation HTS — YBCO

Second generation superconducting wires are based on REBasCu3O7.x (REBCO) family
where RE is any Rare Earth material, commonly yttrium. 2G is reported to have a
higher current density and better price forecast than first generation [4]. YBCO is
less anisotropic than Bi-2223 [12]. All coated conductors include a flexible substrate,
preferably of strong and nonmagnetic or weakly magnetic metal, on top of which is a
multifunctional oxide barrier or buffer layer, on top of which is the superconducting
YBCO layer. A thin protective Ag layer and a thicker Cu protection and stabilization

layer must also appear [23].

Stabilization layers are used to carry the burden of overcurrent and thus protect the
superconducting layer from damage once it has ”quenched” —i.e. become highly resistive
due to the overcurrent. Despite that superconductivity in REBCO was discovered before
superconductivity in Bi-2223, manufacturing of sufficiently long wires had been a difficult
challenge for decades. In 2003, it was proven via different methods that wires of length
can be produced of lengths up to 50 metres, in a configuration, based on the one displayed

in Figure 2.4; this length has increased in the subsequent years. An observed tape
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engineering J.. is 205 A /mm? for YBCO 2G [4,26].

Counter-intuitively, the ”generation” does not refer to better quality or bigger potential
for the material. It simply refers to the fact that the first time YBCO has been put in
tapes was after Bi-2223.

2.2.3 MgB,

The Magnesium diboride superconductor possesses a critical temperature of 39 K, which
puts it in the unique position of sitting between HT'S and LTS, but it is still classified as
low temperature. Its superconductivity was discovered in 2001. Similarly to Bi-2212, for
applications the typical shape of a MgBy wire is usually round (but may take the shape
of a tape, Figure 2.5), containing superconducting filaments, embedded in a conducting
matrix made of metallic material or alloy. For cable applications, round wires can be

prepared by the power-in-tube technique, mentioned above [4,26].
2.2.4 Low temperature superconductors

Some of the most common LTS materials still in use are Niobium-Titanium (NbT1i) and
Niobium-tin (NbgSn), each with a critical temperature of 10.2 K and 18.3 K, respectively.
LTS have been used for decades and are still widely adopted due to being relatively cheap
and easy to manufacture [4]. Cross-sections of the two most common materials can be

seen in Figure 2.6.
2.2.5 Why use HTS and not LTS?

A large barrier to the integration of LTS materials, including MgBs, into power grid
applications is the low critical temperature (20-30 K) far under the operational temper-
ature of liquid nitrogen (65-78 K). This prevents the deployment of cryogenic systems

with liquid nitrogen and instead forces the use of supercooled or liquid helium, which

Figure 2.5: A selection of MgBs cross-sections. A) Flat tape conductor; B)
and C) Sandwich type conductor; D) low-AC loss multifilamentary tape; E)
high current tape conductor; and F) Round wire for cable application [26].
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Figure 2.6: The cross-section of a NbTi wire (left) and a NbzSn wire (right).
Diameter roughly 0.8 mm, wires are multifilamentary. [4]

introduces a large cost of refrigeration and handling of ambient heat as well as heat
from AC losses [4]. The vast majority of power grid superconducting cable projects and

research are now done with HTS materials.

2.3 AC power loss mechanisms and their calculation

Four primary AC loss mechanisms have been identified in high temperature supercon-
ducting tapes [15]. Analytical calculations of hysteresis losses in particular are exten-
sively described in [14] and [15].

Magnetization (hysteresis) loss. As discussed in Section 2.1, hysteresis losses arise
from the phenomenon where the oscillation of the applied magnetic field (through the
applied current) must overcome the pinning of the flux vortices.

Instantaneous power dissipation at a point in a Type II superconductor can be calculated
numerically by Q, = J - E [15];

Eddy current loss. Eddy currents are induced in the conducting materials within
superconducting tapes (copper, silver, etc.) by an applied AC magnetic field or the self-
field of an applied AC transport current. Thus, Ohmic (resistive) losses are accumulated

[12] and Q. = J - E is used to numerically calculate the instantaneous losses at a point;

Coupling loss. This occurs when under the effect of a sufficiently high time varying
magnetic field, a current loop jumps through the metal matrix between individual fil-
aments, thus generating Ohmic (resistive) losses. Simulations in this work deal with
transport currents and as such the resulting magnetic field is not significant enough and

the coupling losses may be considered negligible [15];

Ferromagnetic loss. Arises from the presence of ferromagnetic materials within the
tape structure. u, [15]. Simulations in this work do not include ferromagnetic materials,

thus this loss mechanism has not been investigated.
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Literature review

3.1 Chronological review of previous research into the sim-

ulation of overcurrent and fault response of HT'S cables

The study performed by a research group in Tohoku University, Japan (Hu et al [33]),
adopts a temperature-dependent analytical AC loss generation equation. The heat trans-
fer equations are standard. The paper investigates a 66 kV Triax cable. Important
conclusion is that the thickness of insulation (PPLP) is approximately linearly propor-
tional to the recovery time of the cable. In Triax, this poses a potential problem at
higher voltages due to the sandwiched phase in the middle that is without direct access
to coolant flow. Furthermore, the study confirms that the middle phase inevitably does
reach higher temperatures and achieves longer recovery time.

This study is preceded by an earlier work by Hu et al [34], which investigates the ef-
fect of the thickness of the stabilizer that exists next to each superconducting phase
layer. Intuitively, their discovery is that thicker stabilizers provide the conditions for
lesser temperature increase. In addition, a later study from the same authors [31] builds
on the previous studies to include a model of flowing coolant liquid and combine heat
transfer in both radial and longitudinal directions; see Figure 3.1. The model is built via
finite differences. In this paper, the magnitude and duration of the applied fault current
is based on recommendations from a Japanese electric power company, in contrast to the
vast majority of other studies that do not specify how their fault current was derived.
Highly descriptive temperature profiles within the cable are presented, with liquid ni-
trogen outlet temperatures being compared based on length of the cable and velocity
of coolant flow. A counter-intuitive discovery is that higher velocity of coolant flow can
produce higher maximum temperature. However, the paper has not investigated how
the velocity affects the recovery time, since maximum temperature and recovery time
may not necessarily be proportional. Despite the lack of results of such investigation,
the authors conclude, intuitively, that faster coolant flow would indeed result in faster

recovery time.

13
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Insulation

Inner Surface
of Cable Core

Parallel coolant

Outer Surface of Cable Core configuration

Figure 3.1: The general structure of an HTS cable in the Triax configuration,
as seen in Hu et al [31] © 2013 Elsevier. This Triax cable operates a parallel
coolant configuration where the inner and outer coolants are flowing in the
same direction, with an external return flow.

Shu et al [36] implement an equivalent circuit model to simulate overcurrent and over-
voltage in all three phases of a 1-kilometre-long 110 kV cable. As an extension of this
study, equivalent 7 circuit model of a 110 kV, 3-phase cable has been developed by Li
et al [37]. Presented are results for both a short circuit fault and electrical breakdown

fault; it does not become clear how the fault current is determined.

Another full model of a 3-phase, 22.9 kV Triax cable under a three phase fault has been
developed in Sun-Kyoung et al [32] (see Figure 3.2). The methods utilized include an
electrical model in PSCAD/EMTDC, coupled with heat transfer equations. However,
there is lack of information about how exactly the temperature increase affects the
overcurrent development in the model, but the publication considers in detail the design
of superconducting cables. It draws attention to the design challenge of ensuring the
current flow in each layer of a phase is balanced. A particular conclusion is that the
middle phase in a Triax design would experience the highest temperature increase due
to the decreased access to cooling, which makes it a particular point of interest in that

design type.

A unique model to consider the gaps that are between the individual layers of tapes
within a phase has been built in Fang et al [38]. The model used is once again equivalent
circuit equation, combined with heat balance and transfer. Presented is a dependency

of the maximum temperature in the cable on the heat transfer coefficient.

A series of papers have been published by researchers from the China Electric Power

Research Institute (CEPRI) and associated institutions, which investigate the coupling
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Figure 3.2: The design of an HTS cable in the Triax configuration, as seen in
Sun-Kyoung et al [32] © 2013 IEEE. This Triax cable operates a counter-flow
coolant configuration where the inner and outer coolants are flowing in the
opposite direction, thus the return of mass happens within the cable structure.

of the thermal and electromagnetic studies on a 110 kV, 3 kA rated superconducting
cable under a fault current. In essence, the complete model is a mathematical equivalent
circuit together with heat transfer equations.

The most recent paper that provides results on both temperature and current distribu-
tion is the work of Li et al [39]. They simulate a 10 metre, 110 kV cable in MATLAB
and ANSYS and apply a through fault current. Provided are cable dimensions, but
there is no discussion of any methodology. This seems to be based on earlier work done
in CEPRI [40]. Here, a complete mathematical breakdown of the equivalent circuit
method, as well as the thermal model, is provided. Key findings includes that the fault
current distribution between all layers, this including the stabilizer and former, and the
time needed for this distribution to be reached, depends greatly on the resistances that
the materials possess when subjected to said fault current. It also demonstrates the
reason why the part of HT'S cables, called former, is required — 96% of the fault current
in the study is reported to have been eventually redirected to the former.

A similar study by the same research group [35] describes a 2D finite element model of
the same problem and cable, implemented in ANSYS together with an equivalent circuit
model. The model presents a table with the thermal properties on a number of materials
at cryogenic temperatures, which are otherwise difficult to obtain.

Figure 3.3 presents a flow chart of the program used in [35]. This serves as a confirmation

of the proposed final product flow chart as seen in Figure 1.1.
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Figure 3.3: An electro-thermal coupled simulation program flowchart [35] (©
2013 IEEE.

Yin et al [42] look at the overcurrent distribution in a single core HTS cable. The
investigation is purely electromagnetic, and uses an equivalent circuit model. While there
are mentions of magneto-thermal coupling, no methods or results regarding temperature
are presented. For the simulations, two currents — one value below the critical current,
and one value above — have been used. It demonstrates a successful implementation
of the equivalent circuit model for an HTS cable, and points out that the design of the
cable’s copper stabilizer (former) plays an important part in the current distribution in

case of a fault.

A research group from Waseda University, Japan, together with other institutions, have
published a recent series on the temperature and pressure changes in cables, cooled by
liquid nitrogen. Their research follows a structure of developing a finite differences com-
puter model for heat transfer and fluid flow [43], and it’s subsequent improvements and
verifications with real or analytical 1.5-metre [44], 20-metre 275 kV [45, 46], 40-metre
66 kV [47] and 3-kilometre 66 kV [48] cables. Their research does not incorporate any
electromagnetic phenomena calculations and relies on 1D discretization. Moreover, the
transient fault current — whenever a part of a study — is not calculated within the
simulation but usually a value of the heat generated in the conductor is provided.

The 20-metre long 275 kV cable [45] is with central coolant flow, single phase and of
concentric design. Besides an insight into possible solutions of the problem that is the
heat transfer between solids and the coolant, the results display how an overcurrent can

increase the temperature of the conducting material noticeably. The research on that



Chapter 3 Literature review 17

e =
BSCCO tape

Conductor

Shield
Cu tape

....___‘l:

Figure 3.4: This photograph from [41] (© 2015 IEEE shows a single phase of a
50 MVA HTS cable. First generation tapes can be seen (23 in the conductor,
19 in the shield, silver-coloured, 4.3 mm by 0.22 mm) for both the conductor
and the shield, and an electrical insulation in between. Copper stabilizers are

also present in the form of tapes (for the shield) and wound wire (for the
conductor). This particular design does not have an internal channel, so the

coolant flows outside of the shield. The inner diameter of the conductor is 16

mm and the inner diameter of the shield is 25.88 mm [41].

cable is continued with [46], where a fault’s effect on the temperature of the conducting
layers and coolant is analysed. The conclusions drawn are from the perspective of post-
fault recovery.

The 40-metre long 66 kV cable [47] is again single phase, but without a central coolant
flow. It is noted that the temperature of the inlet of coolant flow (before any contact
with the superconducting cable) may rise due to joule heating of the normally conducting
parts in the joint, and that it is possible in long cables that the coolant would evaporate
when approaching the outlet.

The 3-km long 66 kV cable [48] is a three-core cable. The finite difference method has
solved for the properties of the LNy before, during and after a short-circuit fault. It is
concluded that for long cables, all AC, dielectric and joint losses have to be taken into
account.

The research team from Waseda Univeristy has examined HTS cables previously. Wang
et al [49] measure a 2-metre-long 66 kV second generation HTS cable under fault con-
ditions, then proceed to numerically estimate the losses via 3D finite element analysis.
An equivalent circuit is introduced to consider the magnetic coupling between the shield
and conducting layers. The power law used appears to be simplified and does not take
into account temperature, which does not seem to introduce a significant error. Despite
the authors’ conclusion that the models match well, some variables see a considerable
unexplained difference between simulation and experiment.

This study is preceded by [50], where the same problem is tackled for a 20-metre cable

with similar specifications. This paper is valuable as it presented detailed dimensions
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for the model cable, as well as thermal properties of liquid nitrogen around boiling tem-
perature. However, the numerical model presented is not verified with experiment, as
far as the publication is concerned.

Within the same research group [51], a 275 kV cable, also of 2-metre length, has been
investigated both experimentally and numerically. The methods are the same as the

studies above, and particular attention is paid to the thickness of the copper stabilizers.

A more detailed temperature and pressure model has been published by Shabagin et
al [52], such that a cross-sectional temperature profile is coupled with the longitudinal
coolant temperature profile, producing a 3D distribution. They consider the AmpaCity
[53] project cable for their calculations, which is of a Triax design, and suggest that
boiling of the liquid nitrogen can be prevented (to an extent) by controlling the pressure
of coolant at the inlet. The authors present their temperature and pressure calculation
methods with excellent detail, but the current (steady-state) is once again calculated by

an analytical method.

Miyagi et al [54] have recently shown a Triax cable can achieve a longer length per
cooling station than its corresponding three-core counterpart, within a set diameter
limit. The necessary calculations have been achieved via analytical formulas while a

number of useful parameters and material properties are provided.

A 22 kV, 3 kA, 2G Triax HTS cable intended to be used as a busbar, has been developed
in [55]. Then, it has been subjected to a short circuit fault both experimentally and
numerically, while a bypass copper cable exists in parallel. For the numerical model, an
equivalent circuit has been used, while the common heat equation is used for thermal
modelling. The conclusions of this study are that by having a bypass cable, the post-fault

recovery time can be decreased significantly.

In [56] by de Sousa et al, a cooling method with an external return flow tube is proposed
and the results indicate it is feasible. Analysis of the thermal response under both
normal and fault conditions is performed via a finite differences method. This is based
on a heat source being the transport current, but no details about the electromagnetic
modelling are presented.

Again by de Sousa et al [57], a finite difference model is introduced for the simulation of
the transient fault response and recovery of the first generation AmpaCity cable. The
paper offers an excellent opportunity for verification of any FEM models built within

this study due to its detailed description of parameters and results.

3.2 Overview and research questions

As discussed in the previous section, the state of the recent literature (2009 onwards)
shows there are few studies that explicitly examine the recovery time of cables. The links
to realistic power grids are limited. The most commonly utilized electromagnetic model

is an equivalent circuit model. Meanwhile, there is solid research into the temperature
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Figure 3.5: The three options for spatial design of 3-phase HT'S cables. Not to
scale; for illustrative purposes only.

distribution and coolant flow, all of which favours classical heat transfer and fluid flow
equations. It is easily seen there is very little work done in the past 10 years regard-
ing the multiphysics FEM modelling of superconducting cables both at the steady-state
level (normal operation at currents below critical) as well as at the transient level. The
term ”multiphysics model” in the scope of this study is defined as a model built by
two or more different physics (i.e. heat transfer, electromagnetics and fluid dynamics)
coupled together such that simulating the model provides a better and more accurate
understanding of the system behaviour than if only one of the physics was used.

There exist three possible spatial designs for 3-phase superconducting cables. For illus-
trative purposes, those are presented in Figure 3.5. From the review of the literature,
it becomes clear there is no model that uses a finite element method or equivalent to
introduce a multiphysics model of any of the three possible designs, particularly for first

generation tapes.

Work on the finite element models is focused on cables made up from the second gen-
eration tapes [58-61]. While it may be argued that the second generation has gained
significant popularity in the past decade and displays excellent potential, first gener-
ation technology is still widely adopted and continiously improved [62] and the HTS
cable projects with longest cable lengths deployed have been made with Bi-2223 tapes
(AmpaCity [63] and LIPA [64]). Hence it would not be unreasonable to focus on the

tape which is less researched.

If the time needed for a superconducting cable to be ready for operation after a significant
through fault is to be examined, there is one primary question that has to be answered
— ”"How fast can the materials that an HTSC is built of be cooled down to operational

temperature?”’. While the answer would depend greatly on design specifications and
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the power grid, this can be further dismantled into further questions, such as — ”What
electromagnetic response does a cable exhibit when subjected to a current, substantially
larger than its rated current?”, "How does the temperature affect the electromagnetic
response and vice versa?” and "How fast could a multiphysics model of the transient
response and recovery of a 1G HTS cable be simulated?”.

The unique question this thesis will probe is ”Can a single model be made which can
accurately simulate the whole operational range of a 1G HT'S power cable in a reasonable
amount of time?”. A single model that may simulate the AC losses during both steady-
state and transient operation is not demonstrated in literature; a combined model would

ease the effort required to theorize a new power cable for installation in a real grid.

To be able to answer the set questions, consideration must be made of the steps that
might be necessary to construct the model. Section 3.3 describes the previous research
in homogenizing the large amount of filaments in a 1G tape, and Section 3.4. describes
the previous research in attempting to model in 2D the losses incurred in an inherently
3D twisted tape. Both steps are taken in order to simplify the geometry and speed up

the simulation.

3.3 Existing techniques for homogenization of multifila-

mentary tapes

A number of papers note the similarities between the measured losses in some mul-
tifilamentary tapes and tapes with an elliptical monofilament [65], as well as Norris’s
elliptical model [66,67]. This arises from the fact that in densely packed multifilamentary
tapes, a strong magnetic coupling exists between the filaments such that the filaments
experience the magnetic field as one entity. Therefore, it may be reasonable to assume
the superconducting domain can be modelled as a single uniform domain, instead of its

actual multifilamentary geometry.

Researchers in [68], [69] and [70] use a homogeneous model to represent the superconduc-
tor in their numerical models. However, a description of their homogenization method-
ology is not provided. Hence, replication of these numerical models is not possible. [71]
uses a technique where the filamentary region is assumed to be a uniform superconduc-
tor. The matrix material is ignored in the AC loss modelling and, naturally, there is
no investigation of overcurrent with that model. Furthermore, the description of the
technique is minimal. The same technique is briefly explained in [72], but not in the

context of AC loss modelling.

The only full AC power loss homogenization technique that has been identified is de-
scribed in [73]. In it, the material within the multifilamentary region is represented as
a mixture between the matrix (silver) and the superconductor (Figure 5.1). Its conduc-
tivity is then defined as:

0= ApOse + (1 = Apr)oag (3.1)
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where Ag, is the fraction of superconductor in the filamentary region (e.g. the ratio
of the total area of the superconducting filaments and the area of the multifilamentary
region), 044 and o, are the conductivities of the silver (or any other material) matrix

and superconducting material, respectively.

The drawback of this model is that it requires drawing a shape that may be a mix
between an ellipse and a rectangle. This is not straightforward, because Ay, is directly
linked to the area of that shape and any errors may noticeably change the model output.
The verification of the prediction of AC losses using that homogenization technique is
not directly presented — however, another paper by the same authors references the
same tape. The results from the simulation are presented and compared with this
work’s homogenization technique in Figure 5.5. Lastly, the technique does not seem to

be implemented in modelling systems of tapes.

3.4 Existing techniques for estimating the losses in twisted

tapes and cables

There is limited literature available regarding the finite element modelling of twisted
cables and twisted tapes. The majority of developed techniques concern themselves with
the modelling of twisted-filament tapes and wires, which are widely used to decouple

the filaments but are not the focus in this work.

A reduced 3D model proposed in [74] utilizes a conductivity matrix with anisotropy to
model a multi-layer first generation HTS power cable. The conductivity matrix uses
trigonometry to influence the direction of current flow based on the twist angle of each
layer. However, the underlying construction of the model appears to rely on a monoblock,
which may be insufficient to model overcurrent situations.

A similar model is utilized in [75]. Amemiya et al [73,76] have developed a technique for
the 2D finite element modelling of twisted tapes under an applied magnetic field, which

entails representing Ohm’s law in 3D via a tensor equivalent conductivity.

Helicoidal symmetry is explored in [77] where a methodology is introduced for simu-
lating the twisted filaments of a superconductor in 2D. This appears to be directed at
investigating the properties of the filaments within twisted superconductors rather than
the modelling of systems of tapes. Another helicoidal tehcnique for twisted filaments is

shown in [78], however in this case the model remains in the 3D domain.

The methods described above chiefly explore multifilamentary conductors in external
field or conductors for magnetic applications. Furthermore, they are not straightforward

to apply and may not be possible to be adapted for the simulation of power cables.

3D modelling of multi-layer cables results in high computation power requirements even
with a relatively coarse mesh [15] which can be thought to render 3D models impractical.

A full 3D model of the shielding layer in a real 1G power cable was made in [79],
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including the multifilamentary structure of each tape. The purpose of the model was
to estimate the magnetic shielding capability of the shielding layers. No comment is
made whether a 2D model exists that would be able to accomplish the same task for
Bi-2223 superconductors. However, mathematically-derived 1D and 2D approximations

for coated conductors (second generation) do exist [15].

In [15] it is simply stated that simulation of the AC loss in Bi-2223 cables requires a
3D model. Using a cross-section is argued can only be used for conductors of infinite
length and geometries with cylindrical symmetry. It can be speculated this is true in
the general case where no supplementary mathematical or analytical calculations and
simplifications are made to introduce this infinitely-long cylindrical symmetry.

However, in [80] it is stated HT'S power cables can be modelled in 2D with an acceptable
error when the twist angle is "relatively small” due to the negligible axial (longitudinal)
magnetic field. It is not clarified how small the angle must be. This is supported
by [81], where several second generation cables are modelled in the 2D domain, as a
reference point for further 3D studies. A simple cross-section is taken without further
considerations. The results show that the shorter the twist pitch is (thus the larger
the twist angle), the less accurate the 2D model is in simulating AC loss. This work

capitalizes on the principal findings of these studies.



Chapter 4

Numerical modelling of
superconducting tapes using the

finite element method

4.1 Physics

4.1.1 The Power Law

From a macroscopic electrical engineering perspective, superconducting materials are
special primarily based on their E-J characteristic, the slope of which is known as re-
sistivity. For 'normal’ materials the resistivity usually obeys the linear Ohm’s Law, but

for superconductors it is highly non-linear.

As discussed in the previous chapter, the CSM is not accurate enough for HTS. It has
been shown by Rhyner [82] that the superconductor’s resistivity conforms to the so-called

E-J Power Law, in vector notation:

n—1 -

= /| J
E=F, — —
X (JC X Jc

E = E. x <j> (4.1)

where E is the electric field variable, E. is a constant of the electric field at which the

In the general form:

DC critical current is defined (E. = 1 x 10~* V/m being the most widely used critical
current criterion [15,73,83]), J is the current density variable, J. is the critical current

density, and n is the power index.

23
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Thus, the conductivity can be expressed as:

J Je 1-n
:E:Ei/ann (4.2)

Ofe

This equation is descriptive for the so-called flux creep state. It is valid for a broad
range of E, but once the current density reaches the flux flow regime [15], the resistivity

has been expressed as [84]:
AFE B
PIF= AT ~ PnBiC2 (4.3)

where p,, is the resistivity in normal state and B.o is the upper critical magnetic field.

It is still difficult to determine universally when exactly the flux creep ends and flux
flow starts. Equation 4.1 cannot be used when J > J.(B,T') because this would result
in an unlimited value for the superconductor’s resistivity. The addition of the super-
condcuting material’s normal state resistivity p,s(7") (e.g. the resistivity above critical
temperature/critical field, which would itself be temperature dependent) in parallel with
the resistivity from Equation 4.1 can represent more accurately the real behaviour of

the material [85]:
prTS(B,T)pns(T)
prrs(B,T) + pns(T)

Ptot = (4-4)
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Figure 4.1: This graph shows how Equation 4.4 dampens the unlimited
increase of resistivity observed under the power law. The dotted red line
represents the resistivity of the superconducting material of one of the tapes
used in Chapter 5 (Choi et al, Table 5.3). The dashed orange line represents
the normal state resistivity (an example value of 3 x 1075 Qm) at constant
temperature.
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where pgrs(B,T) is the resistivity of the superconducting material from the power law.

An illustration of this concept, for constant temperature, is shown in Figure 4.1.
Magnetic Field Dependence of the Critical Current Density

As discussed in the previous chapter, the critical current density depends on the ma-
terial, as well as on the magnetic field it is subjected to and its temperature. Hence,

Equation 4.1 would be incomplete.

There are different methods to model the magnetic field dependence of the critical
current.

The most accurate is to use an interpolated function of the magnetic field dependent
critical current density, taken from measured data points. In such case a piecewise cubic
interpolation of the data in literature can be performed (easily in COMSOL), with the

following equation for the critical current density:

Je(B) = Jeo x f(B1)g(By) (4.5)

where Ji is the local critical current density at self-field; 0 < f(B) <1land 0 < ¢g(B) <1
are the interpolated functions calculating the local critical current density as a function
of the perpendicular and parallel magnetic field in Tesla, respectively, normalized by J.o;
By is the parallel component and B is the perpendicular component of the magnetic
field density with respect to the wide face of the tape, respectively (see Figure 4.2).
The same equation may be applied to the n-index [83].

No proposed analytical function has been universally accepted as an accurate model of

the magnetic field dependence. One of the first models has been proposed by Kim [86]

I
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Figure 4.2: Spatial definitions for the 2D FEM model.
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and refined by Anderson [87], and is widely referred to as the Kim-Anderson relation [11]:

_ Jeo(T)
B = T BB, (4.6)
_ mo(T)
B 1) = T BB, 1)

where By is a constant, |B| is the magnitude of the field and J.(7T') and nq(T') are the
temperature-dependent self-field critical current density and power index, respectively.
This model has been shown to fit measured data poorly in some instances [11] and
especially at higher magnetic fields above 4 mT [83]. An option in numerical analysis is

a model based on Gaussian distribution of the misalignment of the grains [88]:

1.(B) 1+ (B/B1)" + (B/B3)P* x F(a, 21)
1.(0) 1+ (B/Ba)P2 + [(B/Ba)P* + (B/Bs)P3] x F(a, 21)

(4.8)

where B is again the magnitude of the magnetic field, F' is a smoothing function and
« is the direction angle of magnetic field. This method is reported to be very accurate,
but complex due to the presence of numerous constants and an additional function that

need to be determined.

A more straightforward polynomial fit has been derived in [12] which inherently takes
into account the direction of the magnetic field by splitting it into components:
JCO

J(B) = 4.9
( ) a1 + ble_B” + cle_Bl ( )

no
ne(B) = 4.10
C( ) as + erfB” + 026_BL ( )

where J.o and n.g are the self-field critical current density and power index respectively,
with B and B representing the parallel component and perpendicular component of

the magnetic field, respectively.

The reference here is to the ab-planes, which in tapes for power transmission applications
in a Cartesian coordinate system are usually correspondent to the zz-planes, where z-
direction is in the length of the tape, or otherwise the direction of current flow, the z-
direction is the width and y-direction is the thickness of the tape. Thus, B corresponds
to B, and B, corresponds to B, (see Figure 4.2).

Gomory et al [84] have proposed an expanded formula, based on the Kim-Anderson
approximation, to consider the magnetic field dependence in a Bi-2223 superconductor,

as follows: J
Jo(B) = <0 (4.11)

[1 + ( 2B} + Bi) /Bo]ﬁ

where J. is the proportionality factor for the growth of the pinning force in very low

fields [84] and can be assumed to be critical current density at self-field as per the
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Kim-Anderson equation; By is the cut-off value at low fields, otherwise described as the
value at which J. = 0.5 x Jg [83]; § is a parameter that can describe varying field
dependencies [84] and manifests itself via the rapidity of reduction of J. [15]; v is the
anisotropy factor, which allows to take into consideration that the pinning of flux lines
is anisotropic, thus a magnetic field does not affect the superconductivity properties
of the material equally in every direction; B is the parallel component and B is the

perpendicular component of the magnetic field, respectively.

This may be rewritten as:

(oor pooms)
JC(B) = JcO X (412)
By + 72Bﬁ + B2

It has been shown that Equation 4.12 is capable of simulating the effect on the critical
current density of various magnetic fields applied under a range of angles. While only
Equation 4.11, which deals with the critical current density, is proposed in [84], the

original Kim-Anderson relation of Equation 4.7 suggests that the same extension could

be applied to the power index:

8
n(B) = ng x ( o ) (4.13)

By +\/v*B} + B}

where ng is the self-field power index.
Temperature Dependence of the Critical Current Density

To achieve even better accuracy, the model can also be extended to include tempera-
ture dependence. This is essential for modelling overcurrent response due to the large

quantity of resistive dissipation associated with transient faults.

The equations representing the dependence of the critical current on temperature for
Bi-2223 [89] and for YBCO [90] superconductors are reported to be of the following

form:

Jco(T) = Jco(o K) X (1 — ;) (4.14)

where T is the critical temperature of the superconducting material (Bi-2223 or YBCO)
and T is the temperature of the material. However, in [90], the considered temperature
range is up to 80 K, which is below the critical temperature of YBCO. Thus, a substantial
part of the tape behaviour is unconfirmed. A full working range of YBCO is presented

in [91], who confirm the following formula:

3/2
Jeo(T) = Jeo(0 K) x (1 — g) (4.15)
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Equation 4.14 is linear while Equation 4.15 has a non-linear zone when 7T is approaching
T.. An assumption will be made that Bi-2223 as well as YBCO superconductors can
be described via Equation 4.15, which is supported by J.(T') measurements in [52]; fur-
thermore, such an assumption would be in line with the fact that both the Power Law
and the magnetic field dependencies described above can be used for both Bi-2223 and
YBCO materials. This can be modified to refer to the critical current at liquid nitrogen

temperature [92]:

3/2
Jeo(T) = i _J;(:;JI\;L;V%))SQ X (1 — ;;) (4.16)

where T n, = 77 K is the most common reference temperature for high temperature

superconducting properties. In addition:

no(T) = mo(Tu,) T2 (117)

In contrast with the magnetic field dependence, the temperature dependence equation

is widely accepted in literature.

Formulation Constitutive Equations Definitions

Vector and scalar potential puocdA/0t—V xVxA=-Vd B=VxA

A-9 E=-0A0t—-V®
o=o0(FE)

Current potential Viw =0 J=VxT

T-w VxpVXxT=—-pd(T—-Vw)/0t H=T - Vw
p=p(J)

E-field V x V x E = —ud(cE)/ot OB/0t = -V x E
o=o0(FE)

H-field V x pV x H = —pdH /ot J=VxH
p=p(J)

Table 4.1: Different formulations utilized to solve Maxwell’s equations [93].

4.1.2 Electromagnetics

Different formulations exist for the solution of Maxwell’s Equations, see Table 4.1 [93].

Any one of these can fully describe the electromagnetic state of a point in space.

The H-formulation was selected primarily due to its successful implementation in COM-
SOL [94-96] for both 2D and 3D. Furthermore, there is a number of other advantages

to be considered.
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In 3D problems, the A — ® and 7" — w formulations have four variables while the H-
formulation only has three spatial variables, depending on the coordinate system [93,
94,97]. Using H-formulation for 2D allows taking advantage of the fewer variables in
3D by simply expanding the formulation instead of replacing with a completely new
formulation. On the other hand, it may be necessary to consider both transport current
and applied magnetic field. In this case, an H-formulation provides direct means to
set the boundary values of the magnetic field. Furthermore no differentiation of vector
potentials is required as this condition is automatically obtained via first-order edge
elements, which improves the accuracy [93,94] and implicitly satisfies the condition of
zero divergence of the magnetic field [93]. In addition, A — ® formulation is shown to
be prone to instability since a small change of E will produce a significant change of J.

The H-formulation is reported to effectively avoid non-convergence [94].

Writing down Ampere’s Law:
oD
VxH=—+/J 4.18
T (4.18)
where H is the magnetic field, J is the current density and D is the time-changing
electric displacement field. D is neglected once it is assumed there are no displacement

currents in the given problem, which produces:

VxH=J (4.19)
Writing down Faraday’s Law:
0B
E=— 4.20
V x 5 (4.20)

where B is the magnetic field.

Faraday’s Law can also be written in terms of the magnetic field:

0H

where g is the magnetic permeability of free space and .. is the relative permeability
of the material.

The following relation is also known:

E
J=— (4.22)
p
where p is the resistivity of the material.
Substituting 4.22 into 4.19:
VxpH=F (4.23)

Substituting 4.23 into 4.21 gives:

H
V x (pV x H) +,u0,ura =0 (4.24)

ot
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4.24 is the general form PDE that has to be solved for. Since the magnetic field H is
the variable, it is what is called an H-formulation, and it is valid for both 2D and 3D

models.

4.2 Implementation of 2D physics within COMSOL with

focus on tapes

4.2.1 H-formulation
An H-formulation for COMSOL has been successfully introduced by [96].

Equation 4.24 is not directly created in COMSOL. Faraday’s Law (Equation 4.21) is
implemented via the 'General Form PDE’ module. The field is discretized using first
order curl elements [98]. In the same time, Ampere’s Law (Equation 4.19), J.(B,T),
n(B,T) and Ohm’s Law (Equation 4.22) are implemented via a variable definition en-
compassing all domains. The operator nojac(n(B,T')) is used to exclude the variable
from the Jacobian and thus avoid undefined equations in the stiffness matrix that arise

from the quick changes of n(B,T) and its usage as a power index.
Initial Conditions

The Initial Values definition includes all the magnetic field variables and their first
derivatives. This is set to 0, which is also what COMSOL adds by default.

P e (4.25)
H, 0
OH
5 =0 (4.26)

This is the simplest option considering the non-uniform magnetic field that develops
within the domains [99].

Boundary Conditions

Electromagnetic simulations must obtain results for infinity, however this is impossible
and instead it is assumed that some boundary conditions exist at a sufficiently large

distance from the area of interest (the tape, or superconducting cable).

A boundary condition must be implemented on all external boundaries. COMSOL adds
a Neumann boundary condition by default (Zero Flux), which enforces OH /ot = [0,0]7,
where H = [H,, Hy]¥, via E = 0. This can be used only in the absence of external
magnetic field [96], and it is used in that capacity within this study.

Introducing external magnetic fields is possible by explicitly defining a Dirichlet Bound-

ary Condition, which overrides the Zero Flux condition. To introduce a magnetic field,
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such that in standard Cartesian notation in 2D Euclidean space B;Et = Bmf—i— Byj:

—

(4.27)

Bz/mom]
By/(popr)

where p, is the relative permeability of the material at the boundary, which is treated
as air, hence p, = 1. If B, = By = 0, then the Dirichlet condition can be used for
applied transport current. The practical difference between the Dirichlet and Neumann
conditions is that the former specifies a value at the model boundary, while the latter
specifies a derivative — a rate of change. By setting the rate of change of the magnetic
field at the model boundary to zero, the boundary can be assumed to be infinitely far
away from the area of interest where no change to the variable is observed. Regardless,
insignificant effect on AC losses has been observed when changing between the two
condition types. Further to that, decreasing the resistance of air to as low as pgi =
1 x10™% Qm in favour of computation speed produces a negligible difference; this is due
to the very large conductivity of the superconductor even at critical currents — even

the resistivity of silver is 5 orders of magnitude smaller.

To introduce a current source, the current density on the contact surface can be inte-

grated to determine the total current on that surface:

/ JndS = Itransport (428)
S

where S is the surface on which the current is applied to the model, J,, is the normal
component of the current density on this surface and Ijrqnsport is the total transport
current. Eddy currents do not affect this because the result of integrating them over the

entire surface is equal to zero.

Equation 4.28 is implemented within COMSOL via a pointwise constraint such that the
integration is performed over the tape’s total cross-section. This method can be applied

to any surface [94].
Mesh

The meshing used for 2D simulations of superconductors needs to consider the area of
the largest interest. This would be the superconducting material itself, and a relatively
fine mesh (element size of 0.02—0.08 mm depending on the element location) is required
in that region, so that all fast variations in the dependent and independent variables
may be captured. It has been recommended [11] that a mapped mesh should be used.
For example, [11] uses a 20x3 mapped mesh within the filaments of a 37-filament tape.
However, these have a rectangular shape and a mapped mesh may not be suitable for
non-rectangular domains. It was observed that sufficiently accurate results are obtained
from a mesh with well-sized triangular elements, while a mapped meshing inside the

multifilamentary tapes increases the size of the problem significantly. This is supported
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by findings in [12], however the author does give merit to finer meshes for obtaining the

current density profile in a tape.

For the air around the model tape, very coarse meshing (element size between 0.4 mm
and 1 cm) can be used, because the magnetic field distributions far from the tape are
not of interest. The silver matrix is not an area of quick spatial change of variables thus
its mesh does not require special attention, however it’s minimum density is constrained

by the density of the superconductor mesh, especially in multifilamentary tapes.

In any case, the necessary mesh density has to be evaluated on a case-by-case basis.
Furthermore, care must be taken to ensure that areas with extremely rapid spatial
changes of the variables have an adequate mesh density. This usually is around the

edges of a domain, especially when low current is applied.
Solver, Timestepping and Tolerance

For this Chapter, The COMSOL 5.2a default direct MUMPS solver has been used —
later Chapters use COMSOL 5.4’s MUMPS (for studies with electromagnetics) and
PARDISO (for heat transer only). The solver has been allowed to do free timestepping,
with 100-200 recorded time steps per cycle and a relative tolerance of 1.0 x 1074, Tt
has been reported the recommended value is 1.0 x 1075 [94]. However, decreasing it
to this value already increases the size of the problem, the significance of the increase
being problem-dependent. Furthermore, sufficiently accurate results are obtained from

1.0 x 1074, and a trade-off must occur between computation time and accuracy.
Power Law

Considering that E' = pJ, the Power Law (Equation 4.1) can be written in it’s resistivity
form: Ee % |J/J.(B,T)["
X

PHTS =
That can be modified with the following result:

n—1

+ po (4.30)

E. ‘ J
PHTS =

J.B,T) " |J(B,T)

where pg is a term, added for numerical stability when passing through zero, such that
po <1072 x E./J. [100]. This can be interpreted as a thermally-activated resistance and
typical values for Bi-2223 are 10714 — 1071 [73,83,97]. po was originally introduced for
improving convergence in the A —V formulation [97] and may not always be required in
the H-formulation. An investigation of 2D models showed there is at most 1% influence

on the value of the simulation results with no observed instability.
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The bounding of the resistivity for high current densities is achieved via Equation 4.4

with an effect as seen in Figure 4.1. Meanwhile, from Equation 4.16:

3/2
Jeo (0T, T N,) T
J(B,T) = : 2 1—— P(B 4.31
( ) (1 _ TLNQ/TC)3/2 X ( Tc) X ( ) ( )
and from Equation 4.17:
_ Ty,
n(B,T) =no(0T,Trn,) X T x P(B) (4.32)

where P(B) could be as per Equation 4.12 (Kim-Anderson) or Equation 4.5 (data in-
terpolation), depending on the choice of the critical current dependence model. Equa-
tion 4.30 is implemented via a domain-restricted variable — no COMSOL ’'Materials’
are used anywhere within the model. The remaining domains are occupied by their

respective material’s linear resistivity constant.
4.2.2 AC losses

The instantaneous AC loss is computed in the unit of W/m3, via the already discussed
equation [15]:
Q=J-F (4.33)

This equation is utilized to calculate the instantaneous power losses in both the super-
conducting material and the silver matrix. @ will subsequently be inserted as a heat

source in the heat transfer equations.

To calculate the total losses, a global equation is employed in the following notation [101]:

thot
dt

=2Q (4.34)

The total power losses Q:or (J/m/cycle) [15] are integrated over the 3rd half-cycle to
avoid transient terms that arise from the initial conditions [11,99] and over the entire

surface of the tape S, then doubled to minimize simulation time:

15/f

Qtot = 2/ Qdt (4.35)
1/f St

Regardless of the above consideration, in [65,66,94] the time integration starts from

t=0.

A reasonable assumption is that all losses in the tape are converted to heat — any
vibrational or acoustic losses would be insignificant. So Equation 4.35 describes the

heat generated by the current inside the tape.
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4.3 Verification of physics models

The physics implementation in this chapter requires to be verified against published
data. This was accomplished by simulating several models and comparing them to
existing data. The data was obtained manually via the free online graph data extractor
WebPlotDigitizer. This introduces a small error in the extracted data both for z-axis
and y-axis data due to human imprecision.

Furthermore, these are isothermal experiments, performed in a constant 77 K and thus

all temperature dependencies have been neglected.

The models are built in 2D space, with x-axis and y-axis being the horizontal and
vertical spatial direction respectively. The z-axis is the out-of-plane direction, in other
words into the screen. Any transport currents are applied in the z-direction, while
any external magnetic fields are applied in the x-direction (parallel By fields) or the
y-direction (perpendicular B, fields). The tape in each simulation is placed such that

the wide face is lying on the x-axis and the short face is lying on the y-axis (Figure 4.3).
4.3.1 Single filament, Bi-2223, Ag-sheathed tape

The first verification of the H-formulation is against an A — ® method together with
practical measurements, as described by Nibbio [83]. The B-dependent J. and n are
utilized using the simplified Equation 4.36 and Equation4.37. J, = I./S where S is
the cross-sectional area of the superconductor (Table 4.2). The geometry is a rectangle

of superconducting material surrounded by a coating of silver.

The resistivity of silver for the single filament is pgijper = 2.7 X 1072 Qm [102].

!

Dirichlet Boundary Condition
H,=0
H,=0

Tape(s)
!
[ —————|

tape(s)’s width (not to scale)

y (B, H,,

(ppa s (s)odey XQT = sniper) xg

X (BH, H;,,

Figure 4.3: Spatial definitions for the 2D FEM model.
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Figure 4.4: The 50x20 nodes mesh used for all simulations of the single
filament.

For fields, applied only perpendicularly to the tape, it is possible to simplify Equa-
tion 4.12 with the function [12,83] which is essentially the Kim-Anderson relation (Equa-

tion 4.6 and Equation 4.7):
By

Je(B) = Jop X 5—— 4.36
and n with the function n(B):
By
B)=n9 X ——— 4.37
n(B) =no x 5o (1.37)

where Ju, no and By are material constants., and B, is the magnetic field in the y-
direction. J.y and ng can be interpreted to be the self-field critical current density and
self-field power index, respectively. This can be argued acceptable since the transport
current used to measure J. would always produce self-field, which cannot be eliminated

experimentally.
Applied AC transport current

Using a pointwise constraint integral, Equation 4.28 is applied. This forces a current in

the form I, sin(27 ft), where f = 59 Hz and I; is the amplitude of the current source.

Tape Bi-2223 Bi-2223 1. n By f
Dimensions Dimensions  # Nodes (B=0) (B=0)
275 %036 mm 2.2x0.16 mm 50 x 20 19 A 19 21 mT 59 Hz

Table 4.2: Parameters for single filament verification.
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Figure 4.5: Comparison between the simulated AC transport losses and the
numerical results of Nibbio et al.

The results are shown in Figure 4.5, compared with the Kim-Anderson numerical results
of Nibbio et al [83]. Around critical current, the simulated values are between 1% and
5% higher than the ones from Nibbio et al, with the losses becoming underestimated at
low currents, e.g. under 0.25 x I, to an error of about two times less than actual losses.
In [83], it is shown that the numerical results in fact are somewhat overestimating the

actual measurements for currents larger than 0.15 x I..
Applied AC transport current in a DC magnetic field

Using a Dirichlet boundary condition, as described in Equation 4.27, a magnetic field
perpendicular to the wide face of the tape (along the y-axis) may be applied, such that
Beot = Byj.

The results are displayed in Figure 4.6. When the model for J.(B) and n(B) is used,
the predicted losses are severely underestimated (Figure4.6a). It appears that with
the increase in current, the underestimation also increases. The reason for this is the
inaccuracy of the fit of the simplified critical current dependency and n-index model.
When an interpolation of the field-dependent properties as provided by [83] is used in
the simulation, the gap between the published measurements and the simulated losses
is visibly decreased (Figure 4.6b). This shows that, despite all of the remaining three
cases of the paper reviewed agree very well with the original experiment, some cases
require a precise knowledge of the field-dependent parameters in order to predict the
losses accurately. Using an interpolation function may be better than the Kim-Anderson

law especially for DC applied fields.
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Figure 4.6: Comparison between the simulated AC transport losses in a DC
magnetic field and the numerical results of Nibbio et al.

Applied AC perpendicular magnetic field

Using a Dirichlet boundary condition, as described in Equation 4.27, a magnetic field
perpendicular to the wide face of the tape (along the y-axis) may be applied, such that
Begt sin(2r ft) = By sin(2n f1)J.

Figure 4.7 displays the results of the simulation, which provides a very tight fit with less

than 2% difference between the H-formulation and the simulated values in [83].
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Figure 4.7: Comparison between the simulated and experimental values of the
magnetization AC losses in perpendicular magnetic field without any
transport current.
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Figure 4.8: Comparison between the experimental AC losses in [83] and the
ones simulated in COMSOL, for an applied AC magnetic field together with a
transport current. The current is extracted from the relevant figure in the
literature.

Applied AC transport current in external AC magnetic field

The principles described via Equation 4.27 and Equation 4.28 are combined to create a
situation where an AC transport current and AC magnetic field are applied together, in

phase. The results of these simulations are shown in Figure 4.8 and explained below.

In [83], the transport current is applied via a voltage source, which can be applied out-
of-plane in a 2D model only by specifying the electric field. Since there was no published
data on the length of the sample, using a voltage source was not possible. Additionally,
there was no known method, at the time of modelling, to impose a voltage source on a
2D H-formulation model in COMSOL. Instead, the currents at a given (1 mV) applied
voltage were extracted from the literature and simulated directly in order to verify the

present modelling technique.

Using precisely the values of the extracted currents (Figure 4.8), the difference between
the experimental data and the simulation is between 0% and 8%, with the estimated
losses at 1 mT being 20% larger. Hence, the physical model demonstrates acceptable
accuracy. The results confirm what is observed in [83] that in higher magnetic fields,

the dominating loss is magnetization loss, while the transport loss is almost negligible.
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4.3.2 Multifilamentary, Bi-2223, Ag-sheathed tape

The second verification of the H-formulation is against experimental measurements and
T — Q numerical simulations, as described by Amemiya et al [103]. The Kim-Anderson
extended relations for B-dependent J. and n by Gémory et al [84] are used for the

simulations. Parameters for this tape are shown in Table 4.3.

Due to lack of specific information on the aspect ratio of the 61 filaments or their
spatial distribution, the geometry was assumed to consist of equally sized rectangles
of superconducting material, the distribution of which is symmetrical around the z-axis
and y-axis. These are embedded in a silver matrix of overall rectangular shape (summary
in Table 4.4 and Figure 4.9). It has been reported that the shape of the filaments does
practically matter, so long that the HT'S to silver ratio of the tape and the number of
filaments is the same [69]. Furthermore, the shape shown in Figure 4.9 is such due to the
difficulty associated with constructing each filament manually; it is not representative

of any general model of a tape’s multifilamentary region.

The ratio of transport current to critical current is ¢ = I;/I., the current and the
magnetic field are in phase; and f = 50 Hz for the case of transport current only and

f = 60 Hz where external field is applied.

Figure 4.9: The geometry of the multifilamentary tape used in verifications of
the H-formulation.
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Figure 4.10: The mesh used in the case of multifilamentary tape, used in
verifications of the H-formulation.

Tape Bi-2223 Filam. Je n O silver
Dimensions Total Area # (B=0) (B=0)

35x0.25mm 22x107"m? 61  2x10% A/m? 19 3.33 x 108 S/m

Table 4.3: Parameters for multifilamentary verification.
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Aspect Width Thickness By Anisotropy S
Ratio  (z-direction) (y-direction) ~y
13 216.53 pym 16.66 pm 0.05T 0.15 1

Table 4.4: Properties of a filament for the multifilamentary verification.

Fitting of the critical current’s magnetic field dependence

The magnetic field dependence of the critical current density and the power index is
presented in [103] in the form of a graph. The model used to approximate these data

was the extended Kim-Anderson-Gémory relation from Equation 4.12.

Data extraction software was once again used for obtaining the numerical values and
using them for plotting a comparison to simulated values. The accuracy of the extracted
data presented in Figure 4.11a and Figure 4.11b is subject to the resolution of the image

it was sourced from and to a minimal human error in selecting the data points.

The anisotropy coefficient v was manually adjusted for the best fit for both the critical
current density and the power index, and the value of v = 0.15 was reached. It was
observed that increasing or decreasing the value of the anisotropy factor improved the
accuracy of one variable and worsened the accuracy of the other variable. Possible
solution to this may be using separate anisotropy factors to fit both the critical current
density and the power index, however this has not been explored. Any exploration
of such an option would suggest research into whether the anisotropy factor must be
different for J. and n in the general case of Bi-2223 behaviour or if it is an isolated

occurrence.

For the parameter By, it was sought to be observed at what value of the perpendicular
magnetic field does J. equal half of J.. It is clear from Figure 4.11a that By ~ 0.05 T.
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Figure 4.11: Comparison between the measured values in [103] and those
plotted with Equation 4.12, with =1 and v = 0.15.
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Figure 4.12: Comparison between the simulated and measured values of the
AC losses under applied transport current for a range of i.

The power constant [ is simply 5 = 1. Summary of the parameters for using the

Kim-Anderson-Gomory relation is in Table 4.4.
Applied transport current

Using a pointwise constraint integral, Equation 4.28 is applied. This forces a current in

the form I; sin(2w ft), where f = 60 Hz and I; is the amplitude of the current source.

Figure 4.12 shows the summary of simulations where a transport current is applied via
a current source. The results show a close match with both measured and numerically
calculated losses. Achieved were results that are larger than the numerical simulations
by 20% for i = 0.9 and 10% for 7 = 0.2, which can be explained by the imprefect critical
current dependence approximation. Meanwhile, when compared to the measurements
presented, the results demonstrated an underestimation, typically around 14-23%. Un-
der i = 2.5, the measured losses become smaller. There are no suggestions for this
behaviour in [103].

Applied AC transport current in external AC magnetic field

Using a Dirichlet boundary condition, as described in Equation 4.27, a magnetic field of
Bey sin(27 ft) = B, sin(2n ft)i, parallel to the wide face of the tape (along the z-axis)
may be applied, or perpendicular to the wide face of the tape (along the y-axis), so that
Begt sin(27 ft) = By sin(27 f1)J.
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Figure 4.13: Comparison between the simulated and measured values of the
AC losses in AC magnetic field for ¢ = 0.1,0.5,0.9.
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Figure 4.14: Zoomed-in comparison between the simulated and measured
values of the AC losses in parallel magnetic field for ¢ = 0.9 and ¢ = 0.1.

The simulated values for AC loss in a parallel field are in close match with the measured
values, as shown in Figure 4.13a. The largest difference between simulated and exper-
imentally measured data from the literature is when ¢ = 0.9, where the differences are
of about 8% to up to 30% in one case. With decreasing the current, the difference also
decreases. The difference for all other cases varies between 0% and 16% overestimation,
while in only one case when B, = 0.2 T the losses were underestimated out of line
with the remaining cases. The positioning of the filaments and their aspect ratio could
affect the losses as well. For the perpendicular field, from Figure 4.13b it can be seen
that the simulated values produce a close match with measured values. The error for
all cases varies between 1% and 12% overestimation, while in some cases the losses were
underestimated.

In Figure 4.14a, a close-up view of the results for large (i = 0.9) and very small current
(i = 0.1) are shown when the applied magnetic field is parallel to the tape. Figure 4.14b

shows the same when the magnetic field is parallel to the tape.



Chapter 5

The homogeneous

multifilamentary domain

The majority of this chapter, in the shape of a full-length research article, has been
published in the journal Physica C: Superconductivity and its Applications [104]. An
abstract about the same content was presented as an oral presentation at the 6th In-
ternational Workshop on Numerical Modelling of High Temperature Superconductors,
25129t June 2018.

Modelling of first generation tapes can be noticeably time-consuming due to the fila-
ments’ large number and small size. This is largely caused by the requirement to simu-
late their exact shape and positioning. Since first generation superconducting cables can
have from dozens up to hundreds of tapes, the work required to build the whole cable
structure with the help of computer-aided design may be very significant. There are
several reasons for that. Firstly, each filament can have an irregular shape, which may
not be the same for each tape. Secondly, the construction of hundreds of small domains
is cumbersome and prone to errors. Furthermore, and perhaps more importantly, the
small size of the filaments enforces very small mesh elements to be used within the super-
conducting domains in order to capture the correct field penetration. This introduces
large amounts of nodes across the entirety of the tape. So the simulation, especially
when performed over a useful time in the context of fault response, becomes extremely
time-consuming and computationally expensive. On top of that, higher magnetic fields

have been observed to increase computation time [94].

At this point, an engineer should ask the question whether it is better to use analytical
equations or any other type of numerical modelling technique instead of FEM. From
a modelling perspective, the two main issues for the long computational time of first
generation tape models are the non-linearity of the superconducting material’s E-J re-
lation, and the degrees of freedom (DoF) of the model. The DoF are directly related

to the number of dependent variables, mesh nodes and the order of mesh elements. In

43
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(b) Quarter-tape cross-section homogenized domain of the tape by Amemiya [73], including
shading for current density distribution at I;/I. = 0.5. The darkest areas represent 0 A /m?,
and the brightest areas represent 8 x 107 A/m?.

Figure 5.1: The micrograph and homogenized model of Amemiya [73] © 1998
Elsevier. The width of the displayed quarter of the tape is 1.75 mm and the
thickness is 0.125 mm, details in Table 5.1.

turn, the mesh nodes are proportional to the level of detail of the applied mesh, and to
properly discretize each filament a very detailed mesh is required. A way to loosen that
requirement is to simplify the geometry, or in other words, to homogenize the supercon-
ducting filaments into one large domain. Such a homogenized domain may noticeably
decrease the computation time not only for first generation tapes and cables, but also

any other first generation multi-tape devices.

The objective of this chapter is to characterize a homogenization technique for AC
power loss estimation of multifilamentary first generation tapes with straight filaments,
such that it decreases the problem size compared to a full multifilamentary model. In
addition, the level of accuracy it provides in the calculation of the AC transport current

loss over a range of applied currents is investigated.

5.1 Proposed homogenization technique

The homogeneous technique for modelling Bi-2223 tapes, described in this section, can
be found originally in [71], where the matrix material is ignored in AC loss modelling.

It is also briefly explained in [72], but not in the context of AC loss modelling.

Appropriate homogeneity can be obtained when the simulated superconducting domain
has the approximate shape of the real tape’s multifilamentary region. For simplicity
and where applicable, the multifilamentary region can be approximated to be a classical
ellipse, and its dimensions can be obtained from the tape’s micrograph (Figure 5.3
— the shaded areas in both (a) and (b) represent the homogeneous superconducting
domain). These dimensions must be such that all filaments are located within the
rectangle, described by them. Since here the cross-sectional area of the homogenized
domain is larger than the real area of superconductor, it must be ensured that the

current is correctly distributed in the cross-section. This can be achieved by scaling the
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local critical current density in self-field J.o in all cases such that:
Jeo = 1c/Seq (5.1)

where Se, is the area of the filamentary-equivalent domain used in the model and I.
is the critical current for the given tape. The scaling ensures that the current in any
part of the homogenized domain is very similar to the average current in equivalent part
of the real tape. Therefore, the homogenization model should correctly describe local
magnetic field.

It is expected that the shape of the homogeneous region is linked to the shape of the
multifilamentary region, particularly when exposed to external magnetic fields (i.e. a
rectangular homogeneous region will represent a rectangular multifilamentary region;

however, this has not been proven or disproven).

To verify the homogenization method, the prediction can be compared with published
experimental data. Of particular interest are studies with AC loss measurements in
external field and studies with more than one tape.

This homogenization technique is not applicable to tapes with decoupled filaments, such

as those with twisted filaments.

To verify the homogenization method, the loss prediction can be compared with pub-
lished experimental data. The requirements for tapes from the literature to be modelled
are the presence of sufficient data about the geometry, the magnetic field dependence
of the critical current, and the transport current losses within the tape. Micrographs,
numerical models and measurements in applied external field would also be beneficial,
but not essential. The majority of papers that investigate AC power losses do not pro-
vide either one or more parameters, which means scientifically sound verification of the

homogenization technique would not be possible.

5.2 2D verification of the homogenization technique

The most important parameters of the modelled tapes are listed in Table 5.1, 5.3 and 5.4.
They have been taken directly from the literature and some of them have been derived
from other known parameters. In all tapes, the superconductor is straight Bi-2223 and

the sheath is silver, unless specified otherwise.

The critical current dependence of the magnetic field was implemented via an interpo-
lation function of the data in literature (Figure 5.4), as described in Section 4.2.1. In
all of the AC transport current in self-field simulations in this study, the largest local

magnetic field does not exceed 30 mT.

Different meshing densities were used, as seen in Figure 5.2. The purpose was to quantify
the difference in degrees of freedom and simulation time between meshes with different

number of nodes. It could have been possible that an accurate simulation may require
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a significant number of degrees of freedom regardless of the homogenization, and it
must be ensured that the proposed techniques offer a noticeable computational benefit

compared to the fully multifilamentary models.

The simulations in this chapter were performed on a desktop PC with Intel i7-6700 CPU,
3.40GHz, with 16 GB of RAM.

5.2.1 61-filament, Bi-2223, Ag-sheathed tape — Amemiya et al

Description

The first tape is one by the research group of Amemiya et al [73,103], and is hereafter
referred to as ” Amemiya”. It is the same tape as in Subsection 4.3.2, used for initial

verification of the numerical technique.

The provided resistivity of silver in [103] is 3 x 107 Qm. Amemiya et al also provide

the area of the superconductor, as well as the area of the multifilamentary region, but
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Figure 5.2: Comparison between mesh densities in Amemiya et al, as in Table
5.2. The presented images display only the right end of the tape.



Chapter 5 The homogeneous multifilamentary domain 47

(a) Quarter-tape cross-section, Amemiya et al [73] (©1998 Elsevier. The width of the displayed
quarter of the tape is 1.75 mm and the thickness is 0.125 mm, details in Table 5.1.

(b) Full tape cross-section, Choi et al [68] © 2004 IEEE. The width of the displayed full tape
is 3.1 mm and the thickness is 0.17 mm, details in Table 5.3.

Figure 5.3: Micrographs of the tapes, by Amemiya et al and Choi et al. No
micrograph available by Ryu et al. The shaded red areas (original work)
represent the homogenized superconducting domain.
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