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A B S T R A C T   

Parameter calibration is normally required prior to crop model simulation, which can be a time-consuming and 
data-intensive task. Meanwhile, the growth stages of different hybrids/cultivars of the same crop often show 
some similarities, which implies that phenological parameters calibrated for one hybrid/cultivar may be useful 
for the simulation of another. In this study, a data assimilation framework is proposed to reduce the requirement 
for parameter calibration for maize simulation using AquaCrop. The phenological parameters were uniformly 
scaled from previous research performed in a different location for a different maize hybrid, and other param
eters were taken from default settings in the model documentation. To constrain simulation uncertainties, soil 
moisture and canopy cover observations were assimilated both separately and jointly in order to update model 
states. The methodology was tested across a rain-fed field in Nebraska for 6 growing seasons. The results sug
gested that the under-calibrated model with uniformly scaled phenological parameters captured the temporal 
dynamics of crop growth, but may lead to large estimation bias. Data assimilation effectively improved model 
performance, and the joint assimilation outperformed single-variable assimilation. When soil moisture and 
canopy cover were jointly assimilated, the overall yield estimates (RMSE = 1.24 t/ha, nRMSE = 11.48%, R2 =

0.695) were improved over the no-assimilation case (RMSE = 2.01 t/ha, nRMSE = 18.61%, R2 
= 0.338). 

Sensitivity analyses suggested that the improvement was still evident with temporally sparse soil moisture ob
servations and a small ensemble size. Further testing using observations within 90 days after planting demon
strated that the method was able to predict yield around 3 months before harvest (RMSE = 1.7 t/ha, nRMSE =
15.74%). This study indicated that maize yield can be estimated and predicted accurately by monitoring the soil 
moisture and canopy status, which has potential for regional applications using remote sensing data.   

1. Introduction 

Crop modeling is a powerful tool in simulating crop growth, yield 
and the impacts of climate, pests and management on crop production 
(Boote et al., 2013; Araya et al., 2015; Jones et al., 2017). Such models 
can be mechanistic, empirical or a combination of both (Estes et al., 
2013a,b). Crop growth is driven by water, solar radiation, carbon di
oxide concentration and nutrients, all of which can be represented in 
different ways among crop models. As such, models can differ signifi
cantly in their complexity, structure and calculation processes (Bouman 
et al., 1996). Depending on the major driving factors, crop models are 
mainly categorized into carbon-driven, solar-driven and water-driven 

models (Steduto, 2003). 
Similar to other numerical simulation schemes, crop models are 

susceptible to uncertainties in forcing data, model structure and 
parameter specification (Dorigo et al., 2007; Liu and Gupta, 2007; Marin 
et al., 2017). To improve crop simulation performance, many studies 
have adopted data assimilation techniques to improve crop modeling 
performance. Data assimilation techniques combine complementary 
information from measurements and models into an optimal estimate of 
the state variable of interest (Reichle, 2008). The model is used to 
generate continuous and consistent simulation of state variables, and the 
independent observations are used to limit the drift from the ‘truth’ by 
considering the respective errors of model simulation and 
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measurements. The most frequently used variables in crop model 
assimilation include those that are relevant to crop canopy development 
and those that affect crop growth. For example, many studies have 
assimilated leaf area index (LAI) data (Wang et al., 2013; Chen et al., 
2018; Kang and Özdoğan, 2019), various vegetation indices (Fang et al., 
2008; Xie et al., 2017), or the fractional canopy cover (Linker and 
Ioslovich, 2017) to improve canopy development simulation. Other 
studies have sought to improve soil water simulation by assimilating soil 
moisture observations (Ines et al., 2013; Chakrabarti et al., 2014; Zhang 
et al., 2020) or soil water indices (De Wit and Van Diepen, 2007), or to 
improve biomass simulation by directly assimilating biomass observa
tions (Linker and Ioslovich, 2017; Jin et al., 2020). The coupling of crop 
models with hydrological or radiative transfer models (Pauwels et al., 
2007; Ma et al., 2013; Li et al., 2014; Hu et al., 2019), and/or the joint 
assimilation of multiple types of observations (Pauwels et al., 2007; 
Nearing et al., 2012; Ines et al., 2013; Zhang et al., 2020) has also been 
explored. Most studies reported an improved utility of yield estimation 
after assimilation, and dual-variable assimilation often outperformed 
single-variable assimilation as a result of the complementary informa
tion from different types of observations (Pauwels et al., 2007; Zhang 
et al., 2020). 

Crop models need to be calibrated before they can be used for crop 
growth simulation (Huang et al., 2019). Model calibration is the process 
of adjusting model parameters to obtain accurate model representation 
(Hunt and Boote, 1998; Gupta et al., 2006; Boote et al., 2013). As crop 
performance is dependent on the climate, specific variety and field 
management, calibration is necessary when any of these change signif
icantly (Wallach, 2011; Seidel et al., 2018; Boote, 2019). Calibration is 
typically performed in multiple stages to fit different observation data, 
such as phenology and crop yield (Seidel et al., 2018), and is deemed 
successful when the model is tested against independent data sets and 
minimal residuals are observed (Hunt and Boote, 1998; Gupta et al., 

2006). 
Despite the importance of model calibration, it is often a data- 

demanding and time-consuming task, and requires expert knowledge 
and sophisticated data collection tools. For example, the median time 
devoted to crop model calibration is 25 days according to an online 
survey (Seidel et al., 2018). In addition, the parameter calibration is 
significantly constrained by data availability and data quality, and the 
calibrated parameters may not be unequivocal as a result of calibration 
method or even the calibration sequence (Palosuo et al., 2011; Seidel 
et al., 2018), which are among the major difficulties in the calibration of 
crop and other models (e.g., hydrological models) (Boote et al., 1996; 
Seidel et al., 2018). This can become more problematic when the model 
is applied using remote sensing data over a large area with notable 
spatial variability in the crop phenological parameters. Meanwhile, 
different hybrids/cultivars of the same crop often show some similarities 
in the relative duration of crop development stages, despite discrep
ancies in the length of the growing seasons. This implies that parameter 
values calibrated for one crop hybrid/cultivar could potentially be 
useful for the simulation of another hybrid/cultivar with some adjust
ment, which may reduce the burden of parameter calibration. However, 
this will inevitably introduce simulation uncertainties. As data assimi
lation has the potential to accommodate some uncertainties in model 
parameters by exerting constraints on simulated model states (e.g., 
canopy cover), the simulation uncertainties may be reduced if obser
vations are assimilated to update key model states. This may be 
particularly meaningful for a remote sensing application, where 
pixel-level calibration is difficult or infeasible. 

In this study, a data assimilation framework is proposed to improve 
maize simulation using the AquaCrop model without routine parameter 
calibration. Instead, the parameter values are either taken from default 
settings in the model documentation, or determined by uniformly 
scaling the phenological parameters calibrated for a different maize 

Fig. 1. Mean monthly precipitation and ET0 in the 6 maize-growing years.  
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hybrid/cultivar in a different location. To constrain the simulation un
certainties, surface soil moisture and/or canopy cover observations are 
assimilated into the model, and the results are evaluated for 6 growing 
seasons, each with a different maize hybrid/cultivar. Sensitivity ana
lyses are performed to assess the impacts of ensemble size and assimi
lation interval for potential applications with remote sensing data. The 
ability of the method to predict maize yield using data from early growth 
stages is also evaluated. Overall, the objectives of this study are to assess 
the utility of data assimilation to reduce the burden for model calibra
tion and to improve maize simulation and prediction with uncertainties 
in the parameters. The study serves as a field-scale experiment of the 
proposed method for a potential remote sensing application at regional 
scale. 

2. Materials and methods 

2.1. AquaCrop model 

The AquaCrop model is a simple, robust and user-oriented model 
developed by the Food and Agriculture Organization (FAO, Steduto et al. 
(2009)). In AquaCrop, the growth of different crops is simulated using a 
generic module that characterizes the water stress influence on crop 
transpiration, biomass accumulation and yield formation (Raes et al., 
2009). The crop transpiration is first calculated from the reference 
evapotranspiration (ET0), which is then translated into dry 
above-ground biomass (B) using a crop-specific water productivity, 
normalized for evaporative demand and CO2 concentration (Steduto 
et al., 2009): 

B = WP∗⋅
∑ Tr

ET0
(1) 

where Tr is crop transpiration, and WP* is the normalized water 
productivity. The yield (Y) is derived as the product of crop biomass and 
the harvest index (HI): 

Y = B⋅HI (2) 

Different from most crop models that simulate the foliage develop
ment using the LAI such as APSIM (Keating et al., 2003) and STICS 
(Brisson et al., 1998), AquaCrop simulates the canopy cover instead, 
which introduces significant simplification in the model simulation 
(Steduto et al., 2009). The model simulates crop growth at daily time 
steps, and both thermal time (growing degree day (GDD)) and calendar 
time can be used. The forcing data required are precipitation, minimum 
and maximum temperature and ET0. In this study an open-source 
version based on the AquaCrop v6.0 was adopted (Foster et al., 2017). 

2.2. Study site 

The study site CSP3 (41.18◦ N, 96.44◦ W, alt. 363 m) is located at the 
University of Nebraska-Lincoln (UNL) Eastern Nebraska Research and 
Extension Center (ENREC) near Mead, United States. The site also col
locates with an AmeriFlux eddy covariance station (NE3) which has 
been operating since 2001 (Baldocchi et al., 2001). The region has a 
semi-arid continental climate with an annual average precipitation of 
678 mm (averaged between 1982 and 2017), and the soil is mostly silt 

loam and silty clay loam (Foolad et al., 2017). The field covers an area of 
65.4 ha (Verma et al., 2005), and maize and soybean are rotationally 
grown under rain-fed conditions. The crop is typically planted in late 
April through early May and harvested in October. In this study, 6 
maize-growing seasons (every other year from 2003 to 2013) were 
simulated. The monthly precipitation and ET0 of each year are shown in  
Fig. 1. For each maize-growing season, a different maize hybrid/cultivar 
was planted and the cultural information for each growing season is 
listed in Table 1. Judging by the relative magnitude of growing season 
precipitation and ET0, 2003 and 2005 are relatively drier, and 2007 and 
2011 are relatively wetter. 

2.3. Data 

The data used in this study include forcing data for AquaCrop, and 
the observations used for data assimilation and validation. The forcing 
data, including precipitation and daily minimum and maximum tem
perature were acquired from in situ observations, and the ET0 data were 
calculated from weather data using the FAO Penman–Monteith (FAO- 
PM) method (Allen et al., 1998). 

Data used for assimilation and validation include ET, soil moisture, 
crop canopy cover, dry biomass and grain yield. Latent heat flux (LE) 
was routinely measured on an hourly basis at the AmeriFlux site. LE was 
averaged to daily value and then corrected for energy balance closure 
(Twine et al., 2000) before converted to ET using the latent heat of 
vaporization. Soil moisture was monitored using Theta probes (Delta-T 
devices, Cambridge, UK) at 5 depths (10, 25, 50, 100, 175 cm) from 4 
profiles in the field (soil moisture at 175 cm was not available for 2003) 
at the AmeriFlux site (Suyker and Verma, 2008). The hourly measure
ments were converted to daily values using simple averaging and 
averaged among the 4 profiles to generate the mean soil moisture at each 
depth. 

During each growing season, crop samples were routinely collected 
at 6 Intensive Measurement Zones (IMZs) in the field every 10–14 days 
(Nguy-Robertson et al., 2015). The IMZs were established for detailed 
process-level studies such as crop growth and biomass partitioning 
(Verma et al., 2005; Hunt et al., 2014), and each IMZ covered an area of 
20 m × 20 m. Samples from 4 to 8 plants were collected from a 1 m 
sampling length within each IMZ. The samples were transported on ice 
to the laboratory and divided into green/dead leaves, stems and repro
ductive organs (Nguy-Robertson et al., 2015). The leaf area was then 
measured in the laboratory using an area meter (Model LI-3100, LI-Cor 
Lincoln, NE). The plant parts were then dried at 105 ◦C for dry biomass 
measurements (Ajaere, 2012). At the end of the growing season, maize 
was hand-harvested in each IMZ and the grain yield was adjusted to the 
15.5% grain moisture content. 

The LAI measurements were converted to canopy cover (CC) mea
surements using the empirical equation (Heng et al., 2009; Hsiao et al., 
2009) 

CC = 1.005 × [1 − e(− 0.6×LAI)]
1.2 (3)  

2.4. Parameters 

As a different maize hybrid/cultivar was planted in each growing 

Table 1 
Meteorological and cultural conditions of each growing season. P and ET0 are the sums between planting date and harvest date. GDD is the cumulative growing degree 
days between planting date and harvest date. Yield data are hand-harvested grain yield adjusted to 15.5% moisture content.  

Year P (mm) ET0 (mm) Cultivar Planting date Harvest date GDD Plants/ha Yield (t/ha)  

2003  307  668 Pioneer 33B51 BT 13/05 16/10  1885  57,559  7.63  
2005  304  779 Pioneer 33G66/33G68 BT 27/04 18/10  2216  53,678  10.5  
2007  636  705 Pioneer 33H26 HX 02/05 01/11  2276  55,758  12.45  
2009  477  670 Pioneer 33T57 22/04 11/11  1828  60,530  12.81  
2011  584  644 DeKalb 61-69VT3 02/05 18/10  2071  50,184  10.11  
2013  427  663 DeKalb 62-98 13/05 21/10  2067  58,190  11.3  

Y. Lu et al.                                                                                                                                                                                                                                       



Agricultural Water Management 252 (2021) 106884

4

season, the duration of each growth stage can vary dramatically, despite 
the similarities in the growing cycle. The vast difference is demonstrated 
in the field-average canopy cover (converted from measured LAI) time 
series in the 6 growing seasons in Fig. 2. For example, maize was planted 
on the same date in 2003 and 2013 (Table 1), and the maximum canopy 
cover was reached within comparable time, but the canopy senescence 
started much sooner after reaching maximum canopy cover in 2003, 
leading to a significantly shorter growing season. In addition, the 
maximum canopy cover attainable also varies dramatically among 
different seasons. Consequently, the phenological parameters are not 
directly transferable between growing seasons, and need to be calibrated 
for each hybrid/cultivar separately. 

The major parameters used in the simulation were classified into 
three categories: (1) conservative parameters, (2) variant parameters 
and (3) phenological parameters. Conservative parameters are those 
with a fixed value generally applicable to the same crop according to the 
AquaCrop documentation (Raes et al., 2018), and the default values 
recommended in the documentation were used. Variant parameters 
include canopy growth coefficient, maximum canopy cover and 
maximum rooting depth, which could vary with maize hybrid/cultivar 
within a small range. The parameter ranges were relatively easy to 
determine based on model documentation, in situ observations and/or 
previous studies. The most important subset of parameters are the 
phenological parameters, which control the development stages of crop 
growth. Phenological parameters are hybrid/cultivar-specific, and are 
usually calibrated within physically reasonable ranges to reflect in situ 
observations. Here the phenological parameters calibrated by Sandhu 
and Irmak (2019b) for a different maize hybrid in a different field were 
used as the reference. The parameters were calibrated using in situ 
canopy cover observations, biomass and yield (Sandhu and Irmak, 
2019a) for the maize hybrid Mycogen 2V732 in 2009 (Sandhu and 
Irmak, 2019b) in a field about 160 km southwest of our study site. To 
account for the phenological differences between maize hybrid
s/cultivars, a scaling factor is determined each year which uniformly 
scales the reference phenological parameters, so that the simulated 
canopy cover time series roughly fits the observations. For example, 
when a scaling factor of 0.9 is used, all the phenological parameters are 
assumed to be 90% of the corresponding reference values reported by 
Sandhu and Irmak (2019b). To determine the phenological scaling fac
tor, a number of scaling factors were tested, and the one that led to the 
best agreement between simulated and observed canopy cover time 
series was selected. The scaling factor was then allowed to vary within 
an arbitrary ± 0.05 range in each year to account for the parameter 

Fig. 2. Field-average canopy cover time series in the 6 growing seasons.  

Table 2 
Major parameter values and scaling factors used in the maize growth simulation.  

Conservative parameters Value Reference 
base temperature (∘C) 8 Raes et al. (2018) 
cut-off temperature (∘C) 30 Raes et al. (2018) 
canopy cover at 90% emergence (cm2/ 

plant) 
6.5 Raes et al. (2018) 

canopy decline coefficient (%/GDD) 0.01 Raes et al. (2018) 
crop basal coefficient prior to senescence 

(Kcb) 
1.05 Raes et al. (2018) 

normalized water productivity (g/m2) 33.7 Raes et al. (2018) 
canopy expansion stress threshold 

(upper) 
0.14 Raes et al. (2018) 

canopy expansion stress threshold 
(lower) 

0.72 Raes et al. (2018) 

shape factor for canopy expansion 2.9 Raes et al. (2018) 
stomatal conductance stress threshold 

(upper) 
0.69 Raes et al. (2018) 

shape factor for stomatal control 6 Raes et al. (2018) 
canopy senescence stress threshold 

(upper) 
0.69 Raes et al. (2018) 

shape factor for canopy senescence 2.7 Raes et al. (2018)  
Variant parameters Value Reference 
canopy growth coefficient (%/GDD) 0.012–0.013 Raes et al. (2018) 
maximum fractional canopy cover 0.85–0.98 observations 
maximum effective rooting depth (m) 1–2 Sandhu and Irmak 

(2019b)  
Reference phenological parameters Value Reference 
time from sowing to emergence (GDD) 70 Sandhu and Irmak 

(2019b) 
time from sowing to maximum root 

depth (GDD) 
1592 Sandhu and Irmak 

(2019b) 
time from sowing to senescence (GDD) 1603 Sandhu and Irmak 

(2019b) 
time from sowing to maturity (GDD) 1750 Sandhu and Irmak 

(2019b) 
time from sowing to flowering (GDD) 885 Sandhu and Irmak 

(2019b) 
duration of flowering (GDD) 190 Sandhu and Irmak 

(2019b)  
Phenological scaling factors Minimum Maximum 
2003 0.75 0.85 
2005 1.05 1.15 
2007 1 1.1 
2009 0.8 0.9 
2011 0.95 1.05 
2013 0.95 1.05  
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uncertainties. The parameter values and scaling factors are summarized 
in Table 2. 

2.5. Data assimilation framework 

The ensemble Kalman filter (EnKF) is adopted in this study. The 
EnKF is a Monte-Carlo variant of the Kalman filter (Kalman, 1960) 
which sequentially synthesizes complementary information from the 
model simulation (the ‘forecast’) and available observations to generate 
an optimal estimate (the ‘analysis’) of the model states (Evensen, 2003). 
The original Kalman filter works well for linear models, while the EnKF 
is more feasible for non-linear and high-dimensional models. In the 
EnKF, the forward model is run for a number of realizations with per
turbed forcing data and/or model parameters to generate an ensemble of 
model forecasts. When an observation is available, each realization is 
updated by analyzing the ensemble covariance and the observation error 
distribution. The ensemble mean of all the analyses is taken as the 
updated estimate of EnKF. 

The evolution of crop model state variables in time can be described 
by 

xf
i,t = M(xf

i,t− 1,ui,t, bi,t) + wt (4) 

where M is the forward model (AquaCrop in this case), xf
i,t is the state 

vector of the model forecast (canopy cover or soil moisture) of the ith 
realization at time step t, ui,t is the forcing data, bi,t is the model 
parameter vector, and wt represents model error. 

The observation is related to the true state by 

yt = Hxt + vt (5) 

where yt is the observation, H is the observation operator that 
translates the state variables to the observation, xt is the true state, and vt 
is the observation error. 

When an observation is available, the EnKF updates the state vari
ables in each model realization by 

xa
i,t = xf

i,t + Kt(yt − Hxf
i,t) (6) 

where xa
i,t is the model analysis after assimilation. Kt is the Kalman 

gain, which is derived by 

Fig. 3. Canopy cover and biomass estimates from open-loop (OL) simulations in the 6 growing seasons. The gray lines represent the 200 OL ensemble realizations, 
and the thick black lines represent the mean OL estimates. The decrease of biomass simulation to zero indicates the end of growing season for each ensemble 
realization. The red circles are the field average measurements, and the error bars indicate the variation range of the 6 IMZ samplings. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Kt = Pf
t H

T(HPf
t H

T + R)
− 1 (7) 

Here Pf
t and R are the covariance of the ensemble model forecast and 

the observations, respectively. When only one observation is available, 
R equals the observation variance. In the EnKF, the model and obser
vation errors are assumed to follow Gaussian distribution with zero 
mean. 

The determination of observation error is crucial for the EnKF per
formance. To determine the soil moisture observation error, the daily 
standard deviation of the observations from the 4 soil moisture profiles 
was first calculated, and the multi-year average value (0.04 m3/m3) was 
taken as the observation error. The canopy cover observation error 
varies dramatically during the growing season. In the exponential 
growth stage and the decay period canopy cover demonstrated signifi
cant variability among the IMZs (standard deviation as large as 0.297), 
while the variability was only marginal when the canopy was near 
maximum (shown in Fig. 3). Hence the canopy cover observation error 
was assumed dynamic, and the standard deviation of the samplings from 
the 6 IMZs on each sampling day was used separately. 

2.6. Experiment set-up 

In this study, 6 growing seasons were simulated (2003, 2005, 2007, 
2009, 2011, 2013) for different maize hybrids/cultivars (Table 1). A soil 
column of 2.15 m was divided into 5 layers (0–15, 15–35, 35–65, 
65–135, 135–215 cm) to fit the soil moisture sensor depth. For each 
year, the soil moisture profile was initialized on January 1 using multi- 
year average soil moisture profile. Soil texture variation range (sand 
(5–15%), clay (20–30%)) was first derived based on Web Soil Survey 
Data (https://websoilsurvey.sc.egov.usda.gov) as presented in Foolad 
et al. (2017). The soil texture of each ensemble member was then 
randomly sampled within the range to account for texture spatial het
erogeneity, and soil hydraulic properties (e.g., field capacity, hydraulic 
conductivity at saturation) were estimated using a pedotransfer model 
(Saxton and Rawls, 2006) from soil texture data to keep the properties 
consistent. An ensemble size of 200 was used in the analysis, which 
proved sufficient following a sensitivity test (impact of ensemble size is 
evaluated in Section 3.6 in this paper). For each model realization, the 
variant parameters and the uniform phenological scaling factors were 
randomly sampled within the given ranges. Model estimates from four 
strategies were compared: (1) open-loop (OL: model simulations using 
randomly sampled parameters without performing assimilation); (2) soil 
moisture assimilation (DASM: model simulations with only soil moisture 
assimilation); (3) canopy cover assimilation (DACC: model simulations 
with only canopy cover assimilation); (4) soil moisture and canopy cover 
assimilation (DASM+CC: model simulations with both soil moisture and 
canopy cover assimilation). Here only the surface layer soil moisture 
(10 cm) observations were assimilated to update the soil moisture pro
file to mimic a remote sensing application. 

2.7. Result evaluation 

The model estimates of canopy cover, ET, biomass and yield from the 
four strategies were evaluated against in situ observations in the 6 
growing seasons. The canopy cover, biomass and yield estimates were 
compared against field data, and the ET estimates were evaluated using 
AmeriFlux data. Five statistical metrics were used to evaluate the 
goodness of fit for each simulation, including the coefficient of deter
mination (R2), the root mean square error (RMSE), the normalized 
RMSE (nRMSE), the bias and the Willmott’s index of agreement (d) 
(Willmott, 1981). 

The metrics are calculated by 

R2 = [
1
n
∗

∑n
i=1(Si − S)(Oi − O)

σS ∗ σO
]

2

(8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Si − Oi)
2

n

√

(9)  

nRMSE =
RMSE

O
∗ 100% (10)  

bias =
1
n
∑n

i=1
(Si − Oi) (11)  

d = 1 −
∑n

i=1(Si − Oi)
2

∑n
i=1(

⃒
⃒
⃒Si − O

⃒
⃒
⃒+

⃒
⃒
⃒Oi − O

⃒
⃒
⃒)

2
(12) 

where Oi stands for the ith observation, Si is the corresponding model 
simulation, n is the number of observations available, σS and σO are the 
standard deviations of model simulations and observations, and S and O 
are the mean of model simulations and observations, respectively. The 
selected metrics were used to assess the goodness of fit from different 
aspects, in which R2 depicts the proportion of the observation variance 
that is predictable from model simulation, the RMSE and nRMSE illus
trate the absolute and relative magnitude of the difference between 
simulation and observation, the bias refers to the tendency of the 
simulation to over- or under-estimate the model state, and d represents 
the ratio of the mean square error and the potential error (1 indicates a 
perfect match, and 0 indicates no agreement). 

3. Results 

3.1. Open-loop simulations 

It is crucial for an assimilation application that the OL simulation 
captures the dynamics of key model states and that the ensemble spread 
reflects the model state variability. Here the OL estimates for canopy 
cover and biomass are examined in Fig. 3. Overall, the model simulation 
with uniformly scaled phenological parameters and the ± 0.05 un
certainties successfully characterized the temporal dynamics of canopy 
cover development (Fig. 3a–f) in each growing season, and the spatial 
variation range of canopy cover in the field generally falls within the 
ensemble spread. This suggests that the assumption of similarities in the 
relative durations of growth stages of different maize hybrids/cultivars 

Table 3 
Goodness of fit metrics for canopy cover estimates in the 6 growing seasons 
under different simulation strategies.  

Year Strategy R2 RMSE nRMSE (%) Bias d  

2003 OL  0.975  0.08  13.64 − 0.06  0.985   
DASM  0.959  0.07  12.29 − 0.02  0.988   
DACC  0.976  0.07  11.62 − 0.03  0.990   
DASM+CC  0.956  0.08  14.14 − 0.02  0.985  

2005 OL  0.979  0.09  13.81 − 0.06  0.981   
DASM  0.979  0.05  7.78 0.00  0.995   
DACC  0.993  0.04  6.03 − 0.02  0.997   
DASM+CC  0.989  0.04  6.19 − 0.01  0.997  

2007 OL  0.944  0.09  15.31 0.02  0.978   
DASM  0.941  0.11  17.83 0.07  0.972   
DACC  0.997  0.02  3.53 0.01  0.999   
DASM+CC  0.994  0.03  5.38 0.02  0.998  

2009 OL  0.978  0.08  13.05 − 0.06  0.987   
DASM  0.991  0.05  7.50 − 0.03  0.996   
DACC  0.992  0.04  6.04 − 0.01  0.997   
DASM+CC  0.996  0.03  4.24 − 0.01  0.999  

2011 OL  0.946  0.14  27.50 0.11  0.961   
DASM  0.941  0.14  28.09 0.11  0.959   
DACC  0.998  0.02  4.35 0.02  0.999   
DASM+CC  0.998  0.02  4.75 0.02  0.999  

2013 OL  0.969  0.08  14.52 0.04  0.989   
DASM  0.961  0.08  15.49 0.03  0.987   
DACC  0.986  0.04  8.52 0.00  0.996   
DASM+CC  0.989  0.04  7.74 − 0.01  0.997  
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Fig. 4. Canopy cover estimates from the three data assimilation strategies. The gray lines represent the 200 assimilation ensemble realizations, and the thick line 
represent the mean estimates from different strategies. The OL mean is also plotted in black lines as a reference. The red circles are the field average measurements, 
and the error bars indicate the variation range of the 6 IMZ samplings. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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is valid despite the differences in the total season length, which provides 
a good basis for updating canopy cover using in situ observations. The 
goodness of fit metrics of OL canopy cover estimates are included in  
Table 3. In most growing seasons, the canopy cover estimates agreed 
well with observations (R2 > 0.95, RMSE < 0.1). In 2003 and 2009, 
canopy cover could still reach above 0.9 despite the low precipitation. 
While in 2005, with the lowest precipitation and the highest ET0 
(Table 1), the water stress was the highest among the 6 years, which 
triggered early senescence in some ensemble realizations that led to low 
canopy cover estimates. In 2011, OL over-estimated canopy cover over 
the entire growing season, which relates to the abundant precipitation, 
particularly in the exponential growth period in May and June (Fig. 1). 

The statistical metrics of OL biomass estimates (Fig. 3g–l) are 
included in Table 5. The ensemble realizations captured the overall 
trends of biomass accumulation, but the estimates may deviate a lot 
from observations, which is closely related to canopy cover simulation. 
For example, biomass was under-estimated in 2003, 2005, 2007 and 
2009, and over-estimated in 2011, which is in line with canopy cover 
simulations. In particular, 2009 was the only year with the final biomass 
over 20 t/ha, which was also significantly higher compared to other 
years. 

3.2. Canopy cover estimates 

The canopy cover estimates from different assimilation strategies are 
shown in Fig. 4, and the goodness of fit metrics are included in Table 3. 
Compared with OL estimates (Fig. 3), DASM improved canopy cover 
estimates in the two drier growing seasons (2003 and 2005), while the 
performance was slightly worse in the two wetter growing seasons (2007 
and 2011). In dry environments, soil moisture is the major limiting 
factor in canopy development, and the water stress coefficient for leaf 
expansion is more sensitive to soil moisture variation than under wet 
conditions (Raes et al., 2012). When soil moisture was assimilated, the 
water stress was better depicted. As a result, the canopy cover dynamics 
were simulated more accurately, and the early senescence in some 
ensemble realizations in 2005 was corrected. In wet environments, soil 
moisture is not a strong constraint for canopy cover as the water stress is 
low, evidenced by the positive bias in OL estimates. Consequently, the 
improvement in canopy cover estimates from DASM was limited. In 

DACC, canopy cover was directly updated using in situ observations, 
therefore the improvement was evident in all growing seasons. In 
particular, the OL estimates in 2011 gave the largest RMSE (0.14) among 
the 6 years, which was largely caused by a mismatch in the relative 
lengths of phenological stages. After canopy cover assimilation, the 
mismatch was to a large extent reduced (RMSE = 0.02, d = 0.999). 
DASM+CC combined the strengths of DASM and DACC, and gave the best 
overall performance among all years. 

3.3. ET estimates 

The goodness of fit metrics for daily ET estimates are shown in  
Table 4. The OL ET estimates generally agree with the observations, and 
the performance is better in the drier growing seasons (2003 and 2005) 
than in the wetter growing seasons (2007 and 2011). This may relate to 
the new feature in water stress determination in AquaCrop v6.0. The 
simulation in very dry conditions was improved in AquaCrop v6.0, in 
which the soil water stress was determined by the wetter soil between 
the total root zone and the top soil with a default depth of 0.1 m. This 
improvement essentially reduces the soil water stress on crop growth, 
thus the model becomes more robust to soil moisture simulation un
certainty. ET estimation RMSEs from different simulation strategies do 
not differ too much in most years, but assimilating soil moisture tends to 
reduce ET bias. 

The daily ratio of Tr∕ET is plotted in Fig. 5. As no Tr observations 
were available, the estimates from data assimilation were only 
compared to OL simulations. The Tr∕ET ratio dynamics closely resemble 
the canopy cover development, as a denser canopy increases the crop 
transpiration coefficient (KcTr) and decreases the soil evaporation co
efficient (Ke), which leads to a larger Tr∕ET ratio, and vice versa. In 
2011, the ET estimates were comparable from different strategies, but 
the Tr∕ET ratio in the exponential growth stage was significantly 
reduced after canopy cover assimilation, which would largely reduce the 
Tr and hence the biomass production. Fig. 5 demonstrated that despite 
the similar ET estimates from different strategies, the Tr estimates can 
differ a lot through data assimilation, which would have a large impact 
on biomass estimation. 

3.4. Biomass estimates 

The biomass estimates from the three data assimilation strategies are 
shown in Fig. 6 and the statistical metrics are listed in Table 5. Assim
ilating soil moisture or canopy cover generally improved biomass esti
mation compared to OL results. DASM outperformed DACC in 2003, 
2005, 2007 and 2009, while DACC gave better estimates in 2011 and 
2013. In 2003, 2005, 2007 and 2009, biomass was under-estimated by 
OL as a result of the smaller Tr estimates caused by the under-estimated 
canopy cover (Fig. 3). The assimilation of soil moisture resulted in 
higher ET estimates. Consequently, the negative bias in biomass esti
mates was largely reduced. In 2011 and 2013, soil moisture was not a 
major limiting factor in crop growth, and OL over-estimated biomass as 
a result of the high positive canopy cover estimation bias. When canopy 
cover was assimilated, the canopy cover estimation bias was reduced, 
which led to lower Tr estimates. As a result, the positive estimation bias 
decreased significantly. Overall, DASM+CC performed best in all the 6 
growing seasons. In 2009, the final biomass was significantly higher 
compared to other years, despite the low precipitation. This may be 
attributed to the unique aridity-resistant features of the specific hybrid/ 
cultivar that were not accounted for in the parametrization, and may 
require more detailed information to further improve the model per
formance. Aside from 2009, the DASM+CC biomass estimation RMSE was 
basically smaller than 1 t/ha, and the nRMSE ranged between 5.48% 
and 13.23%. The overall evaluation of biomass estimates from the 6 
years is shown in Fig. 7. DASM and DACC performed similarly over the 6 
years (RMSE ≈ 1.6 t/ha, nRMSE ≈ 20%). When soil moisture and can
opy cover were assimilated together, the best biomass estimates were 

Table 4 
Goodness of fit metrics for daily ET estimates in the 6 growing seasons under 
different simulation strategies.  

Year Strategy R2 RMSE (mm/ 
day) 

nRMSE 
(%) 

Bias (mm/ 
day) 

d  

2003 OL  0.594  1.19  29.42 − 0.35  0.866   
DASM  0.503  1.28  31.80 0.26  0.833   
DACC  0.567  1.24  30.76 − 0.39  0.853   
DASM+CC  0.484  1.31  32.44 0.28  0.825  

2005 OL  0.490  1.37  36.54 − 0.55  0.807   
DASM  0.603  1.09  29.04 0.10  0.876   
DACC  0.494  1.37  36.46 − 0.55  0.811   
DASM+CC  0.603  1.09  28.99 0.05  0.877  

2007 OL  0.512  1.40  34.52 − 0.70  0.789   
DASM  0.468  1.31  32.47 − 0.23  0.815   
DACC  0.516  1.40  34.47 − 0.70  0.789   
DASM+CC  0.469  1.32  32.52 − 0.26  0.813  

2009 OL  0.823  1.28  33.37 − 0.97  0.875   
DASM  0.663  1.32  34.33 − 0.65  0.840   
DACC  0.805  1.32  34.62 − 1.00  0.868   
DASM+CC  0.663  1.34  34.99 − 0.70  0.837  

2011 OL  0.561  1.43  39.19 − 0.59  0.833   
DASM  0.539  1.44  39.52 − 0.54  0.827   
DACC  0.569  1.44  39.38 − 0.64  0.833   
DASM+CC  0.560  1.43  39.24 − 0.60  0.831  

2013 OL  0.484  1.21  32.76 − 0.30  0.824   
DASM  0.512  1.14  31.00 − 0.20  0.840   
DACC  0.558  1.11  29.94 − 0.33  0.850   
DASM+CC  0.538  1.13  30.59 − 0.28  0.846  
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Fig. 5. Daily Tr∕ET ratio in the 6 growing seasons under different simulation strategies. The OL estimates are also plotted in black lines as a reference. The dashed 
lines indicate the planting date and the last field sampling date. 
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Fig. 6. Biomass estimates from the three data assimilation strategies. The gray lines represent the 200 assimilation ensemble realizations, and the thick line represent 
the mean estimates from different strategies. The OL mean is also plotted in black lines as a reference. The red circles are the field average measurements, and the 
error bars indicate the variation range of the 6 IMZ samplings. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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derived (RMSE = 1.24 t/ha, nRMSE = 15.42%), which significantly 
improved over OL estimates (RMSE = 2.08 t/ha, nRMSE = 25.87%) in 
all the goodness of fit metrics. Compared with previous AquaCrop maize 
simulation studies (Heng et al., 2009; Mebane et al., 2013; Sandhu and 
Irmak, 2019a,b; Ran et al., 2020), the joint assimilation reached similar 
accuracy in biomass estimation. This suggests that the proposed method 
effectively improved AquaCrop simulation performance, even though no 
routine calibration was performed. 

3.5. Yield estimates 

The maize yield estimates from OL and the three assimilation stra
tegies are shown in Fig. 8. The OL significantly under-estimated yield in 
2003, 2005, 2007 and 2009, and over-estimated yield in 2011, which is 
in line with OL biomass estimates (Fig. 3). Soil moisture assimilation 
significantly improved yield estimation in 2003 and 2005, while canopy 
cover assimilation performed better in 2011. The relative performance 
of DASM and DACC is consistent with the biomass estimates (Fig. 6), as 
yield is derived directly from biomass using a crop-specific harvest 
index. Overall, DASM+CC performed best, in which the RMSE decreased 
from 2.01 t/ha for OL to 1.24 t/ha, and the R2 increased from 0.338 for 
OL to 0.695. 

3.6. Impact of ensemble size 

The data assimilation performance relies on a sufficient number of 
ensemble realizations to generate accurate covariance samplings (Yin 
et al., 2015). When a limited number of ensemble members are used, the 
assimilation results usually demonstrate large instability. Here an 
assimilation experiment was undertaken to determine the minimum 
number of ensemble realizations needed to generate stable results. 
DASM+CC was performed using 5, 10, 20, 30, 50, 100, 200, 300 and 400 
ensembles, respectively. For each ensemble size, DASM+CC was per
formed multiple times, and the box plot of biomass estimation RMSE is 
shown in Fig. 9. While the figure clearly demonstrates that the result 
stability increases with larger ensemble size, comparatively little 
improvement is seen when more than 50 ensemble members are used. In 
some years (e.g., 2007), stable results can even be derived with as few as 
10 ensemble members. This indicates that similar assimilation estimates 

can be obtained using a much smaller ensemble size, which would 
significantly reduce the computational burden, particularly when the 
methodology is applied over a large area using remote sensing data. 

3.7. Impact of soil moisture assimilation frequency 

In this study, soil moisture observations were available at sub-daily 
scale and were assimilated on a daily basis. However, if the methodol
ogy is applied using remote sensing data, soil moisture is unlikely to be 
available every day, which may lead to reduced assimilation perfor
mance. Fig. 10 shows the biomass and yield estimation RMSEs from 
DASM+CC with soil moisture data assimilated every 1–14 days. The 
RMSEs from DACC are also plotted in dashed lines, as the DASM+CC 
simulations are expected to converge to DACC simulations when soil 
moisture data are assimilated at a very long interval. For biomass esti
mates, the RMSE slowly increases with larger assimilation interval in 
2003, 2005, 2007 and 2009, but the added value of soil moisture 
assimilation is still evident even at the 14-day assimilation interval 
compared to DACC. In 2011, the impact of assimilation interval is mar
ginal, while the RMSE fluctuates within a 0.2 t/ha range in 2013. This is 
consistent with previous research showing that a shorter assimilation 
interval has a direct impact on soil moisture estimates and a reduced 
impact on other model states (Lu et al., 2019). For yield estimates, the 
RMSE increases gradually while the R2 decreases slightly with longer 
soil moisture assimilation interval. When soil moisture is assimilated at a 
14-day interval, the yield RMSE increases by 0.22 t/ha and the R2 de
creases by 0.078 compared to daily soil moisture assimilation case. 
Overall, a shorter assimilation interval generally leads to improved 
biomass and yield estimates, but the added value of soil moisture 
assimilation is still evident at a 14-day assimilation interval in most 
cases. This suggests that the methodology can also effectively improve 
model performance in areas and applications with limited soil moisture 
data availability. 

3.8. Potential for yield prediction 

In this study, all available soil moisture and canopy cover observa
tions during the growing season were used to improve maize simulation. 
The results demonstrate that maize yield can be estimated accurately by 
monitoring the soil wetness and canopy growth, which enables crop 
yield monitoring and retrospective yield estimation when the whole 
growing season is observed. Another interesting topic is whether the 
proposed method is capable of predicting the final maize yield using 
observations in the first few months of the growing season. Here the 
model was rerun using observations within 90 days after planting (i.e., 
no observations collected after this day were used for the phenological 
scaling or assimilation). Fig. 11 shows the yield prediction evaluation. 
As a smaller number of observations are used for phenological scaling 
and assimilation, the yield predictions deteriorate compared to using all 
observations in the growing season (Fig. 8). Despite the reduced per
formance, DASM+CC still outperforms all other experiments, and the 
yield prediction RMSE is reduced from 2.48 t/ha in OL to 1.7 t/ha 
(31.5% reduction). This suggests that the proposed method is able to 
predict the final yield around 3 months before harvest. If more obser
vations are used or better knowledge on the maize phenological features 
is available, the yield prediction accuracy can be further improved. 

4. Discussion 

4.1. Comparison with other calibration/assimilation studies 

Results from this study demonstrated that maize simulation can be 
improved by assimilating soil moisture and canopy cover data with 
much reduced calibration workload. This methodology is different from 
the calibration studies, which aim to accurately estimate key model 
parameters for a specific crop hybrid/cultivar. One advantage of full 

Table 5 
Goodness of fit metrics for biomass estimates in the 6 growing seasons under 
different simulation strategies.  

Year Strategy R2 RMSE (t/ 
ha) 

nRMSE 
(%) 

Bias (t/ 
ha) 

d  

2003 OL  0.997  1.69  24.72 − 1.40  0.969   
DASM  0.990  0.97  14.16 − 0.79  0.991   
DACC  0.997  1.60  23.46 − 1.32  0.972   
DASM+CC  0.992  0.90  13.23 − 0.74  0.992  

2005 OL  0.995  2.06  24.55 − 1.51  0.971   
DASM  0.992  0.60  7.18 − 0.09  0.998   
DACC  0.994  1.55  18.38 − 1.14  0.985   
DASM+CC  0.992  0.61  7.27 − 0.15  0.998  

2007 OL  0.993  1.48  17.50 − 0.89  0.987   
DASM  0.991  0.66  7.84 0.02  0.998   
DACC  0.988  1.35  15.96 − 0.78  0.990   
DASM+CC  0.992  0.67  7.96 − 0.07  0.998  

2009 OL  0.993  2.89  32.73 − 2.23  0.959   
DASM  0.995  2.39  27.12 − 1.77  0.972   
DACC  0.994  2.53  28.66 − 1.95  0.969   
DASM+CC  0.995  2.27  25.70 − 1.69  0.975  

2011 OL  0.985  2.57  33.38 2.18  0.968   
DASM  0.985  2.59  33.54 2.20  0.967   
DACC  0.988  1.00  13.03 0.58  0.994   
DASM+CC  0.988  1.01  13.13 0.60  0.994  

2013 OL  0.995  0.86  11.14 0.67  0.996   
DASM  0.993  0.95  12.35 0.73  0.996   
DACC  0.996  0.45  5.84 0.09  0.999   
DASM+CC  0.997  0.42  5.48 0.02  0.999  
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calibration is the ability to provide parameter estimates that are physi
cally meaningful, comparable between hybrids/cultivars, and instru
mental for the calibration of new hybrids/cultivars. Consequently, a full 
calibration study may perform better at field-level, as the specific fea
tures are more carefully accounted for. The strength of our methodology 
lies in the ability to address the spatial heterogeneity in crop phenology 
over large areas. At regional scale, multiple hybrids/cultivars from 
different seed companies are often used, and the hybrid/cultivar pa
rameters are often unavailable (Jégo et al., 2010). In addition, the lack 
of high-quality weather, soil and management data is a major constraint 
for full calibration (Grassini et al., 2015; Morell et al., 2016), and the 
spatial distribution of the use of seeds is also unknown (Jégo et al., 
2010). Therefore, the modeling capacity may be reduced if uniform 
parameters are applied over a large area with strong variability. By 
contrast, our work suggests that pixel-specific parameters can be 
quasi-calibrated in a cost-effective way without compromising the 
modeling capacity through the assimilation of key variables. This fa
cilitates the pixel-level application for a large area, particularly with 
large spatial variability. 

To the authors’ knowledge, this study is the first to explore the 
possibility of reduced calibration among agricultural assimilation 
studies. Full calibration is normally performed before assimilation at 
field-level, which constrains the extension to a regional application. For 
remote sensing applications, calibration is often performed at aggre
gated scale (e.g., county-level) using averaged vegetation time series 

(Kang and Özdoğan, 2019). This does not fully utilize the capacity of 
remote sensing to provide pixel-level measurements for precision agri
culture, and ignores the phenological variability within the calibration 
region (e.g., each county). This may also be prone to uncertainties 
caused by the non-linearity in vegetation index (e.g., LAI) upscaling 
(Garrigues et al., 2006; Chen et al., 2019). Our work provides potential 
for improved crop modeling that could accommodate computational 
efficiency as well as pixel-level calibration for precision agricultural 
applications. 

4.2. Potential for high-resolution yield estimation 

As both soil moisture and canopy cover are retrievable using satellite 
sensors, the methodology has considerable potential to be applied using 
remote sensing data over a large area. Soil moisture has been retrieved 
from microwave observations for decades, but typically at 20–50 km 
scale, which is too coarse for agricultural use (Peng et al., 2020). With 
recent developments in synthetic aperture radar (SAR) retrieval of soil 
moisture, observations have been available at 1 km scale from C-band 
SAR (Paloscia et al., 2013) or active-passive microwave data merging 
(Das et al., 2019). Some studies have also derived soil moisture data at 
100 m or finer scale (Escorihuela et al., 2018; Lei et al., 2020; Vergo
polan et al., 2020; Ma et al., 2020). Though remote sensing soil moisture 
data may not currently be available on a daily basis at high resolution, 
improvement in model simulation is still expected as is suggested by 

Fig. 7. Biomass estimates using different strategies from the 6 growing seasons.  
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Fig. 10. Canopy cover data on the other hand, may be retrieved from 
global operational platforms such as LandSat (30 m, 14-daily) and 
Sentinel-2 (10 m, 5-daily), which have been used in agricultural moni
toring (Jin et al., 2019) and simulation (Kang and Özdoğan, 2019). 
Additionally, even higher-resolution canopy cover data may be derived 
from air-borne unmanned aerial vehicles (UAVs) or space-borne Cube
Sats. UAVs are very effective in providing centimeter-level measure
ments similar to traditional field observations, but covering a much 
greater spatial domain with a unique top-down view (McCabe et al., 
2017b; Ziliani et al., 2018). The CubeSat concept is to make satellites 
smaller, lighter and cheaper (Puig-Suari et al., 2001), thus easier to build 
a constellation with hundreds of satellites. For example, the Planet Labs 
company has launched over 280 CubeSats since 2013 (McCabe et al., 
2017a), which provides a capacity of sub-daily global coverage. Based 
on CubeSat data, daily NDVI and LAI data at 3 m resolution have been 
retrieved (Houborg and McCabe, 2018a,b), which significantly exceeds 
the LAI data availability in this study. With this level of observation 

capacity, the spatial variability of canopy cover can be accurately 
characterized, and the simulation uncertainties can be effectively 
constrained. 

The reference crop phenological parameters may be obtained from 
previous studies performed under similar environments, as is the case in 
this study. Alternatively, the parameters may be calibrated using in situ 
data in one field and applied to the whole study area. The uniform 
scaling parameter range was determined manually in this study, but the 
method can be easily improved to automatically determine the pheno
logical scaling factor by seeking the scaling factor that generates the 
highest correlation between simulated and observed canopy cover, 
which facilitates remote sensing applications. In addition, many studies 
have suggested that time series of remote sensing vegetation indices can 
be used to detect crop phenology (Sakamoto et al., 2005; Pan et al., 
2015; Zeng et al., 2020; Diao, 2020), and that planting date can also be 
detected with an RMSE of less than 2 days using CubeSat images (Sadeh 
et al., 2019). 

Fig. 8. Yield estimates using different strategies from the 6 growing seasons. The thick solid lines represent the simulation-observation linear regression.  
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Fig. 9. Biomass estimation RMSE from DASM+CC with increasing ensemble size in the 6 growing seasons.  

Fig. 10. Biomass and yield estimation RMSE using DASM+CC with soil moisture assimilated every 1–14 days. The dashed lines in the biomass plot represent the 
RMSEs using DACC for each growing season, respectively. 
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4.3. Potential for yield prediction using remote sensing 

Aside from estimating maize yield using all available observations in 
the growing season in a retrospective manner, this study also shows 
potential for yield prediction using observations from early stages in the 
growing season. Maize normally reaches maximum canopy cover before 
the 90th day after planting, with senescence yet to start. As a result, the 
phenological scaling factor determined using data within 90 days after 
planting captures the canopy cover dynamics in the vegetative growth 
stages, but may not well characterize the canopy decline in some years. 
This can be seen in the yield difference for 2009 and 2011 in Figs. 8 and 
11. Despite this, DASM+CC still significantly improves yield estimates in 
almost all years (nRMSE = 15.74%) with good accuracy (Jamieson et al., 
1991). The lead time and prediction accuracy are comparable to other 
yield prediction studies (Peng et al., 2018; Kang et al., 2020). Here only 
the assimilation of data within 90 days after planting (around 3 months 
before harvest) was tested. If more observations are used, the yield 

prediction accuracy is expected to improve and converge to the per
formance in a retrospective application. This implies that as remote 
sensing data become available during the growing season, they can be 
assimilated sequentially into the model for improved yield prediction. 
This provides potential for an operational yield forecast system. In 
addition, prior knowledge of the crop phenology may also improve 
prediction accuracy. If data within 90 days after planting are assimilated 
with phenological scaling factors determined using all data, the yield 
estimation (included in Fig. S1 in the Supplementary material) accuracy 
is comparable to the retrospective estimation in Fig. 8. This suggests that 
with a priori knowledge of crop phenology, the yield prediction can be 
further improved. 

4.4. Potential improvement in future studies 

In this study, only canopy cover and surface soil moisture observa
tions were assimilated to mimic a remote sensing application. Though 

Fig. 11. Yield prediction from OL and the three assimilation strategies using only soil moisture and canopy cover observations within 90 days after planting.  
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root-zone soil moisture is not observable from remote sensing, deeper- 
layer soil moisture data can be simulated by land surface models, 
which may provide additional information on crop simulation. To 
evaluate the added-value of deeper-layer soil moisture on crop 
modeling, the experiment is rerun by assimilating canopy cover and the 
soil moisture profile observations (included in Fig. S2 in the Supple
mentary material). The results suggest that assimilating soil moisture 
profile data does not lead to improved yield estimates. This may relate to 
the improvement in water stress determination in AquaCrop v6.0, which 
essentially enhances the influence of top-layer (10 cm) soil moisture on 
crop growth (FAO, 2017). Consequently, the significance of adding 
deeper-layer soil moisture is reduced. 

Yield estimates may be further improved if other variables contain
ing complementary information are assimilated. For example, assimi
lation of biomass and ET observations may lead to improved yield 
estimates as they are closely related to yield formation. Recently, dry 
matter productivity (DMP) and ET products have been developed by 
Copernicus Global Land Service (Swinnen et al., 2015) and the NASA 
ECOSTRESS mission (Fisher et al., 2020; Anderson et al., 2021) at fine 
resolution, which may be incorporated into the assimilation framework. 
Alternatively, the AquaCrop model may be coupled to a land surface 
model to facilitate the assimilation of more variables. Using advanced 
data assimilation algorithms may also improve simulation performance, 
such as using smoothing techniques instead of filtering, or adopting joint 
state-parameter updates (also called state-augmentation) in the 
assimilation. 

5. Conclusion 

Parameter calibration is normally required for crop modeling but can 
be time-consuming or infeasible in regions with large heterogeneity. In 
this study, a method was proposed to improve maize simulation per
formance using data assimilation with reduced parameter calibration 
prior to simulation. The phenological parameters were determined by 
uniformly scaling the parameters calibrated in a different location for a 
different maize hybrid, and other key model parameter values were 
taken from default settings in the model documentation. The pheno
logical scaling factors were randomly sampled within an arbitrary 
± 0.05 range, and surface soil moisture and canopy cover observations 
were assimilated both jointly and separately to constrain simulation 
uncertainties using the ensemble Kalman filter. The methodology was 
applied for maize simulation in six growing seasons in a rain-fed field 
using AquaCrop, and the model estimates were evaluated against can
opy cover, evapotranspiration, biomass and yield data. A further 
experiment was also conducted to evaluate the method for yield pre
diction using observations from early crop growth stages. 

The results indicated that simulations with uniformly scaled 
phenological parameters successfully captured the trends of canopy 
cover and biomass development in the growing season, but may lead to 
significant estimation bias. Assimilation of soil moisture and canopy 
cover observations effectively constrained simulation uncertainties and 
improved model performance. In general, soil moisture assimilation 
performed better when the water stress was high, while canopy cover 
observations were more informative under wet conditions. When soil 
moisture and canopy cover data were jointly assimilated, the model 
performed best, and the overall yield estimates (RMSE = 1.24 t/ha, 
nRMSE = 11.48%, R2 = 0.695) were significantly improved over the no- 
assimilation case (RMSE = 2.01 t/ha, nRMSE = 18.61%, R2 = 0.338). 
Sensitivity analyses suggested that the improvement was still evident 
with temporally sparse soil moisture observations and a small ensemble 
size. A yield prediction experiment using data within 90 days after 
planting suggested that the method was capable of predicting maize 
yield (RMSE = 1.7 t/ha, nRMSE = 15.74%) around 3 months before 
harvest. Overall, the proposed method can effectively improve maize 
yield estimation and prediction without performing a thorough 
parameter calibration prior to model simulation. This provides potential 

for regional applications with remote sensing soil moisture and canopy 
cover data, particularly when the heterogeneity in the crop phenology is 
evident. 
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