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Abstract

The compressible linear stability equations are derived from the Navier
Stokes equations in cylindrical polar coordinates. Numerical solutions
for locally parallel flow are found using a direct matrix method. Dis-
cretization with compact finite difference is found to have better con-
vergence properties than a Chebyshev spectral method for a round jet
test case. The method is validated against previous results and con-
vergence is tested for a range of jet profiles. Finally and en method is
used to determine the dominant frequency of a Mach 0.9 jet.

1 Theory

1.1 Introduction

The aim of this report is to present a solution procedure for the compressible
Orr-Sommerfeld equation. The starting point is the compressible Navier-
Stokes Equations (NSE) which are written in a form that can be easily lin-
earized and solved in order to the find the eigenvalues and eigenvectors for
spatial and temporal disturbances. This is done by firstly obtaining a polar
version of the NSE; secondly, assuming that each of the variables (density - ρ,
radial velocity - Vr, angular velocity - Vθ, streamwise velocity - Vz and temper-
ature - T ) can be separated into a mean, φ̄, and fluctuating value, φ′, where
these fluctuations are modeled as: φ′ = φ̂ei(αz+nθ−ωt); and thirdly, making
assumptions about the behaviour of these mean and fluctuating quantities.
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The end result is a linear system of the form: Lφ̂ = ωKφ̂, where K and L are
matrices and φ is the array containing the values of the fluctuations at each
radial (r) position away from the jet centre line. This is solved for various
values of the wavenumber α (the temporal stability problem), or frequency
ω (the spatial stability problem), at different z-locations along the jet axis.

The following sections detail each step of the derivation, including the nu-
merical approach used to solve the system and obtain both the spatial and
temporal disturbance structure.

1.2 Compressible Navier-Stokes Equations

In order to obtain the compressible Navier-Stokes Equations in polar coor-
dinates we start from the non-conservative form of the compressible Navier-
Stokes Equations in Cartesian coordinates, which are first given in dimen-
sional form, using ∗ to denote a dimensional quantity. The equations for
mass, momentum and energy conservation are:

∂ρ∗

∂t∗
+ u∗j

∂ρ∗

∂x∗j
+ ρ∗

∂u∗j
∂x∗j

= 0

ρ∗
∂u∗i
∂t∗

+ ρ∗u∗j
∂u∗i
∂x∗j

+
∂p∗

∂x∗i
=

∂τ ∗ij
∂x∗j

ρ∗
∂e∗

∂t∗
+ ρ∗u∗i

∂e∗

∂x∗i
+ p∗

∂u∗i
∂x∗i

= −∂q∗i
∂x∗i

+ τ ∗ij
∂u∗i
∂x∗j

(1.1)

where the heat flux is given by, q∗i = −κ∗ dT ∗
dx∗i

and the viscous stress tensor is

given by, τ ∗ij = µ∗
(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

− 2
3

∂u∗k
∂x∗k

δij

)
.

The perfect gas law is given by:

p∗ = ρ∗R∗T ∗ (1.2)

constant specific heats are assumed so that energy is related to temperature
by:

e∗ = c∗V T ∗ (1.3)
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with:

γ = cP

cV
, R = cP − cV and R

cV
= γ − 1.

Flow Characteristics

We define the Mach number as M = u∗R/
√

γR∗T ∗
R, the Prandtl number

as Pr = c∗P µ∗R/κ∗R and the Reynolds number as Re = ρ∗Ru∗RL∗R/µ∗R. The
subscript R refers to a reference value such as the reference velocity, uR,
corresponding to the jet core velocity, a reference length, LR, corresponding
to the radius of the jet, and other quantities corresponding to the behaviour
of the flow at the exit from the jet nozzle. These reference values can be
used to define our variables in a dimensionless form, such that: x = x∗/L∗R,
u = u∗/u∗R, T = T ∗/T ∗

R, t = t∗U∗
R/L∗R, κ = κ∗/κ∗R, µ = µ∗/µ∗R and ρ = ρ∗/ρ∗R.

Sutherlands Law is used for viscosity and conductivity,

µ = (T )
3
2

(1 + C)

(T + C)
(1.4)

κ = (T )
3
2

(1 + D)

(T + D)
(1.5)

Here T , µ and κ are already dimensionless and the constants, C and D,
depend on the reference temperature in Sutherlands Law and the refer-
ence temperature for the jet, which are not necessarily the same. We used
C = 110.4/TR with TR = 298.15K. It is assumed here that C = D, and
hence µ = κ.

1.3 Dimensionless Navier-Stokes Equations

When we non-dimensionalize equations 1.1 and substitute in the previous
relations for qi, e and Sutherlands Law, we obtain the following form of the
compressible Navier-Stokes:
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∂ρ

∂t
+ uj

∂ρ

∂xj

+ ρ
∂uj

∂xj

= 0 (1.6)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

+
ρ

γM2

∂T

∂xi

+
T

γM2

∂ρ

∂xi

=
1

Re

∂τij

∂xj

ρ
∂T

∂t
+ ρui

∂T

∂xi

+ (γ − 1)ρT
∂ui

∂xi

=
γ

RePr

∂

∂xi

(
κ

∂T

∂xi

)

+
M2γ(γ − 1)

Re
τij

∂ui

∂xj

Now all the variables are dimensionless and can be written in vector form as
follows.

Vector Form of Compressible Navier-Stokes Equations

∂ρ

∂t
+ u · (Oρ) + ρ(O · u) = 0 (1.7)

ρ
∂u

∂t
+ ρu · (Ou) +

1

γM2
(ρOT + TOρ) =

1

Re
O · τ

ρ
∂T

∂t
+ ρu · (OT ) + (γ − 1)ρT (O · u) =

γ

RePr
O (κ(OT )) +

M2γ(γ − 1)

Re
τ · (Ou)

Where τ = µ
(
Ou + OuT − 2

3
O · uI

)
= µs. The vector relations found in

equation 1.7 and s, the stress tensor, are detailed in Appendix A.

1.4 Polar Form of the Compressible Navier Stokes Equa-
tions

The following are the complete compressible Navier Stokes Equations in
cylindrical polar coordinates obtained by using the relations found in Ap-
pendix A.

Polar Form of the Continuity Equation

∂ρ

∂t
+

(
Vr

∂ρ

∂r
+

Vθ

r

∂ρ

∂θ
+ Vz

∂ρ

∂z

)
+ ρ

(
∂Vr

∂r
+

Vr

r
+

1

r

∂Vθ

∂θ
+

∂Vz

∂z

)
= 0 (1.8)
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Polar Form of the r - Momentum Equation

ρ
∂Vr

∂t
+ ρ

(
Vr

∂Vr

∂r
+

Vθ

r

∂Vr

∂θ
− V 2

θ

r
+ Vz

∂Vr

∂z

)
+

1

γM2

(
ρ
∂T

∂r
+ T

∂ρ

∂r

)

=
1

Re

[
µ

(
4

3

∂2Vr

∂r2
+

4

3

1

r

∂Vr

∂r
+

1

3

1

r

∂2Vθ

∂r∂θ
+

1

3

∂2Vz

∂z∂r
+

1

r2

∂2Vr

∂θ2

− 7

3

1

r2

∂Vθ

∂θ
+

∂2Vr

∂z2
− 4

3

Vr

r2

)

+
∂µ

∂r

(
4

3

∂Vr

∂r
− 2

3

Vr

r
− 2

3

1

r

∂Vθ

∂θ
− 2

3

∂Vz

∂z

)
(1.9)

+
∂µ

∂θ

(
1

r

∂Vθ

∂r
+

1

r2

∂Vr

∂θ
− Vθ

r2

)
+

∂µ

∂z

(
∂Vr

∂z
+

∂Vz

∂r

)]

Polar Form of the θ - Momentum Equation

ρ
∂Vθ

∂t
+ ρ

(
Vr

∂Vθ

∂r
+

Vθ

r

∂Vθ

∂θ
+

VrVθ

r
+ Vz

∂Vθ

∂z

)
+

1

γM2

(
ρ

r

∂T

∂θ
+

T

r

∂ρ

∂θ

)

=
1

Re

[
µ

(
∂2Vθ

∂r2
+

1

3

1

r

∂2Vr

∂θ∂r
+

4

3

1

r2

∂2Vθ

∂θ2
+

7

3

1

r2

∂Vr

∂θ

+
1

3

1

r

∂2Vz

∂θ∂z
+

∂2Vθ

∂z2
+

1

r

∂Vθ

∂r
− Vθ

r2

)

+
∂µ

∂r

(
∂Vθ

∂r
+

1

r

∂Vr

∂θ
− Vθ

r

)

+
∂µ

∂θ

(
4

3

1

r2

∂Vθ

∂θ
+

4

3

Vr

r2
− 2

3

1

r

∂Vr

∂r
− 2

3

1

r

∂Vz

∂z

)

+
∂µ

∂z

(
∂Vθ

∂z
+

1

r

∂Vz

∂θ

)]
(1.10)
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Polar Form of the z - Momentum Equation

ρ
∂Vz

∂t
+ ρ

(
Vr

∂Vz

∂r
+

Vθ

r

∂Vz

∂θ
+ Vz

∂Vz

∂z

)
+

1

γM2

(
ρ
∂T

∂z
+ T

∂ρ

∂z

)

=
1

Re

[
µ

(
∂2Vz

∂r2
+

1

r2

∂2Vz

∂θ2
+

4

3

∂2Vz

∂z2
+

1

3

∂2Vr

∂r∂z
+

1

r

∂Vz

∂r

+
1

3

1

r

∂Vr

∂z
+

1

3

1

r

∂2Vθ

∂θ∂z

)

+
∂µ

∂r

(
∂Vz

∂r
+

∂Vr

∂z

)
+

∂µ

∂θ

(
1

r2

∂Vz

∂θ
+

1

r

∂Vθ

∂z

)

+
∂µ

∂z

(
4

3

∂Vz

∂z
− 2

3

∂Vr

∂r
− 2

3

Vr

r
− 2

3

1

r

∂Vθ

∂θ

)]
(1.11)

Polar Form of the Energy Equation

ρ
∂T

∂t
+ ρ

(
Vr

∂T

∂r
+

Vθ

r

∂T

∂θ
+ Vz

∂T

∂z

)
+ (γ − 1)ρT

(
∂Vr

∂r
+

Vr

r
+

1

r

∂Vθ

∂θ
+

∂Vz

∂z

)

=
γ

RePr

[
κ

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂θ2
+

∂2T

∂z2

)
+

∂κ

∂r

∂T

∂r
+

1

r2

∂κ

∂θ

∂T

∂θ
+

∂κ

∂z

∂T

∂z

]

+
M2γ(γ − 1)

Re
µ

[
∂Vr

∂r

(
4

3

∂Vr

∂r
− 2

3

Vr

r
− 2

3

1

r

∂Vθ

∂θ
− 2

3

∂Vz

∂z

)

+

(
∂Vr

∂θ
+

∂Vθ

∂r
− Vθ

r

)(
∂Vθ

∂r
+

1

r

∂Vr

∂θ
− Vr

r

)
(1.12)

+

(
1

r

∂Vθ

∂θ
+

Vr

r

)(
4

3

1

r

∂Vθ

∂θ
+

4

3

Vr

r
− 2

3

∂Vr

∂r
− 2

3

∂Vz

∂z

)

+

(
∂Vθ

∂z
+

1

r

∂Vz

∂θ

)(
∂Vθ

∂z
+

1

r

∂Vz

∂θ

)

+
∂Vz

∂z

(
4

3

∂Vz

∂z
− 2

3

∂Vr

∂r
− 2

3

Vr

r
− 2

3

1

r

∂Vθ

∂θ

)
+

(
∂Vr

∂z
+

∂Vz

∂r

)(
∂Vz

∂r
+

∂Vr

∂z

)]
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1.5 Linearized Navier-Stokes

The polar form of each equation starting from equation (1.7) is obtained by
replacing the terms with the relations in Appendix A. Once the equations
are in polar form, the first assumptions that we make in order to linearize the
equations are that: 1) products of fluctuating quantities are negligible; 2) all
variables have the form: φ = φ̄+φ′; 3) ρ̄, T̄ and V̄z are all potentially non-zero
and functions only of r; and 4) V̄r = V̄θ = 0. Having all these terms allows
for a parallel representation of flow in a jet, however we will also include
terms obtained from allowing ρ̄, T̄ , V̄z and V̄r in the inviscid or left hand side
to be functions of z as well and V̄r 6= 0. These new terms provide the non-
parallel form of the equations and can be used in a separate code based on the
Parabolized Stability equations (PSE). Each of the equations is simplified by
introducing these assumptions, canceling out terms that become negligible
or equal to zero and subtracting the mean form of the equations. In the next
sections we will see the linearized form obtained for each component of the
Navier-Stokes equations.

1.5.1 Continuity Equation

∂ρ′

∂t
+ V̄r

∂ρ′

∂r
+ Vr

′∂ρ̄

∂r
+ V̄z

∂ρ′

∂z
+ Vz

′∂ρ̄

∂z
+ ρ̄

∂Vr
′

∂r
+ ρ′

∂V̄r

∂r

+ ρ̄
Vr
′

r
+ ρ′

V̄r

r
+

ρ̄

r

∂Vθ
′

∂r
+ ρ̄

∂Vz
′

∂z
+ ρ′

∂V̄z

∂z
= 0 (1.13)

1.5.2 r - Momentum Equation

The inviscid terms (or left hand side, LHSr) of the r-Momentum Equation
reduce to:

ρ̄
∂V ′

r

∂t
+ ρ̄V̄r

∂V ′
r

∂r
+ ρ̄V ′

r

∂V̄r

∂r
+ ρ′V̄r

∂V̄r

∂r
+ ρ̄V̄z

∂V ′
r

∂z
+ ρ̄V ′

z

∂V̄r

∂z

+ ρ′V̄z
∂V̄r

∂z
+

1

γM2

(
ρ̄
∂T ′

∂r
+ ρ′

∂T̄

∂r
+ T̄

∂ρ′

∂r
+ T ′∂ρ̄

∂r

)

=
1

Re
RHSr (1.14)
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Here RHSr (right hand side) contains the viscous terms which are obtained
by neglecting nonparallel terms:

RHSr =
4

3
µ̄

∂2V ′
r

∂r2
+

4

3

µ̄

r

∂V ′
r

∂r
+

1

3

µ̄

r

∂2Vθ
′

∂r∂θ
+

1

3
µ̄

∂2V ′
z

∂z∂r
+

µ̄

r2

∂2V ′
r

∂θ2

− 7

3

µ̄

r2

∂V ′
θ

∂θ
+ µ̄

∂2V ′
r

∂z2
− 4

3
µ̄

V ′
r

r2
+

4

3

∂µ̄

∂r

∂V ′
r

∂r
− 2

3

∂µ̄

∂r

V ′
r

r

− 2

3

1

r

∂µ̄

∂r

∂V ′
θ

∂θ
− 2

3

∂µ̄

∂r

∂V ′
z

∂z
+

∂µ′

∂z

∂V̄z

∂r
(1.15)

1.5.3 θ - Momentum Equation

The non-viscous terms (or left hand side, LHSθ) of the θ-Momentum Equa-
tion reduce to:

ρ̄
∂V ′

θ

∂t
+ ρ̄V̄r

∂V ′
θ

∂r
+ ρ̄Vθ

′ V̄r

r
+ ρ̄V̄z

∂Vθ
′

∂z
+

1

γM2

(
ρ̄

r

∂T ′

∂θ
+

T̄

r

∂ρ′

∂θ

)

=
1

Re
RHSθ (1.16)

RHSθ, contains the viscous terms:

RHSθ = µ̄
∂2V ′

θ

∂r2
+

1

3

µ̄

r

∂2V ′
r

∂θ∂r
+

4

3

µ̄

r2

∂2Vθ
′

∂θ2
+

7

3

µ̄

r2

∂V ′
r

∂θ

+
1

3

µ̄

r

∂2V ′
z

∂θ∂z
+ µ̄

∂2V ′
θ

∂z2
+

µ̄

r

∂V ′
θ

∂r
− µ̄

r2
V ′

θ

+
∂µ̄

∂r

∂V ′
θ

∂r
+

1

r

∂µ̄

∂r

∂V ′
r

∂θ
− ∂µ̄

∂r

V ′
θ

r
(1.17)

1.5.4 z - Momentum Equation

The non-viscous terms (or left hand side, LHSz) of the z-Momentum Equa-
tion reduce to:
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ρ̄
∂V ′

z

∂t
+ ρ̄V̄r

∂V ′
z

∂r
+ ρ̄V ′

r

∂V̄z

∂r
+ ρ′V̄r

∂V̄z

∂r
+ ρ̄V̄z

∂V ′
z

∂z
+ ρ̄V ′

z

∂V̄z

∂z

+ ρ′V̄z
∂V̄z

∂z
+

1

γM2

(
ρ̄
∂T ′

∂z
+ ρ′

∂T̄

∂z
+ T̄

∂ρ′

∂z
+ T ′∂ρ̄

∂z

)

=
1

Re
RHSz (1.18)

RHSz, contains viscous terms:

RHSz = µ̄
∂2V ′

z

∂r2
+ µ′

∂2V̄z

∂r2
+

µ̄

r2

∂2V ′
z

∂θ2
+

4

3
µ̄

∂2V ′
z

∂z2
+

1

3
µ̄

∂2V ′
r

∂r∂z
+

µ̄

r

∂V ′
z

∂r

+
µ′

r

∂V̄z

∂r
+

1

3

µ̄

r

∂V ′
r

∂z
+

1

3

µ̄

r

∂2V ′
θ

∂θ∂z
+

∂µ̄

∂r

∂V ′
z

∂r
+

∂µ′

∂r

∂V̄z

∂r

+
∂µ̄

∂r

∂V ′
r

∂z
(1.19)

1.5.5 Energy Equation

The non-viscous terms (or left hand side) of the Energy Equation reduce to:

ρ̄
∂T ′

∂t
+ ρ̄V̄r

∂T ′

∂r
+ ρ̄V ′

r

∂T̄

∂r
+ ρ′V̄r

∂T̄

∂r
+ ρ̄V̄z

∂T ′

∂z
+ ρ̄V ′

z

∂T̄

∂z
+ ρ′V̄z

∂T̄

∂z

+ (γ − 1)

(
ρ̄T̄

∂V ′
r

∂r
+ ρ̄T ′∂V̄r

∂r
+ ρ′T̄

∂V̄r

∂r
+ ρ̄T̄

V ′
r

r
+ ρ̄T ′ V̄r

r

)

+ (γ − 1)

(
ρ′T̄

V̄r

r
+

ρ̄T̄

r

∂Vθ
′

∂θ
+ ρ̄T̄

∂V ′
z

∂z
+ ρ̄T ′∂V̄z

∂z
+ ρ′T̄

∂V̄z

∂z

)

=
γ

RePr
O (κ(OT )) +

M2γ(γ − 1)

Re
τ · (Ou) (1.20)

The main terms on the RHS, reduce to:

O (κ(OT )) =
∂κ̄

∂r

∂T ′

∂r
+

∂κ′

∂r

∂T̄

∂r
+ κ̄

∂2T ′

∂r2
+ κ′

∂2T̄

∂r2

+
κ̄

r

∂T ′

∂r
+

κ′

r

∂T̄

∂r
+

κ̄

r2

∂2T ′

∂θ2
+ κ̄

∂2T ′

∂z2
(1.21)
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τ · (Ou) = µ′
(

∂V̄z

∂r

)2

+ 2µ̄
∂V̄z

∂r

∂V ′
z

∂r
+ 2µ̄

∂V̄z

∂r

∂V ′
r

∂z
(1.22)

1.6 Final Form of Equations used in program

We replace all the fluctuations of the variables, density (ρ′), radial velocity
(V ′

r ), angular velocity (V ′
θ ), streamwise velocity (V ′

z ) and temperature (T),
with the following normal mode form:

φ′ = φ̂ei(αz+mθ−ωt) (1.23)

This leads to a linear system of the form:

(Li + LiD − LV − LV D)φ̂ = ωKφ̂ (1.24)

Where Li contains the inviscid terms without derivatives of φ̂ with respect
to r, LiD contains all the inviscid terms with derivatives of φ̂ with respect to
r, LV contains all the viscous terms without derivatives of φ̂ with respect to
r, LV D contains all the viscous terms with derivatives of φ̂ with respect to r,
and K contains all the terms that are multiplied by the frequency ω. Here
φ represents the array containing each of the five variables of our NSEs at
each n-location along the r-axis. Also we can define the parabolized stability
equations (PSE) by:

M
dφ̂

dz
= (ωK − L− L′)φ̂ (1.25)

Where L = Li + LiD − LV − LV D, and L′ and M contain the non-parallel
and additional PSE terms that arise from including V̄r 6= 0 and derivatives
with respect to z. This second linear system can be solved by iteration to
determine the flow at different z-locations.
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1.6.1 Continuity Equation

Non-Viscous Terms

Liφ̂ =
[
iαV̄z

]
ρ̂ +

[
∂ρ̄

∂r
+

ρ̄

r

]
V̂r +

[
imρ̄

r

]
V̂θ + [iαρ̄] V̂z

LiDφ̂ = [ρ̄D] V̂r

Kφ̂ = [i] ρ̂ (1.26)

PSE Terms

L′φ̂ =

[
V̄rD +

∂V̄r

∂r
+

V̄r

r
+

∂V̄z

∂z

]
ρ̂ +

[
∂ρ̄

∂z

]
V̂z

M
∂φ̂

∂z
=

[
V̄z

] ∂ρ̂

∂z
+ [ρ̄]

∂V̂z

∂z
(1.27)

1.6.2 r - Momentum Equation

Non-Viscous Terms

Liφ̂ =

[
1

γM2

∂T̄

∂r

]
ρ̂ +

[
iαρ̄V̄z

]
V̂r +

[
1

γM2

∂ρ̄

∂r

]
T̂

LiDφ̂ =

[
T̄D

γM2

]
ρ̂ +

[
ρ̄D

γM2

]
T̂

Kφ̂ = [iρ̄] V̂r (1.28)

PSE Terms

L′φ̂ =

[
V̄r

∂V̄r

∂r
+ V̄z

∂V̄r

∂z

]
ρ̂ +

[
ρ̄V̄rD + ρ̄

∂V̄r

∂r

]
V̂r +

[
ρ̄
∂V̄r

∂z

]
V̂z

M
∂φ̂

∂z
=

[
ρ̄V̄z

] ∂V̂r

∂z
(1.29)
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Viscous Terms

LV φ̂ =
1

Re

[
−m2

r2
µ̄− α2µ̄− 4

3

µ̄

r2
− 2

3

1

r

∂µ̄

∂r

]
V̂r +

1

Re

[
−7

3

im

r2
µ̄− 2

3

im

r

∂µ̄

∂r

]
V̂θ

− 1

Re

[
2

3
iα

∂µ̄

∂r

]
V̂z +

1

Re

[
iα

∂V̄z

∂r

∂µ

∂T

]
T̂

LV Dφ̂ =
1

Re

[
4

3
µ̄D2 +

4

3

µ̄

r
D +

4

3

∂µ̄

∂r
D

]
V̂r +

1

Re

[
1

3

im

r
µ̄D

]
V̂θ

+
1

Re

[
iα

3
µ̄D

]
V̂z (1.30)

1.6.3 θ-Momentum Equation

Non-Viscous Terms

Liφ̂ =

[
im

γM2

T̄

r

]
ρ̂ +

[
iαρ̄V̄z

]
V̂θ +

[
im

γM2

ρ̄

r

]
T̂

Kφ̂ = [iρ̄] V̂θ (1.31)

PSE Terms

L′φ̂ =

[
ρ̄V̄rD + ρ̄

V̄r

r

]
V̂θ

M
∂φ̂

∂z
=

[
ρ̄V̄z

] ∂V̂θ

∂z
(1.32)
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Viscous Terms

LV φ̂ =
1

Re

[
7

3

im

r2
µ̄ +

im

r

∂µ̄

∂r

]
V̂r +

1

Re

[
−4

3

m2

r2
µ̄− α2µ̄− µ̄

r2
− 1

r

∂µ̄

∂r

]
V̂θ

− 1

Re

[
1

3
mα

∂µ̄

∂r

]
V̂z

LV Dφ̂ =
1

Re

[
1

3

im

r
µ̄D

]
V̂r +

1

Re

[
µ̄D2 +

µ̄

r
D +

∂µ̄

∂r
D

]
V̂θ (1.33)

1.6.4 z - Momentum Equation

Non-viscous Terms

Lφ̂ =

[
iαT̄

γM2

]
ρ̂ +

[
ρ̄
∂V̄z

∂r

]
V̂r +

[
iαρ̄V̄z

]
V̂z +

[
iαρ̄

γM2

]
T̂

Kφ̂ = [iρ̄] V̂z (1.34)

PSE Terms

L′φ̂ =

[
V̄r

∂V̄z

∂r
+ V̄z

∂V̄z

∂z
+

1

γM2

(
∂T̄

∂z

)]
ρ̂ +

[
ρ̄V̄rD + ρ̄

∂V̄z

∂z

]
V̂z +

1

γM2

[
∂ρ̄

∂z

]
T̂

M
∂φ̂

∂z
=

[
T̄

γM2

]
∂ρ̂

∂z
+

[
ρ̄V̄z

] ∂V̂z

∂z
+

[
ρ̄

γM2

]
∂T̂

∂z
(1.35)
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Viscous Terms

LV φ̂ =
1

Re

[
1

3

iα

r
µ̄ + iα

∂µ̄

∂r

]
V̂r +

1

Re

[
−1

3

mα

r
µ̄

]
V̂θ +

1

Re

[
−m2

r2
µ̄− 4

3
α2µ̄

]
V̂z

+
1

Re

[
∂2V̄z

∂r2

∂µ

∂T
+

1

r

∂µ

∂T

∂V̄z

∂r

]
T̂

LV Dφ̂ =
1

Re

[
iα

3
µ̄D

]
V̂r +

1

Re

[
µ̄D2 +

µ̄

r
D +

∂µ̄

∂r
D

]
V̂z

+
1

Re

[
∂µ

∂T

∂V̄z

∂r
D

]
T̂ (1.36)

1.6.5 Energy Equation

Non-Viscous Terms

Lφ̂ =

[
ρ̄
∂T̄

∂r
+

(γ − 1)

r
ρ̄T̄

]
V̂r +

[
(γ − 1)

in

r
ρ̄T̄

]
V̂θ

+
[
(γ − 1)iαρ̄T̄

]
V̂z +

[
iαρ̄V̄z

]
T̂

LDφ̂ =
[
(γ − 1)ρ̄T̄D

]
V̂r

Kφ̂ = [iρ̄] T̂ (1.37)

PSE Terms

L′φ̂ =

[
V̄r

∂T̄

∂r
+ V̄z

∂T̄

∂z
+ (γ − 1)T̄

(
∂V̄r

∂r
+

V̄r

r
+

∂V̄z

∂z

)]
ρ̂

+

[
ρ̄
∂T̄

∂z

]
V̂z +

[
ρ̄V̄rD + (γ − 1)ρ̄

(
∂V̄r

∂r
+

V̄r

r
+

∂V̄z

∂z

)]
T̂

M
∂φ̂

∂z
=

[
(γ − 1)ρ̄T̄

] ∂V̂z

∂z
+

[
ρ̄V̄z

] ∂T̂

∂z
(1.38)
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Viscous Terms

LV φ̂ =
M2γ(γ − 1)

Re

[
2iαµ̄

∂V̄z

∂r

]
V̂r +

M2γ(γ − 1)

Re

[(
∂V̄z

∂r

)2
∂µ

∂T

]
T̂

+
γ

PrRe

[
∂2T̄

∂r2

∂κ

∂T
+

1

r

∂κ

∂T

∂T̄

∂r
− m2

r
κ̄− α2κ̄

]
T̂ (1.39)

LV Dφ̂ =
M2γ(γ − 1)

Re

[
2µ̄

∂V̄z

∂r
D

]
V̂z

+
γ

PrRe

[
∂κ̄

∂r
D +

∂κ

∂T

∂T̄

∂r
D + κ̄D2 +

κ̄

r
D

]
T̂

Now we can solve equation 1.24 for a particular value of the wavenumber
α at a particular z-location, and thus find the most temporally unstable
disturbance.
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2 Numerical Method and Differentiation

Schemes

2.1 Grid

In order to have a grid that is heavily concentrated near the jet shear layer
(r = rj), but less so at the far field (r →∞), we use a stretched grid obtained
from applying the following relation to an equally distributed independent
variable, η:

r = rJ + L
sinh cη

sinh c
(2.1)

where: rJ = 0.5, −η0 < η < 1 and η = η0 is where r = 0. The parameters
L and c define how much the grid is stretched and where it will be most
densely packed. They will have to be varied in order to find the combination
that provides the best grid for particular cases. Unless otherwise stated we
take c = 5.0 because it effectively concentrates grid points near rJ where we
generally need the most resolution.

2.2 Differentiation Schemes

The differentiation scheme used to find the derivatives of the main flow quan-
tities with respect to r is a very important part of the code. We compare
a sixth order finite difference scheme from Lele [2] with Canuto’s et al ([1,
page 69]) Chebyshev scheme. This scheme uses a different algebraic grid
mapping that depends only on one parameter, L. The sixth order scheme is
detailed in the following section.

2.2.1 6th Order Modified Padé

A series of higher order modified Padé schemes were derived by Lele us-
ing a uniformly distributed independent variable, η, and obtaining from the
following matrix systems for the first and second derivatives.
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φ′j+1 + a1φ
′
j + φ′j−1 = b1

φj+1 − φj−1

2∆η
+ c1

φj+2 − φj−2

4∆η

φ′′j+1 + a2φ
′′
j + φ′′j−1 = b2

φj+1 − 2φj + φj−1

∆η2
+ c2

φj+2 − 2φj + φj−2

4∆η2

(2.2)

where:

φ′ =
∂φ

∂η
φ′′ =

∂2φ

∂η2

b1 =
2 + 4a1

3
c1 =

4− a1

3

b2 =
4a2 − 4

3
c2 =

10− a2

3

If we take a1 = 3 and a2 = 4 we obtain a 6th-order finite difference scheme
that can be solved implicitly to find φ′j+1 and φ′′j+1. We also know that since
r is not evenly distributed and is a function of η, then:

∂φ

∂r
=

1

h′
∂φ

∂η
and

∂2φ

∂r2
=

1

h′2
∂2φ

∂η2
+

h′′

h′3
∂φ

∂η
(2.3)

where: h′ = ∂r
∂η

and h′′ = ∂2r
∂η2 .

For the grid discussed in the previous section, we have that:

h′ = LC
cosh Cη

sinh C
and h′′ = LC2 sinh Cη

sinh C
(2.4)

We must also take into account that the derivatives at the end points
(r = 0 and r →∞) are reduced to a third order asymmetric representation.
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2.3 Boundary Conditions

In order to solve the linear system we must define values of the perturbations,
φ̂, at the boundaries. According to Lewis and Bellan’s study [4] regarding the
behaviour of Fourier coefficients in cylindrical coordinates, these boundary
conditions at the centreline of the jet (r = 0) depend on the mode m. Also,
in the far field the boundary conditions are that φ̂ → 0 when r →∞. In par-
ticular for each mode we must implement the following boundary conditions
once our system has been defined and before the eigenvalue problem is solved.

For |m| = 0 and r → 0:

Dρ̂ → 0 DT̂ → 0

V̂r → 0 V̂θ → 0 DV̂z → 0 (2.5)

For |m| = 1 and r → 0:

ρ̂ → 0 T̂ → 0

DV̂r → 0 DV̂θ → 0 V̂z → 0 (2.6)

For |m| > 1 and r → 0:

ρ̂ → 0 T̂ → 0

V̂r → 0 V̂θ → 0 V̂z → 0 (2.7)

Now we can solve the temporal eigenvalue problem for a particular value of
αr, by inputing only the Reynolds Number, Mach Number, mode number
and αr, as well as the numerical parameters N (the number of grid points),
L and C (for the sixth order differentiation scheme).

2.4 Secant Method

It is of great interest to obtain not only the temporal behaviour of distur-
bances but the spatial as well. This is why we develop a second code that
iterates on α using a secant method until we find the prescribed value of ωr
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with ωi = 0 and hence the spatial behavior of the disturbances. This is done
by using the following algorithm:

αn+1 = αn − (αn − αn−1)εn

εn − εn−1

; εn = ωn − ωtarget (2.8)

The tolerance used for convergence was 10−8 for the error in ωi which should
be equal to zero. Usually the method will not require more than five iterations
to reach this tolerance.
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3 Validation Cases

Apart from checking the convergence of the differentiation schemes, we must
also validate the final results obtained by the code. We do both by comparing
with the results obtained from an inviscid code developed by Sandham and
Luo [5], and the results found by Lessen and Singh [3] and Morris [6] for
viscous incompressible flow. This way we check both the viscous and inviscid
terms, however each of the previous codes work with different velocity profiles
which are detailed in the following section.

3.1 Streamwise Velocity and Temperature Profiles.

The streamwise velocity profile of the fully developed jet used in references
[3] and [6] is given by the following analytical equation:

Profile I

Vz =
1

(1 + r)2
(3.1)

To compare with the results obtained from the inviscid code, we must use a
jet profile defined at each z-position by:

Profile II

a = 0.59 + 0.09 tanh
√

z − 2.9

δ =
39 + 24z + 0.11z4

1000 + z3

Vz = 0.5

[
tanh

(
r + a

δ

)
− tanh

(
r − a

δ

)]
(3.2)

Here Vz and r are dimensionless. This profile was constructed to follow the
spatial development of the experiment by Stromberg et al [7].
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Figure 3.1: Streamwise Velocity Profiles developed.

Figure 3.1, shows how these profiles vary in the radial direction. The program
is solved individually for each z-position therefor all though Vz is dependant
on both z and r, it can be taken as a function only of r.

Temperature Profile

The mean temperature profile used throughout this investigation is given by:

T̄ = 1.0 +

(
(γ − 1)M2

2

)
Vz(1− Vz) (3.3)

The mean density is defined as ρ = 1/T̄ .

3.2 Comparison with Incompressible Results

The first validation case, is the far jet profile (Profile I) used by Morris [6]
and by Lessen and Singh [3]. We use it to validate the viscous terms of the
equations since the compressible terms become negligible. At a Re = 80,
with m = 0 and α = 0.2322+ i0.0666 Morris found that ωr = 0.2 and ωi = 0.
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We use our code with these input parameters and compare the values of
ω obtained with each differentiation scheme and the convergence of each of
these for different values of the parameter L. To avoid singularities the Mach
number used throughout this report to compare with incompressible results
is M = 0.1.

Tables 1 and 2, show the results obtained for ωr and ωi respectively, us-
ing the sixth order finite difference scheme, denoted FDS. For values of:
20 ≤ L ≤ 40 and N ≥ 60 the error is almost negligible (around 0.05% for
the real part and 0.004% for the imaginary part). Likewise, Tables 3 and 4,
show the results obtained for ωr and ωi respectively, using the Chebychev
differentiation scheme. Here we find that the results converge to the same ω
as the FDS, for all the values of L tested, (1 ≤ L ≤ 20). For N ≥ 60 the
error is again negligible (around 0.05% for the real part and 0.004% for the
imaginary part).

Table 1: Real Part of ω, Profile I, 6th Order FDS.

L

N 10 15 20 25 30 35 40

20 0.19971 0.19991 0.19990 0.19993 0.19993 0.19991 0.19993

60 0.19995 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009

100 0.19991 0.20008 0.20009 0.20009 0.20009 0.20009 0.20009

200 0.19985 0.20008 0.20009 0.20009 0.20009 0.20009 0.20009

300 0.19984 0.20008 0.20009 0.20009 0.20009 0.20009 0.20009

400 0.19983 0.20008 0.20009 0.20009 0.20009 0.20009 0.20009

Table 5 shows a comparison between the different critical values found by
Morris [6], Lessen and Singh [3] and that found with our code for the m = 1

22



Table 2: Imaginary Part of ω, Profile I, 6th Order FDS.

L

N 10 15 20 25 30 35 40

20 -0.00005 -0.00011 -0.00008 -0.00011 -0.00008 -0.00011 -0.00013

60 -0.00006 -0.00003 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

100 -0.00006 -0.00003 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

200 -0.00004 -0.00003 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

300 -0.00003 -0.00003 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

400 -0.00002 -0.00002 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

mode. Since the FDS and the Chebyshev scheme produce the same results
for this particular case, the critical value was found using only the FDS. Re-
sults for the present investigation fall between those of Morris, and Lessen
and Singh

The results obtained by using the far jet profile showed that both the Cheby-
shev and FDS provide accurate results with a low number of grid points and
a wide range of the grid parameter, L. However as is shown in Figure 3.1,
this profile is quite smooth and can even be differentiated accurately with a
second order differentiation scheme. Since the Reynolds numbers taken into
account are low then the low Mach number viscous terms of the code can be
considered to have been validated with respect to the previous investigations
of Morris and Lessen and Singh.
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Table 3: Real Part of ω, Profile I, Chebyshev Differentiation.

L

N 1 2 3 4 5 10 20

20 0.20009 0.20009 0.20010 0.20010 0.20007 0.20065 0.20226

60 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009

100 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009

200 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009

300 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009

400 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009 0.20009

3.3 Comparison with Inviscid Code

The second validation case tests the inviscid and compressible terms of the
equations. First the inviscid code is run for different values of m, α and dif-
ferent z - locations. Then the viscous compressible code developed presently
is run for these same parameters and once again the convergence of each
differentiation scheme and accuracy of the results is determined. For all the
cases the runs are made for a M = 0.9 and Re = 3×106 for which we assume
the viscous terms become negligible.

The first case studied uses m = 0, αr = 1.9 and z = 5. Tables 6 and 7
show the results obtained by varying the parameters N and L and using the
FDS. Tables 8 and 9 show the results obtained by varying the parameters
N and L and using the Chebyshev differentiation scheme. Once again the
converged results agree for either scheme, however the Chebyshev differenti-
ation only converges for a high number of grid points, (N ≥ 200), and even
then it is varying significantly with the parameter L. The convergence with
the FDS also requires a greater number of grid points than what was seen
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Table 4: Imaginary Part of ω, Profile I, Chebyshev Differentiation.

L

N 1 2 3 4 5 10 20

20 -0.00003 -0.00004 -0.00004 -0.00004 -0.00004 0.00030 0.00441

60 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

100 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

200 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

300 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

400 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

for the first validation case (N ≥ 100 in most cases) but is more consistent
for all the values of L tested.

When the m = 1 mode is tested for αr = 1.9 and z = 5, the convergence of
both schemes is improved significantly and hence the following test cases will
concentrate on the m = 0 mode given that obtaining good results is more
difficult for this mode.

When we run cases for different z-locations along the jet such as z = 1 with
αr = 7.5 and m = 0 we find that again the FDS converges for 1 ≤ L ≤ 4 with
n ≥ 60 yet with L ≥ 10 more grid points are needed to have convergence,
(around N = 200) similarly to the previous example at z = 5. However,
the Chebyshev scheme dose not converge for any of the values of L tested
(1 ≤ L ≤ 30), even though up to N = 400 grid points were used. This again
suggests that the Chebyshev grid parameter is more sensitive to the profile
shape than the FDS. Similarly when the code is run at z = 10 convergence
only happens when using a high number of grid points (n ≥ 300) for the
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Table 5: Comparison of the critical value for the m = 1 mode for Profile I.

Case Recritical αr−critical ωr−critical

Morris 37.64 0.44 0.1

Lessen and Singh 37.9 0.3989 0.08

6th Order FDS Code 37.8 0.417 0.09

FDS and does not happen for the Chebyshev scheme. All this suggests that
the grid parameter becomes more and more important when using Profile II
and that it should be adjusted depending on the z-location.

Tables 10 and 11 show the converged results obtained for the different dif-
ferentiation schemes. Once converged, both schemes produce similar results
with a negligible error, however using more than 200 grid points can be very
time consuming and an even greater number of grid points is necessary when
we want to guarantee convergence with the Chebyshev scheme.
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Table 6: Real Part of ω. With m = 0, and αr = 1.9 for Profile II at z = 5.
Using the 6th order FDS.

L

N 1 3 5 10 20 30

60 1.30514 1.29341 1.29342 1.29342 1.29290 1.29046

100 1.30573 1.29341 1.29342 1.29342 1.29341 1.29331

200 1.30633 1.29342 1.29342 1.29342 1.29342 1.29342

300 1.30640 1.29342 1.29342 1.29342 1.29342 1.29342

400 1.30584 1.29342 1.29342 1.29342 1.29342 1.29342

Table 7: Imaginary Part of ω. With m = 0, and αr = 1.9 for Profile II at
z = 5. Using the 6th order FDS.

L

N 1 3 5 10 20 30

60 0.16636 0.16040 0.16040 0.16040 0.16054 0.15650

100 0.16621 0.16040 0.16040 0.16040 0.16040 0.16048

200 0.16462 0.16041 0.16040 0.16040 0.16040 0.16040

300 0.16194 0.16041 0.16040 0.16040 0.16040 0.16040

400 0.15870 0.16041 0.16040 0.16040 0.16040 0.16040
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Table 8: Real Part of ω. With m = 0, and αr = 1.9 for Profile II at z = 5.
Using the Chebyshev Differentiation Scheme.

L

N 1 3 5 10 20 30

60 1.28841 1.30870 1.32146 1.33068 1.27488 1.26223

100 1.29337 1.29227 1.29101 1.27824 1.26639 1.30293

200 1.29342 1.29341 1.29336 1.29387 1.29568 1.29094

300 1.29342 1.29342 1.29342 1.29340 1.29350 1.29238

400 1.29342 1.29342 1.29342 1.29342 1.29339 1.29326

Table 9: Imaginary Part of ω. With m = 0, and αr = 1.9 for Profile II at
z = 5. Using the Chebyshev Differentiation Scheme.

L

N 1 3 5 10 20 30

60 0.16033 0.15659 0.15188 0.18732 0.20219 0.15444

100 0.16066 0.16176 0.16408 0.15165 0.17624 0.20031

200 0.16040 0.16040 0.16040 0.16076 0.15742 0.16683

300 0.16040 0.16040 0.16040 0.16039 0.16072 0.16090

400 0.16040 0.16040 0.16040 0.16040 0.16039 0.16035
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Table 10: Results obtained with the 6th Order FDS and comparison with
the inviscid code.

m z αr ωr ωi %error ωr %error ωi

0 1 7.5 4.15802 1.06061 0.0006 0.0147

0 5 1.9 1.29342 0.16040 0.0012 0.0119

1 5 1.9 1.02530 0.28658 0.0004 0.0058

Table 11: Results obtained with the Chebyshev Differentiation Scheme and
comparison with the inviscid code.

m z αr ωr ωi %error ωr %error ωi

0 1 7.5 4.15800 1.06059 0.0002 0.0167

0 5 1.9 1.29342 0.16040 0.0012 0.0119

1 5 1.9 1.02530 0.28658 0.0005 0.0063
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4 Results

Our aim was to produce a code that can correctly predict the behaviour of
the perturbations in a jet flow so that with them we can obtain some insight
into the origin of jet noise. For this reason we will be attempting to re-
produce the experimental data taken by Stromberg, McLaughlin and Troutt
[7]. We use Profile II at different z-locations, and the properties of the flow
are taken as: Re = 3600, M = 0.9 and Pr = 0.72. Given the results de-
tailed in the previous section, the sixth order differentiation scheme is used
so that we can obtain data at different z-locations without changing the grid
parameters, which are: L = 30 and C = 5.0. The first step is to test the
convergence of results for these parameters, this is done for three different
z-locations, z = 0 with αr = 10, z = 5 with αr = 2 and z = 10 with αr = 0.5 .

Clearly from Tables 12, 13 and 14, the results are converging at all z-locations
and modes (0, 1 and 2) such that the parameters chosen can be used through-
out the rest of the report. Only at z = 10 and m = 2 we require up to 200
grid points for the values to converge. The convergence is better than for the
inviscid validation case because the Reynolds number is smaller by a factor of
103. All the results from now on will be obtained using a grid with N = 200
points in order to guarantee that the results are converged.

The first results obtained are the temporal and spatial growth rate curves
at different z-locations shown in Figure 4.1 for the m = 0 mode and Figure
4.2 for the m = 1 mode. They show that the instabilities are stronger at
z-locations close to the origin and they decay as we move in the streamwise
direction. The values of αr and ωr where the instabilities are a maximum
depend greatly on the z-location. At z = 3 the temporal disturbance be-
comes stable at around αr = 7 whereas the spatial disturbance becomes
stable for ωr = 3.75. In both temporal and spatial analysis, the code has
trouble following the curves into the stable region because it picks up other
stable modes. For the spatial analysis additional problems may arise when
nearing stable region because the secant method has trouble converging.

Figure 4.3, shows the temporal and spatial curves at z = 3 for each of the
different modes. For the temporal case the m = 1 mode is slightly more un-
stable at its maximum than the m = 0 mode. However, for the spatial case
both modes are practically equally unstable although the maximum occurs
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Table 12: Convergence of z = 0 with 6th order FDS and Profile II.

ωr ωi

N m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

20 6.29215 6.29112 6.34775 -0.06199 -0.06192 -0.06487

60 5.43593 5.39039 5.31758 1.39653 1.38468 1.31817

100 5.42953 5.40007 5.32802 1.59694 1.58655 1.53827

200 5.42894 5.39938 5.32722 1.59348 1.58298 1.53367

300 5.42894 5.39937 5.32721 1.59351 1.58301 1.53370

400 5.42894 5.39937 5.32721 1.59351 1.58301 1.53370

at a different value of ωr.

In order to have a better measure of the amplification of these disturbances
we use the n-factor, defined in the en method as:

n = −
∫ z

z0

αi(z) dz (4.1)

This is a measure of the amplitude of the disturbance and is computed from
the eigenvalues obtained in the spatial analysis. It allows us to find the lo-
cation of the greatest amplification and also the value of ωr for which this
happens. Figure 4.4 shows these results for the three different modes. The
m = 2 mode has a significantly smaller amplitude than the m = 0 and 1
modes, yet the pattern is similar for all. The most unstable z-locations are
around z = 3− 5 and the value of ωr where the amplitude is highest at these
z-locations varies between ωr = 2.5−3.0. Near the jet exit, the higher values
of the frequency, ωr = 4.0 − 5.5, are most unstable. Further downstream
it is the mid-range values that are most unstable; even further downstream
the frequencies between, ωr = 1.5− 2.5 produce more unstable disturbances.
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Figure 4.1: (a) Temporal analysis at different z-locations for the m = 0
mode. (b) Spatial analysis at different z-locations for the m = 0 mode.
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Figure 4.2: (a) Temporal analysis at different z-locations for the m = 1
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Table 13: Convergence of z = 5 with 6th order FDS and Profile II.

ωr ωi

N m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

20 1.41511 1.07007 0.92175 0.13610 0.26288 0.10092

60 1.35461 1.08293 0.91841 0.14688 0.27453 0.09105

100 1.35461 1.08293 0.91841 0.14688 0.27453 0.09105

200 1.35461 1.08293 0.91841 0.14688 0.27453 0.09105

300 1.35461 1.08293 0.91841 0.14688 0.27453 0.09105

400 1.35461 1.08293 0.91841 0.14688 0.27453 0.09105

Frequencies, ωr ≤ 1.5 are never strongly amplified.

The highest n-factor, or highest amplitude of the disturbance is found to be
at a frequency ωr = 3.0, with m = 0 and z = 4. In general the m = 0
mode yielded higher amplitudes at each z-location, but the m = 1 has a
higher amplitude at z = 5 whereas the m = 0 and 2 modes have it at
z = 4. In general the frequency that yields the highest amplitudes is between
ωr = 2.5−3.0 which corresponds to a Strouhal number, St = fD/U = ω/2π,
of St = 0.4 − 0.48. This matches the results found by Stromberg et al [7],
where their peak amplitude was obtained for St = 0.44.

35



0 3 6 9

0

2

4

6

0 2 4 6 8 10
0

2

4

6

0 2 4 6 8 10
0

2

4

 r = 0.1

 r = 0.5

 r = 1.0

 r = 1.5

 r = 2.0

 r = 2.5

 r = 3.0

 r = 3.5

 r = 4.0

 r = 5.0

 r = 5.5

 r = 0.1

 r = 0.5

 r = 1.0

 r = 1.5

 r = 2.0

 r = 2.5

 r = 3.0

 r = 3.5

 r = 4.0

 r = 5.0

 r = 0.1

 r = 0.5

 r = 1.0

 r = 1.5

 r = 2.0

 r = 2.5

 r = 3.0

 r = 3.5

 r = 4.0

 r = 5.0

 r = 5.5

n

Z
(a)

n

Z
(b)

n

Z
(c)

Figure 4.4: Growth factor, n, for different values of ωr, for: (a) m = 0, (b)
m = 1 and (c) m = 2.

36



Table 14: Convergence of z = 10 with 6th order FDS and Profile II.

ωr ωi

N m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

20 0.01154 0.16960 0.07667 -0.00465 0.03305 0.00797

60 0.31987 0.16904 0.00595 -0.01037 0.03324 -0.01395

100 0.31989 0.16904 0.00580 -0.01038 0.03324 -0.02118

200 0.31989 0.16904 0.29149 -0.01038 0.03324 -0.03261

300 0.31989 0.16904 0.29149 -0.01038 0.03324 -0.03261

400 0.31989 0.16904 0.29149 -0.01038 0.03324 -0.03261
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5 Conclusions

• A linear stability code to solve the viscous compressible round jet problem
has been developed and validated against previous codes. Non-parallel and
PSE terms are included in the derivation.

• A sixth order finite difference scheme proved to be better for this ap-
plication than a Chebyshev differentiation scheme. For the particular Mach
and Reynolds numbers used when comparing to experimental data, the grid
parameters L and C can remain constant and for most values of z and m.
The scheme generally converges for a very low number of grid points.

• When compared to other codes such as Morris [6], Lessen and Singh [3] and
Luo and Sandham [5], the errors are all less than (0.05%). When compared
to the experimental data the jet Strouhal number is predicted to within 6%.
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A Vector Definitions in Cylindrical Polar

Coordinates

To change from rectangular coordinates to cylindrical polar coordinates we
use: x = r cos θ, y = r sin θ and z = z. Scale factors and base vectors are
defined as follows:

Scale Factors

hr =

√(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

=
√

cos2 θ + sin2 θ = 1

hθ =

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2

=
√

(−r sin θ)2 + (r cos θ)2 = r

hz =

√(
∂x

∂z

)2

+

(
∂y

∂z

)2

+

(
∂z

∂z

)2

= 1 (A.1)

Base Vectors

er =

(
1

hr

∂x

∂r
,

1

hr

∂y

∂r
,

1

hr

∂z

∂r

)
= (cos θ, sin θ, 0)

eθ =

(
1

hθ

∂x

∂θ
,

1

hθ

∂y

∂θ
,

1

hθ

∂z

∂θ

)
= (− sin θ, cos θ, 0)

ez =

(
1

hz

∂x

∂z
,

1

hz

∂y

∂z
,

1

hz

∂z

∂z

)
= (0, 0, 1) (A.2)

It is important to note that
∂er

∂θ
= eθ and

∂eθ

∂θ
= −er.

In order to obtain the Navier-Stokes equation in polar coordinates we need
to define the following properties of vectors and scalars.
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Gradient of a Scalar, Oφ

Oφ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez (A.3)

Gradient of a Vector, OV

OV =




∂Vr

∂r
∂Vθ

∂r
∂Vz

∂r

1
r

∂Vr

∂θ
− Vθ

r
1
r

∂Vθ

∂θ
+ Vr

r
1
r

∂Vz

∂θ

∂Vr

∂z
∂Vθ

∂z
∂Vz

∂z




(A.4)

Divergence of a Vector, O · V

O · V =
∂Vr

∂r
+

Vr

r
+

1

r

∂Vθ

∂θ
+

∂Vz

∂z
(A.5)

where V = (Vr, Vθ, Vz)

Laplacian of a Scalar, O2φ

O2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
(A.6)

Laplacian of a Vector, O2V

O2V =



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∂r2 + 1
r
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(A.7)
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Curl, O× V

O× V =




1
r
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(A.8)

Divergence of a Symmetric Tensor, O · s

For a symmetric tensor defined as: s =




srr srθ srz

sθr sθθ sθz

szr szθ szz




.

The divergence is given by:

(O · s)r =
∂srr

∂r
+

srr

r
+

1

r

∂srθ

∂θ
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∂srz

∂z
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r
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r
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r

(O · s)z =
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+
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r
+

1

r

∂szθ

∂θ
+

∂szz

∂z
(A.9)

Stress Tensor, s

The stress tensor is given by: s = Ou + OuT − 2
3
(O · u) I. Here u is the

velocity vector of the fluid. Therefore the stress tensor of a fluid in polar
coordinates can be found, using the previous definitions, to be:
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(A.10)
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(s)z =
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(A.12)
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