Dataset for "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms"
Dataset for "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms"
This dataset supports the publication: 'Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms' in 'Efficient Deep Learning for Computer Vision Workshop at CVPR Conference 2021'.
University of Southampton
Lou, Wei
77dede32-c64f-4531-bae2-e78ae27710f0
Xun, Lei
51a0da82-6979-49a8-8eff-ada011f5aff5
Sabetsarvestani, Mohammadamin
f5c0e55f-6f0c-4f56-9d6d-7de19d6fb136
Bi, Jia
8b23da1b-a6d6-43f4-9752-04a825093b3b
Hare, Jonathon
65ba2cda-eaaf-4767-a325-cd845504e5a9
Merrett, Geoffrey
89b3a696-41de-44c3-89aa-b0aa29f54020
Lou, Wei
77dede32-c64f-4531-bae2-e78ae27710f0
Xun, Lei
51a0da82-6979-49a8-8eff-ada011f5aff5
Sabetsarvestani, Mohammadamin
f5c0e55f-6f0c-4f56-9d6d-7de19d6fb136
Bi, Jia
8b23da1b-a6d6-43f4-9752-04a825093b3b
Hare, Jonathon
65ba2cda-eaaf-4767-a325-cd845504e5a9
Merrett, Geoffrey
89b3a696-41de-44c3-89aa-b0aa29f54020
Xun, Lei
(2021)
Dataset for "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms".
University of Southampton
doi:10.5258/SOTON/D1804
[Dataset]
Abstract
This dataset supports the publication: 'Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms' in 'Efficient Deep Learning for Computer Vision Workshop at CVPR Conference 2021'.
Spreadsheet
Experimental_data.xlsx
- Dataset
More information
Published date: 22 April 2021
Identifiers
Local EPrints ID: 448421
URI: http://eprints.soton.ac.uk/id/eprint/448421
PURE UUID: b50b2b86-2bcf-4a01-a023-42aef2f846af
Catalogue record
Date deposited: 22 Apr 2021 16:30
Last modified: 06 May 2023 01:41
Export record
Altmetrics
Contributors
Contributor:
Wei Lou
Creator:
Lei Xun
Contributor:
Mohammadamin Sabetsarvestani
Contributor:
Jia Bi
Contributor:
Jonathon Hare
Contributor:
Geoffrey Merrett
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics