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Abstract: People with chronic obstructive pulmonary disease, cardiovascular disease, or
hypertension have a high risk of developing severe coronavirus disease 2019 (COVID-
19) and of COVID-19 mortality. However, the association between long-term exposure
to air pollutants, which increases cardiopulmonary damage, and vulnerability to
COVID-19 has not yet been fully established. We collected data of confirmed COVID-
19 cases during the first wave of the epidemic in mainland China. We fitted a
generalized linear model using city-level COVID-19 cases and severe cases as the
outcome, and long-term average air pollutant levels as the exposure. Our analysis was
adjusted using several variables, including a mobile phone dataset, covering human
movement from Wuhan before the travel ban and movements within each city during
the period of the emergency response. Other variables included smoking prevalence,
climate data, socioeconomic data, education level, and number of hospital beds for
324 cities in China. After adjusting for human mobility and socioeconomic factors, we
found an increase of 37.8% (95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95%
CI: 22.5%–42.4%), and 14.2% (7.9%–20.5%) in the number of COVID-19 cases for
every 10-μg/m  3  increase in long-term exposure to NO  2  , PM  2.5  , and PM  10  ,
respectively. However, when stratifying the data according to population size, the
association became non-significant. The present results are derived from a large,
newly compiled and geocoded repository of population and epidemiological data
relevant to COVID-19. The findings suggested that air pollution may be related to
population vulnerability to COVID-19 infection, although the extent to which this
relationship is confounded by city population density needs further exploration.
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Dear editor, Environmental Pollution 

We are submitting our manuscript entitled “Association between coronavirus 

disease 2019 (COVID-19) and long-term exposure to air pollution: evidence from 

the first epidemic wave in China” for your kind consideration of its suitability for 

publication in Environmental Pollution. We have an intimate understanding on the 

aims and scope of this journal and believe our manuscript will meet your 

requirements. 

 

To the date, more than 103 million people had contracted with coronavirus 

COVID-19 since the disease was first identified in Wuhan. Recent reports suggested 

that the polluted ambient air might positively worsen the respiratory symptoms of this 

disease thus increase the risk of severe outcomes. Consider the negative affect of long 

term air pollution on lung and airway damage, which contributed to increased risk on 

pneumonia and influenza, we explored that chronic exposure might related with 

potential infectious vulnerability on COVID-19. 

 

Our study provided evidence on explaining the relationship between COVID-19 and 

historical air pollution exposure, relying on a city-level database from China. In order 

to adjusted the confounding factor on the epidemic on infectious disease, such as the 

community mobility and social distancing, we considered variables like travel from 

Wuhan and outdoor activities to estimate the effect of air pollutants. Results showed 

that the elevated level of NO2 and PM2.5 in the past five years correspond to an 

increase in the number of COVID-19 cases and severe infections. 

 

We assure that the manuscript is an original work, has not been previously published 

and is not under considered for publication elsewhere. All authors have read the 

manuscript and agree that the work is ready for submission to the journal. 

 

Best regards, 
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February 1, 2021 

 

Dear Professor Chen 

Editor, Environmental Pollution, 

We appreciated to receive the comments from the referees. We have carefully revised our 

manuscript [ENVPOL-D-20-02781R1] according to the suggestions made by the referees and 

answer their questions one by one as clear as possible. 

Editor and Reviewer comments: 

Editor: 

1. As pointed out by one of the reviewers, the current version still contains a number of 

grammatical problems. The authors are suggested to seek assistance from professional editing 

service or native English speakers.  

Response: Thank you very much for the suggestions. We have sought the help of a native English 

speaker to check the English language carefully and avoid grammatical problems in the revised 

manuscript. Please refer to the revised version for details. 

 

Reviewer #3:  

1. I appreciate the effort the authors have put into the revision. There still remain many English 

language errors that need to be fixed throughout the manuscript. The authors have addressed most 

of my initial comments adequately. However, I do not believe they have fully addressed one of my 

central critiques. This is regarding the confounding effect of population size and density. Bigger 

cities with higher population densities cause more pollution but also will have more COVID-19 

cases because of the population size. The Fig. 3 A, B and C show that when the authors split the 

dataset by city population size, the significant effect of long-term pollution disappears - the 95% 

confidence intervals cross the zero mark on the y-axis. This shows how population size is a 

Response to Reviewers



 

confounder in the analysis and this needs to be stated more clearly. I note places where this can be 

done below. 

Response: Thank you very much for your comments. We appreciate the comments of the reviewer 

and make corresponding amendments accordingly. Meanwhile, we have checked the English 

language carefully to avoid grammatical errors and improve the expression to make it easier for 

readers to understand. At the same time, we try to explain the confounding effect of population size 

in our study. Please refer to the revised version for details. 

2. Highlights: the first highlight needs to be re-worded. Replace "vulnerability of COVID-19" 

with "COVID-19 case numbers". The last highlight should change as well in my opinion. It should 

read something like "The association may be confounded by city population size and density" 

Response: Thank you very much for your suggestions. We agree to revise the Highlights according 

to the reviewer's suggestion. In the revised manuscript, the first and last highlights have been 

modified. 

3. L42: Replace "that" with "a" 

Response: This sentence has been revised. 

4. L44: I strongly recommend this sentence be replaced with "However, when stratifying the data 

by population size classes, the association became insignificant." 

Response: Thank you very much for your suggestion. In the revised manuscript, this sentence 

has been modified. 

5. L46: I strongly recommend you change your last two sentences to: "The findings suggested 

that air pollution may be related to the population vulnerability to COVID-19, although the extent 

to which this relationship is confounded by city population density needs further exploration". 

Response: Thank you very much for your suggestion. In the revised manuscript, the last two 

sentences in the Abstract section have been modified according to the reviewer's suggestion. 

6. L253-256: This is not a satisfactory presentation of the results on city population size effect. I 

argue that you need to state that there was no significant effect of long-term pollution on COVID-

19 vulnerability when the data was stratified into population sizes. This shows how important 

population is as a confounding variable in the analysis. 

Response: Thank you very much for your comments. We agree to revise these sentences and add 

the reviewer's suggestion in the Results section. 



 

7. L322: Please do not use terms like "more obvious" which require subjective interpretation. 

Please be specific - was it significant or not? By looking at Fig. 3, the significance breaks down 

when you split the data into population size groups. 

Response: Thank you very much for your comments. We added sentences to describe the impact. 

Sentences were revised as: There was no significant effect of long-term exposure to most of the air 

pollutants on susceptibility to COVID-19 infection when the data were stratified by population size. 

While, the effect persisted after stratification in NO2 and PM2.5 on confirmed COVID-19 cases 

among large cities and small cities, and the impact of PM10 in severe COVID-19 cases among large 

cities. 

8. L358: "Fine air quality" is not a good descriptor. Please rephrase to something like "Improved 

air quality". 

Response: Thank you very much for your suggestion. We have rephrased "Fine air quality" to 

“Improved air quality”. 

 

Reviewer #4:  

1. The authors have addressed more or less most of my comments. Nevertheless for some of them 

the aswers should be in the main manuscript and not as an answer to the point by point reply, since 

in my eyes these are natural questions that are generated as reading the manuscript, for instance 

comment 2.2, 2.4 and 3.4. 

Response: Thank you very much for your comments. Indeed, some of the content we only 

reflected in the point by point reply, and not explicitly put in the main manuscript. In this revised 

version, we have modified the corresponding content. For comment 2.2, we have supplemented the 

corresponding information in the end of Methods 2.1 section. For comment 2.3, we have 

supplemented in the 4th paragraph of Discussions section. For comment 3.4, we have supplemented 

in the Methods 2.5 section. Please refer to the revised version for details. 

2. Reading the updated version of the manuscript there are still typos and language problems, for 

instance line 66 induces instead of induce, line 82 trend instead of tend, line 103 consider instead of 

considering to name a few. I would thus suggest either the advice of a scientific writter or from a 

native speaker to improve the language quality of the paper.  

Response: Thank you very much for your suggestions. The errors pointed out by the reviewer 



 

have been corrected. Meanwhile, we have sought the help of a native English speaker to check the 

English language carefully in the whole revised manuscript. 

3. Also the authors havent addresed my comment about the city specific random effect, see 

comment 2.3. Have you repeated the analysis by adding a random effect on the city level? 

Response: Thank you very much for your comments. A linear mixed effects model was 

established with population as the random intercept, to examine the relationship of air pollutants 

and COVID-19 cases. As the table shown below, NO2, PM2.5 and PM10 have effect on the confirmed 

COVID-19 cases in different approach, and the random effects of population could explain 63%, 

52% and 66% of the variances.  

Table 1  Linear mixed effects model on air pollutants and confirmed COVID-19 cases 

Parameter NO2 PM2.5    PM10 

Random effects   

Population(Intercept)-Variance 0.240 0.201 0.246 

Residual-Variance 0.142 0.179 0.164 

Fixed effects   

Estimate 0.773 0.135 0.034 

Std.Error 0.117 0.025 0.014 

P value <0.001 <0.001 0.017 

4. From the methodological perspective, it is a bit worrysome that the authors did not include 

population as an offset (denominator). Then all the results are confounded with population trends. 

Maybe the severe collinearity stems from this. Have you performed the analysis using population 

as an offset?  

Response: Thank you very much for your comments. Additional analysis has been added as 

suggested using population as an offset in our model. We are happy to report that the trend of our 

results is consistent with our original ones. The impact of long-term exposure to NO2, PM2.5 and 

PM10 still reminds in our results, which indicated the results are relatively stable. While, there is no 

significant effect of long-term pollution on COVID-19 vulnerability when using the severe cases. 

The reason could be in the first wave of COVID-19 in China, as a novel infectious disease, the 

diagnostic capacities were limited, which explained in the fourth paragraph of discussion. 

 

 

 



 

Table 2 Impact of historical air pollution exposure on cases of COVID-19 with population as the 

offset 

Covariates Coefficient (95%CI) 

 

std P 

NO2 0.198（0.18,0.216） 0.009  <0.001 

Intercept -1.74（-1.97,-1.514） 0.116  <0.001 

Inflow from Wuhan  0.006（0.006,0.007） 0.000  <0.001 

Within-city movements  -1.253（-1.284,-1.222） 0.016  <0.001 

Peak of inflow from Wuhan 0.197（0.191,0.202） 0.003  <0.001 

Mean temperature of coldest quarter  -0.030（-0.033,-0.027） 0.001  <0.001 

Relatively humidity 0.046（0.044,0.049） 0.001  <0.001 

Illiteracy rate  0.0506（0.046,0.056） 0.003  <0.001 

    

PM2.5 0.202（0.189,0.216） 0.007  <0.001 

Intercept  -3.837（-4.056,-3.619） 0.112  <0.001 

Inflow from Wuhan  0.006（0.005,0.006） 0.000  <0.001 

Within-city movements -1.458（-1.49,-1.426） 0.016  <0.001 

Peak of inflow from Wuhan 0.218（0.212,0.224） 0.003  <0.001 

Mean temperature of coldest quarter  -0.029（-0.032,-0.026） 0.002  <0.001 

Relatively humidity 0.058（0.056,0.061） 0.001  <0.001 

Illiteracy rate  0.048（0.043,0.053） 0.003  <0.001 

    

PM10 0.101（0.093,0.109） 0.004  <0.001 

Intercept -1.843（-2.066,-1.621） 0.113  <0.001 

Inflow from Wuhan  0.006（0.006,0.006） 0.000  <0.001 

Within-city movements -1.383（-1.414,-1.352） 0.016  <0.001 

Peak of inflow from Wuhan 0.180（0.175,0.186） 0.003  <0.001 

Mean temperature of coldest quarter -0.021（-0.024,-0.018） 0.002  <0.001 

Relatively humidity 0.053（0.05,0.055） 0.001  <0.001 

Illiteracy rate  0.045（0.04,0.05） 17.527  <0.001 

 

Best regards, 

Sincerely yours 

Prof. Guang Jia 



 

Highlight 

 Long-term exposure to NO2, PM2.5 or PM10 corresponded to COVID-19 case numbers. 

 This study focused on the period in the first wave of China. 

 The nationwide COVID-19 cases and severe infections in 324 cities of China were included. 

 The association may be confounded by city population size and density 
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Abstract 29 

People with chronic obstructive pulmonary disease, cardiovascular disease, or hypertension have a 30 

high risk of developing severe coronavirus disease 2019 (COVID-19) and of COVID-19 mortality. 31 

However, the association between long-term exposure to air pollutants, which increases 32 

cardiopulmonary damage, and vulnerability to COVID-19 has not yet been fully established. We 33 

collected data of confirmed COVID-19 cases during the first wave of the epidemic in mainland 34 

China. We fitted a generalized linear model using city-level COVID-19 cases and severe cases as 35 

the outcome, and long-term average air pollutant levels as the exposure. Our analysis was adjusted 36 

using several variables, including a mobile phone dataset, covering human movement from Wuhan 37 

before the travel ban and movements within each city during the period of the emergency 38 

response. Other variables included smoking prevalence, climate data, socioeconomic data, 39 

education level, and number of hospital beds for 324 cities in China. After adjusting for human 40 

mobility and socioeconomic factors, we found an increase of 37.8% (95% confidence interval 41 

[CI]: 23.8%–52.0%), 32.3% (95% CI: 22.5%–42.4%), and 14.2% (7.9%–20.5%) in the number of 42 

COVID-19 cases for every 10-μg/m3 increase in long-term exposure to NO2, PM2.5, and PM10, 43 

respectively. However, when stratifying the data according to population size, the association 44 

became non-significant. The present results are derived from a large, newly compiled and 45 

geocoded repository of population and epidemiological data relevant to COVID-19. The findings 46 

suggested that air pollution may be related to population vulnerability to COVID-19 infection, 47 

although the extent to which this relationship is confounded by city population density needs 48 

further exploration. 49 

 50 

Main Finding 51 

This research reported a national-level association with long-term exposure to air pollutants and 52 

COVID-19 cases covering 324 cities in China. 53 

 54 

Key words 55 

Coronavirus disease 2019; COVID-19; Air pollution; Chronic exposure 56 

 57 

  58 
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Introduction 59 

Coronavirus disease 2019 (COVID-19) has rapidly spread across the world. To date, the virus that 60 

causes COVID-19, severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has infected 61 

more than 103 million people and led to approximately 2.23 million fatalities, according to John 62 

Hopkins University. Currently, several reports suggest that air pollution is associated with an 63 

increased risk of death or severe illness among people with COVID-19 infection (Magazzino, 64 

Mele et al. 2020, Wu, Nethery et al. 2020, Yao, Pan et al. 2020, Travaglio, Yu et al. 2021), on the 65 

basis of a biologically plausible pathway that might lead to serious deterioration (Conticini, 66 

Frediani et al. 2020, Frontera, Cianfanelli et al. 2020). SARS-CoV-2 can induce respiratory 67 

distress, so individuals with a compromised respiratory system are expected to be more vulnerable 68 

to infection (Qu, Li et al. 2020), and people with pre-existing conditions are more vulnerable to 69 

severe infection. A meta-analysis showed that chronic obstructive pulmonary disease (COPD), 70 

cardiovascular disease, and hypertension are associated with severe COVID-19 infection and 71 

admission to the intensive care unit (ICU) (Jain and Yuan 2020). 72 

 73 

Long-term exposure to air pollution affects lung function and is associated with the risk of many 74 

lung diseases, including an increased prevalence of COPD, acute lower respiratory illness, and 75 

lung cancer (Götschi, Heinrich et al. 2008, Lelieveld, Evans et al. 2015, Doiron, de Hoogh et al. 76 

2019, Liu, Chen et al. 2019). Moreover, recent research has put forth potential biological 77 

mechanisms of alveolar angiotensin-converting enzyme 2 (ACE-2) and population susceptibility 78 

to COVID-19 infection (Paital and Agrawal 2020). Additionally, chronic lung exposure to 79 

pollutants may lead to injury owing to pulmonary damage from oxidative stress, macrophage 80 

disfunction, and a disrupted epithelial barrier, thereby increasing susceptibility of the upper 81 

airways (Ciencewicki and Jaspers 2007, Frontera, Cianfanelli et al. 2020, Zhu, Xie et al. 2020). 82 

This implies that long-term exposure might increase vulnerability to lung diseases, thereby 83 

affecting the risk of COVID-19 infection in the whole population. However, recent studies tend to 84 

ignore the broad implications of long-term effects on the lungs. Furthermore, few studies have 85 

considered the important role of human travel and movement in the spatial spread of COVID-19, 86 

which might serve as a critical confounding variable in evaluating the effects of air pollution. We 87 

must understand the impact of air pollution exposure on COVID-19 infection and disease severity 88 

(Villeneuve and Goldberg 2020) in the general public, to help improve future modeling and 89 

disease burden calculations in countries around the world.  90 

 91 

During the first epidemic wave of COVID-19 in China, to prevent further dissemination of the 92 

disease, officials in Wuhan prohibited all transport in and out of the city on 23 January 2020. In 93 

the following days, cities across mainland China launched the highest level emergency response 94 

and were able to control the epidemic outside of Wuhan by 6 March 2020. These measures 95 

substantially reduced air pollution, as confirmed by a significant reduction in pollution levels 96 

observed across cities in China between January and March 2020 (Chen, Wang et al. 2020, 97 

Villeneuve and Goldberg 2020). These data from Chinese cities (excluding Wuhan) were ideal to 98 

assess the relationship between long-term average air pollution exposure and COVID-19 risk 99 

because these cities had widely distributed COVID-19 cases and highly variable historical air 100 

quality, which had been comprehensively surveyed under consistent criteria and data standards 101 

across the country. Air pollution produces both acute and long-term health effects, so a reduction 102 
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in air pollution levels can serve as a natural experiment in how to offset potential acute effects of 103 

air pollution. 104 

 105 

Considering the proven link between air pollution and the high risk of severe COVID-19 106 

infection, we suspected that long-term exposure to air pollutants, which increases 107 

cardiopulmonary damage, would be associated with increased vulnerability to COVID-19. To test 108 

this hypothesis, we identified sociodemographic and behavioral confounders through a literature 109 

search. We first investigated the effect of travel and movement from Wuhan city, the location 110 

where COVID-19 was first recorded and from where it spread across China. During the Spring 111 

Festival holiday in 2020, approximately 4.3 million people traveled from Wuhan to other cities in 112 

China (Tian, Liu et al. 2020). These travel patterns were strongly associated with the total number 113 

of cases reported in each city, suggesting that the outbreaks across China were mainly seeded in 114 

Wuhan city.  115 

 116 

 117 

Methods 118 

 119 

Epidemiological and demographic data 120 

We collected epidemiological data from official reports of the health commissions of 324 cities, 121 

excluding Wuhan (Table 1). These included daily reports from 31 December 2019 to 6 March 122 

2020, but excluded newly reported, locally acquired infections. Data on the proportion of severe 123 

COVID-19 cases were obtained from official reports of Provincial Health Committees and used to 124 

interpolate the city-level values. The National Health Commission of the People’s Republic of 125 

China defined uniform diagnosis and treatment criteria of “2019 novel coronavirus pneumonia”, 126 

to measure the number of outbreaks. The reporting system was supported by local health-related 127 

departments, including hospitals and Centers for Diseases Control and Prevention (CDCs) at the 128 

provincial or county level (Zanin, Xiao et al. 2020). In the first wave of the COVID-19 epidemic, 129 

these local CDCs sought to detect the largest possible number of infections, but people with a 130 

fever and a travel history to Wuhan were the priority groups for testing. Socioeconomic data, 131 

including the gross domestic product (GDP) per capita and number of hospital beds, were 132 

obtained from the China City Statistical Yearbook 2019. The age structure and illiteracy rate of 133 

people aged 15 years and older in each city were obtained from the Sixth National Population 134 

Census of the People's Republic of China, which was conducted by the National Bureau of 135 

Statistics of People’s Republic of China in 2013. The prevalence of smoking and secondhand 136 

smoking among non-smokers was obtained from the Chinese National Nutrition and Health 137 

Survey (Wu, Huxley et al. 2008, Xia, Zheng et al. 2019). These were ecological and not individual 138 

data, which did not involve personal information; therefore, an ethics review was not required.  139 

 140 

 141 

Human mobility data 142 

Human movements were tracked using mobile phone data from Baidu location-based services and 143 

telecommunications operators (Table 1). The number of recorded movements from Wuhan to other 144 

cities across China was calculated from 11 to 23 January 2020. On 23 January, movements from 145 

Wuhan dropped to nearly zero because of the travel ban. Movements within each city were 146 
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recorded daily until 6 March. The within-city movement index was extracted from the same 147 

operators and was measured, to reflect the average times people traveled from their location inside 148 

each city every day. This database was developed to describe people’s compliance with physical 149 

distancing policies, which included suspending intracity public transport, closing entertainment 150 

venues, and banning public gatherings. 151 

 152 

 153 

Source of air pollution and meteorological data 154 

Original daily data for air pollutant concentrations, including particulate matter ≤ 2.5 μm and ≤ 10 155 

μm and (PM2.5 and PM10, respectively), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen 156 

dioxide (NO2), and ozone (O3) for each city, were obtained from air quality stations across China 157 

from January 2015 to March 2020. For each city, the average concentration for each pollutant 158 

before the COVID-19 outbreak (January 2020) was calculated across the entire available period. 159 

The data for temperature and precipitation during the coldest and warmest quarter in each city 160 

were extracted from WorldClim (Table 1), and the annual mean relative humidity was obtained 161 

from the National Meteorological Information Center. 162 

 163 

 164 

Statistical methods 165 

To quantify the effect of air pollution on COVID-19 risk, we used historical data for air quality 166 

between 2015 and 2019 and COVID-19 case reports. Sociodemographic and behavioral 167 

confounders were identified in a literature search. We searched PubMed and preprint servers 168 

(medRxiv) using the terms “air pollution”, “COVID-19”, and “SARS-CoV-2”, regardless of 169 

language and date. Among 74 studies identified, 55 were unrelated to public health. Of the 170 

remaining 19 studies, 6 used statistical models to investigate the relationship between air pollution 171 

and COVID-19 risk. Three papers involved large-scale and nationwide data from the United States 172 

(US), United Kingdom (UK), Italy, Spain, France, and Germany. The association between long-173 

term exposure to air pollutants and COVID-19 risk was assessed using regression with a 174 

generalized linear model (GLM):  175 

 176 

 ~ Poisson ,i iY           (1) 177 

 178 

 179 

log(𝜇𝑖𝑡) = 𝛼 + 𝛽1𝐼𝑛𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑊𝑢ℎ𝑎𝑛𝑖 + 𝛽2𝑃𝑒𝑎𝑘𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑛𝑓𝑙𝑜𝑤𝑖 + 180 

𝛽3𝑊𝑖𝑡ℎ𝑖𝑛𝑐𝑖𝑡𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠𝑖+𝛽4𝐺𝐷𝑃𝑖 + 𝛽5𝑆𝑚𝑜𝑘𝑖𝑛𝑔 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑖 + 181 

𝛽5𝑆𝑒𝑐𝑜𝑛𝑑ℎ𝑎𝑛𝑑 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑖𝑛 𝑛𝑜𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠𝑖 + 182 

𝛽6𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑙𝑑𝑒𝑟 𝑡ℎ𝑎𝑛 65 𝑦𝑒𝑎𝑟𝑠 𝑜𝑙𝑑𝑖 + 𝛽7𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 + 183 

𝛽8𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝛽9𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖 + 𝛽10𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖 + 184 

𝛽11𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖+𝛽12𝐼𝑙𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒𝑖 + 𝛽13𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑏𝑒𝑑𝑠𝑖 + 185 

𝛽14𝑃𝑀2.5,𝑖 ∗ +𝛽15𝑃𝑀10,𝑖 ∗ +𝛽16𝑆𝑂2,𝑖 ∗ +𝛽17𝐶𝑂𝑖 ∗ +𝛽18𝑁𝑂2,𝑖 ∗ +𝛽19𝑂3,𝑖 ∗ 186 
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 (2) 187 

where Flowi is the passenger volume from Wuhan to city i during the Spring Festival 2020, before 188 

the Wuhan travel ban; Peak time of flow reflects the corresponding peak time. Within-city 189 

movementsi shows the effect of social distancing within a city between the travel ban and 6 March 190 

2020 in city i. GDP is the gross domestic product per capita of city i. Smoking prevalence and 191 

second-hand smoking prevalence in non-smokers was extracted from the published literature. The 192 

proportion of residents older than 65 years, illiteracy rate, number of hospital beds, population, 193 

and population density of city i were extracted from census data. Climate conditions are 194 

represented by temperature and rainfall in summer and winter. The relative humidity is the annual 195 

mean in city i. Latitude and longitude show the spatial distribution of city i. PM2.5, PM10, SO2, CO, 196 

NO2, and O3 are the daily average concentration data of air pollutants in city i between 1 January 197 

2015 and 31 December 2019. Air pollution variables were included in the model separately 198 

because of the high multicollinearity among them. βs are regression coefficients. The variation per 199 

unit (VPU) = [exp(variable coefficient) – 1] × 100% was used to describe the effect. The VPU can 200 

be interpreted as the percentage increase in the number of COVID-19 cases associated with a 10-201 

μg/m3 increase in long-term average air pollutant exposure. We used the R software version 3.6.3, 202 

MASS package in the analyses (The R Foundation for Statistical Computing, Vienna, Austria). 203 

 204 

Sensitivity analysis 205 

We conducted additional sensitivity analyses to assess the robustness of our results. We fit models, 206 

omitting adjusted variables separately and air pollutant concentrations in winter and non-winter 207 

seasons. To examine the associations after adjusting all other confounders, cities were categorized 208 

into three separate groups according to population size: small-sized (0–2.68 million population, n 209 

= 98), medium-sized (2.68–4.67 million, n = 97), and large-sized (4.67–30.75 million, n = 98) 210 

cities. 211 

 212 

 213 

Results 214 

 215 

Analysis of COVID-19 in China 216 

Between 31 December 2019 and 6 March 2020, a total of 81,132 cases of COVID-19 were 217 

reported across China. Of these, 62.6% (50,783/81,132) of cases were clustered in Wuhan city; the 218 

remaining 37.4% (30,349/81,132) of cases were distributed across 324 other cities. After 6 March 219 

2020, there were very few locally acquired infections outside Wuhan city during the first wave. 220 

There was sustained local transmission of COVID-19 in Wuhan city, so data from that city were 221 

not included in the subsequent analysis. Figure 1 shows that the 324 cities had widely distributed 222 

COVID-19 cases from 31 December 2019 to 6 March 2020. Additionally, with more travelers 223 

from Wuhan before the Spring Festival and more numerous COVID-19 cases reported in each 224 

city, 225 

 226 

Air pollution reduction and travel restrictions 227 

The average daily concentrations of PM2.5, PM10, SO2, CO, NO2, and O3 during the first wave of 228 

the COVID-19 epidemic were 52.13 μg/m3, 69.58 μg/m3, 0.93 mg/m3, 24.58 μg/m3, and 51.29 229 

μg/m3among the 324 cities, respectively (Supplemental Table 1). On 23 January 2020, China 230 
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banned travel movement from and to Wuhan, in an attempt to control the epidemic. After that 231 

date, a series of social distancing and lockdown policies were implemented throughout China to 232 

control the COVID-19 epidemic. During the lockdown period, air pollution emissions were 233 

markedly reduced. In particular, average levels of SO2, PM2.5, and PM10 were decreased by 21%, 234 

18%, and 16%, respectively, compared with levels before implementation of the restriction 235 

policies. NO2 experienced a reduction of 8.17 μg/m3, which was one of the most significant 236 

changes among all examined air pollutants after the social distancing measures came into force. 237 

The results also indicated that these measures significantly reduced movement within cities during 238 

2020 in comparison with that during 2019 (Figure 2). The air quality in 2020 was also 239 

significantly improved, compared with that during the same period in 2019. The changes in 240 

average daily concentrations of PM2.5, PM10, SO2, CO, NO2, and O3 were −7.02% ± 32.9%, 241 

−19.25% ± 22.03%, −15.06% ± 20.56%, −5.46% ± 18.73%, −20.17% ± 29.56%, and 5.01% ± 242 

16.01%, respectively, from 31 December to 6 March 2020. 243 

 244 

Effect of long-term exposure to air pollutants on COVID-19 cases and severe infections 245 

We collected data on a range of confounding variables, such as GDP per capita, smoking 246 

prevalence, climate data, illiteracy rate, and age composition (age > 65 years), together with travel 247 

movements from Wuhan and within-city movements (as measures of compliance with social 248 

distancing). These variables were adjusted in the statistical analysis. The population size of each 249 

city and number of COVID-19 deaths and hospital beds were not included in the model because of 250 

high multicollinearity with travel movements from Wuhan. The movements of approximately 4.3 251 

billion people during the Spring Festival holiday also induced uncoordinated changes in actual 252 

population sizes across cities (Simiao, Juntao et al. 2020). As expected, the number of COVID-19 253 

cases in each city increased with increased population inflow from Wuhan; more infections were 254 

reported in cities that had more travelers from Wuhan. Overall, we observed positive and 255 

significant associations between confirmed cases of COVID-19 with historical air pollutant 256 

concentrations (Figure 1A). In the 324 cities (except Wuhan) that had data on air quality, an 257 

increase of 10 μg/m3 in the NO2, PM2.5, and PM10 concentrations was associated with a 37.8% 258 

(95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95% CI: 22.5%–42.4%), and 14.2% 259 

(7.9%–20.5%) increase in COVID-19 cases. We also examined the relationship between the 260 

number of severe COVID-19 cases and air pollutant levels. An increase of 10 μg/m3 in NO2, 261 

PM2.5, and PM10 concentrations was associated with a 26.3% (95% CI: 11.7%–40.8%), 15.7% 262 

(95% CI: 6.3%–25.2%), and 6.43% (95% CI: 0.6%–12.2%) increase in severe COVID-19 cases. 263 

The results were statistically significant and robust in sensitivity analyses (Table 2 and Figure 3). 264 

The analysis was also carried out using separate datasets. Cities were categorized according to 265 

population size into small, medium, and large cities. There was no significant effect of long-term 266 

exposure to most of the air pollutants on susceptibility to COVID-19 infection when the data were 267 

stratified by population size. While, the effect persisted after stratification in NO2 and PM2.5 on 268 

confirmed COVID-19 cases among large cities and small cities, and the impact of PM10 in severe 269 

COVID-19 cases among large cities. This shows the importance of population as a confounding 270 

variable in the analysis. 271 

 272 

 273 

Discussion 274 
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 275 

In the present study, we clarified the association between long-term exposure to air pollution and 276 

vulnerability to COVID-19 infection during the first epidemic wave in China. The present results 277 

were derived from a large, newly compiled and geocoded repository of population and 278 

epidemiological data relevant to COVID-19. Indeed, several studies have evaluated the 279 

association between air pollution exposure and COVID-19 risk (Copat, Cristaldi et al. 2020). Our 280 

finding was in line with studies based on large-scale nationwide data, including from the US (Wu, 281 

Nethery et al. 2020), UK (Konstantinoudis, Padellini et al. 2020, Travaglio, Popovic et al. 2020, 282 

Travaglio, Yu et al. 2021), Italy (Conticini, Frediani et al. 2020, Fattorini and Regoli 2020), The 283 

Netherlands (Andree 2020), Spain, France, and Germany (Ogen 2020), as well as various 284 

provinces of China (Yongjian, Jingu et al. 2020). Because the first COVID-19 wave was contained 285 

in China, meaning that we were able to investigate the impact of historical air pollution on 286 

COVID-19 risk and severity.  287 

 288 

In the present study, we found statistically significant evidence that an increase in long-term 289 

exposure to NO2, PM2.5, or PM10 corresponded to an increase in the number of COVID-19 cases 290 

and severe infections. The findings are comparable to the results of previous studies in the US 291 

(Wu, Nethery et al. 2020) and Northern Europe (Andree 2020), where levels of PM2.5 were also 292 

found to be strongly associated with COVID-19 incidence, after adjusting for multiple 293 

confounders. However, ours was the first study to use complete data from the first wave of the 294 

COVID-19 epidemic in China and to identify the association between long-term exposure to air 295 

pollution and COVID-19 risk, after controlling for many meteorological and demographic 296 

variables as well as human mobility data. The effects of NO2 and PM10 exposure were also clearly 297 

shown in our analysis model, which was a relatively new result. The effects of different 298 

components of air pollutants on COVID-19 should be further studied and confirmed. 299 

 300 

Our results highlight the importance of air quality improvements with respect to health in China. 301 

In an attempt to control the epidemic, on 23 January 2020, non-essential travel was prohibited in 302 

and out of Wuhan city, a major transport hub and megacity of 11 million people. Subsequently, the 303 

highest level of emergency response was implemented throughout all of China, to reinforce 304 

containment of the COVID-19 epidemic. Interventions included the closure of entertainment 305 

venues, suspension of within-city public transport, and prohibition of travel to and from other 306 

cities in China. These stringent intervention measures significantly reduced air pollution levels in 307 

each city during this period (Le, Wang et al. 2020), which was confirmed in our monitoring results 308 

(Figure 2). To some extent, the interventions provided an excellent opportunity to examine the 309 

benefits of improved air quality (Chen, Wang et al. 2020). Reducing air pollutant concentrations 310 

would reduce the incidence of acute respiratory diseases and people’s susceptibility to numerous 311 

infectious diseases. Even assuming that problems existed within the multiple interventions, these 312 

results were in line with our expectations. Previous studies have demonstrated that exposure to air 313 

pollutants is associated with poorer lung function, often measured using forced vital capacity and 314 

forced expiratory volume in 1 second (Ackermann-Liebrich U, Leuenberger P et al. 1997, Forbes 315 

LJ, Kapetanakis V et al. 2009, Urman R, McConnell R et al. 2014, Adam M, Schikowski T et al. 316 

2015). Exposure to particulate matter may be associated with an increased risk of 317 

cardiopulmonary diseases (Chen, Yin et al. 2019), aggravation of the case fatality rate of SARS 318 
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(caused by SARS-CoV, another strain of coronavirus) (Cui, Zhang et al. 2003), and impaired 319 

immune response (Wei and Tang 2018). Oxidant pollutants could also damage the innate immune 320 

response and increase host susceptibility to viruses by interfering with the function of 321 

macrophages(Karan, Ali et al. 2020, Qu, Li et al. 2020). Nitrogen oxides (NOX) cause 322 

inflammatory responses and worsen pre-existing lung inflammation, resulting in a direct effect on 323 

the risk of respiratory diseases (Takahashi Y, Mochitate K et al. 1986, Conticini, Frediani et al. 324 

2020), which is also shown in the Comparative Toxicogenomics Database (http://ctdbase.org). 325 

NO2 is primarily produced by traffic and factories and is less influenced by climatic conditions, so 326 

there were reductions in the concentration of NOX with a decline in within-city movements during 327 

the COVID-19 outbreak throughout China. Increased O3 and SO2 concentrations were associated 328 

with lower COVID-19 risk, which was also consistent with previous studies (Travaglio, Popovic 329 

et al. 2020, Yongjian, Jingu et al. 2020). However, the mechanisms underlying the impact of these 330 

pollutants on COVID-19 risk remain uncertain.  331 

 332 

The association between long-term exposure to air pollution and vulnerability to COVID-19 may 333 

be affected by some confounders. We considered many variables for inclusion in the initial model, 334 

such as population, inflow from Wuhan, and the number of COVID-19 deaths and hospital beds. 335 

However, owing to the collinearity among these four variables, we retained only one of these 336 

variables. We believe that in the first COVID-19 wave, the population inflow from Wuhan was the 337 

most important factor affecting development of the epidemic. Therefore, only the variable of 338 

inflow from Wuhan was retained and the other three were eliminated from the final model. 339 

However, we believe that the variable of population is also very important; thus, a hierarchical 340 

analysis for the population variable was conducted separately. We found that the association 341 

between long-term exposure to air pollutants and vulnerability to COVID-19 differed among 342 

different-sized cities. In large-sized cities, the association was more obvious, which may be owing 343 

to better health care, better case reporting, and better testing policies in large cities. Therefore, the 344 

effect of population size is complex and needs further analysis.  345 

 346 

As with other novel infectious diseases, there were many challenges in the diagnosis of COVID-347 

19 during the first epidemic wave (Arons, Hatfield et al. 2020, Li, Geng et al. 2020). Concern has 348 

been expressed about the sensitivity and specificity of the tests initially used to identify people 349 

infected with SARS-CoV-2. The performance of the detection methods has improved over time 350 

(Carter, Garner et al. 2020). At the same time, there is a lack of adequate testing in most countries, 351 

and treatment of patients with COVID-19 in many jurisdictions is inadequate owing to 352 

overburdened health systems. As a result, many cases and deaths that were attributable to COVID-353 

19 have not been confirmed. These issues may have some influence on the findings of this study. 354 

For example, this situation would lead to inaccuracies in the number of confirmed cases or severe 355 

cases of COVID-19 infection, which would cause some bias in the results. This may also be a 356 

reason that rates of greater severity of the disease are consistently lower. However, early studies 357 

during the epidemic can draw on the results of a pure transmission model. The present study 358 

focused on the association between air pollution and COVID-19 in the first wave in Wuhan, 359 

China. The variables included important human mobility data, such as inflow from Wuhan and 360 

peak time of inflow from Wuhan. These data would well reflect some important scientific 361 

problems in the early stages of an outbreak of a new infectious disease. 362 
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 363 

Several important caveats are worth mentioning. First, the data included here were all from 364 

mainland China; it is therefore unclear whether the findings can be generalized to other countries 365 

without data on historic air pollution exposure. Second, there are currently no high-quality records 366 

at city level regarding severe COVID-19 infections and ICU admissions, although we have 367 

attempted to fill this gap by using province-level reports. Third, air pollution data from ambient air 368 

quality stations across China do not necessarily reflect exposure to indoor air pollution; this may 369 

therefore bias the results. Finally, we do not know the exact number of cases because we do not 370 

know the number of asymptomatic and mildly symptomatic cases that may not have been 371 

recorded. These data will not be available until there has been a systematic survey of infection 372 

(e.g., via serological testing) across China. However, we reported a national-level disease pattern 373 

covering 324 cities and its potential association with long-term exposure to air pollutants. 374 

 375 

Conclusions 376 

 377 

In the present study, we found a significant positive association between long-term exposure levels 378 

to PM2.5, PM10, NO2, and the risk and severity of COVID-19 infection in China. Our findings 379 

suggest that air pollution may be related to population vulnerability to COVID-19. Interventions to 380 

control the COVID-19 outbreak in China successfully reduced air pollution levels and potentially 381 

prevented further cases of acute respiratory disease. Improved air quality may be conducive to 382 

reducing the hazards of respiratory infectious diseases. The link between COVID-19 and air 383 

pollution deserves more definitive and global data analysis. 384 
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Table 1. Databases and sources of coronavirus disease 2019 (COVID-19) and air pollution data 527 

Database data provider Source 

COVID-19   

Confirmed COVID-19 cases Provincial Health Committees which 

contained data of each city 

Official website of health commission of 34 

provincial-level administrative units and 342 city-

level units 

Severe COVID-19 cases 

Provincial Health Committees which 

contained data of each city 

Official website Health commission of 34 provincial-

level 

COVID-19 deaths 

Provincial Health Committees which 

contained data of each city 

Official website of health commission of 34 

provincial-level administrative units and 342 city-

level units 

Human mobility data   

Outflow from Wuhan Baidu location-based services mobile 

phone data provided by the 

telecommunications operators 

https://qianxi.baidu.com/ 

Within-city movements The activities index of human mobility 

with a city 

https://qianxi.baidu.com/ 

Meteorological data  

PM2.5, PM10, SO2, CO, NO2, and 

O3  

China National Environmental 

Monitoring Centre,2015-2019 

http://www.cnemc.cn/ 

Temperature Mean Temperature of 

Warmest/Coldest Quarter (2015-2019) 

https://www.worldclim.org/data/bioclim.html 

Rainfall Precipitation of Warmest/Coldest 

Quarter (2015-2019) 

https://www.worldclim.org/data/bioclim.html 

Relative Humidity  National Meteorological Information 

Center (CMA Meteorological Data 

Center, 2015-2019) 

http://data.cma.cn/ 

Demographic data   

Gross domestic product (GDP)  China City Statistical Yearbook 2019 http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm 

Age structure Sixth National Population Census of 

the People's Republic of China (2013) 

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm 

Smoking and second-hand 

smoking prevalence  

Chinese National Nutrition and Health 

Survey (NNHS)  

PMID: 24698853 

Hospital beds China City Statistical Yearbook 2019 http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm 

Illiteracy rate Sixth National Population Census of 

the People's Republic of China (2013) 

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm 

COVID-19, coronavirus disease 2019; PM2.5, particulate matter ≤ 2.5 μm; PM10, particulate matter 528 

≤ 10 μm; SO2, sulfur dioxide; CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; CMA, 529 

China Meteorological Administration. 530 
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Table 2. Impact of historical air pollution exposure on cases of COVID-19 531 

 Confirmed COVID-19 cases  Severe COVID-19 cases 

Covariates Coefficient (95%CI) 

 

std P Coefficient (95%CI) 

 

std P 

NO2 
0.378（0.238,0.52）  0.072  

<0.001 
0.263(0.117,0.408) 0.074  <0.001  

Intercept -1.697 

（-3.436,0.021）  
0.882  

0.055 

-1.919(-3.437,-0.401) 0.771  0.013  

Inflow from Wuhan  
0.007（0.007,0.008） <0.001  

<0.001 
0.016(0.013,0.019) 0.002  <0.001  

Within-city movements 
-1.14（-1.382,-0.901） 0.123  

<0.001 
-0.853(-1.098,-0.609) 0.124  <0.001  

Peak of inflow from 

Wuhan 
0.175（0.133,0.218） 0.022  

<0.001 
0.086(0.043,0.13) 0.022  <0.001  

Mean temperature of 

coldest quarter 
-0.023（-0.045,-0.001）  0.011  

0.040 
0.006(-0.014,0.027) 0.010  0.528  

Relatively humidity 
0.048（0.029,0.067） 0.010  

<0.001 
0.028(0.012,0.045) 0.008  0.001  

Illiteracy rate  
0.053（0.014,0.09） 0.019  

<0.001 
0.0188(-0.017,0.055) 0.018 0.305 

       

PM2.5 
0.323（0.225,0.424） 

0.051 <0.001 
0.157(0.063,0.252) 0.048  0.001  

Intercept 
-1.237（-2.841,0.329）  0.809  0.128  -1.313(-2.689,0.062) 0.699  0.061  

Inflow from Wuhan  
0.007（0.006,0.007） <0.001  <0.001  0.015(0.012,0.018) 0.002  <0.001  

Within-city movements 
-1.376（-1.617,-1.139） 0.122  <0.001  -0.961(-1.192,-0.731) 0.117  <0.001  

Peak of inflow from 

Wuhan 
0.137（0.096,0.179） 0.021  <0.001  0.077(0.033,0.121) 0.022  0.001  

Mean temperature of 

coldest quarter 
-0.003（-0.027,0.022） 0.012  0.790  0.01(-0.01,0.03) 0.010  0.329  

Relatively humidity 
0.052（0.032,0.071） 0.010  <0.001  0.026(0.01,0.042) 0.008  0.002  

Illiteracy rate  
0.049（0.008,0.087） 0.020  0.016  0.019(-0.017,0.056) 0.018  0.293  

       

PM10 
0.142（0.079,0.205） 0.032  

<0.001 
0.0643(0.006,0.122) 0.032  <0.001  

Intercept 
-1.183（-3.023,0.609） 0.927  0.203  -1.183(-2.861,0.217) 0.927  0.203  
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Inflow from Wuhan  
0.007（0.006,0.007） <0.001  <0.001  0.007(0.012,0.018) <0.001  <0.001  

Within-city movements 
-1.346（-1.604,-1.092） 0.131  <0.001  -1.346(-1.208,-0.742) 0.131  <0.001  

Peak of inflow from 

Wuhan 
0.148（0.104,0.194） 0.023  <0.001 0.148(0.037,0.126) 0.023  <0.001  

Mean temperature of 

coldest quarter 
-0.009（-0.033,0.016） 0.013  0.455  -0.009(-0.011,0.03) 0.013  0.455  

Relatively humidity 
0.054（0.032,0.076） 0.011  <0.001 0.054(0.012,0.046) 0.011  <0.001  

Illiteracy rate  
0.046（0.003,0.086） 0.021  0.033  0.046(-0.021,0.053) 0.021  0.033  

COVID-19, coronavirus disease 2019; PM2.5, particulate matter ≤ 2.5 μm; PM10, particulate matter 532 

≤ 10 μm; NO2, nitrogen dioxide; CI, confidence interval. 533 

  534 
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 535 

Figure 1. Air pollution exposure, coronavirus disease 2019 (COVID-19) cases, and travel 536 

movements in 324 cities of China during Spring Festival 2020. (A) Distribution of cities with data 537 

on nitrogen dioxide (NO2) concentrations and COVID-19 cases. Shading from light red to dark 538 

red represents cumulative number of confirmed COVID-19 cases in each city, from low to high, 539 

respectively, from 31 December 2019 to 6 March 2020; white area represents no data, and grey 540 

area represents no cases. Points colored from blue to red represent historic mean annual NO2 541 

concentrations (µg/m3), from low to high, respectively, during January 2015 and December 2019, 542 

prior to the COVID-19 epidemic. (B) Association between the cumulative number of confirmed 543 

cases, the number of human movements from Wuhan to each city, and historic mean annual NO2 544 

concentration. The area of the circles represents the cumulative number of cases reported by 6 545 

March 2020. 546 

  547 
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 548 

 549 

Figure 2. (A) Average within-city movement intensity and (B) air pollutant concentration in 324 550 

cities of China during the 2020 COVID-19 outbreak (orange line), compared with the same period 551 

in 2019 (blue line). 552 

NO2, nitrogen dioxide. 553 

 554 
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 555 
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Figure 3. Variation per unit and 95% confidence intervals, (A) NO2, (B) PM2.5, and (C) PM10. The 556 

variation per unit (VPU) = [exp(variable coefficient) – 1] × 100%. The VPU can be interpreted as 557 

the percentage increase in the number of COVID-19 cases associated with a 10-μg/m3 increase in 558 

long-term average NO2 and PM2.5. The VPU from the main analysis was adjusted for confounding 559 

factors. In the sensitivity analyses, we omitted each confounding factor separately, and used 560 

seasonal air pollutant concentrations. 561 

 562 

COVID-19, coronavirus disease 2019; PM2.5, particulate matter ≤ 2.5 μm; PM10, particulate matter 563 

≤ 10 μm; NO2, nitrogen dioxide. 564 
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Abstract 29 

People with chronic obstructive pulmonary disease, cardiovascular disease, or hypertension have a 30 

high risk of developing severe coronavirus disease 2019 (COVID-19) and of COVID-19 mortality. 31 

However, the association between long-term exposure to air pollutants, which would increases 32 

cardiopulmonary damage, and vulnerability to COVID-19 has not yet been fully established. We 33 

collecated data of confirmed COVID-19 cases during the first wave of the epidemic in mainland 34 

China. We fitted a generalized linear model using city-level COVID-19 cases and severe cases as 35 

the outcome, and long-term average levels of air pollutant levelss as the exposure. Our analysis 36 

was adjusted using several variables, including a mobile phone dataset, covering human 37 

movement from Wuhan before the travel ban and movements within each city during the time 38 

period of the emergency response. Other variables included census, smoking prevalence, climate 39 

data, and socio-economic data, education level,  and number of hospital beds data fromfor 324 40 

cities in China. After We adjustinged for human mobility and socio-economic factors,, we  and 41 

found that an increase of 37.8% (95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95% CI: 42 

22.5%–42.4%), and 14.2% (7.9%–20.5%) increase in the number of COVID-19 cases for every 43 

10- μg/m3 increase in the long- term exposure to NO2, PM2.5 a, and PM10 r, respectively. However, 44 

when stratifying the data byaccording to population size classes, the association became non-45 

insignificantthe association varied in different population sized cities. The present results are 46 

derived from a large, newly compiled and geocoded repository of population and epidemiological 47 

data relevant to COVID-19. The findings suggested that air pollution may be related to the 48 

population vulnerability to COVID-19 infection, although the extent to which this relationship is 49 

confounded by city population density needs further exploration. The link between COVID-19 50 

and air pollution deserves a more definitive and global data analysis. 51 

 52 

Main Finding 53 

This research reported a national-level association with long-term exposure to air pollutants and 54 

COVID-19 cases covering 324 cities in China. 55 

 56 

Key words 57 

Coronavirus disease 2019; COVID-19; Air pollution; Chronic exposureLong-term exposure 58 

 59 

  60 



3 
 

Introduction 61 

CThe novel coronavirus disease 2019 (COVID-19) has rapidly spread across the world. To date, , 62 

and the virus that causes COVID-19, severe acute respiratory disease coronavirus 2 (SARS-CoV-63 

2), so far hadhas infected more than 63 101 million people and led to , with approximately 1.52.16 64 

million fatalities,  according to John Hopkins University. Currently, several reports suggested that 65 

air pollution is associated with an increasedthe risk of death or severe cases illness  among the 66 

populationpeople with infected COVID-19 infection (Magazzino, Mele et al. 2020, Wu, Nethery 67 

et al. 2020, Yao, Pan et al. 2020, Travaglio, Yu et al. 2021), based on the basis of the a biologically 68 

plausible pathway that which might lead to serious deterioration (Conticini, Frediani et al. 2020, 69 

Frontera, Cianfanelli et al. 2020). The virus (SA  RS-CoV-2) can induces respiratory disstress, so 70 

individuals with a compromised respiratory system are expected to be more vulnerable to 71 

infection (Qu, Li et al. 2020), and people with pre-existing conditions are more vulnerable to 72 

severe infection. A Mmeta-analysis has showedn that chronic obstructive pulmonary disease 73 

(COPD), cardiovascular disease (CVD), and hypertension are associated with severe COVID-19 74 

infection and admission to the intensive care units (ICUs) (Jain and Yuan 2020). 75 

 76 

Long-term exposure to air pollution affects lung function and is associated with the risk of many 77 

lung diseasesimpacts, including the an increased prevalence of COPD, acute lower respiratory 78 

illness, and lung cancer (Götschi, Heinrich et al. 2008, Lelieveld, Evans et al. 2015, Doiron, de 79 

Hoogh et al. 2019, Liu, Chen et al. 2019). Moreover, recent implementation triedresearch has put 80 

forth to explain the potential biological mechanisms of alveolar angiotensin-converting enzyme 2 81 

( (ACE-2)) and population susceptibility on to COVID-19 infection (Paital and Agrawal 82 

2020). AIn additionally, chronic lung exposure to pollutants may lead to injury due owing to 83 

pulmonary damage by from oxidative stress, macrophage disfunction, and a disrupted epithelial 84 

barrier could facilitate the access of inhaled pathogens, thereby increasingus enhancing 85 

susceptibility of the upper airways (Ciencewicki and Jaspers 2007, Frontera, Cianfanelli et al. 86 

2020, Zhu, Xie et al. 2020). Thisat implies d that long-term exposure might increase the 87 

vulnerability to lung diseases, therebyus affecting the risk of COVID-19 infection risk in the 88 

whole population. However, recent studies trend to ignore the broad implications of long- term 89 

impairs effects on the lungs. Furthermore, few studies have considered the important role of 90 

human travel and movement in the progress of COVID-19 spatial spread of COVID-19, which 91 

might serve as a critical confounding variable in evaluating the effects of  caused by air pollution. 92 

We need tomust understand the impact of air pollution exposure on COVID-19 infection and 93 

disease severity (Villeneuve and Goldberg 2020)  in the general publicand to the public, to . This 94 

could will help to improve future modelling and disease burden calculations in countries around 95 

the world.  96 

 97 

During the first epidemic wave of COVID-19 in China, to prevent further dissemination of the 98 

illnessdisease, officials in Wuhan prohibited all transport in and out of the city on 23 January 99 

2020. In the following days, cities across mainland China activated launched the highest level of 100 

emergency response and were able to contained control led the epidemicoutbreaks outside of 101 

Wuhan up untilby 6 March 2020. These measures substantially reduced air pollution: , which 102 

wasas confirmed by a significant reduction in pollution levels was observed across cities in China 103 

between January and March 2020 (Chen, Wang et al. 2020, Villeneuve and Goldberg 2020). These 104 
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dData onfrom Chinese cities (excluding Wuhan) are were ideal to assess the relationship between 105 

long-term average air pollution exposure and COVID-19 risk (Figure 1) because these cities had 106 

widely distributed COVID-19 cases,  and highly variable historical air quality, and, which hadve 107 

been surveyed comprehensively surveyed under consistent criteria and data standards across the 108 

country. Air pollution has produces both acute and long-term health effects, so a reduction in air 109 

pollution reduction levels can serves as a natural experiment to in how to offset  the potential 110 

acute effects of air pollutionin particular. 111 

 112 

Considering the proven link between air pollution and the high risk of severe COVID-19 113 

severityinfection, we therefore suspected that long-term exposure to air pollutants, which 114 

increases cardiopulmonary damage, would be associated with increased vulnerability to COVID-115 

19. To test this hypothesis, we identified socio-demographic and behavioural confounders were 116 

identified through a literature search. We first investigated the effect of travel and movement s 117 

from Wuhan city, the location where COVID-19 was first recorded, and from where it spread 118 

across China. D In 2020, during travel for the Spring Festival holiday in 2020, approximately 4.3 119 

million people travelled out offrom Wuhan to other cities in China (Tian, Liu et al. 2020). Theseis 120 

travel patterns wereis strongly associated with the total number of cases reported from in each city, 121 

suggesting that the outbreaks across China were mainly seeded from in Wuhan city.  122 

 123 

 124 

2.Methods 125 

 126 

2.1 Epidemiological and demographic data 127 

We collected epidemiological data from the official reports of the health commissions of 324 128 

cities, excluding Wuhan (Table 1). These included daily reports from 31 December 2019 to 6 129 

March 2020, but excluded newly -reported, locally -acquired infections. Data on the percentage 130 

proportion of severe COVID-19 cases were obtained from official reports of Provincial Health 131 

Committees and were used to interpolate the city-level values. The National Health Commission 132 

of the People’s Republic of China defined uniform diagnosis and treatment criteria of “2019 133 

novel novel coronavirus coronavirus pneumonia”, to measure the number of outbreaks, . Tthe 134 

reporting system was supported by local health- related departments, including hospitals and 135 

Centers for Diseases Control and Prevention (CDCs) at the provincial or county level (Zanin, Xiao 136 

et al. 2020). In the first wave of the COVID-19 epidemic, these local CDCs tried sought to detect 137 

the largest possible number of infections, but people who hadwith a fever and a travel history to 138 

Wuhan set were the priority groups forto testing. Socio-economic data, including the gross 139 

domestic product (GDP) per capita and number of hospital beds, were obtained from the China 140 

City Statistical Yearbook 2019. The age structure and illiteracy rate of people aged 15 years and 141 

older for in each city were obtained from the Sixth National Population Census of the People's 142 

Republic of China, which was conducted by the National Bureau of Statistics of People’s Republic 143 

of China in 2013. The prevalence of sSmoking prevalence and second-hand smoking prevalence 144 

inamong non-smokers were was obtained from the Chinese National Nutrition and Health Survey 145 

(NNHS) (Wu, Huxley et al. 2008, Xia, Zheng et al. 2019). These were ecological data were 146 

ecological and not individual data, which did not involve personal privacy information; therefore, 147 

an ethics review was not required., so there should be no ethical issue. 148 
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 149 

 150 

2.2 Human mMobility dData 151 

Human movements were tracked using mobile phone data from Baidu location-based services 152 

(LBS) and telecommunications operators (Table 1). The number of recorded movements from 153 

Wuhan city to other cities across China was calculated from 11 to 23 January 2020. On 23 154 

January, movements from Wuhan dropped to nearly reached almost zero because of the travel ban. 155 

MTravel movements within each city were recorded daily until 6 March. The within- city 156 

movement index was extracted from the same operators and was measured, to reflect the average 157 

times people went outtraveled from their location inside the each city every day. This database 158 

was implemented developed to describe people’s response to compliance with physical 159 

distancinge policiesties, such aswhich included suspending intra-city public transport, closing 160 

entertainment venues, and banning public gatherings. 161 

 162 

 163 

2.3S Data source of afor Air pPollution and mMeteorological data 164 

Original daily data for particulate matterair pollutants concentrations, including particulate matter 165 

≤ 2.5 μm and ≤ 10 μm and (PM2.5, and  PM10, respectively), sulfur dioxide (SO2), carbon 166 

monoxide (, CO), nitrogen dioxide (NO2),, and ozone (O3)  for each city, were obtained from air 167 

quality stations across China from January 2015 to March 2020. For each city, the average 168 

concentration for each pollutant before the COVID-19 outbreak (January 2020) was calculated 169 

across the whole entire available period available. The data for temperature and precipitation of 170 

during the coldest and warmest quarter in each city was were extracted from WorldClim (Table 1), 171 

and the annual mean relative humidity was obtained from the National Meteorological 172 

Information Center.     173 

 174 

 175 

2.4 Statistical mMethods 176 

To quantify the effect of air pollution on COVID-19 risk, we used the historical data for air quality 177 

between 2015 and 2019 and COVID-19 case reports. Socio-demographic and behavioural 178 

confounders were identified through in the a literature search. We searched PubMed and preprint 179 

servers (medRxiv) using the terms “air pollution”, “COVID-19”,  and “SARS-CoV-2”, 180 

regardless of language and date. Among 74 studies identified, 55 were of the 74 results were 181 

unrelated to public health. Of the remaining 19 studies, . 6 studies of the remaining 19 studies used 182 

statistical models to investigate the relationship between air pollution and COVID-19 risk. Three 183 

papers involved large- scale and nationwide data in from the United States (US), United Kingdom 184 

(UK), Italy, Spain, France, and Germany. The association between long-term exposure to air 185 

pollutants and COVID-19 risk was assessed by using regression with a generalized linear model 186 

(GLM):  187 

 188 

 ~ Poisson ,i iY           (1) 189 

 190 

 191 
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log(𝜇𝑖𝑡) = 𝛼 + 𝛽1𝐼𝑛𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑊𝑢ℎ𝑎𝑛𝑖 + 𝛽2𝑃𝑒𝑎𝑘𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑛𝑓𝑙𝑜𝑤𝑖 + 192 

𝛽3𝑊𝑖𝑡ℎ𝑖𝑛𝑐𝑖𝑡𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠𝑖+𝛽4𝐺𝐷𝑃𝑖 + 𝛽5𝑆𝑚𝑜𝑘𝑖𝑛𝑔 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑖 + 193 

𝛽5𝑆𝑒𝑐𝑜𝑛𝑑ℎ𝑎𝑛𝑑 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑖𝑛 𝑛𝑜𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠𝑖 + 194 

𝛽6𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑙𝑑𝑒𝑟 𝑡ℎ𝑎𝑛 65 𝑦𝑒𝑎𝑟𝑠 𝑜𝑙𝑑𝑖 + 𝛽7𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 + 195 

𝛽8𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝛽9𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖 + 𝛽10𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖 + 196 

𝛽11𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖+𝛽12𝐼𝑙𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒𝑖 + 𝛽13𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑏𝑒𝑑𝑠𝑖 + 197 

𝛽14𝑃𝑀2.5,𝑖 ∗ +𝛽15𝑃𝑀10,𝑖 ∗ +𝛽16𝑆𝑂2,𝑖 ∗ +𝛽17𝐶𝑂𝑖 ∗ +𝛽18𝑁𝑂2,𝑖 ∗ +𝛽19𝑂3,𝑖 ∗ 198 

 (2) 199 

where Flowi is the passenger volume from Wuhan to city i during the Spring Festival 2020, before 200 

the Wuhan travel ban;, and Peak time of flow reflects the corresponding peak time. Within-city 201 

movementsi shows the effect of social distancing within a city between the travel ban and 6 March 202 

2020 of in city i. GDP is the gross domestic product per capita of city i. Smoking prevalence and 203 

second-hand smoking prevalence in non-smokers was extracted from the published 204 

articleliterature. The proportion of residents older than 65 years, illiteracy rate, number of hospital 205 

beds, population, and population density of city i were extracted from census data. Climate 206 

conditions were are shown represented by temperature and rainfall in summer and winter. The 207 

relative humidity was is the annual mean of the year ofin city i. Latitude and longitude show the 208 

spatial distribution of city i. PM2.5, PM10, SO2, CO, NO2, and O3 show are the daily average 209 

concentration data of air pollutants of in city i between 1 January 2015 and 31 December 2019. 210 

Air pollution variables were included in the model separately because of the high multicollinearity 211 

among them. βs are regression coefficients. The variation per unit (VPU) = [exp(variable 212 

coefficient) – 1] × 100% was used to describe the effect. The VPU can be interpreted as the 213 

percentage increase in the number of COVID-19 cases associated with a 10- μg/m3  increase in 214 

long-term average air pollutants exposure. The analysisWe used the R software (R Foundation for 215 

Statistical Computing, version 3.6.3), MASS package in the analyses (The R Foundation for 216 

Statistical Computing, Vienna, Austria). 217 

 218 

2.5 Sensitivity aAnalysis 219 

We conducted aAdditional sensitivity analyses to assess the robustness of our results were 220 

conducted. We fit models, omitting adjusted variables separately and air pollutants concentrations 221 

in winter and non-winter seasons. To examine the associations after adjusting all other 222 

confounders, cCities were categorized by population size into three separate groups according to 223 

population size: , small-sized (0–2.68 million population, n = 98), medium-sized (2.68–4.67 224 

million, n = 97), and large-sized (4.67–30.75 million, n = 98) cities.) to examine the association 225 

after adjusting all other confounders. 226 

 227 

 228 

3.Results 229 

 230 

 231 

3.1 Analysis of COVID-19 in China 232 
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Between 31 December 2019 and 6 March 2020, a total of 81,132 cases of COVID-19 were 233 

reported across China. Of these, 62.6% (50,783/81,132) of cases were clustered in Wuhan city; , 234 

and the remaining 37.4% (30,349/81,132) of cases were distributed across 324 other cities. After 6 235 

March 2020, there were very few locally -acquired infections outside Wuhan city in during the 236 

first wave. There was sustained local transmission of COVID-19 in Wuhan city, so data from there 237 

that city were not included in the subsequent analysis. Figure 1 shows that the 324n cities had 238 

widely distributed with COVID-19 cases across the countries from 31 December 2019 to 6 March 239 

2020. Additionally, historical air quality from 2015 to -2019 is was associated with travel 240 

movement from Wuhan, also and thewith more travelers from Wuhan before the Spring Festival 241 

the and more numerous COVID-19 infection cases reported in each city, 242 

 243 

3.2 Air pollution reduction and travel restrictions 244 

The average daily concentrations of PM2.5, PM10, SO2, CO, NO2 O3 a, and CO O3 during the first 245 

wave of the COVID-19 epidemic were 52.13 μg/m3, 69.58 μg/m3, 24.580.93 μmg/m3, 246 

11.8624.58 μg/m3, and 51.29 μg/m3 , and 0.93 mg/m3 among the 324se cities, respectively 247 

(Supplemental Table 1). On 23 January 2020, China banned travel movement from and to Wuhan, 248 

in an attempt to contain control the epidemic. Since thenAfter that date, a series of social 249 

distancing and lockdown policies were implemented throughout cy in the whole China has had 250 

implemented to reinforce control the pandemic of COVID-19 epidemic. During the lockdown 251 

period, the air pollution emissions were  was markedly reduced. In particular, , especially the 252 

average levels of SO2, PM2.5 , and PM10, were decreased by 21%, 18%, and 16%, respectively,  253 

compared with thoselevels the average level before implementation of the restriction policies. NO2 254 

experienced a reduction of 8.17 μg/m3, which is was one of the most significantly changes among 255 

all examined aird pollutants after the conducting these social distancing measures came into force. 256 

TIn addition, our the results also indicated that these measures have had significantly reduced the 257 

movement within cities induring 2020 in comparisoned with that induring 2019 (Figure 2). The 258 

average air quality in 2020 was also significantly improved, compared with that during the same 259 

period in 2019. The changes in average daily concentrations of PM2.5, PM10, SO2, CO, NO2, and 260 

O3 were −7.02% ± ±32.9%, −19.25% ± 22.03%, −15.06% ± 20.56%, −5.46% ± 18.73%, 261 

−20.17% ± 29.56%, and 5.01% ± 16.01%, respectively, from 31 December to 6 March 2020. 262 

 263 

Effect of l3.3 Long-term exposure to air pollutants on COVID-19 cases and severe infections 264 

We collected dData on a range of confounding variables were collected, such as gross domestic 265 

productGDP per capita, smoking prevalence, climate data, illiteracy rate, and age composition 266 

(age > 65 years), together with travel movements from Wuhan and within-city movements (as a 267 

measures of compliance with social distancing). These variables were used as adjustedingcontrol 268 

variables in the statistical analysis. The population size of each city and number of , COVID-19 269 

deaths and hospital beds were not included in the model because of high multicollinearity with 270 

travel movements from Wuhan. The movements of approximately 4.three 3 billion people during 271 

the Spring Festival holiday trips also induced uncoordinated changes in actual population sizes 272 

across cities (Simiao, Juntao et al. 2020). As expected, the number of COVID-19 cases in each 273 

city increased with increased passenger population inflow from Wuhan; m. More infections were 274 

reported in cities that had more travellers from Wuhan. Overall, we observed positive and 275 

significant associations between both confirmed cases of COVID-19 with historical air pollutant 276 
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concentrations (Figure 1A). In the 324 cities (except Wuhan) that had data on air quality, an 277 

increase of 10 μg/m3 in the NO2, PM2.5 , or and PM10 concentrations was associated with a 37.8% 278 

(95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95% CI: 22.5%–42.4%), and  or 14.2% 279 

(7.9%–20.5%) increase in COVID-19 cases. We also examined the relationship between the 280 

number of severe COVID-19 cases and air pollutant levels. An increase of 10 μg/m3 in NO2, 281 

PM2.5 , or and PM10 concentrations was associated with a 26.3% (95% CI: 11.7%–40.8%), 15.7% 282 

(95% CI: 6.3%–25.2%), and  or 6.43% (95% CI: 0.6%–12.2%) increase in severe COVID-19 283 

cases. The results are were statistically significant and robust to in sensitivity analyses (Table 2 284 

and Figure 3). The analysis was also carried out for using separate datasets. Cities were 285 

categorized by according to population size into small, medium, and large cities. There was no 286 

significant effect of long-term exposure to most of the  air pollutantspollution on susceptibility to 287 

COVID-19 infection vulnerability when the data waswere stratified intoby population sizes. 288 

While, the effect persisted after stratification in NO2 and PM2.5 on confirmed COVID-19 cases 289 

among large cities and small cities, and the impact of PM10 in severe COVID-19 cases among 290 

large cities. This shows howthe importance oft population is as a confounding variable in the 291 

analysis.The results might still be affected by population size, because air pollution is usually 292 

related to population. So, there is a predefined correlation between air pollutant concentration and 293 

population size. 294 

 295 

 296 

4. Discussion 297 

 298 

In the present study, we identified clarified the association between long-term exposure to air 299 

pollution and vulnerability to COVID-19 in infection during the first epidemic wave of in China. 300 

The present results are were derived from a large, newly compiled and geocoded repository of 301 

population and epidemiological data relevant to COVID-19. Indeed, several studies have 302 

evaluated the association between air pollution exposure and COVID-19 risk (Copat, Cristaldi et 303 

al. 2020). Our finding iwas in line with studies based on large-scale nationwide data, including in 304 

from the US (Wu, Nethery et al. 2020), UK (Konstantinoudis, Padellini et al. 2020, Travaglio, 305 

Popovic et al. 2020, Travaglio, Yu et al. 2021), Italy (Conticini, Frediani et al. 2020, Fattorini and 306 

Regoli 2020), The Netherlands (Andree 2020), Spain, France, and Germany (Ogen 2020), and as 307 

well as various provinces of China (Yongjian, Jingu et al. 2020). However, Because the size of the 308 

study and that of the first COVID-19 wave has beenwereas contained in China, meaningt that we 309 

were able to investigate the impact of historical air pollution on COVID-19 risk and severity.  310 

 311 

 312 

In tThe present study, we found statistically significant evidence that an increase in long-term 313 

exposure to NO2 ,or PM2.5 , or PM10 corresponds corresponded to an increase in the number of 314 

COVID-19 cases and severe infections. The findings are comparable to the results of previous 315 

studies in the US (Wu, Nethery et al. 2020) and Northern Europe (Andree 2020), where levels of 316 

PM2.5 were also found to be strongly associated with COVID-19 incidence, after adjusting for 317 

multiple confounders. However, this ours report is was the first study to employ use the complete 318 

data of from the first wave of the COVID-19 epidemic in China and to identify indicate the 319 

association between long-term exposure to air pollution and COVID-19 risk, after controlling for 320 
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many meteorological and demographic characteristics variables as well as human mobility data. 321 

TIn addition, the effects of NO2 and PM10 exposure were also clearly shown obvious in our 322 

analysis model, which is was a relatively new result. The effects of different components of air 323 

pollutants on the COVID-19 should be further studied and confirmed. 324 

 325 

MeanwhileO, our results highlighted the importance of air quality improvements to with respect to 326 

health in China. On 23 January 2020, Iin an attempt to contain control the epidemic, on 23 January 327 

2020, non-essential travel was prohibited in and out of Wuhan city, a major transport hub and 328 

conurbation megacity of 11 million people. Since thenSubsequently, the whole of China has had 329 

implemented , the highest level of emergency response was implemented throughout all of China, 330 

to reinforce the containment of the COVID-19 epidemic. Interventions included the closure of 331 

entertainment venues, the suspension of within-city public transport, and prohibition of travel to 332 

and from other cities across in China. These stringentStrong intervention measures have 333 

significantly reduced  the air pollution levels in  of each city during this period (Le, Wang et al. 334 

2020), which was confirmed in o. Our monitoring results confirmed this (Figure 2). To some 335 

extent, this is was actually a very goodthe interventions provided an excellent opportunity to on 336 

examineing the benefits of improved air quality (Chen, Wang et al. 2020). Reducing 337 

concentrations of air pollutant concentrations s would reduce the incidence of acute respiratory 338 

diseases, and the people’s susceptibility to numerousof infectious diseases. Even if there are 339 

wereassuming that problems existed within the multiple interventions problems, such these  340 

results are were in line with the our expectationsations of our conclusion. Previous studies have 341 

demonstrated that exposure to air pollutants is associated with poorer lung function, often 342 

measured by using forced vital capacity and forced expiratory volume in 1 second (Ackermann-343 

Liebrich U, Leuenberger P et al. 1997, Forbes LJ, Kapetanakis V et al. 2009, Urman R, 344 

McConnell R et al. 2014, Adam M, Schikowski T et al. 2015). Exposure to pParticulate matter  is 345 

couldmay be associated with an increased risk of cardiopulmonary diseases (Chen, Yin et al. 346 

2019), aggravation of theed case fatality rate of severe acute respiratory syndrome SARS (caused 347 

by SARS-CoV, another type strain of coronavirus) (Cui, Zhang et al. 2003), and could impaired 348 

the immune response (Wei and Tang 2018). Oxidant pollutants could also damage the innate 349 

immune responsed and increase the host susceptibility of to viruses through by interfering with 350 

reflecting the function of macrophages(Karan, Ali et al. 2020, Qu, Li et al. 2020) (Qu, Li et al. 351 

2020),(Karan, Ali et al. 2020). Nitrogen oxides (NOX) can would cause inflammatory responses 352 

and worsen the pre-existing lung inflammation situation which, resulting to in a direct effect on 353 

the risk of respiratory diseases (Takahashi Y, Mochitate K et al. 1986, Conticini, Frediani et al. 354 

2020), which is  (also shown in the Comparative Toxicogenomics Database (, http://ctdbase.org). 355 

Nitrogen oxideNO2 is primarily produced by traffic and factories, and is less influenced by 356 

climatice conditions, so there were reductions in both the concentration of NOX nitrogen oxides 357 

andwith a decline in within-city movements during the COVID-19 outbreak throughout in cities of 358 

China. Increased O3 and ozone or sulfur dioxide SO2 concentrations were associated with lower 359 

COVID-19 risk, which is was also consistent with previous studies (Travaglio, Popovic et al. 360 

2020, Yongjian, Jingu et al. 2020). However, the mechanisms underlying the impact of these 361 

pollutants on COVID-19 risk remain uncertain.  362 

 363 

The association between long-term exposure to air pollution and vulnerability to COVID-19 may 364 
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be affected by some confounders. We considered many variables to for be inclusionded in the 365 

initial model, such as population, inflow from Wuhan, and the number of COVID-19 deaths and 366 

hospital beds. However, due owing to the collinearity between among these four variables, we 367 

retained only one of these  most important variables. We believe that in the first COVID-19 368 

wave, the population inflow from Wuhan is should bewas the most important factor affecting the 369 

development of the epidemic. SoTherefore, only the variable of inflow from Wuhan was kept 370 

retained and the other three were eliminated from the final model. However, we think 371 

thoughtbelieve that the variable of population is also should also be is very important; thus, a. A 372 

hierarchical analysis for the population variable variable was done conducted separately. We found 373 

that the association between long-term exposure to air pollutants and vulnerability to COVID-19 374 

was differed among nt in different- sized cities. In the large- sized cities, the association was more 375 

obvious, which may be due owing to better health care, better case reporting, and better testing 376 

policies in the large cities. Therefore, the effect of population size should beis complex and needs 377 

further analysis.  378 

 379 

During the first COVID-19 wave, As with other novel infectious diseases, tthere were many 380 

challenges with in its the diagnosis of COVID-19 during the first epidemic wave, just like other 381 

novel infectious diseases (Arons, Hatfield et al. 2020, Li, Geng et al. 2020). Concern has been 382 

expressed about the sensitivity and specificity of the tests initially used to identify people infected 383 

with coronavirusSARS-CoV-2. The performance in of the detection methods has improved over 384 

time (Carter, Garner et al. 2020). Meanwhile,At the same time, there is a lack of adequate testing 385 

in most countries, and treatment of patients with COVID-19 in many jurisdictions is inadequate 386 

owing to overburdened health systems. As a result, many cases and deaths that should have been 387 

were attributableted to COVID-19 have not been confirmed. These issues may have some 388 

influence on the findings of this study. For example, this situationit would lead to the inaccuracies 389 

in y of the number of confirmed COVID-19 cases or severe cases of COVID-19 infection, which 390 

would cause some bias in the results. TIn addition, this also may also be aone of the reasons for 391 

that rates of higher greater severity of the disease are consistently lower. But However, early 392 

studies of during the epidemic can draw on the results of a more pure transmission model. The 393 

present study focused on the association between air pollution and COVID-19 in the first wave 394 

from in Wuhan,  in China. The variables included important human mobility data, such as inflow 395 

from Wuhan and peak time of inflow from Wuhan. These dataIt would well reflect some important 396 

scientific problems in the early stages of the spread ofan outbreak of a new infectious diseases. 397 

 398 

Several important caveats are worth mentioning. First, the data included here were all from 399 

mainland China; i. It is therefore not unclear whether the findings can be generalized to other 400 

countries without data on historic air pollution exposure. Second, there are currently no high-401 

quality records at city level of regarding severe COVID-19 infections and ICU admissions, 402 

although we have attempted to fill thise gap by using province-level reports. Thirdly, the data of 403 

air pollution data from ambient air quality stations across China do not necessarily reflect 404 

exposure to indoor air pollution;  and this may therefore bias the results. Finally, we do not know 405 

the exact number of cases because of we do not know the number of asymptomatic and mildly -406 

symptomatic cases that may not have been recorded. These data will not be available until there 407 

has been a systematic survey of infection (e.g., by via serological testing) across China. However, 408 
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we have reported a national-level disease pattern covering 324 cities and its potential association 409 

with long-term exposure to air pollutants. 410 

 411 

5.Conclusions 412 

 413 

In tThe present study, we found a significant positive association between long-term exposure 414 

levels of to PM2.5, PM10, NO2 , and COVID-19 the risk and severity of COVID-19 infection in 415 

China. It Our findings suggested that air pollution may be related to the population vulnerability to 416 

COVID-19. Interventions to control the COVID-19 outbreak in China successfully reduced air 417 

pollution levels and potentially prevented further cases of acute respiratory disease. ImprovedFine 418 

air quality may be conducive to reducinge the hazards of respiratory infectious diseases. The link 419 

between COVID-19 and air pollution deserves a more definitive and global data analysis. 420 
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Table 1.  Databases and sources of coronavirus disease 2019 (COVID-19) and air pollution data 565 

Database data provider Source 

COVID-19   

Confirmed COVID-19 cases Provincial Health Committees which 

contained data of each city 

Official website of health commission of 34 

provincial-level administrative units and 342 city-

level units 

Severe COVID-19 cases 

Provincial Health Committees which 

contained data of each city 

Official website Health commission of 34 provincial-

level 

COVID-19 deaths 

Provincial Health Committees which 

contained data of each city 

Official website of health commission of 34 

provincial-level administrative units and 342 city-

level units 

Human mobility data   

Outflow from Wuhan Baidu location-based services mobile 

phone data provided by the 

telecommunications operators 

https://qianxi.baidu.com/ 

Within-city movements The activities index of human mobility 

with a city 

https://qianxi.baidu.com/ 

Meteorological data  

PM2.5, PM10, SO2, CO, NO2, and 

O3  

China National Environmental 

Monitoring Centre,2015-2019 

http://www.cnemc.cn/ 

Temperature Mean Temperature of 

Warmest/Coldest Quarter (2015-2019) 

https://www.worldclim.org/data/bioclim.html 

Rainfall Precipitation of Warmest/Coldest 

Quarter (2015-2019) 

https://www.worldclim.org/data/bioclim.html 

Relative Humidity  National Meteorological Information 

Center (CMA Meteorological Data 

Center, 2015-2019) 

http://data.cma.cn/ 

Demographic data   

Gross domestic product (GDP)  China City Statistical Yearbook 2019 http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm 

Age structure Sixth National Population Census of 

the People's Republic of China (2013) 

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm 

Smoking and second-hand 

smoking prevalence  

Chinese National Nutrition and Health 

Survey (NNHS)  

PMID: 24698853 

Hospital beds China City Statistical Yearbook 2019 http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm 

Illiteracy rate Sixth National Population Census of 

the People's Republic of China (2013) 

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm 

COVID-19, coronavirus disease 2019; PM2.5, particulate matter ≤ 2.5 μm; PM10, particulate matter 566 

≤ 10 μm; SO2, sulfur dioxide; CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; CMA, 567 

China Meteorological Administration. 568 
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Table 2.  Impact of historical air pollution exposure on cases of COVID-19 cases 569 

 Confirmed COVID-19 cases  Severe COVID-19 cases 

Covariates Coefficient (95%CI) 

 

std P Coefficient (95%CI) 

 

std P 

NO2 
0.378（0.238,0.52）  0.072  

<0.001 
0.263(0.117,0.408) 0.074  <0.001  

Intercept -1.697 

（-3.436,0.021）  
0.882  

0.055 

-1.919(-3.437,-0.401) 0.771  0.013  

Inflow from Wuhan  
0.007（0.007,0.008） <0.001  

<0.001 
0.016(0.013,0.019) 0.002  <0.001  

Within-city movements 
-1.14（-1.382,-0.901） 0.123  

<0.001 
-0.853(-1.098,-0.609) 0.124  <0.001  

Peak of inflow from 

Wuhan 
0.175（0.133,0.218） 0.022  

<0.001 
0.086(0.043,0.13) 0.022  <0.001  

Mean temperature of 

coldest quarter 
-0.023（-0.045,-0.001）  0.011  

0.040 
0.006(-0.014,0.027) 0.010  0.528  

Relatively humidity 
0.048（0.029,0.067） 0.010  

<0.001 
0.028(0.012,0.045) 0.008  0.001  

Illiteracy rate  
0.053（0.014,0.09） 0.019  

<0.001 
0.0188(-0.017,0.055) 0.018 0.305 

       

PM2.5 
0.323（0.225,0.424） 

0.051 <0.001 
0.157(0.063,0.252) 0.048  0.001  

Intercept 
-1.237（-2.841,0.329）  0.809  0.128  -1.313(-2.689,0.062) 0.699  0.061  

Inflow from Wuhan  
0.007（0.006,0.007） <0.001  <0.001  0.015(0.012,0.018) 0.002  <0.001  

Within-city movements 
-1.376（-1.617,-1.139） 0.122  <0.001  -0.961(-1.192,-0.731) 0.117  <0.001  

Peak of inflow from 

Wuhan 
0.137（0.096,0.179） 0.021  <0.001  0.077(0.033,0.121) 0.022  0.001  

Mean temperature of 

coldest quarter 
-0.003（-0.027,0.022） 0.012  0.790  0.01(-0.01,0.03) 0.010  0.329  

Relatively humidity 
0.052（0.032,0.071） 0.010  <0.001  0.026(0.01,0.042) 0.008  0.002  

Illiteracy rate  
0.049（0.008,0.087） 0.020  0.016  0.019(-0.017,0.056) 0.018  0.293  

       

PM10 
0.142（0.079,0.205） 0.032  

<0.001 
0.0643(0.006,0.122) 0.032  <0.001  

Intercept 
-1.183（-3.023,0.609） 0.927  0.203  -1.183(-2.861,0.217) 0.927  0.203  
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Inflow from Wuhan  
0.007（0.006,0.007） <0.001  <0.001  0.007(0.012,0.018) <0.001  <0.001  

Within-city movements 
-1.346（-1.604,-1.092） 0.131  <0.001  -1.346(-1.208,-0.742) 0.131  <0.001  

Peak of inflow from 

Wuhan 
0.148（0.104,0.194） 0.023  <0.001 0.148(0.037,0.126) 0.023  <0.001  

Mean temperature of 

coldest quarter 
-0.009（-0.033,0.016） 0.013  0.455  -0.009(-0.011,0.03) 0.013  0.455  

Relatively humidity 
0.054（0.032,0.076） 0.011  <0.001 0.054(0.012,0.046) 0.011  <0.001  

Illiteracy rate  
0.046（0.003,0.086） 0.021  0.033  0.046(-0.021,0.053) 0.021  0.033  

COVID-19, coronavirus disease 2019; PM2.5, particulate matter ≤ 2.5 μm; PM10, particulate matter 570 

≤ 10 μm; NO2, nitrogen dioxide; CI, confidence interval. 571 
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 573 

Figure 1. Air pollution exposure, coronavirus disease 2019 (COVID-19) cases, and travel 574 

movements in 324 cities of China during Spring Festival 2020. (A) Distribution of cities with data 575 

on nitrogen dioxide (NO2) concentrations  and COVID-19 cases. SThe shading from light red to 576 

dark red represents the cumulative number of confirmed COVID-19 cases in each city, from low 577 

to high, respectively, from 31 December 2019 to 6 March 2020;  (white area represents no data, 578 

and grey area represents no cases). Points coloured from blue to red represent the historic mean 579 

annual NO2  concentrations (µg/m3), from low to high, respectively, during January 2015 and 580 

December 2019, before prior to the COVID-19  epidemic. (B) Association between the 581 

cumulative number of confirmed cases, the number of human movements from Wuhan to each 582 

city, and historic mean annual NO2 concentration. The area of the circles represents the cumulative 583 

number of cases reported by 6 March 2020. 584 
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 586 

 587 

Figure 2. (A) Average within-city movement intensity and (B) air pollutant concentration in 324 588 

cities in of China during the 2020 COVID-19 outbreak (orange line), compared with the same 589 

period in 2019 (blue line). 590 

NO2, nitrogen dioxide. 591 

 592 
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Figure 3. Variation per unit and 95% confidence intervals, (A) NO2 , (B) PM2.5 a, and (C) PM10. 594 

The variation per unit (VPU) = [exp(variable coefficient) – 1] × 100%. The VPU can be 595 

interpreted as the percentage increase in the number of COVID-19 cases associated with a 10- 596 

μg/m3 increase in long-term average NO2 and PM2.5. The VPU from the main analysis was 597 

adjusted by for confounding factors. In the sensitivity analyses, we omitted each confounding 598 

factor separately, and used seasonal air pollutant concentrations. 599 

 600 

COVID-19, coronavirus disease 2019; PM2.5, particulate matter ≤ 2.5 μm; PM10, particulate matter 601 

≤ 10 μm; NO2, nitrogen dioxide. 602 


