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2 

Abstract  22 

Urban noise pollution is a major environmental issue, second only to fine particulate matter in its 23 

impacts on physical and mental health. To identify who is affected and where to prioritise actions, 24 

noise maps derived from traffic flows and propagation algorithms are widely used. These may not 25 

reflect true levels of exposure because they fail to consider noise from all sources and may leave gaps 26 

where roads or traffic data are absent. 27 

We present an improved approach to overcome these limitations. Using walking surveys, we recorded 28 

52,366 audio clips of 10 seconds each along 733 km of routes throughout the port city of 29 

Southampton. We extracted power levels in low (11 to 177 Hz), mid (177 Hz to 5.68 kHz), high (5.68 30 

to 22.72 kHz) and A-weighted frequencies and then built machine-learning (ML) models to predict 31 

noise levels at 30 m resolution across the entire city, driven by urban form.  32 

Model performance (r2) ranged from 0.41 (low frequencies) to 0.61 (mid frequencies) with mean 33 

absolute errors of 4.05 to 4.75 dB. The main predictors of noise were related to modes of transport 34 

(road, air, rail and water) but for low frequencies, port activities were also important. When mapped 35 

to the city scale, A-weighted frequencies produced a similar spatial pattern to mid-frequencies, but 36 

did not capture the major sources of low frequency noise from the port or scattered hotspots of high 37 

frequencies. We question whether A-weighted noise mapping is adequate for health and wellbeing 38 

impact assessments. 39 

We conclude that mobile surveys combined with ML offer an alternative way to map noise from all 40 

sources and at fine resolution across entire cities that may more accurately reflect true exposures. 41 

Our approach is suitable for noise data gathered by citizen scientists, or from a network of sensors, as 42 

well as from structured surveys. 43 

 44 
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Introduction 48 

Increasing urbanisation, population growth and the rise in vehicle use are leading to noisier urban 49 

environments, and historical documents leave little doubt that noise has long been an issue in cities 50 

(Goldsmith 2012). Despite this long history, environmental noise has not been studied or controlled 51 

to the same extent as other pollutants such as air pollution (Sørensen et al. 2012; EEA 2014; Murphy 52 

& King 2014a; King & Murphy 2016). According to the European Environment Agency (EEA) (2019), 53 

noise pollution is still a major environmental health issue in Europe, with road traffic being the major 54 

contributor, and the second most harmful environmental stressor after fine particulate pollution 55 

(WHO 2018; EEA 2019). Indeed, it is estimated that 100 million Europeans are affected by harmful 56 

levels of noise pollution (EEA 2019). Over recent years, there has been a considerable increase in the 57 

number of studies associating noise pollution with sleep disturbance (Douglas & Murphy 2016); 58 

annoyance (Laszlo et al. 2012; Guski et al. 2016; Fredianelli et al. 2019); decrease in cognitive 59 

performance among schoolchildren (Lercher et al. 2003; Chetoni et al. 2016); increased risk of preterm 60 

birth (Smith et al. 2020); psychological problems such as anxiety and depression (Beutel et al. 2016; 61 

van Kempen et al. 2018; Díaz et al. 2020); hearing loss and tinnitus (EEA 2014, 2019; Murphy & King 62 

2014a); and hypertension and various cardiovascular diseases (Sørensen et al. 2012; van Kempen & 63 

Babisch 2012; Monrad et al. 2016; van Kempen et al. 2018; Andersson et al. 2020). As modern society 64 

develops, it has become urgent to understand the extent of environmental noise pollution, its impacts 65 

on humans and how to mitigate its effects. Indeed, if ways to control it are not sought, the impacts of 66 

noise pollution will increase at the rate of urbanisation (Murphy & King 2014a) with potentially serious 67 

consequences. 68 

Within Europe, the 2002/49/EC Environmental Noise Directive (END) was formulated and 69 

implemented with the overall objective of identifying a common European Union (EU) approach to 70 

assessing exposure to environmental noise within Member States (Kephalopoulos et al. 2014; Murphy 71 

& King 2014a). Under the END, Member States are required to produce strategic noise maps for the 72 

assessment and management of noise exposure for all major roads, railways, airports and 73 

agglomerations. The outputs from these strategic noise maps are then used to determine the 74 

exposure of the population to noise under the terms of END (EC 2015) and to identify areas that need 75 

to be prioritised in action plans for noise reduction (Abramic et al. 2017; Kumar et al. 2020). The 76 

implementation of END has undoubtedly been an important stepping-stone in addressing and 77 

managing noise pollution at a continent-wide scale. 78 
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Despite this, there are limitations in the way noise maps are created that require further work. The 79 

methods used to calculate noise levels to produce strategic noise maps are primarily driven by annual 80 

traffic flows data from roads, railways and aircraft. Yet there is no established method to do this and 81 

different countries use different algorithms, input assumptions and parameters to produce their noise 82 

propagation calculations (European Environment Agency 2019; Murphy et al. 2020; Picaut et al. 2020). 83 

More fundamentally, environmental noise as defined under the END only takes into account noise 84 

emitted by certain means of transport. However, noise pollution in urban environments stems from a 85 

combination of noises from a multitude of sources (e.g. work places such as construction sites and 86 

ports, various types of machinery, sirens and horns from vehicles, and recreational venues such as 87 

music concerts). Noise maps could be improved if they considered the impact of combined sources of 88 

noise and the inclusion of annoyance indicators using spectral and temporal attributes of noise (Morel 89 

et al. 2016). 90 

One particular omission is the failure to include shipping and port activities despite research showing 91 

that residents living in surrounding areas are negatively affected (Schenone et al. 2016). Indeed, more 92 

research has been done on the noise produced by vessels under the water than the air-borne noise 93 

they create in ports (Licitra et al. 2019). In addition to the noise emitted by ships during port 94 

approaches and while manoeuvring, once docked they continue to be a source of noise pollution due 95 

to the auxiliary engines and ventilation systems that are kept running (Badino et al. 2016). Activities 96 

associated with loading cargo and traffic around the port are also responsible for further levels of 97 

noise generated from port related activities (Schenone et al. 2016). Particularly during the night, noise 98 

levels may be above the night-time threshold guidelines recommended by the WHO and can be one 99 

of the main causes of sleep disturbance among local residents (Murphy & King 2014b). 100 

While most attempts to map noise use modelled surfaces from sound propagation algorithms (Cai et 101 

al. 2015; Gulliver et al. 2015; DEFRA 2016; Wang et al. 2016; Bouzir & Zemmouri 2017), others have 102 

used actual recorded data, generally from static recording stations deployed across the city (Murphy 103 

& King 2014a; Hong & Jeon 2017; Sakieh et al. 2017; Han et al. 2018). Attempts have also been made 104 

to collect sound data on the move, focused on specific areas or neighbourhoods (Can et al. 2014; 105 

Murphy & King 2016) or more recently entire cities (Alvares-Sanches et al. 2019). Developing mobile 106 

survey methods could be important because it opens the way to collect sound data over large areas 107 

using citizen-scientists armed with smartphones, even in countries where official noise data are 108 

lacking. Although smartphone Apps and microphones are not yet sufficiently accurate for noise 109 

mapping, their further development offers promise for the near future (Kardous & Shaw 2016; 110 

Murphy & King 2016), including noise perception studies (Ricciardi et al. 2015). One issue with citizen-111 
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science sound recordings is lack of control over the locations sampled and methods are needed to use 112 

such data efficiently for noise mapping. Although interpolation is often used to generalize sampled 113 

point measurements of sound data to yield mapped products (Can et al. 2014; Khan et al. 2018; 114 

Alvares-Sanches et al. 2019), such methods have inherent limitations. Foremost among these is spatial 115 

smoothing between points with no regard to the intervening land use and land cover. Although this 116 

can be partially overcome with approaches such as co-kriging, we present in this paper a non-117 

parametric, machine-learning solution analogous to so-called land use regression as used in air quality 118 

and some noise modelling (Dons et al. 2013, 2014; Khan et al. 2018). In addition, we apply this method 119 

not only to map noise levels within the audible range of frequencies, but also to present noise maps 120 

for frequencies above and below this range. The consideration of frequencies outside the audible 121 

range is important due to the growing body of evidence on the impacts they may have on health 122 

(Castelo Branco 2001; Leighton 2016; Zhang et al. 2016; Fletcher et al. 2018; Scholkmann 2019). To 123 

consider the neglected issue of port cities, we conducted our study in Southampton which has some 124 

of the busiest container ports and passenger terminals in the UK. We suggest that the methods 125 

presented here augment current noise mapping such as defined in the END, providing more detail 126 

over extended areas on the levels of noise actually experienced by city users and across the sound 127 

spectrum. 128 

Methods 129 

Study area 130 

The survey was carried out in the city of Southampton, UK and covered the whole area (51.8 km2 ) 131 

within the administrative boundaries of the City Council. The city is located on the south coast of 132 

England at the top of the Solent. The waters of this strait feature prolonged high tides that create the 133 

ideal conditions for the transit of large ships, enabling Southampton to be a major port city in terms 134 

of both container and cruise passages. In recent years, Southampton has seen considerable 135 

transformations in its urban form, mostly within the city centre, and it is likely that future increases in 136 

the density of its built environment will result in a more compact and busier city. Although a large part 137 

of Southampton is dominated by impervious land surfaces, well-distributed green spaces account for 138 

just over 20% of the city’s area. 139 



6 

Survey design 140 

Sound surveys were conducted by walking surveyors on weekdays during the period 14 July to 25 141 

August 2016, within three different time periods: morning rush hour (7:00 - 9:00), afternoon (13:00 – 142 

15:00) and evening rush hour (16:30 – 18:30). During each time period, surveyors made continuous 143 

recordings of the acoustic environment along walked routes. Surveys were not carried out on windy 144 

or rainy days, although variations in local wind during surveys were inevitable. To minimise impacts 145 

on recordings, surveyors wore soft sole shoes, soft clothes, avoided accessories such as necklaces, and 146 

walked at a constant pace. Surveys were loosely structured spatially (i.e. into large regions of the city) 147 

using a land cover classification that divided the city into 10 potentially different sound zones based 148 

on the characteristics of the urban form. The idea was to prioritise routes that would include a mix of 149 

sound zones while also covering the city geographically. This semi-structured form of sampling was 150 

preferable to the use of fixed routes which, in any case, would soon break down due to the difficulties 151 

of sampling in some areas.  152 

Recordings of the acoustic environment were made using Fostex FR–2LE and TASCAM DR–40 153 

recorders, with PCB sensor signal conditioners (model 480E09) and PCB microphones (models: 377B02 154 

& 377B11) with windshields. Surveyors carried the equipment inside rucksacks, with the microphone 155 

mounted above shoulder height at 1.65 – 1.70m. Microphones were calibrated using a Brüel & Kær 156 

sound level calibrator type 4230 emitting 94 dB at 1000 Hz to allow estimation of true decibel levels 157 

(“end-to-end calibration” in Merchant et al. 2015). The sampling rate was set to 96 kHz to allow 158 

coverage of sounds up to 48 kHz in theory, but limited in practice to 22.7 kHz due to microphone 159 

sensitivity. The location of each of the walking observers was logged every ten seconds as a track using 160 

Garmin Oregon 400t GPS receivers. 161 

Sound data processing 162 

Survey tracks were imported into ArcGIS 10.3 (Redlands, CA), where they were cleaned, converted 163 

into feature points and projected to the British National Grid (BNG). Audio files were imported into 164 

version 2.1.2 of Audacity (www.audacityteam.org) for visual and audio analysis. Sections of the audio 165 

files that showed unexpected clipping (e.g. from wind gusts) were removed and the precise timings of 166 

the removed sections noted. The audio files were then processed using custom-written code in 167 

MATLAB – R2016a to calculate the power levels in octave bands according to the ISO standard, for 168 

every 10 second period of each recording. The processed audio files were joined to the GPS location 169 

data using the time stamp on each to the nearest second. The power levels for each octave band and 170 

coordinates for each location were then exported to ArcGIS for plotting and modelling. Four different 171 

http://www.audacityteam.org/
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response variables were derived from the sound data for this study because these had previous been 172 

shown to have distinctive characteristics (Alvares-Sanches et al. 2019). There were: low frequencies 173 

(11 to 177 Hz); mid frequencies (177 Hz to 5.68 kHz); high frequencies (5.68 to 22.72 kHz); and overall 174 

A-weighted power level (dBA). 175 

Predictor variables 176 

A set of 55 predictor variables that capture aspects of urban form were used in the predictive machine 177 

learning models (summarized in Table 1 and detailed in Appendix A). In addition, predictors for road 178 

transport were needed because traffic is widely acknowledged to be the dominant source of noise 179 

within the urban environment (Sørensen et al. 2012; EEA 2014; Weber et al. 2014; Brown 2015; 180 

Abramic et al. 2017; Alvares-Sanches et al. 2019). At the time of the analysis, the only traffic data 181 

available came from just 70 locations across the city and therefore these were first used to build a 182 

traffic submodel, capable of predicting traffic flows for the entire road network in Southampton 183 

(Appendix B). The outputs from this submodel were used as predictors in the sound models. 184 

Table 1. Summary of the 55 predictor variables used, all generated at 30 m resolution. See Appendices 185 
A & B for details. 186 

Variable type Description 

Land surface 
composition 

Proportion of area composed of buildings, natural surfaces, hard 
surfaces, water bodies and unclassified mixed surfaces. Calculated for 
each 30 m pixel and in annuli 30-60 m, 60-90 m and 90-12 0 m around 
each pixel 

 Normalized difference vegetation index (NDVI) derived from airborne 
RGBi imagery 

 Proportion of area covered in low vegetation (<1 m), shrubs (1 m – 3 m) 
or trees (>3 m) 

Vertical structure Mean building height 

 Sky view factor with search distances of 10 m and 100 m 

 Positive and negative openness with search distances of 10 m and 100m 

Terrain Elevation, slope and aspect 

Distance metrics Euclidean distance from the centre of the pixel to the (nearest) airport, 
city centre, major road, minor road, motorway, motorway junction, port 
entrance, port or docks, rail track, water body, and flightpath (as 
projected on the ground) 

Traffic Modelled mean and maximum of traffic counts on roads within the pixel 
(see Appendix B for derivation) 
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Wind speed and direction were included in the sound models as confounding variables – i.e. they may 187 

affect the model outcome but are not predictors in the same sense as sources of sounds. Wind data 188 

were needed to match precisely the day and time of each sound clip and were sourced from Weather 189 

Underground (Wunderground.com) from five weather stations scattered across the city with reliable 190 

records. The procedure used to derive the wind variables in given in Appendix C. 191 

The time of the survey was also treated here as a confounding variable because the same urban form 192 

may experience different sound levels at different times of time. As most pixels were surveyed on 193 

multiple occasions, the mode of the periods when surveys were conducted in each pixel was used in 194 

the models as an indicator of the main time of day influencing the outcome. In practice, time of day 195 

was not an important predictor (see later). 196 

Model building 197 

Predictive models for the means of low, mid and high frequencies, and dBA within each 30 m pixel 198 

were built using boosted regression trees (BRTs) within the R package gbm version 2.1.4 (Greenwell 199 

et al. 2018) together with the custom-written package BRT available as supplementary material to 200 

Elith et al.(2008b). BRTs are a relatively new statistical approach that stem from both machine learning 201 

(ML) and traditional statistical techniques (Elith et al. 2008a). In addition to their strong predictive 202 

performance, BRTs are advantageous because they can handle data of any type (categorical, numeric, 203 

binary, among others) and non-linear relationships among variables. They are insensitive to outliers 204 

and can accommodate variables containing missing attributes via classification (Elith et al. 2008a; Grus 205 

2015; James et al. 2017). Model outcomes are not affected by transformations performed on the data 206 

and by the different measurement scales that predictors can take (Elith et al. 2008a). In addition, BRTs 207 

use boosting, a powerful method designed to fit sequentially several small models to the training data 208 

which together minimise the loss function and thus improve model accuracy (Elith et al. 2008a; Hastie 209 

et al. 2009; Elith & Leathwick 2017). 210 

BRTs require three parameters to be tuned. Tree complexity (tc) controls the depth of interaction 211 

between the variables, learning rate (lr) determines the contribution of each tree to the growing 212 

model, and nt is the number of trees used (Elith et al. 2008a). In this paper, a grid search approach 213 

was used to find tc and lr over the ranges 4, 5, and 6 for tc and 0.1, 0.01 and 0.001 for lr. The 214 

combination of tc and lr was chosen to minimise the cross-validated deviance while keeping nt above 215 

1000 (Elith et al. 2008a). Ten-fold cross-validation was used to tune model parameters and to select 216 

which variables to use (model simplification) from within a training sample of 80% of the data. In this 217 

way, 20% of the data was always held out from both model tuning and training, and it therefore 218 
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formed an effective independent testing sample. Model fit was assessed using r2 and the mean 219 

absolute error (MAE).  220 

To assess relative variable importance in the models, the most important variable was given a value 221 

of 100% and all others were evaluated relative to that score (Elith et al. 2008a; Hastie et al. 2009). 222 

Once the important predictors were known, the shape of their relationship with the response variable 223 

was visualized using partial dependence plots (Friedman 2001) which represent the effect of a 224 

predictor on the response when all other predictors are held at their average values. Partial 225 

dependence plots were plotted for the six most important variables, excluding the confounding 226 

variables. 227 

The entire model building process is shown in Figure 1. 228 

 229 

Figure 1. Workflow of the model building and fitting process for all of the response variables. 230 

  231 
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Results 232 

Overall, the survey resulted in 52,366 georeferenced data points from 733 km of walked routes (based 233 

on an average speed of 1.4 m/s) with associated sound pressure levels, the powers of which were 234 

linearly averaged to form 13,554 pixels at 30 m resolution. These represent 24% of all pixels within 235 

the administrative boundary of the City of Southampton. 236 

Results of the grid search for the best combination of parameter values for tree complexity (tc) and 237 

learning rate (lr) for each response variable consistently gave tc = 6 and lr = 0.01 but the number of 238 

fitted trees varied between 7,100 and 10,200 (Table 2). Models achieved typically optimistic r2 values 239 

on the training data (0.66 to 0.89) that reduced to 0.31 to 0.55 when cross-validated (Table 2; row 4). 240 

The weakest model was for low frequencies and the equal best for mid frequencies and dBA. 241 

Backwards elimination of low contributing variables reduced the number of retained predictors to 242 

between 11 and 17, and the recalculated cross-validated r2 values increased slightly for all bands 243 

(Table 2; row 7) but especially for the low frequencies. The addition of the confounding variables (wind 244 

and time period) led to modest increases in r2 when applied to the independent test data set (Table 245 

2; row 8). The final models showed mean absolute errors (MAE) of 4.05 to 4.75 dB for low to high 246 

frequencies and 4.18 dBA for the A-weighted frequencies. 247 

Table 2. Summary of the selected models for each sound response variable and measures of their 248 
performance. MAE = mean absolute error. 249 

 Low Mid High dBA 
Learning rate 0.01 0.01 0.01 0.01 
Tree complexity 6 6 6 6 
No. of trees before simplification 10150 9950 7100 10200 
Cross-validated r2 before 
simplification 

0.31 0.55 0.41 0.55 

No. of predictors after 
simplification 

14 12 17 11 

No. of trees after simplification 12100 11850 10950 12550 
Cross-validated r2 after 
simplification 

0.37 0.58 0.44 0.58 

Test r2 after simplification and 
including confounding variables 

0.41 0.61 0.46 0.61 

Test MAE after model 
simplification and including 
confounding variables 

4.05 4.23 4.75 4.18 
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Selected predictor variables 250 

The most influential predictors across all response variables were predominantly related to means of 251 

transport i.e. road, air, rail and water (Table 3). The dominance of variables related to road traffic 252 

(traffic counts, distance to motorways and major roads, and hard surfaces), indicates its importance 253 

as the main source of noise in the city. Although the distance to the airport and flightpath featured in 254 

all models, they were more relevant to the low frequency bands, especially distance to flight path 255 

(Table 3). The presence of the distance to the port/ferry and water predictors could imply that port-256 

related activities are also an important contributor to urban noise in Southampton (Table 3). 257 

Wind speed and direction were the most important confounding variables, particularly in the low 258 

frequency bands (Table 3). While higher wind speeds may genuinely contribute to urban noise (e.g. 259 

by knocking objects together, rustling leaves on trees), a main effect could be inadequate shielding of 260 

the microphone, a view supported by the dominance in the low frequency bands. To compensate for 261 

this, wind speed and direction were held constant at their average values when the models were 262 

projected across the entire city (below). Likewise, although the influence of survey period was modest 263 

(Table 3), all pixels were classified with the commonest time of the day (morning) when models were 264 

projected. 265 

Figures 2 to 5 show the partial dependence plots (PDP) for the six most important predictor variables 266 

for each response variable. The curves must be interpreted cautiously where the data are sparse 267 

(indicated by the rug plot of deciles on the top of each plot) and in all cases as the interaction depth 268 

(tree complexity) in the models was high. The spatial version of the traffic count model 269 

(Traffic_SpatialMax) played an important role in explaining urban noise at lower frequencies, there 270 

being a clear increase in noise with the increase of traffic counts up to just below 20,000 vehicles. Low 271 

frequency sounds also tended to increase with distance from the airport. This might suggest that noise 272 

in the low frequencies tends to be more affected by activity in the city centre and the port (away from 273 

the airport) rather than at the airport itself. In relation to sky view factor (SVF), an obstructed sky was 274 

related to a decrease in noise intensity in the low frequency bands, with an inverted effect in SVF 275 

values from 0.5 onwards.  276 

 277 

 278 

 279 
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Table 3. Predictor variables retained in the simplified models for each response. The top half of the 280 
table shows the rank importance order of the predictors, excluding the confounding variables. The 281 
bottom half of the table gives the original rank order of the confounding variables when together with 282 
the predictors. Variable names are decoded in Appendices A and B. 283 

Predictor Variables Description (derived in Appendices A and B) Low Mid High dBA 
Traffic_SpatialMax Output from the spatial traffic counts (MARS 

model, Appendix B) using “maximum value rule” 
when assigning a count to each 30 m pixel 

1 3 4 3 

Dist_Airport Euclidean distance of each pixel to the airport 2 4 3 4 
SVFR10D32 Sky view factor, search distance of 10 m in 32 

directions 
3    

Hrd_Ann12 Proportion of hard surfaces in 30-60 m annulus 4 2 2 2 
Dist_Motorway Euclidean distance to the motorway 5 8 6 7 
Dist_FlightPath Euclidean distance to the flight path 6 10 17 8 
Dist_PortDocks Euclidean distance to the port or docks 7 9 15 11 
Nat_Ann34 Proportion of natural surfaces in 90-120 m annulus 8 11 12 10 
Dist_Rail Euclidean distance to rail tracks 9 5 5 5 
Hard_Ann23 Proportion of hard surfaces in 60-90 m annulus 10    
Dist_WaterAll Euclidean distance to all water bodies 11    
Dist_WaterME Euclidean distance to all water bodies with the 

presence of motorised engines 
12 12 16  

Dist_MajorRds Euclidean distance to major roads 13 1 1 1 
Mix_Ann23 Proportion of mixed surfaces in 60-90 m annulus 14    
Traffic_AspatialMax Output from the aspatial traffic counts (MARS 

model, Appendix B) using “maximum value rule” 
when assigning a value to each 30 m pixel 

 6 7 6 

Dist_Water Euclidean distance to water bodies (excluding 
those with motorised engines) 

 7 11 9 

VLC_Ground Vegetation land cover at ground level    8  
Traffic_AspatialMean Output from the aspatial traffic counts (MARS 

model, Appendix B) using “mean value rule” when 
assigning a value to each 30 m pixel 

  9  

Bldg_Ann12 Proportion of buildings in 30-60 m annulus   10  
Mix_Ann12 Proportion of mixed surfaces in 30-60 m annulus   13  
Hrd Proportion of hard surfaces in each 30 m pixel   14  
Confounding Variables      
WindSpeed Average wind speed 1 6 6 8 
WindDir_Cos Average wind direction (cosine) 5 11 7 12 
WindDir_Sin Average wind direction (sine) 6 5 3 7 
ModalPeriodDay Modal survey period  18 16 18 15 

 284 
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 285 

Figure 2. Partial dependence plots of the six most relevant predictor variables in the model for the low 286 
frequencies. Rug plots are shown at the top of each plot and represent the distribution of sample 287 
points across that variable, in deciles. 288 

The PDPs for mid frequencies and dBA were very similar (Figures 3 and 4), indicating strong influences 289 

from road traffic, major roads, hard surfaces (which are generally motorable), rail transport and 290 

proximity of the airport (but with a complex pattern as for low frequencies).  291 

 292 

Figure 3. Partial dependence plots of the six most relevant predictor variables in the model for the mid 293 
frequencies. Rug plots are shown at the top of each plot and represent the distribution of sample 294 
points across that variable, in deciles. 295 
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 296 

Figure 4. Partial dependence plots of the six most relevant predictor variables in the model for dBA. 297 
Rug plots are shown at the top of each plot and represent the distribution of sample points across that 298 
variable, in deciles. 299 

High frequencies also tended to occur immediately next to major roads but sharply declined by 250 m 300 

away, and also within areas with a high percentage cover of hard surfaces (Figure 5). As with the other 301 

frequency bands, high frequencies were affected by the presence of road traffic. Rail tracks and trains 302 

may also be a source of high frequency noise in urban areas as the influence declined with distance 303 

(Figure 5). 304 
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 305 

Figure 5. Partial dependence plots of the six most relevant predictor variables in the model for the 306 
high frequencies. Rug plots are shown at the top of each plot and represent the distribution of sample 307 
points across that variable, in deciles. 308 

Projected noise maps 309 

When projected across the entire city, the low frequencies noise map (Figure 6, top left) showed sound 310 

pressure level (SPL) values ranging between 56 and 85 dB. These are mean dB levels throughout the 311 

day. The area of the docks was consistently noisy in the low frequency bands, suggesting that port 312 

activities such as the manoeuvring of cranes, presence of trucks and large containers ships, are sources 313 

of low frequency noise. The road network is also visible but is rather indistinct, with little 314 

differentiation between major and minor roads, in contrast to other frequency bands. The projected 315 

noise maps for mid frequencies and dBA (Figure 6, top and middle right) showed very few differences 316 

between them. They clearly have a spatial pattern where the road network stands out distinctly, 317 

especially the major roads which appear to be among the noisier areas of the city. This is consistent 318 

with the information provided the by PDPs (Figures 3 and 4) that link noise intensity with the presence 319 

of motorised vehicles. Sound pressure levels ranged between 38 dB and 71 dB for mid frequencies, 320 

and 42 dBA to 77 dBA for the dBA map. The spatial similarity between the dBA and mid frequency 321 

maps is mirrored in the frequency distributions of their sound pressure levels (Figure 7), whereas low 322 

and high frequencies are characterised by higher and lower SPLs respectively. Although the city was 323 

generally quieter in the high frequency bands (SPL range: 20 to 50 dB), the road network still stands 324 

out, alongside the port (Figure 6, middle left). The area around the city centre is also pronounced in 325 

the high frequency bands but less so at lower frequencies, suggesting sources other than road traffic 326 
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(for example, shops or high pedestrian footfall) may be responsible. When compared with the 327 

published strategic noise maps (Figure 6, bottom row) which are recoloured here to use the same 328 

palette as for dBA, the values observed for the major roads fall within a similar range, but projections 329 

are lacking for much of the city.   330 

  

  

  

Figure 6. Projected noise maps for low (top left), mid (top right), high frequencies (middle left) and 331 
dBA (middle right), compared with the published strategic road noise maps (bottom row) from DEFRA 332 
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(2020a, b). SRNM (Lnight) is the annual average noise level between 23.00 – 07.00, and SRNM (Lden) 333 
is the annual average noise level with separate weightings for the evening and night periods. 334 

 335 

Figure 7. Frequency distributions for projected noise levels in low (top left), mid (top right) and high 336 
frequency (bottom left) bands, plus dBA (bottom right). 337 

Identification of the noisiest and quietest areas by frequencies 338 

The SPLs of the quietest 5% of pixels varied between 56 – 66 dB for the low frequencies, 38 – 44 dB 339 

for the mid frequencies, and between 20 – 27 dB for the high frequencies (Figure 8). The overall 340 

patterns of the quietest 5% of pixels were broadly similar across the frequencies and often match the 341 

areas of greenspace or their immediate surroundings in the city. However, it is noticeable that the 342 

quietest 5% for the mid frequencies occur in more solid blocks and are less dispersed than those for 343 

low or high frequencies. Some of the quieter areas at low frequencies may be related to tree cover. 344 

For example, on an area known as the Common, most of the area covered by a relatively dense canopy 345 

of trees is quieter than the areas of open grass without trees. Figure 7 (bottom right), also maps all 346 

areas of the city quieter than 55 dBA (in light green) as specified by the END for noise mapping and 347 

action planning (DEFRA 2015). This is more extensive than the quietest 5% for dBA and increases 348 

substantially the number of areas defined as having an acceptable level of noise. It is noteworthy that 349 

the areas adjacent to the docks and port do not feature on any of the maps in Figure 7 as being quiet. 350 
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 351 

  

  

 352 

Figure 8. Quietest 5% of pixels in Southampton for low (top-left), mid (top-right), high (bottom-left) 353 
frequencies and dBA (bottom-right). The dBA map also shows areas meeting the 55 dBA daytime 354 
threshold specified in the END (in light green). 355 

 356 

Looking at the opposite end of the noise scale, Figure 9 shows the loudest 5% of pixels for each 357 

frequency band and dBA. Here it is apparent that although the network of major roads marks the 358 

noisiest locations in the mid-frequencies and for dBA, it is the container port and its surroundings that 359 

dominate in the low frequency bands (Figure 9, top left). Probable sources of noise include ships 360 

manoeuvring into port, operations using cranes, and the mechanical sounds of shipping containers 361 

being loaded and unloaded (metal against metal or metal against tarmac). Such noises may also 362 

contain high frequencies (as Figure 9, bottom left, suggests), along with other sources such as the city 363 

centre and road traffic. 364 

 365 
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 366 

Figure 9. Loudest 5% of pixels in Southampton for the low (top-left), mid (top-right), high (bottom-367 
left) frequency bands and dBA (bottom-right).  368 

 369 

 370 

  371 
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Discussion and conclusions 372 

Noise maps can be a powerful tool in the management and reduction of noise pollution in urban 373 

environments because they unveil spatial patterns in noise, identify who might be affected and can 374 

usefully inform citizens about their possible exposure. Yet conventional noise mapping, based on 375 

propagation models or interpolation of fixed-point measurements, has limitations that the survey and 376 

modelling approaches presented here overcome or provide a complementary methodology. 377 

We used mobile surveys to gather more than 52,000 georeferenced audio recordings of ten seconds 378 

duration each and processed them to extract sound pressure levels (SPLs) in three frequency 379 

groupings and dBA. We then modelled the mean SPLs in 13,554 pixels as a function of urban form and 380 

traffic data, using a modern machine learning approach. By projecting these models to the entire study 381 

city at 30m resolution, we were able to create detailed noise maps for each frequency component. 382 

There are a number of benefits in this approach. First, by including all noise sources, our approach has 383 

advantages over noise maps created from simplified emission and propagation models, which are 384 

usually calculated from traffic flows on major roads, rail traffic and industrial sources, validated with 385 

a few noise measurements in the field (DEFRA 2015; McAlexander et al. 2015; Guillaume et al. 2019). 386 

Our coverage is more complete (e.g. not restricted to areas close to roads) and based on more 387 

empirical data than conventional noise mapping. 388 

Second, our approach moves away from spatial interpolation techniques which, although widely used 389 

to determine noise levels, yield uncertainties. This is especially true if the resolution of the output is 390 

higher than that of the collected input data; if there are large areas without noise data, giving the 391 

interpolation nothing to work with (Asensio et al. 2011; Can et al. 2014); and where the urban 392 

environment between sampled points is variable. Methods that neglect features of urban form are 393 

missing major factors in the understanding of noise exposure at the street level (McAlexander et al. 394 

2015) because urban noise is intrinsically spatial, varying depending on the locations of sources, 395 

receivers and the configuration of urban environment (e.g. building footprints and heights, vegetation, 396 

terrain geometry and other urban features that act as barriers). The use of machine learning 397 

approaches such as BRT to capture the relationships between noise data and the urban environment 398 

is key, not only because of strong predictive performance, but also because predictor variables of any 399 

type can be handled while dealing with complex, non-linear relationships and interactions. Torija and 400 

Ruiz (2015) have previously demonstrated that machine learning approaches achieve better predictive 401 

results for noise modelling than conventional statistical methods such as multiple linear regression. 402 
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To achieve the coverage needed to build these machine learning models, we needed measurements 403 

from many more locations than have often been used in past surveys, which typically rely on static 404 

recording stations (Murphy & King 2014a; McAlexander et al. 2015; Khan et al. 2018). Using static 405 

recording stations limits both the number and variety of locations sampled, making it impossible to 406 

capture real exposure experienced by individuals moving freely about a city. Indeed, as Tonne et al. 407 

(2018) note, there are very few studies that focus directly on personal exposure to noise, and this is 408 

one reason. Calculations used to create strategic noise maps for the purposes of the END, are generally 409 

based on data collected from static receivers located at 1.5 to 4 m height and at least 3 m away from 410 

hard surfaces, to reduce the effect of noise reflections (Murphy & King  2014). This approach may fail 411 

to capture real exposure experienced by pedestrians because they generally hear noise at somewhere 412 

between 1.5 m and 1.8 m height. Road traffic, one of the main sources of urban noise (King & Murphy 413 

2016; Science for Environment Policy 2016; European Commission 2017; Khan et al. 2018), is also 414 

much closer to the ground than 4 m height. Furthermore, it is unrealistic to place microphones away 415 

from hard surfaces on the basis of reducing reflections because, in reality, noise experienced by 416 

individuals at the street level will always contain some noise that is reflected from a variety of hard 417 

surfaces. It has been suggested that strategic noise maps are beneficial because they enable EU state 418 

members to identify both the percentage of population being exposed to high levels of noise, and the 419 

areas of the urban agglomerations that need to be prioritised for environmental noise management 420 

(King & Murphy 2016). Yet these maps may be underestimating the levels of noise and the actual 421 

percentage of people being exposed. 422 

Comparison of the official strategic noise map for the city of Southampton (DEFRA 2020a, b) (Figure 423 

6, bottom row) and our outputs (Figures 6-9) exemplify the problems. While overall noise levels for 424 

the major roads are comparable, the strategic noise map does not calculate noise levels away from 425 

the road network, leaving much of the city where people live with no estimates. Furthermore, as their 426 

name suggests, strategic noise maps focus on noise (measured in dBA) and do not allow frequency 427 

components to be separated. As Figures 6-8 show, different frequency components may have 428 

different spatial patterns and the loud, low frequencies of the port are missing from the official 429 

mapping. Our maps for mid-frequencies and dBA are similar because this is where the A-weighting 430 

curve has least effect on the SPLs. At lower frequencies especially, A-weighting seriously down-431 

weights the SPLs (e.g. by ~40 dB in the 22 to 44 Hz band). It must be questioned whether use of A-432 

weighting for noise mapping makes sense if impacts on health are the main consideration. Persinger 433 

(2014) and Alves et al. (2018) note how A-weighting “disguises” and leads to “remarkable 434 

underestimation” of impacts at low frequencies. In the field, the underestimation of both low and high 435 

frequency noise may also be compounded by the relaxed tolerances permitted under international 436 
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standard IEC 61672-1:2013 on Class 1 measuring instruments used for environmental monitoring. For 437 

example, while at 1 kHz a tolerance of ± 1.1 dB is required, this is relaxed to -4.5 to + 2.5 dB at 16 Hz 438 

and to -17.0 to +3.5 dB at 16 kHz, raising the possibility of marked under or over-estimation outside 439 

the mid-frequency range.  440 

It is also not possible to use strategic noise maps to identify the quietest urban areas with any 441 

accuracy, simply because they are away from major roads. This is despite the requirement for EU 442 

Member States to identify and preserve areas that are quiet and considered to be of good acoustic 443 

environmental quality, to protect the European Soundscape (European Environment Agency 2019). 444 

Using the models developed here, however, shows that the quietest areas in Southampton are mainly 445 

located in green areas or on natural land with a relative dense canopy of trees. The northern part of 446 

the city contains relatively large areas where the levels of noise are within the acceptable threshold 447 

as defined by the END (Figure 8). However, the south and south-western parts of the city provide few 448 

quiet areas, meaning that a significant number of residents are living with high levels of noise and with 449 

limited access to quieter areas near their homes. They are also exposed to significant noise from the 450 

port which continues day and night, yet shipping is excluded from much noise mapping. 451 

An important issue with any environmental model is accuracy, but comparisons are difficult because 452 

strategic noise maps do not report predicted versus measured noise levels. Our models achieved r2 453 

values of 41% to 61% with mean absolute errors of 4.1 to 4.8 dB or dBA, depending on frequencies. 454 

While these values could probably be improved (e.g. by inclusion of additional predictor variables such 455 

as vehicle composition and road speed), they may be typical of noise models based on mobile surveys 456 

which achieve widespread coverage at the expense of long recording durations at single points. In 457 

other words, a mobile survey is less likely to capture temporal variations at a single point because the 458 

observer quickly moves on. Equally, adjacent short duration recordings from locations spaced only 459 

metres apart (and hence in essentially the same environment) may have quite different noise levels if 460 

sound sources are intermittent (such as passing traffic). The intermittency of sound sources in 461 

regression-type models of urban noise (including machine-learning approaches) leads to large residual 462 

error and therefore relatively low explained variance (r2) and high mean absolute errors. 463 

If mobile surveys have limitations yet wide coverage is needed, an alternative is to implement an 464 

integrated network of static sensors across a city, and this may be the future. The demands of real 465 

time data recording have pushed the boundaries of sensors and electronics making possible the 466 

development of smaller, cheaper and more energy efficient devices with embedded processing 467 

systems and wire/wireless communication systems. Environmental monitoring based on the Internet 468 

of Things (IoT) is now becoming common in areas such as transportation, temperature sensing, 469 
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atmospheric pollution monitoring and smart cities, among others (Marsal-Llacuna et al. 2014; 470 

Singleton et al. 2017; Hill et al. 2019). However, Picaut et al. (2020) note that although there is a great 471 

potential in the application of IoT to monitor urban noise, the implementation of an integrated system 472 

of sound sensors can be complex due to the requirement of a high density of sensors to capture spatial 473 

and temporal variability, and the need for advanced processing capabilities. Until such time, mobile 474 

surveys offer a way forward and methods developed to handle the big data that mobile sensors yield, 475 

such as those here, can equally be applied to data from future fixed sensor networks. 476 
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