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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by James R.B. Bantock

Mobile devices have rapidly reached almost ubiquitous adoption amongst the global
population. Smartphones have been the catalyst for introduction of high-performance
System-on-Chips to mobile devices bringing with them the capability to execute ever
more demanding applications but also widespread power management challenges. Tra-
ditionally, the foremost power management challenge was extension of battery lifetime.
The emergence of sustained performance applications including mobile gaming, Virtual
and Augmented Reality has presented a new challenge in constraining performance to
within a sustainable thermal envelope. Cooling techniques, limited to passive technolo-
gies in mobile devices, have proved insufficient to maintain device skin temperatures
below thresholds the human skin can tolerate. Dynamic Power Management policies
have been developed to reduce mobile device power consumption to meet both energy
and thermal constraints. This thesis proposes and then explores a new area of research

in systematic tuning of Dynamic Power Management policies for mobile devices.

Static and dynamic configuration of Dynamic Power Management policy parameters
are compared to quantify the potential energy and performance improvements. Experi-
mental results from a modern mobile device across four applications suggest up to 10%

reduction in dropped frames and a 25% reduction in CPU energy consumption.

Interactive performance degradation from Frequency Capping - the Dynamic Power
Management lever used in device skin temperature throttling - was shown to induce up
to a 43% increase in dropped frames. A new Dynamic Power Management lever - Task
Utilisation Scaling - is proposed and validated to mitigate the performance degrada-
tion by reducing the number of dropped frames by up to 8.5% compared to Frequency
Capping.

Evaluation of interactive performance metrics such as dropped frames was shown to be
up to 750x slower than CPU energy consumption. An investigation into the root cause
of this problem lead to a new metric for estimating dropped frames - PPPx - which can
accelerate evaluation by up to 43.3x. PPPx was validated in a tuning experiment that

lasted 8 days which would otherwise have required 8 months.
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Chapter 1

Introduction

The optimisation of mobile device operation during the design process is influenced by
a range of factors reflecting their diverse capability and use-cases. In this chapter, these
factors and trends that affect them are introduced including mobile device market trends
in Section 1.1 and wider trends in computer architecture in Section 1.2. Existential
challenges in tuning Dynamic Power Management for mobile devices are presented in
Section 1.3 and traced from these challenges, are the research aims and contributions

achieved by this thesis in Sections 1.4 and 1.5 respectively.

1.1 Trends in the mobile device market

Mobile devices have become a ubiquitous part of human life, smartphone ownership now
extends to over 88% of the population of the United Kingdom [2]. The classification of a
mobile device has extended beyond just mobile phones to include smartphones, tablets,
laptops, smart watches, Virtual (VR) and Augmented Reality (AR) headsets [2, 3]. This
fragmentation is in part due to increasing device specialisation to support demanding
applications under tight constraints. Mobile devices are distinct from traditional com-
puting devices by their increased portability as a result of reduced mass and volume.
This reduction in form-factor presents unique design challenges including reliance on

battery-power and device thermal constraints [4, 5, 6, 7].

Growth in mobile device ownership in the United Kingdom from 2013 to 2019 is shown
in Figure 1.1. Data for smartphones, tablets and other wearables in the United States
reflects a similar slowdown in growth [3]. Smartphone replacement cycles are increasing
and with the slowdown in ownership growth this has led to a fall in smartphone unit
shipments [8, 9]. Although unit sales are falling, this has been offset by an increase in

revenue per unit [2, 10].
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FIGURE 1.1: Mobile device ownership in the United Kingdom by year (2013-2019) -
data from [2].

Global revenue estimated to be attributable to the mobile device value chain was over
$3tn in 2014 and represents far more than the estimated $500bn revenue from mobile
device retail [11]. In developing countries, mobile devices represent access to digital
infrastructure that is forecast to drive $3.9tn of purchases by 2022 [12]. The traditional
business model of profit from device sales faces disruption as device manufacturers focus

on monetising software and services [13, 14].

Competition between mobile device manufacturers has increased as the market has ma-
tured [8, 9]. Not all market dynamics can be explained by device performance and cost,
eco-system factors such as the dominance of the mobile device operating systems An-
droid and iOS influence sales [15, 16]. However, consumers are increasingly considering
the capabilities of devices for differentiation including performance, battery-life and the

camera [2, 3, 17].

Mobile device manufacturers not only compete against each other but must also drive
sales from their existing customers to upgrade from their older devices [2]. Previously,
visual differentiation between devices was sufficient for this purpose, in recent years a
convergence in external design has reduced the effectiveness of this strategy [2]. Instead,
manufacturers have focused on broadening the capability of mobile devices to encompass

emerging applications that are too demanding for older devices.

Emerging mobile applications include mobile gaming, AR, VR and Machine Learning
(ML) acceleration [2, 19, 20]. Mobile video gaming is the most established application
with a forecast global consumer spend of $90bn in 2019, more than all other gaming
platforms combined [19]. The market opportunity for AR/VR has been forecast to be
$80bn in global revenue by 2025 with $48bn driven by consumers and $32bn enterprise
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FIGURE 1.2: Average power consumed by CPU and GPU subsystems when executing
smartphone applications - data from [18].

[21]. On-device ML capabilities are forecast to be present on 80% of smartphones by
2022, compared to 10% in 2017 [20].

Performance requirements from emerging mobile applications have been most demanding
on the Graphics Processing Unit (GPU) of the System-on-Chip (SoC), shown in Figure
1.2. UI applications are mostly CPU dominant compared to emerging applications
(mobile gaming, AR and VR) that are performance-limited by graphics processing power
[18, 22, 23]. ML workloads are more suited to execution using dedicated acceleration
hardware, however, as this technology is still in its infancy, existing hardware can be
used [24, 25, 26, 27].

Modern mobile SoCs have been designed to target these performance requirements,
improvements have been made to mobile GPUs in particular [28]. A portion of these
improvements have increased the performance at the same power consumption, however,
the overall power consumption of mobile SoCs has also increased [28]. This trend is
highlighted in Figure 1.3, SoC power efficiency is improving but even the most efficient
modern mobile System-on-Chips are consuming over 5W under demanding graphics

workloads, outside the 3.5W sustainable thermal envelope of a smartphone [29, 30, 31].

Power consumption challenges have been addressed in computer architecture research
previously, Dynamic Power Management (DPM) is the collective term for the use of an
array of hardware and software levers available to scale power consumption at runtime
[33]. Hardware DPM levers limit performance of the SoC using techniques such as Dy-
namic Voltage and Frequency Scaling (DVFS) and Central Processing Unit (CPU) idle
states [33]. Software DPM levers include scheduling and mapping of software applica-

tion tasks to available resources [34]. Modern mobile SoCs extensively make use of DPM
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F1cURE 1.3: Mobile System-on-Chip average power consumption and performance per
Watt during graphics benchmark - data from [28, 32].

techniques to maintain energy and thermal budgets [31], this leads to a regression in

application and system performance [31, 35].

Operating Systems (OSs) typically have assumed responsibility for maintaining energy
and thermal budgets in mobile devices [36]. Implementation of this functionality is not
always aligned with the OS’s traditional goals of throughput performance and fairness
between application and users [37]. Control of DPM levers is typically implemented by
the OS using individual policies [38, 39, 40], these policies may incorporate heuristics
for user Quality of Experience in decision making. The separation between DPM lever
policies has led to conflicts in between separate policies and the emergence of system-

level techniques that aim to unify decision making [41].

Effective usage of DPM techniques is dependent on the workload being executed, this
is not an issue for a single-workload system, however, modern mobile devices execute
many diverse workloads [42, 43]. Variations in workload cannot be characterised by only
observing the applications executing at that instant, environmental conditions such as
ambient temperature are also a factor [44, 45]. DPM is tuned according to modelled
or measured workloads during three processes. Design Space Exploration (DSE) pro-
vides the opportunity for changes to DPM levers directly but system performance and
workloads are only models at this stage [46]. Static and dynamic configuration occurs
with measured system performance data and includes the capability to tune DPM policy
parameters such as thresholds and timers [47, 48], see Table 1.1. Design Space Explo-
ration occurs during the System-on-Chip (SoC) design stage [49], static configuration
as part of system integration and dynamic configuration during application execution

[47, 48, 50]. Tuning using modelled performance and workload data can typically take
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DPM policy Design Space Static Dynamic
tuning process Exploration Configuration Configuration
Design stage SoC Design Integration Runtime
SoC performance Model Measured Measured
System workload Model Model Measured

TABLE 1.1: Dynamic Power Management (DPM) policy parameters may be tuned
during three different processes: Design Space Exploration, static configuration and
dynamic configuration.

place earlier in the design process than measured data but will be less representative of

the final system.

Determination of an optimal configuration of DPM in a mobile device is not a feasible
problem, there are factors such as software workload, environmental conditions and user
input variation that are either unknown or can only be loosely modelled during the
design process [42, 43, 44, 45, 46]. Traditionally, DPM has been reliant on relatively
simple policies employing heuristics with static configuration such as the Linux power
governors [38, 39, 40]. As hardware and software has moved on it has become evident that
such solutions are no longer fit for purpose, a fact recognised by the Linux community
through development of a new Energy Aware Scheduling (EAS) solution [51]. The use
of a desktop and server kernel such as Linux to underpin the Android mobile Operating
System has added design choice constraints compared to a clean slate mobile-first design.
Future DPM policies will leverage ML techniques, research has thus far focused on
Reinforcement Learning (RL) for DPM control [52] and Recurrent Neural Networks
(RNNs) for workload prediction [53].

1.2 Trends in computer architecture

An increase in complexity of computer architecture presents the challenge of additional
policy parameters that must be configured correctly for effective workload execution.
These parameters are typically thresholds or timers that are statically or dynamically

configured dependent on the architecture [48].

There are three major trends in computer architecture which affect system complexity,
these are set to further increase the challenge of tuning DPM beyond current levels.
The increase in computer architecture design metrics (described in Section 1.2.1), the

increase in integrated chip design cost at leading nodes (Section 1.2.2) and the increasing
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complexity of adaptive hardware and software architectures (Section 1.2.3). The combi-
nation of these trends in system complexity will result in an explosion of the state-space
of parameters, including those relating to DPM policies, that must be tuned requiring

new tuning techniques beyond manual and heuristic-based methods to be developed.

1.2.1 Design metrics

Computers have developed from calculation tools into general-purpose systems with
a diverse range of applications. In correspondence with this, computer architecture
research has developed to include a wider range of design metrics for optimisation.
Initially, the predominant design metrics were performance and reducing silicon area
to increase yield and lower costs [54]. As the consumer market shifted towards mobile
devices, energy and thermal concerns were elevated to a higher level as the mobile form-
factor presented these challenges [54, 55, 56]. Most recently, reliability and security
have emerged as growing concerns as high-profile hardware vulnerabilities have raised
questions about the use of computers for financial and confidential workloads [57, 58, 59,
60]. In Figure 1.4, the abstracts from leading computer architecture conferences have
been datamined to highlight this trend.

An increase from two design metrics to six has placed a significant burden on the operat-
ing system to balance individual budgets in accordance with requirements. In addition,
requirements such as reliability and security can be at an application level as well at the
system level to add further complication [64]. It is typical that to improve in accordance

with one goal, for it to negatively affect another. Examples of this include the well
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understood performance versus power trade-off but also less studied trade-offs including

security versus area, energy and performance [65].

In the future, it is uncertain whether more design metrics may also be elevated to higher
importance, these could include obfuscation to reduce Intellectual Property (IP) theft
[66, 67] and environmental concerns such as product longevity or ability to be recycled
[68, 69, 70, 71]. What is certain is that optimisation of computer architecture including
the DPM subsystem must consider more design metrics than only performance and

power which was its original remit.

1.2.2 Integrated Circuit design cost

At leading semiconductor nodes, the design cost for an Integrated Circuit (IC) is in-
creasing [72, 73]. In Figure 1.5, estimates of the total design cost of an advanced IC
at current and future nodes are presented. The IC design process is increasing in cost
to a price point where it is prohibitive for many new designs to use the leading node.
Looking ahead to 5nm and 3nm nodes, the design cost is forecast to exceed $1bn [73],
this cost will become a challenge for even the largest semiconductor companies and will

require innovative solutions.

One such solution to the increasing design cost that has been long proposed is to de-
sign ICs as a collection of smaller chiplets that may be packaged together [74, 75, 76].
Semiconductor manufacturers have commercialised 2.5D/3D integration processes for
this purpose [77, 78, 79, 80].
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SoC developers have begun to adopt 2.5D/3D integration of chiplets along with other
advanced packaging techniques [81, 82, 83]. A major reason for this adoption has been
the increased design cost such that it is not cost effective to design all parts of the chip
at the leading node. Another is the increase in use of design modularity and repackaging
chiplets into multiple different ICs [81, 84]. Design modularity and re-use has long been
a key part of developing ICs, but the industry consolidation of the IP used is increasing

in correlation with the increasing design costs.

Modular and reconfigurable systems by design have more parameters to allow effective
reuse [56, 85, 86, 87], however, this also means that the total number of parameters in the
system that must be tuned statically and dynamically will increase, further increasing
the state-space for tuning DPM. As design costs continue to increase and companies are

forced to license more external IP, this challenge will become more problematic.

1.2.3 Adaptive hardware and system software

Frequency of operation of high-end SoCs has plateaued due to physical constraints [88],
in mobile devices the situation is similar but limited more by the sustainable thermal
envelope [31]. However, reduction in transistor geometry has allowed more transistors
on a single SoC at new design nodes [88]. Chip developers have made use of these
extra transistors to develop more complex architectures to increase chip performance
without changes in the frequency of operation [88]. As shown in Figure 1.6, researchers
have placed more emphasis in their paper abstracts on creation of adaptive policies than

techniques used to tune them. Modern architectural innovations range from advanced
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memory systems and branch predictors to Networks-on-Chip (NoCs). [54, 89], irrespec-
tive of their purpose, they implement policies in hardware and software that require
tuning [90, 91].

Tuning of policies in hardware and software is dependent on both the rest of the system
and the workloads being executed, it can rarely be configured once and reused for all
systems and workloads. There is no evidence that computer architectures will become
simpler in the future nor that frequency of operation of SoCs will increase beyond small
increments, as such this trend is likely to continue. The number of policy parameters
that must be tuned will therefore increase and improved tuning techniques must be

developed accordingly.

1.3 Challenges in tuning Dynamic Power Management

The underlying trends described in Sections 1.2.1, 1.2.2 and 1.2.3 all suggest that tuning
computer architecture will become increasingly complex in the future. The primary chal-
lenges faced by mobile devices relate to energy consumption and thermal management,
both controlled by DPM. This implies that the already complex task of tuning DPM for
mobile devices is likely to become both more important and increasingly challenging in

the future and beyond the current limited techniques available.

Processes for tuning DPM may be implemented across the system layers of a mobile
device from fundamental hardware design to pure software solutions as highlighted in
Table 1.1. There are promising areas for investigation in each of DSE, static and dynamic
configuration. In Section 1.3.1, the challenges raised by current commercial mobile
devices are discussed, in particular, device thermal restrictions and DSE of new DPM
systems with these challenges as a first-class target. In Section 1.3.2, the advances
in configuration of system parameters in datacentre applications are highlighted which

present an opportunity for static configuration of parameters in DPM policies.

1.3.1 Real devices and real workloads

Research into mobile devices must consider the challenges posed by the current and fu-
ture generations of devices and applications in order to be relevant. Challenges that were
highlighted when mobile devices first began to proliferate the market are not necessarily
relevant in the current generation of devices. Applications which present the greatest
challenge to modern mobile device DPM systems are of a sustained performance nature,
such as AR, VR and mobile gaming [18, 22, 23, 92, 93]. These applications require
performance that exceeds the sustainable thermal envelope of a smartphone which in
turn leads to violations of the safe skin temperature threshold of 45°C [18, 31, 93, 94].
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In Figure 1.7, results are presented from a study which measured the steady-state skin
temperature when executing a variety of applications on a modern smartphone [93].
Thermal throttling was enabled, and conservative environmental conditions were chosen
including physical suspension of the device. Despite thermal throttling being enabled,
multiple applications were observed to exceed the safe skin temperature threshold of
45°C. The high average power consumed by modern mobile SoCs is an existential chal-

lenge for sustained usage [29, 30, 31].

Furthermore, unfortunately maintaining device skin temperature at or below 45°C can-
not be considered a complete success. User satisfaction research has shown that user
experience is degraded from 40°C. In Figure 1.8, results are presented from a survey of
20 users who played a 3D game on a smartphone for 20 minutes each [93]. The device
skin temperature threshold was maintained at or below 45°C by the thermal throttling
systems yet 75% of users reported they felt discomfort from the skin temperature. Rea-
sons provided for discomfort include heat sensation, skin burn concerns, sweating and
device becoming slippery as a result of sweat. Mobile device skin temperature violations

by modern smartphones degrade user experience.

A common approach in DPM research is to make use of easily available hardware and
software for experimentation. For example, development boards with external power
sensors monitoring SoC power consumption reduce the barrier to entry for measurement
[23, 95, 96, 97, 98]. Experimentation using this hardware doesn’t necessarily represent
the issues faced by real mobile devices. In addition, automation of mobile applications
is a well-researched field of its own right [99] but is not necessarily trivial to implement
for commercial devices and applications, instead it is easier to fall back on generic

architecture benchmarks such as [100, 101]. These benchmarks do not represent real
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workloads for mobile devices and therefore the research conducted with them is likely
to not be applicable mobile DPM [42, 102, 103].

1.3.2 Static configuration in datacentre applications

Datacentre applications are deployed and executed at immense scale by technology com-
panies with capital expenditure exceeding $50 billion per year by the largest five deploy-
ers [104]. Many of these applications are based on open-source software such as Apache
Spark and Hadoop, designed to be sufficiently configurable to a wide range of use-cases.
Inherently, these applications expose many parameters to the system administrator, this
can potentially extend to over 100 parameters [105]. The focused execution of a small
number of applications with an input workload that can be modelled has led to advances
in configuration tuning for many datacentre applications. These can include webservers
[105], databases [105, 106] and stream processing of data [107].

Previously, researchers have questioned from a Human Computer Interaction (HCI)
perspective whether too many configuration parameters is a good thing [108], however,
the approaches of partial configuration automation [109] or full configuration automa-
tion have received traction [105, 106] as automatic configuration tuning techniques have
been demonstrated. In Figure 1.9, throughput improvement gained from parameter con-
figuration is shown compared to the default parameter configuration for five datacentre
applications [105]. The improvements of up to 330% are somewhat misleading as they
imply the default configuration is particularly ineffective. However, in a case study, one
of the application configurations was shown to exhibit 4% higher throughput than an

expert human configuration. The same study showed that setting parameters outside
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FIGURE 1.9: Throughput improvement after parameter configuration for datacentre
applications compared to the default configuration - data from [105].

of the recommended value could be effective in increasing performance reflecting that a

data-driven approach can exceed the results possible with human intuition [105].

Mobile DPM policies expose parameters such as threshold and timers to the system
administrator [38, 39, 40, 48, 51]. Although not in a mobile use-case, some of these
parameters have been tuned through static configuration demonstrating improvements in
power efficiency [47]. The search techniques highlighted in the datacentre configuration
tuning research are applicable to reducing the state-space of parameters in the mobile
space. For example, grid search is highlighted as too sample inefficient and a recursive

bounded random search is used instead [105].

There open research questions about the scale of benchmarking required to tune mobile
workloads as there is not the single application and use-case model that reduces the scope
of datacentre application configuration. The largest publicly announced mobile device
lab is run by a mobile application developer [110, 111]. This device lab has reported
issues with repeatability of benchmarks [112], citing implementation of deterministic
DPM frequency selection which would not be an option when evaluating the DPM
subsystem performance itself. Furthermore, mobile applications are interactive and

subject to external resources such as network performance and user input [113].

1.4 Research aims

This thesis aims to advance techniques for tuning Dynamic Power Management for
mobile devices in the face of increasing computer architecture complexity and policy

parameter spaces. The research aims can be summarised as follows:
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1. Quantify the potential performance and power improvements achievable through

systematic tuning of mobile DPM policies.

2. Investigate the performance effects of the emergent mobile device skin temperature

throttling algorithms and evaluate potential mitigations for this challenge.

3. Leverage research in datacentre application configuration tuning to improve static

configuration of DPM power management policy parameters.

1.5 Research contributions

The contributions of this work towards addressing the aforementioned research aims are

as follows:

1. A mobile DPM policy was tuned for web browsing applications under varying
network conditions and user inputs demonstrating up to 13% CPU energy savings
or QoE improvement of 27% addressing Research aim 1. A paper summarising
contribution was presented at ISLPED 2017 [1].

2. A new DPM lever, Task Utilisation Scaling, was proposed to replace Frequency
Capping in mobile device skin temperature throttling algorithms resulting in a
decrease of dropped frames by up to 43% addressing Research aim 2. A paper
reflecting this contribution was published in IEEE Embedded System Letters [114].

3. A new metric was proposed, PPPz, to accelerate evaluation of dropped frames
in mobile applications by up to 43x. This metric was used with datacentre con-
figuration tuning techniques to tune DPM policy parameters across four mobile
applications demonstrating a reduction in dropped frames of up to 10% and a CPU

energy reduction of up to 25% addressing Research aims 1 and 3.

1.6 Thesis structure

The remainder of this thesis is structured as follows:

In Chapter 2, a review of the relevant literature is presented including: the classification
of mobile device hardware, software applications and challenges (Section 2.1), Dynamic
Power Management levers and control policies (Section 2.2) and performance evaluation

of applications, power consumption and tuning (Section 2.3).

In Chapter 3, empirical data is collected from experiments on a mobile System-on-Chip
to support the case of tuning mobile Dynamic Power Management policies. This includes

a comparison between static and dynamic configuration under user input and resource
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access-time variability (Section 3.1) and an architecture to dynamically configure policy

parameters for unseen dynamic workloads (Section 3.2).

In Chapter 4, the use of Frequency Capping as a lever for mobile device skin temperature
throttling is demonstrated along with the side-effects on application interactivity and
user Quality of Experience (Section 4.1.2). A new lever is proposed, Task Utilisation
Scaling, to mitigate these side-effects and its efficacy evaluated on both User Interface

and sustained performance applications (Section 4.2.1).

In Chapter 5, the problem of multimodal distributions when measuring frame rate janks
is highlighted along with effect it has on performance evaluation. A new metric is
proposed, PPPz, to accelerate the evaluation of frame rate janks (Section 5.1). PPPz
is validated through tuning of three Dynamic Power Management policies and their

parameters on a mobile device 5.2.

In Chapter 6, conclusions are drawn (Section 6.1) and opportunities for future research

are presented (Section 6.2).



Chapter 2

Background: Dynamic Power

Management for Mobile Devices

In Chapter 1, emergent trends affecting the mobile device market and computer ar-
chitecture as a whole were presented unveiling the growing challenge of tuning mobile
devices. Through a review of background literature, this chapter sheds further light on
the design constraints at the root of this challenge and the current techniques available
to meet them. An overview of the classification of mobile devices is laid out in Section
2.1 including both hardware classification (Section 2.1.1) and classification of current
and future software applications (Section 2.1.2). Following this, is an in-depth discus-
sion of the energy and thermal challenges posed by the mobile device form-factor in
Section 2.1.3. Dynamic Power Management (DPM), addressed in Section 2.2, describes
a collection of levers (Section 2.2.1) and control policies (Section 2.2.2) that are effective
in reducing power consumption to mitigate these energy and thermal challenges. The
final piece of the puzzle is the capability to evaluate the performance of DPM against
its goals which is presented in Section 2.3. Included in this evaluation is application
performance (Section 2.3.1) and power (Section 2.3.2) measurements, either directly or
indirectly through use of a model. The DPM evaluation results may be used to improve
the DPM control policies (Section 2.3.3) through tuning parameters which acts to close
the loop on the DPM design process.

2.1 Mobile devices

Market trends presented in Chapter 1 highlight a burgeoning ecosystem that has emerged
around mobile devices. The limits of this ecosystem are defined in terms of both hard-
ware (Section 2.1.1) and software specifications (Section 2.1.2), the combination of which
pose significant challenges to device manufacturers from an energy and thermal perspec-
tive (Section 2.1.3).

15
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device for DNN inference, specifically ShuffleNet and Mask-RCNN - data from [24].

The speed-up is not uniform across all applications particularly for emerging use-cases
such as ML acceleration.

2.1.1 Hardware classification

Portability, inherent to mobile devices, defines much of the hardware requirements im-
posed on mobile device design [4], Broadly, mobile devices may be segmented by how
they are intended to be carried or worn. For instance, the size and weight permitted
by the laptop form-factor [115] allows integration of a greater hardware specification
than that of a smartwatch [116]. This heterogeneity in hardware specification is visible
in benchmarks executed across device classes and defines the possible software applica-
tions that may be used [117, 118]. Some of the more common mobile device form-factors

are detailed in this section along with their particular requirements.

It would be disingenuous to review the state-of-the-art in mobile devices without starting
with the smartphone, in Chapter 1 it was revealed that ownership has now extended to
over 87% of the UK population. It should not be a surprise given the size of the market
that segmentation has emerged within its bounds. In Figure 2.1, two benchmarks from
Machine Learning (ML) are presented from a range of smartphones. When new gener-
ations of smartphone are compared to older generations, the benchmark performance is
higher, but this is not necessarily uniform across tiers of the market [24]. In particular,
high-tier smartphones are increasing in computational capability. Previously, much of
the power budget of a mobile phone was allocated to the display and data connection
[119, 120, 121], in today’s flagship smartphones this is trending towards larger alloca-
tions for the CPU and GPU [18, 22, 23, 31]. Power consumption data for accelerators

such as image and video processing can be up to 28% of SoC power usage for specialised



Chapter 2 Background: Dynamic Power Management for Mobile Devices 17

tasks such as video recording [102]. Closely related to the smartphone is the tablet
form-factor, which aside from a larger display and consequently battery often uses the
same System-on-Chip (SoC) or a variant of the same System-on-Chip with additional

graphics processing power[122].

Seated at the base of the pack in performance are low-power wearables, the smartwatch
being one of most widespread [116]. With approximately 70% of their energy consumed
in dozing or sleeping states, smartwatches are designed for lighter usage than other
mobile devices [116]. The power budget allocation is not dissimilar to in smartphones,
however, there are additional sensing functions for health and fitness applications that
can dominate this allocation when enabled [123]. Due to their relative infancy in adop-
tion it is not yet known if smartwatches and other wearables will mirror the ubiquitous
usage of smartphones or if they will remain an outlet for push notifications from other

mobile devices [116].

At the other end of the performance scale are Augmented Reality (AR) and Virtual
Reality (VR) wearables. These wearables were initially scoped as standalone glasses
or headsets, but the computational demands have so far proved too high for a feasible
implementation as untethered devices [18, 22]. This has demonstrated that the software

application requirements cannot be passed over during the hardware design process.

2.1.2 Software applications: current and future

Given the vast array of emergent software applications available to execute on mobile
devices such as smartphones [16], it is forgivable to gloss over that the current generation
of applications are still widely used and their performance important [102]. Studies
have shown that the provisioning of powerful multi-core CPUs in smartphones doesn’t
correspond favourably with the largely single-threaded workloads that they execute [31,
43, 124].

Key functions that have been implemented by smartphones since their inception such
as video decoding have been isolated into application-specific Intellectual Property (IP)
cores on the SoC [102, 125]. These IP cores can be optimized for individual use-cases
and often represent a large power and execution time improvement over CPU execution.
However, the specialisation comes at a cost, if applications map poorly to these IP

accelerators then these improvements are not always realisable [125].

Characterisation of current mainstream smartphone applications pinpoints power con-
sumption allocated to three main subsystems, the CPU, memory and interconnect, and
IP cores [102, 125] as showcased in Figure 2.2. When a web-browser is scrolled, much of
the required computation is carried out by the CPU as there is no specialised IP core
for this purpose, although one such core has been proposed [126]. However, during 4K

video recording the Image Signal Processor (ISP) is exploited represented by the large
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FIGURE 2.2: Power consumption broken down by subsystem for mainstream mobile
device applications - data from [102].

IP core power consumption of up to 28%. It is important to note how minimal the GPU
usage is for these applications when compared to emerging and future applications, as
specialised accelerators are developed for emerging applications such as ML this may

reduce the differential in power consumption breakdown.

Additionally, in Figure 2.2, a representative pipeline is laid out for a 4K video recording
application. CPU, memory and IP subsystems are dominant as applications are executed
by a complex chain of IP modules orchestrated by the CPU as shown in the example 4K
video recording pipeline. There are two inputs, camera and audio, which are processed
through a chain of IP cores to two outputs. These outputs are a preview version of
the video on the smartphone display and the complete encoded video stored in Non-

Volatile Memory (NVM). This (simplified for the purposes of illustration) complex chain
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of IP cores gives an indication of the orchestration required by the CPU and memory

subsystems that consume similar power allocations to the IP cores themselves.

As highlighted in Chapter 1, there has been an emergence of applications with higher
computational demands, the first of which are from mobile gaming. Mobile games,
both 2D and 3D, involve frame-based computation with a target frame rate of up to
60 Frames-Per-Second (FPS) [23, 102]. Rendering of each frame individually computed
using a combination of the CPU and GPU, either subsystem may throttle the game below
60 FPS if the performance or power required is beyond constraints. Figure 2.3 shows
subsystem power consumption breakdowns for a 2D game and 3D graphics benchmark
representative of a 3D game. In both cases the dominance of CPU and GPU power
allocations is clear, as is the GPU power consumption of over 10x the mainstream

applications in Figure 2.2.
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An example mobile graphics pipeline for a 3D game is also shown in Figure 2.3 exhibiting
minimal differences to a graphics pipeline for a desktop computer game. CPU and GPU
subsystems are dominant when demanding workloads are processed with reduced usage
of application-specific IP modules. The example graphics pipeline is executed on the
GPU after the game logic and memory orchestration to fetch and load required textures

is computed [127].

Augmented Reality (AR) applications are in their infancy with regards to mainstream
adoption and this is reflected in the limited characterisation data available [18, 24].
The tasks that must be run to execute an AR application are more diverse than in other
applications and this is reflected in a higher Thread-Level Parallelism (TLP) metric [18].
Figure 2.4 provides a high-level overview of the tasks involved in the pipeline. These
include fusion sensor data from objects tracked by the camera with location data from
Micro-Electro-Mechanical Sensors (MEMS) and the Global Positioning System (GPS)

chipset, streaming video to the display and augmenting this video with 3D-rendered
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FIGURE 2.5: Energy required to execute Machine Learning models (AlexNet and
SpeakerID) on-device and offloaded to the cloud - data from [128].

images from the application. Unsurprisingly, this execution increases power consumption
across the SoC with particular dominance from the CPU, GPU and camera subsystems.
One of the applications in Figure 2.4, Blippar, also conducts real-time web-search over

WiFi during execution to exacerbate the power challenge.

Finally, the list of emerging applications would not be complete without Machine Learn-
ing (ML) acceleration. The rapid adoption estimates of 80% of smartphones by 2022
discussed in Chapter 1 may yet prove unfounded but it is already integrated in some
popular applications [24, 115]. Whilst it is predicted that ML acceleration will benefit
from specialist IP cores or Neural Processing Units (NPUs) in the future, for now a

range of existing subsystems are used [24, 25, 26, 27].

An example of the heterogeneity possible when accelerating ML inference is visible in
Figure 2.5; a comparison is made for inference of two ML models across the candidate
accelerators of two SoCs. Accelerators are compared across the Snapdragon 800 and
Tegra K1 SoCs. When compared with offloading to the cloud, most of the on-device

accelerators compare favourably in energy consumption, although it must be noted there
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are other trade-offs in latency and throughput. Out of the available on-device acceler-
ators the GPU is most energy-efficient and is most commonly used in current devices
[24, 27].

2.1.3 Device form factor challenges

As a precursor to analysis of the challenges imposed by the mobile device form-factor,
it is important to reiterate the diversity in usage of smartphones and other devices
amongst their users [119, 121, 129, 130, 131, 132]. Given the widespread adoption of
smartphones in a large population of varying usage patterns, there will undoubtedly
be variation in the challenges experienced in mobile device lifetimes. Irrespective of
this variation, there are two major power management challenges, battery life and skin

temperature throttling that will be discussed in this section.

Battery life preservation has always been at the forefront of mobile power management
[4], if battery charge falls below the minimum level allowed for the battery technology
then the mobile device will shut off and be unusable. Whilst battery capacity tech-
nologies have developed over time, they fall short of keeping pace with the increase in

computational power of modern devices [31, 102].

There is an assumed requirement that mobile device battery life will extend for at least a
day of use, however, in reality this requirement is less clear-cut. In Figure 2.6, the charge
cycles of eight users from a mobile device usage study are shown. The charge cycles

are annotated as one of three categories, habitual charging, necessary and unnecessary



Chapter 2 Background: Dynamic Power Management for Mobile Devices 23

Skin temperature °C

Nexus 5 60.0
Nexus 6
Nexus 5X 55.0
Pixel
50.0
Pixel 2
Galaxy S7 45.0
P20 Lite
iPhone 7 40.0
iPhone 7+
35.0
iPhone 8
Skype Hangouts Abyssrium PUBG Video record  Voice call
Application

FIGURE 2.7: Steady-state skin temperature recorded across ten mobile phones during
execution of everyday applications - data from [93].

opportunistic charging. Habitual charging refers to a recognisable pattern in charging
over a number of days, for the users shown in Figure 2.6 this is normally overnight.
Opportunistic charging refers to charging without a pattern, if the battery level is low
then this is defined as necessary and if not then it is defined as unnecessary [121]. The
takeaway is that whilst charging patterns can roughly be divided into patterns, habitual
and demand-based, the mobile device battery life requirement is a moving target.

The upwards trend in SoC power in recent smartphones was highlighted in Figure 1.3
in Chapter 1. The emerging software applications discussed in Section 2.1.2 (3D games,
AR and VR) have increased the computational requirements on the GPU without let-up
in CPU requirements as was shown in Figure 1.2. When these applications are executed
for moderate lengths of time this is known as sustained performance [92]. Sustained
performance has created a new challenge for smartphones, high device skin temperatures.
Device skin temperatures greater than 40°C' start to cause heat sensation and then
later discomfort for users holding the device [93]. The exact temperature threshold and
therefore sustainable thermal envelope depends on both the material of the device and
the user tolerance [93, 94]. Steady-state device skin temperatures reached across several
mobile devices and applications are showcased in Figure 2.7. Thermal throttling issues
are present even in less demanding applications and older devices, in this study they are

most prevalent in applications with high camera usage.

High device skin temperatures may also manifest themselves as hotspots caused by
individual components of the device. These components can include the SoC, WiFi

chipset and camera [18, 93]. As these components are relatively small in area the heat
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is not dissipated across the whole area when it reaches the skin of the device. Other
larger heat dissipating components such as the battery and display are less likely to

cause hotspots [93].

Cooling solutions available in smaller mobile devices such as smartphones have histori-
cally used passive techniques [133]. These include heat-pipes to channel heat across the
device [134] and heat-spreaders which act to reduce hotspots on the skin of the device
[6]. Recently, some device manufacturers have created devices designed specifically for
sustained performance applications such as mobile gaming and these have incorporated

active cooling fans [135, 136].

In response to the power management challenges introduced by sustained performance
applications, device manufacturers have refined the SoC architecture used in mobile de-
vices. The first modification has been the integration of more specialised accelerators as
the workload demands of emerging applications has become clearer. These specialised
accelerators include further advancements in image processing acceleration to support
up to 8K video recording as well as photo post-processing [137] as well as Neural Pro-
cessing Units (NPUs) for Machine Learning applications [32, 137, 138]. Accelerators
are beneficial for both battery lifetime improvement and device thermal management
but also can improve performance sufficiently to support applications that would not
otherwise be viable on a mobile device. The second modification has been to further
segment CPU performance operating points to support sustained performance applica-
tions where power and performance must be delicately traded-off. Typically the switch
has been from four big cores and four LITTLE cores to one or two big cores, two or
three medium cores and four LITTLE cores [137, 138, 139]. Appropriately selected op-
erating points for the medium cores allows performance to be sustained longer as the
big core operating points are heavily weighted towards performance for executing short
tasks with low latency. This modification has not been universal across all manufactur-
ers, in fact the best performing SoC on the market has continued to use a big. LITTLE

architecture without medium cores [32].

2.2 Dynamic Power Management

Operating systems shoulder the task of meeting the power challenges discussed in Sec-
tion 2.1.3, battery life management and device skin temperature constraints. Choices
early in the design process can be made to reduce overall power consumption; however,
after these variables are fixed runtime management is implemented using a collection of
techniques referred to as Dynamic Power Management (DPM). DPM existed before the
widespread proliferation of mobile devices [33], but its use has expanded rapidly due to

their adoption rates. There is a wide range of levers that may be used to reduce power
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System-on-Chip power model using Android Debug Bridge.

consumption at runtime (Section 2.2.1) and various metrics that can be monitored as

part of a control-loop to configure these levers (Section 2.2.2).

2.2.1 Levers for reducing power consumption

Ubiquitous in modern mobile devices, is Dynamic Voltage and Frequency Scaling (DVFS),
the premise of which is by reducing SoC frequency of operation when not required pro-
vides the opportunity to reduce SoC Voltage and therefore power consumption. It is
intuitive, upon observation of the SoC power model in Figure 2.8, to believe that DVFS
can solve most of the power challenges in mobile devices alone. However, when com-
pared to the device-level power model in Figure 2.8, it is clear that it is only part of the
picture for device-level power management. Widespread diversity in device hardware,
software applications and usage covered in Section 2.1 guarantees that optimal DPM
levers and control will vary between use-cases. Scaling CPU frequency using DVFS can
significantly reduce CPU power consumption but is only one of a range of levers available

to reduce device power consumption.

DVEFES has been applied to CPUs, GPUs, memory, interconnect, IP cores and other
subsystems using the universal principle of slowdown when performance is not required.
Workloads change rapidly as do their performance requirements; in some scenarios it can
be challenging to update the DVFS operating point in synchronisation with these rapidly
changing workloads. To overcome this, a higher-level DPM lever has been developed
[140, 141] which sets minimum and maximum bounds for the DVFS operating point to

offer performance flexibility with a slower update-rate.
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Slowdown in performance using DVFS is a good match for some workload performance
patterns, however, many mobile workloads are interactive which means they often con-
tain periods of time with no work to be done [113]. In the extreme case parts of the
SoC may be powered down entirely which also reduces static power consumption [142].
In mobile devices this is normally restricted to IP cores and other intermittently used
hardware [102], this approach is commonly referred to as dark silicon. There are chal-
lenges including overheads in energy and time associated with fully powering down SoC
subsystems, so it doesn’t provide a one-size-fits-all approach to exploiting idle periods in
workloads [143]. Instead CPU cores are designed with a multitude of low-power states
that fall short of fully powered down the CPU. These include idle and sleep states which
progressively wind down operations of the CPU between fully operational and fully pow-
ered down. The lowest-power states represent a significant power saving over operational
modes which has led to a technique called "race-to-idle” or ”race-to-sleep” where it is
preferred to reduce reliance on DVFS and instead seek to execute a task quickly such
that a low-power state may be entered [144, 145]. The efficacy of "race-to-idle” tech-
niques depends on the cost in power and time to transition between these low-power

states.

The rise of heterogeneity in both asymmetric CPU design [146, 147, 148] and across other
subsystems of the SoC [117, 118, 149, 149] presents choices in where and when tasks may
be executed. Where a task is executed is referred to as mapping and it is not limited to
the boundaries of the SoC, other ICs or even offloading to the cloud may be selected for
execution [128, 150]. When a task is executed is referred to as scheduling, scheduling
initially existed as a method to share CPU time between competing applications on the
same CPU core to increase fairness. It has now evolved into a DPM technique that can

be used to optimise for energy and thermal targets [34, 151].

DVFS, idle states, mapping and scheduling are all commonly applied in general-purpose
computing systems, there are also DPM levers that are more specific to mobile devices.
Data movement between disk, memory and SoC is costly in both time and power [115],
if data movements are known ahead of time they can be executed in a more efficient
manner through prefetching. This can be internal to an application such as loading
a file into memory [164] or can involve pre-loading entire applications into memory if
their use is predicted in the near future [165, 166]. In the same way application use
can be predicted, the absence of use can also be predicted. Background applications
can still consume computation and memory of a mobile device, both throttling and
removal of background applications have been proposed as DPM levers [96, 131]. If the
performance requirements of foreground or background applications cannot be met due
to power constraints, then one option is to reduce the performance requirements which
can be softer than the power constraints. This can involve reducing the quality of media
such as images, video or audio or in the case of approximate calculations such as ML

acceleration go further to reduce the accuracy of computation [128, 167]. Linked to
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DPM lever

Dynamic Voltage
and Frequency
Scaling (DVFS)

Description

CPU (GPU, memory, and others)
frequency of operation reduced
allowing a reduction in Voltage.

Reference

[31, 35, 97, 140,
141, 152, 153, 154,
155, 156, 157, 158,
159, 160, 161, 162

Dark Silicon

Subsystems of the SoC, often
accelerators, are powered down to
reduce static power consumption.

[31, 142, 143]

Idle/sleep states

Low-power states are used in between
computation in a process named
"race-to-idle” or "race-to-sleep”.

[33, 144, 145]

Mapping and
scheduling

Tasks are mapped and scheduled
on asymmetric processors on-
device or offloaded to the cloud.

[34, 117, 118, 128,
146, 147, 148,
149, 150, 151, 163]

Prefetching

Data or applications are pre-loaded
from disk into memory using
prediction models of future usage.

[164, 165, 166]

Background applications have

reduce the demand for computation.

Back . .
ac .gro.und their computation throttled [96, 131]
applications
or are removed from memory.
Degradation of application
Application quality quality requirements is used to [128, 167]

Display Mobile device displays consume
brightness a high proportion of the power [95, 119, 120, 168]
and colours budget which could be reallocated.

TABLE 2.1: Taxonomy of Dynamic Power Management levers commonly used in mobile
devices to reduce power consumption.

application quality is display quality, the display has been identified in multiple studies
as consuming a significant proportion of the power budget. The most common DPM
lever applied is to reduce the brightness of the display [119, 120, 168]; however, it has

also been proposed to approximate the colours of pixels on the display to save power
[95].
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2.2.2 Control of levers

Use of a DPM lever is the end-product of a DPM control loop, in order to reach this
point, a decision must be made determining the correct setting for the lever. The process
carried out to achieve this typically takes the form of a policy that monitors one or more
metrics of the SoC or mobile device [33, 36]. In addition to the diverse array of DPM
levers discussed in Section 2.2.1, there are equally a diverse range of metrics and policies
for setting them that will be discussed in this Section. Levers, metrics and policies may
be combined in a custom fashion to meet DPM requirements for a particular device,

workload and user.

Setting of DVF'S levers is a natural fit with monitoring utilisation of resources in the
System-on-Chip as the metric. For example, the required CPU core frequency is corre-
lated to the utilisation percentage recorded for that CPU core at that instant [40, 51].
The same relationship extends beyond CPUs to GPUs, IP cores and other resources with
measurable utilisation [169]. In some cases, the overall utilisation of a resource is not
sufficiently granular to determine the exact performance requirement. When compute
resources are stalled waiting for the completion of accesses to memory this can manifest
as high utilisation when in fact little computation is required at that instant. More
granular information can be obtained from hardware performance counters including

counters for cache and memory accesses [170].

DPM does not always seek to reduce performance when it isn’t required, if power con-
straints are overwhelming then performance must be reduced regardless as is the case in
thermal throttling [35, 93]. Thermal throttling may monitor metrics for the device skin
temperature and the temperature of internal components [94, 97, 154, 155, 168, 171].
Information gleaned from these metrics may be used before the temperature exceeds
constraints to mitigate sudden losses in performance. Equally, for the battery lifetime
management the battery charge level may be monitored closely even before low-charge

levels are reached to mitigate the risk of running out of charge [98, 167].

Real-time measurement of metrics for both thermal and energy management is important
as device usage behaviour is so distinct between users [119, 121]. This usage behaviour
can also be observed directly by monitoring user inputs that is used by prediction models
to predict the probability of future usage. These probabilities can be as granular as
predicting the next touch input [172, 173] or at the other end of the spectrum high-level

decisions such as which applications will be opened next [166].

Execution time of applications is also monitored as a metric to inform future predictions
[174]. In situations where the execution time can be modelled accurately it can be used
as an oracle for DPM to track required performance [156], however, the complexity
of modern SoCs prove a challenge to this. This complexity also applies to predicting

user input and leads to the more accurate metric of detecting events as they occur
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2 Description Reference

control inputs

SoC Utilization percentages
are sampled from SoC
subsystems such as CPUs and GPUs.

[36, 38, 40, 51,

resource usage 165, 169, 170]

Device and SoC Device skin and |nterpal SdoC [04, 97, 154,
temperature tgmperatures are m.onlto.re .to 155, 168, 171]
avoid thermal constraint violations.

Battery lifetime estimates are
calculated to predict shortfalls [98, 167]
requiring additional power savings.

Battery charge and
lifetime estimate

Dynamic Power Management varies
Predicted user input between workloads which may be [119, 121, 166, 172, 173]
predicted along with user inputs.

Tasks can be scheduled as in
a real-time system if execution [156, 174, 175, 176]
times are known or are predicted.

Predicted
execution time

Interrupt-based detection is more
Detected events accurate than prediction models [177, 178]
but is not in advance of the event.

Performance metrics are
measured or queried including [140, 160, 179, 180]
execution time, throughput and latency.

Application
performance

TABLE 2.2: Taxonomy of Dynamic Power Management control inputs for use in deter-
mining runtime performance and power requirements for mobile devices.

[157, 177, 178, 181]. Unfortunately interrupt-based detection of events does not provide

the advance notice offered by predicting events before they occur.

Reverse-engineering application performance information through prediction or detec-
tion of events is a challenge for implementation. Alternatively, this information can be
sought directly from the application or Operating System (OS) through use of an Ap-
plication Programming Interface (API) [160]. Application execution-time, throughput,
latency and custom metrics may be collected through querying the API in real-time. In
practice for commercial mobile devices this has been implemented primarily for inter-
facing with the OS [140, 179] rather than in applications [160, 180]. The role of system

integrators in providing and using APIs for DPM can result in advantages for vertically
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integrated device manufacturers with control over hardware, system software and ap-
plications that can be used to improve user Quality of Experience over non-vertically

integrated device manufacturers.

Initial iterations of DPM control policies relied on a heuristic-driven approach [38, 39,
182, 183]. The policies were designed to set DPM levers based on pre-configured resource
utilisation thresholds and timers to track the performance required by tasks. Recent
evolutions of these control policies remain in use in many current mobile devices such
as the interactive governor [40] and Energy Aware Scheduling [51]. The interactive
governor extends the heuristic-driven approach to wake-up the CPU when user inputs
are triggered [157, 181, 184, 185]. This extension incorporates user satisfaction into the
decision-making process but doesn’t go as far as to monitor any user metrics directly
[95, 186]. The Energy Aware Scheduling policy enhances the accuracy of measurement
of resource utilisation and incorporates an energy-efficient mapping process to exploit

heterogeneity in asymmetric CPU cores [51].

DPM control techniques proposed in literature include mobile device domain-specific
and application specific enhancements. The graphics pipeline rendering frames at 60
Frames-Per-Second (FPS) in mobile devices is well documented, this can be exploited to
segment DPM control into a frame-by-frame decision process [140, 161]. Segmentation
is also possible by application [158], in particular for mobile devices, sustained and
non-sustained performance applications can be selectively throttled [187] to mitigate
performance losses under thermal throttling. Furthermore, workload phases from a
single application may be segmented [169, 188] to overcome the variety in workloads

exhibited within applications.

Heuristic-driven approaches have been substituted for formal control theory approaches
including Single Input Single Output (SISO), Multiple Inputs Multiple Outputs (MIMO)
and Structured Singular Value (SSV) control [189, 190, 191]. The co-operation between
heterogeneous processors within an SoC has led to techniques coordinating DPM be-
tween multiple subsystems from balancing CPU and GPU power allocations [97, 141]
to a leasing model for resources run by the OS [192]. An emerging theme is Hierarchi-
cal Control Systems (HCSs) which seek to maintain coordination across the SoC while
reducing latency for low-level DPM lever control [193, 194, 195].

Machine Learning (ML) control is also increasingly implemented for DPM control, in
particular model-free Reinforcement Learning (RL) algorithms such as Q-Learning are
most prevalent [52, 194, 196, 197, 198]. Model-free RL is a natural fit for DPM control
as it doesn’t require a model of the environment to be constructed, which would be
a challenge given the complex nature of a modern SoC. Training of RL DPM control

policies has been accelerated with imitation learning, where an oracle or heuristic-driven
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policy is mimicked by the RL policy to bootstrap the learning process [169, 199]. Recur-
rent Neural Networks (RNNs) have been demonstrated for use in both predicting future

workloads and making decisions based on the result [53, 200].

Commercial sensitivity has meant that some ML techniques used by device manufactur-
ers to optimise power management are not documented publicly. Among the publicised
ML power management techniques that have been implemented in modern mobile de-
vices is a DVFS controller that traces render calls between an application and GPU as
the input to a neural network and the output is a DVFS operating point for the GPU
[201]. The training of the neural network is specific to an individual SoC and application
so has not been widely applied due to this constraint. The use of individual training
per application allows over-fitting of the performance characteristics of that application
rather than attempting to cover the diverse range of mobile applications with a single
controller. Another publicised ML power management technique is at the system level
for managing battery usage of background applications in Android [202]. Suppression of
wake-up and background processing privileges is used to reduce the battery consumption
whilst ensuring these privileges are available to applications most likely to be used by
each individual user. A Convolutional Neural Network (CNN) is used to predict which

applications the user is most likely to use within the next few hours.

2.3 Performance evaluation

Performance evaluation in general-purpose computer systems is challenging, there are
widespread problems in producing repeatable and representative benchmarks [203]. Mo-
bile devices are no exception to this rule, the metrics they are evaluated against are
however, different to those of a general-purpose system [102]. From an application
perspective these are focused on the performance exposed to the user in foreground ap-
plications (Section 2.3.1). For power, a combination of measurement and models are
used to estimate energy and thermal results (Section 2.3.2). Tying the application and
power metrics together is a suitable framework for evaluating the performance of and

therefore tuning of DPM policies for mobile devices (Section 2.3.3).

2.3.1 Application performance measurement

Software applications executed on mobile devices are interactive, they are subject to
variation in external resource access-times and user inputs [113]. If the external resource
is access to networks such as the internet then access-times can vary geographically due
to Received Signal Strength Indicator (RSSI - signal strength) [204, 205] and temporally
due to network congestion at peak periods throughout the day [206]. The diversity in

user inputs and the importance of modelling this has previously been covered in Section
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FI1GURE 2.9: Latencies measured with a camera for a Ul application page load triggered
by user input - data from [211].

2.1. Application performance metrics are referred to as Quality of Service (QoS) metrics
and their mapping to user experience results in Quality of Experience (QoE) metrics

which will be detailed later in this section.

Interactive applications must be evaluated against different QoS metrics than throughput
which is the default in application performance measurement in general-purpose systems
[102]. The first of these performance metrics is latency [102, 147, 148, 185, 207], users
notice high latency but there is a floor at approximately 20ms below which users are
less affected [208]. High latency can also increase the time users take to perform a
task [209] which aside from reducing QoE metrics will mean that the task will likely
consume more energy. Latency can be aggravated by background tasks throttling the

performance available to foreground applications when executing concurrently [210].

Latency may be measured internally by applications or externally using video recording
either on the mobile device or using a camera. In Figure 2.9, a video camera was used to
detect changes on the display of a mobile device which indicated that a User Interface
(UI) application action was completed [211]. The time between the automated action
and the recorded timestamp of the completed action in the video was registered as the la-
tency of the action. The CPU frequency of the mobile device was varied from a minimum
of 0.3GHz to a maximum of 2.15GHz and the distribution of latencies measured. Below
0.88GHz there is a noticeable degradation in the tail (worst-case) latency observed, far
more pronounced than the degradation in median latency. This long-tailed distribution
is typical in latency measurements and requires that a distribution not average value is

measured [102].
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FI1GURE 2.10: Frame rendering times measured for the Google Now Launcher for the
duration of three swipe interactions - data from [140].

Webpage loading is a special case for latency measurement, on one hand it is often
triggered by the same type of user touch input to the device, on the other, the user
anticipates that it may take a period of time longer than 20ms to load [212, 213].
In one study the target load time is quoted at 2s [214], in another 3s [152]; there is
also complexity from varying network conditions to be considered [204, 206]. Webpage
loading also suffers from interference from concurrent execution of background tasks due

to contention on the memory subsystem [215].

A common misstep in evaluating frame-based applications in mobile devices is to measure
average frame rate [23, 97, 141, 147, 148, 154, 155, 176]. Users are in fact far more
susceptible to the stability of the frame rate and in particular, frames that miss their
deadlines which are referred to as frame rate janks [102, 140, 162, 177, 216]. Based on
the assumption a mobile device is executing at 60 FPS, the deadline for each frame to
be rendered is 16.67ms [102].

An example is provided in Figure 2.10 where the individual frame rendering times of
a UI application are recorded [140]. In this instance, each frame is inside the 16.67ms
deadline, however, it is observable in the three time periods where the user is inputting
a swipe action to the application, the slack before the deadline is reduced. If the average
frame rate was recorded, then this effect would not be visible. Frame rate janks like
latency are linked to a long-tailed distribution, in this case it is the distribution of
frame-rendering times. The 90", 95" or 99t percentile frame-rendering time is often

measured as proxy for frame rate janks [102].

Latencies and frame rate janks are the key application performance and therefore QoS

metrics for interactive mobile applications. Users are not exposed to the raw QoS metrics
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F1cURE 2.11: User satisfaction ratings for two mobile applications as number of CPU
cores, CPU frequency and GPU frequency are varied - data from [31].

on their devices so if these metrics are below a floor as with 20ms in the case of latencies
[208], their satisfaction is not affected. Equally if a Quality of Service metric is woefully
bad then small changes in this metric are unlikely to better or worsen user’s satisfaction.
The mapping from QoS to user Quality of Experience (QoE) reflects these phenomena
217, 218].

Optimisation of system focused on a QoE metric will both improve user experience
but also create opportunities to exploit the non-linearity in the QoS to QoE mapping
[218]. QoE metrics can either be measured directly using user surveys which query their
satisfaction when using a mobile device [31, 219] or estimated based on character traits or
other information recorded about the user [95]. It has been proposed that some users are
more tolerant of poor QoS metrics than others linked to their personality [95]. Results
from a user QoE survey for mobile application performance is presented in Figure 2.11.
Users were asked for a satisfaction rating on a scale from very dissatisfactory to very
satisfactory when presented with mobile applications with different performance settings
and therefore QoS metrics [31]. The study showed that for incumbent mobile devices
user QoE varies more with CPU rather than GPU performance. Both the number of
CPU cores enabled and the CPU frequency affected user satisfaction and therefore QoE.

2.3.2 Power measurement and modelling

Irrespective if the optimisation target is energy, temperature or both as described in
Section 2.1.3, in a mobile device this target will be linked to power consumption. Power
can either be measured or be estimated using a model, in this section the various methods

of achieving this are detailed along with their characteristics.
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FIGURE 2.12: Seven performance counters selected for an A15 power model, along
with the Pearson’s correlation coefficient with power consumption - data from [221].

There are two types of measurement used to determine energy consumption of a mobile
device. The first of these, sensors on the power rails used by the SoC, is most common on
development boards and can be used to breakdown the SoC power consumption as far as
the SoC subsystems are segmented onto separate power rails [23, 95, 96, 97, 98, 190, 191].
For the purposes of convenience, the power sensors typically interface with the SoC
directly to share the data collected. Unfortunately, this can limit the sampling rate
possible without adding overhead, this is a problem for evaluating energy for interactive

applications which ramp up and down rapidly.

Energy can also be measured at the device-level, this is representative of the energy
that would be drained from the battery during usage. This measurement incorporates
energy consumption from components such as the display that are not included in SoC
power rail measurements [23, 95, 96, 97, 98, 190, 191]. Device-level energy measurements
are most commonly used for real mobile devices; however, the construction of modern

smartphones has made this process more challenging.

In some situations, SoC power sensors and device-level measurements are not available
or are insufficiently granular. Alternatively, an energy model can be developed using
the most representative real-world data available, this can also be during simulation
before device development [46]. Previously, such energy models have been derided as
insufficiently accurate outside of controlled conditions [220], whilst this hasn’t been
refuted, newer models have demonstrated accuracy to within 3% [221]. A model has
also been developed to separate dynamic and static power consumption under varying

ambient temperature [222].

CPU energy consumption can be modelled using a variety of techniques including CPU
performance counters [221], tracing of CPU frequency and idle states [223], tracing
of system calls [224] and application traces [213]. Performance counters selected for

an A15 CPU power model are shown in Figure 2.12 along with their correlation with
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Component Variable(s)
big CPU cluster CPU frequency and activity
LITTLE CPU cluster CPU frequency and activity
GPU GPU frequency and activity
Video decoder IP Codec resolution (4K, 1080p, ...)
Wi-Fi chipset Throughput - upload and download
Battery charging Normal charging or quick charging
Camera Recording resolution (UHD, HD, ...)
OLED display Brightness

TABLE 2.3: Device thermal model components and their respective variables for the
Galaxy S8 smartphone - data from [232].

power consumption measurement. Selection was optimised by reducing multicollinear-
ity between performance counters as the counters with highest correlation are not nec-
essarily independent [221]. Furthermore, high correlation doesn’t necessarily guaran-
tee an accurate and stable model under workload and device temperature variation.
Device-level energy consumption requires individual models for each of the compo-
nents in a mobile device which may be summed to achieve overall energy consumption
[119, 132, 223, 225, 226, 227].

Thermal measurements for mobile devices may also be conducted using two techniques,
the first of these being temperature sensors such as thermistors. Temperature sensors
are installed internally on Printed Circuit Boards (PCBs) and by components through-
out mobile devices [124, 153, 171, 228, 229, 230]. Commonly these internal sensors are
used to estimate external skin temperature, however, a study has also used an external
temperature sensor for this purpose [230]. The second technique, effective for measuring
external skin temperature only, is to use an Infrared Radiation (IR) camera to record
thermal radiation emitted by the skin of the mobile device [18, 93, 133, 229, 231]. Ther-
mal measurement by external camera may only be used in static configuration of DPM,

a model based on internal sensors may be used for dynamic configuration.

Internal temperature sensors are more effective than internal energy sensors as changes
in temperature happen far slower than for energy, the only benefits in models for these
sensors are for further granularity such as a SoC temperature breakdown [231] or to

predict future temperatures [153]. The logistics of recording IR video of a mobile device
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for sustained periods of time has meant that device skin temperature models are more
prevalent for use outside of laboratories [93, 230, 232]. The list of components and
their variables used in a device skin temperature model for a modern mobile device is
showcased in Table 2.3. These models are subject to effects caused by material properties
specific to each mobile device [229, 233, 234] and environmental effects such as ambient

temperature and how a mobile device is held in the hand [93, 171].

2.3.3 Tuning Dynamic Power Management

The tuning process for DPM policies reflects the confluence of all the preceding sections.
Consideration must be made for the hardware and software classifications of mobile
devices detailed in Section 2.1 along with the challenges they present. The nature of
DPM policies and the levers they exploit described in Section 2.2 is important to under-
stand the parameters that will be exposed for tuning them. Finally, the performance and
power metrics presented earlier in Section 2.3 are inherent to comparing the performance

between two policies.

There is limited previous literature with a direct focus on tuning DPM policies, partic-
ularly with regards to mobile devices, however, far more research has been conducted
into tuning computer systems and software in general that is applicable. DPM policies
are tuned in a similar fashion to many other control systems, they expose parameters

such as thresholds, timers and feature flags [47, 48].

System software applications also expose a large quantity of these parameters to be con-
figured by system administrators. One perspective of the presence of these parameters
is that this is a negative feature [108]. A study found that over 50% of parameters for
system software can be configured by less than 1% of the users in a commercial setting,
for the same software less than 10% of parameters were configured by more than 50%
of the users, see Figure 2.13. The study used this evidence to claim that it was unwise
to assume that users would be willing to set these parameters themselves and to reduce
the number. In this thesis another perspective is presented that embraces parameters

of mobile DPM policies and the opportunities they provide.

A timeline of processes throughout the design roadmap during which DPM policies can
be tuned was presented in Chapter 1, Figure 1.1. These included Design Space Ex-
ploration (DSE), static and dynamic configuration, the key distinction separating these
processes is the availability of accurate characterisation data for both SoC performance
and the workload being executed. The further along the design roadmap the process
sits, the less reliance on models which are replaced with measured data. In the DSE pro-
cess, both performance and workload data are models, the static configuration process
can make use of SoC performance measurements and the dynamic configuration process

adds workload data measured instantaneously.
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FIGURE 2.13: Software configurations analysed for parameters set by users for three
system software applications - data from [108].

Tuning of mobile DPM during the DSE process is not strictly limited to parameter
configuration, as elements of the wider SoC design including DPM may not be fixed.
Synthesis of Register Transfer Level circuits during the SoC design roadmap has been
tuned both for synthesis parameters [235, 236, 237, 238] and parameters exposed by IP
cores [56, 85, 239]. These processes can be fully automated [235, 240] or make use of
input from a human expert [241]. However, specific to DPM, the DSE process provides
the opportunity for mathematical optimisation of potential DPM policies and the levers
than underpin them [49, 50].

Static configuration of DPM policy parameters benefits from the most evidence of prior
use out of the three processes. The introduction of SoC performance data characterised
from real hardware allows trade-offs between performance and power to be fixed for
the first time. There are industry tuning guides for DPM policy parameters during the
static configuration process, they rely on guidance from the developers and expert deci-
sion making from humans [47, 48]. The remaining evidence comes from system software
configuration, where systematic static configuration of software parameters has been
applied successfully [105, 242, 243, 244]. In a study comparing systematic tuning to
expert manual tuning by humans, a commercial webserver application was tuned. The
results from the same study presented in Figure 1.9 were impressive in their magnitude,
throughput improvements of over 300%, but that was compared to the default config-
uration. In Figure 2.14 the systematic tuning showed improvements over the manual
tuned configuration in all five metrics, when the manual tuning was considered to be an
optimal configuration. Systematic tuning of parameters is superior on all five metrics
with the most important, throughput, showcasing a 4.1% improvement. There have
been several techniques demonstrated for optimising the static configuration of software
parameters. These techniques include selecting the right parameters [106, 109, 245],
searching the parameter space, [105], modelling the parameter space [243, 244, 246, 247]
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FIGURE 2.14: Tomcat webserver application optimised using systematic tuning of
parameters compared with expert manual tuning - data from [105].

and predicting interactions between parameters [248]. Static configuration has also been
applied to approximate computing applications where quality degradation is permissible
[249, 250].

There remains sufficient low-hanging fruit in static configuration of computer system
parameters such that dynamic configuration is rarely applied. The best examples are
in distributed systems where nodes may be added or removed at runtime invalidating
previous characterisation results used for static configuration [251, 252, 253]. The same
logic could be applied to new applications entering and leaving the work-queue of a

mobile device; but this has yet to be studied.

Regardless of which tuning process is used and whether simulation or real hardware is
used, representative workloads must be executed. In computer architecture research it is
widespread to use off-the-shelf benchmarks such as SPEC and PARSEC [100, 101, 103].
For mobile device research the results from these benchmarks are misleading [42, 102],
showcasing minimal characteristics in common with results using real mobile applications
[31, 35, 96, 97, 140, 141, 154, 155, 162, 187, 211, 254] To increase the quantity of data
available, either automation may be used [31, 99, 211] or synthetic traces may be derived

from representative data [255, 256].

In a similar vein to workload selection, hardware choices are equally important to achieve
representative data [102]. An ideal situation permits large user studies to be conducted
with real mobile phones [119, 121, 131, 132], logistically this can be both time consum-
ing and expensive to organise but the takeaways can be significant and have laid the
groundwork for much of this literature review chapter. Experimentation at scale has

also been achieved through outsourcing surveys of recordings from real mobile devices
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FIGURE 2.15: Mobile device System-on-Chips aren’t necessarily identical, this study
demonstrated performance and energy variation due to silicon binning linked to process
variation of up to 19% - data from [228]

to internet workers [31, 219]. In industry some companies have invested in mobile device
laboratories hosting thousands of devices to run experiments on [110, 111, 112]. Cur-
rently these mobile device labs are focused on compatibility and regression testing but

could feasibly be extended to tuning experiments.

Experimental research into mobile devices is approximately divided between two types of
platform, development boards and real mobile devices. Development boards can provide
functionality such as power sensors that means they are easier to use for experiments
[23, 95, 96, 97, 98, 190, 191], however, they do not display characteristics that are visible
for studies that are run on real mobile devices [35, 140, 147, 154, 155, 160, 168, 200, 211].
The obvious omission is that device skin temperature throttling does not exist when
using development boards even if the same SoC is used [35, 93]. There are others
such as environmental conditions including ambient temperature on power consumption
[44, 45, 222]. The most obscure effect observed by comparing real mobile devices is the
silicon binning affecting mobile SoCs, in Figure 2.15, process variation is shown to lead
to a performance and energy variation of up to 19% [228, 257]. Between three and five
of each device were compared which implies the maximum bound may be higher if SoCs

from only a fraction of the total number of bins were tested.

2.4 Discussion

This chapter has presented an overview of mobile devices from a hardware and software
perspective and highlighted the energy and thermal challenges presented by the mobile

device form-factor. The wide array of DPM policies and levers that underpin them
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was introduced, these are used to tackle the power challenges faced. Also detailed is
how interactive workloads executed on mobile devices are evaluated in performance and
power in a different manner to general-purpose computing systems. The combination
of all the preceding knowledge is an opportunity to tune DPM for mobile devices in a
systematic fashion. System-software applications have been successfully tuned using the
parameters they expose and mobile device DPM policies already expose similar timers,
thresholds and feature flags yet they have been tuned manually up to this point in time.
In this thesis, this opportunity is explored, and new techniques are developed to enable
its use for tackling the existential problem of Tuning Dynamic Power Management for
Mobile Devices.






Chapter 3

Interactive and Dynamic
Workloads: The Case for Tuning
DPM

Previous research and overall market trends in Chapter 2 pointed towards an opportunity
in tuning mobile device Dynamic Power Management (DPM) policies. It was revealed
in Section 2.3.3 that there is limited prior research focussed on this area despite a
swathe of related work. This chapter provides empirical evidence supporting the case for
tuning DPM policy parameters, when executing interactive and dynamic workloads on
mobile System-on-Chips. In Section 3.1, a framework is presented for static and dynamic
configuration of DPM policy parameters under user inputs and resource access-time
variability (Section 3.1.1) and a weighted function to trade-off user Quality of Experience
(QoE) and energy consumption is used to implement this for efficient execution of a web-
browser application (Section 3.1.2). In Section 3.2, synthetic benchmarks are developed
to simulate dynamic unseen workloads (Section 3.2.1) and an architecture for dynamic
configuration of DPM policy parameters is proposed with no requirement for offline
profiling (Section 3.2.2).

3.1 Efficient execution of an interactive web-browser ap-

plication

Software applications executed on mobile devices showcase different characteristics than
those executed on general-purpose computer systems (Section 2.1.2) and are evaluated
using different metrics (Section 2.3.1). An experiment into efficient execution of web

browser workloads is conducted in this section inducing variability in user input and
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F1cURE 3.1: Experimental setup for evaluation of user input and resource access-time
variability on Dynamic Power Management policy parameter configuration.

resource-access times native to mobile applications (Section 3.1.1). The resulting frame-
work for static and dynamic configuration of mobile DPM policy parameters under
these constraints is evaluated against user QoE and energy consumption resulting in a

Pareto-optimal curve of operating points (Section 3.1.2).

3.1.1 User input and resource access-time variability

Interactive workloads are dependent on interaction between different subsystems of the
System-on-Chip (SoC), peripherals, external resources and the user such as touch input
during web-browsing. Inevitably, a subset of interactive workloads is affected by delays
caused by data unavailability, e.g. loss or delay of data packets during voice-over-IP. At
the same time, the system is required to respond quickly upon data retrieval to ensure
that the user QoE metrics (frame rate, latency, etc.) are not degraded. To simulate this
environment an experimental setup was created using the ODROID-XU3 development
board running the Android 6.0 Marshmallow Operating System shown in Figure 3.1.
The Google Chrome web-browser was used along with Chrome DevTools used to emulate
user input and throttle network resources, power sensors on the development board were

used to record energy consumption.

The Chrome DevTools WebSocket protocol enables repeatable user input to be emulated,
such as touch gestures to the screen display. User actions available include loading web-

pages, scrolling through webpages and zooming in on webpages. Additionally, resource
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Lower Upper

Parameter Category bound bound Default
timer_rate DVFS 1,000 100,000 20,000
target_loads DVFS 60 99 99
scaling_max_freq DVFS 800,000 2,000,000 2,000,000
min_sample_time DVFS 5,000 500,000 80,000

TABLE 3.1: Parameters selected from the interactive Dynamic Voltage and Frequency
Scaling governor to be configured.

access-time variation for mobile network conditions is induced using the network em-
ulation which artificially throttles content loading time by adding to the Round-Trip
Time (RTT) latency and limiting upload and download bandwidths. Events collected in
the web-browser trace log are post processed to extract rendering frame rate and con-
tent loading times for various web-pages requests in order to measure the QoS for each
individual emulated user input. At the same time, through a device driver Android pro-
vides direct access to the on-board Exynos-5422 power sensors for energy consumption

measurements.

The default Dynamic Voltage and Frequency Scaling (DVFS) governor for Android
6.0 Marshmallow is the interactive governor, which was selected as the target DPM
policy to be tuned for the experiment. The parameters of the interactive governor
selected for tuning are listed in Table 3.1. The default values are listed along with
the minimum and maximum bounds selected for this experiment to reduce the state
space. scaling_maz_freq is an enumeration, target_loads is a threshold, and timer_rate
and min_sample are timers. timer_rate is a timer which controls the time period for
the governor to make decisions based on the CPU utilisation with a default value of
20,000 microseconds. target_loads is the target utilisation threshold for the CPU, higher
values will result in a more congested CPU schedule and slower performance, the default
value is 99% to reduce power consumption. scaling_mazx_freq sets the maximum CPU
frequency the governor can select, in effect capping the CPU frequency, the default value
is 2.0 GHz. min_sample_time is the minimum timer period at which the governor must
spend at the current frequency before making a decision based on sampling utilisation,

the default value is 80,000 microseconds.

The proposed approach incorporates both static and dynamic configuration of DPM
policy parameters to compare their efficacy for managing user input and resource access-
time variability. There is an offline profiling stage which uses static configuration of

policy parameters to gather data about the workloads inelasticity with performance
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FI1GURE 3.2: Proposed relationship between static configuration and dynamic configu-
ration of Dynamic Power Management policy parameters.

under varying user input and resource access-times. The results of this inelasticity
analysis are exploited at runtime, either through static configuration again or dynamic
configuration. In the case of static configuration, the best parameter configuration on
average is selected before execution and used for the duration. For dynamic configuration
a sliding scale of runtime variables can be monitored and used to inform parameter
configuration. This runtime data can include user input data predicted using a model,
user input data detected using interrupts and resource access-time variations such as
network conditions as shown in Figure 3.2. As shown in the Figure, offline profiling
using static configuration of parameters provides data pertaining to workload inelasticity
under varying user input and resource access-times. This data is used to inform dynamic
configuration of Dynamic Power Management policy parameters as user inputs and

resource access-times are monitored at runtime.

3.1.2 Quality of Experience and energy trade-offs

In order to determine a score for the DPM parameter configurations evaluated in the
inelasticity analysis process, the Quality of Service (QoS) metrics between the different
input actions must be normalised to derive a comparable QoE. To demonstrate that the
proposed approach is applicable to different interpretations of quantitative derivation
of QoE, two methods of normalisation are used simultaneously; namely, an exponential
decay as proposed by [217] and a linear function for the purposes of a control. A graphical

representation of these functions is shown in Figure 3.3 where QoS metrics of web-page
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FIGURE 3.3: Exponential [217] and linear models to derive normalised user Quality of

Experience for three user actions in a web browser application; web-page load, scroll

and zoom. The exponential model uses a concept of a floor in user satisfaction [208],
the linear model is a control to investigate the effects of this approach.

load-time and time spent below 60 frames-per-second are translated to normalized QoE

values.

An inelasticity analysis was conducted using the aforementioned user inputs of webpage
load, scroll and zoom along with variation over three network conditions of 3G, 4G and
WiFi. For webpage load, the network throttling used to emulate each of the network
conditions implemented the default parameters suggested by Google Chrome DevTools.
3G, 4G and WiFi connections were emulated by varying the upload bandwidth, download
bandwidth and Round-Trip Time. On-device caching was disabled also using Google
Chrome DevTools to force reloading of network resources, there is also the potential for
caching by Internet Service Providers in the network, this is typically used by Content

Delivery Networks for image and video content and cannot be disabled.

In total 50 different DPM parameter configurations for the four parameters in Table 3.1
to be used for the inelasticity analysis. These included the default parameter configu-
ration and 49 randomly generated alternatives. Random parameter search was imple-
mented rather than an alternative method such as block search due to sample efficiency
required for the sample size of 50, in Chapter 5 a more advanced search techniques is
implemented. The random generation was implemented by uniformly selecting across

the available range of each parameter and mixing these uniform selections. Each DPM
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FIGURE 3.4: Results from the offline profiling across 50 configurations of Dynamic
Power Management policy parameters. User Quality of Experience and energy con-
sumption are compared for three web-browser actions.

tuning configuration was profiled offline for all the user inputs and network conditions
over 50 repeats and averaged to obtain mean values for QoS and energy. The QoE
normalisation functions were then applied, together with an energy normalisation with
respect to the highest energy recorded. The resulting trade-offs between QoE and energy

are shown in Figure 3.4.

Variation in QoE and energy metrics are observable for all DPM parameter configura-
tions for all user inputs. It should be noted, however, that one parameter configuration
is a distant outlier and hasn’t been plotted, this is because a highly inefficient tuning for
energy conservation was randomly generated. The user inputs which trigger interactive
workloads lasting longer timer periods, such as webpage loading and scrolling, show
larger variation than the shorter zoom user input. This result is not surprising as there

is a fixed overhead for waking up and then sleeping a CPU core.

The effect of resource access-time variability on the QoE of the load input is evident,
when the network is relatively unthrottled in the WiFi scenario, CPU performance is
clearly driving a variation in QoE. However, when the network is throttled in the 3G
case, extra CPU energy is consumed by some parameter configurations for no change
in QoE, this energy is consumed by the CPU due to higher than required performance

being provided when the resources required are the critical path. The 4G case is a
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combination of the two, there still exists a trade-off between QoE and energy but there

is a steeper gradient than the WiFi case.

Once the inelasticity analysis is complete, these profiles may be exploited at runtime.
For this process, the DPM parameter selection will establish a current probability P(A)
for the next input being each of the possible choices Ag ; and estimate the access times
for each resource Ry .. Given a pool of n DPM parameter configurations Cy_,,, each
configuration will be given a score for QoE and energy using equations 3.1 and 3.2
respectively. In these equations, Ag,g refers to the QoE resulting from an action given
the resource access-times Ry ,, and parameter configuration C. Acpergy refers to the

energy consumption resulting from an action given the same conditions.

k
VC : Cgor = Y P(A)(1 — Agor(Ro.m, C)) (3.1)
=0
k
vC - Cenergy = Z P(Ai)Aenergy<R0..ma C) (32)
=0

QoFE and energy must be weighted at the system level to determine a trade-off denoted by
WQoE and Wenergy- A composite score of QoE and energy is then calculated for each DPM
tuning configuration using equation 3.3. Finally, the minimum score is determined to
determine the parameter configuration that will be chosen for the next user input using

equation 3.4.

VC : Cscore = onECQoE + wenergycenergy (33)

Cehoice = min(cscore) (34)

The inelasticity analysis results highlight ample opportunities to capture energy savings
or QoE improvements for all the user inputs profiled. To validate how the proposed
approach would exploit these opportunities online, we use a Monte Carlo simulation
to generate random interactive workloads and network resource access time conditions.
The simulation evaluates the optimisation equation 3.3 for six variants of the proposed
approach including static configuration and five dynamic configuration variants. The
results are compared considering mean QoE and energy consumption to the default

DPM parameter configuration.

The simulation was executed for 100,000 iterations to observe convergence and repeated

for both linear and exponential methods of calculating the normalized QoE result. The
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weightings for QoE and energy, wgor and Wenergy, were swept from {0, 1} to {1, 0} to

expose the full trade-off curve between QoE and energy dependent on system goals.

The mean QoE and energy consumption values for the variants of the proposed ap-
proach under the generated interactive workloads are shown in Figure 3.5. Quality of
Experience and energy consumption are compared for QoE (wgor = 1, Wenergy = 0),
Energy (wgor = 0, Wenergy = 1) and QoE & energy (wgor = 0.5, Wenergy = 0.5). The
largest improvements are demonstrated when both QoE & energy are considered during
optimisation. The "QoE” results represent when wg,r = 1, such that there is a full
weighting towards QoE improvement. The ”Energy” results represent when wepergy = 1,
such that there is a full weighting towards energy improvement. The "QoE & Energy”
results represent when wg,r = 0.5 and Wepergy = 0.5 or an equal weighting between

QoE and energy.

The Default approach is the default configuration for the DPM parameters. The Static
approach considers usage of the inelasticity profiles with equal probability of each user
input and network condition occurring. The Dynamic-Network approach adds accurate
detection of current network resource access time. The Dynamic-Predict and Dynamic-
Detect approaches emulate accurate user input prediction and detection respectively.
The Dynamic-Predict+Network and Dynamic-Detect+Network combine accurate detec-
tion of current network resource access time with user input prediction and detection

respectively.

Under most operating conditions, a suitable trade-off between energy and QokE is more
desirable than fully weighting one or the other as shown in Figure 3.5. Instead there is
a full range of Pareto-optimal points which are shown in Figure 3.6 for both methods of
normalisation of the QoE metric. There is minimal qualitative difference between the two
methods of QoE normalisation, this is because the QoS floor used in the exponential
derivation doesn’t overlap substantially with the data points so has minimal effect.
Selection of the parameters used in the QoS floor is individual to the each user’s tolerance
of performance and each application, setting these parameters should be done through

user studies [31].

All variants of the proposed approach demonstrate energy savings and QoE improve-
ments, when compared to the default DPM parameter configuration. The resource
access-time detection used by the Dynamic-Network variant achieves marginal improve-
ment over the Static variant that models current network conditions with equal prob-
ability. Prediction of user input is shown to be more effective by the Dynamic-Predict
and Dynamic-Predict+Network variants. However, detection of user input is the clear
optimal choice as shown by the Dynamic-Detect and Dynamic-Detect+Network variants
which achieved QoE improvements of 27% or energy savings of 13%, in comparison to
the default DPM parameter configuration. In this experiment, the overhead cost of pre-

diction and detection at runtime could not be measured as it is based on a Monte Carlo
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FI1GURE 3.5: A comparison between static Dynamic Power Management policy parame-
ter configuration, various dynamic configuration approaches, and the default parameter
configuration.

simulation, the overhead in time and energy associated with these will reduce the gains
possible by dynamic configuration over static configuration. In the experiments in the

next section, the overheads of running a dynamic configuration approach are measured.
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FIGURE 3.6: A comparison between the Pareto-optimal curves for the proposed ap-
proach using both exponentially and linearly derived Quality of Experience metrics.

3.2 Dynamic configuration for unseen dynamic workloads

There are two primary flaws in the approach described in Section 3.1 that may hinder its
deployment in some scenarios. Firstly, it requires knowledge of the application, user in-
puts and relevant resource-access times ahead of execution for the offline profiling stage.
Second, even if the offline profiling stage is logistically possible, it is extremely time
consuming and the state-space explosion of adding further DPM policies and parame-
ters would only increase this. In this section, an alternative architecture is proposed for
dynamic configuration of DPM policy parameters for unseen workloads without profil-
ing. Synthetic benchmarks are used along with the Linux Operating System rather than
Android so the relative energy and performance improvements should be interpreted

with scepticism as discussed in Sections 2.3.3 and 1.3.1. The synthetic benchmarks are
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used to obtain nominal performance results from a statically configured governor (Sec-
tion 3.2.1. These results are then compared with the proposed dynamic configuration
architecture and other DVFS governors (3.2.2).

3.2.1 Management of unseen dynamic workloads

The hardware platform used in the previous experiment, the ODROID-XU3 development
board, was also re-purposed for this experiment. Instead of Android, a more conventional
computer architecture research scenario was used, the Linux Operating System, whilst
there is the negative of less representative results, the additional control over the system
widens the possible scope of experimental results. The SoC on the ODROID-XU3 board
is the Samsung Exynos-5422 which uses an ARM big.LITTLE architecture with 4 A15
and 4 A7 cores. For this experiment the applications were tied to the A15 cores using
thread affinities as mapping policies for older big. LITTLE systems are less effective than

recent editions such as Energy Aware Scheduling [51].

MP4 video-decoding applications were chosen to create the synthetic benchmarks due
to their flexibility in computational demands due to variable frame rates and video
codecs. In Figure 3.7 there are execution manifests for the five synthetic benchmarks
used. The applications are started at fixed times during manifest providing Step, Ramp
and Dynamic workload patterns. For the Step workload the four MP4 video-decoding
applications are initiated at the same instance in time in a step response from minimal
computation activity to near maximum. For DPM policies reliant on polling architec-
tures such as the default DVFS governor in Linux this can be problematic as a response
will not occur until the next polling interval. The Ramp workload represents a slower
ramp up and down in computation and the Dynamic-1, Dynamic-2 and Dynamic-3 are

procedurally generated pseudorandom sequences representing less predictable workloads.

For the purpose of establishing the computational intensity of each dynamic workload
benchmark the clock frequency of each A15 CPU core on the ODROID-XU3 was man-
ually pinned to the maximum 2.0GHz using the performance DVFS governor. Figure
3.8 shows the CPU utilisation measured whilst executing the five synthetic benchmarks
from Figure 3.7. The Step workload utilisation shows an initial spike in computational
demand the core utilisation then reverts to near 50% with small temporal variation that
may be caused by conflicting activity between cores or difference in time to decode in-
dividual frames. The Ramp workload exhibits more gradual increases in computation
with corresponding smaller spikes in core utilisation and the Dynamic workloads do not

follow set patterns.

Static configuration of the Linux governors has been demonstrated to offer favourable
power and throughput trade-offs for known workloads [47]. This tuning process is often

ignored for general-purpose computing as the workloads are not known and as offline
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FIGURE 3.7: Execution manifests for five synthetic benchmarks consisting of four con-
current MP4 video-decoding applications.

profiling violates the objective of the system. This experiment aims to offer a unifica-
tion of runtime application throughput awareness with an existing DVFS governor to
dynamically configure the governor. To understand the potential throughput and power
trade-offs this could unlock for the five workloads in this experiment, the conservative
governor was profiled offline for different up- and down-utilisation threshold parameters
with these five workloads and the results plotted in Figure 3.9. Two parameters of the
governor were varied, the up- and down-utilization thresholds, to obtain a number of
operating points trading-off performance and power. The results are normalised to the
performance governor so that the five workloads may be plotted on the same scale. The
first number in the legend is the up-utilisation threshold which refers to the CPU util-
isation at which the CPU frequency will be increased, the second number is the down

utilisation threshold with the opposite result.
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Ficure 3.8: CPU utilisation traces for the five synthetic benchmarks recorded us-
ing the four ARM A15 cores that form the big CPU cluster on the ODROID-XU3
development board.

The default tuning of the conservative governor in the distribution of Ubuntu 14.04
used for experimental purposes has up and down utilisation thresholds set at 80/20, the
results show that this naive tuning offers poor power savings compared to more opti-
mal thresholds which offer increased power savings for little degradation in application
throughput. These results replicate the findings of a previous study based on offline

profiling that used benchmark suite applications [47].
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Ficure 3.10: Simplified block diagram representing the architecture of the dynami-
cally configured Dynamic Power Management policy.

3.2.2 Architecture for dynamic configuration

Applications report throughput violations to the tuning controller, consecutive violations

are required before an escalation to reduce communication overhead.

The structure of the dynamic configuration architecture is shown in Figure 3.10. The
control flow is started with the tuning controller reducing the performance margin of the
system until one of the executing applications cannot meet throughput requirements. If
sufficient throughput violations are raised an escalation is sent to the tuning controller to
reduce the threshold parameters to increase performance until the escalated application
sends a de-escalation interrupt. After de-escalation, the process resets and the tuning

controller continues to squeeze the performance margin.
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Conversion of a failure to meet application throughput requirements into an escalation
is handled by a filter to reduce communication overhead. If an application fails to meet
its throughput requirements for 75% of the preceding frames, an escalation is made. De-

escalations occur when all the preceding frame history has met throughput requirements.

The tuning controller operates on the same 100,000us sampling period as the conser-
vative governor it is tuning. If the throughput controller is demanding an increase in
performance, the thresholds are reduced by 5% every sampling period, whereas if the
throughput controller is not demanding an increase, the thresholds are increased by 1%
every sampling period. The 1% threshold increase every period in this approach allows
the tuning controller to reduce the performance margin of the system until throughput
violations occur, the magnitude and frequency of this increase also becomes a tunable

parameter.

If the threshold reduction of 5% is used, it can be determined that if there is a change in
the dynamic workload, the system may move from minimum performance to maximum
performance in the same worst case 2 second period achieved by Linux. The implemen-
tation of the independent governor process acting concurrently to the tuning controller
ensures this as performance is ramped up regardless of the thresholds until the system
reaches a lower utilisation, at which point the thresholds are already very low such that

the conservative governor will continue ramping up performance.

A visualisation of the auto-tuning of the governor is presented in Fig. 3.11, the first
plot is the reference workload utilisation using the performance governor at 2.0GHz
CPU frequency, the second and third plots show the frequency being changed over
time in the conservative governor as the utilisation changes. The fourth plot show the
governor thresholds that are being tuned by the tuning controller, a saw-tooth pattern
is formed as the performance margin is squeezed. Importantly, performance escalation
happens at a faster rate to allow interactivity, but because the system is such low
overhead, the application and throughput controller can interrupt sufficiently promptly
when escalation is complete, that the governor threshold does not drop to zero and
forego all power savings. If performance squeezing also happened at a similar rate as
escalation the system would oscillate and be less effective, it is key that the escalation

gain should be higher than the de-escalation gain.

Comparison was made between the proposed dynamic configuration architecture and
other approaches over the five synthetic benchmarks, results are normalised to the per-
formance governor. The results in Figure 3.12 show that the dynamic configuration and
two static configurations obtained from the offline profiling all are more energy sufficient
than the default governors {ondemand, interactive, conservative} at the expense of a
small degree of performance. Most importantly the dynamic configuration approach is
competitive with the static configurations that used offline profiling demonstrating that

it is possible to do so in scenarios where offline profiling is not feasible.
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FI1GURE 3.11: Visualisation of an execution trace for the Dynamic-1 benchmark using
the proposed dynamically configured governor.
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3.2.3 Summary

DPM policy parameters are configured manually on a regular basis in computer systems
including mobile devices, yet until now there has been limited prior research in effective
ways to choose parameter values. This chapter has detailed empirical evidence from
experimentation using mobile System-on-Chips that static and dynamic configuration
of DPM policy parameters offers improvements in performance, energy or a combination
of the two. Variability in user inputs and resource access-times has also been exploited
to profile interactive workloads inelasticity with CPU performance. There remain chal-
lenges including the requirement for data from real mobile devices scaling offline profiling
to multiple DPM policies with additional parameters, both of which will be addressed

in the remaining chapters of this thesis.






Chapter 4

Mitigating Performance
Degradation from Thermal
Throttling

Mobile devices are limited in mass and volume reducing the viability of active device
cooling implementations, this requires the use of less effective passive techniques to
maintain device skin temperature levels (Section 2.1.1). Application performance de-
mands on a modern mobile device are driven by sustained performance workloads, such
as mobile gaming, Virtual and Augmented Reality (Section 2.1.2). Mobile System-on-
Chips have corresponding increases in performance through both architectural changes
and frequency of operation increases; which has resulted in the peak power consump-
tion exceeding the sustainable thermal envelope defined by device skin temperature
requirements (Section 2.1.3). In this chapter, existing thermal throttling techniques
are characterised to show that they mitigate this challenge by capping the frequency of
operation of the System-on-Chip (Section 4.1). A mobile device thermal management
policy using Frequency Capping is demonstrated by executing a 3D video game on a
smartphone (Section 4.1.1) and the effects of Frequency Capping on frame rate janks
in interactive workloads is evaluated (Section 4.1.2). A new DPM lever is proposed to
swap out with Frequency Capping in existing thermal throttling systems to mitigate
some of the interactive performance degradation (Section 4.2). This lever, Task Util-
isation Scaling (TUS) (Section 4.2.1) allows a higher maximum CPU frequency than

Frequency Capping at the same power consumption (Section 4.2.2).

4.1 Device Skin Temperature Throttling

Passive cooling techniques used in mobile devices, such as heat spreaders and pipes

have so far failed to replicate the dissipation characteristics of their active counterparts
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FI1GURE 4.1: Thermal throttling rules implemented by the Qualcomm Thermal Engine
used in the Google Pixel 2 (obtained from /vendor/etc/thermal-engine.conf).

(Section 2.1.3). The dissipation characteristics define the thermal envelope, which can
be sustained without the device skin temperature exceeding a level that will cause dis-
comfort or injury to the user; this temperature level is around 45°C [93]. A typical
sustainable thermal envelope for a smartphone is approximately 3.5W [31], although
environmental conditions, including how the device is held by the user, can affect this
number [93]. In this section, the thermal throttling policy of a modern mobile device,
the Google Pixel 2, is demonstrated using a demanding 3D video game (Section 4.1.1).
The effect of the Frequency Capping (FC) implemented by this policy is evaluated by
subjecting interactive mobile workloads to the same FC implementation and measuring

the performance degradation (4.1.2).

4.1.1 Thermal management policy

Thermal throttling policies typically implement limits the maximum frequency at which
an SoC may operate using a DPM lever called Frequency Capping (FC). The relationship
between voltage, frequency and dynamic power dictates that higher frequencies are often
less power-efficient than lower frequencies (Section 2.2). Experimentation was carried
out using the Google Pixel 2 smartphone, running the Android 9.0 Pie operating system
along with the Energy Aware Scheduling patchset in the underlying Linux kernel. Ther-
mal throttling in the Google Pixel 2 smartphone is implemented using the Qualcomm
Thermal Engine, a programmable cross-platform solution. The input to the controller
is a configuration file specifying frequency caps, feqps, that may be implemented by a

PID controller according to temperature sensor measurements.
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FIGURE 4.2: An execution sequence of 3D video game Player Unknown Battlegrounds
demonstrating the rules from Figure 4.1 being implemented by the Qualcomm Thermal
Engine.

The Google Pixel 2 implementation shown in Figure 4.1, estimates skin temperature
using a designated thermistor. At 40°C, throttling is initiated; by 47°C', the big CPU
cluster is capped below half its maximum frequency; and at 56°C' a device shutdown
is enforced. In addition, the GPU frequency is capped dependent on the temperature

difference measured between the GPU subsystem and the overall SoC package.

In Figure 4.2, a 3D video game (Player Unknown Battlegrounds, maximum graphics,
resolution and FPS) is executed on the Google Pixel 2 to demonstrate thermal throttling
in action. After 151 seconds, throttling is initiated before progressively increasing as the
phone temperature rises to 48°C, which exceeds the discomfort level of 45°C. The big
CPU cluster frequency cap, feqp, is reduced to 1.19GHz from an initial 2.46GHz starting

point.

4.1.2 Frequency Capping

Technical constraints limit performance analysis of individual frames for third-party in-

teractive Android NDK applications such as 3D game engines in a production Android
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FIGURE 4.3: Experiment setup using the Google Pixel 2 smartphone to measure frame
rate janks and model power consumption.

build. However, the effect of FC on interactive Android SDK applications may be anal-
ysed under enforced frequency caps. Experimental sequences were implemented for four
Android SDK applications: Google Maps, Gmail, YouTube, and Chrome. Each appli-
cation was executed using Android input automation using the Workload Automation
framework [258]. Workload Automation uses Android UI Automator to detect Android
UI elements that when combined with a script can emulate user input in a repeatable
fashion for benchmarking. Compared to synthetic benchmarking techniques, using real
Android applications on a real mobile device is far more representative of real-world

usage (Section 2.3.3).

The execution sequences last for approximately one minute each and the frame rate janks
and frequency and idle state occupancies are traced to model CPU power consumption.
Frame rate janks is a metric dependent on the long-tailed distribution of frame-rendering
times (covered further later in this thesis in Section 5.1, this means that the variance
is high and many repeats must be carried out for a reliable sample mean or median.
Configurations under test have their repeats interleaved to compensate for variance as
network conditions vary during the day, a caveat of experimentation with real devices

and applications.

FC effects were characterised on the experimental sequences from the four Android SDK

applications, Figure 4.4 shows the results. The big CPU cluster under FC is unable to
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FIGURE 4.4: The effect of frequency capping on frame rate janks over four application
sequences.

use frequencies beyond the defined cap, f.qp, even if a spike in computational demand
requires it, this leads to an increase in frame rate janks. The relative and absolute
degradations vary between the applications, with Google Maps exhibiting the highest
relative degradation. The variation in frame rate janks for Google Maps from 5.0% of

frames to 12.2% represents a 146% increase as the frequency cap, feqp, is reduced.

The Google Maps sequence is highly interactive relative to the other applications, driven
by the emulated utilisation involving several click-through, scrolling and zoom events.
Gmail does not render many new frames as there is limited scrolling movement within
the execution sequence. This means the baseline number of janks, which are largely
click-through events, is higher than average but also these click-through events are more
likely to miss their deadline irrespective of CPU frequency limits. Chrome and Youtube
are less demanding applications as a whole and only the lower CPU frequency caps have

a noticeable effect.

Median frame rate jank measurements shown in Figure 4.4 do not in fact paint the full
picture. As previously mentioned, evaluation of frame rate janks will be covered further
later in this thesis in Section 5.1. Figure 4.5 presents data from the same experiment in
more detail, including the quartiles for each f.q, and application pair. The experiment
would benefit from more repeats as frame rate janks is inherently a high-variance metric
but trends are still visible for each application. The most surprising result is for Chrome
which benefits from a reduced inter-quartile range from intermediate frequency caps
before widening again from lower frequency caps. This result may be due to a reduction
in CPU idle state transitions as the frequency selected matches the performance required.

Furthermore, this result is also backed up by data from other iterations of the experiment
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FIGURE 4.5: Comparison of frame rate jank distributions using the same data as
Figure 4.4. The quartiles are plotted for each of the four applications at each frequency
showing that each application is affected differently by Frequency Capping.

and demonstrates that whilst FC has an overall negative effect on frame rate janks, there

are exceptions.

4.2 Swapping the lever for Dynamic Power Management

Frequency Capping (FC) effects were shown in Section 4.1.2 to increase frame rate janks
across interactive mobile applications. In this section, a new DPM lever is proposed,

Task Utilisation Scaling (TUS), designed to be interchangeable with FC in existing
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FIGURE 4.6: Energy Aware Scheduling high-level architecture [51] of a collection of
improvements designed to improve energy-efficiency and policy coordination in the
Linux Operating System.

thermal throttling systems (Section 4.2.1). TUS is compared to FC and shown to allow
higher maximum frequency at the same power under thermal throttling which mitigates

some of the negative effects on frame rate janks (Section 4.2.2).

4.2.1 Task Utilisation Scaling

The Google Pixel 2 smartphone uses the Energy Aware Scheduling (EAS) patchset in
the underlying Linux kernel [51]. EAS is a recent enhancement to the Linux kernel
which seeks to execute tasks in an energy-efficient fashion, a high-level architecture is
shown in Figure 4.6. A CPU frequency and idle state energy model is profiled offline to
obtain nominal performance and power trade-off values for executing workloads on each
CPU core. At runtime when a new task enters the system, the available CPU cores are
compared to determine the most efficient core with sufficient capacity to execute the task.
Additionally, there is a periodic load balancing that takes place to re-map tasks that are
sustained over a longer period. Initially, when EAS was applied to interactive workloads
there were performance issues as the performance margin (Section 3.2.1) was too small
to allow for variations in computational demand. SchedTune.boost was implemented to
mitigate these issues; it is a multiplier applied to foreground User Interface applications

to artificially inflate their reported task utilisations to increase the performance margin.

A characteristic common to the interactive workloads used in the experiment Section

4.1.2 is that high performance is required for short sporadic periods of time. This may
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maximum single core frequency available after throttling, fi,, selected by the Energy
Aware Scheduling model.

be a response to user input or the conclusion of a delay waiting for external resources
such as network access. For the remainder of time, the performance required is lower
and less likely to be at a level that would be affected by a frequency cap. In effect,
when an interactive application is executed under a frequency cap, the brief critical
events are throttled and the sustained non-critical periods (where throttling would be

less noticeable) are not throttled.

An approach to thermal throttling, that considers interactive performance, (including
frame rate janks), as well as average frame rate, must throttle the system during non-
critical periods as well as critical periods. The proposed DPM lever Task Utilisation
Scaling (TUS) is designed to achieve this purpose while serving as a drop-in replacement
The SchedTune.boost

functionality may be repurposed for negative boosts to artificially deflate the reported

for frequency capping in existing thermal throttling systems.

task utilisations. T'US uses a Task Utilisation Scaling factor, «, for this purpose as shown
in Figure 4.7. By throttling all periods of execution equally using a scaling factor, «,
task utilisation scaling permits a higher maximum f;;, than the equivalent frequency
cap, feap, allows. An « of less than 1.0 artificially deflates the utilisation of all tasks
such that the tasks are mapped to cores by EAS with a smaller or negative performance
margin. Other modifications to EAS are required to remove over-utilisation thresholds
and limit schedutil’s ability to raise performance when throttled. There is no additional
computation requirement to calculate TUS compared to FC in Android as it is already
used by EAS, in systems not deploying EAS there may be a minimal associated overhead
with this.
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FIGURE 4.8: Frequency occupancy compared for an execution of Gmail with a fre-
quency cap of 1.57GHz on the big CPU cluster. For Task Utilisation Scaling this is
implemented by setting o = 0.63.

4.2.2 Comparison between levers

In theory by throttling the performance of non-critical periods as well as critical periods
of execution, TUS will be able to reallocate the power saved to increase maximum fre-
quency during critical periods. In this section, FC and TUS are compared to understand

these differences in practice.

In Figure 4.8, the CPU frequency occupancies under FC and TUS are compared for an
execution of the Gmail application sequence. FC is configured to enforce a frequency
cap, feap, of 1.57GHz on the big CPU core. The TUS factor, a, is set to 0.63 which
also allows a maximum frequency of 1.57GHz on the big CPU core but will also throttle
performance lower than this. The data shows that execution on the big CPU core is
largely unchanged as the critical periods are throttled equally by both FC and TUS;
however, the data from the LITTLE core shows that far more time is spent in slower
CPU frequency states under TUS than under FC. TUS throttles background tasks into
lower performance states than FC, in particular, the lowest frequencies of the LITTLE
CPU cluster. This saves power that may optionally be reinvested into executing higher

priority tasks with more performance.

The effect on frame rate janks at all frequencies plotted in Figure 4.9 confirms the finding

suggested by the frequency occupancy data, that the critical periods are throttled equally
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FIGURE 4.9: Change in frame rate janks from swapping to Task Utilisation Scaling
from Frequency Capping relative to the value using Frequency Capping.

by both FC and TUS. The measurement for frame rate janks is noisy and insufficient
repeats are possible to reduce mitigate this fully (Section 5.1 has more detail and a
proposed solution). It is a challenge to draw conclusions comparing the individual
applications given this noise, but the application that shows the most variance, Google
Maps, was also shown in Figure 4.5, to have the most variance in frame rate janks
under FC. There is no difference in frame-rate janks between FC and TUS in Figure
4.9 when averaged across all frequencies, there is not sufficient data to prove if there
any underlying trends associated with individual frequencies due to the measurement

challenge discussed.

The data in Figure 4.9 can be averaged across all frequencies and applications to show
that overall there is no meaningful increase or decrease in frame rate janks when « is
set such that TUS throttles at the same maximum frequency as FC. This implies that
if this configuration TUS consumes less power than FC for the same performance then
there is the potential to reinvest this power by increasing «. A sufficient increase in «
would also raise the maximum frequency possible under TUS to 1 or more levels above
FC and is likely, therefore, to improve interactive performance including frame rate
janks. Figures 4.10 and 4.11 show this effect, up to 4% power consumption reduction
is possible by switching to TUS from FC and this may be reinvested to increase o with
a relative improvement of up 8.5% in frame rate janks. Power savings are largest when

the frequency cap is lower for all four applications.
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The comparisons between FC and TUS using Android SDK applications (Google Maps,
Gmail, YouTube, and Chrome) has demonstrated that TUS can save improve interactive
performance including frame rate janks at the same power consumption as FC. However,
TUS must also be evaluated against its primary purpose of device skin temperature
throttling. This requires experimentation using sustained performance applications such

as Android SDK applications are not usually thermally constrained.

Figure 4.12 showcases a comparison between FC and TUS for executing the mobile
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FIGURE 4.12: Device skin temperature measured over time for frequency capping (FC)
and task utilisation scaling (TUS) techniques at {46, 50, 53, 56} frames-per-second
performance in 3D mobile game Player Unknown Battlegrounds.

game Player Unknown Battlegrounds as in Figure 4.2. This Android NDK applica-
tion is extremely computationally demanding when configured to the maximum display
resolution, graphics and FPS limits. As before, the Task Utilisation Scaling factor «
was configured to match the f.,, used by FC. For all four f.,,s measured this resulted
in the same average FPS, this was expected as the maximum CPU frequency was the
same. However, for all four f.,p,s, TUS remained 1-2°C below FC in device skin temper-
ature. This difference is observed due to the reduced power consumption from throttling

non-critical periods of execution.

4.3 Summary

Device skin temperature throttling has emerged as significant power challenge in mobile
devices as cooling techniques cannot keep pace with the power dissipation from emerging
sustained performance applications. This chapter has investigated the Dynamic Power
Management lever used by many device thermal throttling systems, Frequency Capping,
showing through experimentation the increase in frame rate janks it causes in interactive
applications. A new DPM lever was proposed, Task Utilisation Scaling, that throttles
both non-critical and critical periods of execution. When compared with Frequency

Capping it consumes less power at the same performance, this power can be reinvested in
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higher interactive performance including frame rate janks. Task Utilisation Scaling was
also evaluated for efficacy in device thermal throttling itself comparing favourably with
Frequency Capping. Further investigation is required to determine if Task Utilisation
Scaling is viable across other devices and applications, but it shows promise in mitigating

some of the negative effects of device thermal throttling.






Chapter 5

Accelerating the Profiling of
Mobile DPM Policy Parameters

The challenges facing mobile Dynamic Power Management (DPM) are well understood
and were summarised in Chapter 2. However, limited empirical evidence of tuning DPM
policies has been recorded so challenges in this process are less clear. Commercial imple-
mentations of the DPM tuning process in industry are confidential and the results rarely
shared as it is a differentiator between competing device manufacturers. In Chapter 3,
one such tuning challenge was shown to be the scale of the DPM policy parameter space
and corresponding time required by offline profiling for static and dynamic configura-
tion. Furthermore, in Chapter 4, the high-variance of the frame rate janks measurement
was a challenge for both the evaluation and analysis that followed. In this chapter, these
new challenges uncovered by the work of this thesis are further explored with solutions
proposed. In Section 5.1, the reasons behind the high variance in frame rate janks mea-
surements are investigated (Section: 5.1.1) and a new metric is proposed, PPPz, as an
estimator for frame rate janks to accelerate evaluation (Section 5.1.2). PPPz is vali-
dated in a DPM policy tuning process of greater scale than that of Chapter 3 in Section
5.2. Three separate DPM policies are included along with their respective threshold,
feature flag and timer parameters (Section 5.2.1). A tuning process was derived to tune
these policy parameters and then put into practice to evaluate the potential of static
configuration of DPM parameters for both performance and energy improvement when

executing interactive mobile applications (Section (5.2.2).

5.1 Evaluation of frame rate janks

Mobile device DPM policy parameters have proved to be particularly challenging to
tune as a result of diverse interactive workloads and performance metrics focused on tail

latencies and n*® percentile performance. In this section, evaluation of frame rate janks

75
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execution on a Google Pixel 2 smartphone at two CPU frequency caps {1.056GHz,
2.458GHz}.

is investigated to explore the high variance in measurement compared to other metrics
such as CPU energy (Section 5.1.1). It is proposed that a new metric, PPPuz, is used to

estimate frame rate janks measurement to overcome this challenge (Section 5.1.2).

5.1.1 Multimodal frame rate jank distributions

In mobile devices, important interactive performance metrics include frame rate janks
and latency (Section 2.3.1). Frame rate janks is a measure of the number of frames for
which the rendering deadline is missed, 16.7ms in the case of 60 FPS. In Chapter 4, frame
rate janks was shown to be a high variance measurement with the noise induced proving
a challenge for analysis of the effect of thermal throttling on interactive performance.
Investigation used the same experimental setup shown in Figure 4.3 including the same
four interactive mobile applications (Google Maps, Chrome, Youtube and Gmail) with

execution sequences from Workload Automation [258].

Each application execution sequence was repeated 150 times on the Google Pixel 2
smartphone for two CPU frequency caps, 1.056GHz and 2.458GHz, the Probability
Density Functions (PDFs) are shown in Figure 5.1. The selection of 150 repeats is due
to a constraints on total execution sequences per experiment of 750 due to limitations
of the experimental setup. There are three patterns observable from the data: first
the probability density function of frame rate janks is multimodal for the three of the
four applications that require the most network resource accesses. Secondly, frame rate

janks measurements exhibit high variance due to reliance on n*"* percentile performance
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FIGURE 5.2: Number of benchmark runs required to detect a 1% difference in mean
CPU energy model and frame rate janks between two parameter configurations at the
95% confidence level.

[102]. Thirdly, the distributions change when the CPU frequency cap and, therefore,

performance are varied.

The multimodal probability density functions observed exacerbate the high variance
measurement of frame rate janks. In Figure 5.2, the number of benchmark runs required
to detect a 1% change in mean in either a CPU energy model metric or frame rate
janks is compared using a 95% confidence level. The CPU energy model uses CPU
frequency and idle state occupancy to estimate energy consumption (Section 4.2.2). For
the three applications exhibiting a multimodal probability density function, the number

of benchmark runs required for frame rate janks is between a 17x and a 758x multiple.

In absolute terms, to detect a 1% difference in mean frame rate janks at the 95% con-
fidence level can require over 11,000 repeats of a benchmark lasting approximately one
minute. If this is converted into device days (a device day is 24-hours of continuous
benchmarks on one mobile device), then the result is over seven device days. The ex-
periments in Chapters 3 and 4 would both have taken multiple years to run if evaluated
at this confidence level. Yet both experiments require significantly more data to prove
efficacy, perhaps orders of magnitude more results when further applications and devices
are considered. A further problem is that a 1% difference in mean frame rate janks is
not necessarily a marginal gain when considering tuning DPM policy parameters and it

would be useful to compare smaller differences than this.

Clearly there is a challenge in evaluating frame rate janks within a reasonable time-
frame, in a commercial mobile device lab they proposed DPM policies are disabled to
increase repeatability [112], evidently this is not an option for evaluation of DPM policy

tuning. The standard metric used as a proxy for frame rate janks is to measure the
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FIGURE 5.3: Frame rendering times probability density functions at 2.458 GHz and
1.056GHz CPU frequencies, with peak probabilities at 8.3ms, 25.0ms, 41.7ms.

n'! percentile frame rendering time [102]. The PDFs of frame rendering times using the
same experiment data as Figure 5.1, are shown in Figure 5.3 for Google Maps. The PDF
of frame rendering times are plotted using a logarithmic scale because they exhibit a
long-tailed distribution. The majority of frame deadlines are met successfully therefore
the probability of a frame rendering time being between 0 and 16.7ms is significantly

higher.

The PDF curves are not smooth, with peak probabilities at 8.3ms, 25.0ms, 41.7ms. The
significance of these times is that 8.33ms is halfway between Oms and the 60 FPS frame
deadline of 16.7ms, 25.0ms is halfway to a second missed deadline of 33.3ms, and this
pattern continues. If the n'! percentile frame rendering time chosen is between two of
these peaks, then the distribution is multimodal with increased variance. For Google
Maps at 1.056GHz, 95" percentile would be a low variance choice; however, if the
frequency cap is increased to 2.458 GHz then this would be a high variance choice. Across
all four applications this pattern is visible, in particular, the peak probability at 25.0ms
causes the largest increases in variance. The variation of n*® percentile variance presents

a problem when tuning DPM policy parameters as it will vary between configurations.
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FIGURE 5.4: Number of benchmark runs required to detect a 1% difference in mean

frame rate janks between two parameter configurations at the 95% confidence level.

The value for janks is for measuring janks directly, the values for {PPP1, PPP2, PPP3,
PPP4, PPP5} are for comparing indirectly PPPz.

5.1.2 PPPx: A new metric for estimating frame rate janks

The peak probabilities in the probability density function in Figure 5.3 are problematic
for estimating frame rate janks using a n'® percentile approach. However, the peak
probabilities also offer an opportunity as their locations are fixed at 8.3ms, 25.0ms,
41.7ms regardless of CPU performance. Instead of measuring the n'" percentile frame
rendering time, this can be reversed such that the Peak Probability Percentiles are
measured in a new metric, namely PPPz. PPPz, like n** percentile frame rendering

times is designed as an estimator for frame rate janks.

The initial PPPz is at 8.3ms (PPPO0), the next at 25.0ms (PPP1), the next at 41.7ms
(PPP2) and this pattern continues. For example, at 1.056GHz, the PPP1 is 93.0%
and at 2.458GHz it is 96.7%. From this we can conclude that 7.0% of frames take
longer than 25.0ms to render at 1.056GHz and 3.3% at 2.458GHz, this is compared
to a mean of 198.8 and 106.5 janks respectively. There is over an order of magnitude
difference in frequency between frame rendering times that miss one deadline and two
deadlines. In addition, frame rendering times for one deadline miss are approximately
normally distributed unless DPM is configured to shift this. It follows that 1-PPP1 is

approximately equal to half the overall frame rate janks.
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FIGURE 5.5: Comparison between a model derived from the PPP5 (percentile at

91.7ms) and measured janks for Google Maps. The measured plot uses the same data

as Figure 5.1. A Gaussian Mixed Model was constructed by fitting a linear relationship

between the mean, weight, standard deviation and the PPP5 for two components as
shown in Figure 5.6.

The best PPPz to use varies between application and must be profiled in the same way
as the n*® percentile frame rendering time metric. In general, the PPP1 is best correlated
with frame rate janks, but higher PPPx choices have less relative variance and, therefore,
require fewer benchmark repeats. In Figure 5.4, the PPPx choices are compared for each
of four applications. For the three applications with multimodal jank distributions, the
PPP5, PPP3 and PPP2 are optimal; for the unimodal jank distribution application,
Gmail, it is optimal to instead measure the janks directly. The speed-up compared to

measuring janks directly is up to 43.3x.

The probability density function for janks may be fitted from the percentiles measured
by decomposing the multimodal function into a mixture of gaussians. In Figure 5.5,
a Gaussian Mixed Model (GMM) with two components was created from the janks
probability density function. Each of the two components has a mean, weight and

standard deviation estimated at five frequency caps between 1.056GHz and 2.458 GHz.

The relationship between PPPz and frame rate janks is approximately linear unlike the

standard metric using a fixed n*"" percentile which is related by a polynomial function.
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nents of a Gaussian Mixed Model for Google Maps frame rate janks.

GMM component means and weights are simple to fit using a linear relationship whereas
GMM component standard deviation can be more difficult due to its reliance on more
data for an accurate estimation. In Figure 5.6, PPP1 and PPP5 are fitted for Google
Maps GMM mean, weight and standard deviation components. It is observable that
the lack of data at higher performance levels for the 24 GMM component means the

standard deviation correlation is not as strong, an alternative approach would be to

extrapolate results from the performance levels where there was sufficient data. Irre-

spective of this, the proposed metric of measuring the PPPz is shown to be sufficiently

correlated to use as a reasonable estimator for frame rate janks and brings along with a

speedup of evaluation of up to 43.3x.
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Parameter Category Default
scaling_max_freq DVFS 300,000 2,457,600 2,457,600
up_rate_limit_us DVFS 1 N/A 500
down_rate_limit_us DVFS 1 N/A 20,000
sched_use_walt_cpu_util Load Tracking 0 1 1
sched_use_walt_task_util Load Tracking 0 1 1
sched_walt_init_task_load_pct Scheduler 0 100 0
sched_tunable_scaling Scheduler 0 2 0
sched _child_runs_first Scheduler 0 1 1
sched_latency_ns Scheduler 100,000 N/A 10,000,000
sched_migration_cost_ns Scheduler 1,000 N/A 500,000
sched_min_granularity_ns Scheduler 100,000 N/A 3,000,000
sched_wakeup_granularity_ns Scheduler 1,000 N/A 2,000,000

TABLE 5.1: Dynamic Power Management parameters selected for tuning in the Google

Pixel 2 kernel across Dynamic Voltage and Frequency Scaling, load tracking and the

scheduler. Valid parameter values are heterogeneous including binary, categorical and
integer types.

5.2 Tuning Dynamic Power Management policies using PPPx

The DPM policy parameter tuning experiments in Chapter 3 only considered the pa-
rameters of DVFS policies. In this section, static configuration is evaluated for the
parameters from three DPM policies. An order for static configuration is derived based
on characteristics of the DPM policy parameters (Section 5.2.1). The order is then im-
plemented using the proposed metric - PPPz - to determine potential improvements in

energy and frame rate janks across the four applications (Section 5.2).

5.2.1 Policies, parameters and the tuning process

DPM policies included for tuning were a DVFS policy, a Load Tracking (LT) policy

and the scheduling policy. Parameters selected for configuration are listed in Table
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5.1 along with their category, minimum, maximum and default values. The selection
includes three DVFS policy parameters, two LT policy parameters and seven scheduler

parameters. Value types include enumerations, thresholds, feature flags and timers.

Using the example of the benchmarks from Workload Automation [258] in the previous
experiments, it is only possible to execute around 1000 benchmark runs per device
day. Over a sustained period of running benchmarks on a device without restarting, the
performance drifts, which limits the effective sample set size. It is not desirable to restart
the device every run as that is not representative of real-world usage; empirically it was
determined that the maximum set size for the Google Pixel 2 setup was 500 benchmark
runs that can be compared reliably. Furthermore, the parameter configurations under
test should be executed in turn before repeating to reduce the effect of performance
drift.

The limited sample set size for comparison of benchmark runs means that static con-
figuration must take place in stages to allow sufficient repeats. Manual configuration
instructions are available for some parameters, but others have limited published infor-
mation about their function. To understand the function of the LT policy and scheduler
policy parameters, initial profiling experiments were carried out using the Google Maps
execution sequence from the experimental setup used in Section 5.1. The 500 benchmark
run sample size was divided into 25 configurations with 20 repeats each, a compromise

between wider comparison and frame rate jank measurement accuracy.

LT policy parameters are two binary feature flags which define the LT algorithm used
for tracking CPU utilisation (sched_use_walt_cpu_util) and individual task utilisation
(sched_use_walt_task_util). The feature flags select between Per Entity Load Track-
ing (PELT) and Window Assisted Load Tracking (WALT), the default configuration
is for WALT to be used for both CPU and task utilisation tracking. In Figure 5.7,
the four combinations of PELT and WALT were evaluated with random scheduler pa-
rameters. PPP1 and a CPU energy model (Section 5.1) were evaluated as metrics.
The performance and energy metrics are clearly divided into clusters by the LT fea-
ture flags, of which the default setting (cpu=WALT, task=WALT) is lower performance
than (cpu=PELT, task=WALT). For Google Maps it is therefore optimal to use PELT to
track CPU load and WALT to track task load. Mixing and matching PELT and WALT
is defined as experimental in a tuning guide [51]; it is standard practice to use either
WALT or PELT but not both. This finding of ignoring tuning guide recommendations

for improved performance was also found in datacentre application tuning [105].

The scheduler parameters each make marginal adjustments to the task scheduling logic.
In Figure 5.8, the aforementioned LT policy combination of (cpu=PELT, task=WALT)
was used but varied the scheduler parameters over 25 configurations. There were varia-
tions in energy and PPP1 between parameter configurations, albeit smaller than those
of the LT feature flags. Additionally, it was observed there was noise added to the PDF
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FI1GURE 5.8: Comparison of 25 scheduler parameter configurations using the LT-tuned
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for frame rendering times which reduced the correlation between the PPPx and the

corresponding frame rate janks.
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Default parameter configuration
Load Tracking (LT): Default values
Dynamic Voltage and Frequency Scaling (DVFS): Default values
Scheduler (Sched): Default values

LT-tuned configuration
LT:
sched_use_walt_cpu_util: {0, 1}
sched_use_walt_task_util: {0, 1}
DVFS: Default values
Sched: Default values

LT & DVFS-tuned configuration
(N H As LT-tuned
DVFS:
scaling_max_freq: {1804800, ..., 2457600}
up_rate_limit_us: {1, ..., 10000}
down_rate_limit_us: {100, ..., 100000}
Sched: Default values

LT, DVFS & Sched-tuned configuration
LT: As LT & DVFS-tuned
DVEFS: As LT & DVFS-tuned

Sched:

sched_walt_init_task_load_pct: {0, ..., 100}
sched_tunable_scaling: {0, 1, 2}
sched_child_runs_first: {0, 1}
sched_latency_ns: {100000, ..., 100000000}
sched_migration_cost_ns: {1000, ..., 100000000}
sched_min_granularity_ns: {100000, ..., 100000000}
sched_wakeup_granularity_ns: {1000, ..., 100000000}

FIGURE 5.9: Stages of the static configuration process for mobile DPM parameters
determined through initial experiments. At each stage the parameters from the best
configurations of the previous stage are used unless specified otherwise.

Based on these initial experiments, the static configuration order in Figure 5.9 was
determined. Starting from a base of default parameter configuration for DVFS, LT and
scheduler, there are three stages of tuning. First the LT feature flags are configured;
experiments clearly showed that these divide the parameter space into four clusters
and the distance between these clusters is large enough that interactions with other
parameters should not be relevant. Secondly, the DVFS parameters are tuned with the
best LT configuration; in this case each of the parameters have had their ranges reduced
to a subset of the total space but still extending above and below default values. Thirdly,
the scheduler parameters are configured using the best LT and DVFS configuration.

In each stage of the tuning process, the Divide and Diverge Sampling (DDS) technique,
proposed independently by Chapter 3 of this thesis and another work [1, 105], is used to
sample the 25 parameter configurations. DDS divides the full range of each parameter

by the number of configurations, in this case 25, and mixes the ranges together (diverges)
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FiGURE 5.10: Comparison of the four LT configurations across all four applications.
Three of the four LT permutations are selected across the applications which is evidence
of the value in tuning even binary feature flags specific to each application.

for all the parameters. In the case of timer parameters, a logarithmic scale was used for

sampling due to the wide range of possible values.

5.2.2 Performance improvements and energy savings

The static configuration order detailed in Figure 5.9 was carried out for four applications
on the Google Pixel 2 using the Workload Automation execution sequences [258]. In
each stage of the tuning process, the sample set size of 500 was divided into up to
25 parameter configurations with 20 repeats each. For the summary results, the best
configuration from each tuning stage was repeated 100 times in the same experiment to

achieve more accurate results for comparison.

The LT tuning stage for Google Maps has already been shown in Figure 5.7; the de-
fault configuration (cpu=WALT, task=WALT') was shown to be inferior in performance
to (cpu=PELT, task=WALT). The respective LT tuning stages for all applications are
illustrated in Figure 5.10. The configuration selected for Chrome was the default config-
uration of (cpu=WALT, task=WALT), for Youtube either (cpu=PELT, task=WALT)
or (cpu=WALT, task=WALT) could have been selected and for Gmail (cpu=WALT,
task=PELT) was selected. Across the four applications (cpu=PELT, task=PELT) was
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FiGUrE 5.11: Comparison of 25 DVFS parameter configurations for all four applica-

tions Maps using the optimal LT configuration. The selected configurations are circled;

they were selected due to lower CPU energy at near-maximum performance. A Pareto
front of other parameter configurations is visible.

not selected but the other three combinations were. This static configuration stage

further reinforces the application dependent response of tuning DPM policy parameters.

In Figure 5.11, 25 configurations of DVFS parameters are compared; the LT configura-
tion was brought forward from the previous stage. Whilst there were higher performance
configurations along the Pareto-optimal curve, the selected configurations were chosen
for reduced energy consumption. The best configurations had minimal reductions in

CPU frequency but had lower rate-limits to ramp up and down in frequency faster.

PPP4 was used for Google Maps as a trade-off between the lowest variance metric - PPP5
- and the highest correlation with frame rate janks metric - PPP1. PPP1 was used for
Chrome, Gmail and Youtube. Data from a wider range of applications is required to
understand why the frame-rate janks for some applications has a stronger correlation
between PPP4 and PPP5 than other applications. Google Maps offers the widest range
of trade-offs between performance and energy, followed by Chrome. Gmail and Youtube
do not benefit from large performance gains and therefore the optimisation is focussed

on energy.

If more granularity in trade-offs was required, then the 500 benchmark runs could be

divided into more configurations with fewer repeats and the reverse is true for more
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F1GURE 5.12: Comparison of 25 scheduler parameter configurations for all four appli-

cations using the optimal LT and DVFS configurations. The configurations selected

due to their improved performance are circled; however, there is minimal difference in
energy or performance between the configurations tested.

accurate results. Moreover, the range of valid values for the DVFS policy parameters

could be reduced or increased based on preliminary profiling.

In Figure 5.12, 25 configurations of scheduler parameters are compared; the LT and
DVES configurations were brought forward as before. As in Figure 5.8, there appears to
be minimal difference between configurations but this is evaluated with greater accuracy
in the 100 repeat comparison. Irrespective of this, optimal parameter configurations are
selected using PPP1 and energy model metrics. As there was more performance variation

than for energy, selected configurations were picked based on highest performance only.

A representative idea of performance may be achieved by comparing percentiles of frame
rendering time over 20 benchmark runs; however, as shown in Figure 5.5 the frame rate
janks model derived from PPPzx is not perfect and 20 runs is not a large sample. To
overcome this and to obtain comparable results, the best configuration from each stage
of the tuning process was compared in the same test over 100 runs. The result for
frame rate janks is in Figure 5.13 and that of energy in Figure 5.14. It is observable
from the results that, for Google Maps the largest differential in frame rate janks comes
from tuning the LT feature flag parameters. In the case of energy, it is the expected
result that tuning DVFS parameters has the most effect. Either the LT & DVF'S or LT,
DVFS & Sched configurations are improvements over the default configuration. The

improvement in mean frame rate janks is 6% and the mean energy reduction is 4%. In
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FIGURE 5.13: Frame rate janks compared over 100 benchmark runs between the stages
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FIGURE 5.14: CPU energy compared over 100 benchmark runs between the stages of
the static configuration including the default configuration.

addition, there is a significant reduction in 99*®

DVFS, although it is not clear if this is repeatable over a larger sample size.

percentile frame rate janks for LT &
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90th %ile| 99t %ile] Mean |90t %ile|99t" %ile

Application

energy energy energy
Google Maps
Default 90.8 110.1 149.0 0.849 0.896 0.931
LT 85.7 110.0 134.3 0.917 0.968 0.999
LT & DVFS 85.2 108.0 113.0 0.817 0.855 0.884
LT, DVFS & Sched 88.4 119.4 201.2 0.813 0.847 0.875
Chrome
Default 50.3 125.1 148.0 0.939 0.974 0.999
LT 50.3 125.1 148.0 0.939 0.974 0.999
LT & DVFS 52.5 130.1 143.1 0.884 0.918 0.957
LT, DVFS & Sched 45.4 99.0 148.0 0.890 0.915 0.952
Youtube
Default 83.5 128.0 141.4 0.673 0.692 0.771
LT 79.7 118.0 139.1 0.695 0.718 0.800
LT & DVFS 86.5 133.1 149.1 0.543 0.552 0.952
LT, DVFS & Sched 87.6 131.0 160.0 0.553 0.549 0.988
Gmail
Default 422 52.0 55.0 0.735 0.791 0.938
LT 39.8 51.1 62.0 0.738 0.812 0.958
LT & DVFS 41.7 53.0 58.1 0.567 0.636 0.753
LT, DVFS & Sched 422 53.1 65.1 0.551 0.591 0.682

TABLE 5.2: Summary results for mean, 90" and 99*" percentile frame rate janks and
CPU energy.

The results from each static configuration stage are not identical across all applications
tested. There is the possibility that some of this effect results from the random sampling
used in DDS; however, it is mostly related to each application’s behaviour requiring
different DPM tuning. In Table 5.2, the summary results across all four applications and
for all tuning stages are listed. For example, for Chrome, the default LT configuration
was optimal without modification, but the mean frame rate janks was reduced by 10%
and the 90*" percentile janks by 24% when the scheduler parameters were tuned. Neither
Youtube nor Gmail saw notable reductions in frame rate janks from tuning; however,
tuning both DVFS and the scheduler resulted in reductions in CPU energy consumption
by 14% and 25% respectively. In some cases, it may have been advantageous to test more
than 25 parameter configurations during a stage to obtain an improved configuration.
There is naturally a trade-off between profiling time and results with diminishing returns

as the sample size of parameter configurations is increased.

Trends in optimal parameter values across all application were as follows: all four ap-
plications used a CPU frequency below maximum and benefit from lower rate-limits to
speed-up frequency ramp-up and down; out of the four permutations of LT configuration,

three were selected across the four applications; and, finally, for scheduler parameters,
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reductions in the wakeup granularity (sched-wakeup_granularity-ns) improved perfor-

mance at the expense of energy.

In total across the four applications, the results show reductions in frame rate janks
by up to 10% and CPU energy by up to 25%. Traditionally, DPM policies require
reductions in performance to conserve energy and vice versa on a Pareto-optimal front.
Results from this case study permit simultaneous improvements in frame rate janks and
CPU energy. Implementation of the static configuration process using was executed in
two device-days per application, whereas if frame rate janks were measured, the process
would have required more than two device-months per application. This was made
possible by the up to 43.3x speedup gained from evaluation using the proposed metric
PPPz.

5.3 Summary

An important interactive performance metric for mobile applications - frame rate janks
- exhibits a high variance that is prohibitive for a DPM tuning process. The standard
metric used as a proxy for frame rate janks is also vulnerable to high variance under
variations in performance. This chapter has proposed a new metric - PPPx - measuring
the Peak Probability Percentiles of frame rendering times, which can speed-up tuning by
up to 43.3x. PPPz was validated in a case study tuning the parameters of three DPM
policies across four applications. The static configuration process that was executed
in two device-days per application would otherwise have taken more than two device-
months per application of benchmark runs. Results showed differences in response to
tuning for each application with reductions in frame rate janks by up to 10% and CPU
energy by up to 25%. These figures are the best available to quantify the potential gains
by tuning Dynamic Power Management in commercial devices compared to the current
state-of-the-art in manual configuration. It is likely that further gains may be achieved
by continuing research in this area with a focus on scaling performance evaluation such

that the state space of policy parameters and applications can be enlarged.






Chapter 6

Conclusions and Research

Opportunities

Dynamic Power Management (DPM) of mobile devices remains a key challenge faced by
device manufacturers. Battery life extension and skin temperature throttling must be
traded-off with user Quality of Experience (QoE) to determine a performance operating
point. This is in the face of the increasing computer architecture complexity and growing
DPM policy parameter state spaces. Chapters 2, 3, 4 and 5 have targeted the research
aims listed in Section 1.4. In this chapter, the contributions towards these research aims
are discussed along with both limitations of the findings and their wider implications for
the field of DPM for mobile devices (Section 6.1). Following these conclusions, future
research opportunities are highlighted that offer the potential to further develop the

contributions of this thesis (Section 6.2).

6.1 Conclusions

Evidence presented in Chapters 1 and 2 leaves no doubt that mobile device Dynamic
Power Management will be stretched further in the future. Application performance
demands from mobile System-on-Chips continue to grow unabated outpacing both bat-
tery storage capacity and passive cooling technique innovation. In computer architec-
ture, design metrics such as security and reliability have added to an ever-growing list.
System-on-Chips are becoming more modular with reconfigurable IP-based design and
with this approach the parameter space increases further. Despite this, researchers con-
tinue to place importance on adaptive hardware and software solutions to solve this
introducing even more parameters. The requirement to tune mobile device Dynamic
Power Management policy parameters only grows larger as the effect of these trends are
accumulated. This thesis has not sought to follow the well-trodden path of developing

a complex adaptive power management policy that seeks a one-size-fits-all approach to

93



94 Chapter 6 Conclusions and Research Opportunities

runtime Dynamic Power Management. On the contrary, the problem of tuning Dy-
namic Power Management policy parameters has been addressed directly, proving that
there is value in the idea of not ripping up the existing Power Management frameworks
and instead harnessing their capabilities through systematic tuning. The research aims
in Section 1.4 embrace this concept and the contributions towards these will now be

presented.

The beginning of Chapter 1 reviewed the rapid growth and then commoditisation of the
mobile device market since the release of the first smartphone. In a commodity market,
margins have fallen, and device manufacturers must focus their resources on research
areas with the best return on investment. A business case for tuning mobile Dynamic
Power Management parameters may not be made without quantification of the perfor-
mance and power improvements that are achievable through its use. In Section 3.1, an
experiment that tuned a mobile Dynamic Power Management policy for executing web
browsing applications efficiently was documented. Variability in resource access-times
and user input was exploited using offline profiling and the results used in dynamic
configuration for up to 13% CPU energy savings or a user Quality of Experience im-
provement of 27%. The size of these figures is not revolutionary by any means but when
put in context of other architectural improvements to Dynamic Power Management poli-
cies not insignificant. The limitations of this experiment were twofold. First, despite
using a mobile System-on-Chip and Operating System, a real mobile device wasn’t used.
Secondly, only three user input types were tested in a single application, this is far from
the scale required to develop a business case. The experiment in Section 5.2 went some
way to remedying these limitations. A modern mobile device was used - the Google
Pixel 2 smartphone - and four applications were evaluated with configuration of three
Dynamic Power Management policies. The results were similar in magnitude to the
first experiment but swapped between performance and energy, with a user Quality of
Service improvement of up to 10% and a CPU energy reduction of up to 25%. Multiple
data points from devices, applications and policies forms the start of quantifying the
potential improvements achievable but there will always be an insatiable demand for

more data given the scale of the research problem.

If this thesis was compiled even half a decade previously, device skin temperature throt-
tling would have been a minor concern. The technology race in mobile devices means
that research must be constantly evaluated to ensure relevancy with current and future
challenges. Skin temperature throttling solutions have been rapidly developed in indus-
try to tackle the challenge, but the only side-effects considered have been on average
performance metrics. Section 4.1.2 demonstrated that this approach was short-sighted
in disregarding the effect of Frequency Capping on interactive performance such as frame
rate janks. The study did have technical limitations requiring data from sustained per-

formance Android NDK applications to be combined with Android SDK applications
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to reach its conclusions. Nevertheless, the importance of thorough performance analy-
sis when designing and tuning Dynamic Power Management systems was highlighted.
The new Dynamic Power Management lever proposed - Task Utilisation Scaling - was
designed to use existing capabilities in the Dynamic Power Management framework of
the Google Pixel 2. The performance or power gain possible would likely be categorised
as marginable, yet in its favour is the design which permits drop-in replacement of
Frequency Capping in existing systems with minimal friction. It should not be under-
estimated the roles of simplicity and ease of implementation in driving adoption of new

techniques.

Global deployment of datacentre applications by major technology companies has cre-
ated the economies of scale for profitable investments in performance analysis and tuning
research. Static configuration of software and Operating System parameters using sys-
tematic processes has been shown to outperform manual tuning by human experts. The
number of datacentre applications is far lower than in mobile applications so to achieve
the same economies of scale, the cost of tuning must be lowered. Section 5.1 inves-
tigated the reasons why detecting a small change in frame rate janks, an interactive
performance measurement, can require over 750x the benchmark repeats as a CPU en-
ergy model. This finding has so far only included interactive mobile applications with
significant network usage but may prove widely applicable. Latency measurements were
not been considered but with a similar long-tailed distribution may also suffer from the
same problem. The solution proposed - a new metric PPPxz - was shown to speedup
evaluation of frame rate janks by up to 43.3x. This is an order and a half magnitude im-
provement, more of which will be required to propel static configuration into widespread
use. Performance and power models have thus far largely been focussed on absolute ac-
curacy, by considering relative accuracy to compare configurations more gains could
be achieved. Validation of PPPx highlighted it is vulnerable to noise introduced in the
distribution of frame rendering times, but this was overcome by choosing more conserva-
tive values of z such as PPP1 rather than PPP5. The validation experiments requiring
8 device-days in total rather than 8 device-months was testament to the potential in

accelerated evaluation of performance and power metrics.

In conclusion, this thesis cannot present a definitive business case for widescale deploy-
ment of tuning processes for mobile Dynamic Power Management policies; however,
results are sufficiently promising to recommend pilot studies at a moderate scale across
more mobile devices and applications. These pilot studies would require capital in-
vestment in approximately 100 mobile devices and at that point the quantification of
potential performance and power improvements would be clear enough to determine if

the business case exists.
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FIGURE 6.1: Breakdown of applications in the Google Play Store in the top 25 cate-
gories - data from [259].

6.2 Research opportunities

6.2.1 Scale and accelerating performance evaluation

Experiments in both Chapter 3 and 5 raised implications that the size of the DPM policy
parameter space is one of the greatest barriers to static and dynamic configuration.
These experiments only considered one and four applications respectively, with each
application demonstrating substantially different responses to changes in DPM policy
parameters. These applications do not come close to representing the full diversity of
applications executed on mobile devices. In Figure 6.1, a breakdown of the top 25
categories of applications in the Google Play Store is presented. Despite there being
over 3,000,000 applications already listed, over 100,000 new applications are released
each month. A small number of these may account for a majority of overall downloads
but it is still apparent that the surface has barely been scratched in application diversity.
Each application can exhibit different performance characteristics that affect the optimal

tuning of Dynamic Power Management policies.
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There are a number of possibilities to scale the size of tuning experiments to both more

DPM policy parameters and more applications, some of these are listed below.

1. Mobile devices could be deployed at scale for performance tuning in the same
manner as mobile device labs have been deployed for compatibility and regression
testing [110, 111, 112].

2. PPPz shows the potential of developing new interactive performance metrics to
estimate frame rate janks and latency measurement, this could also be extended

to energy and thermal models.

3. Each new DPM policy parameter to be tuned requires additional experimentation,
some of the parameters tuned in Section 5.2 provided marginal or no gains, if DPM
policy parameters and the range of values were selected systematically it would be
more efficient [109].

4. The order for the static configuration process in Section 5.2 was derived empirically,
if interference between DPM policy parameters was systematically computed then

fewer benchmark repeats would be required.

5. Some applications exhibit similar performance characteristics or are based on the
same underlying application engine, learning between these applications about
optimal DPM policy parameter configurations could be shared to tackle the volume

of applications detailed in Figure 6.1.

6. Notwithstanding privacy concerns, profiling of DPM parameter settings could be
deployed on user devices to form part of the initial profiling of DPM policy pa-
rameters and their effect on application performance, this data could be combined

across devices in a federated learning process.

Investment in mobile device DPM tuning equipment and technology requires a busi-
ness case that will depend on further case studies quantifying the potential benefit in
performance, energy and skin temperature. These case studies could demonstrate that
investment in systematic tuning of mobile DPM policy parameters is more cost effective
than investment in designing new computer architectures, software application tuning

or other techniques currently employed to benefit performance.

6.2.2 Hierarchical Reinforcement Learning

Dynamic configuration of DPM policy parameters was compared using approaches of
both offline profiling and application API communication. There remain many avenues
to be explored in architectures for dynamic configuration that use these techniques as

well as new approaches. Conflicts in policy have plagued the traditional model of isolated
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FIGURE 6.2: Hierarchical control system architecture for on-chip dynamic resource
management [191, 193, 194].

DPM control for individual SoC subsystems such as the Linux power governors [38, 39).
Research has been undertaken into hierarchical control systems for dynamic configura-
tion that allow the transfer of DPM policy between SoC subsystems [191, 193, 194].
These hierarchical approaches are promising in their ability to scale to more complex
hardware and applications due to their localised low-latency control of the underlying
DPM levers that centralised control systems are unable to provide. An example hier-
archical control system architecture is shown in Figure 6.2. The supervisory controller
manages high-level goals of power (temperature and energy) and application Quality of
Service. Policy transfer to low-level controllers is made by dynamic configuration of gain
parameters for Instructions-per-second (IPS) and power. The low-level controller uses

the gains in a closed control loop to set core frequency.

State-of-the-art DPM controllers are being implemented using Reinforcement Learning
(RL) [52, 196, 197, 198], these present a problem for DPM policy transfer between
levels of the hierarchy. Current hierarchical control systems must retrain the low-level
controllers each time the performance and power constraints imposed from above change
[194]. This contrasts with non-RL solutions where gains may be adjusted continuously
without disruption [191]. There is an open research question in how to incorporate
DPM policy transfer in hierarchical reinforcement learning continuously, one possibility

is through use of variable reward functions [260].
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