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ABSTRACT
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SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by James R.B. Bantock

Mobile devices have rapidly reached almost ubiquitous adoption amongst the global

population. Smartphones have been the catalyst for introduction of high-performance

System-on-Chips to mobile devices bringing with them the capability to execute ever

more demanding applications but also widespread power management challenges. Tra-

ditionally, the foremost power management challenge was extension of battery lifetime.

The emergence of sustained performance applications including mobile gaming, Virtual

and Augmented Reality has presented a new challenge in constraining performance to

within a sustainable thermal envelope. Cooling techniques, limited to passive technolo-

gies in mobile devices, have proved insufficient to maintain device skin temperatures

below thresholds the human skin can tolerate. Dynamic Power Management policies

have been developed to reduce mobile device power consumption to meet both energy

and thermal constraints. This thesis proposes and then explores a new area of research

in systematic tuning of Dynamic Power Management policies for mobile devices.

Static and dynamic configuration of Dynamic Power Management policy parameters

are compared to quantify the potential energy and performance improvements. Experi-

mental results from a modern mobile device across four applications suggest up to 10%

reduction in dropped frames and a 25% reduction in CPU energy consumption.

Interactive performance degradation from Frequency Capping - the Dynamic Power

Management lever used in device skin temperature throttling - was shown to induce up

to a 43% increase in dropped frames. A new Dynamic Power Management lever - Task

Utilisation Scaling - is proposed and validated to mitigate the performance degrada-

tion by reducing the number of dropped frames by up to 8.5% compared to Frequency

Capping.

Evaluation of interactive performance metrics such as dropped frames was shown to be

up to 750x slower than CPU energy consumption. An investigation into the root cause

of this problem lead to a new metric for estimating dropped frames - PPPx - which can

accelerate evaluation by up to 43.3x. PPPx was validated in a tuning experiment that

lasted 8 days which would otherwise have required 8 months.
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Chapter 1

Introduction

The optimisation of mobile device operation during the design process is influenced by

a range of factors reflecting their diverse capability and use-cases. In this chapter, these

factors and trends that affect them are introduced including mobile device market trends

in Section 1.1 and wider trends in computer architecture in Section 1.2. Existential

challenges in tuning Dynamic Power Management for mobile devices are presented in

Section 1.3 and traced from these challenges, are the research aims and contributions

achieved by this thesis in Sections 1.4 and 1.5 respectively.

1.1 Trends in the mobile device market

Mobile devices have become a ubiquitous part of human life, smartphone ownership now

extends to over 88% of the population of the United Kingdom [2]. The classification of a

mobile device has extended beyond just mobile phones to include smartphones, tablets,

laptops, smart watches, Virtual (VR) and Augmented Reality (AR) headsets [2, 3]. This

fragmentation is in part due to increasing device specialisation to support demanding

applications under tight constraints. Mobile devices are distinct from traditional com-

puting devices by their increased portability as a result of reduced mass and volume.

This reduction in form-factor presents unique design challenges including reliance on

battery-power and device thermal constraints [4, 5, 6, 7].

Growth in mobile device ownership in the United Kingdom from 2013 to 2019 is shown

in Figure 1.1. Data for smartphones, tablets and other wearables in the United States

reflects a similar slowdown in growth [3]. Smartphone replacement cycles are increasing

and with the slowdown in ownership growth this has led to a fall in smartphone unit

shipments [8, 9]. Although unit sales are falling, this has been offset by an increase in

revenue per unit [2, 10].

1
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Figure 1.1: Mobile device ownership in the United Kingdom by year (2013-2019) -
data from [2].

Global revenue estimated to be attributable to the mobile device value chain was over

$3tn in 2014 and represents far more than the estimated $500bn revenue from mobile

device retail [11]. In developing countries, mobile devices represent access to digital

infrastructure that is forecast to drive $3.9tn of purchases by 2022 [12]. The traditional

business model of profit from device sales faces disruption as device manufacturers focus

on monetising software and services [13, 14].

Competition between mobile device manufacturers has increased as the market has ma-

tured [8, 9]. Not all market dynamics can be explained by device performance and cost,

eco-system factors such as the dominance of the mobile device operating systems An-

droid and iOS influence sales [15, 16]. However, consumers are increasingly considering

the capabilities of devices for differentiation including performance, battery-life and the

camera [2, 3, 17].

Mobile device manufacturers not only compete against each other but must also drive

sales from their existing customers to upgrade from their older devices [2]. Previously,

visual differentiation between devices was sufficient for this purpose, in recent years a

convergence in external design has reduced the effectiveness of this strategy [2]. Instead,

manufacturers have focused on broadening the capability of mobile devices to encompass

emerging applications that are too demanding for older devices.

Emerging mobile applications include mobile gaming, AR, VR and Machine Learning

(ML) acceleration [2, 19, 20]. Mobile video gaming is the most established application

with a forecast global consumer spend of $90bn in 2019, more than all other gaming

platforms combined [19]. The market opportunity for AR/VR has been forecast to be

$80bn in global revenue by 2025 with $48bn driven by consumers and $32bn enterprise
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Figure 1.2: Average power consumed by CPU and GPU subsystems when executing
smartphone applications - data from [18].

[21]. On-device ML capabilities are forecast to be present on 80% of smartphones by

2022, compared to 10% in 2017 [20].

Performance requirements from emerging mobile applications have been most demanding

on the Graphics Processing Unit (GPU) of the System-on-Chip (SoC), shown in Figure

1.2. UI applications are mostly CPU dominant compared to emerging applications

(mobile gaming, AR and VR) that are performance-limited by graphics processing power

[18, 22, 23]. ML workloads are more suited to execution using dedicated acceleration

hardware, however, as this technology is still in its infancy, existing hardware can be

used [24, 25, 26, 27].

Modern mobile SoCs have been designed to target these performance requirements,

improvements have been made to mobile GPUs in particular [28]. A portion of these

improvements have increased the performance at the same power consumption, however,

the overall power consumption of mobile SoCs has also increased [28]. This trend is

highlighted in Figure 1.3, SoC power efficiency is improving but even the most efficient

modern mobile System-on-Chips are consuming over 5W under demanding graphics

workloads, outside the 3.5W sustainable thermal envelope of a smartphone [29, 30, 31].

Power consumption challenges have been addressed in computer architecture research

previously, Dynamic Power Management (DPM) is the collective term for the use of an

array of hardware and software levers available to scale power consumption at runtime

[33]. Hardware DPM levers limit performance of the SoC using techniques such as Dy-

namic Voltage and Frequency Scaling (DVFS) and Central Processing Unit (CPU) idle

states [33]. Software DPM levers include scheduling and mapping of software applica-

tion tasks to available resources [34]. Modern mobile SoCs extensively make use of DPM
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Figure 1.3: Mobile System-on-Chip average power consumption and performance per
Watt during graphics benchmark - data from [28, 32].

techniques to maintain energy and thermal budgets [31], this leads to a regression in

application and system performance [31, 35].

Operating Systems (OSs) typically have assumed responsibility for maintaining energy

and thermal budgets in mobile devices [36]. Implementation of this functionality is not

always aligned with the OS’s traditional goals of throughput performance and fairness

between application and users [37]. Control of DPM levers is typically implemented by

the OS using individual policies [38, 39, 40], these policies may incorporate heuristics

for user Quality of Experience in decision making. The separation between DPM lever

policies has led to conflicts in between separate policies and the emergence of system-

level techniques that aim to unify decision making [41].

Effective usage of DPM techniques is dependent on the workload being executed, this

is not an issue for a single-workload system, however, modern mobile devices execute

many diverse workloads [42, 43]. Variations in workload cannot be characterised by only

observing the applications executing at that instant, environmental conditions such as

ambient temperature are also a factor [44, 45]. DPM is tuned according to modelled

or measured workloads during three processes. Design Space Exploration (DSE) pro-

vides the opportunity for changes to DPM levers directly but system performance and

workloads are only models at this stage [46]. Static and dynamic configuration occurs

with measured system performance data and includes the capability to tune DPM policy

parameters such as thresholds and timers [47, 48], see Table 1.1. Design Space Explo-

ration occurs during the System-on-Chip (SoC) design stage [49], static configuration

as part of system integration and dynamic configuration during application execution

[47, 48, 50]. Tuning using modelled performance and workload data can typically take
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DPM policy
tuning process

Design stage

SoC performance

System workload

Design Space
Exploration

SoC Design

Model

Model

Static
Configuration

Integration

Measured

Model

Dynamic
Configuration

Runtime

Measured

Measured

Table 1.1: Dynamic Power Management (DPM) policy parameters may be tuned
during three different processes: Design Space Exploration, static configuration and

dynamic configuration.

place earlier in the design process than measured data but will be less representative of

the final system.

Determination of an optimal configuration of DPM in a mobile device is not a feasible

problem, there are factors such as software workload, environmental conditions and user

input variation that are either unknown or can only be loosely modelled during the

design process [42, 43, 44, 45, 46]. Traditionally, DPM has been reliant on relatively

simple policies employing heuristics with static configuration such as the Linux power

governors [38, 39, 40]. As hardware and software has moved on it has become evident that

such solutions are no longer fit for purpose, a fact recognised by the Linux community

through development of a new Energy Aware Scheduling (EAS) solution [51]. The use

of a desktop and server kernel such as Linux to underpin the Android mobile Operating

System has added design choice constraints compared to a clean slate mobile-first design.

Future DPM policies will leverage ML techniques, research has thus far focused on

Reinforcement Learning (RL) for DPM control [52] and Recurrent Neural Networks

(RNNs) for workload prediction [53].

1.2 Trends in computer architecture

An increase in complexity of computer architecture presents the challenge of additional

policy parameters that must be configured correctly for effective workload execution.

These parameters are typically thresholds or timers that are statically or dynamically

configured dependent on the architecture [48].

There are three major trends in computer architecture which affect system complexity,

these are set to further increase the challenge of tuning DPM beyond current levels.

The increase in computer architecture design metrics (described in Section 1.2.1), the

increase in integrated chip design cost at leading nodes (Section 1.2.2) and the increasing
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Figure 1.4: Usage of computer architecture design metrics in abstracts from leading
academic conferences (HPCA, ISCA, MICRO) [61, 62, 63].

complexity of adaptive hardware and software architectures (Section 1.2.3). The combi-

nation of these trends in system complexity will result in an explosion of the state-space

of parameters, including those relating to DPM policies, that must be tuned requiring

new tuning techniques beyond manual and heuristic-based methods to be developed.

1.2.1 Design metrics

Computers have developed from calculation tools into general-purpose systems with

a diverse range of applications. In correspondence with this, computer architecture

research has developed to include a wider range of design metrics for optimisation.

Initially, the predominant design metrics were performance and reducing silicon area

to increase yield and lower costs [54]. As the consumer market shifted towards mobile

devices, energy and thermal concerns were elevated to a higher level as the mobile form-

factor presented these challenges [54, 55, 56]. Most recently, reliability and security

have emerged as growing concerns as high-profile hardware vulnerabilities have raised

questions about the use of computers for financial and confidential workloads [57, 58, 59,

60]. In Figure 1.4, the abstracts from leading computer architecture conferences have

been datamined to highlight this trend.

An increase from two design metrics to six has placed a significant burden on the operat-

ing system to balance individual budgets in accordance with requirements. In addition,

requirements such as reliability and security can be at an application level as well at the

system level to add further complication [64]. It is typical that to improve in accordance

with one goal, for it to negatively affect another. Examples of this include the well
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manufacturing process node shrinks - data from [73].

understood performance versus power trade-off but also less studied trade-offs including

security versus area, energy and performance [65].

In the future, it is uncertain whether more design metrics may also be elevated to higher

importance, these could include obfuscation to reduce Intellectual Property (IP) theft

[66, 67] and environmental concerns such as product longevity or ability to be recycled

[68, 69, 70, 71]. What is certain is that optimisation of computer architecture including

the DPM subsystem must consider more design metrics than only performance and

power which was its original remit.

1.2.2 Integrated Circuit design cost

At leading semiconductor nodes, the design cost for an Integrated Circuit (IC) is in-

creasing [72, 73]. In Figure 1.5, estimates of the total design cost of an advanced IC

at current and future nodes are presented. The IC design process is increasing in cost

to a price point where it is prohibitive for many new designs to use the leading node.

Looking ahead to 5nm and 3nm nodes, the design cost is forecast to exceed $1bn [73],

this cost will become a challenge for even the largest semiconductor companies and will

require innovative solutions.

One such solution to the increasing design cost that has been long proposed is to de-

sign ICs as a collection of smaller chiplets that may be packaged together [74, 75, 76].

Semiconductor manufacturers have commercialised 2.5D/3D integration processes for

this purpose [77, 78, 79, 80].
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SoC developers have begun to adopt 2.5D/3D integration of chiplets along with other

advanced packaging techniques [81, 82, 83]. A major reason for this adoption has been

the increased design cost such that it is not cost effective to design all parts of the chip

at the leading node. Another is the increase in use of design modularity and repackaging

chiplets into multiple different ICs [81, 84]. Design modularity and re-use has long been

a key part of developing ICs, but the industry consolidation of the IP used is increasing

in correlation with the increasing design costs.

Modular and reconfigurable systems by design have more parameters to allow effective

reuse [56, 85, 86, 87], however, this also means that the total number of parameters in the

system that must be tuned statically and dynamically will increase, further increasing

the state-space for tuning DPM. As design costs continue to increase and companies are

forced to license more external IP, this challenge will become more problematic.

1.2.3 Adaptive hardware and system software

Frequency of operation of high-end SoCs has plateaued due to physical constraints [88],

in mobile devices the situation is similar but limited more by the sustainable thermal

envelope [31]. However, reduction in transistor geometry has allowed more transistors

on a single SoC at new design nodes [88]. Chip developers have made use of these

extra transistors to develop more complex architectures to increase chip performance

without changes in the frequency of operation [88]. As shown in Figure 1.6, researchers

have placed more emphasis in their paper abstracts on creation of adaptive policies than

techniques used to tune them. Modern architectural innovations range from advanced
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memory systems and branch predictors to Networks-on-Chip (NoCs). [54, 89], irrespec-

tive of their purpose, they implement policies in hardware and software that require

tuning [90, 91].

Tuning of policies in hardware and software is dependent on both the rest of the system

and the workloads being executed, it can rarely be configured once and reused for all

systems and workloads. There is no evidence that computer architectures will become

simpler in the future nor that frequency of operation of SoCs will increase beyond small

increments, as such this trend is likely to continue. The number of policy parameters

that must be tuned will therefore increase and improved tuning techniques must be

developed accordingly.

1.3 Challenges in tuning Dynamic Power Management

The underlying trends described in Sections 1.2.1, 1.2.2 and 1.2.3 all suggest that tuning

computer architecture will become increasingly complex in the future. The primary chal-

lenges faced by mobile devices relate to energy consumption and thermal management,

both controlled by DPM. This implies that the already complex task of tuning DPM for

mobile devices is likely to become both more important and increasingly challenging in

the future and beyond the current limited techniques available.

Processes for tuning DPM may be implemented across the system layers of a mobile

device from fundamental hardware design to pure software solutions as highlighted in

Table 1.1. There are promising areas for investigation in each of DSE, static and dynamic

configuration. In Section 1.3.1, the challenges raised by current commercial mobile

devices are discussed, in particular, device thermal restrictions and DSE of new DPM

systems with these challenges as a first-class target. In Section 1.3.2, the advances

in configuration of system parameters in datacentre applications are highlighted which

present an opportunity for static configuration of parameters in DPM policies.

1.3.1 Real devices and real workloads

Research into mobile devices must consider the challenges posed by the current and fu-

ture generations of devices and applications in order to be relevant. Challenges that were

highlighted when mobile devices first began to proliferate the market are not necessarily

relevant in the current generation of devices. Applications which present the greatest

challenge to modern mobile device DPM systems are of a sustained performance nature,

such as AR, VR and mobile gaming [18, 22, 23, 92, 93]. These applications require

performance that exceeds the sustainable thermal envelope of a smartphone which in

turn leads to violations of the safe skin temperature threshold of 45◦C [18, 31, 93, 94].



10 Chapter 1 Introduction

Skin temperature
exceeds 45◦C threshold

32 34 36 38 40 42 44 46 48 50 52 54 56

Video chat

ML acceleration

Augmented Reality

Video recording

Wireless sharing

3D Game

Navigation

Virtual Reality

Voice calling

Steady-state skin temperature (◦C)

Figure 1.7: Steady-state device skin temperature during Android application execu-
tion on a smartphone - data from [93].

In Figure 1.7, results are presented from a study which measured the steady-state skin

temperature when executing a variety of applications on a modern smartphone [93].

Thermal throttling was enabled, and conservative environmental conditions were chosen

including physical suspension of the device. Despite thermal throttling being enabled,

multiple applications were observed to exceed the safe skin temperature threshold of

45◦C. The high average power consumed by modern mobile SoCs is an existential chal-

lenge for sustained usage [29, 30, 31].

Furthermore, unfortunately maintaining device skin temperature at or below 45◦C can-

not be considered a complete success. User satisfaction research has shown that user

experience is degraded from 40◦C. In Figure 1.8, results are presented from a survey of

20 users who played a 3D game on a smartphone for 20 minutes each [93]. The device

skin temperature threshold was maintained at or below 45◦C by the thermal throttling

systems yet 75% of users reported they felt discomfort from the skin temperature. Rea-

sons provided for discomfort include heat sensation, skin burn concerns, sweating and

device becoming slippery as a result of sweat. Mobile device skin temperature violations

by modern smartphones degrade user experience.

A common approach in DPM research is to make use of easily available hardware and

software for experimentation. For example, development boards with external power

sensors monitoring SoC power consumption reduce the barrier to entry for measurement

[23, 95, 96, 97, 98]. Experimentation using this hardware doesn’t necessarily represent

the issues faced by real mobile devices. In addition, automation of mobile applications

is a well-researched field of its own right [99] but is not necessarily trivial to implement

for commercial devices and applications, instead it is easier to fall back on generic

architecture benchmarks such as [100, 101]. These benchmarks do not represent real
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Figure 1.8: Average user ratings for heat sensation and discomfort while playing a
3D game on a smartphone - data from [93].

workloads for mobile devices and therefore the research conducted with them is likely

to not be applicable mobile DPM [42, 102, 103].

1.3.2 Static configuration in datacentre applications

Datacentre applications are deployed and executed at immense scale by technology com-

panies with capital expenditure exceeding $50 billion per year by the largest five deploy-

ers [104]. Many of these applications are based on open-source software such as Apache

Spark and Hadoop, designed to be sufficiently configurable to a wide range of use-cases.

Inherently, these applications expose many parameters to the system administrator, this

can potentially extend to over 100 parameters [105]. The focused execution of a small

number of applications with an input workload that can be modelled has led to advances

in configuration tuning for many datacentre applications. These can include webservers

[105], databases [105, 106] and stream processing of data [107].

Previously, researchers have questioned from a Human Computer Interaction (HCI)

perspective whether too many configuration parameters is a good thing [108], however,

the approaches of partial configuration automation [109] or full configuration automa-

tion have received traction [105, 106] as automatic configuration tuning techniques have

been demonstrated. In Figure 1.9, throughput improvement gained from parameter con-

figuration is shown compared to the default parameter configuration for five datacentre

applications [105]. The improvements of up to 330% are somewhat misleading as they

imply the default configuration is particularly ineffective. However, in a case study, one

of the application configurations was shown to exhibit 4% higher throughput than an

expert human configuration. The same study showed that setting parameters outside
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Figure 1.9: Throughput improvement after parameter configuration for datacentre
applications compared to the default configuration - data from [105].

of the recommended value could be effective in increasing performance reflecting that a

data-driven approach can exceed the results possible with human intuition [105].

Mobile DPM policies expose parameters such as threshold and timers to the system

administrator [38, 39, 40, 48, 51]. Although not in a mobile use-case, some of these

parameters have been tuned through static configuration demonstrating improvements in

power efficiency [47]. The search techniques highlighted in the datacentre configuration

tuning research are applicable to reducing the state-space of parameters in the mobile

space. For example, grid search is highlighted as too sample inefficient and a recursive

bounded random search is used instead [105].

There open research questions about the scale of benchmarking required to tune mobile

workloads as there is not the single application and use-case model that reduces the scope

of datacentre application configuration. The largest publicly announced mobile device

lab is run by a mobile application developer [110, 111]. This device lab has reported

issues with repeatability of benchmarks [112], citing implementation of deterministic

DPM frequency selection which would not be an option when evaluating the DPM

subsystem performance itself. Furthermore, mobile applications are interactive and

subject to external resources such as network performance and user input [113].

1.4 Research aims

This thesis aims to advance techniques for tuning Dynamic Power Management for

mobile devices in the face of increasing computer architecture complexity and policy

parameter spaces. The research aims can be summarised as follows:
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1. Quantify the potential performance and power improvements achievable through

systematic tuning of mobile DPM policies.

2. Investigate the performance effects of the emergent mobile device skin temperature

throttling algorithms and evaluate potential mitigations for this challenge.

3. Leverage research in datacentre application configuration tuning to improve static

configuration of DPM power management policy parameters.

1.5 Research contributions

The contributions of this work towards addressing the aforementioned research aims are

as follows:

1. A mobile DPM policy was tuned for web browsing applications under varying

network conditions and user inputs demonstrating up to 13% CPU energy savings

or QoE improvement of 27% addressing Research aim 1. A paper summarising

contribution was presented at ISLPED 2017 [1].

2. A new DPM lever, Task Utilisation Scaling, was proposed to replace Frequency

Capping in mobile device skin temperature throttling algorithms resulting in a

decrease of dropped frames by up to 43% addressing Research aim 2. A paper

reflecting this contribution was published in IEEE Embedded System Letters [114].

3. A new metric was proposed, PPPx, to accelerate evaluation of dropped frames

in mobile applications by up to 43x. This metric was used with datacentre con-

figuration tuning techniques to tune DPM policy parameters across four mobile

applications demonstrating a reduction in dropped frames of up to 10% and a CPU

energy reduction of up to 25% addressing Research aims 1 and 3.

1.6 Thesis structure

The remainder of this thesis is structured as follows:

In Chapter 2, a review of the relevant literature is presented including: the classification

of mobile device hardware, software applications and challenges (Section 2.1), Dynamic

Power Management levers and control policies (Section 2.2) and performance evaluation

of applications, power consumption and tuning (Section 2.3).

In Chapter 3, empirical data is collected from experiments on a mobile System-on-Chip

to support the case of tuning mobile Dynamic Power Management policies. This includes

a comparison between static and dynamic configuration under user input and resource
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access-time variability (Section 3.1) and an architecture to dynamically configure policy

parameters for unseen dynamic workloads (Section 3.2).

In Chapter 4, the use of Frequency Capping as a lever for mobile device skin temperature

throttling is demonstrated along with the side-effects on application interactivity and

user Quality of Experience (Section 4.1.2). A new lever is proposed, Task Utilisation

Scaling, to mitigate these side-effects and its efficacy evaluated on both User Interface

and sustained performance applications (Section 4.2.1).

In Chapter 5, the problem of multimodal distributions when measuring frame rate janks

is highlighted along with effect it has on performance evaluation. A new metric is

proposed, PPPx, to accelerate the evaluation of frame rate janks (Section 5.1). PPPx

is validated through tuning of three Dynamic Power Management policies and their

parameters on a mobile device 5.2.

In Chapter 6, conclusions are drawn (Section 6.1) and opportunities for future research

are presented (Section 6.2).



Chapter 2

Background: Dynamic Power

Management for Mobile Devices

In Chapter 1, emergent trends affecting the mobile device market and computer ar-

chitecture as a whole were presented unveiling the growing challenge of tuning mobile

devices. Through a review of background literature, this chapter sheds further light on

the design constraints at the root of this challenge and the current techniques available

to meet them. An overview of the classification of mobile devices is laid out in Section

2.1 including both hardware classification (Section 2.1.1) and classification of current

and future software applications (Section 2.1.2). Following this, is an in-depth discus-

sion of the energy and thermal challenges posed by the mobile device form-factor in

Section 2.1.3. Dynamic Power Management (DPM), addressed in Section 2.2, describes

a collection of levers (Section 2.2.1) and control policies (Section 2.2.2) that are effective

in reducing power consumption to mitigate these energy and thermal challenges. The

final piece of the puzzle is the capability to evaluate the performance of DPM against

its goals which is presented in Section 2.3. Included in this evaluation is application

performance (Section 2.3.1) and power (Section 2.3.2) measurements, either directly or

indirectly through use of a model. The DPM evaluation results may be used to improve

the DPM control policies (Section 2.3.3) through tuning parameters which acts to close

the loop on the DPM design process.

2.1 Mobile devices

Market trends presented in Chapter 1 highlight a burgeoning ecosystem that has emerged

around mobile devices. The limits of this ecosystem are defined in terms of both hard-

ware (Section 2.1.1) and software specifications (Section 2.1.2), the combination of which

pose significant challenges to device manufacturers from an energy and thermal perspec-

tive (Section 2.1.3).

15
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Figure 2.1: Segmentation in performance between tiers and generation of mobile
device for DNN inference, specifically ShuffleNet and Mask-RCNN - data from [24].
The speed-up is not uniform across all applications particularly for emerging use-cases

such as ML acceleration.

2.1.1 Hardware classification

Portability, inherent to mobile devices, defines much of the hardware requirements im-

posed on mobile device design [4], Broadly, mobile devices may be segmented by how

they are intended to be carried or worn. For instance, the size and weight permitted

by the laptop form-factor [115] allows integration of a greater hardware specification

than that of a smartwatch [116]. This heterogeneity in hardware specification is visible

in benchmarks executed across device classes and defines the possible software applica-

tions that may be used [117, 118]. Some of the more common mobile device form-factors

are detailed in this section along with their particular requirements.

It would be disingenuous to review the state-of-the-art in mobile devices without starting

with the smartphone, in Chapter 1 it was revealed that ownership has now extended to

over 87% of the UK population. It should not be a surprise given the size of the market

that segmentation has emerged within its bounds. In Figure 2.1, two benchmarks from

Machine Learning (ML) are presented from a range of smartphones. When new gener-

ations of smartphone are compared to older generations, the benchmark performance is

higher, but this is not necessarily uniform across tiers of the market [24]. In particular,

high-tier smartphones are increasing in computational capability. Previously, much of

the power budget of a mobile phone was allocated to the display and data connection

[119, 120, 121], in today’s flagship smartphones this is trending towards larger alloca-

tions for the CPU and GPU [18, 22, 23, 31]. Power consumption data for accelerators

such as image and video processing can be up to 28% of SoC power usage for specialised
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tasks such as video recording [102]. Closely related to the smartphone is the tablet

form-factor, which aside from a larger display and consequently battery often uses the

same System-on-Chip (SoC) or a variant of the same System-on-Chip with additional

graphics processing power[122].

Seated at the base of the pack in performance are low-power wearables, the smartwatch

being one of most widespread [116]. With approximately 70% of their energy consumed

in dozing or sleeping states, smartwatches are designed for lighter usage than other

mobile devices [116]. The power budget allocation is not dissimilar to in smartphones,

however, there are additional sensing functions for health and fitness applications that

can dominate this allocation when enabled [123]. Due to their relative infancy in adop-

tion it is not yet known if smartwatches and other wearables will mirror the ubiquitous

usage of smartphones or if they will remain an outlet for push notifications from other

mobile devices [116].

At the other end of the performance scale are Augmented Reality (AR) and Virtual

Reality (VR) wearables. These wearables were initially scoped as standalone glasses

or headsets, but the computational demands have so far proved too high for a feasible

implementation as untethered devices [18, 22]. This has demonstrated that the software

application requirements cannot be passed over during the hardware design process.

2.1.2 Software applications: current and future

Given the vast array of emergent software applications available to execute on mobile

devices such as smartphones [16], it is forgivable to gloss over that the current generation

of applications are still widely used and their performance important [102]. Studies

have shown that the provisioning of powerful multi-core CPUs in smartphones doesn’t

correspond favourably with the largely single-threaded workloads that they execute [31,

43, 124].

Key functions that have been implemented by smartphones since their inception such

as video decoding have been isolated into application-specific Intellectual Property (IP)

cores on the SoC [102, 125]. These IP cores can be optimized for individual use-cases

and often represent a large power and execution time improvement over CPU execution.

However, the specialisation comes at a cost, if applications map poorly to these IP

accelerators then these improvements are not always realisable [125].

Characterisation of current mainstream smartphone applications pinpoints power con-

sumption allocated to three main subsystems, the CPU, memory and interconnect, and

IP cores [102, 125] as showcased in Figure 2.2. When a web-browser is scrolled, much of

the required computation is carried out by the CPU as there is no specialised IP core

for this purpose, although one such core has been proposed [126]. However, during 4K

video recording the Image Signal Processor (ISP) is exploited represented by the large
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Figure 2.2: Power consumption broken down by subsystem for mainstream mobile
device applications - data from [102].

IP core power consumption of up to 28%. It is important to note how minimal the GPU

usage is for these applications when compared to emerging and future applications, as

specialised accelerators are developed for emerging applications such as ML this may

reduce the differential in power consumption breakdown.

Additionally, in Figure 2.2, a representative pipeline is laid out for a 4K video recording

application. CPU, memory and IP subsystems are dominant as applications are executed

by a complex chain of IP modules orchestrated by the CPU as shown in the example 4K

video recording pipeline. There are two inputs, camera and audio, which are processed

through a chain of IP cores to two outputs. These outputs are a preview version of

the video on the smartphone display and the complete encoded video stored in Non-

Volatile Memory (NVM). This (simplified for the purposes of illustration) complex chain
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of IP cores gives an indication of the orchestration required by the CPU and memory

subsystems that consume similar power allocations to the IP cores themselves.

As highlighted in Chapter 1, there has been an emergence of applications with higher

computational demands, the first of which are from mobile gaming. Mobile games,

both 2D and 3D, involve frame-based computation with a target frame rate of up to

60 Frames-Per-Second (FPS) [23, 102]. Rendering of each frame individually computed

using a combination of the CPU and GPU, either subsystem may throttle the game below

60 FPS if the performance or power required is beyond constraints. Figure 2.3 shows

subsystem power consumption breakdowns for a 2D game and 3D graphics benchmark

representative of a 3D game. In both cases the dominance of CPU and GPU power

allocations is clear, as is the GPU power consumption of over 10x the mainstream

applications in Figure 2.2.
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An example mobile graphics pipeline for a 3D game is also shown in Figure 2.3 exhibiting

minimal differences to a graphics pipeline for a desktop computer game. CPU and GPU

subsystems are dominant when demanding workloads are processed with reduced usage

of application-specific IP modules. The example graphics pipeline is executed on the

GPU after the game logic and memory orchestration to fetch and load required textures

is computed [127].

Augmented Reality (AR) applications are in their infancy with regards to mainstream

adoption and this is reflected in the limited characterisation data available [18, 24].

The tasks that must be run to execute an AR application are more diverse than in other

applications and this is reflected in a higher Thread-Level Parallelism (TLP) metric [18].

Figure 2.4 provides a high-level overview of the tasks involved in the pipeline. These

include fusion sensor data from objects tracked by the camera with location data from

Micro-Electro-Mechanical Sensors (MEMS) and the Global Positioning System (GPS)

chipset, streaming video to the display and augmenting this video with 3D-rendered
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images from the application. Unsurprisingly, this execution increases power consumption

across the SoC with particular dominance from the CPU, GPU and camera subsystems.

One of the applications in Figure 2.4, Blippar, also conducts real-time web-search over

WiFi during execution to exacerbate the power challenge.

Finally, the list of emerging applications would not be complete without Machine Learn-

ing (ML) acceleration. The rapid adoption estimates of 80% of smartphones by 2022

discussed in Chapter 1 may yet prove unfounded but it is already integrated in some

popular applications [24, 115]. Whilst it is predicted that ML acceleration will benefit

from specialist IP cores or Neural Processing Units (NPUs) in the future, for now a

range of existing subsystems are used [24, 25, 26, 27].

An example of the heterogeneity possible when accelerating ML inference is visible in

Figure 2.5; a comparison is made for inference of two ML models across the candidate

accelerators of two SoCs. Accelerators are compared across the Snapdragon 800 and

Tegra K1 SoCs. When compared with offloading to the cloud, most of the on-device

accelerators compare favourably in energy consumption, although it must be noted there
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are other trade-offs in latency and throughput. Out of the available on-device acceler-

ators the GPU is most energy-efficient and is most commonly used in current devices

[24, 27].

2.1.3 Device form factor challenges

As a precursor to analysis of the challenges imposed by the mobile device form-factor,

it is important to reiterate the diversity in usage of smartphones and other devices

amongst their users [119, 121, 129, 130, 131, 132]. Given the widespread adoption of

smartphones in a large population of varying usage patterns, there will undoubtedly

be variation in the challenges experienced in mobile device lifetimes. Irrespective of

this variation, there are two major power management challenges, battery life and skin

temperature throttling that will be discussed in this section.

Battery life preservation has always been at the forefront of mobile power management

[4], if battery charge falls below the minimum level allowed for the battery technology

then the mobile device will shut off and be unusable. Whilst battery capacity tech-

nologies have developed over time, they fall short of keeping pace with the increase in

computational power of modern devices [31, 102].

There is an assumed requirement that mobile device battery life will extend for at least a

day of use, however, in reality this requirement is less clear-cut. In Figure 2.6, the charge

cycles of eight users from a mobile device usage study are shown. The charge cycles

are annotated as one of three categories, habitual charging, necessary and unnecessary
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opportunistic charging. Habitual charging refers to a recognisable pattern in charging

over a number of days, for the users shown in Figure 2.6 this is normally overnight.

Opportunistic charging refers to charging without a pattern, if the battery level is low

then this is defined as necessary and if not then it is defined as unnecessary [121]. The

takeaway is that whilst charging patterns can roughly be divided into patterns, habitual

and demand-based, the mobile device battery life requirement is a moving target.

The upwards trend in SoC power in recent smartphones was highlighted in Figure 1.3

in Chapter 1. The emerging software applications discussed in Section 2.1.2 (3D games,

AR and VR) have increased the computational requirements on the GPU without let-up

in CPU requirements as was shown in Figure 1.2. When these applications are executed

for moderate lengths of time this is known as sustained performance [92]. Sustained

performance has created a new challenge for smartphones, high device skin temperatures.

Device skin temperatures greater than 40◦C start to cause heat sensation and then

later discomfort for users holding the device [93]. The exact temperature threshold and

therefore sustainable thermal envelope depends on both the material of the device and

the user tolerance [93, 94]. Steady-state device skin temperatures reached across several

mobile devices and applications are showcased in Figure 2.7. Thermal throttling issues

are present even in less demanding applications and older devices, in this study they are

most prevalent in applications with high camera usage.

High device skin temperatures may also manifest themselves as hotspots caused by

individual components of the device. These components can include the SoC, WiFi

chipset and camera [18, 93]. As these components are relatively small in area the heat
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is not dissipated across the whole area when it reaches the skin of the device. Other

larger heat dissipating components such as the battery and display are less likely to

cause hotspots [93].

Cooling solutions available in smaller mobile devices such as smartphones have histori-

cally used passive techniques [133]. These include heat-pipes to channel heat across the

device [134] and heat-spreaders which act to reduce hotspots on the skin of the device

[6]. Recently, some device manufacturers have created devices designed specifically for

sustained performance applications such as mobile gaming and these have incorporated

active cooling fans [135, 136].

In response to the power management challenges introduced by sustained performance

applications, device manufacturers have refined the SoC architecture used in mobile de-

vices. The first modification has been the integration of more specialised accelerators as

the workload demands of emerging applications has become clearer. These specialised

accelerators include further advancements in image processing acceleration to support

up to 8K video recording as well as photo post-processing [137] as well as Neural Pro-

cessing Units (NPUs) for Machine Learning applications [32, 137, 138]. Accelerators

are beneficial for both battery lifetime improvement and device thermal management

but also can improve performance sufficiently to support applications that would not

otherwise be viable on a mobile device. The second modification has been to further

segment CPU performance operating points to support sustained performance applica-

tions where power and performance must be delicately traded-off. Typically the switch

has been from four big cores and four LITTLE cores to one or two big cores, two or

three medium cores and four LITTLE cores [137, 138, 139]. Appropriately selected op-

erating points for the medium cores allows performance to be sustained longer as the

big core operating points are heavily weighted towards performance for executing short

tasks with low latency. This modification has not been universal across all manufactur-

ers, in fact the best performing SoC on the market has continued to use a big.LITTLE

architecture without medium cores [32].

2.2 Dynamic Power Management

Operating systems shoulder the task of meeting the power challenges discussed in Sec-

tion 2.1.3, battery life management and device skin temperature constraints. Choices

early in the design process can be made to reduce overall power consumption; however,

after these variables are fixed runtime management is implemented using a collection of

techniques referred to as Dynamic Power Management (DPM). DPM existed before the

widespread proliferation of mobile devices [33], but its use has expanded rapidly due to

their adoption rates. There is a wide range of levers that may be used to reduce power
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Figure 2.8: Pixel 2 power profiles driving thread scheduling decisions and the device-
level power model driving battery management decisions - data extracted from the

System-on-Chip power model using Android Debug Bridge.

consumption at runtime (Section 2.2.1) and various metrics that can be monitored as

part of a control-loop to configure these levers (Section 2.2.2).

2.2.1 Levers for reducing power consumption

Ubiquitous in modern mobile devices, is Dynamic Voltage and Frequency Scaling (DVFS),

the premise of which is by reducing SoC frequency of operation when not required pro-

vides the opportunity to reduce SoC Voltage and therefore power consumption. It is

intuitive, upon observation of the SoC power model in Figure 2.8, to believe that DVFS

can solve most of the power challenges in mobile devices alone. However, when com-

pared to the device-level power model in Figure 2.8, it is clear that it is only part of the

picture for device-level power management. Widespread diversity in device hardware,

software applications and usage covered in Section 2.1 guarantees that optimal DPM

levers and control will vary between use-cases. Scaling CPU frequency using DVFS can

significantly reduce CPU power consumption but is only one of a range of levers available

to reduce device power consumption.

DVFS has been applied to CPUs, GPUs, memory, interconnect, IP cores and other

subsystems using the universal principle of slowdown when performance is not required.

Workloads change rapidly as do their performance requirements; in some scenarios it can

be challenging to update the DVFS operating point in synchronisation with these rapidly

changing workloads. To overcome this, a higher-level DPM lever has been developed

[140, 141] which sets minimum and maximum bounds for the DVFS operating point to

offer performance flexibility with a slower update-rate.
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Slowdown in performance using DVFS is a good match for some workload performance

patterns, however, many mobile workloads are interactive which means they often con-

tain periods of time with no work to be done [113]. In the extreme case parts of the

SoC may be powered down entirely which also reduces static power consumption [142].

In mobile devices this is normally restricted to IP cores and other intermittently used

hardware [102], this approach is commonly referred to as dark silicon. There are chal-

lenges including overheads in energy and time associated with fully powering down SoC

subsystems, so it doesn’t provide a one-size-fits-all approach to exploiting idle periods in

workloads [143]. Instead CPU cores are designed with a multitude of low-power states

that fall short of fully powered down the CPU. These include idle and sleep states which

progressively wind down operations of the CPU between fully operational and fully pow-

ered down. The lowest-power states represent a significant power saving over operational

modes which has led to a technique called ”race-to-idle” or ”race-to-sleep” where it is

preferred to reduce reliance on DVFS and instead seek to execute a task quickly such

that a low-power state may be entered [144, 145]. The efficacy of ”race-to-idle” tech-

niques depends on the cost in power and time to transition between these low-power

states.

The rise of heterogeneity in both asymmetric CPU design [146, 147, 148] and across other

subsystems of the SoC [117, 118, 149, 149] presents choices in where and when tasks may

be executed. Where a task is executed is referred to as mapping and it is not limited to

the boundaries of the SoC, other ICs or even offloading to the cloud may be selected for

execution [128, 150]. When a task is executed is referred to as scheduling, scheduling

initially existed as a method to share CPU time between competing applications on the

same CPU core to increase fairness. It has now evolved into a DPM technique that can

be used to optimise for energy and thermal targets [34, 151].

DVFS, idle states, mapping and scheduling are all commonly applied in general-purpose

computing systems, there are also DPM levers that are more specific to mobile devices.

Data movement between disk, memory and SoC is costly in both time and power [115],

if data movements are known ahead of time they can be executed in a more efficient

manner through prefetching. This can be internal to an application such as loading

a file into memory [164] or can involve pre-loading entire applications into memory if

their use is predicted in the near future [165, 166]. In the same way application use

can be predicted, the absence of use can also be predicted. Background applications

can still consume computation and memory of a mobile device, both throttling and

removal of background applications have been proposed as DPM levers [96, 131]. If the

performance requirements of foreground or background applications cannot be met due

to power constraints, then one option is to reduce the performance requirements which

can be softer than the power constraints. This can involve reducing the quality of media

such as images, video or audio or in the case of approximate calculations such as ML

acceleration go further to reduce the accuracy of computation [128, 167]. Linked to
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DPM lever Description Reference

Dynamic Voltage
and Frequency

Scaling (DVFS)

CPU (GPU, memory, and others)
frequency of operation reduced
allowing a reduction in Voltage.

[31, 35, 97, 140,
141, 152, 153, 154,
155, 156, 157, 158,
159, 160, 161, 162]

Dark Silicon

Subsystems of the SoC, often
accelerators, are powered down to
reduce static power consumption.

[31, 142, 143]

Idle/sleep states
Low-power states are used in between

computation in a process named
”race-to-idle” or ”race-to-sleep”.

[33, 144, 145]

Mapping and
scheduling

Tasks are mapped and scheduled
on asymmetric processors on-

device or offloaded to the cloud.

[34, 117, 118, 128,
146, 147, 148,

149, 150, 151, 163]

Prefetching
Data or applications are pre-loaded

from disk into memory using
prediction models of future usage.

[164, 165, 166]

Background
applications

Background applications have
their computation throttled

or are removed from memory.
[96, 131]

Application quality
Degradation of application

quality requirements is used to
reduce the demand for computation.

[128, 167]

Display
brightness

and colours

Mobile device displays consume
a high proportion of the power

budget which could be reallocated.
[95, 119, 120, 168]

Table 2.1: Taxonomy of Dynamic Power Management levers commonly used in mobile
devices to reduce power consumption.

application quality is display quality, the display has been identified in multiple studies

as consuming a significant proportion of the power budget. The most common DPM

lever applied is to reduce the brightness of the display [119, 120, 168]; however, it has

also been proposed to approximate the colours of pixels on the display to save power

[95].
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2.2.2 Control of levers

Use of a DPM lever is the end-product of a DPM control loop, in order to reach this

point, a decision must be made determining the correct setting for the lever. The process

carried out to achieve this typically takes the form of a policy that monitors one or more

metrics of the SoC or mobile device [33, 36]. In addition to the diverse array of DPM

levers discussed in Section 2.2.1, there are equally a diverse range of metrics and policies

for setting them that will be discussed in this Section. Levers, metrics and policies may

be combined in a custom fashion to meet DPM requirements for a particular device,

workload and user.

Setting of DVFS levers is a natural fit with monitoring utilisation of resources in the

System-on-Chip as the metric. For example, the required CPU core frequency is corre-

lated to the utilisation percentage recorded for that CPU core at that instant [40, 51].

The same relationship extends beyond CPUs to GPUs, IP cores and other resources with

measurable utilisation [169]. In some cases, the overall utilisation of a resource is not

sufficiently granular to determine the exact performance requirement. When compute

resources are stalled waiting for the completion of accesses to memory this can manifest

as high utilisation when in fact little computation is required at that instant. More

granular information can be obtained from hardware performance counters including

counters for cache and memory accesses [170].

DPM does not always seek to reduce performance when it isn’t required, if power con-

straints are overwhelming then performance must be reduced regardless as is the case in

thermal throttling [35, 93]. Thermal throttling may monitor metrics for the device skin

temperature and the temperature of internal components [94, 97, 154, 155, 168, 171].

Information gleaned from these metrics may be used before the temperature exceeds

constraints to mitigate sudden losses in performance. Equally, for the battery lifetime

management the battery charge level may be monitored closely even before low-charge

levels are reached to mitigate the risk of running out of charge [98, 167].

Real-time measurement of metrics for both thermal and energy management is important

as device usage behaviour is so distinct between users [119, 121]. This usage behaviour

can also be observed directly by monitoring user inputs that is used by prediction models

to predict the probability of future usage. These probabilities can be as granular as

predicting the next touch input [172, 173] or at the other end of the spectrum high-level

decisions such as which applications will be opened next [166].

Execution time of applications is also monitored as a metric to inform future predictions

[174]. In situations where the execution time can be modelled accurately it can be used

as an oracle for DPM to track required performance [156], however, the complexity

of modern SoCs prove a challenge to this. This complexity also applies to predicting

user input and leads to the more accurate metric of detecting events as they occur
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DPM
control inputs

Description Reference

SoC
resource usage

Utilization percentages
are sampled from SoC

subsystems such as CPUs and GPUs.

[36, 38, 40, 51,
165, 169, 170]

Device and SoC
temperature

Device skin and internal SoC
temperatures are monitored to

avoid thermal constraint violations.

[94, 97, 154,
155, 168, 171]

Battery charge and
lifetime estimate

Battery lifetime estimates are
calculated to predict shortfalls

requiring additional power savings.
[98, 167]

Predicted user input
Dynamic Power Management varies

between workloads which may be
predicted along with user inputs.

[119, 121, 166, 172, 173]

Predicted
execution time

Tasks can be scheduled as in
a real-time system if execution

times are known or are predicted.
[156, 174, 175, 176]

Detected events
Interrupt-based detection is more
accurate than prediction models

but is not in advance of the event.

[177, 178]

Application
performance

Performance metrics are
measured or queried including

execution time, throughput and latency.
[140, 160, 179, 180]

Table 2.2: Taxonomy of Dynamic Power Management control inputs for use in deter-
mining runtime performance and power requirements for mobile devices.

[157, 177, 178, 181]. Unfortunately interrupt-based detection of events does not provide

the advance notice offered by predicting events before they occur.

Reverse-engineering application performance information through prediction or detec-

tion of events is a challenge for implementation. Alternatively, this information can be

sought directly from the application or Operating System (OS) through use of an Ap-

plication Programming Interface (API) [160]. Application execution-time, throughput,

latency and custom metrics may be collected through querying the API in real-time. In

practice for commercial mobile devices this has been implemented primarily for inter-

facing with the OS [140, 179] rather than in applications [160, 180]. The role of system

integrators in providing and using APIs for DPM can result in advantages for vertically
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integrated device manufacturers with control over hardware, system software and ap-

plications that can be used to improve user Quality of Experience over non-vertically

integrated device manufacturers.

Initial iterations of DPM control policies relied on a heuristic-driven approach [38, 39,

182, 183]. The policies were designed to set DPM levers based on pre-configured resource

utilisation thresholds and timers to track the performance required by tasks. Recent

evolutions of these control policies remain in use in many current mobile devices such

as the interactive governor [40] and Energy Aware Scheduling [51]. The interactive

governor extends the heuristic-driven approach to wake-up the CPU when user inputs

are triggered [157, 181, 184, 185]. This extension incorporates user satisfaction into the

decision-making process but doesn’t go as far as to monitor any user metrics directly

[95, 186]. The Energy Aware Scheduling policy enhances the accuracy of measurement

of resource utilisation and incorporates an energy-efficient mapping process to exploit

heterogeneity in asymmetric CPU cores [51].

DPM control techniques proposed in literature include mobile device domain-specific

and application specific enhancements. The graphics pipeline rendering frames at 60

Frames-Per-Second (FPS) in mobile devices is well documented, this can be exploited to

segment DPM control into a frame-by-frame decision process [140, 161]. Segmentation

is also possible by application [158], in particular for mobile devices, sustained and

non-sustained performance applications can be selectively throttled [187] to mitigate

performance losses under thermal throttling. Furthermore, workload phases from a

single application may be segmented [169, 188] to overcome the variety in workloads

exhibited within applications.

Heuristic-driven approaches have been substituted for formal control theory approaches

including Single Input Single Output (SISO), Multiple Inputs Multiple Outputs (MIMO)

and Structured Singular Value (SSV) control [189, 190, 191]. The co-operation between

heterogeneous processors within an SoC has led to techniques coordinating DPM be-

tween multiple subsystems from balancing CPU and GPU power allocations [97, 141]

to a leasing model for resources run by the OS [192]. An emerging theme is Hierarchi-

cal Control Systems (HCSs) which seek to maintain coordination across the SoC while

reducing latency for low-level DPM lever control [193, 194, 195].

Machine Learning (ML) control is also increasingly implemented for DPM control, in

particular model-free Reinforcement Learning (RL) algorithms such as Q-Learning are

most prevalent [52, 194, 196, 197, 198]. Model-free RL is a natural fit for DPM control

as it doesn’t require a model of the environment to be constructed, which would be

a challenge given the complex nature of a modern SoC. Training of RL DPM control

policies has been accelerated with imitation learning, where an oracle or heuristic-driven
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policy is mimicked by the RL policy to bootstrap the learning process [169, 199]. Recur-

rent Neural Networks (RNNs) have been demonstrated for use in both predicting future

workloads and making decisions based on the result [53, 200].

Commercial sensitivity has meant that some ML techniques used by device manufactur-

ers to optimise power management are not documented publicly. Among the publicised

ML power management techniques that have been implemented in modern mobile de-

vices is a DVFS controller that traces render calls between an application and GPU as

the input to a neural network and the output is a DVFS operating point for the GPU

[201]. The training of the neural network is specific to an individual SoC and application

so has not been widely applied due to this constraint. The use of individual training

per application allows over-fitting of the performance characteristics of that application

rather than attempting to cover the diverse range of mobile applications with a single

controller. Another publicised ML power management technique is at the system level

for managing battery usage of background applications in Android [202]. Suppression of

wake-up and background processing privileges is used to reduce the battery consumption

whilst ensuring these privileges are available to applications most likely to be used by

each individual user. A Convolutional Neural Network (CNN) is used to predict which

applications the user is most likely to use within the next few hours.

2.3 Performance evaluation

Performance evaluation in general-purpose computer systems is challenging, there are

widespread problems in producing repeatable and representative benchmarks [203]. Mo-

bile devices are no exception to this rule, the metrics they are evaluated against are

however, different to those of a general-purpose system [102]. From an application

perspective these are focused on the performance exposed to the user in foreground ap-

plications (Section 2.3.1). For power, a combination of measurement and models are

used to estimate energy and thermal results (Section 2.3.2). Tying the application and

power metrics together is a suitable framework for evaluating the performance of and

therefore tuning of DPM policies for mobile devices (Section 2.3.3).

2.3.1 Application performance measurement

Software applications executed on mobile devices are interactive, they are subject to

variation in external resource access-times and user inputs [113]. If the external resource

is access to networks such as the internet then access-times can vary geographically due

to Received Signal Strength Indicator (RSSI - signal strength) [204, 205] and temporally

due to network congestion at peak periods throughout the day [206]. The diversity in

user inputs and the importance of modelling this has previously been covered in Section
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Figure 2.9: Latencies measured with a camera for a UI application page load triggered
by user input - data from [211].

2.1. Application performance metrics are referred to as Quality of Service (QoS) metrics

and their mapping to user experience results in Quality of Experience (QoE) metrics

which will be detailed later in this section.

Interactive applications must be evaluated against different QoS metrics than throughput

which is the default in application performance measurement in general-purpose systems

[102]. The first of these performance metrics is latency [102, 147, 148, 185, 207], users

notice high latency but there is a floor at approximately 20ms below which users are

less affected [208]. High latency can also increase the time users take to perform a

task [209] which aside from reducing QoE metrics will mean that the task will likely

consume more energy. Latency can be aggravated by background tasks throttling the

performance available to foreground applications when executing concurrently [210].

Latency may be measured internally by applications or externally using video recording

either on the mobile device or using a camera. In Figure 2.9, a video camera was used to

detect changes on the display of a mobile device which indicated that a User Interface

(UI) application action was completed [211]. The time between the automated action

and the recorded timestamp of the completed action in the video was registered as the la-

tency of the action. The CPU frequency of the mobile device was varied from a minimum

of 0.3GHz to a maximum of 2.15GHz and the distribution of latencies measured. Below

0.88GHz there is a noticeable degradation in the tail (worst-case) latency observed, far

more pronounced than the degradation in median latency. This long-tailed distribution

is typical in latency measurements and requires that a distribution not average value is

measured [102].
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Figure 2.10: Frame rendering times measured for the Google Now Launcher for the
duration of three swipe interactions - data from [140].

Webpage loading is a special case for latency measurement, on one hand it is often

triggered by the same type of user touch input to the device, on the other, the user

anticipates that it may take a period of time longer than 20ms to load [212, 213].

In one study the target load time is quoted at 2s [214], in another 3s [152]; there is

also complexity from varying network conditions to be considered [204, 206]. Webpage

loading also suffers from interference from concurrent execution of background tasks due

to contention on the memory subsystem [215].

A common misstep in evaluating frame-based applications in mobile devices is to measure

average frame rate [23, 97, 141, 147, 148, 154, 155, 176]. Users are in fact far more

susceptible to the stability of the frame rate and in particular, frames that miss their

deadlines which are referred to as frame rate janks [102, 140, 162, 177, 216]. Based on

the assumption a mobile device is executing at 60 FPS, the deadline for each frame to

be rendered is 16.67ms [102].

An example is provided in Figure 2.10 where the individual frame rendering times of

a UI application are recorded [140]. In this instance, each frame is inside the 16.67ms

deadline, however, it is observable in the three time periods where the user is inputting

a swipe action to the application, the slack before the deadline is reduced. If the average

frame rate was recorded, then this effect would not be visible. Frame rate janks like

latency are linked to a long-tailed distribution, in this case it is the distribution of

frame-rendering times. The 90th, 95th or 99th percentile frame-rendering time is often

measured as proxy for frame rate janks [102].

Latencies and frame rate janks are the key application performance and therefore QoS

metrics for interactive mobile applications. Users are not exposed to the raw QoS metrics
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Figure 2.11: User satisfaction ratings for two mobile applications as number of CPU
cores, CPU frequency and GPU frequency are varied - data from [31].

on their devices so if these metrics are below a floor as with 20ms in the case of latencies

[208], their satisfaction is not affected. Equally if a Quality of Service metric is woefully

bad then small changes in this metric are unlikely to better or worsen user’s satisfaction.

The mapping from QoS to user Quality of Experience (QoE) reflects these phenomena

[217, 218].

Optimisation of system focused on a QoE metric will both improve user experience

but also create opportunities to exploit the non-linearity in the QoS to QoE mapping

[218]. QoE metrics can either be measured directly using user surveys which query their

satisfaction when using a mobile device [31, 219] or estimated based on character traits or

other information recorded about the user [95]. It has been proposed that some users are

more tolerant of poor QoS metrics than others linked to their personality [95]. Results

from a user QoE survey for mobile application performance is presented in Figure 2.11.

Users were asked for a satisfaction rating on a scale from very dissatisfactory to very

satisfactory when presented with mobile applications with different performance settings

and therefore QoS metrics [31]. The study showed that for incumbent mobile devices

user QoE varies more with CPU rather than GPU performance. Both the number of

CPU cores enabled and the CPU frequency affected user satisfaction and therefore QoE.

2.3.2 Power measurement and modelling

Irrespective if the optimisation target is energy, temperature or both as described in

Section 2.1.3, in a mobile device this target will be linked to power consumption. Power

can either be measured or be estimated using a model, in this section the various methods

of achieving this are detailed along with their characteristics.
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Figure 2.12: Seven performance counters selected for an A15 power model, along
with the Pearson’s correlation coefficient with power consumption - data from [221].

There are two types of measurement used to determine energy consumption of a mobile

device. The first of these, sensors on the power rails used by the SoC, is most common on

development boards and can be used to breakdown the SoC power consumption as far as

the SoC subsystems are segmented onto separate power rails [23, 95, 96, 97, 98, 190, 191].

For the purposes of convenience, the power sensors typically interface with the SoC

directly to share the data collected. Unfortunately, this can limit the sampling rate

possible without adding overhead, this is a problem for evaluating energy for interactive

applications which ramp up and down rapidly.

Energy can also be measured at the device-level, this is representative of the energy

that would be drained from the battery during usage. This measurement incorporates

energy consumption from components such as the display that are not included in SoC

power rail measurements [23, 95, 96, 97, 98, 190, 191]. Device-level energy measurements

are most commonly used for real mobile devices; however, the construction of modern

smartphones has made this process more challenging.

In some situations, SoC power sensors and device-level measurements are not available

or are insufficiently granular. Alternatively, an energy model can be developed using

the most representative real-world data available, this can also be during simulation

before device development [46]. Previously, such energy models have been derided as

insufficiently accurate outside of controlled conditions [220], whilst this hasn’t been

refuted, newer models have demonstrated accuracy to within 3% [221]. A model has

also been developed to separate dynamic and static power consumption under varying

ambient temperature [222].

CPU energy consumption can be modelled using a variety of techniques including CPU

performance counters [221], tracing of CPU frequency and idle states [223], tracing

of system calls [224] and application traces [213]. Performance counters selected for

an A15 CPU power model are shown in Figure 2.12 along with their correlation with
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Component Variable(s)

big CPU cluster CPU frequency and activity

LITTLE CPU cluster CPU frequency and activity

GPU GPU frequency and activity

Video decoder IP Codec resolution (4K, 1080p, ...)

Wi-Fi chipset Throughput - upload and download

Battery charging Normal charging or quick charging

Camera Recording resolution (UHD, HD, ...)

OLED display Brightness

Table 2.3: Device thermal model components and their respective variables for the
Galaxy S8 smartphone - data from [232].

power consumption measurement. Selection was optimised by reducing multicollinear-

ity between performance counters as the counters with highest correlation are not nec-

essarily independent [221]. Furthermore, high correlation doesn’t necessarily guaran-

tee an accurate and stable model under workload and device temperature variation.

Device-level energy consumption requires individual models for each of the compo-

nents in a mobile device which may be summed to achieve overall energy consumption

[119, 132, 223, 225, 226, 227].

Thermal measurements for mobile devices may also be conducted using two techniques,

the first of these being temperature sensors such as thermistors. Temperature sensors

are installed internally on Printed Circuit Boards (PCBs) and by components through-

out mobile devices [124, 153, 171, 228, 229, 230]. Commonly these internal sensors are

used to estimate external skin temperature, however, a study has also used an external

temperature sensor for this purpose [230]. The second technique, effective for measuring

external skin temperature only, is to use an Infrared Radiation (IR) camera to record

thermal radiation emitted by the skin of the mobile device [18, 93, 133, 229, 231]. Ther-

mal measurement by external camera may only be used in static configuration of DPM,

a model based on internal sensors may be used for dynamic configuration.

Internal temperature sensors are more effective than internal energy sensors as changes

in temperature happen far slower than for energy, the only benefits in models for these

sensors are for further granularity such as a SoC temperature breakdown [231] or to

predict future temperatures [153]. The logistics of recording IR video of a mobile device
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for sustained periods of time has meant that device skin temperature models are more

prevalent for use outside of laboratories [93, 230, 232]. The list of components and

their variables used in a device skin temperature model for a modern mobile device is

showcased in Table 2.3. These models are subject to effects caused by material properties

specific to each mobile device [229, 233, 234] and environmental effects such as ambient

temperature and how a mobile device is held in the hand [93, 171].

2.3.3 Tuning Dynamic Power Management

The tuning process for DPM policies reflects the confluence of all the preceding sections.

Consideration must be made for the hardware and software classifications of mobile

devices detailed in Section 2.1 along with the challenges they present. The nature of

DPM policies and the levers they exploit described in Section 2.2 is important to under-

stand the parameters that will be exposed for tuning them. Finally, the performance and

power metrics presented earlier in Section 2.3 are inherent to comparing the performance

between two policies.

There is limited previous literature with a direct focus on tuning DPM policies, partic-

ularly with regards to mobile devices, however, far more research has been conducted

into tuning computer systems and software in general that is applicable. DPM policies

are tuned in a similar fashion to many other control systems, they expose parameters

such as thresholds, timers and feature flags [47, 48].

System software applications also expose a large quantity of these parameters to be con-

figured by system administrators. One perspective of the presence of these parameters

is that this is a negative feature [108]. A study found that over 50% of parameters for

system software can be configured by less than 1% of the users in a commercial setting,

for the same software less than 10% of parameters were configured by more than 50%

of the users, see Figure 2.13. The study used this evidence to claim that it was unwise

to assume that users would be willing to set these parameters themselves and to reduce

the number. In this thesis another perspective is presented that embraces parameters

of mobile DPM policies and the opportunities they provide.

A timeline of processes throughout the design roadmap during which DPM policies can

be tuned was presented in Chapter 1, Figure 1.1. These included Design Space Ex-

ploration (DSE), static and dynamic configuration, the key distinction separating these

processes is the availability of accurate characterisation data for both SoC performance

and the workload being executed. The further along the design roadmap the process

sits, the less reliance on models which are replaced with measured data. In the DSE pro-

cess, both performance and workload data are models, the static configuration process

can make use of SoC performance measurements and the dynamic configuration process

adds workload data measured instantaneously.
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Figure 2.13: Software configurations analysed for parameters set by users for three
system software applications - data from [108].

Tuning of mobile DPM during the DSE process is not strictly limited to parameter

configuration, as elements of the wider SoC design including DPM may not be fixed.

Synthesis of Register Transfer Level circuits during the SoC design roadmap has been

tuned both for synthesis parameters [235, 236, 237, 238] and parameters exposed by IP

cores [56, 85, 239]. These processes can be fully automated [235, 240] or make use of

input from a human expert [241]. However, specific to DPM, the DSE process provides

the opportunity for mathematical optimisation of potential DPM policies and the levers

than underpin them [49, 50].

Static configuration of DPM policy parameters benefits from the most evidence of prior

use out of the three processes. The introduction of SoC performance data characterised

from real hardware allows trade-offs between performance and power to be fixed for

the first time. There are industry tuning guides for DPM policy parameters during the

static configuration process, they rely on guidance from the developers and expert deci-

sion making from humans [47, 48]. The remaining evidence comes from system software

configuration, where systematic static configuration of software parameters has been

applied successfully [105, 242, 243, 244]. In a study comparing systematic tuning to

expert manual tuning by humans, a commercial webserver application was tuned. The

results from the same study presented in Figure 1.9 were impressive in their magnitude,

throughput improvements of over 300%, but that was compared to the default config-

uration. In Figure 2.14 the systematic tuning showed improvements over the manual

tuned configuration in all five metrics, when the manual tuning was considered to be an

optimal configuration. Systematic tuning of parameters is superior on all five metrics

with the most important, throughput, showcasing a 4.1% improvement. There have

been several techniques demonstrated for optimising the static configuration of software

parameters. These techniques include selecting the right parameters [106, 109, 245],

searching the parameter space, [105], modelling the parameter space [243, 244, 246, 247]
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Figure 2.14: Tomcat webserver application optimised using systematic tuning of
parameters compared with expert manual tuning - data from [105].

and predicting interactions between parameters [248]. Static configuration has also been

applied to approximate computing applications where quality degradation is permissible

[249, 250].

There remains sufficient low-hanging fruit in static configuration of computer system

parameters such that dynamic configuration is rarely applied. The best examples are

in distributed systems where nodes may be added or removed at runtime invalidating

previous characterisation results used for static configuration [251, 252, 253]. The same

logic could be applied to new applications entering and leaving the work-queue of a

mobile device; but this has yet to be studied.

Regardless of which tuning process is used and whether simulation or real hardware is

used, representative workloads must be executed. In computer architecture research it is

widespread to use off-the-shelf benchmarks such as SPEC and PARSEC [100, 101, 103].

For mobile device research the results from these benchmarks are misleading [42, 102],

showcasing minimal characteristics in common with results using real mobile applications

[31, 35, 96, 97, 140, 141, 154, 155, 162, 187, 211, 254] To increase the quantity of data

available, either automation may be used [31, 99, 211] or synthetic traces may be derived

from representative data [255, 256].

In a similar vein to workload selection, hardware choices are equally important to achieve

representative data [102]. An ideal situation permits large user studies to be conducted

with real mobile phones [119, 121, 131, 132], logistically this can be both time consum-

ing and expensive to organise but the takeaways can be significant and have laid the

groundwork for much of this literature review chapter. Experimentation at scale has

also been achieved through outsourcing surveys of recordings from real mobile devices
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Figure 2.15: Mobile device System-on-Chips aren’t necessarily identical, this study
demonstrated performance and energy variation due to silicon binning linked to process

variation of up to 19% - data from [228]

to internet workers [31, 219]. In industry some companies have invested in mobile device

laboratories hosting thousands of devices to run experiments on [110, 111, 112]. Cur-

rently these mobile device labs are focused on compatibility and regression testing but

could feasibly be extended to tuning experiments.

Experimental research into mobile devices is approximately divided between two types of

platform, development boards and real mobile devices. Development boards can provide

functionality such as power sensors that means they are easier to use for experiments

[23, 95, 96, 97, 98, 190, 191], however, they do not display characteristics that are visible

for studies that are run on real mobile devices [35, 140, 147, 154, 155, 160, 168, 200, 211].

The obvious omission is that device skin temperature throttling does not exist when

using development boards even if the same SoC is used [35, 93]. There are others

such as environmental conditions including ambient temperature on power consumption

[44, 45, 222]. The most obscure effect observed by comparing real mobile devices is the

silicon binning affecting mobile SoCs, in Figure 2.15, process variation is shown to lead

to a performance and energy variation of up to 19% [228, 257]. Between three and five

of each device were compared which implies the maximum bound may be higher if SoCs

from only a fraction of the total number of bins were tested.

2.4 Discussion

This chapter has presented an overview of mobile devices from a hardware and software

perspective and highlighted the energy and thermal challenges presented by the mobile

device form-factor. The wide array of DPM policies and levers that underpin them
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was introduced, these are used to tackle the power challenges faced. Also detailed is

how interactive workloads executed on mobile devices are evaluated in performance and

power in a different manner to general-purpose computing systems. The combination

of all the preceding knowledge is an opportunity to tune DPM for mobile devices in a

systematic fashion. System-software applications have been successfully tuned using the

parameters they expose and mobile device DPM policies already expose similar timers,

thresholds and feature flags yet they have been tuned manually up to this point in time.

In this thesis, this opportunity is explored, and new techniques are developed to enable

its use for tackling the existential problem of Tuning Dynamic Power Management for

Mobile Devices.





Chapter 3

Interactive and Dynamic

Workloads: The Case for Tuning

DPM

Previous research and overall market trends in Chapter 2 pointed towards an opportunity

in tuning mobile device Dynamic Power Management (DPM) policies. It was revealed

in Section 2.3.3 that there is limited prior research focussed on this area despite a

swathe of related work. This chapter provides empirical evidence supporting the case for

tuning DPM policy parameters, when executing interactive and dynamic workloads on

mobile System-on-Chips. In Section 3.1, a framework is presented for static and dynamic

configuration of DPM policy parameters under user inputs and resource access-time

variability (Section 3.1.1) and a weighted function to trade-off user Quality of Experience

(QoE) and energy consumption is used to implement this for efficient execution of a web-

browser application (Section 3.1.2). In Section 3.2, synthetic benchmarks are developed

to simulate dynamic unseen workloads (Section 3.2.1) and an architecture for dynamic

configuration of DPM policy parameters is proposed with no requirement for offline

profiling (Section 3.2.2).

3.1 Efficient execution of an interactive web-browser ap-

plication

Software applications executed on mobile devices showcase different characteristics than

those executed on general-purpose computer systems (Section 2.1.2) and are evaluated

using different metrics (Section 2.3.1). An experiment into efficient execution of web

browser workloads is conducted in this section inducing variability in user input and

43
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Figure 3.1: Experimental setup for evaluation of user input and resource access-time
variability on Dynamic Power Management policy parameter configuration.

resource-access times native to mobile applications (Section 3.1.1). The resulting frame-

work for static and dynamic configuration of mobile DPM policy parameters under

these constraints is evaluated against user QoE and energy consumption resulting in a

Pareto-optimal curve of operating points (Section 3.1.2).

3.1.1 User input and resource access-time variability

Interactive workloads are dependent on interaction between different subsystems of the

System-on-Chip (SoC), peripherals, external resources and the user such as touch input

during web-browsing. Inevitably, a subset of interactive workloads is affected by delays

caused by data unavailability, e.g. loss or delay of data packets during voice-over-IP. At

the same time, the system is required to respond quickly upon data retrieval to ensure

that the user QoE metrics (frame rate, latency, etc.) are not degraded. To simulate this

environment an experimental setup was created using the ODROID-XU3 development

board running the Android 6.0 Marshmallow Operating System shown in Figure 3.1.

The Google Chrome web-browser was used along with Chrome DevTools used to emulate

user input and throttle network resources, power sensors on the development board were

used to record energy consumption.

The Chrome DevTools WebSocket protocol enables repeatable user input to be emulated,

such as touch gestures to the screen display. User actions available include loading web-

pages, scrolling through webpages and zooming in on webpages. Additionally, resource
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Parameter Category Lower
bound

Upper
bound

Default

timer rate DVFS 1,000 100,000 20,000

target loads DVFS 60 99 99

scaling max freq DVFS 800,000 2,000,000 2,000,000

min sample time DVFS 5,000 500,000 80,000

Table 3.1: Parameters selected from the interactive Dynamic Voltage and Frequency
Scaling governor to be configured.

access-time variation for mobile network conditions is induced using the network em-

ulation which artificially throttles content loading time by adding to the Round-Trip

Time (RTT) latency and limiting upload and download bandwidths. Events collected in

the web-browser trace log are post processed to extract rendering frame rate and con-

tent loading times for various web-pages requests in order to measure the QoS for each

individual emulated user input. At the same time, through a device driver Android pro-

vides direct access to the on-board Exynos-5422 power sensors for energy consumption

measurements.

The default Dynamic Voltage and Frequency Scaling (DVFS) governor for Android

6.0 Marshmallow is the interactive governor, which was selected as the target DPM

policy to be tuned for the experiment. The parameters of the interactive governor

selected for tuning are listed in Table 3.1. The default values are listed along with

the minimum and maximum bounds selected for this experiment to reduce the state

space. scaling max freq is an enumeration, target loads is a threshold, and timer rate

and min sample are timers. timer rate is a timer which controls the time period for

the governor to make decisions based on the CPU utilisation with a default value of

20,000 microseconds. target loads is the target utilisation threshold for the CPU, higher

values will result in a more congested CPU schedule and slower performance, the default

value is 99% to reduce power consumption. scaling max freq sets the maximum CPU

frequency the governor can select, in effect capping the CPU frequency, the default value

is 2.0 GHz. min sample time is the minimum timer period at which the governor must

spend at the current frequency before making a decision based on sampling utilisation,

the default value is 80,000 microseconds.

The proposed approach incorporates both static and dynamic configuration of DPM

policy parameters to compare their efficacy for managing user input and resource access-

time variability. There is an offline profiling stage which uses static configuration of

policy parameters to gather data about the workloads inelasticity with performance
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Figure 3.2: Proposed relationship between static configuration and dynamic configu-
ration of Dynamic Power Management policy parameters.

under varying user input and resource access-times. The results of this inelasticity

analysis are exploited at runtime, either through static configuration again or dynamic

configuration. In the case of static configuration, the best parameter configuration on

average is selected before execution and used for the duration. For dynamic configuration

a sliding scale of runtime variables can be monitored and used to inform parameter

configuration. This runtime data can include user input data predicted using a model,

user input data detected using interrupts and resource access-time variations such as

network conditions as shown in Figure 3.2. As shown in the Figure, offline profiling

using static configuration of parameters provides data pertaining to workload inelasticity

under varying user input and resource access-times. This data is used to inform dynamic

configuration of Dynamic Power Management policy parameters as user inputs and

resource access-times are monitored at runtime.

3.1.2 Quality of Experience and energy trade-offs

In order to determine a score for the DPM parameter configurations evaluated in the

inelasticity analysis process, the Quality of Service (QoS) metrics between the different

input actions must be normalised to derive a comparable QoE. To demonstrate that the

proposed approach is applicable to different interpretations of quantitative derivation

of QoE, two methods of normalisation are used simultaneously; namely, an exponential

decay as proposed by [217] and a linear function for the purposes of a control. A graphical

representation of these functions is shown in Figure 3.3 where QoS metrics of web-page
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Figure 3.3: Exponential [217] and linear models to derive normalised user Quality of
Experience for three user actions in a web browser application; web-page load, scroll
and zoom. The exponential model uses a concept of a floor in user satisfaction [208],

the linear model is a control to investigate the effects of this approach.

load-time and time spent below 60 frames-per-second are translated to normalized QoE

values.

An inelasticity analysis was conducted using the aforementioned user inputs of webpage

load, scroll and zoom along with variation over three network conditions of 3G, 4G and

WiFi. For webpage load, the network throttling used to emulate each of the network

conditions implemented the default parameters suggested by Google Chrome DevTools.

3G, 4G and WiFi connections were emulated by varying the upload bandwidth, download

bandwidth and Round-Trip Time. On-device caching was disabled also using Google

Chrome DevTools to force reloading of network resources, there is also the potential for

caching by Internet Service Providers in the network, this is typically used by Content

Delivery Networks for image and video content and cannot be disabled.

In total 50 different DPM parameter configurations for the four parameters in Table 3.1

to be used for the inelasticity analysis. These included the default parameter configu-

ration and 49 randomly generated alternatives. Random parameter search was imple-

mented rather than an alternative method such as block search due to sample efficiency

required for the sample size of 50, in Chapter 5 a more advanced search techniques is

implemented. The random generation was implemented by uniformly selecting across

the available range of each parameter and mixing these uniform selections. Each DPM
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Figure 3.4: Results from the offline profiling across 50 configurations of Dynamic
Power Management policy parameters. User Quality of Experience and energy con-

sumption are compared for three web-browser actions.

tuning configuration was profiled offline for all the user inputs and network conditions

over 50 repeats and averaged to obtain mean values for QoS and energy. The QoE

normalisation functions were then applied, together with an energy normalisation with

respect to the highest energy recorded. The resulting trade-offs between QoE and energy

are shown in Figure 3.4.

Variation in QoE and energy metrics are observable for all DPM parameter configura-

tions for all user inputs. It should be noted, however, that one parameter configuration

is a distant outlier and hasn’t been plotted, this is because a highly inefficient tuning for

energy conservation was randomly generated. The user inputs which trigger interactive

workloads lasting longer timer periods, such as webpage loading and scrolling, show

larger variation than the shorter zoom user input. This result is not surprising as there

is a fixed overhead for waking up and then sleeping a CPU core.

The effect of resource access-time variability on the QoE of the load input is evident,

when the network is relatively unthrottled in the WiFi scenario, CPU performance is

clearly driving a variation in QoE. However, when the network is throttled in the 3G

case, extra CPU energy is consumed by some parameter configurations for no change

in QoE, this energy is consumed by the CPU due to higher than required performance

being provided when the resources required are the critical path. The 4G case is a
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combination of the two, there still exists a trade-off between QoE and energy but there

is a steeper gradient than the WiFi case.

Once the inelasticity analysis is complete, these profiles may be exploited at runtime.

For this process, the DPM parameter selection will establish a current probability P (A)

for the next input being each of the possible choices A0..k and estimate the access times

for each resource R0..m. Given a pool of n DPM parameter configurations C0..n, each

configuration will be given a score for QoE and energy using equations 3.1 and 3.2

respectively. In these equations, AQoE refers to the QoE resulting from an action given

the resource access-times R0..m and parameter configuration C. Aenergy refers to the

energy consumption resulting from an action given the same conditions.

∀C : CQoE =
k∑

i=0

P (Ai)(1−AQoE(R0..m,C)) (3.1)

∀C : Cenergy =
k∑

i=0

P (Ai)Aenergy(R0..m,C) (3.2)

QoE and energy must be weighted at the system level to determine a trade-off denoted by

wQoE and wenergy. A composite score of QoE and energy is then calculated for each DPM

tuning configuration using equation 3.3. Finally, the minimum score is determined to

determine the parameter configuration that will be chosen for the next user input using

equation 3.4.

∀C : Cscore = wQoECQoE + wenergyCenergy (3.3)

Cchoice = min(Cscore) (3.4)

The inelasticity analysis results highlight ample opportunities to capture energy savings

or QoE improvements for all the user inputs profiled. To validate how the proposed

approach would exploit these opportunities online, we use a Monte Carlo simulation

to generate random interactive workloads and network resource access time conditions.

The simulation evaluates the optimisation equation 3.3 for six variants of the proposed

approach including static configuration and five dynamic configuration variants. The

results are compared considering mean QoE and energy consumption to the default

DPM parameter configuration.

The simulation was executed for 100,000 iterations to observe convergence and repeated

for both linear and exponential methods of calculating the normalized QoE result. The
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weightings for QoE and energy, wQoE and wenergy, were swept from {0, 1} to {1, 0} to

expose the full trade-off curve between QoE and energy dependent on system goals.

The mean QoE and energy consumption values for the variants of the proposed ap-

proach under the generated interactive workloads are shown in Figure 3.5. Quality of

Experience and energy consumption are compared for QoE (wQoE = 1, wenergy = 0),

Energy (wQoE = 0, wenergy = 1) and QoE & energy (wQoE = 0.5, wenergy = 0.5). The

largest improvements are demonstrated when both QoE & energy are considered during

optimisation. The ”QoE” results represent when wQoE = 1, such that there is a full

weighting towards QoE improvement. The ”Energy” results represent when wenergy = 1,

such that there is a full weighting towards energy improvement. The ”QoE & Energy”

results represent when wQoE = 0.5 and wenergy = 0.5 or an equal weighting between

QoE and energy.

The Default approach is the default configuration for the DPM parameters. The Static

approach considers usage of the inelasticity profiles with equal probability of each user

input and network condition occurring. The Dynamic-Network approach adds accurate

detection of current network resource access time. The Dynamic-Predict and Dynamic-

Detect approaches emulate accurate user input prediction and detection respectively.

The Dynamic-Predict+Network and Dynamic-Detect+Network combine accurate detec-

tion of current network resource access time with user input prediction and detection

respectively.

Under most operating conditions, a suitable trade-off between energy and QoE is more

desirable than fully weighting one or the other as shown in Figure 3.5. Instead there is

a full range of Pareto-optimal points which are shown in Figure 3.6 for both methods of

normalisation of the QoE metric. There is minimal qualitative difference between the two

methods of QoE normalisation, this is because the QoS floor used in the exponential

derivation doesn’t overlap substantially with the data points so has minimal effect.

Selection of the parameters used in the QoS floor is individual to the each user’s tolerance

of performance and each application, setting these parameters should be done through

user studies [31].

All variants of the proposed approach demonstrate energy savings and QoE improve-

ments, when compared to the default DPM parameter configuration. The resource

access-time detection used by the Dynamic-Network variant achieves marginal improve-

ment over the Static variant that models current network conditions with equal prob-

ability. Prediction of user input is shown to be more effective by the Dynamic-Predict

and Dynamic-Predict+Network variants. However, detection of user input is the clear

optimal choice as shown by the Dynamic-Detect and Dynamic-Detect+Network variants

which achieved QoE improvements of 27% or energy savings of 13%, in comparison to

the default DPM parameter configuration. In this experiment, the overhead cost of pre-

diction and detection at runtime could not be measured as it is based on a Monte Carlo
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Figure 3.5: A comparison between static Dynamic Power Management policy parame-
ter configuration, various dynamic configuration approaches, and the default parameter

configuration.

simulation, the overhead in time and energy associated with these will reduce the gains

possible by dynamic configuration over static configuration. In the experiments in the

next section, the overheads of running a dynamic configuration approach are measured.
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Figure 3.6: A comparison between the Pareto-optimal curves for the proposed ap-
proach using both exponentially and linearly derived Quality of Experience metrics.

3.2 Dynamic configuration for unseen dynamic workloads

There are two primary flaws in the approach described in Section 3.1 that may hinder its

deployment in some scenarios. Firstly, it requires knowledge of the application, user in-

puts and relevant resource-access times ahead of execution for the offline profiling stage.

Second, even if the offline profiling stage is logistically possible, it is extremely time

consuming and the state-space explosion of adding further DPM policies and parame-

ters would only increase this. In this section, an alternative architecture is proposed for

dynamic configuration of DPM policy parameters for unseen workloads without profil-

ing. Synthetic benchmarks are used along with the Linux Operating System rather than

Android so the relative energy and performance improvements should be interpreted

with scepticism as discussed in Sections 2.3.3 and 1.3.1. The synthetic benchmarks are
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used to obtain nominal performance results from a statically configured governor (Sec-

tion 3.2.1. These results are then compared with the proposed dynamic configuration

architecture and other DVFS governors (3.2.2).

3.2.1 Management of unseen dynamic workloads

The hardware platform used in the previous experiment, the ODROID-XU3 development

board, was also re-purposed for this experiment. Instead of Android, a more conventional

computer architecture research scenario was used, the Linux Operating System, whilst

there is the negative of less representative results, the additional control over the system

widens the possible scope of experimental results. The SoC on the ODROID-XU3 board

is the Samsung Exynos-5422 which uses an ARM big.LITTLE architecture with 4 A15

and 4 A7 cores. For this experiment the applications were tied to the A15 cores using

thread affinities as mapping policies for older big.LITTLE systems are less effective than

recent editions such as Energy Aware Scheduling [51].

MP4 video-decoding applications were chosen to create the synthetic benchmarks due

to their flexibility in computational demands due to variable frame rates and video

codecs. In Figure 3.7 there are execution manifests for the five synthetic benchmarks

used. The applications are started at fixed times during manifest providing Step, Ramp

and Dynamic workload patterns. For the Step workload the four MP4 video-decoding

applications are initiated at the same instance in time in a step response from minimal

computation activity to near maximum. For DPM policies reliant on polling architec-

tures such as the default DVFS governor in Linux this can be problematic as a response

will not occur until the next polling interval. The Ramp workload represents a slower

ramp up and down in computation and the Dynamic-1, Dynamic-2 and Dynamic-3 are

procedurally generated pseudorandom sequences representing less predictable workloads.

For the purpose of establishing the computational intensity of each dynamic workload

benchmark the clock frequency of each A15 CPU core on the ODROID-XU3 was man-

ually pinned to the maximum 2.0GHz using the performance DVFS governor. Figure

3.8 shows the CPU utilisation measured whilst executing the five synthetic benchmarks

from Figure 3.7. The Step workload utilisation shows an initial spike in computational

demand the core utilisation then reverts to near 50% with small temporal variation that

may be caused by conflicting activity between cores or difference in time to decode in-

dividual frames. The Ramp workload exhibits more gradual increases in computation

with corresponding smaller spikes in core utilisation and the Dynamic workloads do not

follow set patterns.

Static configuration of the Linux governors has been demonstrated to offer favourable

power and throughput trade-offs for known workloads [47]. This tuning process is often

ignored for general-purpose computing as the workloads are not known and as offline
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Figure 3.7: Execution manifests for five synthetic benchmarks consisting of four con-
current MP4 video-decoding applications.

profiling violates the objective of the system. This experiment aims to offer a unifica-

tion of runtime application throughput awareness with an existing DVFS governor to

dynamically configure the governor. To understand the potential throughput and power

trade-offs this could unlock for the five workloads in this experiment, the conservative

governor was profiled offline for different up- and down-utilisation threshold parameters

with these five workloads and the results plotted in Figure 3.9. Two parameters of the

governor were varied, the up- and down-utilization thresholds, to obtain a number of

operating points trading-off performance and power. The results are normalised to the

performance governor so that the five workloads may be plotted on the same scale. The

first number in the legend is the up-utilisation threshold which refers to the CPU util-

isation at which the CPU frequency will be increased, the second number is the down

utilisation threshold with the opposite result.
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Figure 3.8: CPU utilisation traces for the five synthetic benchmarks recorded us-
ing the four ARM A15 cores that form the big CPU cluster on the ODROID-XU3

development board.

The default tuning of the conservative governor in the distribution of Ubuntu 14.04

used for experimental purposes has up and down utilisation thresholds set at 80/20, the

results show that this naive tuning offers poor power savings compared to more opti-

mal thresholds which offer increased power savings for little degradation in application

throughput. These results replicate the findings of a previous study based on offline

profiling that used benchmark suite applications [47].
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Figure 3.9: Power consumption and application throughput measured for the five
synthetic benchmarks in Figure 3.8, using the conservative DVFS governor.
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Figure 3.10: Simplified block diagram representing the architecture of the dynami-
cally configured Dynamic Power Management policy.

3.2.2 Architecture for dynamic configuration

Applications report throughput violations to the tuning controller, consecutive violations

are required before an escalation to reduce communication overhead.

The structure of the dynamic configuration architecture is shown in Figure 3.10. The

control flow is started with the tuning controller reducing the performance margin of the

system until one of the executing applications cannot meet throughput requirements. If

sufficient throughput violations are raised an escalation is sent to the tuning controller to

reduce the threshold parameters to increase performance until the escalated application

sends a de-escalation interrupt. After de-escalation, the process resets and the tuning

controller continues to squeeze the performance margin.
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Conversion of a failure to meet application throughput requirements into an escalation

is handled by a filter to reduce communication overhead. If an application fails to meet

its throughput requirements for 75% of the preceding frames, an escalation is made. De-

escalations occur when all the preceding frame history has met throughput requirements.

The tuning controller operates on the same 100,000µs sampling period as the conser-

vative governor it is tuning. If the throughput controller is demanding an increase in

performance, the thresholds are reduced by 5% every sampling period, whereas if the

throughput controller is not demanding an increase, the thresholds are increased by 1%

every sampling period. The 1% threshold increase every period in this approach allows

the tuning controller to reduce the performance margin of the system until throughput

violations occur, the magnitude and frequency of this increase also becomes a tunable

parameter.

If the threshold reduction of 5% is used, it can be determined that if there is a change in

the dynamic workload, the system may move from minimum performance to maximum

performance in the same worst case 2 second period achieved by Linux. The implemen-

tation of the independent governor process acting concurrently to the tuning controller

ensures this as performance is ramped up regardless of the thresholds until the system

reaches a lower utilisation, at which point the thresholds are already very low such that

the conservative governor will continue ramping up performance.

A visualisation of the auto-tuning of the governor is presented in Fig. 3.11, the first

plot is the reference workload utilisation using the performance governor at 2.0GHz

CPU frequency, the second and third plots show the frequency being changed over

time in the conservative governor as the utilisation changes. The fourth plot show the

governor thresholds that are being tuned by the tuning controller, a saw-tooth pattern

is formed as the performance margin is squeezed. Importantly, performance escalation

happens at a faster rate to allow interactivity, but because the system is such low

overhead, the application and throughput controller can interrupt sufficiently promptly

when escalation is complete, that the governor threshold does not drop to zero and

forego all power savings. If performance squeezing also happened at a similar rate as

escalation the system would oscillate and be less effective, it is key that the escalation

gain should be higher than the de-escalation gain.

Comparison was made between the proposed dynamic configuration architecture and

other approaches over the five synthetic benchmarks, results are normalised to the per-

formance governor. The results in Figure 3.12 show that the dynamic configuration and

two static configurations obtained from the offline profiling all are more energy sufficient

than the default governors {ondemand, interactive, conservative} at the expense of a

small degree of performance. Most importantly the dynamic configuration approach is

competitive with the static configurations that used offline profiling demonstrating that

it is possible to do so in scenarios where offline profiling is not feasible.
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Figure 3.11: Visualisation of an execution trace for the Dynamic-1 benchmark using
the proposed dynamically configured governor.
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Figure 3.12: A comparison of application throughput and power consumption be-
tween the default governors {ondemand, interactive, conservative}, two static configu-
rations of the conservative governor and the proposed dynamically configured conser-

vative governor.
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3.2.3 Summary

DPM policy parameters are configured manually on a regular basis in computer systems

including mobile devices, yet until now there has been limited prior research in effective

ways to choose parameter values. This chapter has detailed empirical evidence from

experimentation using mobile System-on-Chips that static and dynamic configuration

of DPM policy parameters offers improvements in performance, energy or a combination

of the two. Variability in user inputs and resource access-times has also been exploited

to profile interactive workloads inelasticity with CPU performance. There remain chal-

lenges including the requirement for data from real mobile devices scaling offline profiling

to multiple DPM policies with additional parameters, both of which will be addressed

in the remaining chapters of this thesis.





Chapter 4

Mitigating Performance

Degradation from Thermal

Throttling

Mobile devices are limited in mass and volume reducing the viability of active device

cooling implementations, this requires the use of less effective passive techniques to

maintain device skin temperature levels (Section 2.1.1). Application performance de-

mands on a modern mobile device are driven by sustained performance workloads, such

as mobile gaming, Virtual and Augmented Reality (Section 2.1.2). Mobile System-on-

Chips have corresponding increases in performance through both architectural changes

and frequency of operation increases; which has resulted in the peak power consump-

tion exceeding the sustainable thermal envelope defined by device skin temperature

requirements (Section 2.1.3). In this chapter, existing thermal throttling techniques

are characterised to show that they mitigate this challenge by capping the frequency of

operation of the System-on-Chip (Section 4.1). A mobile device thermal management

policy using Frequency Capping is demonstrated by executing a 3D video game on a

smartphone (Section 4.1.1) and the effects of Frequency Capping on frame rate janks

in interactive workloads is evaluated (Section 4.1.2). A new DPM lever is proposed to

swap out with Frequency Capping in existing thermal throttling systems to mitigate

some of the interactive performance degradation (Section 4.2). This lever, Task Util-

isation Scaling (TUS) (Section 4.2.1) allows a higher maximum CPU frequency than

Frequency Capping at the same power consumption (Section 4.2.2).

4.1 Device Skin Temperature Throttling

Passive cooling techniques used in mobile devices, such as heat spreaders and pipes

have so far failed to replicate the dissipation characteristics of their active counterparts

61
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Figure 4.1: Thermal throttling rules implemented by the Qualcomm Thermal Engine
used in the Google Pixel 2 (obtained from /vendor/etc/thermal-engine.conf).

(Section 2.1.3). The dissipation characteristics define the thermal envelope, which can

be sustained without the device skin temperature exceeding a level that will cause dis-

comfort or injury to the user; this temperature level is around 45oC [93]. A typical

sustainable thermal envelope for a smartphone is approximately 3.5W [31], although

environmental conditions, including how the device is held by the user, can affect this

number [93]. In this section, the thermal throttling policy of a modern mobile device,

the Google Pixel 2, is demonstrated using a demanding 3D video game (Section 4.1.1).

The effect of the Frequency Capping (FC) implemented by this policy is evaluated by

subjecting interactive mobile workloads to the same FC implementation and measuring

the performance degradation (4.1.2).

4.1.1 Thermal management policy

Thermal throttling policies typically implement limits the maximum frequency at which

an SoC may operate using a DPM lever called Frequency Capping (FC). The relationship

between voltage, frequency and dynamic power dictates that higher frequencies are often

less power-efficient than lower frequencies (Section 2.2). Experimentation was carried

out using the Google Pixel 2 smartphone, running the Android 9.0 Pie operating system

along with the Energy Aware Scheduling patchset in the underlying Linux kernel. Ther-

mal throttling in the Google Pixel 2 smartphone is implemented using the Qualcomm

Thermal Engine, a programmable cross-platform solution. The input to the controller

is a configuration file specifying frequency caps, fcaps, that may be implemented by a

PID controller according to temperature sensor measurements.
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Figure 4.2: An execution sequence of 3D video game Player Unknown Battlegrounds
demonstrating the rules from Figure 4.1 being implemented by the Qualcomm Thermal

Engine.

The Google Pixel 2 implementation shown in Figure 4.1, estimates skin temperature

using a designated thermistor. At 40oC, throttling is initiated; by 47oC, the big CPU

cluster is capped below half its maximum frequency; and at 56oC a device shutdown

is enforced. In addition, the GPU frequency is capped dependent on the temperature

difference measured between the GPU subsystem and the overall SoC package.

In Figure 4.2, a 3D video game (Player Unknown Battlegrounds, maximum graphics,

resolution and FPS) is executed on the Google Pixel 2 to demonstrate thermal throttling

in action. After 151 seconds, throttling is initiated before progressively increasing as the

phone temperature rises to 48oC, which exceeds the discomfort level of 45oC. The big

CPU cluster frequency cap, fcap, is reduced to 1.19GHz from an initial 2.46GHz starting

point.

4.1.2 Frequency Capping

Technical constraints limit performance analysis of individual frames for third-party in-

teractive Android NDK applications such as 3D game engines in a production Android
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Figure 4.3: Experiment setup using the Google Pixel 2 smartphone to measure frame
rate janks and model power consumption.

build. However, the effect of FC on interactive Android SDK applications may be anal-

ysed under enforced frequency caps. Experimental sequences were implemented for four

Android SDK applications: Google Maps, Gmail, YouTube, and Chrome. Each appli-

cation was executed using Android input automation using the Workload Automation

framework [258]. Workload Automation uses Android UI Automator to detect Android

UI elements that when combined with a script can emulate user input in a repeatable

fashion for benchmarking. Compared to synthetic benchmarking techniques, using real

Android applications on a real mobile device is far more representative of real-world

usage (Section 2.3.3).

The execution sequences last for approximately one minute each and the frame rate janks

and frequency and idle state occupancies are traced to model CPU power consumption.

Frame rate janks is a metric dependent on the long-tailed distribution of frame-rendering

times (covered further later in this thesis in Section 5.1, this means that the variance

is high and many repeats must be carried out for a reliable sample mean or median.

Configurations under test have their repeats interleaved to compensate for variance as

network conditions vary during the day, a caveat of experimentation with real devices

and applications.

FC effects were characterised on the experimental sequences from the four Android SDK

applications, Figure 4.4 shows the results. The big CPU cluster under FC is unable to
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Figure 4.4: The effect of frequency capping on frame rate janks over four application
sequences.

use frequencies beyond the defined cap, fcap, even if a spike in computational demand

requires it, this leads to an increase in frame rate janks. The relative and absolute

degradations vary between the applications, with Google Maps exhibiting the highest

relative degradation. The variation in frame rate janks for Google Maps from 5.0% of

frames to 12.2% represents a 146% increase as the frequency cap, fcap, is reduced.

The Google Maps sequence is highly interactive relative to the other applications, driven

by the emulated utilisation involving several click-through, scrolling and zoom events.

Gmail does not render many new frames as there is limited scrolling movement within

the execution sequence. This means the baseline number of janks, which are largely

click-through events, is higher than average but also these click-through events are more

likely to miss their deadline irrespective of CPU frequency limits. Chrome and Youtube

are less demanding applications as a whole and only the lower CPU frequency caps have

a noticeable effect.

Median frame rate jank measurements shown in Figure 4.4 do not in fact paint the full

picture. As previously mentioned, evaluation of frame rate janks will be covered further

later in this thesis in Section 5.1. Figure 4.5 presents data from the same experiment in

more detail, including the quartiles for each fcap and application pair. The experiment

would benefit from more repeats as frame rate janks is inherently a high-variance metric

but trends are still visible for each application. The most surprising result is for Chrome

which benefits from a reduced inter-quartile range from intermediate frequency caps

before widening again from lower frequency caps. This result may be due to a reduction

in CPU idle state transitions as the frequency selected matches the performance required.

Furthermore, this result is also backed up by data from other iterations of the experiment
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Figure 4.5: Comparison of frame rate jank distributions using the same data as
Figure 4.4. The quartiles are plotted for each of the four applications at each frequency

showing that each application is affected differently by Frequency Capping.

and demonstrates that whilst FC has an overall negative effect on frame rate janks, there

are exceptions.

4.2 Swapping the lever for Dynamic Power Management

Frequency Capping (FC) effects were shown in Section 4.1.2 to increase frame rate janks

across interactive mobile applications. In this section, a new DPM lever is proposed,

Task Utilisation Scaling (TUS), designed to be interchangeable with FC in existing
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Figure 4.6: Energy Aware Scheduling high-level architecture [51] of a collection of
improvements designed to improve energy-efficiency and policy coordination in the

Linux Operating System.

thermal throttling systems (Section 4.2.1). TUS is compared to FC and shown to allow

higher maximum frequency at the same power under thermal throttling which mitigates

some of the negative effects on frame rate janks (Section 4.2.2).

4.2.1 Task Utilisation Scaling

The Google Pixel 2 smartphone uses the Energy Aware Scheduling (EAS) patchset in

the underlying Linux kernel [51]. EAS is a recent enhancement to the Linux kernel

which seeks to execute tasks in an energy-efficient fashion, a high-level architecture is

shown in Figure 4.6. A CPU frequency and idle state energy model is profiled offline to

obtain nominal performance and power trade-off values for executing workloads on each

CPU core. At runtime when a new task enters the system, the available CPU cores are

compared to determine the most efficient core with sufficient capacity to execute the task.

Additionally, there is a periodic load balancing that takes place to re-map tasks that are

sustained over a longer period. Initially, when EAS was applied to interactive workloads

there were performance issues as the performance margin (Section 3.2.1) was too small

to allow for variations in computational demand. SchedTune.boost was implemented to

mitigate these issues; it is a multiplier applied to foreground User Interface applications

to artificially inflate their reported task utilisations to increase the performance margin.

A characteristic common to the interactive workloads used in the experiment Section

4.1.2 is that high performance is required for short sporadic periods of time. This may
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Figure 4.7: Effect of frequency capping and task utilisation scaling levers on the
maximum single core frequency available after throttling, fthr, selected by the Energy

Aware Scheduling model.

be a response to user input or the conclusion of a delay waiting for external resources

such as network access. For the remainder of time, the performance required is lower

and less likely to be at a level that would be affected by a frequency cap. In effect,

when an interactive application is executed under a frequency cap, the brief critical

events are throttled and the sustained non-critical periods (where throttling would be

less noticeable) are not throttled.

An approach to thermal throttling, that considers interactive performance, (including

frame rate janks), as well as average frame rate, must throttle the system during non-

critical periods as well as critical periods. The proposed DPM lever Task Utilisation

Scaling (TUS) is designed to achieve this purpose while serving as a drop-in replacement

for frequency capping in existing thermal throttling systems. The SchedTune.boost

functionality may be repurposed for negative boosts to artificially deflate the reported

task utilisations. TUS uses a Task Utilisation Scaling factor, α, for this purpose as shown

in Figure 4.7. By throttling all periods of execution equally using a scaling factor, α,

task utilisation scaling permits a higher maximum fthr than the equivalent frequency

cap, fcap, allows. An α of less than 1.0 artificially deflates the utilisation of all tasks

such that the tasks are mapped to cores by EAS with a smaller or negative performance

margin. Other modifications to EAS are required to remove over-utilisation thresholds

and limit schedutil’s ability to raise performance when throttled. There is no additional

computation requirement to calculate TUS compared to FC in Android as it is already

used by EAS, in systems not deploying EAS there may be a minimal associated overhead

with this.
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Figure 4.8: Frequency occupancy compared for an execution of Gmail with a fre-
quency cap of 1.57GHz on the big CPU cluster. For Task Utilisation Scaling this is

implemented by setting α = 0.63.

4.2.2 Comparison between levers

In theory by throttling the performance of non-critical periods as well as critical periods

of execution, TUS will be able to reallocate the power saved to increase maximum fre-

quency during critical periods. In this section, FC and TUS are compared to understand

these differences in practice.

In Figure 4.8, the CPU frequency occupancies under FC and TUS are compared for an

execution of the Gmail application sequence. FC is configured to enforce a frequency

cap, fcap, of 1.57GHz on the big CPU core. The TUS factor, α, is set to 0.63 which

also allows a maximum frequency of 1.57GHz on the big CPU core but will also throttle

performance lower than this. The data shows that execution on the big CPU core is

largely unchanged as the critical periods are throttled equally by both FC and TUS;

however, the data from the LITTLE core shows that far more time is spent in slower

CPU frequency states under TUS than under FC. TUS throttles background tasks into

lower performance states than FC, in particular, the lowest frequencies of the LITTLE

CPU cluster. This saves power that may optionally be reinvested into executing higher

priority tasks with more performance.

The effect on frame rate janks at all frequencies plotted in Figure 4.9 confirms the finding

suggested by the frequency occupancy data, that the critical periods are throttled equally
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Figure 4.9: Change in frame rate janks from swapping to Task Utilisation Scaling
from Frequency Capping relative to the value using Frequency Capping.

by both FC and TUS. The measurement for frame rate janks is noisy and insufficient

repeats are possible to reduce mitigate this fully (Section 5.1 has more detail and a

proposed solution). It is a challenge to draw conclusions comparing the individual

applications given this noise, but the application that shows the most variance, Google

Maps, was also shown in Figure 4.5, to have the most variance in frame rate janks

under FC. There is no difference in frame-rate janks between FC and TUS in Figure

4.9 when averaged across all frequencies, there is not sufficient data to prove if there

any underlying trends associated with individual frequencies due to the measurement

challenge discussed.

The data in Figure 4.9 can be averaged across all frequencies and applications to show

that overall there is no meaningful increase or decrease in frame rate janks when α is

set such that TUS throttles at the same maximum frequency as FC. This implies that

if this configuration TUS consumes less power than FC for the same performance then

there is the potential to reinvest this power by increasing α. A sufficient increase in α

would also raise the maximum frequency possible under TUS to 1 or more levels above

FC and is likely, therefore, to improve interactive performance including frame rate

janks. Figures 4.10 and 4.11 show this effect, up to 4% power consumption reduction

is possible by switching to TUS from FC and this may be reinvested to increase α with

a relative improvement of up 8.5% in frame rate janks. Power savings are largest when

the frequency cap is lower for all four applications.
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Figure 4.10: Change in CPU power consumption from swapping to Task Utilisation
Scaling from Frequency Capping relative to the value using Frequency Capping.
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Figure 4.11: Improvement in frame rate janks from swapping to Task Utilisation
Scaling from Frequency Capping relative to the value using Frequency Capping when

power saved is reinvested to increase the maximum CPU frequency.

The comparisons between FC and TUS using Android SDK applications (Google Maps,

Gmail, YouTube, and Chrome) has demonstrated that TUS can save improve interactive

performance including frame rate janks at the same power consumption as FC. However,

TUS must also be evaluated against its primary purpose of device skin temperature

throttling. This requires experimentation using sustained performance applications such

as Android SDK applications are not usually thermally constrained.

Figure 4.12 showcases a comparison between FC and TUS for executing the mobile
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Figure 4.12: Device skin temperature measured over time for frequency capping (FC)
and task utilisation scaling (TUS) techniques at {46, 50, 53, 56} frames-per-second

performance in 3D mobile game Player Unknown Battlegrounds.

game Player Unknown Battlegrounds as in Figure 4.2. This Android NDK applica-

tion is extremely computationally demanding when configured to the maximum display

resolution, graphics and FPS limits. As before, the Task Utilisation Scaling factor α

was configured to match the fcap used by FC. For all four fcaps measured this resulted

in the same average FPS, this was expected as the maximum CPU frequency was the

same. However, for all four fcaps, TUS remained 1-2oC below FC in device skin temper-

ature. This difference is observed due to the reduced power consumption from throttling

non-critical periods of execution.

4.3 Summary

Device skin temperature throttling has emerged as significant power challenge in mobile

devices as cooling techniques cannot keep pace with the power dissipation from emerging

sustained performance applications. This chapter has investigated the Dynamic Power

Management lever used by many device thermal throttling systems, Frequency Capping,

showing through experimentation the increase in frame rate janks it causes in interactive

applications. A new DPM lever was proposed, Task Utilisation Scaling, that throttles

both non-critical and critical periods of execution. When compared with Frequency

Capping it consumes less power at the same performance, this power can be reinvested in
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higher interactive performance including frame rate janks. Task Utilisation Scaling was

also evaluated for efficacy in device thermal throttling itself comparing favourably with

Frequency Capping. Further investigation is required to determine if Task Utilisation

Scaling is viable across other devices and applications, but it shows promise in mitigating

some of the negative effects of device thermal throttling.





Chapter 5

Accelerating the Profiling of

Mobile DPM Policy Parameters

The challenges facing mobile Dynamic Power Management (DPM) are well understood

and were summarised in Chapter 2. However, limited empirical evidence of tuning DPM

policies has been recorded so challenges in this process are less clear. Commercial imple-

mentations of the DPM tuning process in industry are confidential and the results rarely

shared as it is a differentiator between competing device manufacturers. In Chapter 3,

one such tuning challenge was shown to be the scale of the DPM policy parameter space

and corresponding time required by offline profiling for static and dynamic configura-

tion. Furthermore, in Chapter 4, the high-variance of the frame rate janks measurement

was a challenge for both the evaluation and analysis that followed. In this chapter, these

new challenges uncovered by the work of this thesis are further explored with solutions

proposed. In Section 5.1, the reasons behind the high variance in frame rate janks mea-

surements are investigated (Section: 5.1.1) and a new metric is proposed, PPPx, as an

estimator for frame rate janks to accelerate evaluation (Section 5.1.2). PPPx is vali-

dated in a DPM policy tuning process of greater scale than that of Chapter 3 in Section

5.2. Three separate DPM policies are included along with their respective threshold,

feature flag and timer parameters (Section 5.2.1). A tuning process was derived to tune

these policy parameters and then put into practice to evaluate the potential of static

configuration of DPM parameters for both performance and energy improvement when

executing interactive mobile applications (Section (5.2.2).

5.1 Evaluation of frame rate janks

Mobile device DPM policy parameters have proved to be particularly challenging to

tune as a result of diverse interactive workloads and performance metrics focused on tail

latencies and nth percentile performance. In this section, evaluation of frame rate janks

75
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Figure 5.1: Probability Density Functions for frame rate janks during application
execution on a Google Pixel 2 smartphone at two CPU frequency caps {1.056GHz,

2.458GHz}.

is investigated to explore the high variance in measurement compared to other metrics

such as CPU energy (Section 5.1.1). It is proposed that a new metric, PPPx, is used to

estimate frame rate janks measurement to overcome this challenge (Section 5.1.2).

5.1.1 Multimodal frame rate jank distributions

In mobile devices, important interactive performance metrics include frame rate janks

and latency (Section 2.3.1). Frame rate janks is a measure of the number of frames for

which the rendering deadline is missed, 16.7ms in the case of 60 FPS. In Chapter 4, frame

rate janks was shown to be a high variance measurement with the noise induced proving

a challenge for analysis of the effect of thermal throttling on interactive performance.

Investigation used the same experimental setup shown in Figure 4.3 including the same

four interactive mobile applications (Google Maps, Chrome, Youtube and Gmail) with

execution sequences from Workload Automation [258].

Each application execution sequence was repeated 150 times on the Google Pixel 2

smartphone for two CPU frequency caps, 1.056GHz and 2.458GHz, the Probability

Density Functions (PDFs) are shown in Figure 5.1. The selection of 150 repeats is due

to a constraints on total execution sequences per experiment of 750 due to limitations

of the experimental setup. There are three patterns observable from the data: first

the probability density function of frame rate janks is multimodal for the three of the

four applications that require the most network resource accesses. Secondly, frame rate

janks measurements exhibit high variance due to reliance on nth percentile performance
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Figure 5.2: Number of benchmark runs required to detect a 1% difference in mean
CPU energy model and frame rate janks between two parameter configurations at the

95% confidence level.

[102]. Thirdly, the distributions change when the CPU frequency cap and, therefore,

performance are varied.

The multimodal probability density functions observed exacerbate the high variance

measurement of frame rate janks. In Figure 5.2, the number of benchmark runs required

to detect a 1% change in mean in either a CPU energy model metric or frame rate

janks is compared using a 95% confidence level. The CPU energy model uses CPU

frequency and idle state occupancy to estimate energy consumption (Section 4.2.2). For

the three applications exhibiting a multimodal probability density function, the number

of benchmark runs required for frame rate janks is between a 17x and a 758x multiple.

In absolute terms, to detect a 1% difference in mean frame rate janks at the 95% con-

fidence level can require over 11,000 repeats of a benchmark lasting approximately one

minute. If this is converted into device days (a device day is 24-hours of continuous

benchmarks on one mobile device), then the result is over seven device days. The ex-

periments in Chapters 3 and 4 would both have taken multiple years to run if evaluated

at this confidence level. Yet both experiments require significantly more data to prove

efficacy, perhaps orders of magnitude more results when further applications and devices

are considered. A further problem is that a 1% difference in mean frame rate janks is

not necessarily a marginal gain when considering tuning DPM policy parameters and it

would be useful to compare smaller differences than this.

Clearly there is a challenge in evaluating frame rate janks within a reasonable time-

frame, in a commercial mobile device lab they proposed DPM policies are disabled to

increase repeatability [112], evidently this is not an option for evaluation of DPM policy

tuning. The standard metric used as a proxy for frame rate janks is to measure the
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Figure 5.3: Frame rendering times probability density functions at 2.458GHz and
1.056GHz CPU frequencies, with peak probabilities at 8.3ms, 25.0ms, 41.7ms.

nth percentile frame rendering time [102]. The PDFs of frame rendering times using the

same experiment data as Figure 5.1, are shown in Figure 5.3 for Google Maps. The PDF

of frame rendering times are plotted using a logarithmic scale because they exhibit a

long-tailed distribution. The majority of frame deadlines are met successfully therefore

the probability of a frame rendering time being between 0 and 16.7ms is significantly

higher.

The PDF curves are not smooth, with peak probabilities at 8.3ms, 25.0ms, 41.7ms. The

significance of these times is that 8.33ms is halfway between 0ms and the 60 FPS frame

deadline of 16.7ms, 25.0ms is halfway to a second missed deadline of 33.3ms, and this

pattern continues. If the nth percentile frame rendering time chosen is between two of

these peaks, then the distribution is multimodal with increased variance. For Google

Maps at 1.056GHz, 95th percentile would be a low variance choice; however, if the

frequency cap is increased to 2.458GHz then this would be a high variance choice. Across

all four applications this pattern is visible, in particular, the peak probability at 25.0ms

causes the largest increases in variance. The variation of nth percentile variance presents

a problem when tuning DPM policy parameters as it will vary between configurations.
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Figure 5.4: Number of benchmark runs required to detect a 1% difference in mean
frame rate janks between two parameter configurations at the 95% confidence level.
The value for janks is for measuring janks directly, the values for {PPP1, PPP2, PPP3,

PPP4, PPP5} are for comparing indirectly PPPx.

5.1.2 PPPx: A new metric for estimating frame rate janks

The peak probabilities in the probability density function in Figure 5.3 are problematic

for estimating frame rate janks using a nth percentile approach. However, the peak

probabilities also offer an opportunity as their locations are fixed at 8.3ms, 25.0ms,

41.7ms regardless of CPU performance. Instead of measuring the nth percentile frame

rendering time, this can be reversed such that the Peak Probability Percentiles are

measured in a new metric, namely PPPx. PPPx, like nth percentile frame rendering

times is designed as an estimator for frame rate janks.

The initial PPPx is at 8.3ms (PPP0), the next at 25.0ms (PPP1), the next at 41.7ms

(PPP2) and this pattern continues. For example, at 1.056GHz, the PPP1 is 93.0%

and at 2.458GHz it is 96.7%. From this we can conclude that 7.0% of frames take

longer than 25.0ms to render at 1.056GHz and 3.3% at 2.458GHz, this is compared

to a mean of 198.8 and 106.5 janks respectively. There is over an order of magnitude

difference in frequency between frame rendering times that miss one deadline and two

deadlines. In addition, frame rendering times for one deadline miss are approximately

normally distributed unless DPM is configured to shift this. It follows that 1-PPP1 is

approximately equal to half the overall frame rate janks.
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Figure 5.5: Comparison between a model derived from the PPP5 (percentile at
91.7ms) and measured janks for Google Maps. The measured plot uses the same data
as Figure 5.1. A Gaussian Mixed Model was constructed by fitting a linear relationship
between the mean, weight, standard deviation and the PPP5 for two components as

shown in Figure 5.6.

The best PPPx to use varies between application and must be profiled in the same way

as the nth percentile frame rendering time metric. In general, the PPP1 is best correlated

with frame rate janks, but higher PPPx choices have less relative variance and, therefore,

require fewer benchmark repeats. In Figure 5.4, the PPPx choices are compared for each

of four applications. For the three applications with multimodal jank distributions, the

PPP5, PPP3 and PPP2 are optimal; for the unimodal jank distribution application,

Gmail, it is optimal to instead measure the janks directly. The speed-up compared to

measuring janks directly is up to 43.3x.

The probability density function for janks may be fitted from the percentiles measured

by decomposing the multimodal function into a mixture of gaussians. In Figure 5.5,

a Gaussian Mixed Model (GMM) with two components was created from the janks

probability density function. Each of the two components has a mean, weight and

standard deviation estimated at five frequency caps between 1.056GHz and 2.458GHz.

The relationship between PPPx and frame rate janks is approximately linear unlike the

standard metric using a fixed nth percentile which is related by a polynomial function.
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Figure 5.6: Correlation between PPPx metrics (PPP1 and PPP5) and the compo-
nents of a Gaussian Mixed Model for Google Maps frame rate janks.

GMM component means and weights are simple to fit using a linear relationship whereas

GMM component standard deviation can be more difficult due to its reliance on more

data for an accurate estimation. In Figure 5.6, PPP1 and PPP5 are fitted for Google

Maps GMM mean, weight and standard deviation components. It is observable that

the lack of data at higher performance levels for the 2nd GMM component means the

standard deviation correlation is not as strong, an alternative approach would be to

extrapolate results from the performance levels where there was sufficient data. Irre-

spective of this, the proposed metric of measuring the PPPx is shown to be sufficiently

correlated to use as a reasonable estimator for frame rate janks and brings along with a

speedup of evaluation of up to 43.3x.
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Parameter Category Minimum Maximum Default

scaling max freq DVFS 300,000 2,457,600 2,457,600

up rate limit us DVFS 1 N/A 500

down rate limit us DVFS 1 N/A 20,000

sched use walt cpu util Load Tracking 0 1 1

sched use walt task util Load Tracking 0 1 1

sched walt init task load pct Scheduler 0 100 0

sched tunable scaling Scheduler 0 2 0

sched child runs first Scheduler 0 1 1

sched latency ns Scheduler 100,000 N/A 10,000,000

sched migration cost ns Scheduler 1,000 N/A 500,000

sched min granularity ns Scheduler 100,000 N/A 3,000,000

sched wakeup granularity ns Scheduler 1,000 N/A 2,000,000

Table 5.1: Dynamic Power Management parameters selected for tuning in the Google
Pixel 2 kernel across Dynamic Voltage and Frequency Scaling, load tracking and the
scheduler. Valid parameter values are heterogeneous including binary, categorical and

integer types.

5.2 Tuning Dynamic Power Management policies using PPPx

The DPM policy parameter tuning experiments in Chapter 3 only considered the pa-

rameters of DVFS policies. In this section, static configuration is evaluated for the

parameters from three DPM policies. An order for static configuration is derived based

on characteristics of the DPM policy parameters (Section 5.2.1). The order is then im-

plemented using the proposed metric - PPPx - to determine potential improvements in

energy and frame rate janks across the four applications (Section 5.2).

5.2.1 Policies, parameters and the tuning process

DPM policies included for tuning were a DVFS policy, a Load Tracking (LT) policy

and the scheduling policy. Parameters selected for configuration are listed in Table
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5.1 along with their category, minimum, maximum and default values. The selection

includes three DVFS policy parameters, two LT policy parameters and seven scheduler

parameters. Value types include enumerations, thresholds, feature flags and timers.

Using the example of the benchmarks from Workload Automation [258] in the previous

experiments, it is only possible to execute around 1000 benchmark runs per device

day. Over a sustained period of running benchmarks on a device without restarting, the

performance drifts, which limits the effective sample set size. It is not desirable to restart

the device every run as that is not representative of real-world usage; empirically it was

determined that the maximum set size for the Google Pixel 2 setup was 500 benchmark

runs that can be compared reliably. Furthermore, the parameter configurations under

test should be executed in turn before repeating to reduce the effect of performance

drift.

The limited sample set size for comparison of benchmark runs means that static con-

figuration must take place in stages to allow sufficient repeats. Manual configuration

instructions are available for some parameters, but others have limited published infor-

mation about their function. To understand the function of the LT policy and scheduler

policy parameters, initial profiling experiments were carried out using the Google Maps

execution sequence from the experimental setup used in Section 5.1. The 500 benchmark

run sample size was divided into 25 configurations with 20 repeats each, a compromise

between wider comparison and frame rate jank measurement accuracy.

LT policy parameters are two binary feature flags which define the LT algorithm used

for tracking CPU utilisation (sched use walt cpu util) and individual task utilisation

(sched use walt task util). The feature flags select between Per Entity Load Track-

ing (PELT) and Window Assisted Load Tracking (WALT), the default configuration

is for WALT to be used for both CPU and task utilisation tracking. In Figure 5.7,

the four combinations of PELT and WALT were evaluated with random scheduler pa-

rameters. PPP1 and a CPU energy model (Section 5.1) were evaluated as metrics.

The performance and energy metrics are clearly divided into clusters by the LT fea-

ture flags, of which the default setting (cpu=WALT, task=WALT) is lower performance

than (cpu=PELT, task=WALT). For Google Maps it is therefore optimal to use PELT to

track CPU load and WALT to track task load. Mixing and matching PELT and WALT

is defined as experimental in a tuning guide [51]; it is standard practice to use either

WALT or PELT but not both. This finding of ignoring tuning guide recommendations

for improved performance was also found in datacentre application tuning [105].

The scheduler parameters each make marginal adjustments to the task scheduling logic.

In Figure 5.8, the aforementioned LT policy combination of (cpu=PELT, task=WALT)

was used but varied the scheduler parameters over 25 configurations. There were varia-

tions in energy and PPP1 between parameter configurations, albeit smaller than those

of the LT feature flags. Additionally, it was observed there was noise added to the PDF
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Figure 5.8: Comparison of 25 scheduler parameter configurations using the LT-tuned
configuration from Figure 5.10.

for frame rendering times which reduced the correlation between the PPPx and the

corresponding frame rate janks.
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Default parameter configuration
Load Tracking (LT): Default values
Dynamic Voltage and Frequency Scaling (DVFS): Default values
Scheduler (Sched): Default values

LT-tuned configuration
LT:
sched use walt cpu util: {0, 1}
sched use walt task util: {0, 1}
DVFS: Default values
Sched: Default values

LT & DVFS-tuned configuration
LT: As LT-tuned
DVFS:
scaling max freq: {1804800, ..., 2457600}
up rate limit us: {1, ..., 10000}
down rate limit us: {100, ..., 100000}
Sched: Default values

LT, DVFS & Sched-tuned configuration
LT: As LT & DVFS-tuned
DVFS: As LT & DVFS-tuned
Sched:
sched walt init task load pct: {0, ..., 100}
sched tunable scaling: {0, 1, 2}
sched child runs first: {0, 1}
sched latency ns: {100000, ..., 100000000}
sched migration cost ns: {1000, ..., 100000000}
sched min granularity ns: {100000, ..., 100000000}
sched wakeup granularity ns: {1000, ..., 100000000}

Figure 5.9: Stages of the static configuration process for mobile DPM parameters
determined through initial experiments. At each stage the parameters from the best

configurations of the previous stage are used unless specified otherwise.

Based on these initial experiments, the static configuration order in Figure 5.9 was

determined. Starting from a base of default parameter configuration for DVFS, LT and

scheduler, there are three stages of tuning. First the LT feature flags are configured;

experiments clearly showed that these divide the parameter space into four clusters

and the distance between these clusters is large enough that interactions with other

parameters should not be relevant. Secondly, the DVFS parameters are tuned with the

best LT configuration; in this case each of the parameters have had their ranges reduced

to a subset of the total space but still extending above and below default values. Thirdly,

the scheduler parameters are configured using the best LT and DVFS configuration.

In each stage of the tuning process, the Divide and Diverge Sampling (DDS) technique,

proposed independently by Chapter 3 of this thesis and another work [1, 105], is used to

sample the 25 parameter configurations. DDS divides the full range of each parameter

by the number of configurations, in this case 25, and mixes the ranges together (diverges)
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Figure 5.10: Comparison of the four LT configurations across all four applications.
Three of the four LT permutations are selected across the applications which is evidence

of the value in tuning even binary feature flags specific to each application.

for all the parameters. In the case of timer parameters, a logarithmic scale was used for

sampling due to the wide range of possible values.

5.2.2 Performance improvements and energy savings

The static configuration order detailed in Figure 5.9 was carried out for four applications

on the Google Pixel 2 using the Workload Automation execution sequences [258]. In

each stage of the tuning process, the sample set size of 500 was divided into up to

25 parameter configurations with 20 repeats each. For the summary results, the best

configuration from each tuning stage was repeated 100 times in the same experiment to

achieve more accurate results for comparison.

The LT tuning stage for Google Maps has already been shown in Figure 5.7; the de-

fault configuration (cpu=WALT, task=WALT) was shown to be inferior in performance

to (cpu=PELT, task=WALT). The respective LT tuning stages for all applications are

illustrated in Figure 5.10. The configuration selected for Chrome was the default config-

uration of (cpu=WALT, task=WALT), for Youtube either (cpu=PELT, task=WALT)

or (cpu=WALT, task=WALT) could have been selected and for Gmail (cpu=WALT,

task=PELT) was selected. Across the four applications (cpu=PELT, task=PELT) was
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Figure 5.11: Comparison of 25 DVFS parameter configurations for all four applica-
tions Maps using the optimal LT configuration. The selected configurations are circled;
they were selected due to lower CPU energy at near-maximum performance. A Pareto

front of other parameter configurations is visible.

not selected but the other three combinations were. This static configuration stage

further reinforces the application dependent response of tuning DPM policy parameters.

In Figure 5.11, 25 configurations of DVFS parameters are compared; the LT configura-

tion was brought forward from the previous stage. Whilst there were higher performance

configurations along the Pareto-optimal curve, the selected configurations were chosen

for reduced energy consumption. The best configurations had minimal reductions in

CPU frequency but had lower rate-limits to ramp up and down in frequency faster.

PPP4 was used for Google Maps as a trade-off between the lowest variance metric - PPP5

- and the highest correlation with frame rate janks metric - PPP1. PPP1 was used for

Chrome, Gmail and Youtube. Data from a wider range of applications is required to

understand why the frame-rate janks for some applications has a stronger correlation

between PPP4 and PPP5 than other applications. Google Maps offers the widest range

of trade-offs between performance and energy, followed by Chrome. Gmail and Youtube

do not benefit from large performance gains and therefore the optimisation is focussed

on energy.

If more granularity in trade-offs was required, then the 500 benchmark runs could be

divided into more configurations with fewer repeats and the reverse is true for more
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Figure 5.12: Comparison of 25 scheduler parameter configurations for all four appli-
cations using the optimal LT and DVFS configurations. The configurations selected
due to their improved performance are circled; however, there is minimal difference in

energy or performance between the configurations tested.

accurate results. Moreover, the range of valid values for the DVFS policy parameters

could be reduced or increased based on preliminary profiling.

In Figure 5.12, 25 configurations of scheduler parameters are compared; the LT and

DVFS configurations were brought forward as before. As in Figure 5.8, there appears to

be minimal difference between configurations but this is evaluated with greater accuracy

in the 100 repeat comparison. Irrespective of this, optimal parameter configurations are

selected using PPP1 and energy model metrics. As there was more performance variation

than for energy, selected configurations were picked based on highest performance only.

A representative idea of performance may be achieved by comparing percentiles of frame

rendering time over 20 benchmark runs; however, as shown in Figure 5.5 the frame rate

janks model derived from PPPx is not perfect and 20 runs is not a large sample. To

overcome this and to obtain comparable results, the best configuration from each stage

of the tuning process was compared in the same test over 100 runs. The result for

frame rate janks is in Figure 5.13 and that of energy in Figure 5.14. It is observable

from the results that, for Google Maps the largest differential in frame rate janks comes

from tuning the LT feature flag parameters. In the case of energy, it is the expected

result that tuning DVFS parameters has the most effect. Either the LT & DVFS or LT,

DVFS & Sched configurations are improvements over the default configuration. The

improvement in mean frame rate janks is 6% and the mean energy reduction is 4%. In
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Figure 5.13: Frame rate janks compared over 100 benchmark runs between the stages
of the static configuration including the default configuration.
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Figure 5.14: CPU energy compared over 100 benchmark runs between the stages of
the static configuration including the default configuration.

addition, there is a significant reduction in 99th percentile frame rate janks for LT &

DVFS, although it is not clear if this is repeatable over a larger sample size.
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Application
Mean
janks

90th %ile
janks

99th %ile
janks

Mean
energy

90th %ile
energy

99th %ile
energy

Google Maps
Default
LT
LT & DVFS
LT, DVFS & Sched

90.8
85.7
85.2
88.4

110.1
110.0
108.0
119.4

149.0
134.3
113.0
201.2

0.849
0.917
0.817
0.813

0.896
0.968
0.855
0.847

0.931
0.999
0.884
0.875

Chrome
Default
LT
LT & DVFS
LT, DVFS & Sched

50.3
50.3
52.5
45.4

125.1
125.1
130.1
99.0

148.0
148.0
143.1
148.0

0.939
0.939
0.884
0.890

0.974
0.974
0.918
0.915

0.999
0.999
0.957
0.952

Youtube
Default
LT
LT & DVFS
LT, DVFS & Sched

83.5
79.7
86.5
87.6

128.0
118.0
133.1
131.0

141.4
139.1
149.1
160.0

0.673
0.695
0.543
0.553

0.692
0.718
0.552
0.549

0.771
0.800
0.952
0.988

Gmail
Default
LT
LT & DVFS
LT, DVFS & Sched

42.2
39.8
41.7
42.2

52.0
51.1
53.0
53.1

55.0
62.0
58.1
65.1

0.735
0.738
0.567
0.551

0.791
0.812
0.636
0.591

0.938
0.958
0.753
0.682

Table 5.2: Summary results for mean, 90th and 99th percentile frame rate janks and
CPU energy.

The results from each static configuration stage are not identical across all applications

tested. There is the possibility that some of this effect results from the random sampling

used in DDS; however, it is mostly related to each application’s behaviour requiring

different DPM tuning. In Table 5.2, the summary results across all four applications and

for all tuning stages are listed. For example, for Chrome, the default LT configuration

was optimal without modification, but the mean frame rate janks was reduced by 10%

and the 90th percentile janks by 24% when the scheduler parameters were tuned. Neither

Youtube nor Gmail saw notable reductions in frame rate janks from tuning; however,

tuning both DVFS and the scheduler resulted in reductions in CPU energy consumption

by 14% and 25% respectively. In some cases, it may have been advantageous to test more

than 25 parameter configurations during a stage to obtain an improved configuration.

There is naturally a trade-off between profiling time and results with diminishing returns

as the sample size of parameter configurations is increased.

Trends in optimal parameter values across all application were as follows: all four ap-

plications used a CPU frequency below maximum and benefit from lower rate-limits to

speed-up frequency ramp-up and down; out of the four permutations of LT configuration,

three were selected across the four applications; and, finally, for scheduler parameters,
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reductions in the wakeup granularity (sched wakeup granularity ns) improved perfor-

mance at the expense of energy.

In total across the four applications, the results show reductions in frame rate janks

by up to 10% and CPU energy by up to 25%. Traditionally, DPM policies require

reductions in performance to conserve energy and vice versa on a Pareto-optimal front.

Results from this case study permit simultaneous improvements in frame rate janks and

CPU energy. Implementation of the static configuration process using was executed in

two device-days per application, whereas if frame rate janks were measured, the process

would have required more than two device-months per application. This was made

possible by the up to 43.3x speedup gained from evaluation using the proposed metric

PPPx.

5.3 Summary

An important interactive performance metric for mobile applications - frame rate janks

- exhibits a high variance that is prohibitive for a DPM tuning process. The standard

metric used as a proxy for frame rate janks is also vulnerable to high variance under

variations in performance. This chapter has proposed a new metric - PPPx - measuring

the Peak Probability Percentiles of frame rendering times, which can speed-up tuning by

up to 43.3x. PPPx was validated in a case study tuning the parameters of three DPM

policies across four applications. The static configuration process that was executed

in two device-days per application would otherwise have taken more than two device-

months per application of benchmark runs. Results showed differences in response to

tuning for each application with reductions in frame rate janks by up to 10% and CPU

energy by up to 25%. These figures are the best available to quantify the potential gains

by tuning Dynamic Power Management in commercial devices compared to the current

state-of-the-art in manual configuration. It is likely that further gains may be achieved

by continuing research in this area with a focus on scaling performance evaluation such

that the state space of policy parameters and applications can be enlarged.





Chapter 6

Conclusions and Research

Opportunities

Dynamic Power Management (DPM) of mobile devices remains a key challenge faced by

device manufacturers. Battery life extension and skin temperature throttling must be

traded-off with user Quality of Experience (QoE) to determine a performance operating

point. This is in the face of the increasing computer architecture complexity and growing

DPM policy parameter state spaces. Chapters 2, 3, 4 and 5 have targeted the research

aims listed in Section 1.4. In this chapter, the contributions towards these research aims

are discussed along with both limitations of the findings and their wider implications for

the field of DPM for mobile devices (Section 6.1). Following these conclusions, future

research opportunities are highlighted that offer the potential to further develop the

contributions of this thesis (Section 6.2).

6.1 Conclusions

Evidence presented in Chapters 1 and 2 leaves no doubt that mobile device Dynamic

Power Management will be stretched further in the future. Application performance

demands from mobile System-on-Chips continue to grow unabated outpacing both bat-

tery storage capacity and passive cooling technique innovation. In computer architec-

ture, design metrics such as security and reliability have added to an ever-growing list.

System-on-Chips are becoming more modular with reconfigurable IP-based design and

with this approach the parameter space increases further. Despite this, researchers con-

tinue to place importance on adaptive hardware and software solutions to solve this

introducing even more parameters. The requirement to tune mobile device Dynamic

Power Management policy parameters only grows larger as the effect of these trends are

accumulated. This thesis has not sought to follow the well-trodden path of developing

a complex adaptive power management policy that seeks a one-size-fits-all approach to

93
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runtime Dynamic Power Management. On the contrary, the problem of tuning Dy-

namic Power Management policy parameters has been addressed directly, proving that

there is value in the idea of not ripping up the existing Power Management frameworks

and instead harnessing their capabilities through systematic tuning. The research aims

in Section 1.4 embrace this concept and the contributions towards these will now be

presented.

The beginning of Chapter 1 reviewed the rapid growth and then commoditisation of the

mobile device market since the release of the first smartphone. In a commodity market,

margins have fallen, and device manufacturers must focus their resources on research

areas with the best return on investment. A business case for tuning mobile Dynamic

Power Management parameters may not be made without quantification of the perfor-

mance and power improvements that are achievable through its use. In Section 3.1, an

experiment that tuned a mobile Dynamic Power Management policy for executing web

browsing applications efficiently was documented. Variability in resource access-times

and user input was exploited using offline profiling and the results used in dynamic

configuration for up to 13% CPU energy savings or a user Quality of Experience im-

provement of 27%. The size of these figures is not revolutionary by any means but when

put in context of other architectural improvements to Dynamic Power Management poli-

cies not insignificant. The limitations of this experiment were twofold. First, despite

using a mobile System-on-Chip and Operating System, a real mobile device wasn’t used.

Secondly, only three user input types were tested in a single application, this is far from

the scale required to develop a business case. The experiment in Section 5.2 went some

way to remedying these limitations. A modern mobile device was used - the Google

Pixel 2 smartphone - and four applications were evaluated with configuration of three

Dynamic Power Management policies. The results were similar in magnitude to the

first experiment but swapped between performance and energy, with a user Quality of

Service improvement of up to 10% and a CPU energy reduction of up to 25%. Multiple

data points from devices, applications and policies forms the start of quantifying the

potential improvements achievable but there will always be an insatiable demand for

more data given the scale of the research problem.

If this thesis was compiled even half a decade previously, device skin temperature throt-

tling would have been a minor concern. The technology race in mobile devices means

that research must be constantly evaluated to ensure relevancy with current and future

challenges. Skin temperature throttling solutions have been rapidly developed in indus-

try to tackle the challenge, but the only side-effects considered have been on average

performance metrics. Section 4.1.2 demonstrated that this approach was short-sighted

in disregarding the effect of Frequency Capping on interactive performance such as frame

rate janks. The study did have technical limitations requiring data from sustained per-

formance Android NDK applications to be combined with Android SDK applications
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to reach its conclusions. Nevertheless, the importance of thorough performance analy-

sis when designing and tuning Dynamic Power Management systems was highlighted.

The new Dynamic Power Management lever proposed - Task Utilisation Scaling - was

designed to use existing capabilities in the Dynamic Power Management framework of

the Google Pixel 2. The performance or power gain possible would likely be categorised

as marginable, yet in its favour is the design which permits drop-in replacement of

Frequency Capping in existing systems with minimal friction. It should not be under-

estimated the roles of simplicity and ease of implementation in driving adoption of new

techniques.

Global deployment of datacentre applications by major technology companies has cre-

ated the economies of scale for profitable investments in performance analysis and tuning

research. Static configuration of software and Operating System parameters using sys-

tematic processes has been shown to outperform manual tuning by human experts. The

number of datacentre applications is far lower than in mobile applications so to achieve

the same economies of scale, the cost of tuning must be lowered. Section 5.1 inves-

tigated the reasons why detecting a small change in frame rate janks, an interactive

performance measurement, can require over 750x the benchmark repeats as a CPU en-

ergy model. This finding has so far only included interactive mobile applications with

significant network usage but may prove widely applicable. Latency measurements were

not been considered but with a similar long-tailed distribution may also suffer from the

same problem. The solution proposed - a new metric PPPx - was shown to speedup

evaluation of frame rate janks by up to 43.3x. This is an order and a half magnitude im-

provement, more of which will be required to propel static configuration into widespread

use. Performance and power models have thus far largely been focussed on absolute ac-

curacy, by considering relative accuracy to compare configurations more gains could

be achieved. Validation of PPPx highlighted it is vulnerable to noise introduced in the

distribution of frame rendering times, but this was overcome by choosing more conserva-

tive values of x such as PPP1 rather than PPP5. The validation experiments requiring

8 device-days in total rather than 8 device-months was testament to the potential in

accelerated evaluation of performance and power metrics.

In conclusion, this thesis cannot present a definitive business case for widescale deploy-

ment of tuning processes for mobile Dynamic Power Management policies; however,

results are sufficiently promising to recommend pilot studies at a moderate scale across

more mobile devices and applications. These pilot studies would require capital in-

vestment in approximately 100 mobile devices and at that point the quantification of

potential performance and power improvements would be clear enough to determine if

the business case exists.
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Figure 6.1: Breakdown of applications in the Google Play Store in the top 25 cate-
gories - data from [259].

6.2 Research opportunities

6.2.1 Scale and accelerating performance evaluation

Experiments in both Chapter 3 and 5 raised implications that the size of the DPM policy

parameter space is one of the greatest barriers to static and dynamic configuration.

These experiments only considered one and four applications respectively, with each

application demonstrating substantially different responses to changes in DPM policy

parameters. These applications do not come close to representing the full diversity of

applications executed on mobile devices. In Figure 6.1, a breakdown of the top 25

categories of applications in the Google Play Store is presented. Despite there being

over 3,000,000 applications already listed, over 100,000 new applications are released

each month. A small number of these may account for a majority of overall downloads

but it is still apparent that the surface has barely been scratched in application diversity.

Each application can exhibit different performance characteristics that affect the optimal

tuning of Dynamic Power Management policies.
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There are a number of possibilities to scale the size of tuning experiments to both more

DPM policy parameters and more applications, some of these are listed below.

1. Mobile devices could be deployed at scale for performance tuning in the same

manner as mobile device labs have been deployed for compatibility and regression

testing [110, 111, 112].

2. PPPx shows the potential of developing new interactive performance metrics to

estimate frame rate janks and latency measurement, this could also be extended

to energy and thermal models.

3. Each new DPM policy parameter to be tuned requires additional experimentation,

some of the parameters tuned in Section 5.2 provided marginal or no gains, if DPM

policy parameters and the range of values were selected systematically it would be

more efficient [109].

4. The order for the static configuration process in Section 5.2 was derived empirically,

if interference between DPM policy parameters was systematically computed then

fewer benchmark repeats would be required.

5. Some applications exhibit similar performance characteristics or are based on the

same underlying application engine, learning between these applications about

optimal DPM policy parameter configurations could be shared to tackle the volume

of applications detailed in Figure 6.1.

6. Notwithstanding privacy concerns, profiling of DPM parameter settings could be

deployed on user devices to form part of the initial profiling of DPM policy pa-

rameters and their effect on application performance, this data could be combined

across devices in a federated learning process.

Investment in mobile device DPM tuning equipment and technology requires a busi-

ness case that will depend on further case studies quantifying the potential benefit in

performance, energy and skin temperature. These case studies could demonstrate that

investment in systematic tuning of mobile DPM policy parameters is more cost effective

than investment in designing new computer architectures, software application tuning

or other techniques currently employed to benefit performance.

6.2.2 Hierarchical Reinforcement Learning

Dynamic configuration of DPM policy parameters was compared using approaches of

both offline profiling and application API communication. There remain many avenues

to be explored in architectures for dynamic configuration that use these techniques as

well as new approaches. Conflicts in policy have plagued the traditional model of isolated
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Figure 6.2: Hierarchical control system architecture for on-chip dynamic resource
management [191, 193, 194].

DPM control for individual SoC subsystems such as the Linux power governors [38, 39].

Research has been undertaken into hierarchical control systems for dynamic configura-

tion that allow the transfer of DPM policy between SoC subsystems [191, 193, 194].

These hierarchical approaches are promising in their ability to scale to more complex

hardware and applications due to their localised low-latency control of the underlying

DPM levers that centralised control systems are unable to provide. An example hier-

archical control system architecture is shown in Figure 6.2. The supervisory controller

manages high-level goals of power (temperature and energy) and application Quality of

Service. Policy transfer to low-level controllers is made by dynamic configuration of gain

parameters for Instructions-per-second (IPS) and power. The low-level controller uses

the gains in a closed control loop to set core frequency.

State-of-the-art DPM controllers are being implemented using Reinforcement Learning

(RL) [52, 196, 197, 198], these present a problem for DPM policy transfer between

levels of the hierarchy. Current hierarchical control systems must retrain the low-level

controllers each time the performance and power constraints imposed from above change

[194]. This contrasts with non-RL solutions where gains may be adjusted continuously

without disruption [191]. There is an open research question in how to incorporate

DPM policy transfer in hierarchical reinforcement learning continuously, one possibility

is through use of variable reward functions [260].
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