Data from: The genomic bases of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae)
Data from: The genomic bases of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae)
Ecological speciation, driven by adaptation to contrasting environments, provides an attractive opportunity to study the formation of distinct species, and the role of selection and genomic divergence in this process. Here, we focus on a particularly clear-cut case of ecological speciation to reveal the genomic bases of reproductive isolation and morphological differences between closely related Senecio species, whose recent divergence within the last ~200,000 years was likely driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain morphologically and ecologically distinct, despite active gene exchange. Here, we report a high-density genetic map of the Senecio genome and map hybrid breakdown to one large and several small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions which are characterized by a significant increase in relative (F(ST)), but not absolute (d(XY)), interspecific differentiation. They also correspond to some of the regions of greatest marker density, possibly corresponding to 'cold-spots' of recombination, such as centromeres or chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We also detected three genomic regions with significant transmission ratio distortion (TRD), possibly indicating accumulation of intrinsic genetic incompatibilities between these recently diverged species. One of the TRD regions overlapped with a cluster of high species differentiation, and another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species may have occurred due to a complex interplay of ecological divergence and accumulation of intrinsic genetic incompatibilities.
Chapman, Mark A
8bac4a92-bfa7-4c3c-af29-9af852ef6383
Filatov, Dmitry A
852abb4f-5426-4cf6-8122-66d834480e06
Hiscock, Simon J
74e2b6d9-77a8-46ce-9d00-dfb326d34433
Chapman, Mark A
8bac4a92-bfa7-4c3c-af29-9af852ef6383
Filatov, Dmitry A
852abb4f-5426-4cf6-8122-66d834480e06
Hiscock, Simon J
74e2b6d9-77a8-46ce-9d00-dfb326d34433
(2016)
Data from: The genomic bases of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae).
Zenodo
doi:10.5061/dryad.gb6g6
[Dataset]
Abstract
Ecological speciation, driven by adaptation to contrasting environments, provides an attractive opportunity to study the formation of distinct species, and the role of selection and genomic divergence in this process. Here, we focus on a particularly clear-cut case of ecological speciation to reveal the genomic bases of reproductive isolation and morphological differences between closely related Senecio species, whose recent divergence within the last ~200,000 years was likely driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain morphologically and ecologically distinct, despite active gene exchange. Here, we report a high-density genetic map of the Senecio genome and map hybrid breakdown to one large and several small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions which are characterized by a significant increase in relative (F(ST)), but not absolute (d(XY)), interspecific differentiation. They also correspond to some of the regions of greatest marker density, possibly corresponding to 'cold-spots' of recombination, such as centromeres or chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We also detected three genomic regions with significant transmission ratio distortion (TRD), possibly indicating accumulation of intrinsic genetic incompatibilities between these recently diverged species. One of the TRD regions overlapped with a cluster of high species differentiation, and another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species may have occurred due to a complex interplay of ecological divergence and accumulation of intrinsic genetic incompatibilities.
This record has no associated files available for download.
More information
Published date: 1 June 2016
Identifiers
Local EPrints ID: 448515
URI: http://eprints.soton.ac.uk/id/eprint/448515
PURE UUID: 0938dc46-2391-456d-bb77-f9cc34372596
Catalogue record
Date deposited: 23 Apr 2021 16:35
Last modified: 06 May 2023 01:48
Export record
Altmetrics
Contributors
Contributor:
Dmitry A Filatov
Contributor:
Simon J Hiscock
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics