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The aim of this report is to derive theoretical expressions for the far-field pressure gener-
ated by disturbances convecting over a trailing edge. First, a general calculation of the
far-field pressure is discussed. Then the classical theory of Amiet (1976b) is reviewed,
listing the most relevant assumptions. Amiet’s theory is then revised for two-dimensional
flows.

1 General calculation of far-field pressure

The starting point is Goldstein’s formulation (Goldstein, 1976, chapter 4) of the acoustic
analogy which represents the fundamental equation governing the generation of aerody-
namic sound in the presence of solid boundaries in a moving reference frame

p(x, t) =
∫ T

−T

∫

ν(τ)

∂2G

∂yi∂yj

T
′
ij(y, τ)dydτ

+
∫ T

−T

∫

S(τ)

∂G

∂yi

fidS(y)dτ +
∫ T

−T

∫

S(τ)
ρ0V

′
n

∂G

∂τ
dτ . (1)

fi = −ni(p − p0) + njτij is the ith component of the force per unit area exerted by the
boundaries on the fluid, τij is the viscous stress tensor and ni denotes the ith component
of the inward normal vector n. Here, the streamwise, the wall-normal and the spanwise
directions are denoted by the subscripts i = 1, 2, 3, respectively. x = xi and y = yi are
the far field and the surface co-ordinates, respectively.
Neglecting the viscous stress-tensor components, the force acting on the fluid per unit
length by the airfoil is given by fi = −nipt(y, τ), where pt(y, τ) is the unsteady pressure
disturbance on the airfoil surface. It is assumed that the volume-quadrupole sources
generated by the shear-stress components in the boundary layer are negligible compared
with the dipole sources on the airfoil surface. Furthermore, the airfoil is considered rigid,
i.e., the third term of equation (1) represents a steady pressure which does not radiate
sound. Thus, equation (1) reduces to

p(x, t) = −
∫ T

−T

∫

S
∆pt(y, τ)ni

∂

∂yi

G(x, t; y, τ)dS(y)dτ , (2)

where ∆pt(y, τ) denotes the pressure difference from the top and bottom side of the airfoil
or flat plate, and G(x, t; y, τ) is the radiation Green’s function.
Fourier transforming the far-field pressure with respect to time gives the acoustic pressure
at a single frequency due to the unsteady loading on the airfoil

p(x, ω) =
1

2π

∫ ∞

−∞
p(x, t)eiωtdt

= − 1

2π

∫ T

−T

∫

S
∆pt(y, τ)ni

∂

∂yi

∫ ∞

−∞
G(x, t; y, τ)dtdS(y)dτ

=
1

2π

∫ −T

T

∫

S
∆pt(y, τ)I(x, y, ω)dS(y)eiωτdτ , (3)

with

I(x, y, ω) = −ni
∂

∂yi

G(x, y, ω) . (4)
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Defining

∆pt(y, τ) =
∫ ∞

−∞
∆pt(y, ω0)e

−iω0tdω0 , (5)

where an overbar defines a quantity in the frequency domain, and applying the relation

δ(ω0 − ω) =
1

2π

∫ T

−T
e−i(ω0−ω)τdτ , (6)

we can write (3) as

p(x, ω) =
∫

S
∆pt(y, ω)I(x, y, ω)dS(y) . (7)

When dealing with turbulent flows, it is preferred to use statistical quantities (e.g. Amiet,
1975). Therefore, the cross power spectral density (PSD) is oftentimes used and is defined
as

Spp(x, ω) = lim
T→∞

π

T
E {p(x, ω)p∗(x, ω)}

= lim
T→∞

π

T

∫

Sy

∫

Sz

E
{
∆pt(y, ω)∆p∗t (z, ω)

}
I(x, y, ω)I∗(x, z, ω)dS(y)dS(z)

=
∫

Sy

∫

Sz

SQQ(y, z, ω)I(x, y, ω)I∗(x, z, ω)dS(y)dS(z) , (8)

where ∗ denotes the complex conjugate, E{} is the expected value, and it was assumed
that I(x, y, ω) and dS(y) are not time-dependent.
Hence, the input for the far-field pressure cross-PSD is the cross-PSD of the total pressure
distribution (comprised of the incident and the scattered pressure field) on the surface
(SQQ). There are two different options for obtaining SQQ:

1. The total pressure distribution on the surface ∆pt(y, ω) is known. This is the case
for DNS calculations where the entire time-series of the surface pressure is written
to file. Then

SQQ(y, z, ω) = lim
T→∞

π

T
E

{
∆pt(y, ω)∆p∗t (z, ω)

}
. (9)

2. The total pressure distribution on the surface ∆pt(y, ω) is not known. For example,
in an experiment the pressure at the trailing edge will be hard, if not impossible, to
measure. Here, only the incident pressure field farther upstream can be measured.
According to Amiet (1976a), the total pressure field at the trailing edge can be
determined from the incident pressure field through a transfer function g(y, ω)

∆pt(y, ω) = g(y, ω)pi(y, ω) . (10)

Thus, we can compute SQQ(y, z, ω) from

SQQ(y, z, ω) = g(y, ω)g∗(z, ω)Sqq(y, z, ω) , (11)

where Sqq(y, z, ω) = lim
T→∞

π

T
E

{
pi(y, ω)p∗i (z, ω)

}
.
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1.1 Derivation of 3-D Green’s function in moving reference frame

The integral equation (1) is derived for a moving reference frame, hence the Green’s
function G needs to be a solution for the wave equation with mean flow. The convected
wave equation takes the form


∇2 − 1

c2

(
∂

∂τ
+ U

∂

∂y1

)2

 G3(x, y, t, τ) = −δ(y − x)δ(τ − t) . (12)

Using the relation β2 = 1−M2 with M = U/c results in

[
β2 ∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

− 1

c2

∂2

∂τ 2
− 2U

c2

∂2

∂y1∂τ

]
G3(x, y, t, τ) = −δ(y − x)δ(τ − t) . (13)

The following coordinate transformation is applied in order to obtain the wave equation
for a stationary medium

Y1 = y1 , Y2 = βy2 , Y3 = βy3 ,

T = βτ +
MY1

βc
, ω̃ =

ω

β
, k̃ =

k

β2
, c̃ = cβ . (14)

With

∂2

∂y2
1

=
∂2

∂Y 2
1

+ 2
M

c̃

∂2

∂Y1∂T
+

M2

c̃2

∂2

∂T 2
,

∂2

∂y2
2

= β2 ∂2

∂Y 2
2

,
∂2

∂y2
3

= β2 ∂2

∂Y 2
3

,

∂2

∂y1∂τ
= β

∂2

∂Y1∂T
+

βM

c̃

∂2

∂T 2
,

∂2

∂τ 2
= β2 ∂2

∂T 2
, (15)

the wave equation becomes

[
∂2

∂Y 2
1

+
∂2

∂Y 2
2

+
∂2

∂Y 2
3

− 1

c̃2

∂2

∂T 2

]
G3(X,Y , t̃, T ) = −δ(Y −X)δ

(
T

β
− MY1

βc̃
− t̃

)
. (16)

The Green’s function for the above three-dimensional wave equation is known as (e.g.
Crighton, 1975)

G3(X, Y , ω̃) =
1

4πR̃
ei[ω̃T+k̃R̃] , (17)

with R̃ =
√

(Y1 −X1)2 + (Y2 −X2)2 + (Y3 −X3)2.
Inverting the above transformation coordinates and substituting them into the stationary
medium Green function results in

G3(x, y, ω) =
1

4πR
e
iω

{
τ+ 1

β2c
[M(y1−x1)+R]

}
, (18)

with R =
√

(y1 − x1)2 + β2 [(y2 − x2)2 + (y3 − x3)2] .
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1.2 Derivation of 2-D Green’s function in moving reference frame

In two dimensions, the convected wave equation takes the form


∇2 − 1

c2

(
∂

∂τ
+ U

∂

∂y1

)2

 G2(x, y, t, τ) = −δ(y − x)δ(τ − t) . (19)

Using the relation β2 = 1−M2 with M = U/c gives

[
β2 ∂2

∂y2
1

+
∂2

∂y2
2

− 1

c2

∂2

∂τ 2
− 2U

c2

∂2

∂y1∂τ

]
G2(x, y, t, τ) = −δ(y − x)δ(τ − t) . (20)

The following coordinate transformation is applied in order to obtain the wave equation
for a stationary medium

Y1 = y1 , Y2 = βy2 ,

T = βτ +
MY1

βc
, ω̃ =

ω

β
, k̃ =

k

β2
, c̃ = cβ .

The wave equation becomes

[
∂2

∂Y 2
1

+
∂2

∂Y 2
2

− 1

c̃2

∂2

∂T 2

]
G2(X,Y , t̃, T ) = − 1

β
δ(Y −X)δ

(
T

β
− MY1

β3c̃
− t̃

)
. (21)

The Green’s function for the two-dimensional stationary medium wave equation in fre-
quency space is known as (c.f. Crighton, 1975)

G2(X,Y , ω̃) =
1

4i
H

(2)
0

[
ω̃T + k̃R̃

]
, (22)

with R̃ =
√

(Y1 −X1)2 + (Y2 −X2)2 and H
(2)
0 denoting a Hankel zeroth order function of

the second kind. Note, that H(2)
ν (z) = Jν(z)− iYν(z).

Inverting the above transformation coordinates and substituting them into the stationary
medium Green function results in the two-dimensional Green’s function in frequency space

G2(x, y, ω) =
1

4βi
H

(2)
0

{
ωτ +

ω

β2c
[M(y1 − x1) + R]

}
, (23)

with R =
√

(y1 − x1)2 + β2(y2 − x2)2.

4



2 Amiet’s theory for three-dimensional flow

Stationary turbulent flow is considered. If the total pressure difference on the airfoil
cannot be determined, a surface pressure jump relation needs to be obtained. The incident
pressure difference ∆pi convects in the streamwise direction over a plate (−2 < y1 < 0)
and produces a scattered pressure field ∆ps which radiates into the far-field. Note that
all co-ordinates xi and yi are nondimensionalized with the semi-chord b in the following.
The total pressure difference on the airfoil is the sum of the incident pressure difference
and the scattered pressure difference

∆pt = ∆pi + ∆ps . (24)

At the trailing edge, the Kutta condition is assumed to hold, i.e. ∆pt = 0. The condition
of no-flow across the airfoil is also imposed. With the above assumptions, Amiet (1976a)
uses the Schwartzschild solution to derive an airfoil surface pressure jump (for incident
pressure fluctuations on one side of the airfoil)

∆p̂t(y1, k3, ω, Uc) = HD(y1, k3, ω, Uc)p̂i(y1, k3, ω, Uc) (25)

HD(y1, k3, ω, Uc) = fi(y1, k3, ω, Uc) + HS(y1, k3, ω, Uc)

HS(y1, k3, ω, Uc) =





(1 + i)E∗


−




√√√√µ2
0 −

(
k3

β

)2

+ µ0M +
ωb

Uc


 y1


− 1





,

where the reduced frequency µ0 = ωb/(cβ2), and fi scales the incident pressure. The
function E∗ is a combination of Fresnel integrals

E∗(x) =
∫ x

0

1√
2πξ

e−iξdξ . (26)

When a spectral component of the incident pressure disturbance can be represented as

p̂i(y1, k3, ω, Uc) = p0e
i[ω(t−y1b/Uc)−k3y3] , (27)

the total pressure jump (normalized with p0) can be evaluated as

∆pt(y1, k3, ω, Uc) = HD(y1, k3, ω, Uc)e
−i(ωy1b/Uc+k3y3) . (28)

Note that the total surface pressure difference is also a function of the convection speed
when computed using the surface pressure jump function. Originally, fi was set to unity
to account for the incident pressure. However, in a later paper, Amiet (1978) introduced
a convergence factor ε to gradually decrease the incident pressure towards the leading
edge

fi(y1, k3, ω, Uc) = eεωby1/Uc . (29)

The airfoil pressure jump due to all spanwise wavenumber components is therefore

∆pt(y1, y3, ω, Uc) =
∫

HD(y1, k3, ω, Uc)p̂i(y1, k3, ω, Uc)e
ik3y3dk3 , (30)
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and the cross-PSD of the total surface pressure difference becomes

SQQ(y1, y3, z1, z3, ω) =
∫

HD(y1, k3, ω, Uc)H
∗
D(z1, k3, ω, Uc)Sqq(y1, z1, k3, ω, Uc)e

ik3(y3−z3)dk3 .

(31)
With the 3-D Green’s function known and the pressure jump function given, an expression
for the farfield pressure can be derived as a function of the incident pressure spectrum.
I(x, y, ω) for a flat plate becomes

I(x, y, ω) = −n2

∂G3(x, y, ω)

∂y2

= −y2 − x2

R

[
β2

R
− i

ωb

c

]
G3(x, y, ω) . (32)

Making the far field assumption |x| >> |y| leads to

R ≈ σ − x1y1 + β2x3y3

σ
, (33)

with σ =
√

x2
1 + β2(x2

2 + x2
3). For large R, I(x, y, ω) then simplifies to

I(x, y, ω) =
iωx2b

4πcσ2
e
i ωb
cβ2

[
σ−x1y1+β2x3y3

σ
+M(y1−x1)

]
. (34)

Inserting the above expression into the far-field pressure equation (3) and assuming that
the far-field sound is produced by a point force of strength per unit area F (y1, y3, ω)eiωt

in a stream of Mach number M , Amiet (1975) gives

p(x, ω) =
∫ ∫ 1

2π
F (y1, y3, ω)eiωt iωx2b

4πcσ2
e
i ωb
cβ2

[
σ−x1y1+β2x3y3

σ
+M(y1−x1)

] ∫
eiωτdτdy1dy3

=
iωx2b

4πcσ2

∫ ∫
F (y1, y3, ω)e

iωb

[
t
b
+

M(y1−x1)+σ

cβ2 −x1y1+β2x3y3
σcβ2

]
dy1dy3 (35)

In order to get the PSD, multiply with the complex conjugate

Spp(x, ω) =

(
iωx2b

4πcσ2

)2 ∫ ∫ ∫ ∫
SQQ(y1, y3, z1, z3, ω)

e
iωb

[
t
b
+

M(y1−x1)+σ

cβ2 −x1y1+β2x3y3
σcβ2

]
e
−iωb

[
t
b
+

M(z1−x1)+σ

cβ2 −x1z1+β2x3z3
σcβ2

]
dy1dy3dz1dz3

= −
(

ωx2b

4πcσ2

)2 ∫ ∫ ∫ ∫
SQQe

iωb
c

[
(y1−z1)

β2 (M−x1
σ )+

x3
σ

(z3−y3)

]
dy1dy3dz1dz3 . (36)

If the total surface pressure cross-PSD (SQQ) is known, the above relation can be used
directly.
In case only the incident pressure field is available, inserting SQQ from equation (31) into
the far-field pressure PSD gives

Spp(x, ω) = −
(

ωx2b

4πcσ2

)2 ∫ ∫ ∫
HD(y1, k3, ω, Uc)H

∗
D(z1, k3, ω, Uc)

∫
ˆ̂
Sqq(k1, k3, ω, Uc)dk1

e
iωb

c

[
(y1−z1)

β2 (M−x1
σ )

]
dy1dz1

∫ ∫
ei(z3−y3)(ωb

c

x3
σ
−k3)dy3dz3dk3 . (37)
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Now, define

L(x1, k3, ω, Uc) =
∫ 0

−2
HD(y1, k3, ω, Uc)e

−iµ0y1(M−x1
σ )dy1 . (38)

A closed form analytical solution exists for (38) and is given in Amiet (1976b).
The far-field pressure PSD simplifies to

Spp(x, ω) = −
(

ωx2b

4πcσ2

)2 ∫
|L|2

∫
ˆ̂
Sqq(k1, k3, ω, Uc)dk1

∫ ∫
ei(z3−y3)(ωb

c

x3
σ
−k3)dy3dz3dk3 .

(39)
Integrating over the spanwise coordinate (−d ≤ x3 ≤ d), which is also nondimensionalized
with b, and assuming infinite span

∫ d

−d

∫ d

−d
ei(z3−y3)(ωb

c

x3
σ
−k3)dy3dz3 = 4

sin2
[
d

(
ωbx3

cσ
− k3

)]

(
ωbx3

cσ
− k3

)2 ,

lim
d→∞

sin2
[
d

(
ωbx3

cσ
− k3

)]

(
ωbx3

cσ
− k3

)2
πd

∣∣∣∣∣∣∣
x3=0

→ δ

(
ωbx3

cσ
− k3

)∣∣∣∣∣
x3=0

= δ(−k3) , (40)

we get

Spp(x, ω) =

(
ωx2b

2πcσ2

)2

πd|L(x1, 0, ω, Uc)|2
∫

ˆ̂
Sqq(k1, 0, ω, Uc)dk1 . (41)

Brooks version (Brooks & Hodgson, 1981) of Corcos’s spectrum is

ˆ̂
Sqq(k1, k3, ω, Uc) = S0(ω)S1(k1)S3(k3) . (42)

The frozen spectrum Ŝqq can be related to the non-frozen spectrum
ˆ̂
Sqq as

Ŝqq

(
ωb

Uc

, k3

)
=

∫ ∞

−∞
ˆ̂
Sqq(k1, k3, ω, Uc)dω , (43)

with k1 = ωb
Uc

for frozen turbulence. Therefore,

∫ ∞

−∞
ˆ̂
Sqq(k1, 0, ω, Uc)dk1 =

b

Uc

∫ ∞

−∞
ˆ̂
Sqq(k1, 0, ω, Uc)dω =

b

Uc

Ŝqq(k1, 0) . (44)

Employing the approximation (Amiet, 1975)

Ŝqq(k1, 0) =
1

π

ly(ω)

b
UcSqq(ω, 0) , (45)

with ly(ω) denoting the frequency-dependent spanwise correlation length, we finally arrive
at ∫ ∞

−∞
ˆ̂
Sqq(k1, 0, ω, Uc)dk1 =

1

π
ly(ω)Sqq(ω, 0) . (46)

The far-field spectrum for an observer in the x3 = 0 plane therefore is

Spp(x, ω) =

(
ωx2b

2πcσ2

)2

d|L(x1, 0, ω, Uc)|2ly(ω)Sqq(ω, 0) , (47)

corresponding to the classical result of Amiet (1976b).
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3 Deriving Amiet’s theory for two-dimensional flow

In two dimensions, equation (1) reduces to

p(x, t) = −
∫ T

−T

∫

C(τ)
∆pt(y, τ)

∂

∂y2

G2(x, t; y, τ)dy1dτ . (48)

when making the same assumptions as for the three dimensional case. The acoustic
pressure in the far-field becomes

p(x, ω) =
∫

C
∆pt(y, ω)I2(x, y, ω)dy1 , (49)

with

I2(x, y, ω) = − ∂

∂y2

G2(x, y, ω) . (50)

The PSD is

Spp(x, ω) =
∫

Cy

∫

Cz

SQQ(y, z, ω)I2(x, y, ω)I∗2 (x, z, ω)dy1dz1 . (51)

As for the 3-D case, if the total pressure distribution on the surface is known, Spp can be
evaluated directly. Otherwise, the transfer function for the surface pressure jump needs
to be used.

The airfoil surface pressure jump (due to Amiet, 1976a, 1978) is given as

∆pt(y1, ω, Uc) = HD(y1, ω, Uc)pi(y1, ω, Uc) (52)

HD(y1, ω, Uc) = eεωy1b/Uc + HS(y1, ω, Uc)

HS(y1, ω, Uc) =

{
(1 + i)E∗

[
−

(
µ0(1 + M) +

ωb

Uc

)
y1

]
− 1

}
,

where the reduced frequency is again defined as µ0 = ωb/(cβ2). Considering a spectral
component of the incident pressure disturbance

pi(y1, ω, Uc) = p0e
iω(t−y1/Uc) , (53)

the total pressure (normalized with p0) becomes

∆pt(y1, ω, Uc) = HD(y1, ω, Uc)e
−i(ωy1b/Uc) (54)

The PSD of the total surface pressure difference becomes

SQQ(y1, z1, ω) = HD(y1, ω, Uc)H
∗
D(z1, ω, Uc)Sqq(y1, z1, ω, Uc) . (55)

With the 2-D Green’s function known and the pressure jump function given, an expression
for the farfield pressure can now be derived as a function of the incident pressure spectrum.
I2(x, y, ω) for a flat plate becomes

I2(x, y, ω) = − ∂

∂y2

[
1

4βi
H

(2)
0 {µ0 [M(y1 − x1) + R]}

]

= − i(y2 − x2)ωb

4βcR
H

(2)
1 {µ0 [M(y1 − x1) + R]} . (56)
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Expecting that the form of the 2-D Green’s function (Hankel function) does not allow
for an analytical solution similar to that of L in the 3-D case, the far field assumption
|x| >> |y| is not made in the 2-D case. Therefore, the final solution will be valid in the
entire integration domain (outside of the boundary layer, because the Green’s function
was derived for a convection velocity U) and not restricted to the far-field. Inserting
I2(x, y, ω) into the far-field pressure equation (49) and assuming that the far-field sound
is produced by a point force of strength F (y1, ω)eiωt per unit chord in a stream of Mach
number M (Amiet, 1975) we obtain

p(x, ω) =
∫ 1

2π
F (y1, ω)eiωt i(y2 − x2)ωb

4βcR
H

(2)
1 {µ0 [M(y1 − x1) + R]}

∫
eiωτdτdy1

=
i(y2 − x2)ωb

4βc
eiωt

∫ 1

R
F (y1, ω)H

(2)
1 {µ0 [M(y1 − x1) + R]} dy1 . (57)

In order to get the PSD, multiply with the complex conjugate

Spp(x, ω) = −
(

(y2 − x2)ωb

4βc

)2 ∫ ∫ 1

Ry1Rz1

SQQ(y1, z1, ω)H
(2)
1 {µ0 [M(y1 − x1) + Ry1 ]}

H
(1)
1 {µ0 [M(z1 − x1) + Rz1 ]} dy1dz1 , (58)

where Rφ =
√

(φ− x1)2 + β2(y2 − x2)2, H(1)
ν (z) = Jν(z) + iYν(z), and H(2)

ν (z) = Jν(z)−
iYν(z). Provided the total surface pressure cross-PSD (SQQ) is known, the above relation
can be used directly.

In case only the incident pressure field is available, inserting SQQ from equation (55) into
the far-field pressure PSD gives

Spp(x, ω) = −
(

(y2 − x2)ωb

4βc

)2 ∫ ∫ 1

Ry1Rz1

HD(y1, ω, Uc)H
(2)
1 {µ0 [M(y1 − x1) + Ry1 ]}

H∗
D(z1, ω, Uc)H

(1)
1 {µ0 [M(z1 − x1) + Rz1 ]}

∫
Ŝqq(k1, ω, Uc)dk1dy1dz1 . (59)

Defining

M =
∫ 0

−2

1

R
HD(y1, ω, Uc)H

(2)
1 {µ0 [M(y1 − x1) + R]} dy1 , (60)

we can write

Spp(x, ω) = −
(

ω(y2 − x2)b

4βc

)2

|M|2
∫

Ŝqq(k1, ω, Uc)dk1 . (61)

Finally, assuming a frozen disturbance field where S1(k1) → δ(k1 − ωb/Uc),
∫ ∞

−∞
Ŝqq(k1, ω, Uc)dk1 =

∫ ∞

−∞
S0(ω)δ(k1−ωb/Uc)dk1 =

∫ ∞

−∞
S0(ω)δ(ω−k1Uc/b)dω = S0(ω) ,

(62)
we arrive at the final result for the two dimensional far-field pressure PSD

Spp(x, ω) = −
(

ω(y2 − x2)b

4βc

)2

|M|2S0(ω) . (63)
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Recall that, unlike for the 3-D case, this solution is valid in the entire area outside the
boundary layer as no far-field approximation was made.

3.1 Single frequency formulation

Conducting a single frequency calculation (such as a Tollmien-Schlichting wave over a
trailing edge), the evaluation of the PSD is not necessary. Instead, the computation of
the farfield pressure p(x, ω) is sufficient.

By setting F (y1, ω)eiωt = ∆pt(y1, ω, Uc) = HD(y1, ω, Uc)pi(y1, ω, Uc), equation (57) be-
comes,

p(x, ω) = − iω(y2 − x2)b

4βc

∫ 0

−2

1

R
HD(y1, ω, Uc)pi(y1, ω, Uc)H

(2)
1 {µ0 [M(y1 − x1) + R]} dy1 .

(64)
Placing the surface at y2 = 0 and using the streamwise wavenumber Kx = ωb/Uc the final
expression is

p(x, ω) =
iωbx2

4βc

∫ 0

−2

1

R
HD(y1, Kx)pi(y1, Kx)H

(2)
1 {µ0 [M(y1 − x1) + R]} dy1 . (65)

Note again that this solution is also applicable in the near-field.
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