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Lattice-Based mmWave Hybrid Beamforming
Shanxiang Lyu, Zheng Wang, Zhen Gao, Hongliang He, Lajos Hanzo, FIEEE

Abstract—Conventional hybrid precoding and combining
based transceivers require a large number of high-resolution ra-
dio frequency (RF) phase shifters (PSs), which impose prohibitive
hardware costs and power consumption. To address the above is-
sue, both partially connected RF PSs and low-resolution PSs have
been proposed. However, the performance limits of these low-cost
designs have not been investigated theoretically. Furthermore,
there is room for improvement in their spectral efficiency. To
fill this knowledge gap, we derive the mean square error perfor-
mance discrepancy between an optimal precoder/combiner and
the hybrid analog-digital precoder/combiner under the constraint
of 1-bit PSs relying on lattice theory. Then, by observing that
this performance gap can be reduced by deactivating parts of
the PSs whilst improving both the spectral and energy efficiency,
we develop an adaptive RF PS connection network. To resolve
the associated hybrid precoding and combining problems, we
appropriately adapt Babai’s algorithm from the lattice decoding
literature. Our simulation results demonstrate the superiority of
the proposed scheme both in terms of its spectral and energy
efficiency.

Index Terms—Lattices, massive MIMO, hybrid beamforming,
Babai’s algorithm.

I. INTRODUCTION

To meet the escalating increase in data traffic predicted
for the next generation networks, millimeter-wave (mmWave)
multiple-input multiple-output (MIMO) antenna arrays consti-
tute a promising solution. Hence they have drawn extensive
attention both from academia and industry [1]–[4], since that
they have several GHz unallocated bandwidth which is much
wider than the 80 MHz bandwidth of the fifth generation (5G)
networks. At such short wavelengths, packing a large number
of antennas into a compact space also becomes possible.
Hence flexible transmit precoding techniques can be utilized
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for compensating the high path loss of mmWave carrier
frequencies [5]–[7].

To realize mmWave MIMOs in real-world systems, a huge
obstacle is the excessive power consumption of large antenna
arrays, since each antenna of a fully digital MIMO system
requires a dedicated radio-frequency (RF) chain (e.g., digital-
to-analog converters, mixers, etc.) [8]. While analog beam-
forming seems to be a potential alternative as it only employs a
single RF chain to reduce the hardware complexity and power
consumption, it fails to support multi-stream communications
[9], [10]. To mitigate this drawback, hybrid precoding [11]
has been put forward as a cost-effective transceiver solution,
which utilizes a limited number of RF chains to connect
the digital baseband precoder/combiner and the analog RF
precoder/combiner. Hence numerous authors have investigated
efficient analog and digital schemes conceived for hybrid
precoding [11]–[18]. The pioneering technique of Ayach et al.
[11] formulates the associated entropy maximization problem
as a sparse signal reconstruction problem. Later in [12], an
alternating minimization algorithm combined with manifold
optimization and semi-definite relaxation was proposed by
Yu et al. to attain a near-optimal performance. However, the
phase shifters (PSs) of these schemes usually require infinite
resolutions, and the number of PSs is large. These facts suggest
that the schemes still suffer from relatively high hardware cost
and energy consumption.

A pair of amendments have been proposed for further
reducing the hardware cost and power consumption. I) The
first is to employ either finite or low-resolution PSs [19]–
[21]. Within this setting, the straightforward way of designing
beamformers with finite resolution PSs is to design them
assuming infinite resolution first and then to quantize the
value of each PS to a finite set. However, this approach is
inefficient for systems having very low resolution PSs and
specific algorithms should be designed. Dedicated algorithms
include the classic conjugate descent method of Chen [19],
the rank-2 approximation based adaptive design of Wang et al.
[20], and the improved orthogonal matching pursuit algorithm
of Uwaechia et al. [21] that selects multiple column indices
per iteration. Additionally, algorithms for multi-user settings
was considered in [22]–[25]. II) The second is to replace the
fully-connected network of RF PSs by a partially-connected
one, where an RF chain only connects a subset of transmitter
antennas (TAs), for which either switches or switches-inverters
are deployed [9], [12], [26]–[30]. We refer motivated readers to
[31] for a comprehensive study on using the switching mech-
anism. Designs based on a partially-connected architecture
often aim for maximizing the energy efficiency [12], [26]–
[28], [32], and recent references have also shown that this
optimization target can be readily achieved by either using
dynamic RF chain selection [9], or joint bit allocation [29], or
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alternatively low resolution digital-to-analog converters [30],
[32], etc. It is however noteworthy that while the partially-
connected network can reduce both the hardware cost and
energy consumption significantly, it often trades a significant
amount of spectral efficiency for energy efficiency. To sum up,
we boldly and explicitly contrast our new contribution to the
related literature in Table I.

Although a large body of literature exists in this area,
several fundamental questions remain unanswered: (i) Can
low-resolution PS-based schemes be as good as fully digital
precoding/combing? A closely related result in [33] for
infinite-resolution PSs stated that provided the number of RF
chains is twice the total number of data streams, then the hy-
brid beamforming structure can indeed match the fully digital
beamformer’s performance. However, in a quest for answering
this question, we more broadly aim for showing that there
exists a non-negligible performance gap for a 1-bit-PS-based
hybrid precoder. The precoding problem in this specific setting
exhibits a lattice structure, where the associated lattices are
discrete additive subgroups of Rn. Lattices have been widely
used both in coding theory for constructing near-capacity
codes [34] and in communications to design integer-forcing
based linear receivers for achieving the maximally attainable
degrees-of-freedom [35]. (ii) Can we further improve the
spectral efficiency of low-resolution PSs based schemes? By
observing that the objective in low-resolution PS based hybrid
transmit precoding (TPC) is reminiscent of the closest vector
problem (CVP) of lattices, we construct a low-complexity
lattice decoder for solving the CVP. To address the related
issues, the novel contributions of this paper are as follows.

1) We derive the performance upper bound of 1-bit reso-
lution PS-based hybrid precoding. The underlying cost
function resembles a quantization problem whose quan-
tization accuracy is controlled by the resolution of PSs.
The averaged quantization error is non-vanishing for 1-
bit resolution PSs, since it entails a quantization process
within the lattice structure. In our proof, we exploit the
random distributions of query points and the second
moment of the fundamental region of lattices.

2) We propose to randomly deactivate some PSs for the
sake of improving the achievable spectral efficiency.
This idea is reminiscent of the one used in spatial
modulation [36], [37] that incorporates a silent/dis-
connection point 0 in the constellation designed. Based
on this principle, the feasible range in a finite accuracy
PS becomes the union of a cyclotomic set and 0. We
demonstrate that both the spectral efficiency and energy
efficiency are improve by this configuration.

3) In contrast to popular belief, we show that efficient
low complexity algorithms exist for solving the com-
binatorial decoding problem of low resolution hybrid
precoding architectures. In particular, both the analog
and digital precoders exhibit near-orthogonal properties,
hence Babai’s low complexity lattice decoder [38] may
be adapted. Simulation results confirm that the proposed
method converges faster than the major benchmarks, and
it improves the spectral efficiency.

The rest of this paper is organized as follows. Background
of hybrid TPCs and the associated optimization problems are
reviewed in Section II. The performance gap of 1-bit PSs w.r.t.
their infinite resolution counterparts is subsequently studied
in Section III. Based on the proposed adaptively-connected
network of RF PSs, Babai’s algorithm is introduced in Section
IV. Section V presents our simulation results, followed by our
conclusions in the last section.

Notation: Matrices and column vectors are denoted by
uppercase and lowercase boldface letters. The (i, j)th element,
ith row and jth column of a matrix are respectively denoted as
[·]i,j , [·]i,: and [·]:,j . In and 0n respectively denote the n× n
identity matrix and n× 1 zero vector. Operations (·)>, (·)H ,
(·)† and det(·) respectively denote matrix transposition, Her-
mitian transposition, pseudoinverse, and determinant. QS (x)
denotes quantizing x to the nearest element in a set S. ‖x‖
denotes the Euclidean norm of vector x, while ‖X‖F denotes
the Frobenius norm of matrix X. VN refers to the volume of
an N -dimensional unit ball.

II. PRELIMINARIES

In this section, we will present the system model of the
mmWave MIMO system considered, and then review the
classical alternating minimization-based technique of solving
the hybrid precoding optimization problem.

A. System Model

We consider a point-to-point mmWave MIMO system using
a hybrid TPC and receiver combiner using low-resolution
PSs. The base station (BS) is equipped with Nt TAs and
N t
RF RF chains for transmitting Ns data streams to a user

relying on Nr receive antennas (RAs) and Nr
RF RF chains.

To enable the simultaneous transmission of multiple data
streams, we assume Ns ≥ max(N t

RF , N
r
RF ). This configura-

tion makes hybrid precoding particularly desirable. The signal
vector s ∈ CNs first goes through a base-band TPC matrix
FBB ∈ CNt

RF×Ns , followed by N t
RF RF chains, and an RF

TPC FRF ∈ CNt×Nt
RF . In this paper, we assume the widely

used Gaussian transmit signals with normalized signal power
of E

(
ssH

)
= 1

Ns
INs

. The transmitted signal vector after the
hybrid TPC is then written as

x = FRFFBBs. (1)

The normalized transmit power constraint is given by
‖FRFFBB‖2F = Ns [12]. Then, the signal vector y ∈ CNr

received by the user in a narrowband system is given by

y =
√
ρHFRFFBBs + n, (2)

where n ∈ CNr is the additive white Gaussian noise (AWGN)
vector with its elements obeying the independent and iden-
tical distribution (i.i.d.) CN

(
0, σ2

n

)
, ρ denotes the averaged

received power (alternatively, we can remove ρ in Eq. (2)
by setting ‖FRFFBB‖2F as the maximum allocated power
controlled by ρ, as used in [9]), and H ∈ CNr×Nt is the
MIMO channel matrix such that E

(
‖H‖2F

)
= NtNr. Full

channel state information (CSI) is assumed to be available at
the transceiver.
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TABLE I. A brief comparison of the related literature

Contents
Literature [11]–[15] [33] [19]–[21] [9], [12], [26]–[30] This work

Resolution of PSs Infinite X X
Finite X X X

Connection of PSs Full X X X
Not full X X

Theoretical bounds X X
Exploiting lattice decoding X

Due to its high free-space path loss, the mmWave propa-
gation environment is accurately characterized by a clustered
channel model, where the channel matrix H is assumed to be
a sum of the contributions of Ncl scattering clusters, each of
which contribute Nray propagation paths. Then the discrete-
time narrowband channel matrix H [11], [12] is given by

H =

γ

Ncl∑
i=1

Nray∑
l=1

αilΛr (φril, θ
r
il) Λt

(
φtil, θ

t
il

)
ar (φril, θ

r
il)a

H
t

(
φtil, θ

t
il

)
,

(3)

where γ =
√

NtNr

NclNray
denotes a normalization factor, αil ∈ C

denotes the complex gain of the lth ray and ith cluster, while
φril/θ

r
il and φtil/θ

t
il are its azimuth/elevation angles of arrival

and departure (AoAs, AoDs), respectively. The functions
Λr (φril, θ

r
il) and Λt (φtil, θ

t
il) denote the transmit and receive

antenna array gain at a specific AoA and AoD, respectively.
Lastly, ar (φril, θ

r
il) and aHt (φtil, θ

t
il) are the normalized re-

ceive and transmit antenna array response vectors. We adopt
the uniform square planar array structure [12] for the array
response vectors.

B. Problem Formulation

The RF combiner WRF ∈ CNr×Nr
RF and the digital

baseband combiner WBB ∈ CNr
RF×Ns process the received

signal vector y, yielding:

ỹ =
√
ρWH

BBW
H
RFHFRFFBBs + WH

BBW
H
RFn. (4)

The spectral efficiency based on this equation is therefore
written as

I (FRF ,FBB ,WRF ,WBB)

= log2 det(INs
+

ρ

σ2
sNs

(WRFWBB)
†
H

× FRFFBBF
H
BBF

H
RFH

HWRFWBB). (5)

For the sake of maximizing the spectral efficiency, we arrive
at the constrained optimization problem of:

P1 : max
FRF ,FBB ,WRF ,WBB

I (FRF ,FBB ,WRF ,WBB) ,

(6a)

s.t. ‖FRFFBB‖2F = Ns, (6b)
[FRF ]m,n ∈ F ,∀m,n, (6c)

[WRF ]m,n ∈ F ,∀m,n. (6d)

Algorithm 1: Alternating minimization technique for
solving the hybrid precoding problem.

Input: Fopt.
Output: FRF,FBB.

1 Initialize a random RF precoder FRF ;
2 while A stopping criterion has not been met do
3 FBB ← F†RFFopt;
4 Obtain FRF by solving problem P3;

5 FBB ←
√
Ns

‖FRFFBB‖F FBB.

The constraint F is defined by the low-resolution PSs. Given
B bits of resolution and an amplitude of 1/

√
Nt , the feasible

set of phases is

F = 1/
√
Nt

{
ej×0, ej×(2π/2B), . . . , ej×(2π/2B)×(2B−1)

}
.

The non-convex constraints in P1 imply that no simple closed-
form solutions exist.

To simplify the formulation, the popular solution [11], [12]
is to separate problem P1 into a hybrid TPC & receiver com-
biner problem. They have similar mathematical formulations,
except that there exists an extra power constraint in the former.
For this reason, we focus our attention on the TPC design in
the remaining part of this paper, noting that the algorithms
proposed in this work can be readily applied for the combiner.
Following [11], [12], to design a hybrid TPC we have to solve

P2 : min
FRF ,FBB

‖Fopt − FRFFBB‖2F ,

s.t. (6b), (6c), (7)

where Fopt is the optimal fully digital TPC that consists of
the first Ns columns of the V matrix in the singular value
decomposition H = UΣVH , and the diagonal elements of Σ
are sorted in descending order.

The popular alternating minimization technique [12], [19],
whose convergence has been treated in [39], [40], can decouple
the joint optimization into the individual subproblems of FRF
and FBB . The alternating minimization procedure is listed in
Algorithm 1. As seen in Step 3 of Algorithm 1, the problem
of minimizing ‖Fopt − FRFFBB‖2F with given FRF can be
solved in a closed-form, while the solution relies on the
pseudo-inverse operation. On the other hand, with the known
FBB , Step 4 of Algorithm 1 entails a combinatorial search
that admits certain statistical constraint:

P3 : min
FRF

‖Fopt − FRFFBB‖2F , s.t. [FRF ]m,n ∈ F ,∀m,n.
(8)
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Here the term (6b) is temporarily omitted, since the energy
constraint can be met by normalizing FBB , while retaining
the fitness of the solutions [12]. However, the combinatorial
nature of P3 constitutes a major hindrance when relying
on alternating minimization, because an exhaustive search
would require the enumeration of |F|Nt×Nt

RF points, which
is computationally prohibitive.
Remark 1. Based on the alternating minimization technique,
the optimization of receiver combiner is similar:

min
WRF

‖Wopt −WRFWBB‖2F , s.t. [WRF ]m,n ∈ F ,∀m,n.

Here Wopt consists of the first Ns columns of the U matrix
in the above mentioned singular value decomposition.

III. THE 1-BIT RESOLUTION SCHEME

In this section, we analyze the lower bound of the target
function defined in P3, in which a binary constraint is con-
sidered for F , and there are in total Nt × N t

RF PSs for the
case of the fully-connected network. Upon harnessing lattice-
theoretic techniques [41], [42], the analysis relies on bounding
the expected second moment of a convex body with fixed
volume.

By inspecting P3 from the perspective of quantization,
increasing the number of quantization level in the PSs would
certainly reduce the average value of the target function. This
can be achieved either by using PSs with higher resolution,
or, alternatively, by adding switches to each PS. The latter
approach seems more promising, since having a large number
of inactive PSs reduces the power consumption.

A. Lattices and Convex Bodies

Let B = [b1, ...,bn] consist of n linearly independent
vectors. A full-rank lattice of dimension n is defined by

Λ = L(B) =

{
n∑
i=1

bixi | xi ∈ Z

}
,

where B represents a so-called lattice basis.
In this work, we are mostly concerned with the fundamental

parallelotope and the Voronoi region of lattice lattices. Readers
are referred to the text [43] for other basic properties. Any
lattice basis describes a fundamental parallelotope according
to

P(B) =

{
x | x =

m∑
l=1

θlbl, 0 ≤ θl < 1

}
,

where P(B) is referred to a fundamental region, i.e., a region
that completely covers the span of B when shifted to all
points of the lattice. Clearly, different bases lead to different
fundamental parallelotopes.

Another important fundamental region is the Voronoi region,
defined as the set of points in Rn that are closer to the origin
than to any other lattice point, which is formulated as:

V(Λ) = {x | ‖x‖ ≤ ‖x− y‖ ∀y ∈ Λ} . (9)

The Voronoi regions can be associated to all other lattice
points by a simple translation of V(Λ). In contrast to the

fundamental parallelotope P(B), the Voronoi region V(Λ) is
a lattice invariant, i.e., it is independent of the specific choice
of a lattice basis.

The closest vector problem is, given a vector y ∈ Rn and
a lattice Λ, to find a vector v ∈ Λ such that

‖y − v‖2 ≤ ‖y −w‖2 , ∀w ∈ Λ.

B. The Lower Bound of the Target Function

Due to the fact that

‖Fopt − FRFFBB‖2F (10)

=
∥∥F>opt − F>BBF

>
RF

∥∥2

F
(11)

=

Nt∑
n=1

∥∥∥[F>opt]1:Ns,n
− F>BB

[
F>RF

]
1:Ns,n

∥∥∥2

, (12)

we rewrite P3 as Nt independent optimization problems. The
n-th instance is given by

P4 : min
x∈FNt

RF

‖ȳ −Bx‖2 , (13)

in which

B ,

[
R(F>BB)
I(F>BB)

]
, ȳ ,

[
R(
[
F>opt

]
1:Ns,n

)

I(
[
F>opt

]
1:Ns,n

)

]
,

with R(·), I(·) defining the real and imaginary parts of the
input, respectively. The optimized x is used to construct[
F>RF

]
1:Nt

RF ,n
.

While we can expect FRFFBB to approximate Fopt quite
tightly with the aid of high-resolution PSs, it is still unknown
whether the worst case configuration, i.e., PSs having 1-bit
accuracy, can provide a good approximation of Fopt. Here
Proposition 2 shows that the performance gap of 1-bit PSs is
non-vanishing.

Proposition 2. The expected value of
min

FRF∈FNt×Nt
RF
‖Fopt − FRFFBB‖2F with the constraint

F = 1/
√
Nt {−1, 1} satisfies

E
(
‖Fopt − FRFFBB‖2F

)
≥ |det (FBB) |

2
Nt

RF {Γ(1 +N t
RF /2)}

2
Nt

RF

4Γ(3/2)2 (N t
RF + 2)

. (14)

Proof: By observing (13), we find that solving x given
ȳ and B can be formulated as a closest vector prob-
lem within the lattice L(B). More specifically, to analyze
E
(

minx ‖ȳ −Bx‖2
)

, ȳ and B can be respectively regarded
as a query point and a lattice basis. The average residual
distance between ȳ and the lattice point Bx can be analyzed.

Firstly, since {−1, 1} is a finite subset of the integer set Z,
the correct decoding region of the problem associated with
[x]m ∈ {−1, 1} is strictly larger than that of [x]m ∈ Z.
Secondly, the second moment of the decision region of any
decoder is no smaller than the Voronoi region V of lattice
L(B) =

(
Bx | x ∈ ZNt

RF

)
, where V(Λ) was defined in Eq.

(9); it is a convex polytope whose second moment is defined
as ω2 (V) = 1

|V|
∫
V ‖u‖

2
du.
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Let us now find the lower bound of ω2 (V). Recall that the
isoperimetric inequality is a fundamental result in Euclidean
geometry, which states that among all n-gons having a fixed
perimeter, the one with the largest area is the regular n-gon.
Based on the isoperimetric inequality, a ball B (r) with radius
r has the smallest second moment per dimension out of all
sets in RNt

RF with volume VNrN , where VN = 2N Γ(3/2)N

Γ(1+N/2)
refers to the volume of an N -dimensional unit ball. Then the
second moment of B (r) is given by

ω2 (B (r)) =
1

N t
RFVNt

RF
rN

t
RF

∫
u∈B(r)

‖u‖2 du

=
1

N t
RFVNt

RF
rN

t
RF

∫ r

0

r̄2d
(
VNt

RF
r̄N

t
RF

)
=

r2

N t
RF + 2

. (15)

Thus we have

ω2 (V) ≥ ω2 (B (r)) =
r2

N t
RF + 2

, (16)

and r is obtained by solving

Vol (V) ,
√

det (BHB) = VNt
RF
rN

t
RF . (17)

Lastly, we multiply ω2 (B (r)) with a factor of Nt (i.e., the
number of instances in P4) to get

E
(
‖Fopt − FRFFBB‖2F

)
≥

(1/√Nt)Nt
RF |det (FBB) |
VNt

RF

 2
Nt

RF
Nt

N t
RF + 2

=
|det (FBB) |

2
Nt

RF

(N t
RF + 2)V

2
Nt

RF

Nt
RF

=
|det (FBB) |

2
Nt

RF

(N t
RF + 2) {2Nt

RF
Γ(3/2)N

t
RF

Γ(1+Nt
RF /2)

}
2

Nt
RF

=
|det (FBB) |

2
Nt

RF {Γ(1 +N t
RF /2)}

2
Nt

RF

4Γ(3/2)2 (N t
RF + 2)

. (18)

To show the accuracy of the lower bound in Proposition
2, we will conduct Monte Carlo simulations to compare the
actual mean square error E

(
‖Fopt − FRFFBB‖2F

)
and the

lower bound | det(FBB)|
2

Nt
RF {Γ(1+Nt

RF /2)}
2

Nt
RF

4Γ(3/2)2(Nt
RF +2)

. For demon-
stration, we choose the elements of Fopt and FBB from a
Gaussian distribution N (0, 1). Let Nt = N t

RF = Ns, and
draw E

(
‖Fopt − FRFFBB‖2F

)
(noted as “simulated value”)

and | det(FBB)|
2

Nt
RF {Γ(1+Nt

RF /2)}
2

Nt
RF

4Γ(3/2)2(Nt
RF +2)

(noted as “theoretical
lower bound”) for a range of dimensions in Fig. 2. We observe
from the figure that our lower bound is loose, but this should
not be a surprise, because we have resorted to a relaxation of

the quantization set from three points {−1, 0, 1} to the whole
integer set Z. Since this step is needed in the proof, how to
bypass it to reach a tighter lower bound is left for our future
work.

C. The Insight: Deactivate Part of the PSs for Enhanced
spectral Efficiency

Hereby we discuss the configuration of PSs, which in
essence controls the domain of elements in FRF . Notice the
set F = 1/

√
Nt

{
ej×0, ej×(2π/2B), . . . , ej×(2π/2B)×(2B−1)

}
does not contain the zero point, but adding this point to the
quantization set obviously reduces the quantization error. For
completeness, we prove the following proposition for the case
of 1-bit RF PSs.

Proposition 3. The expected value of
min

FRF∈FNt×Nt
RF
‖Fopt − FRFFBB‖2F with the

constraint F = 1/
√
Nt {−1, 1} is larger than that with

1/
√
Nt {−1, 0, 1}.

Proof: In one dimension, the comparison is made between
the quantization of a random number y with c × x, where c
is a multiplicative factor and x ∈ {−1, 1} or {−1, 0, 1}. For
y ≤ −c/2 or y ≥ c/2, their quantization errors are the same.
However, for −c/2 ≤ y ≤ c/2, obviously making quantization
with respect to {−1, 0, 1} has smaller quantization error (i.e.
≤ c/2). For dimensions higher than 2, partitions over the
whole Euclidean space can be similarly made, and the error
set associated with {0} enjoys a smaller quantization error.

Based on the aforementioned reason, we propose to add
Nt × N t

RF switches to all the PSs, so as to reach the
best possible performance in finite-accuracy TPCs. For high
accuracy PSs, it is not essential to add switches, because
the improvement of spectral efficiency would remain modest.
While the idea of making the PS network sparse is not new
[15], [28], [36], [37], these impressive contributions use a
small fixed number of PSs. In a quest for fully understanding
the best performance of hybrid TPC using low resolution PSs,
especially 1-bit PSs, all PSs are followed by switches hereby.
We conceive three types of hybrid TPC architectures in Fig.
1. The one-bit accuracy scenario of F = 1/

√
Nt {−1, 1}

is drawn in Fig. 1-(a). The partially-connected architecture
[28] where each RF chain is connected to Nt/N t

RF antennas
is shown in Fig. 1-(b). Lastly, as shown in Fig. 1-(c), the
configuration proposed in this work is to deactivate a fraction
of 1 − ε of the PSs with 0 < ε < 1, in which the actual
value of ε is determined by the algorithm. We term this an
adaptive RF PS connection architecture, and the new constraint
is formulated as

S = F ∪ 0.

The special case of the proposed pattern with S =
1/
√
Nt {−1, 0, 1} is drawn in Fig 1-(c).

The difference between the conventional partially-connected
architecture [28] of Fig. 1-(b) and the proposed adaptive RF
PS connection architecture can be explicitly seen in the matrix
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Fig. 1: Three types of hybrid precoding architectures based on different connections.
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Fig. 2: Demonstration of the lower bound.

formulation of the analog beamformer FRF . Specifically, FRF
in the sub-connected architecture is in a block diagonal form:

FRF =


f̄1 0 · · · 0
0 f̄2 0
... 0

. . .
...

0 0 · · · f̄Nt
RF


Nt×Nt

RF

, (19)

where each RF chain is only connected to a sub-antenna array
with M , Nt/N

t
RF and each f̄k is an M × 1 vector with

elements in 1/
√
Nt {−1, 1}. Given a total of Nt nonzero

elements, the sparsity ratio defined by Eq. (19) is therefore
1 − 1/N t

RF . Regarding the proposed adaptive connection
network of RF PSs, we do not specify the sparsity in FRF and
let the positions of zero elements be determined by the hybrid
precoding algorithm that optimizes the spectral efficiency.
Since the positions of nonzero elements are random, the FRF
in the proposed network obeys:

FRF =


0 f̄1 · · · 0
f̄2 0 0
... 0

. . .
...

0 0 · · · f̄Nt
RF


Nt×Nt

RF

. (20)

IV. THE ALGORITHM PROPOSED FOR HYBRID
PRECODING/COMBINING

While P4 admits non-trivial constraints, the hardness of
solving it varies depending on the orthogonality property of
B (i.e., FBB). In this section we propose efficient solvers
for P4 so as to accelerate the convergence of alternating
minimization while meeting the constraint. Although the open
literature [19], [28], [33] has stated the NP-hard nature of
solving combinatorial problems, the decoding scheme that we
conceived in this paper, represents the very first attempt to
design low-complexity lattice decoding [41], [44] rather than
using convex optimization.

We focus our attention on the configuration of Ns ≥
max(N t

RF , N
r
RF ) in this work, since QR factorization cannot

be applied to under-complete matrices. For the scenario of
Ns < max(N t

RF , N
r
RF ), we refer to [45] for solving combina-

torial problems with the aid of approximate message passing.

A. Babai’s Algorithm for Alternating Minimization

Hereby we introduce Babai’s algorithm [38] from the lattice
decoding literature (also known as Babai’s nearest plane
algorithm [38], and as the successive interference cancellation
(SIC) in MIMO detection [46], [47]) to address P4 subject
to a uniform prior probability constraint. Based on QR fac-
torization, we have F>BB = QR where Q ∈ CNs×Nt

RF

has orthogonal columns and R ∈ CNt
RF×N

t
RF is an upper

triangular matrix. Without loss of generality, we assume that
[R]m,m ∈ R, [R]m,m > 0 for m = 1, . . . , N t

RF throughout
the paper.

As for the residual vector v , ȳ − Bx, the probability
distributions of its entries are unknown. Let us furthermore
define ỹ = QH ȳ and ṽ = QHv. By left multiplying
(ȳ −Bx) with QH we have

min
x
‖ȳ −Bx‖2 = min

x
‖ỹ −Rx‖2 , (21)
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where the structure within the r.h.s. can be expressed as ỹ =
[R]1,1 [R]1,2 · · · [R]1,Nt

RF

0 [R]2,2 · · · [R]2,Nt
RF

...
...

. . .
...

0 0 · · · [R]Nt
RF ,N

t
RF




x1

x2

...
xNt

RF

+


ṽ1

ṽ2

...
ṽNt

RF

 .

The general idea behind Babai’s nearest plane algorithm is
to process the received vector ỹ to estimate each component of
the transmitted signal x in a recursive way, thus canceling the
effect of the already decoded symbols and nulling those yet
unknown. If a symbol x̂m has been estimated, the decoder will
exploit this decision to further estimate the remaining symbols
x̂m−1, . . . , x̂1, forming a nonlinear decoding structure. If the
non-convex constraint on x is temporarily removed, we can
obtain analytic solutions for x̂m−1, . . . , x̂1, as specified by the
following proposition.

Proposition 4. When given
[
x1, . . . , xNt

RF−1

]
or[

x1, . . . , xm−1, xm+1, . . . , xNt
RF

]
, the solutions of

min
xNt

RF
∈C

∣∣∣ỹNt
RF
− [R]2,Nt

RF
xNt

RF

∣∣∣2 , (22)

... (23)

min
x1∈C

∣∣∣∣∣∣ỹ1 −
Nt

RF∑
m=1

[R]1,m xm

∣∣∣∣∣∣
2

, (24)

are respectively given by

x̂Nt
RF

=
ỹNt

RF

[R]Nt
RF ,N

t
RF

, (25)

x̂m =
ỹm −

∑Nt
RF

k=m+1 [R]m,k x̂k

[R]m,m
, (26)

for m = N t
RF − 1, . . . , 1.

Proof. The objective functions∣∣∣ỹNt
RF
− [R]2,Nt

RF
xNt

RF

∣∣∣2 , . . . , ∣∣∣ỹ1 −
∑Nt

RF
m=1 [R]1,m xm

∣∣∣2 in
the proposition are all convex. By setting

∂
∣∣∣ỹNt

RF
− [R]2,Nt

RF
xNt

RF

∣∣∣2
∂xNt

RF

= 0,

...

∂
∣∣∣ỹ1 −

∑Nt
RF

m=1 [R]1,m xm

∣∣∣2
∂x1

= 0,

the solutions are reached.

Algorithm 2: Babai’s algorithm for solving P3.
Input: Fopt, FBB.
Output: FRF.

1 Perform QR factorization on F>BB to obtain
F>BB = QR ;

2 for n = 1, . . . Nt do
3 ỹ = QH

[
F>opt

]
1:Ns,n

;

4 x̂Nt
RF

= QS
(

ỹNt
RF

[R]Nt
RF

,Nt
RF

)
;

5 for m = N t
RF − 1, . . . , 1 do

6 x̂m = QS

(
ỹm−

∑Nt
RF

k=m+1[R]m,kx̂k

[R]m,m

)
7 [FRF ]n,1:Nt

RF
= x̂>.

Based on the above, we can further quantize the arguments
from C to S. The estimated symbols can therefore be written
as

x̂Nt
RF

= QS

(
ỹNt

RF

[R]Nt
RF ,N

t
RF

)
, (27)

x̂m = QS

 ỹm −∑Nt
RF

k=m+1 [R]m,k x̂k

[R]m,m

 (28)

for m = N t
RF − 1, . . . , 1. Compared to conventional SIC

detectors used in MIMO detection, the quantization function
QS here is taken with respect to the discretized unit-power
constraint S, and not a quadrature amplitude modulation
(QAM) constellation. The whole procedure is summarized in
Algorithm 2.

Since the effective noises in the quantization process are
ṽNt

RF
/ [R]Nt

RF ,N
t
RF

,

(ṽm +
∑Nt

RF

k=m+1 [R]m,k (xk − x̂k))/ [R]m,m ,

. . .

(ṽ1 +
∑Nt

RF

k=2 [R]1,k (xk − x̂k))/ [R]1,1 ,

Babai’s low-complexity algorithm enjoys the optimal per-
formance if the noise power in each layer falls into the
fundamental quantization region. As shown in Fig. 3, where a
4-bit PS with 16 fixed phases divides the unit circle, a funda-
mental region refers to points in the complex domain, where
the quantization with respect to the 16 fixed phases has no
ambiguity. All ṽm/ [R]m should fall within the fundamental
region to make Babai’s algorithm optimal, while optimal is
defined in the sense that the error term ||ỹ−Rx̂|| corresponds
to that of an exhaustive search.

B. Power Consumption and Energy Efficiency

With reference to the energy consumption model in [28],
[48], the total power consumption of a MIMO system using a
hybrid TPC is given by

P = Pcommon +N t
RFPRF +NtPPA +NPS(PPS,k + PSW ),

(29)
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Fig. 3: The quantization region of a 4-bit PS.

where Pcommon, PRF , PPA, PIN , and PPS,k respectively
denote the common power of the transmitter, the power of
each RF chain, the power of each power amplifier, the power
consumption of a switch, and the power of a k-bit PS. The
power consumed by the PSs depends on the type 1 and on
the resolution of the quantized phases. Their approximate
values can be chosen as PRF = 100 mW, PPA = 100 mW,
PSW = 2.5 mW, PPS,1 = 2.5 mW, PPS,2 = 10 mW,
and PPS,4 = 45 mW [9], [12], [28], [49]. For comparison
purposes, we set the power PPS,inf of an infinite resolution PS
to PPS,inf ≈ PPS,5 = 78 mW based on [49]. To consume less
power, we recommend the usage of 1-bit/2-bit resolution PSs,
since we found no substantial spectral efficiency improvements
by increasing the number of bits in PSs.

The number of PSs NPS for different connection schemes
are given as [26], [27]

NPS =


NtN

t
RF fully − connected, Fig.1(a)

Nt sub− connected, Fig1(b)

(1− ε)NtN t
RF adaptively − connected, Fig.1(c)

.

Recall that ε refers to the ratio of sparsity in the configuration
of PSs. The power consumption of the proposed scheme varies
between that of the fully connected and partially connected
schemes when 1/N t

RF ≤ 1− ε ≤ 1.
Finally, given the spectral efficiency R, the energy efficiency

of the TPC is defined as

η = R/P (bps/Hz/W).

As expected, low spectral efficiency schemes may exhibit a
high energy efficiency.

C. Analysis of Computational Complexity

Here we only examine the computational complexity of
the hybrid TPC in terms of the number of complex floating
point operations, since the analysis of the hybrid receiver
combiner is similar (e.g., change N t

RF to Nr
RF , Nt to Nr).

1There exist at least six types of phase shifters at mmWave frequencies:
reflective type, loaded line, switched delay, Cartesian vector modulator, LO-
path phase shifter, and phase over sampling vector modulator [49].

TABLE II: Complexity Comparison.

Algorithms Computational Complexity

Babai-AltMin (Ours) O[No
iterNtNs(Nt

RF )2]
CDM-AltMin [19] O[No

iterN
i
iterN

3
t Ns(Nt

RF )2]
WLLS (B > 1) [20] O[No

iterN
i
iterN

3
t N

t
RF ]

WLLS (B = 1) [20] O[No
iterN

3
t N

t
RF ]

Since Ns ≥ max(N t
RF , N

r
RF ), the computational complexity

of QR factorization is on the order of O[Ns(N
t
RF )2], and the

computational complexity of completing N t
RF quantization us-

ing Babai’s algorithm is no higher than O[N t
RF (N t

RF + |S|)].
Since the size of S is not increasing like the number of
data streams or of antennas, its complexity can be omitted.
Letting No

iter refer to the number of iterations in the alter-
nating minimization algorithm, and O[Nt(N

t
RF )2] denote the

computational complexity of step 3 in Algorithm 1, the overall
computational complexity of our algorithm is

No
iter(Nt

(
O[Ns(N

t
RF )2] +O[N t

RF

(
N t
RF + |S|

)
]
)

+O[Nt(N
t
RF )2])

= O[No
iterNtNs(N

t
RF )2]. (30)

For comparison, we list the complexity of our algorithm
and other state-of-the-art hybrid TPC algorithms based on
quantized PSs in TABLE II. Generally, our algorithm enjoys
much lower complexity than the CDM-AltMin of [19] and the
WLLS of [20], since Nt is often large.

V. SIMULATION RESULTS

In this section, we perform simulations for a point-to-
point mmWave massive MIMO system, whose transmitter and
receiver are equipped with a uniform square planar array of
half wavelength spacing. As for the channel model of (3), we
adopt the setting of Ncl = 5 clusters and Nray = 10 rays per
cluster, where the average power of each cluster is 1, while
the azimuth and elevation AODs as well as AOAs follow the
Laplacian distribution with uniformly distributed mean angles
and angular spread of 10°. The simulation results are averaged
over 2 × 103 Monte-Carlo Runs. The number of loops in all
algorithms are fixed as 10, unless specified otherwise. Babai’s
algorithm used for our alternation minimization based hybrid
TPC is noted as “Babai-AltMin”. Our benchmark algorithms
include2:
• the optimal fully digital TPC that serves as the perfor-

mance upper bound, denoted as "Fully digital";
• the algorithm from [20] denoted as "WLLS";
• the conjugate descent method of [19] denoted as "CDM-

AltMin".
• the algorithm from [27] denoted as "SIC".

Moreover, the different types of configurations shown in Fig.
(1) are respectively marked as "full", "sub", and "adap".
To foster reproducible research, our programs used in the
simulations are of open source and freely available at GitHub3.

2Since the spectral efficiency of analog beamforming is significantly
worse than that of hybrid beamforming [9], [10], it is excluded from our
benchmarkers.

3https://github.com/shx-lyu/hybrid-precoding
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A. Spectral Efficiency

1) Impact of SNR: In Fig. 4, we plot the spectral efficiency
versus SNR based on several state-of-the-art algorithms, where
subfigure (a) uses Ns = 4 and subfigure (b) uses Ns = 12.

A few observations can be made from the figure:
• CDM-AltMin (B = 1,adap) falls behind Babai-AltMin

(B = 1,adap) in both subfigures, e.g., losing 2.5dB
in subfigure (a), even though they both belong to the
alternating minimization approach.

• WLLS (B = 1) falls behind Babai-AltMin (B = 1,adap)
by about 1dB in both subfigures.

• In subfigure (a), SIC (B = inf ,sub) exhibits the same
rates as the proposed Babai-AltMin (B = 1,adap), but
that algorithm employs infinite-resolution PSs, and this
result is the best that a sub-connected architecture can
achieve. By contrast, other algorithms can still enjoy
higher rates by increasing the resolution of PSs. In
subfigure (b), SIC (B = inf ,sub) falls 5dB behind Babai-
AltMin (B = 1,adap). Additionally, the SIC (B = 1,sub)
algorithm performs poorly.

• Once the number of bits B increases to 2, the AltMin
based algorithms and WLLS exhibit similar spectral
efficiency.

2) Impact of the number of antennas: Letting the number
of RAs Nr vary from 16 to 100, at SNR = 0dB, and
keeping other settings the same as above, we further illustrate
the spectral efficiency versus the number of RAs in Fig.
5, respectively using Ns = 4 and Ns = 12. Similarly to
the aforementioned conclusions, the Babai-AltMin algorithm
outperform the others in general. It is worth mentioning that
SIC (B=inf,sub) surpasses Babai-AltMin (B = 1,adap) in
subfigure (a) when Nr ≥ 60.

3) Impact of the number of streams: Letting the number
of streams Ns vary from 12 to 16, at SNR = 10dB, we plot
the spectral efficiency versus the number of streams in Fig.
6. Note that the WLLS algorithm fails to support Ns values
higher than the number of RF chains. As revealed in the figure,
the spectral efficiencies of the hybrid beamforming schemes
decrease slightly when Ns is increased, while our scheme is
still the best option among the benchmarkers.

4) Impact of Imperfect CSI: We further evaluate the impact
of imperfect CSI on performance of the proposed algorithm.
The estimated channel matrix Ĥ is formulated as

Ĥ = ξH +
√

1− ξ2E, (31)

where H is the actual channel matrix, ξ ∈ [0, 1] is a parameter
that controls the accuracy of CSI, and E is the error matrix
with entries following the standard complex Gaussian distribu-
tion. Fig. 7 shows our achievable rate comparison for mmWave
MIMO systems, where both perfect and imperfect CSI have
been considered for the 1-bit resolution PSs. We observe
that the proposed Babai-AltMin algorithm is not sensitive to
the accuracy of CSI. In particular, as shown in the case of
Ns = 4, the achievable rate of the Babai-AltMin algorithm
based on imperfect CSI associated with ξ = 0.7 is extremely
close (within 0.5dB) to that in the perfect CSI scenario. Even
ξ = 0.5 can achieve more than 90% of the rate attained
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Fig. 4: Spectral efficiency versus SNR (Nt = 144, Nr =
36, N t

RF = Nr
RF = Ns).

in the perfect CSI case. When the number of data streams
becomes higher (Ns = 12), Fig. 7-(b) reveals that, as the SNR
increases, we have at most 3dB SNR gap between the spectral
efficiencies of perfect CSI and imperfect CSI of ξ = 0.9.
Similar conclusions can also be drawn for other ξ values.

B. Complexity

We have shown that the overall complexity of the scheme
is O[No

iterNt
(
N3
s +Ns|S|

)
]. Hereby we also plot the actual

running time of the above algorithms. As shown in Fig.
8, Babai’s algorithm is faster than both CDM (about 10
times) and WLLS (about 5 times), where these algorithms
exhibit an iteration-based structure. We also observe that SIC
is significantly faster than all other algorithms, although its
structure is quite different from the others.

In the second example, we plot the spectral efficiency
versus the number of iterations No

iter in Fig. 9, where all the
algorithms compared rely on an iteration-based structure. The
figure shows: i) The spectral efficiencies saturate at their best
values after around 6 iterations.; ii) Similarly to WLLS, Babai-
AltMin converges faster than CDM-AltMin, although they
both belong to the AltMin-based category. iii) the advantage
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Fig. 5: Spectral efficiency versus number of antennas Nr
(SNR = 0dB, Nt = 144, N t

RF = Nr
RF = Ns).
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Fig. 6: Spectral efficiency versus the number of streams Ns
(SNR = 10dB, Nt = 144, Nr = 36, N t

RF = Nr
RF = 12).

of using Babai-AltMin is more evident when B = 1. iv)
The merits of employing a sparse configuration within the
AltMin-based methods become obvious. By using B = 1 and
S = F ∪ 0, Babai-AltMin AND CDM-AltMin enjoy around
1bps/Hz gain in spectral efficiency over their counterparts
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Fig. 7: Spectral efficiency versus SNR with imperfect CSI
(Nt = 144, Nr = 36, N t

RF = Nr
RF = Ns, B = 1).
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Fig. 8: The running time of different algorithms.

configured with F . This gain drops to around 0.5bps/Hz when
B = 2.

The fast convergence of Babai’s algorithm actually hinges
on how close the basis B is to being orthogonal. We introduce
a metric referred to as the condition number C, which is
defined as the ratio of the largest to smallest singular value in
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Fig. 9: Spectral efficiency versus number of iterations (SNR =
0dB, Nt = 144, Nr = 36, Ns = N t

RF = Nr
RF = 4).
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Fig. 10: The condition number of the basis B.

the singular value decomposition of the matrix. The degree of
orthogonality is quantified by the amount of distortion of the
unit sphere under the transformation by the matrix.

In Fig. (10), we plot the condition number versus the num-
ber of iterations within Babai-AltMin algorithm. By increasing
the dimensions of B from 3 × 3, to 6 × 6 and 10 × 10, Fig.
(10) shows that all the condition numbers converge within as
few as two iterations, which means that the algorithm only
has to use the feedback from Babai’s algorithm once and then
the solution gets close to the optimal. The implication of this
figure is that the alternating minimization method along with
Babai’s kernel we specified results in a rapidly converging
solution. Most importantly, since the quality of the basis B is
good (C ≈ 1), Babai’s algorithm performs well and hence we
may dispence with exponential-complexity solutions.

C. Energy Efficiency

In this subsection we examine the energy efficiency of the
related algorithms based on the formulas and typical power
consumption values given in Section IV-B.

1) Impact of SNR: Whilst relying on the benchmarks used
before, Fig. 11 plots the energy efficiency versus SNR. We can
observe that, in Fig. 11-(a), the Babai-AltMin (B = 1,adap)

solution outperforms both others with a notable margin when
SNR is in the range of −10 ∼ 20dB, while other solutions us-
ing B = 1 generally perform better than their high-resolution
counterparts (as PPS,1 = 2.5 mW is significantly lower than
PPS,inf ≈ PPS,5 = 78 mW4). In the second subfigure of
Ns = 12, the major differences with Fig. 11-(a) are that
WLLS (B = 1, full) gets very close to Babai’s algorithm, and
SIC (B = inf , sub) offers slightly higher energy efficiency
than SIC (B = 1, sub). Although not shown in the figure,
it is noteworthy that high-resolution PS based schemes (such
as the Babai-AltMin scheme using many bits) would yield
very low energy efficiency, because the corresponding power
consumption is excessive.

We further explain why the resolution and the number
of PSs exhibit more evident benefits when SNR is not too
large. In the expression of the energy efficiency η = R/P ,
the numerator only increases logarithmically with the power
of the transmitter Pcommon, while the denominator increases
linearly. Hence the denominator increases faster and as a result
the energy efficiency decreases asymptotically, and the energy
efficiency discrepancies of different algorithms vanish.

2) Impact of other factors: The impact of other factors
on the energy efficiency is briefly compared hereby, where
the simulation results support the superiority of Babai-AltMin
(B = 1,adap) over others. Firstly, as shown in Fig. 12
concerning the relationship of energy efficiency versus the
number of streams, Babai-AltMin (B = 1,adap) and CDM-
AltMin (B = 1,adap) perform much better than the other algo-
rithms. Secondly, we evaluate how the variations of antennas
and CSIs affect the energy efficiency in Fig. 13. Explicitly,
the figure shows that the proposed Babai-AltMin is robust -
its energy efficiency degradation is proportional to the CSI
accuracy. Additionally, comparing the two subfigures reveals
that the achievable energy efficiency is slightly reduced as
Nt increases. This justifies the effect of Nt in the power
consumption model of Eq. (29).

VI. CONCLUSIONS

While it has been recognized that using low resolution PSs
leads to a certain loss in spectral efficiency, we have explicitly
quantified the spectral penalty of using 1-bit resolution PSs
in hybrid TPCs. To improve the performance of the system
when given a fixed PS network, an adaptively connected RF
PS network has been proposed. For the sake of solving the
TPC optimization problem efficiently, we have adapted Babai’s
lattice decoding algorithm. Our simulation results have shown
that our method achieves around 1dB SNR gain in terms
of spectral efficiency over the state-of-the-art in a 1-bit PS
scenario.

APPENDIX A
DISCUSSION ON CONTROLLING SPARSITY

The designated objective function has the constraint of S =
F ∪ 0, but it does not reveal the position and the number
of the 0s. These two parameters are determined upon solving

4Note that [27] has set PPS,inf = 1mW, but we argue that our chosen
values are more consistent with those in [12], [28], [49].
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Fig. 11: Energy efficiency versus SNR (Nt = 144, Nr =
36, N t

RF = Nr
RF = Ns).
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Fig. 12: Energy efficiency versus the number of streams Ns
(SNR = 10dB, Nt = 144, Nr = 36, N t

RF = Nr
RF = 12).

P4. It is readily understood that tuning the sparsity cannot
improve the spectral efficiency, since such feasible solutions
only constitute a subset of S . Nevertheless, we may wonder
whether a sharp reduction in power consumption is capable
of compensating for the loss in spectral efficiency, so as to
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Fig. 13: Energy efficiency versus SNR using imperfect CSI
(Nr = 36, N t

RF = Nr
RF = Ns = 12, B = 1).

actually arrive at an improved energy efficiency.
For completeness, we briefly highlight how a Bayesian

algorithm is designed to control the sparsity of the RF TPC
matrices. Specifically, if we tune the sparsity ratio in both
FRF and WRF , then we have two more constraints imposed
on P1, yielding

P5 : max
FRF ,FBB ,WRF ,WBB

I (FRF ,FBB ,WRF ,WBB) ,

(32a)

s.t. ‖FRFFBB‖2F = Ns, (32b)
[FRF ]m,n ∈ S,∀m,n, (32c)

[WRF ]m,n ∈ S,∀m,n, (32d)

[FRF ]m,n ∼ pε′ ,∀m,n, (32e)

[WRF ]m,n ∼ pε′ ,∀m,n, (32f)

where pε′ is a probability distribution with the non-zero ratio
ε′:

pε′ (x) = (1− ε′)δ(x) + ε′/|F|
∑
y∈F

δ(x− y), (33)

and δ (·) is the Dirac delta function. The last two constraints
in (32e) and (32f) make this a more complex optimization
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task than those simply having finite-accuracy constraints [19],
[26]. Then we can use the Gaussian approximation of ṽ ∼
CN (0, σ2I), where σ2 denotes the effective noise variance
to be specified. Based on the above, the non-informative
likelihood function of x can be written as

pL(x) ∼ CN
(
R†ỹ, σ2

(
RHR

)−1
)
.

The a priori distribution of x that describes the inactive PSs
is
∏Nt

RF
m=1 pε′ (xm). The joint Maximum-a-Posteriori (MAP)

function is therefore written as

CN
(
R†ỹ, σ2

(
RHR

)−1
)Nt

RF∏
m=1

pε′ (xm) . (34)

There exists many efficient algorithms for solving the above
optimization problem, such as approximate message passing
[45], for example. Unfortunately, our simulations show that
this type of configurations and algorithms fail to convey
non-negligible energy efficiency. For this reason, our low-
complexity Babai-AltMin algorithm is eminently suitable for
mmWave hybrid TPC.
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