AI3SD Video: Generating a Machine-Learned Equation of State for Fluid Properties
AI3SD Video: Generating a Machine-Learned Equation of State for Fluid Properties
Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental thermophysical data of fluids. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine- learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids. This work opens a pathway for employing classical molecular simulations with classical force fields as feeder of pseudo-data of fluids in the search for ML physical property prediction.
AI, AI3SD Event, Artificial Intelligence, Chemistry, Machine Intelligence, Machine Learning, ML, Property Prediction
Müller, Erich
637046f5-537c-4b1e-9273-3ce8ab1bb747
Kanza, Samantha
b73bcf34-3ff8-4691-bd09-aa657dcff420
Frey, Jeremy G.
ba60c559-c4af-44f1-87e6-ce69819bf23f
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
Hooper, Victoria
af1a99f1-7848-4d5c-a4b5-615888838d84
17 March 2021
Müller, Erich
637046f5-537c-4b1e-9273-3ce8ab1bb747
Kanza, Samantha
b73bcf34-3ff8-4691-bd09-aa657dcff420
Frey, Jeremy G.
ba60c559-c4af-44f1-87e6-ce69819bf23f
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
Hooper, Victoria
af1a99f1-7848-4d5c-a4b5-615888838d84
Müller, Erich
(2021)
AI3SD Video: Generating a Machine-Learned Equation of State for Fluid Properties.
Kanza, Samantha, Frey, Jeremy G., Niranjan, Mahesan and Hooper, Victoria
(eds.)
AI3SD Winter Seminar Series, , Online.
18 Nov 2020 - 21 Apr 2021 .
(doi:10.5258/SOTON/P0073).
Record type:
Conference or Workshop Item
(Other)
Abstract
Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental thermophysical data of fluids. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine- learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids. This work opens a pathway for employing classical molecular simulations with classical force fields as feeder of pseudo-data of fluids in the search for ML physical property prediction.
Video
AI3SD-Winter-Seminar-Series-PropertyPrediction-ErichMuller (1)
- Version of Record
More information
Published date: 17 March 2021
Additional Information:
Erich A Müller currently works as a Professor of Thermodynamics at the Department of Chemical Engineering, Imperial College London. Erich does research in Molecular simulation, Chemical Engineering and Thermodynamics.
Venue - Dates:
AI3SD Winter Seminar Series, , Online, 2020-11-18 - 2021-04-21
Keywords:
AI, AI3SD Event, Artificial Intelligence, Chemistry, Machine Intelligence, Machine Learning, ML, Property Prediction
Identifiers
Local EPrints ID: 448772
URI: http://eprints.soton.ac.uk/id/eprint/448772
PURE UUID: e69725bc-0d0f-4d67-98ac-b5d9add5330b
Catalogue record
Date deposited: 05 May 2021 16:33
Last modified: 17 Mar 2024 03:51
Export record
Altmetrics
Contributors
Author:
Erich Müller
Editor:
Mahesan Niranjan
Editor:
Victoria Hooper
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics