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Abstract

a short abstract ....
Key words: Heterogeneity Variance; Jensen’s inequality; Nonparamet-

ric Mixture Models; Meta-analysis; Rare events.

1 Introduction

The paper considers the following situation in meta-analysis. In k independent
studies, counts of events are observed in an intervention and control group.
This setting can be described by a count random variable Yij . The index i
indicates the study i for i = 1, 2, ..., k, where k denotes the number of available
studies. Also, j = 1 denotes an intervention group and j = 0 a control group.
Yij stand for the number of events in study i and group j, whereas Tij stands
for the person-time at risk in study i and group j. The latter is considered as
non-random and reduces to the number at risk nij , if all members in study i
share the same person-time. Furthermore, conditional upon study i we have
that E(Yij) = λijTij , where λij denotes the event occurrence risk in study i and
group j. We are interested often in settings where the probability of no events
is large, so that often low frequency counts such as 0, 1, or 2 are observed. In
this connection, the Poisson assumption comes into play which assumes that

Yij ∼ Po(λijTij), (1)

for study i and group j, where Po(θ) denotes the Poisson distribution with the
density e−θθy/y! for count y = 0, 1, 2, .... Under assumption (1), the mean and
variance of Yij are E(Yij) = λijTij = Var(Yij).

We emphasize that (1) is conditional upon the study i and treatment group
j and uses as such a study-group specific parameter λij . Hence it is a reasonable
but untestable assumption as we only have one count Yij observed per study
and group combination. In addition, the count Yij will be often small to the
extrem of having no events in one or both groups.

2 Case study

We will now illustrate the various estimators at the example of a case study.
Cooper et al. (2003) mentioned a systematic review of the effectiveness of pro-
phylactic antibiotic treatment on infectious complications in women undergoing
caesarean delivery, originally published by Smaill and Hofmeyr (2002). The
data included 61 studies with counts of occurrence of wound infection as out-
come in women undergoing caesarean delivery. The intervention group used
prophylactic antibiotics whereas the control group was placebo or no prophy-
lactic antibiotics. The data showed sample sizes with an average of 80 persons
per trial in the treatment arm and 63 persons per trial in the control. The occur-
rence of wound infection was observed relatively rarely. Many of the component
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studies were small in size and there were zero events in each of two arms, espe-
cially in the treatment group. If a traditional inverse variance-weighted average
method is used, the double-zero or single-zero study would have to be excluded
before the analysis because the risk ratio R̂Ri = Yi1/Ti1

Yi0/Ti0
is undefined.

Using the data on prophylactic antibiotics in caesarean treatment, the results
of a meta-analysis on the risk ratio is presented using a forest plot in Figure 1
(one study is excluded due to the above mentioned issue of occurrence of zero
counts). Overall, a women undergoing caesarean delivery appears to have a
lower risk for infectious complications if in the prophylactic antibiotic treatment
group relative to being in placebo or in the no prophylactic antibiotic treatment
group. One of the central questions in a meta-analysis of effects is whether
there is homogeneity of effect. In the next section we will present a modelling
approach that can help answering this question.

3 The log-linear model with heterogeneity

Given the Poisson model (1) we may reparameterize the mean as follows:

log E(Yij) = log λij + log Tij = αi + βi × j + log Tij . (2)

The reparameterisation has the benefit that the log-risk ratio in the i−th study
is given by βi and corresponds to log RRi). In addition, heterogeneity can be
now separated due to baseline heterogeneity – the variability in the intercept
αi – and the heterogeneity in the effect measure – the variability in the slope
βi. The situation of effect homogeneity is characterized by βi = 0 for all studies
i = 1, · · · , k. To model heterogeneity the typical generalized liner mixed model
approach takes αi ∼ N(α, σ2

α) and βi ∼ N(β, σ2
β). Instead assuming a normal

(or other parametric) distribution we leave the distribution of (αi, βi) unspeci-
fied. It belongs to the classics of nonparametric maximum likelihood estimation
that the maximum likelihood estimator maximizing the mixture log-likelihood
with mixing distribution Q

`(Q) =
∑
i,j

log
∫

p(yij ; exp(αi + βi × j + log Tij))Q(dαi, dβi) (3)

is always discrete Lindsay (1982, 1995). Here p(y;λ) = exp(−λ)λy/y! is the
Poisson discrete mass function for y = 0, · · · and λ > 0. Hence there is no
limitation of generality if we replace (3) by

`(Q) =
∑
i,j

log
S∑

s=1

p(yij ; exp(αs + βs × j + log Tij))qs. (4)

The log-likelihood (4) is evidently a discrete mixture log-likelihood with weights
q1, · · · , qS being positive and summing up to 1. Unfortunately, it is not known
which values for S should be chosen. This is known as the number of components
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Figure 1: Forest plot of prophylactic antibiotics in caesarean section
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problem. A typical solution is to start with S = 1 and then sequentially increase
the number of components by one until not further increase in the log-likelihood
is found. For a given value of S, the log-likelihood (4) is maximized using the EM
algorithm (Dempster, Laird and Rubin 1977; McLachlan and Krishnan 2007).

We will denote the maximum likelihood estimate of the parameters αs, βs

and qs for s = 1, · · · , S as

Q̂ =

α̂1 · · · α̂S

β̂1 · · · β̂S

q̂1 · · · q̂S

 .

Note that Q̂ is a mixing distribution jointly on the intercept α and the slope
(log-risk ratio) β. Having the maximum likelihood estimate available we are
then able to give a nonparametric estimate of the heterogeneity variance of the
log-relative risk as

τ̂2 =
S∑

s=1

(β̂s − β̄)2q̂s,

where β̄ =
∑S

s=1 qsβ̂s. This variance is of particular interest in meta-analysis
as its size indicates the amount of heterogeneity in effect size across studies. Of
course, other variances such as the baseline heterogeneity variance in the αs can
be considered.

4 Diagnosing heterogeneity

5 Case study (continued)

We continue the discussion of the case study. Our interest is structure and form
of the heterogeneity in the log-risk ratio across studies. In Table 1 we consider
in its top part the modeling of the mixture distribution of the bivariate inter-
cept and slope parameters (αs, βs) where in the bottom part we consider only
heterogeneity in the baseline parameter αs while keeping the slope parameter
homogeneous. We can see from Table 1 that the best model for the bivariate
mixture is given by S = 2 (according to the BIC) or S = 3 (according to the
AIC) components, respectively. For the univariate mixture with homogeneity
in the log-risk ratio the best model is given with S = 2 components (both, AIC
and BIC, select identically). It is interesting that according to the BIC the best
model is the homogeneous risk ratio model with two component heterogeneity
in the baseline parameter. According to the AIC the best model is a risk ratio
heterogeneity model with 3 components. We interpret this that we have here a
meta-analysis with a mild form of effect heterogeneity.
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Table 1: Model evaluation under heterogeneity and homogeneity of effect
S log-likelihood AIC BIC τ̂2 β̄

bivariate mixture
1 -359.2 722.5 726.8 0 -0.96
2 -289.9 589.7 600.5 0.04 -0.77
3 -284.3 584.6 601.8 0.99 -1.02
4 -283.4 588.8 612.6 1.03 -1.02

univariate mixture keeping βs = β
1 -359.2 722.5 726.8 - -0.96
2 -291.7 591.3 599.9 - -0.64
3 -289.9 591.8 604.8 - -0.66
4 -289.9 595.8 613.1 - -0.66

6 Discussion and conclusions
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of rare events under the assumption of a homogeneous treatment effect.
Biometrical Journal 61, 1557–1574.

[Rothman and others(2008)] Rothman, K. J., Greenland, S., and Lash,
T. L. (2008). Modern Epidemiology, Lippincott Williams & Wilkins:
Philadelphia.
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