Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment
Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment
The size structure of plankton communities is an important determinant of their functions in marine ecosystems. However, few studies have quantified how organism size varies within species across biogeographical scales. Here, we investigate how planktonic foraminifera, a ubiquitous zooplankton group, vary in size across the tropical and subtropical oceans of the world. Using a recently digitized museum collection, we measured shell area of 3,799 individuals of nine extant species in 53 seafloor sediments. We first analyzed potential size biases in the collection. Then, for each site, we obtained corresponding local values of mean annual sea‐surface temperature (SST), net primary productivity (NPP), and relative abundance of each species. Given former studies, we expected species to reach largest shell sizes under optimal environmental conditions. In contrast, we observe that species differ in how much their size variation is explained by SST, NPP, and/or relative abundance. While some species have predictable size variation given these variables (Trilobatus sacculifer, Globigerinoides conglobatus, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia truncatulinoides), other species show no relationships between size and the studied covariates (Globigerinoides ruber, Neogloboquadrina dutertrei, Globorotalia menardii, Globoconella inflata). By incorporating intraspecific variation and sampling broader geographical ranges compared to previous studies, we conclude that shell size variation in planktonic foraminifera species cannot be consistently predicted by the environment. Our results caution against the general use of size as a proxy for planktonic foraminifera environmental optima. More generally, our work highlights the utility of natural history collections and the importance of studying intraspecific variation when interpreting macroecological patterns.
Costa Rillo, Marina
07ef3ed2-cf06-4d61-8c10-1acd1420ff43
Miller, Giles
880e85b1-7e67-4550-acc4-fb905dc1c3ed
Kucera, Michal
60f5b0d0-b552-45f9-96c0-f4a7004643ba
Ezard, Thomas
a143a893-07d0-4673-a2dd-cea2cd7e1374
Costa Rillo, Marina
07ef3ed2-cf06-4d61-8c10-1acd1420ff43
Miller, Giles
880e85b1-7e67-4550-acc4-fb905dc1c3ed
Kucera, Michal
60f5b0d0-b552-45f9-96c0-f4a7004643ba
Ezard, Thomas
a143a893-07d0-4673-a2dd-cea2cd7e1374
Costa Rillo, Marina, Miller, Giles, Kucera, Michal and Ezard, Thomas
(2019)
Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment.
Natural History Museum
doi:10.5519/0056541
[Dataset]
Abstract
The size structure of plankton communities is an important determinant of their functions in marine ecosystems. However, few studies have quantified how organism size varies within species across biogeographical scales. Here, we investigate how planktonic foraminifera, a ubiquitous zooplankton group, vary in size across the tropical and subtropical oceans of the world. Using a recently digitized museum collection, we measured shell area of 3,799 individuals of nine extant species in 53 seafloor sediments. We first analyzed potential size biases in the collection. Then, for each site, we obtained corresponding local values of mean annual sea‐surface temperature (SST), net primary productivity (NPP), and relative abundance of each species. Given former studies, we expected species to reach largest shell sizes under optimal environmental conditions. In contrast, we observe that species differ in how much their size variation is explained by SST, NPP, and/or relative abundance. While some species have predictable size variation given these variables (Trilobatus sacculifer, Globigerinoides conglobatus, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia truncatulinoides), other species show no relationships between size and the studied covariates (Globigerinoides ruber, Neogloboquadrina dutertrei, Globorotalia menardii, Globoconella inflata). By incorporating intraspecific variation and sampling broader geographical ranges compared to previous studies, we conclude that shell size variation in planktonic foraminifera species cannot be consistently predicted by the environment. Our results caution against the general use of size as a proxy for planktonic foraminifera environmental optima. More generally, our work highlights the utility of natural history collections and the importance of studying intraspecific variation when interpreting macroecological patterns.
This record has no associated files available for download.
More information
Published date: 2019
Identifiers
Local EPrints ID: 448808
URI: http://eprints.soton.ac.uk/id/eprint/448808
PURE UUID: ba3958e2-9af3-4a07-bb04-767c902180c9
Catalogue record
Date deposited: 06 May 2021 16:31
Last modified: 06 Jun 2024 01:51
Export record
Altmetrics
Contributors
Creator:
Marina Costa Rillo
Creator:
Giles Miller
Creator:
Michal Kucera
Creator:
Thomas Ezard
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics