The University of Southampton
University of Southampton Institutional Repository
Warning ePrints Soton is experiencing an issue with some file downloads not being available. We are working hard to fix this. Please bear with us.

Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment

Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment
Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment
The size structure of plankton communities is an important determinant of their functions in marine ecosystems. However, few studies have quantified how organism size varies within species across biogeographical scales. Here, we investigate how planktonic foraminifera, a ubiquitous zooplankton group, vary in size across the tropical and subtropical oceans of the world. Using a recently digitized museum collection, we measured shell area of 3,799 individuals of nine extant species in 53 seafloor sediments. We first analyzed potential size biases in the collection. Then, for each site, we obtained corresponding local values of mean annual sea‐surface temperature (SST), net primary productivity (NPP), and relative abundance of each species. Given former studies, we expected species to reach largest shell sizes under optimal environmental conditions. In contrast, we observe that species differ in how much their size variation is explained by SST, NPP, and/or relative abundance. While some species have predictable size variation given these variables (Trilobatus sacculifer, Globigerinoides conglobatus, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia truncatulinoides), other species show no relationships between size and the studied covariates (Globigerinoides ruber, Neogloboquadrina dutertrei, Globorotalia menardii, Globoconella inflata). By incorporating intraspecific variation and sampling broader geographical ranges compared to previous studies, we conclude that shell size variation in planktonic foraminifera species cannot be consistently predicted by the environment. Our results caution against the general use of size as a proxy for planktonic foraminifera environmental optima. More generally, our work highlights the utility of natural history collections and the importance of studying intraspecific variation when interpreting macroecological patterns. ##Related materials: Marina C. Rillo, C. Giles Miller, M Kucera and THG Ezard (2020) Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecology and Evolution (in press) https://doi.org/10.1002/ece3.6792 Marina C. Rillo, M Kucera, THG Ezard and C. Giles Miller, (2019) Surface Sediment Samples From Early Age of Seafloor Exploration Can Provide a Late 19th Century Baseline of the Marine Environment. Frontiers in Marine Science 5:517; DOI: https://doi.org/10.3389/fmars.2018.00517 Marina C. Rillo, J. Whittaker, THG Ezard, A. Purvis, A.S. Henderson, S. Stukins & C.G. Miller, (2016) The unknown planktonic foraminiferal pioneer Henry A. Buckley and his collection at the Natural History Museum, London, Journal of Micropalaeontology, 36, 191-194, DOI: https://doi.org/10.1144/jmpaleo2016-020 Marina Costa Rillo (2016). Dataset: Henry Buckley Collection of Planktonic Foraminifera. Natural History Museum Data Portal (data.nhm.ac.uk). DOI: https://doi.org/10.5519/0035055
Natural History Museum
Costa Rillo, Marina
07ef3ed2-cf06-4d61-8c10-1acd1420ff43
Miller, C. Giles
880e85b1-7e67-4550-acc4-fb905dc1c3ed
Kucera, Michal
60f5b0d0-b552-45f9-96c0-f4a7004643ba
Ezard, Thomas
a143a893-07d0-4673-a2dd-cea2cd7e1374
Costa Rillo, Marina
07ef3ed2-cf06-4d61-8c10-1acd1420ff43
Miller, C. Giles
880e85b1-7e67-4550-acc4-fb905dc1c3ed
Kucera, Michal
60f5b0d0-b552-45f9-96c0-f4a7004643ba
Ezard, Thomas
a143a893-07d0-4673-a2dd-cea2cd7e1374

Miller, C. Giles, Kucera, Michal and Ezard, Thomas (2019) Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Natural History Museum doi:10.5519/0056541 [Dataset]

Record type: Dataset

Abstract

The size structure of plankton communities is an important determinant of their functions in marine ecosystems. However, few studies have quantified how organism size varies within species across biogeographical scales. Here, we investigate how planktonic foraminifera, a ubiquitous zooplankton group, vary in size across the tropical and subtropical oceans of the world. Using a recently digitized museum collection, we measured shell area of 3,799 individuals of nine extant species in 53 seafloor sediments. We first analyzed potential size biases in the collection. Then, for each site, we obtained corresponding local values of mean annual sea‐surface temperature (SST), net primary productivity (NPP), and relative abundance of each species. Given former studies, we expected species to reach largest shell sizes under optimal environmental conditions. In contrast, we observe that species differ in how much their size variation is explained by SST, NPP, and/or relative abundance. While some species have predictable size variation given these variables (Trilobatus sacculifer, Globigerinoides conglobatus, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia truncatulinoides), other species show no relationships between size and the studied covariates (Globigerinoides ruber, Neogloboquadrina dutertrei, Globorotalia menardii, Globoconella inflata). By incorporating intraspecific variation and sampling broader geographical ranges compared to previous studies, we conclude that shell size variation in planktonic foraminifera species cannot be consistently predicted by the environment. Our results caution against the general use of size as a proxy for planktonic foraminifera environmental optima. More generally, our work highlights the utility of natural history collections and the importance of studying intraspecific variation when interpreting macroecological patterns. ##Related materials: Marina C. Rillo, C. Giles Miller, M Kucera and THG Ezard (2020) Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecology and Evolution (in press) https://doi.org/10.1002/ece3.6792 Marina C. Rillo, M Kucera, THG Ezard and C. Giles Miller, (2019) Surface Sediment Samples From Early Age of Seafloor Exploration Can Provide a Late 19th Century Baseline of the Marine Environment. Frontiers in Marine Science 5:517; DOI: https://doi.org/10.3389/fmars.2018.00517 Marina C. Rillo, J. Whittaker, THG Ezard, A. Purvis, A.S. Henderson, S. Stukins & C.G. Miller, (2016) The unknown planktonic foraminiferal pioneer Henry A. Buckley and his collection at the Natural History Museum, London, Journal of Micropalaeontology, 36, 191-194, DOI: https://doi.org/10.1144/jmpaleo2016-020 Marina Costa Rillo (2016). Dataset: Henry Buckley Collection of Planktonic Foraminifera. Natural History Museum Data Portal (data.nhm.ac.uk). DOI: https://doi.org/10.5519/0035055

This record has no associated files available for download.

More information

Published date: 1 January 2019

Identifiers

Local EPrints ID: 448808
URI: http://eprints.soton.ac.uk/id/eprint/448808
PURE UUID: ba3958e2-9af3-4a07-bb04-767c902180c9
ORCID for Thomas Ezard: ORCID iD orcid.org/0000-0001-8305-6605

Catalogue record

Date deposited: 06 May 2021 16:31
Last modified: 07 May 2021 01:46

Export record

Altmetrics

Contributors

Contributor: Marina Costa Rillo
Creator: C. Giles Miller
Creator: Michal Kucera
Creator: Thomas Ezard ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×