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Optimal control of cold atoms for ultra-precise quantum sensors

by Jack Cameron Saywell

Atom interferometric sensors can enable extremely precise measurements of inertial mo-

tion and external fields by manipulating and interfering atomic states using pulses of laser

light. However, like many experiments that require the coherent control of a quantum

system, the interaction fidelity is limited by inhomogeneities in the control fields. Vari-

ations in atomic velocity and laser intensity lead different atoms to experience different

interactions under the same pulse, reducing the interference fringe contrast, introducing

bias, and limiting the sensitivity.

We present the theoretical design and experimental demonstration of pulses for atom

interferometry which compensate inhomogeneities in atomic velocity and laser inten-

sity. By varying the laser phase throughout a pulse and choosing an appropriate fidelity

measure to be maximised, pulses are optimised by adapting optimal control techniques

originally designed for nuclear magnetic resonance applications. We show using simula-

tions that optimised pulses significantly improve the fidelity of interferometer operations

and verify this experimentally using Raman transitions within a cold sample of 85Rb

atoms. We demonstrate a robust state-transfer pulse that achieves a fidelity of 99.8(3)%

in a ∼ 35 µK sample and obtain a threefold increase in the fringe contrast using a full

sequence of optimised pulses. Many of the pulse shapes found by optimal control are

simple and symmetrical, and we show that certain symmetries are integral to error com-

pensation. By systematically exploring the dependence of these solutions on the model

and optimisation parameters, we demonstrate a stability which underlines the general

applicability of optimised pulses to a range of interferometer configurations.

Finally, we introduce and computationally analyse a novel theoretical approach to im-

prove the sensitivity of large-momentum-transfer (LMT) interferometers, whereby “bi-

selective” pulses are optimised to track the changing resonance conditions encountered

in extended pulse sequences that are designed to increase the measurement sensitivity.

When conventional pulses of steady phase are used, the interference contrast decays

rapidly as extra pulses are added because of the change in resonance. Using numerical

simulations, we show that bi-selective pulses maintain interaction fidelity throughout

extended pulse sequences, allowing significant increases in the sensitivity that may be

obtained using LMT.

http://www.southampton.ac.uk
mailto:j.c.saywell@soton.ac.uk
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1

Chapter 1

Introduction

The ability to prepare and manipulate quantum states with high fidelity in the presence

of systematic inhomogeneities and noise is essential for many experiments investigating

coherent quantum phenomena. As a result, a wealth of techniques has been developed

to mitigate these errors and increase operation fidelity. Nowhere have these techniques

reached a similar degree of sophistication as in the field of nuclear magnetic resonance

(NMR) spectroscopy. In NMR, single pulsed interactions with radio-frequency control

fields are replaced by those in which the phase, frequency, and amplitude of the con-

trol fields are varied as a function of time to replicate the action of the original pulse

but compensate for inhomogeneities such as variations in field strength and offsets from

resonance. Examples of these techniques include composite pulses [5], where typically a

small number of pulses are concatenated with variable phases and durations; and adia-

batic rapid passage [6], which relies on slow continuous variation of the field frequency,

phase, and amplitude.

NMR spectroscopy has also been a significant catalyst for the development and demon-

stration of quantum optimal control techniques [7–11]. Optimal control theory tries to

find the best way to steer a system from a specific initial state to a desired target state

subject to experimental constraints on available energy and time. In quantum mechan-

ics, this typically means finding the optimal sequence of the available control fields that

can realise some desired transformation of the system. Upon carefully choosing a mea-

sure of fidelity that defines how well a given pulse works, a pulse may be numerically

optimised using an optimal control algorithm.

Well-established applications of quantum optimal control include the control of chem-

ical reactions using shaped laser pulses [12–15], and the control of nuclear spins using

radio-frequency fields [7, 16–18]. Since these early demonstrations, a range of sophisti-

cated quantum control algorithms have been developed [9, 14, 19–26] and the techniques

have found other applications including: nitrogen-vacancy (NV) centre magnetome-

try [27, 28], gate-design in quantum information processors [29–32], and the production
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and control of Bose-Einstein condensates (BECs) [33–35]. The advantage of optimal

control is that it can be used to optimise pulses that are tailored to specific problems

and systems when provided with the correct fidelity measures and constraints.

Atom interferometric quantum sensors [36–39] use sequences of optical pulses to ma-

nipulate and interfere atomic states and obtain measurements of forces and fields with

remarkable precision and stability. Atom interferometers work by exploiting the wavelike

behaviour of matter, a manifestation of wave-particle duality, just as conventional opti-

cal interferometers exploit the wavelike behaviour of light. The light pulses can therefore

be considered as the optical equivalents of the physical mirrors and beamsplitters used in

an optical interferometer. However, one of the central problems in atom interferometry

is that the efficiency of the conventional π/2 (beamsplitter) and π (mirror) pulses of

constant laser intensity and phase is limited by inhomogeneities in the atom-light inter-

action. Atomic samples contain a distribution of atomic velocities, states, and locations;

and such effects lead different atoms to undergo different evolution under the same pulse,

thus reducing the visibility, or contrast, of the interference patterns and causing errors

in the measurement.

It is sometimes possible to solve these problems by selecting atoms with a narrow range

of velocities, or by discarding atoms in unwanted locations or unwanted states. However,

by reducing the number of atoms that can participate in a measurement, all of these

processes reduce the signal-to-noise ratio (SNR). Furthermore, there has been a recent

effort to miniaturise atom interferometric sensors in an attempt to push the technol-

ogy outside laboratory environments and make them commercially viable [39]. In these

cases, the importance of designing interferometers that operate in noisy and inhomoge-

neous environments is paramount. Imperfect pulses are also a serious limitation when

large-momentum-transfer (LMT) techniques are employed to increase an interferome-

ter’s intrinsic sensitivity [40]. LMT interferometers rely on the momentum transferred

by extended sequences of light-pulses - known as augmentation pulses - to increase the

space-time area enclosed by the interfering paths, which is proportional to the mea-

surement scale-factor. However, any improvement in sensitivity can be lost because the

visibility of the interference fringes decays following the repeated application of pulses

with imperfect fidelity.

Despite the similarities between the description of nuclear spin-1/2 systems in NMR

and the two-level atomic systems used in atom interferometry, techniques such as ARP

and composite pulses have found limited application in atom interferometers. In 2002,

McGuirk et al. [41] used the very first composite pulse developed in NMR - the Levitt

pulse [5] - to increase the efficiency of state preparation in a cold atom interferometer.

Later, in 2013, Butts et al. [42] investigated the application of two composite mirror

pulses - the Levitt [5] and WALTZ [43] pulses - as augmentation pulses within a LMT

interferometer using a laser-cooled and velocity-selected sample of 133Cs at 0.5 µK.

Of the pulses tested, only the WALTZ pulse led to an improvement in the contrast,
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increasing the intrinsic sensitivity by a factor of 9 before visibility was lost. However,

when WALTZ was again used in a similar experiment with a hotter atomic sample,

there was no improvement in contrast when compared with conventional π pulses [44].

More recently, Dunning et al. [45] compared the state-transfer efficiency of a selection of

NMR composite mirror pulses within an inhomogeneous cloud of 85Rb at a temperature

of 80 µK. They found that all the composite pulses tested improved the fidelity and

robustness compared with the standard π pulse. However, there was no consideration of

the effect of each pulse on the interferometer phase, and the applicability of composite

beamsplitter pulses was not explored.

Frequency-swept adiabatic pulses, while typically longer and more technically difficult

to implement than composite pulses [41], have also been applied in atom interferome-

try [46–48]. Bateman and Freegarde [49] designed an adiabatic mirror and beamsplit-

ter pulse using analytical methods, and a similar design was implemented by Jaffe et

al. [48, 50] in a cavity-based interferometer. Kotru et al. [46] employed a pulse with a

tangential frequency sweep, known as the tanh/tan pulse [51], to improve the contrast

within a LMT interferometer with 133Cs atoms at a temperature of 9 µK, leading to an

increase of the intrinsic sensitivity by a factor of 15. However, using adiabatic pulses in

LMT relies on a precise cancellation of velocity and intensity-dependent phases between

the pulses [50], and rapid dephasing can occur if there is variation in these quanti-

ties, making the interferometer susceptible to variations in field strength and detuning

throughout the sequence.

The use of NMR pulse techniques in atom interferometry has therefore relied on using

existing pulse shapes and schemes originally developed to tackle the problems encoun-

tered in the control of nuclear spins, and there is a clear need for pulses that are tailored

to tackle the distinct problems within atom interferometry. In this thesis, we present the

first systematic application of optimal control to the design of pulses for atom interferom-

eters where the atom-light interactions are formed using stimulated Raman transitions

[52]. Unlike conventional π/2 and π pulses where the laser phase and intensity are con-

stant throughout the interaction, we treat the optical phase and intensity as controllable

parameters and optimise pulses where these parameters are varied in time by adapting

NMR optimal control methods. We demonstrate that these optimised pulses yield sig-

nificant increases in the fidelity of individual beamsplitter and mirror pulses using a

combination of simulations and experiments.

We first explore optimisation of the interferometric mirror operation and compare the

resulting optimised mirror pulses with the best composite and adiabatic alternatives

that have been employed in interferometry to-date. We find significant improvements

in error compensation and fidelity with our optimised pulses, and experimentally verify

our designs using a cold sample of 85Rb. We also investigate the effect that different

composite, adiabatic, and optimised pulses have on the interferometer phase within a

Mach-Zehnder interferometer, and demonstrate that pulses designed using a carefully
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chosen phase-sensitive fidelity measure minimise unwanted variation in the measurement

scale-factor across an inhomogeneous atom cloud, thus leading to improvements in fringe

contrast.

We then extend our optimisation to the beamsplitter operation, and propose a symmetry-

based construction procedure for these pulses that enables the cancellation of imperfec-

tions between the first and final pulse in the sequence. We use simulations to demonstrate

an improvement in error compensation over composite and adiabatic approaches, and

deploy symmetry arguments to show that mirror pulses designed using antisymmetry are

immune to velocity-dependent phase shifts that limit the application of many composite

and adiabatic pulses. Furthermore, we experimentally demonstrate a threefold improve-

ment in interferometer contrast with our optimised sequence over that obtained using

conventional π and π/2 pulses in an inhomogeneous cloud of 85Rb at a temperature of

∼100 µK.

LMT interferometry is a promising approach to increase the intrinsic sensitivity of an

atom interferometer, and Raman LMT interferometers suffer from a decay of contrast

as extra pulses are added due to the change in atomic velocity and resonance condi-

tions throughout the interferometer. Even when composite pulses are used, a significant

decay of contrast is still observed [42, 44], and when adiabatic pulses are employed,

the results rely on a delicate cancellation of phase errors between pulses [46, 50]. We

therefore introduce a “bi-selective” LMT pulse design to increase the sensitivity of atom

interferometers by maintaining the interaction fidelity as the relative momentum differ-

ence between atomic wave-packets is increased. Each bi-selective pulse is individually

optimised using optimal control methods to track the changing bi-modal momentum

distribution throughout the interferometer, while providing robustness to variations in

laser intensity and detuning. This technique allows for a greater measurement sensitiv-

ity without requiring higher laser powers. Using an experimentally validated model, we

find our designs yield considerable improvements in interferometer contrast and the sup-

pression of parasitic phase shifts compared with the best-established composite pulses

and adiabatic rapid passage techniques.

1.1 Thesis outline

Section 1 presents a theoretical treatment of atom interferometry and the problem

of fidelity loss caused by systematic inhomogeneities in the atom-light interaction. In

Chapter 2 we introduce stimulated Raman transitions - used to form the “atom-optics”

in many atom interferometric sensors - and the π/2 (beamsplitter) and π (mirror) pulses

formed from fractional Rabi oscillations. We explain how the fidelity of these ‘rectan-

gular’ pulses is decreased by variations in the atom-light interaction. In Chapter 3,

we present an introduction to atom interferometry using Raman pulses, including the
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technique of LMT interferometry, and explain how pulse errors limit interferometer per-

formance and sensitivity.

Section 2 reviews prior and current approaches to improving the fidelity and robustness

of atomic state manipulation using NMR pulse shaping techniques. We also introduce

the state-of-the-art optimal control methods adapted in this thesis to design tailored

pulses for interferometric applications. Chapter 4 reviews the techniques of composite

pulses and adiabatic rapid passage (ARP). In Chapter 5, we review optimal control

methods as an alternative approach to pulse design. In particular, we describe the

gradient ascent pulse engineering (GRAPE) algorithm, which we use to optimise tailored

pulses for atom interferometry.

Section 3 details the experimental apparatus used to test the pulse schemes in this the-

sis. Chapter 6 explains how we produce a cold sample of 85Rb atoms using laser cooling

and trapping in a three-dimensional magneto-optical trap (MOT). We also explain how

we can control and measure the temperature of our atomic sample, and how we can

induce Raman transitions between the hyperfine ground states in 85Rb. In this chapter,

we also explain how our optimised pulses are implemented in our experiment.

Section 4 presents the main results of this thesis. In Chapter 7, we address the problem

of designing robust individual mirror pulses which mitigate experimental imperfections

in detuning and coupling strength. We discuss the topic of mirror pulse fidelity and

present and characterise pulses optimised using different fidelity measures. We show

using simulations that mirror pulse designs found using GRAPE significantly improve

upon the pulse fidelity and interferometer contrast compared with composite pulses and

adiabatic rapid passage. These fidelity improvements are also verified experimentally in

a cold sample of 85Rb. In this chapter we also explore how the shape of the optimised

pulse waveforms depends on the parameters of the optimisation.

In Chapter 8, we extend our optimisation to each component operation within a three-

pulse “Mach-Zehnder” interferometer sequence. We optimise pairs of beamsplitter pulses

using a “flip-reverse” symmetry construction procedure that are robust to variations in

detuning and coupling strength. We also explore the role of pulse symmetry in the

design of individual pulses, and the effect of phase noise on interferometric sensitivity

when employing optimised pulses. Experimental results are presented which show our

computational designs improve the interferometer contrast compared with conventional

pulses.

In Chapter 9, we turn our attention to LMT interferometry, and introduce a scheme

whereby individual pulses are tailored to track the evolving momentum distribution

throughout an LMT interferometer. We demonstrate using simulations that these “bi-

selective” pulses lead to considerable increases in interferometer area and sensitivity

compared with conventional composite and ARP pulses. We also explain how, by using
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a careful choice of fidelity measure, we can engineer robustness to variations in Rabi fre-

quency between individual pulses. Finally, we show how these pulses may be adapted to

suppress unwanted off-resonant excitation present in some interferometer configurations.

Finally, in Chapter 10 we draw conclusions and discuss questions raised throughout this

thesis, thus providing a framework for future investigations.
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Part I

Theoretical background
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Chapter 2

Coherent manipulation of atoms

with light pulses

In many atom interferometers, stimulated Raman transitions between ground hyperfine

states in alkali atoms form the beamsplitter and mirror operations [36, 37, 39] used

to diffract, redirect, and interfere the atomic matter-waves. Raman transitions enable

an atom to transition between two long-lived ground states from which spontaneous

emission is negligible via a two-photon process, namely stimulated absorption to and

stimulated emission from a short-lived upper intermediate state. This requires two

lasers that are both far detuned from the upper state with a frequency difference that

closely matches the energy splitting of the ground states. Under these conditions the

upper intermediate state can be eliminated from the problem, and the atom is reduced

to a simple and stable two-state system with a negligible decay of coherence.

In this chapter we present a theoretical treatment of Raman transitions and introduce

the building blocks of conventional interferometer sequences: the π/2 (beamsplitter)

and π (mirror) pulses formed from fractional Rabi oscillations between the states of a

two-level atom. This leads us to introduce the Bloch sphere picture of atomic state

evolution, which provides an intuitive geometric representation of the action of inter-

ferometer pulses on atomic states. We conclude with a brief summary of the atomic

structure of the alkali metal atom 85Rb, the atomic species used in the simulations and

experiments throughout this thesis.
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Figure 2.1: Energy levels in a 3-level Raman system (not to scale). Diagonal arrows
indicate the interaction of each level with lasers 1 and 2; laser 1 couples |g〉 and |i〉
only, and laser 2 couples |e〉 and |i〉 only. ∆ is the single-photon detuning of both
lasers from the intermediate level |i〉 (Equation 2.24), and δ is the two-photon Raman
detuning defined by Equation 2.26. If the laser beams are co-propagating, k1 ≈ k2 and
the momentum imparted to an atom initially in the state |g〉 is ~|k1 − k2| ≈ 0. If the
beams are counter-propagating, k1 ≈ −k2 and therefore the momentum imparted is

~|k1 − k2| ≈ 2|k1|.

2.1 Raman transitions

2.1.1 Interaction of light with a three-level atom

We begin by considering a three-level atom interacting with two counter-propagating

laser beams with frequencies ω1 and ω2, as depicted in Figure 2.1. The two lower levels,

|g〉 and |e〉 represent ground hyperfine states, and |i〉 represents an upper intermediate

level. Spontaneous decay is prohibited from |g〉 and |e〉 but possible from the interme-

diate level |i〉. Although there is no permitted single-photon electric dipole transition or

coupling between |g〉 and |e〉, it is possible by a two-photon Raman transition via the

intermediate level. Furthermore, we will show that if both lasers are far detuned from

single-photon resonance with |i〉, and if their frequency difference matches the ground

hyperfine splitting ωeg between |g〉 and |e〉, then |i〉 is never occupied and transitions

may occur in the effective two-level system formed by |g〉 and |e〉.

In our experiments with 85Rb, the states |g〉 and |e〉 are separated by a microwave

frequency difference of approximately 3 GHz. In contrast, the intermediate state |i〉 is

separated from both |g〉 and |e〉 by a much larger optical frequency splitting (equivalent

to a wavelength of approximately 780 nm). In practice both laser beams are generated
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from a source at 780 nm. The light from this source is split spatially into two components,

and frequency shifts are applied such that the frequency difference between the beams

ω1−ω2 matches the GHz splitting between |g〉 and |e〉. We discuss the atomic structure

of 85Rb and the specific energy levels used to form the Raman transition in Section 2.2

of this chapter; a description of how this is realised experimentally is given in Chapter

6, Section 6.2.

In general, we may describe the quantum state of our three-level atom as the following

superposition of basis states:

|Ψ(t)〉 = ag(t) |g,pg〉+ ae(t) |e,pe〉+ ai(t) |i,pi〉 . (2.1)

ag(t), ae(t), and ai(t) represent the (time-dependent) quantum amplitudes associated

with each basis state of our atom, and pg,e,i are the atomic momenta associated with

each state. Under the Born rule, the probability of finding the atom in a given state,

say |g,pg〉, at time t is given by the squared modulus of the corresponding complex

amplitude ag(t). Our aim in this section is to calculate how the quantum state evolves

in time due to the interaction with our two laser beams.

The time-evolution of our three-level atom is governed by the time-dependent Schrödinger

equation (TDSE)

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (2.2)

where Ĥ is the Hamiltonian, given by the sum of the atomic Hamiltonian ĤA and the

interaction Hamiltonian ĤI.

Our choice to include the atomic momentum in our basis is motivated by the fact that

atoms possess both an internal electronic structure and an external degree of freedom due

to their centre-of-mass momentum, meaning the atomic Hamiltonian may be expressed

as the sum of these two contributions ĤA = Ĥint + Ĥext, where Ĥint =
∑

n ~ωn |n〉 〈n|
and Ĥext = p̂2/2m. Here, ωn represents the frequency of the electronic level |n〉, p̂ is

the momentum operator, and m is the atomic mass. The basis states of our atom may

therefore be expressed as tensor products |n,pn〉 = |n〉⊗|pn〉 of momentum plane-waves

and the internal energy states [37].

The interaction Hamiltonian ĤI = −d̂ ·E = er̂ · E is given by the energy of an electric

dipole d̂ = −er̂ in the presence of a classical electric field, where r̂ is the operator for the

position of a single electron relative to the atomic centre of mass and E is the electric

field due to the laser beams.1

1This dipole approximation is valid if the wavelength of the electromagnetic radiation is much larger
than the size of the atom [53].
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The electric field due to both lasers with frequencies ω1 and ω2, which are counter-

propagating along the z-axis, is given by

E =
1

2
E1e

i(k1z−ω1t+φ1) +
1

2
E2e

i(−k2z−ω2t+φ2) + c.c., (2.3)

where k1,2 are the wave vectors of each beam, E1,2 are the (vector) amplitudes of each

field, φ1,2 are phases of each light field, and c.c. represents the complex conjugate of the

first terms. Since the lasers are counter-propagating, k1 ≈ −k2.

2.1.2 Momentum transfer

Terms such as e±ik1,2z appear in the interaction Hamiltonian matrix elements. The effect

of these parts of the interaction is to act on the momentum part of the atomic states and

change the momentum of the atom by ±~k1,2 in the z direction - a physical consequence

of the absorption and/or emission of a photon and the conservation of momentum. This

can be seen explicitly by rewriting eik1z using the identity operator I =
∫

dpz |pz〉 〈pz|,
where |pz〉 = 1√

2π~

∫∞
−∞ dzeipzz/~ |z〉 represents a momentum plane-wave eigenstate:

I× eik1z =

∫ ∞
−∞

dpze
ik1z |pz〉 〈pz| (2.4)

=
1√
2π~

∫ ∞
−∞

dpz

∫ ∞
−∞

dzeik1zeipzz/~ |z〉 〈pz| (2.5)

=

∫ ∞
−∞

dpz |pz + ~k1〉 〈pz| . (2.6)

We can therefore rewrite our momentum-inclusive basis states as |g,p〉, |i,p + ~k1〉,
and |e,p + ~k1 − ~k2〉 such that the momentum part forms a “closed momentum fam-

ily” [52]. Physically, this means that an atom in the state |g,p〉 can absorb a photon with

momentum ~k1 from laser 1 and end up in state |i,p + ~k1〉, and undergo stimulated

emission of a photon with momentum ~k2 to end up in the state |e,p + ~k1 − ~k2〉.

We will show in Section 2.1.4 that if both lasers are far detuned from single-photon

resonance with the intermediate state |i,p + ~k1〉 then Raman transitions occur between

|g,p〉 and |e,p + ~k1 − ~k2〉, forming an effective two-level atom. We define the effective

wavevector such that ~keff ≡ ~k1−~k2 is the momentum transferred by the two-photon

transition from |g,p〉 to |e,p + ~k1 − ~k2〉. If the Raman beams are co-propagating, k1 ≈
k2 and therefore ~|keff | ≈ 0. However, in the case of counter-propagating beams k1 ≈
−k2 and ~|keff | ≈ 2|k1| and the momentum transferred is approximately twice the single-

photon impulse. The difference between these two arrangements is shown in Figure 2.2,

and for additional detail we refer the reader to Section 9.4.3 of Cohen-Tannoudji and

Guéry-Odelin [54]. The transfer of momentum is essential to atom interferometers that

are sensitive to external forces; this is a point we will return to in Chapter 3.
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Figure 2.2: Energies (not to scale) of atomic states |g〉, |e〉, and |i〉 are depicted
as a function of atomic momentum along the z-axis. The solid (blue) and dashed
(red) diagonal arrows correspond to photons from each laser beam with frequencies
ω1 and ω2, respectively. On the left we show the co-propagating Raman arrangement,
where k1 ≈ k2, and on the right we show the counter-propagating arrangement, where
k1 ≈ −k2. We can see that photons in the co-propagating Raman arrangement couple
the states |g〉 and |e〉 with a negligible momentum difference. However, in the counter-
propagating arrangement, the momentum difference is much larger - approximately

twice the momentum carried by photons in each beam.

Although it is possible to directly induce a microwave transition between the states |g〉
and |e〉, and thereby take advantage of the long lifetime of these states, the momentum

transfer would be small. Using a Raman transition with counter-propagating beams

allows us to retain the advantage of coupling two states with a long lifetime and achieve

a considerably larger momentum transfer due to the optical frequency splitting between

the two lower states and the upper intermediate level |i〉.

2.1.3 Evaluating the 3-level Hamiltonian

We now proceed to evaluate the Hamiltonian and solve the TDSE for the time-evolution

of the internal state amplitudes. We begin by defining the following single-photon Rabi
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frequencies:

Ω1g ≡ −
1

~
〈g|d̂ ·E1|i〉 (2.7)

Ω2e ≡ −
1

~
〈e|d̂ ·E2|i〉 (2.8)

Ω1e ≡ −
1

~
〈e|d̂ ·E1|i〉 (2.9)

Ω2g ≡ −
1

~
〈g|d̂ ·E2|i〉 . (2.10)

Next, we write the total Hamiltonian for the three-level atom as

Ĥ =

Eg 0 Ĥgi

0 Ee Ĥei

Ĥ∗gi Ĥ∗ei Ei

 , (2.11)

where En ≡ ~ωn + pn
2/2m are the energy eigenvalues of the atomic Hamiltonian ĤA

(n = g, e, i). We assume that laser 1 couples only states |g〉 and |i〉, and that laser 2

couples only |e〉 and |i〉. This means we can ignore Ω1e and Ω2g, such that elements Ĥgi

and Ĥei are given by:

Ĥgi = ~
Ω1g

2
(e−iω1t−iφ1 + eiω1t+iφ1) (2.12)

Ĥei = ~
Ω2e

2
(e−iω2t−iφ2 + eiω2t+iφ2). (2.13)

Now, using the TDSE we may write the following coupled differential equations for the

internal state amplitudes:

i~
∂

∂t
ag(t) = Egag(t) + Ĥgiai(t) (2.14)

i~
∂

∂t
ae(t) = Eeae(t) + Ĥeiai(t) (2.15)

i~
∂

∂t
ai(t) = Ĥ∗giag(t) + Ĥ∗eiae(t) + Eiai(t). (2.16)

The above equations may be simplified by making the unitary transformation |Ψ̃(t)〉 =

T̂ (t) |Ψ(t)〉, where T̂ (t) ≡ eiEnt/~I and 〈n|Ψ̃(t)〉 ≡ bn(t) = an(t)eiEnt/~. This reduces the

above set of coupled differential equations to:

i~
∂

∂t
bg(t) = Ĥgibi(t)e

it
~ (Eg−Ei) (2.17)

i~
∂

∂t
be(t) = Ĥeibi(t)e

it
~ (Ee−Ei) (2.18)

i~
∂

∂t
bi(t) = Ĥ∗gibg(t)e

it
~ (Ei−Eg) + Ĥ∗eibe(t)e

it
~ (Ei−Ee). (2.19)
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Under such a unitary transformation, the transformed Hamiltonian ˆ̃H is given by

ˆ̃H = T̂ ĤT̂ † − i~T̂ ∂T̂
†

∂t
, (2.20)

which can be shown by substituting |Ψ(t)〉 = T̂ †(t) |Ψ̃(t)〉 into the Schrödinger equation

for the untransformed state |Ψ(t)〉.

For this particular unitary transformation, ˆ̃H is therefore given by

ˆ̃H =


0 0 ˆ̃Hgi

0 0 ˆ̃Hei

ˆ̃H∗gi
ˆ̃H∗ei 0

 , (2.21)

where the elements ˆ̃Hgi and ˆ̃Hei are

ˆ̃Hgi = ~
Ω1g

2

[
e
it
~ (Eg−Ei)−iω1t+φ1 + e

it
~ (Eg−Ei)+iω1t−φ1

]
(2.22)

ˆ̃Hei = ~
Ω2e

2

[
e
it
~ (Ee−Ei)−iω2t+φ2 + e

it
~ (Ee−Ei)+iω2t−φ2

]
. (2.23)

We now define the single photon detuning ∆ of laser 1 from the |g〉 ↔ |i〉 transition to

be

∆ ≡ ω1 − (Ei − Eg)/~

= ω1 +

(
ωg +

p2

2m~

)
−
(
ωi +

(p + ~k1)2

2m~

)
, (2.24)

and the much smaller velocity-sensitive two-photon detuning δ12 of both lasers from the

forbidden single-photon transition |g〉 ↔ |e〉 as

δ12 ≡ (ω1 − ω2)− (Ee − Eg)/~

= (ω1 − ω2) +

(
ωg +

p2

2m~

)
−
(
ωe +

(p + ~keff)2

2m~

)
(2.25)

= (ω1 − ω2)−
(

(ωe − ωg) + keff · v +
~k2

eff

2m

)
(2.26)

= +δL − δDoppler − δrecoil. (2.27)

We have defined the laser detuning by δL ≡ (ω1 − ω2) − (ωe − ωg). δDoppler ≡ keff · v
is the Doppler shift due to the initial velocity of the atom relative to the rest-frame of

the lasers. δrecoil ≡ ~k2
eff/2m is the two-photon recoil shift2. Using these definitions of

2The recoil shift vanishes if we replace the initial velocity in the Doppler shift with the mean of initial
and final velocities [55].
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∆ and δ12, Equations 2.22 and 2.23 become

ˆ̃Hgi = ~
Ω1g

2

[
eit(∆−2ω1)+φ1 + eit(∆)−φ1

]
(2.28)

ˆ̃Hei = ~
Ω2e

2

[
eit(∆−δ12−2ω2)+φ2 + eit(∆−δ12)−φ2

]
, (2.29)

and we can see that the “non-resonant” terms with factors eit(∆−2ω1) and eit(∆−δ12−2ω2)

oscillate much faster than the “resonant” terms with factors eit(∆) and eit(∆−δ12). The

rapidly oscillating non-resonant terms therefore average out and may be ignored. This

is known as the rotating-wave approximation (RWA). Finally, we arrive at the following

Hamiltonian

ˆ̃H =
~
2

 0 0 Ω1ge
i∆t−iφ1

0 0 Ω2ee
i(∆−δ12)t−iφ2

Ω∗1ge
−i∆t+iφ1 Ω∗2ee

−i(∆−δ12)t+iφ2 0

 . (2.30)

2.1.4 The effective two-level atom

Suppose |∆| � |Ω1g|, |Ω2e|, |δ12|. Under these conditions the intermediate level |i〉 may

be adiabatically eliminated from the system, leading to an effective two-level atom where

transitions occur only between the long-lived states |g〉 and |e〉.

We begin by explicitly writing out the time-dependence of the amplitudes bn(t) using

the transformed Hamiltonian ˆ̃H (Equation 2.30) and the TDSE,

i~
∂

∂t
bg(t) = ~

Ω1g

2
ei∆t−iφ1bi(t) (2.31)

i~
∂

∂t
be(t) = ~

Ω2e

2
ei(∆−δ12)t−iφ2bi(t) (2.32)

i~
∂

∂t
bi(t) = ~

Ω∗1g

2
e−i∆t+iφ1bg(t) + ~

Ω∗2e

2
e−i(∆−δ12)t+iφ2be(t), (2.33)

and assume that amplitudes bg(t) and be(t) oscillate slowly compared with much faster

oscillations of bi(t). This allows us to integrate Equation 2.33 with bg(t) and be(t)

assumed to be constant [52]:

bi(t) =

(
Ω∗1g

2∆
e−i∆t+iφ1bg(t) +

Ω∗2e

2∆
e−i(∆−δ12)t+iφ2be(t)

)
. (2.34)
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Substituting this expression for bi(t) back into Equations 2.31 and 2.32 we obtain

i~
∂

∂t
bg(t) =

~
2

(
|Ω1g|2

2δ
bg(t) +

Ω1gΩ∗2e

2∆
eiδt+iφ2−iφ1be(t)

)
(2.35)

i~
∂

∂t
be(t) =

~
2

(
|Ω2e|2

2∆
be(t) +

Ω2eΩ
∗
1g

2∆
e−iδt−iφ2+iφ1bg(t)

)
(2.36)

i~
∂

∂t
bi(t) = ~

Ω∗1g

2
e−i∆t+iφ1bg(t) + ~

Ω∗2e

2
e−i(∆−δ12)t+iφ2be(t). (2.37)

We have therefore uncoupled the evolution of the states |g〉 and |e〉 from the evolution

of state |i〉. On the time-scale of the oscillations of bg(t) and be(t), bi(t) undergoes rapid

oscillations which average out. Therefore, providing the intermediate level is initially

unoccupied it remains unoccupied and we have an effective two-level system with the

following Hamiltonian

ˆ̃H =
~
2

(
2ΩAC

g ΩRe
+iδ12t−iφL

Ω∗Re
−iδ12t+iφL 2ΩAC

e

)
, (2.38)

where we have defined the two-photon Rabi frequency as ΩR ≡ Ω1gΩ∗2e/(2∆) and the

relative laser phase as φL ≡ φ1 − φ2. ΩR represents the coupling strength of the two-

photon Raman transition between |g〉 and |e〉. The diagonal elements represent the AC

Stark or light shifts to the energy levels |g〉 and |e〉 of the atom, which we have defined as

ΩAC
g,e ≡ |Ω1g,2e|2/(4∆). In reality, however, the Stark shifts are modified by the couplings

we previously ignored between laser 2 and transition |g〉 ↔ |i〉 and between laser 1 and

transition |e〉 ↔ |i〉. If these are included in the calculation the Stark shifts are modified

to become [56]:

ΩAC
g,e =

|Ω1g,2e|2

4∆
+
|Ω2g,1e|2

4∆
. (2.39)

We may simplify ˆ̃H further still and apply a uniform shift to the energy scale. This is

equivalent to applying the transformation ei(Ω
AC
g +ΩAC

e )t/2I to the state vector (bg(t) bg(t))T

and turns the diagonal elements of the Hamiltonian into ∓δAC, where the relative Stark

shift is given by δAC ≡ (ΩAC
e − ΩAC

g ) [37].

Finally, the time-dependence may be completely removed from the Hamiltonian by

transforming into a frame rotating at a rate δ about the z-axis. This transformation

is represented by the rotation operator R̂ = e−iδ12t/2σ̂z . Using the identity eiασ̂z ≡
cos (α)I + sin (α)σ̂z, this transformation becomes

R̂ =

(
e−iδ12t/2 0

0 eiδ12t/2

)
. (2.40)



18 2. Coherent manipulation of atoms with light pulses

Figure 2.3: Hyperfine structure within the 85Rb D2 line (|52P3/2〉 → |52S1/2〉 transi-
tion) with data taken from [57]. Raman transitions act to couple the two ground hyper-
fine levels |52S1/2, F = 2〉 and |52S1/2, F = 3〉 via upper hyperfine levels |52P3/2, F

′ = 2〉
and |52P3/2, F

′ = 3〉. Each hyperfine level F is further spit into 2F + 1 sub-levels (not
shown) in the presence of a weak external magnetic field.

Applying Equation 2.20, we find the rotating frame Hamiltonian

ĤR =
~
2

(
δ ΩRe

−iφL

Ω∗Re
iφL −δ

)
, (2.41)

where we have absorbed the relative Stark shift into the Raman detuning and defined

δ ≡ δ12−δAC. We now have a manageable time-independent Hamiltonian for an effective

two-level atom undergoing Raman transitions between two ground hyperfine levels |g〉
and |e〉. In Section 2.3 we solve the TDSE using this Hamiltonian in the rotating frame

and find the resulting time-dependence of the state amplitudes.

2.2 Rubidium-85

85Rb is our element of choice in the atom interferometry experiments and simulations

in this thesis3. It is relatively convenient to cool and trap using the techniques outlined

in Chapter 6 due to the existence of a cyclic cooling transition. It is also technically

convenient because the D2 optical transition at 780 nm is easily accessed by existing

3The other isotope widely used in atom interferometry experiments is 87Rb. Although naturally less
abundant than 85Rb and with a higher radio-frequency splitting between ground hyperfine levels, 87Rb
has a simpler hyperfine and Zeeman structure.
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diode lasers such as those originally designed for CD writers, or by frequency-doubling

telecommunications laser sources at 1560 nm. Furthermore, as an alkali metal, rubidium

has a single electron in its outer shell, making the energy level structure ‘hydrogenic’

and consequently simple to model.

Our interferometry pulses use stimulated Raman transitions between the ground hy-

perfine levels |52S1/2, F = 2〉 ≡ |g〉 and |52S1/2, F = 3〉 ≡ |e〉, which form part of the

hyperfine structure within the |52P3/2〉 → |52S1/2〉 transition known as the D2 line,

shown in Figure 2.3 [57]. The interaction between the nuclear spin magnetic moment

and the magnetic field generated by the electrons gives rise to what is known as hyperfine

structure with energy levels described by the quantum number F [53]. F is the magni-

tude of the total angular momentum F , i.e. the sum of the total angular momentum

of the electrons J and the nuclear spin I. Since the nuclear spin I is 5/2 for 85Rb, the

level |52S1/2〉 is split into two hyperfine states (F = 2, 3) and the level |52P3/2〉 into four

(F = 1, 2, 3, 4), following the rules for the addition of angular momenta. As per the

dipole selection rules, single-photon transitions must obey ∆F = 0, ±1, and therefore

our Raman transitions must occur via the intermediate levels F ′ = 2, 3.4

In the presence of a weak magnetic field of magnitude B aligned along the positive

z direction (B = Bẑ), each hyperfine level F splits into 2F + 1 Zeeman sub-levels

described by the quantum number mF , where mF = −F, −F + 1, ..., F , representing

the projection of the total angular momentum along ẑ. These sub-levels are shifted in

energy by

∆EZeeman = gFµBBmF . (2.42)

gF is the Landé g-factor, which may be calculated following the treatment given by

Foot [53], and µB is the Bohr magneton. This Zeeman shift also leads to a modification

of the Raman detuning.

2.2.1 Beam polarisations and multiple Raman routes

The direction of the external magnetic field B = Bẑ provides a quantisation axis for

the atom, and both the polarisation and direction of propagation of an incident photon

determine which dipole transitions can occur between mF sub-levels. For single-photon

transitions mF → m′F , the conservation of angular momentum implies that ∆mF =

m′F − mF = 0, ±1, dependent on the specific polarisation of the light relative to ẑ.

When a photon is absorbed (emitted) by an atom its angular momentum is added to

(subtracted from) the atomic angular momentum.

4Raman transitions cannot occur via the intermediate levels F ′ = 1 or F ′ = 4 because the effective
Rabi frequency - given by the product of the two single-photon Rabi frequencies - is zero for these
Raman routes: single-photon transitions between F = 2 and F ′ = 4 and between F = 3 and F ′ = 1 are
dipole-forbidden.
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A polarised photon whose electric field oscillates in a direction parallel to the quanti-

sation axis causes a π0 transition to occur where ∆mF = 0. For a circularly polarised

photon propagating along the quantisation axis ẑ, the polarisation direction rotates in

a plane perpendicular to ẑ and ∆mF = ±1. If the photon is left-circularly polarised

(LCP) and propagating in ẑ direction (the polarisation rotates counter-clockwise when

viewed towards the source) then σ+ transitions are driven with ∆mF = +1. As expected

therefore, σ− transitions are driven by right-circularly polarised (RCP) light propagating

along ẑ and the result is that ∆mF = −1.

Linearly polarised light propagating along the quantisation axis with an electric field

perpendicular to ẑ can be expressed as an equal superposition of left- and right- circularly

polarised light, resulting in π+ (polarisation parallel to ŷ) and π− (polarisation parallel

to x̂) transitions where ∆mF = ±1.

Raman transitions occur between different mF sub-levels depending on the specific po-

larisation arrangement of both beams. Here we limit our discussion to two particular

arrangements used in the experiments in this thesis: the σ+ − σ+ arrangement and the

π+ − π− or ‘lin-perp-lin’ arrangement.

In the σ+−σ+ arrangement both Raman beams carry photons with circular polarisations

such that the Raman transitions occur between levels |F = 2, mF 〉 and |F = 3, mF 〉 via

levels |F ′ = 2, 3;mF + 1〉. The ‘lin-perp-lin’ or π+ − π− arrangement occurs when the

photons in each Raman beam have orthogonal linear polarisations perpendicular to the

quantisation axis. In this situation, since π+ and π− polarised light is an equal superpo-

sition of left- and right- circularly polarised light, Raman transitions can occur between

the levels |F = 2, mF 〉 and |F = 3, mF 〉5 via four possible routes: |F ′ = 2, 3;mF ± 1〉.

Since our Raman transitions occur via more than one intermediate level our treatment

of Raman transitions must be modified to account for multiple Raman routes. We first

generalise our single-photon couplings of each laser to the possible intermediate states

by defining the vectors

Ω1g ≡
(
Ω1
|2,mF 〉|1,m′F 〉,Ω

1
|2,mF 〉|2,m′F 〉,Ω

1
|2,mF 〉|3,m′F 〉, 0

)T
(2.43)

Ω2e ≡
(
0,Ω2

|3,mF 〉|2,m′F 〉,Ω
2
|3,mF 〉|3,m′F 〉,Ω

2
|3,mF 〉|4,m′F 〉

)T
, (2.44)

where Ωa
|F,mF 〉|F ′,m′F 〉

is the single-photon Rabi frequency for the coupling of states

|F,mF 〉 and |F ′,m′F 〉 by laser a. As before we have ignored couplings between the

wrong laser and the wrong ground state e.g. Ω1e and Ω2g although these will affect

the light shift. Furthermore we assume that the single-photon detuning from all upper

intermediate states is large and approximately equal, taken to be ∆.

5Transitions between |F = 2, mF 〉 and |F = 3, mF ± 2〉 do not occur in the ‘lin-perp-lin’ arrange-
ment because the dipole matrix elements cancel.
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In this vector formalism for multiple Raman routes, the two-photon Rabi frequency ΩR

and the Stark shift δAC become [58, 59]:

ΩR =
|Ω1g ·Ω2e|

2∆
(2.45)

=
1

2∆

∑
F ′=2,3

∣∣Ω1
|2,mF 〉|F ′,m′F 〉Ω

2
|3,mF 〉|F ′,m′F 〉

∣∣
δAC =

||Ω2e||2 + ||Ω1e||2

4∆
− ||Ω1g||2 + ||Ω2g||2

4∆
. (2.46)

We can therefore see that the two-photon Rabi frequency and Stark shifts of the ground

hyperfine levels will depend not only on the polarisation of the light but also on the

occupation of the various mF sub-levels by the atoms, leading to a potential source of

Rabi frequency inhomogeneity unless atoms are pumped into a single sub-level.

2.3 Rabi oscillations, coherent pulses, and the Bloch sphere

picture

The TDSE tells us how quantum states evolve in time under a given Hamiltonian.

Consider the ansatz

|Ψ(t)〉 = exp

(
− i

~
Ĥ × (t− t0)

)
|Ψ(t0)〉 . (2.47)

By substituting this expression into the TDSE and assuming Ĥ for our Raman in-

teraction is time-independent (constant laser intensity, frequency, and phase), we see

that Equation 2.47 is a solution to the TDSE, and gives us the time-evolution of

|Ψ(t)〉 = cg(t) |g〉+ ce(t) |e〉. We therefore define the propagator

Û(t0, t) ≡ exp

(
− i

~
Ĥ × (t− t0)

)
(2.48)

as the unitary transformation that evolves states from time t0 to t under the action of

time-independent Hamiltonian Ĥ.

For Raman transitions where the laser intensity, phase and frequency are constant for

the duration of the interaction, Û may be evaluated with relative ease by first rewriting

ĤR using the Pauli spin matrices

ĤR =
~
2

(
δ ΩRe

−iφL

Ω∗Re
iφL −δ

)
=

~
2
Ω(t) · σ̂, (2.49)

where σ̂ = (σ̂x σ̂y σ̂z)
T is the vector of Pauli matrices and Ω is the “field vector”, defined

by

Ω = ΩR cos(φ)x + ΩR sin(φ)y + (δ)z. (2.50)
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The propagator Û is then given by the exponential

Û(t0, t) = exp

(
− iΩ(t) · σ̂

2
(t− t0)

)
, (2.51)

which may be evaluated explicitly using the identity exp(iαn̂·σ̂) ≡ I cos(α)+in̂·σ̂ sin(α),

yielding the expression [60]

Û =

(
C∗ −iS∗

−iS C

)
, (2.52)

where C and S are defined as:

C ≡ cos

(√Ω2
R + δ2(t− t0)

2

)

+ i

(
δ√

Ω2
R + δ2

)
sin

(√Ω2
R + δ2(t− t0)

2

)
(2.53)

S ≡ eiφ
(

ΩR√
Ω2
R + δ2

)
sin

(√Ω2
R + δ2(t− t0)

2

)
. (2.54)

These equations may be used in accordance with Equation 2.47 to find the final state

amplitudes in the rotating frame cg(t) and ce(t) following a Raman “pulse” of fixed du-

ration, coupling strength ΩR, detuning δ, and relative laser phase φL. If these quantities

change during the interaction, then the Hamiltonian becomes time-dependent and the

solution in Equation 2.47 is no longer valid.

The Raman Hamiltonian describing the interaction between atomic states and optical

radiation in the rotating frame studied in this chapter (Equation 2.49) is isomorphic to

the Hamiltonian that describes a nuclear spin interacting with an applied radio-frequency

(rf) field studied extensively in nuclear magnetic resonance (NMR) spectroscopy [61].

We make use of this similarity in later chapters by investigating how NMR techniques

designed to improve the control of nuclear spins in the presence of systematic errors may

be used in the laser control of atoms for interferometry.

2.3.1 Rotations on the Bloch sphere

The state vector of any two-level system may, neglecting a global phase factor, be written

as

|Ψ〉 = cos

(
ϑ

2

)
|g〉+ eiϕ sin

(
ϑ

2

)
|e〉 , (2.55)

where ϑ and ϕ are the polar and azimuthal coordinates of a point on the surface of

a unit sphere, known as the Bloch sphere [62] (shown in Figure 2.4). We define the

Bloch vector λ = (u v w)T as the vector representation of the quantum state |Ψ〉 in
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Figure 2.4: Bloch sphere representation of the quantum state, |ψ〉, for a single two-
level atom. The north pole corresponds to the lower state |g〉 and the south pole

corresponds to the upper state |e〉.

this picture. λ has unit length and real elements given by the expectation values of the

Pauli spin matrices:

u = 〈Ψ|σ̂x|Ψ〉 = c∗gce + cgc
∗
e (2.56)

v = 〈Ψ|σ̂y|Ψ〉 = i(cgc
∗
e + c∗gce) (2.57)

w = 〈Ψ|σ̂z|Ψ〉 = |cg|2 − |ce|2. (2.58)

The Bloch sphere provides an intuitive geometric way to analyse the dynamics of our

two-level atomic system interacting with the laser beams. All possible states in our

two-level system are mapped onto the surface of the Bloch sphere, where the north and

south poles correspond to the states |g〉 and |e〉 respectively. If the atom is in an equal

superposition of the two states, then its state may be represented on the Bloch sphere

by a point on the equator.

The three Pauli spin matrices, when exponentiated6, lead to operators that describe

rotations of the state |Ψ〉 on the Bloch sphere. Rotations by an angle α about the x, y,

and z-axes are given by exp(−iασ̂x/2), exp(−iασ̂y/2), and exp(−iασ̂z/2) respectively.

This can be shown by applying these transformations to an arbitrary state and evaluating

the components of the resulting Bloch vector. Furthermore, a rotation by α about an

arbitrary axis, described by unit vector n̂, is given by exp (−iαn̂ · σ/2).

By examining the form of our propagator (Equation 2.51), we can therefore see that its

action is equivalent to a rotation of the state vector |Ψ(t)〉 on the surface of the Bloch

sphere by an angle given by |Ω| × (t− t0) =
√

Ω2
R + δ2 × (t− t0) about an axis aligned

with the field vector, Ω. The projection of this axis in the xy plane is determined by the

relative laser phase φL, and the inclination from this plane determined by the detuning

6The exponential of an m × m square matrix Â is defined through the power series
exp(Â) ≡∑∞n=0

1
n!
Ân, where Â0 is the m×m identity matrix.
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Figure 2.5: The action of the propagator (Equation 2.51) rotates the quantum state
from |Ψ(0)〉 to |Ψ(tf )〉 on the surface of the Bloch sphere by an angle

√
Ω2
R + δ2× (tf )

about an axis defined by the field vector Ω. The field vector’s orientation is specified
by the detuning from resonance and the laser phase. Note that in this picture we have

depicted the normalised field vector Ω̂ ≡ Ω/
√

Ω2
R + δ2.

from resonance δ, as illustrated in Figure 2.5. Resonant pulses therefore lead to rotations

about axes in the equatorial plane and for an atom initially in the internal state |g〉,
continuous resonant interaction will cause the state of the atom to “flop” between the

levels |g〉 and |e〉 - known as Rabi flopping.

2.3.2 π/2 and π pulses

The building blocks of conventional interferometer sequences are rectangular π (mirror)

and π/2 (beamsplitter) pulses, which result from tuning the duration of a pulse of

constant intensity and laser phase to be either (π/ΩR) or (π/2ΩR) respectively. When

the interaction is resonant (δ = 0), the π pulse rotates the state vector by π about an

axis in the equatorial plane of the Bloch sphere defined by the laser phase φL and the π/2

pulse yields a π/2 rotation about the same axis. These pulses are said to be rectangular

in the sense that the Rabi frequency ΩR is fixed for the duration of the interaction. The

evolution of the atomic state vector under the action of resonant rectangular π/2 and π

pulses is shown in Figures 2.6a and 2.6b respectively.

Interferometer sequences also consist of periods of time for which the laser beams are

extinguished, known as periods of “free evolution”. In these circumstances ΩR is zero,

and the field vector becomes parallel or anti-parallel to the z-axis of the Bloch sphere

depending on the sign of the detuning. Consequently, the quantum state rotates about

the z-axis of the Bloch sphere during free evolution, at a rate given by the detuning δ.
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Figure 2.6: Bloch sphere trajectories for a resonant π/2 pulse (a) and a π pulse (b).
The field vector is represented by the red vector and the initial state in each case is |g〉.
The π/2 pulse creates an equal superposition of the two basis states, and the π pulse

completely inverts the atomic state from pole to pole.

2.4 Pulse imperfections: off-resonance and pulse-length

errors

In this section we discuss two main classes of systematic control error that affect Raman

pulses: off-resonance and pulse-length or -strength errors [45]. This categorisation of

control errors comes from the NMR literature [61, 63, 64]. Since the Hamiltonian for a

spin-1/2 nucleus interacting with an applied rf field is isomorphic to the two-level Raman

Hamiltonian of Equation 2.49, NMR terminology may be applied to Raman transitions.

However, the sources and possible correlations between these control errors are quite

different in atom interferometry.

An off-resonance error arises when the Raman detuning δ is non-zero and consequently

the field vector does not lie perfectly in the equatorial plane of the Bloch sphere. As

a result, the trajectory followed by the quantum state on the Bloch sphere under a

rectangular pulse (e.g. a π or π/2 pulse) is deflected from its resonant trajectory and

the final state is different from that obtained following a resonant pulse. The effect

of an off-resonance error may be reduced by increasing the Rabi frequency for a given

atom. This is because increasing ΩR for a given atom relative to fixed δ will decrease

the angle between the rotation axis and the equatorial plane of the Bloch sphere. ΩR

may be increased by a) increasing the laser intensity or b) decreasing the single-photon

detuning from the intermediate upper level ∆. This means that short high-power pulses

are favourable but in practice one is limited experimentally by the maximum available

laser power.
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Figure 2.7: Bloch sphere trajectories for a π pulse acting on the state |g〉 under the
influence of (a) an off-resonance error and (b) a pulse-length error. The off-resonance
error deflects the trajectory on the sphere and the pulse-length error leads to an under-
shooting of the “target” state |e〉. The rotation axis, or field vector, is shown in each

case by the red arrow.

A pulse-length or amplitude error occurs when the desired total rotation angle around the

field vector is incorrect, due to either a miscalibration in the pulse duration or an error in

the coupling strength (Rabi frequency) for a given atom ΩR leading to a deviation from

its nominal or average value, which we call the effective Rabi frequency Ωeff . The ratio

ΩR/Ωeff provides a natural way to quantify pulse-length errors. Figure 2.7 illustrates

both classes of error on the Bloch sphere for a π pulse acting on the initial state |g〉.
The off-resonance error caused by a non-zero Raman detuning leads to a deflection of

the trajectory and the pulse-length errors caused by an offset in the Rabi frequency

leads to an undershooting of the excited state |e〉. In other words, both errors lead to a

reduction in the fidelity or efficiency of the pulse - meaning that it no longer performs

the intended operation.

We can quantify the fidelity of a pulse in many different ways. One option, supposing

our atom is initially in the state |ψi〉, is to measure how close the final state is to a

desired target state |ψT 〉, e.g. | 〈ψT |Û |ψi〉 |2 where Û is the pulse propagator. For the

π pulse we could choose the initial state |g〉 and a target state |e〉, and measure the

state-transfer efficiency by | 〈e|Û |g〉 |2 - which is also the probability for the atom to

be in the excited state after the pulse Pe. We can simulate this state-transfer fidelity

for the π pulse in the presence of pulse-length and off-resonance errors, and produce a

fidelity contour plot such as the one in Figure 2.8 showing how the fidelity decreases as

the magnitude of each error is increased.

Although the state-transfer fidelity measure is useful, it only makes sense when con-

sidering one particular pairing of initial and target states and tells us nothing about

how different initial states are transformed by the pulse. Another more general measure
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Figure 2.8: Simulated state-transfer fidelity | 〈e|Û |g〉 |2 for the rectangular π pulse
as a function of off-resonance errors δ/Ωeff and pulse-length errors ΩR/Ωeff . Contours

correspond to state-transfer fidelities of 0.5, 0.7, and 0.9.

involves quantifying how close the error-prone pulse propagator Û in the presence of con-

trol errors is to the ideal target propagator ÛT in the absence of errors, e.g. Tr(Û †T Û).

This measure is different to the point-to-point fidelity measure because it quantifies how

the operation of a given pulse varies from the ideal transformation, and thereby removes

the need to specify pairs of initial and target states. We return to the topic of fidelity

in later chapters when we design and implement replacements to the conventional rect-

angular Rabi π and π/2 pulses that are robust to off-resonance and pulse-length errors.

Examining our expressions for the Raman detuning (Equation 2.26) and the two-photon

Rabi frequency (Equation 2.45), we can gain insight into the physical origin of off-

resonance and pulse-length errors. The Raman detuning depends on the velocity of an

atom relative to the fixed laser beams, and therefore for a cloud of atoms with non-

zero temperature, the spread in atomic velocities parallel to the Raman beams will

lead to a distribution of off-resonance errors: the hotter the cloud, the larger the range

of off-resonance errors. Other sources of off-resonance errors include the Zeeman shift

(Equation 2.42) which is caused by an uncompensated small magnetic field and also

depends on which Zeeman sub-levels are populated within an atomic sample, and the

light-shift (Equation 2.46). Examining the two-photon Rabi frequency, we see that any

variation in the intensity of the laser beams either spatially or temporally will lead to

pulse-length errors, and often this occurs due to the thermal expansion of an atomic

cloud across a non-uniform laser intensity profile.

Off-resonance and pulse-length errors limit the ability to accurately control atomic states

when there is a variation of these errors within an ensemble of atoms. Any variation in

pulse-length or off-resonance errors in an ensemble leads to what is known as dephasing
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(b) 50 µK ensemble average

Figure 2.9: Simulated Rabi flopping with off-resonance and pulse-length errors. (a)
shows how the excited state probability Pe = |ce(t)|2 of a single atom varies as a
function of the time of interaction with the Raman beams for three different cases:
zero detuning and no amplitude error (blue solid curve), a detuning of 0.5Ωeff and no
amplitude error (dashed orange curve), and zero detuning but an amplitude error of
ΩR/Ωeff = 0.5. The effective Rabi frequency was 200 kHz. (b) shows how the fraction
of atoms in the excited state 〈Pe〉 varies with time for a simulated cloud of 85Rb atoms
with a temperature of 50 µK. The distribution of atomic velocities results in a spread of
detunings and leads to dephasing within the ensemble - the amplitude of the oscillations

decays and precise control of the ensemble is lost.

as different atoms follow different trajectories under the same pulse, limiting one’s ability

to control the atomic states. In other words, a π pulse will not be a π pulse for all atoms.

This is illustrated in Figure 2.9 using the example of Rabi flopping in an atomic ensemble

with pulse-length and off-resonance errors. All atoms begin in the same state but, since

different atoms have different detunings in a sample with non-zero temperature, their

trajectories rapidly diverge on the Bloch sphere and the expected fraction of atoms in

the excited state 〈Pe〉 exhibits Rabi oscillations with decaying amplitude.
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Chapter 3

Atom interferometry

One of the extraordinary discoveries of quantum mechanics is the phenomenon of wave-

particle duality whereby massive particles can exhibit wavelike properties such as diffrac-

tion and interference. Atom interferometers [37] can exploit the interference of these

“matter-waves” to enable precise measurements of forces and fields. Essential to the op-

eration of an atom interferometer, are the “atom-optics” that are used to split, redirect,

and interfere the atomic matter-waves. After the matter-waves are divided to follow

separate spatial paths by a beamsplitter operation, atoms in each path accumulate a

different phase due to their interaction with an external field. The resulting phase dif-

ference upon recombination of the matter-waves can be used to generate an interference

pattern and enable a measurement of the external field.

Neutral atoms make excellent identical test masses and, unlike the neutrons or electrons

used in early matter-wave interferometers [65, 66], their internal energy levels allow

for precise control of their momentum using resonant laser light. Light-pulse atom

interferometry has also been made possible in part by the development of methods to

cool and trap atoms using laser light [67–71], which allow a cold (∼ µK) sample of many

millions of atoms to be prepared and localised in space.

Since the first demonstration of atom interferometry with light pulses in the 1990s [36],

atom interferometric sensors have been used to measure gravitational accelerations and

Newton’s gravitational constant [41, 72, 73], probe the validity of Einstein’s equiva-

lence principle [74], measure the fine-structure constant [75–78], and test dark energy

models [79–81]. Furthermore, they have been proposed as a means to detect gravita-

tional waves [82, 83] and the development of mobile quantum gyroscopes and accelerom-

eters [38, 84–88] has the potential to realise quantum inertial navigation systems with a

performance surpassing the best classical devices.

Although many of these atom interferometric sensors have already achieved impressive

sensitivities, the performance of all atom interferometers is limited by the fidelity of the
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beamsplitter and mirror operations. All the atoms in an interferometer are in principle

identical test masses, but their interaction with the light is subject to inhomogeneities

due to variations in atomic velocity, magnetic fields, laser intensity, and atomic sub-state.

This limits the efficiency of the atomic diffraction: the beamsplitter and mirror pulses do

not split and redirect all atoms in the same way, introducing phase errors and reducing

the visibility or contrast of the resulting interference fringes. Consequently, in many

lab-based interferometers, the atomic sample is filtered to reduce the inhomogeneities

present [40, 89], but this inevitably results in a loss of signal [90]. Furthermore, the

development of mobile interferometric sensors requires interferometer pulse sequences

that operate with high-fidelity in noisy and inhomogeneous environments.

The sensitivity of an atom interferometer scales with the area enclosed by the interfer-

ing paths. In an atom interferometer used for inertial sensing the enclosed area, and

hence sensitivity, is proportional to the momentum transferred by the light to the atoms.

This has motivated the development of large-area or large-momentum-transfer (LMT)

atom-optics [40, 89, 91], where additional light pulses may be used to increase the in-

terferometer area and sensitivity. LMT interferometers, described in Section 3.3, are

particularly susceptible to pulse infidelity, since in multi-pulse sequences the errors can

accumulate, resulting in a loss of interference visibility which also limits any potential

sensitivity increase.

Atom interferometers typically use either two-photon Raman transitions [36, 92] or

multi-photon Bragg pulses [89] to diffract atomic wave-packets. In a Raman transi-

tion, two counter-propagating laser beams induce a transition between two ground hy-

perfine states in an alkali atom - thus changing the internal (electronic) and external

(momentum) state of the atom. Bragg diffraction, however, does not lead to a change

in electronic state; the counter-propagating laser beams instead couple two states that

differ only in their momentum. Since Raman transitions lead to a change in electronic

and momentum state, they enable the use of electronic state readout employed in many

current inertial sensor designs [39]. Furthermore, efficient Bragg diffraction requires an

atomic source with a very narrow momentum width [90] and attaining these lower tem-

peratures in practice means filtering the atomic sample and hence incurring a loss in the

signal-to-noise ratio of the interferometer.

In this chapter we provide a brief overview of atom interferometry where the atom-optics

are formed using stimulated Raman transitions between the hyperfine ground states in

alkali atoms. Furthermore, we show how such an interferometer may be used to measure

acceleration by deriving the resulting interferometric phase shift that is imprinted on the

atomic wave-functions. We introduce the important class of large-momentum-transfer

(LMT) interferometers, which use extra light-pulses to increase the enclosed area of

the interferometer and hence increase the intrinsic sensitivity. In the final section of

this chapter we discuss how inhomogeneities present in the atom-light interaction in
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Figure 3.1: Positions of atomic trajectories as a function of time within a three-pulse
Mach Zehnder interferometer sequence composed of ideal rectangular π/2 and π pulses
that are assumed to act instantaneously. The initial beamsplitter pulse prepares a su-
perposition of the two internal states, which separate spatially due to the momentum
imparted by the atom-optics (~keff). The central mirror pulse acts to swap popula-
tion between the two states in each interferometer “arm”. The two wave-packets then
converge before a final “recombiner” pulse converts the accumulated phase difference
between the wave-packets into a difference in atomic population which is then detected
at the output. The initial atomic momentum p is zero in this picture and T is the

“dwell-time” between the beamsplitter and mirror pulses.

interferometers reduce the efficiency of the beamsplitter and mirror pulses. We char-

acterise these errors and explain how they ultimately limit interferometer contrast and

sensitivity.

3.1 The Mach-Zehnder interferometer

By applying beamsplitter and mirror pulses to separate, redirect, and recombine atomic

wave-packets as depicted in Figure 3.1, phase shifts due to inertial effects such as rota-

tions and accelerations are imprinted on the difference between atomic state populations

at the output of the interferometer. The most common sequence of pulses used in in-

terferometric sensing applications is the π/2 − π − π/2 or “Mach-Zehnder” sequence,

illustrated using the Bloch sphere picture in Figure 3.2. With atoms initially in the

ground state |g,p〉, a Raman π/2 (beamsplitter) pulse forms an equal superposition of

the two states |g,p〉 and |e,p + ~keff〉. The laser beams are switched off and the two

states in the superposition separate spatially due to the momentum imparted by the
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(a) π/2 pulse. (b) First dwell-time.

(c) π pulse. (d) Second dwell-time.

(e) π/2 pulse. (f) Top-down view.

Figure 3.2: The Mach-Zehnder interferometer sequence depicted for a single atom
on the Bloch sphere ((a) to (e)). At the end of the interferometer, the accumulated
phase difference between the two internal states is mapped onto a difference in the
excited state population, and may be used to generate a fringe pattern. φT1 and φT2

are the phases accumulated during the first and second dwell-times respectively. The
azimuthal angle for the quantum state on the Bloch sphere is shown throughout the
sequence. (f) shows a top-down view of the Bloch sphere during the entire sequence.
The beamsplitter and mirror pulses are depicted as ideal π/2 and π pulses respectively.
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Raman transition ~keff , accumulating a relative phase difference. A π (mirror) pulse is

used to redirect the two “arms” of the interferometer (by swapping both the internal

state and momentum in each part of the superposition) and, after a second period of free

evolution with the lasers turned off, a final π/2 or ‘recombiner’ pulse maps the resulting

superposition onto a difference in the atomic population. This may then be measured

by detecting the number of atoms in each internal state after the final pulse.

For a Mach-Zehnder interferometer composed of ideal resonant π/2 and π pulses, we

observe interference fringes where the final excited state probability oscillates according

to

Pe =
1

2
− 1

2
cos(Φ), (3.1)

where Φ is the difference between the phase accrued during the first and second periods of

free evolution, which depends upon the acceleration and/or rotation of the atoms relative

to the lasers. These fringes allow one to determine the inertial phase and hence make

a measurement with the interferometer. For a succinct overview of atom interferometry

and the matter-wave analogue of the optical Mach-Zehnder interferometer introduced in

this section we refer the reader to Section 18.3 of Cohen-Tannoudji and Guéry-Odelin

[54].

3.1.1 Phase shift due to acceleration

As an example, we evaluate the interferometer phase Φ for the case where atoms expe-

rience a constant acceleration parallel to the propagation direction of one of the Raman

beams. This arrangement is used in experiments with vertically orientated beams to

measure the local gravitational acceleration g [36].

We begin by rewriting our time-dependent Raman detuning (Equation 2.26) for a single

atom as

δ(t) = (v + at) · keff , (3.2)

where we have ignored the Stark and recoil shifts and assumed the laser detuning δL is

zero. v represents the initial velocity due, for example, to the temperature distribution

of the atoms, and a is a constant acceleration common to all atoms (e.g. due to gravity).

We can calculate the relative phase accrued during the two periods of free evolution (with

durations T1 and T2) between the pulses by solving the Schrödinger equation using the

Hamiltonian (Equation 2.49) in the rotating frame with ΩR = 0:

φT1 =

∫ ti+T1

ti

δ(t) dt = keff · (vt+
1

2
at2)

∣∣∣∣ti+T1

ti

(3.3)

φT2 =

∫ ti+T1+T2

ti+T1

δ(t) dt = keff · (vt+
1

2
at2)

∣∣∣∣ti+T1+T2

ti+T1

. (3.4)
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ti represents an arbitrary time at which the pulse sequence commences. For equal periods

of free evolution of time T ≡ T1 = T2, the interferometric phase Φ becomes

Φ = φT2 − φT1 (3.5)

= keff ·
(

v(T2 − T1) +
1

2
a[(ti + T1 + T2)2 − 2(ti + T1)2 + t2i ]

)
(3.6)

= keff ·
(

1

2
a[(ti + 2T )2 − 2(ti + T )2 + t2i ]

)
(3.7)

= keffaT
2 (3.8)

= Sa, (3.9)

where we have assumed that the acceleration is parallel with the effective wavevector.

S ≡ keffT
2 is the measurement scale-factor of the interferometer - defined as the ratio

between the interferometer phase shift and the quantity we wish to measure. The scale-

factor is also proportional to the space-time area enclosed by the diffracting wave-packets

(see Figure 3.1). We see that for equal periods (T1 = T2 = T ) of free evolution the

Doppler contribution to the interferometer phase vanishes. This effect is analogous to

the “spin echo” familiar to NMR spectroscopists [93], and relies on the perfect 180◦

rotation of the mirror pulse in the interferometer sequence.

The phase shift of the interferometer therefore provides a way to measure the acceleration

experienced by the atoms relative to the fixed laser beams during the interferometer.

By detecting the fraction of the atoms in the excited state following the Mach-Zehnder

sequence, this phase shift can be determined. This technique has been used to measure

rotations, gravity, and gravity gradients and forms the basis for state-of-the-art ultra-

precise atom-interferometric quantum sensors.

The measurement sensitivity of the atom interferometer is defined as the smallest ac-

celeration that results in a detectable change in the measured fraction of atoms in the

excited state. When operating at mid-fringe (Φ ≈ π/2), a change in the excited state

probability is directly proportional to a change in the inertial phase shift [94] so the

scale-factor can be considered a measure of the interferometer’s intrinsic sensitivity. In

practice, however, the actual measurement sensitivity will depend both on the level of

detection noise (which determines the smallest detectable change in the excited state

population) and the contrast of the interferometer fringes. In line with previous work

[42, 46], we refer to the product of the scale-factor and contrast as the measurement

sensitivity. In Section 3.3 we discuss how the intrinsic sensitivity (scale-factor) may

be increased by extended sequences of Raman pulses, but stress that this does not al-

ways guarantee an increase in measurement sensitivity due to an accompanying loss in

visibility.

In deriving Equation 3.5 we have glossed over many important details and made sev-

eral assumptions about the light-atom interactions. For example, we have assumed that
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the beamspitter and mirror pulses occur instantaneously and are perfectly resonant. In

reality, in interferometers with vertically orientated Raman beams, the laser frequency

difference must be continually chirped to compensate for the Doppler shift caused by

the gravitational acceleration and to keep the pulses approximately resonant [36]. Ac-

counting for the finite pulse durations leads to a modification of the interferometric

phase [60, 95–98] (known as the pulse duration effect). However, in the limit where the

free evolution period is long compared to the pulse durations, the phase shift is still

given by keffaT
2. We have also assumed that all atoms experience the same two-photon

Rabi frequency and that this does not vary from pulse to pulse.

There are many different pulse sequences beyond the three-pulse ‘Mach-Zehnder’ that

may be employed in atom interferometry and each one is suited to a different pur-

pose [37]. One example is the ‘Ramsey’ 2-pulse π/2−π/2 sequence widely used in atomic

clocks [99–101], which may also be adapted to measure the velocity distribution of an

atomic ensemble [102, 103] and implement interferometric cooling schemes [104, 105].

Another pulse sequence is the Ramsey-Bordé π/2 − π/2 − π/2 − π/2 sequence used to

measure the recoil velocity and hence determine the fine-structure constant [78, 106].

More complex multi-pulse sequences are used to increase the enclosed area and hence

sensitivity of atom interferometers through large-momentum-transfer (LMT) [40], and

for algorithmic cooling applications [107].

3.2 The effect of pulse imperfections

What happens to the interferometer when the beamsplitter and mirror pulses are no

longer ideal? We can evaluate the final excited state probability for a given atom fol-

lowing the Mach-Zehnder interferometer by chaining together the propagators for each

pulse (including the dwell-times between pulses) and applying the result to the initial

state of the atom, which we take to be |g〉:

Pe = | 〈e| Û3ÛT2Û2ÛT1Û1 |g〉 |2. (3.10)

Û1, Û2, and Û3 represent the propagators for the initial beamsplitter, central mirror,

and final beamsplitter pulses respectively, which we take to be rectangular π/2 and π

pulses. ÛT1 and ÛT2 represent the propagators for the two periods of free-evolution: the

first of duration T1 and the second of duration T2.

The resulting excited state probability for a given atom may be written as [60]1

Pe =
1

2
(A− B cos(Φ + ∆φ)), (3.11)

1A derivation of this expression for the interferometer output may be found in Appendix A.
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where A and B are the offset and contrast of the interferometer fringes respectively.

Φ is the inertial phase term defined by Equation 3.5 and ∆φ represents a fixed shift

to the phase that may be used to scan the fringe pattern. The detected fraction of

atoms in the excited state following an interferometer sequence is given by the integral

of Equation 3.11 over the distribution of atoms in the sample. This integral may be

computed analytically [108, 109], or else using a Monte Carlo approach [44].

We also find the following expressions for A, B, and ∆φ assuming the Rabi rate, laser

frequency, phase, and detuning do not vary much on the time-scale of individual pulses:

A = 2
(
| 〈e|Û1|g〉 〈e|Û2|g〉 〈e|Û3|g〉 |2

+ | 〈g|Û1|g〉 〈e|Û2|g〉 〈g|Û3|g〉 |2

+ | 〈e|Û1|g〉 〈g|Û2|g〉 〈g|Û3|g〉 |2

+ | 〈g|Û1|g〉 〈g|Û2|g〉 〈e|Û3|g〉 |2
)

(3.12)

B = 4| 〈g|Û1|g〉 〈e|Û1|g〉 || 〈e|Û2|g〉 |2| 〈g|Û3|g〉 〈e|Û3|g〉 | (3.13)

∆φ = φ(〈e|Û1|g〉)− φ(〈g|Û1|g〉)

− 2φ(〈e|Û2|g〉)

+ φ(〈g|Û3|g〉) + φ(〈e|Û3|g〉). (3.14)

We use the notation φ(〈a|b〉) to indicate the argument of the overlap 〈a|b〉. We see that

the optimal contrast and offset are achieved for all atoms only if the following conditions

on the 3 pulses are met:

| 〈e|Ûi=1,3|g〉 |2 =
1

2
(3.15a)

| 〈e|Û2|g〉 |2 = 1. (3.15b)

The contrast of the fringes is therefore reduced if the π pulse can no longer invert the

atomic population between the two internal states and/or if the beamsplitters cannot

produce an equal superposition of the two internal states. We interpret these conditions

as requiring our beamsplitter pulses (pulses 1 and 3) to perform a 90◦ rotation of the

quantum state about an axis in the xy plane of the Bloch sphere. Similarly, the optimal

mirror pulse (pulse 2) must perform a 180◦ rotation of the quantum state. By examining

the form of the propagator for each pulse (Equation 2.52) we see that these conditions are

met for π/2 and π pulses in the absence of a detuning or pulse-length error. However,

as shown in Chapter 2, in the presence of off-resonance or pulse-length errors, these

rotations are no longer performed around the intended axes or by the desired angles and

so the contrast of the interferometer fringes is reduced. This can happen in one of two

ways: the Rabi rate or Raman detuning may vary for a given atom from pulse to pulse;
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Figure 3.3: Illustration of different interferometer phase errors arising from a finite-
duration beamsplitter pulse. Different atomic velocities δ1 (red dot-dashed line) and δ2
(orange dashed line) and acceleration (solid blue line) during the pulse lead different
atoms to reach the Bloch sphere equator with different superposition phases. We can
associate an effective “pulse-origin” for each atom by tracing back the phases φ(δ1) and
φ(δ2) to the phase φ0 that is accumulated without any detuning, finding that T1 6= T2.
Without mitigation or cancellation by a subsequent pulse, this variation in pulse-origin

will modify the measurement scale-factor of the interferometer sequence.

or else remain the same for each atom but vary across the atomic sample. In both cases

the ideal pulse conditions (Equations 3.15a and 3.15b) will not be met.

It is also crucial for interferometry that the inertial phase Φ is not modified by a different

amount for each atom as a result of the pulse sequence. This is equivalent to requiring

the combined phase shift due to the pulse sequence, ∆φ, to be fixed or cancelled by

the pulses for every atom. If ∆φ varies from atom to atom, the resulting contrast after

thermal averaging will be washed out due to the contribution of fringes with different

phases [108] and a phase error may be introduced into the interferometric measurement.

Figure 3.3 illustrates different contributions to the interferometer phase that can arise

during a realistic (finite duration) beamsplitter pulse. We see that atoms with different

constant detunings, e.g. δ1 and δ2, are brought down to the xy plane with different

phases φ(δ1) and φ(δ2). A changing detuning due to acceleration within a pulse also

leads to a further modification of this phase. We can associate the spread in phase due

to these effects with different effective “pulse-origins” for different atoms by tracing back

φ(δ1) and φ(δ2) to the phase φ0 that results from zero detuning and acceleration. We

see that the pulse origins, which we refer to by times T1 and T2, are different. Without

cancellation or compensation of this effect, the measurement scale-factor will be modified



38 3. Atom interferometry

0 1π 2π 3π 4π
0.0

0.2

0.4

0.6

0.8

1.0
E

x
ci

te
d

p
ro

b
a
b

il
it

y
P

e

(a) δ = 0,ΩR = Ωeff

δ = Ωeff/2,ΩR = Ωeff

δ = 0,ΩR = Ωeff/2

0 1π 2π 3π 4π

Beamsplitter phase (rad.)

0.0

0.2

0.4

0.6

0.8

1.0

E
x
ci

te
d

fr
a
ct

io
n
〈P

e
〉

(b) ensemble average 50 µK, ±30% Ωeff

Figure 3.4: (a) Simulated interference fringes for a single atom with no control errors
(solid blue line), an off-resonance error (dashed orange line), and a pulse-length error
(purple dotted line). (b) The thermally integrated fringe computed numerically for a
50 µK cloud of 85Rb with a uniform distribution of pulse-length errors in the range

±30% Ωeff . The nominal Rabi rate was 200 kHz.

from the value obtained in Equation 3.5. For the π/2− π − π/2 sequence consisting of

fractional Rabi oscillations, the phase spread due to different velocities during the first

π/2 pulse is exactly cancelled by the final π/2 pulse, but only when there is no change

in detuning (acceleration) or Rabi frequency between the pulses [109].

To illustrate the effect of imperfect pulses on the contrast of a Mach-Zehnder inter-

ferometer, we have simulated the interferometer fringe (Equation 3.11) following the

π/2−π−π/2 sequence for two atoms: one with a large pulse-length error and the other

with an off-resonance error. The results are shown in Figure 3.4a, where the x-axis

depicts a fixed phase shift applied to the final beamsplitter pulse. We see that in both

cases the contrast of the fringe is lowered. Figure 3.4b shows the simulated interferometer

fringe when the excited state probability is averaged over the velocity distribution due

to a cloud of 85Rb at a temperature of 50 µK, which we assume is a Maxwell-Boltzmann

distribution, and a uniform distribution of Rabi frequencies in the range ±30% Ωeff . The

velocity distribution leads to a spread in the Raman detuning, and this coupled with the

spread in pulse-length errors leads to a reduction in the contrast of the resulting fringe.

The effect of inhomogeneities in detuning may be reduced by filtering the atomic sample

to lower the temperature but this reduces the SNR because fewer atoms can partici-

pate in the interferometer. The effect of pulse-length errors due to expansion across

inhomogeneous beam-fronts can also be reduced by using beam-shaping optics, though
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Figure 3.5: Energies (not to scale) of the states |g〉, |e〉, and |i〉 as a function of atomic
momentum along the z-axis. The shorter diagonal (red) arrows represent photons in
laser 2 that couple the states |e〉 and |i〉; the longer diagonal (blue) arrows represent
photons in laser 1 that couple the states |g〉 and |i〉. The solid (dotted) diagonal arrows
correspond to photons whose propagation direction is parallel (anti-parallel) with the
z-axis. By reversing the propagation direction of each laser, an atom initially at rest in
the state |g〉 may be given a two-photon recoil momentum shift ~keff ≈ 2~k1 in either

direction along the z-axis.

it remains difficult to reduce intensity variations to below ∼ 10% [56, 110]. Another

mitigation strategy involves increasing the waist of the (typically Gaussian) beam at the

expense of a loss in power and hence Rabi frequency.

3.3 Large-momentum-transfer (LMT) interferometers

It is clear from the interferometer scale-factor keffT
2 that the intrinsic sensitivity of the

interferometer may be increased by extending the time between the pulses T and/or

by increasing the momentum transferred to the atoms by the light ~keff . This second

method is the basis for large-momentum-transfer (LMT) interferometers [40]. In a Ra-

man LMT interferometer, the beamsplitter and mirror pulses are extended by a sequence

of additional π pulses, referred to as augmentation pulses. The direction of the effective

wavevector is reversed from pulse to pulse, allowing the augmentation pulses following

the initial π/2 pulse to impart additional two-photon momentum kicks (~keff ≈ 2~k) to

atoms in each interferometer arm.
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Reversing the direction of the effective wavevector keff ≡ k1 − k2 can be achieved

experimentally by reversing the propagation direction of each laser, as described by

McGuirk et al. [40] and in Chapter 6, Section 6.2.1. In the counter-propagating Raman

arrangement, laser 1, which couples the states |g〉 and |i〉, has a wavevector k1 while

laser 2, which couples the states |e〉 and |i〉, has a wavevector k2 ≈ −k1. This means

the effective wavevector is given by keff ≡ k1 − k2 ≈ 2k1: an atom initially in state

|g,p〉 is coupled to |e,p + 2~k1〉. However, if we now reverse the propagation directions

of each laser, k1 → −k1 and k2 → −k2, and the effective wavevector becomes keff ≡
−k1 + k2 ≈ −2k1. The momentum transfer is therefore in the opposite direction: an

atom initially in state |g,p〉 will now be coupled to |e,p− 2~k1〉. Figure 3.5 illustrates

the effect of this effective wavevector reversal on the states that are coupled in a Raman

transition.

By increasing the momentum separation between the diffracting wave-packets, the space-

time area enclosed by the interferometer and hence the scale-factor is increased. Fig-

ure 3.6 illustrates the Raman LMT process by depicting the atomic state trajectories

and pulse sequence within a three-pulse Mach-Zehnder interferometer that has been ex-

tended by a total of 8 additional augmentation pulses, leading to an increased momentum

splitting of 10 ~k between the arms.

In a general LMT interferometer, where the beamsplitter operation is extended by a

sequence of N augmentation pulses and the mirror pulse is extended by 2N such pulses,

the momentum separation between the interferometer arms is given by (2N + 1)~keff ,

and the scale-factor therefore increases by the same factor compared with the nominal

three-pulse sequence2. Thus LMT interferometers provide a method to increase inertial

sensitivity without significantly increasing the entire duration of the interferometer.

However, one of the main practical limitations of Raman pulse LMT is the decrease in

pulse fidelity caused by the limited velocity acceptance of conventional π augmentation

pulses. As the arms separate in momentum, their resonance conditions vary. The origin

of this detuning shift can be seen by examining how the basis states change throughout

an LMT sequence. The basis states for each pulse in an LMT sequence vary when the

direction of the effective wavevector is switched. For example, during the initial π/2

pulse the basis states are |g, p〉, and |e,p + ~keff〉, where p represents the initial atomic

momentum. For the first augmentation pulse (where the wavevector is reversed) the

upper arm has a basis described by the states |g,p + 2~keff〉 and |e,p + ~keff〉, and the

lower arm has a basis described by the states |g,p〉 and |e,p− ~keff〉. The two arms

therefore have resonance conditions that are separated by 4δrecoil = 4~k2
eff/2m.

By extension, the resonance conditions between the upper and lower arms for the nth

augmentation pulse (n = 1, 2, 3, .., N) are separated by 4nδrecoil [42, 44, 50], meaning the

2This assumes that the time between the augmentation pulses is significantly smaller than the time
between the extended beamsplitter sequence and the extended mirror sequence [40].
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Figure 3.6: Positions of atomic trajectories as a function of time for a three-pulse
Mach-Zehnder interferometer and a LMT interferometer, where the beamsplitter and
mirror operations are each extended by a sequence of 2 augmentation pulses (N = 2),
which we label A in the diagram. By increasing the enclosed area of the interferometer
the scale-factor and hence intrinsic sensitivity is increased. Solid and dotted lines

represent atoms in the internal states |g〉 and |e〉 respectively.

resonance conditions continue to change as the sequence is extended3. This causes the

fidelity of each augmentation pulse to decrease, and the contrast of the interferometer

rapidly decays as more pulses are added [40, 42, 46]. This limits the efficiency of the

momentum transfer, and the sensitivity improvements resulting from a larger enclosed

area are limited by a reduction in the fringe visibility resulting from the accumulated

effect of many imperfect pulses.

3The resonance conditions for the initial π/2, central π, and final π/2 pulses remain identical to the
nominal three-pulse sequence.
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3.4 Summary

Atom interferometers using light pulses to form the beamsplitter and mirror operations

have many applications in obtaining ultra-precise measurements of forces and fields. In

an atom interferometer where Raman pulses are used as the ‘atom-optics’, we observe

interference fringes where the fraction of atoms found in a particular electronic state

following the pulse sequence depends on the phase difference accrued by the atoms in

each interferometer arm. This phase difference depends, for example, on the acceleration

of the atoms relative to the fixed laser beams, and may therefore form the basis of a

measurement. The magnitude of the phase shift for a given acceleration (known as the

scale-factor) may be increased by increasing the time between the pulses when the light

is turned off, or else by increasing the momentum transferred to the atoms by the light

- the basis of a LMT interferometer.

Inhomogeneities in the atom-light interaction reduce the sensitivity and performance of

atom interferometers. We desire atom-optics that are robust to these effects, thereby

enabling high-contrast interferometry with warmer atom samples without the need to

filter and reduce SNR; and LMT interferometers capable of maintaining high contrast

as the enclosed area is increased. In the remainder of this thesis, we review existing

techniques and develop new schemes to tackle this problem by designing robust tailored

pulses for atom interferometers using optimal control methods.
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Part II

Composite pulses, adiabatic rapid

passage, and optimal control
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Chapter 4

Composite pulses and adiabatic

rapid passage

We have seen how the standard π and π/2 Raman pulses used to build interferometer

sequences are susceptible to variations in the field strength (giving rise to pulse-length

errors) and detuning (yielding off-resonance errors). Over many years techniques have

been developed in the field of nuclear magnetic resonance (NMR) spectroscopy to miti-

gate similar problems in the control of nuclear spins. Due to the isomorphism between

the nuclear spin-1
2 systems studied in NMR and the two-level atom picture employed

in interferometry, many of these techniques can be applied to improve the fidelity of

operations in atom interferometry.

In this chapter we introduce two NMR techniques that may be used to enhance the

light-pulse fidelity in atom interferometers: composite pulses [5, 111] and adiabatic rapid

passage (ARP) [6]. In both of these techniques, naive single pulses such as π and π/2

pulses are replaced by alternatives in which the amplitude, phase, and/or frequency of

the driving field are varied in time to replicate the original pulse but, crucially, achieve

suppression of common experimental imperfections. Composite pulses consist generally

of a small number of rectangular pulses of variable durations, concatenated with discrete

phase shifts, while ARP involves slow and smooth modulation of the field amplitude and

frequency in order to achieve efficient manipulations of the quantum state.

4.1 Composite Raman pulses

Composite pulses [5], replace the single pulse operations in NMR with sequences of

concatenated constant-amplitude pulses with variable phases and durations. The overall

action of the composite pulse is designed to replicate the original single pulse, while

suppressing off-resonance and/or pulse length errors. There exist a great many composite
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pulses developed by the NMR community [63], designed to achieve different nuclear spin

transformations but we restrict this introduction to a discussion of inversion or 180◦

pulses designed to replace the single rectangular π pulse.

The Bloch sphere provides an invaluable tool for visualising composite pulses. Since an

individual pulse of constant amplitude and phase may be represented as a rotation about

a fixed axis of the Bloch sphere (the field vector), composite pulses may be visualised

as sequential rotations on the surface of the sphere. We therefore denote a general

composite pulse consisting of n steps with durations ti, by the sequence

θ1
φ1
θ2
φ2
...θnφn , (4.1)

where time increases from left to right and θi ≡ Ωeff×ti is the angle the quantum state is

rotated by during the ith step under resonant interaction. φi is the phase of the control

field during that specific element of the pulse (the combined Raman laser phase in our

system) and specifies the rotation axis of that element, which on resonance lies in the

equatorial plane of the Bloch sphere.

Since the Hamiltonian during each step is constant, the overall evolution of the quantum

state may be computed by chaining together the propagators for each time-step

Ûpulse = ÛnÛn−1....Û2Û1, (4.2)

where in this case time increases from right to left and Û for a given step is given by

Equation 2.52.

A careful choice of θi and φi can result in a pulse where the overall rotation is robust to

variations in the detuning δ and the Rabi frequency ΩR
1. As an example, we consider

the very first composite pulse, the 909018009090 ‘Levitt’ sequence [5, 111], which was

designed to invert a spin from pole to pole on the Bloch sphere. We can see that this

pulse consists of a π pulse sandwiched between two π/2 pulses with a 90◦ phase flip.

The action of this pulse is depicted in Figure 4.1, where atomic trajectories have been

simulated for four different Rabi frequencies in the range 0.75Ωeff to 0.9Ωeff (yielding

pulse-length errors). Figure 4.1 shows that the sequence effectively compensates for the

undershooting caused by the first incorrect π/2 rotation with the middle phase-shifted

π pulse, and all trajectories end up closer to the target |e〉 state than under a single π

pulse with the same range of pulse-length errors. We can also see from the structure of

the Levitt pulse that in the case of no off-resonance of pulse-length error the state of

an individual spin is perfectly inverted from |g〉 to |e〉. The Levitt pulse is one of the

very few composite pulses where the method of error compensation is easily understood

pictorially; for longer and more complex sequences this becomes impossible.

1Composite pulses were not originally designed to compensate variations in detuning and field
strength that occur during individual pulses [112]; or variations in the timings or phases of individ-
ual segments [63].
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Figure 4.1: State trajectories on the Bloch sphere under the Levitt composite pulse.
Each trajectory corresponds to a different pulse-length error in the range 0.75-0.9

ΩR/Ωeff . We have chosen this one-sided range of pulse-length errors for clarity.

A distinction is drawn in the NMR literature between point-to-point (PP) transforma-

tions and general- or universal-rotation (UR) transformations [8, 10, 45, 63, 64]. The

PP pulse is designed to achieve efficient transformation of a specific initial state |ψi〉 to

some target sate |ψT〉, with some tolerance of off-resonance and/or pulse-length errors.

However, under a PP pulse, a different initial state will not necessarily be rotated by the

same angle and about the same axis in the presence of errors. A UR pulse, by contrast,

is designed to effect a rotation by a fixed angle about a fixed axis for all conceivable

initial states with some tolerance of control errors. UR pulses are in general longer and

harder to find than PP pulses, as the sequence must provide a robust rotation for a

range of initial states [63].

The WALTZ pulse [43] is an example of a PP inversion pulse designed to transfer the

quantum state of a two-level system from pole to pole on the Bloch sphere. WALTZ

consists of three sub-pulses, and is described by the sequence 9001801802700. Figure 4.2

illustrates the PP behaviour of WALTZ. We have simulated the atomic state trajectories

following WALTZ for two different starting states |ψi〉: one on the equator of the Bloch

sphere, and one at the pole. When the initial state is at the pole, WALTZ rotates the

Bloch vector by 180◦ about an axis in the equatorial plane with high fidelity in the

presence of large off-resonance errors. For large positive and negative detunings, the

final state ends up close to the opposite pole. However, an initial state lying on the

Bloch sphere’s equator undergoes a rotation that is highly dependent upon the offset

from resonance.
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(a) |ψi〉 = |g〉, δ = 0. (b) |ψi〉 = 1√
2
(|g〉+ |e〉), δ = 0.
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(c) |ψi〉 = |g〉, δ = +Ωeff . (d) |ψi〉 = 1√
2
(|g〉+ |e〉), δ = +Ωeff .
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(e) |ψi〉 = |g〉, δ = −Ωeff . (f) |ψi〉 = 1√
2
(|g〉+ |e〉), δ = −Ωeff .

Figure 4.2: Bloch sphere trajectories for the state of a two-level atom subjected to
the WALTZ PP inversion pulse for two initial states: |g〉 and 1√

2
(|g〉 + |e〉). (a) and

(b) show the trajectories for each starting state under resonant interaction. (c) and (d)
show the trajectories under a large positive detuning δ = Ωeff , and (e) and (f) show the

trajectories for each starting state under the opposite negative detuning δ = −Ωeff .
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4.2 Adiabatic rapid passage

Frequency-swept adiabatic rapid passage (ARP) [6] is a fundamentally different tech-

nique to composite pulses. In place of short sequences of concatenated pulses with con-

stant amplitude and phase, ARP works by slowly sweeping the driving field frequency

through resonance. If this is done slowly enough, a quantum state initially coincident

with the field vector can be made to follow the field with high accuracy, allowing it to be

transported to any desired target state [49]. In this introduction we limit our discussion

to ARP pulses designed to invert atomic spins.

Consider an atom initially in the state |g〉 with the Bloch vector aligned along ẑ. If the

driving field starts far off-resonance then the field vector, Ω, will also be aligned along

ẑ and parallel to the quantum state. If the frequency is then swept to a large negative

detuning at a rate much slower than the rate at which the state precesses about the

field vector, the angle between the state and field vectors will remain constant and the

quantum state will be inverted with high fidelity.

We therefore have two requirements for an adiabatic inversion pulse of duration T with

a frequency sweep δ(t) and amplitude ΩR(t). Firstly, the initial and final field vectors

must be parallel and anti-parallel with the z-axis respectively. This means that

|δ0 + δ(0, T )| � ΩR(0, T ), (4.3)

where δ0 represents a fixed detuning or frequency offset for an individual atom. The

second requirement for an efficient adiabatic inversion pulse is that the sweep rate of

the field must be much slower than the precession rate of the state about the field. We

quantify this condition using the adiabaticity parameter Q(t) [49] defined as

Q(t) ≡
√

ΩR(t)2 + δ(t)2/|θ̇(t)|. (4.4)√
ΩR(t)2 + δ(t)2 is the rate at which the quantum state rotates about the field vector

and θ̇(t) is the rate of change of the angle between the field vector and the z-axis. The

larger Q(t), the more adiabatic the pulse.

As an example, we consider the case of the simplest ARP pulse: the linear frequency

chirp [113]. For this pulse, the amplitude ΩR remains fixed and the Raman detuning or

field frequency δ(t) is swept linearly between ±δmax according to

δ(t) = δmax(1− 2t/T ), (4.5)

where T is the total duration of the sweep. Figure 4.3 shows the simulated trajectory of

the quantum state followed by this ARP sweep on the Bloch sphere; the quantum state

undergoes many rapid oscillations about the field as it is swept from a large positive

to a large negative detuning. In order to keep the initial and final field vectors aligned
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Figure 4.3: Bloch sphere trajectory for a resonant atom undergoing a linear frequency
sweep. The pulse duration was 50tπ and δ0 was 5Ωeff . The adiabaticity Q(t) is at its

lowest in the centre of the sweep on resonance.

parallel and anti-parallel with respect to the z-axis respectively, we see from Equation 4.3

that the pulse must sweep over a range of detuning that is considerably larger than the

spread in detuning in the atomic ensemble. Furthermore, in order to maintain a high Q

throughout, the pulse must be considerably longer than the simple π pulse.

We can simulate ARP pulses by dividing the sweep into many time-steps such that

the frequency and amplitude are approximately constant for a given time-step. The

evolution of the quantum state for a given step may be approximated using the propa-

gator of the form introduced in Chapter 2 (Equation 2.52) and by chaining together the

propagators for each step we can approximate the overall propagator for the pulse.

If we allow both the pulse amplitude and frequency to vary, then ARP pulses can be

designed with reductions in the time needed for efficient state inversion [49]. This can

be seen by examining Equation 4.3. If ΩR starts and ends at 0, the field vector will be

parallel with the z-axis without the need for a very large initial detuning, thus reducing

the total duration of the frequency sweep. Furthermore, the frequency sweep itself need

not remain linear. The minimum of Q(t) occurs when the field is resonant and hence

the rate of precession of the state about the field vector is at its minimum. This means

that although |θ̇(t)| must remain small on resonance, it may become larger towards the

start and end of the pulse since at these times
√

ΩR(t)2 + δ(t)2 will be larger [113].

Many different frequency sweeps been developed in NMR that are more efficient that

the linear frequency sweep and achieve faster rates of inversion [6, 44, 51, 114–116].

One example is the tanh/tan pulse [51], where the frequency sweep follows a tangential

function of time and the amplitude modulation follows a hyperbolic tangential function
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of time:

δ(t) = Ωeff tan

[
α(2t/T − 1)

]
(4.6)

ΩR(t) = Ωeff tanh

[
β(1− |2t/T − 1|)

]
. (4.7)

Ωeff is the maximum amplitude and β is a number which quantifies the smoothness

of the amplitude variation. α ≡ arctan(δmax/Ωeff) and the maximum detuning of the

frequency sweep is δmax.

4.2.1 Dynamic phase

Although ARP can provide efficient state transfer from pole to pole on the Bloch sphere,

the action of the adiabatic frequency sweep on a superposition state results in the accu-

mulation of a large dynamic phase [46, 49, 50]. This dynamic phase is a problem when

using ARP to improve the fidelity of atom interferometers as it has the potential to lead

to significant dephasing of an atomic ensemble. The origin of this dynamic phase can be

made clear by moving into the “dressed state” picture of the interaction where the basis

states are parallel and anti-parallel to the field vector. In this picture, the “dressed”

basis states (|+〉 , |−〉) are related to the “bare” basis states (|g〉 , |e〉) by the following

rotation:

|+〉 = e−iθ(t)σ̂y/2 |g〉 (4.8)

|−〉 = e−iθ(t)σ̂y/2 |e〉 . (4.9)

θ(t) is the angle between the field vector Ω(t) and the z-axis of the Bloch sphere. We have

assumed that φL = 0 so that the field vector remains in the xz plane. The amplitudes

d+, d− of a state in the dressed basis are related to those in the bare basis cg, ce by the

transformation (
d+

d−

)
=

(
cos( θ(t)2 ) sin( θ(t)2 )

− sin( θ(t)2 ) cos( θ(t)2 )

)(
cg

ce

)
, (4.10)

and the equation governing the time-dependence of the dressed-state amplitudes is

i~

(
ḋ+

ḋ−

)
=

~
2

√Ω2
R + δ2 iθ̇

−iθ̇ −
√

Ω2
R + δ2

(d+

d−

)
, (4.11)

where we have used Equation 2.20 to transform the bare-state Hamiltonian into the

dressed-state basis. In the adiabatic limit, we have that
√

Ω2
R + δ2 � |θ̇| and therefore

Equation 4.11 simplifies to

i~

(
ḋ+

ḋ−

)
=

~
2

√Ω2
R + δ2 0

0 −
√

Ω2
R + δ2

(d+

d−

)
. (4.12)
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This means that evolution of dressed state amplitudes in the adiabatic limit is very

simple:

d±(t) = exp(∓iγ)d±(0). (4.13)

The dressed state amplitudes acquire a dynamic phase γ, given by

γ ≡
∫ t

0

√
ΩR(t′)2 + δ(t′)2dt′/2. (4.14)

Under an ARP inversion pulse of duration T the field vector is initially parallel with

the z-axis, before undergoing a frequency sweep and ending up anti-parallel to z: θ(t =

0) = 0 and θ(t = T ) = π. Therefore, at the beginning and end of the sweep, the

dressed states |+〉 , |−〉 are equivalent to the bare sates |g〉 , |e〉. When θ = 0, |+〉 = |g〉
and |−〉 = |e〉. When θ = π, |+〉 = |e〉 and |−〉 = |g〉. Suppose the atom starts in

|g〉. By considering the evolution in the dressed state picture, we see that following an

ARP inversion pulse it will end up in e−iγ |e〉. Similarly for an atom initially in |g〉
the final state will be eiγ |e〉. The dynamic phase accumulated by the atom does not

affect the inversion efficiency but if an atom starts in a superposition state which is not

aligned with the field vector then it will accumulate a large relative phase under the

ARP inversion pulse (a |g〉 + b |e〉 → ae−iγ |e〉 + be+iγ |g〉). Since this phase depends on

the Rabi frequency and detuning during the sweep, this can lead to significant dephasing

if these parameters vary from atom to atom or from pulse to pulse [46, 50].
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Chapter 5

Optimal control methods

The search for accurate and precise control of a physical system lies at the heart of

the development of all advanced technology. Quantum optimal control theory [11] tries

to answer the following general question: how should we vary the experimental control

parameters at our disposal to realise a desired transformation of a quantum system in

the ‘best’ possible way? The word ‘best’ here can mean several different things: we often

want to accomplish the desired transformation in the shortest possible time and with

the least expenditure of energy, for example. However, we may also seek controls that

are robust to experimental inhomogeneities and that still work when conditions vary

from the ideal. In practical terms the control parameters are the external fields that are

used to interact with a quantum system, and the control sequence is the way in which

these fields are varied as a function of time by the experimentalist - typically the pulse

shape or sequence - that leads to the optimal transformation of the system.

Optimal control problems may be formulated and solved using ideas from the calculus

of variations, the branch of mathematics that deals with finding extrema of functionals,

i.e. functions that map functions to scalars. The idea is to find a control sequence -

in general a continuous function of time - that maximises an objective functional quan-

tifying how well a system is steered from an initial state to a desired target state by

the control sequence. In addition to finding a control sequence that accurately trans-

forms the system from initial to target state, the solution must obey the equations of

motion of the system and satisfy any additional constraints imposed on the dynamics.

Pontryagin’s Maximum Principle [117] can be used to derive a set of equations that

may be solved to find an optimal control sequence. For problems in quantum control,

however, it is often impossible to solve such equations analytically and one must employ

numerical approaches that re-formulate the control problem in the language of numerical

optimisation [11].
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It is important to distinguish between closed- and open-loop optimal control algorithms:

closed-loop algorithms - also known as feedback control methods - incorporate real-

time feedback from the experiment to inform the search for a control sequence, while

open-loop control relies solely only on a mathematical model of the system. Open-loop

quantum control can use gradient-based optimisation algorithms such as gradient as-

cent [9], quasi-Newton [19] or Newton-type [23] methods, which all use derivatives of

the objective function to inform the search. An alternative option that is useful when

gradients are difficult to compute is to employ a gradient-free method such as a genetic

or evolutionary algorithm [118], or a simplex-type method such as the Nelder-Mead algo-

rithm [20, 119]. In this thesis, our focus is on the application of open-loop control pulse

design to problems in atom interferometry. We do not consider feedback control in this

thesis because a) we have an experimentally validated model of our experiment [45, 56]

and b) we want to design pulses that can improve the performance of atom interferom-

eters with a range of different experimental parameters and arrangements.

Although the composite pulses and adiabatic schemes discussed in the previous chap-

ter can improve the fidelity of given operations, many of these were developed using

a combination of intuition [5], analytical calculation [6], and iterative expansion meth-

ods [120], with no way to tailor the result to a specific system automatically. Optimal

control theory provides a way to design control pulses that are tailored for specific sys-

tems and problems, with applications including: the control of chemical reactions using

shaped laser pulses [12–15], the design of radio-frequency pulses to control nuclear spins

in NMR [7, 8, 10], the control of Bose-Einstein condensates [33–35], the stabilisation

of ultra-cold molecules [121], the optimisation of magneto-optical traps [122], nitrogen-

vacancy centre magnetometry [27, 28], and the design of high-fidelity gates for quantum

information processors using trapped ions [29, 30] and superconducting qubits [31, 32].

The purpose of this chapter is to introduce and explain the computational techniques

that we have adapted to design pulses for atom interferometry. In this chapter, we

provide an introduction to quantum optimal control theory in the context of the NMR

gradient ascent pulse engineering (GRAPE) algorithm [9] and explain how it can be used

to optimise shaped Raman pulses for atom interferometry. We discuss how a general

control problem is set up and how we can search for solutions using numerical optimi-

sation algorithms. Specifically, we explain how GRAPE may be combined with either

first-order gradient ascent, or second-order Newton or quasi-Newton optimisation algo-

rithms [123], and we introduce the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) quasi-Newton method [124] - the algorithm used to optimise pulses in this

thesis. Throughout this chapter, we explain how the GRAPE method is implemented

in the NMR spin dynamics software suite for MATLAB, Spinach [125], which we have

adapted for atom interferometry pulse design. Further detail on the computational im-

plementation of the optimal control algorithms in Spinach may be found in the thesis

of David Goodwin [126]. We conclude by introducing the concept of robustness and
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present two useful penalties that are used to constrain the smoothness of the solutions

and limit the maximum Rabi frequency during a pulse.

We have chosen to use the L-BFGS GRAPE method to design pulses for our purposes

because it is computationally efficient and has a proven track record in pulse design

in NMR applications. However, in the context of this thesis, optimal control is a tool

used to solve particular problems in atom interferometry. The application of this tool

through the design of the control problem and choice of fidelity measure is therefore

more important than the particular algorithm used - providing it can find an optimal

solution.

5.1 Approaches to quantum optimal control

The invention of the NMR gradient ascent pulse engineering (GRAPE) algorithm by

Khaneja et al. [9] provided an efficient way to compute the derivatives required for gra-

dient ascent optimisation of piece-wise constant control pulses divided into many small

time-slices. GRAPE makes the optimisation of arbitrarily shaped pulses characterised by

many parameters feasible and quick. Furthermore, improvements to the original GRAPE

method [19] enabled the use of quasi-Newton algorithms such as the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [123, 127–131], resulting in super-linear conver-

gence. GRAPE was also extended, by the development of methods to compute analytical

second derivatives of the objective functions, to enable Newton-type optimisation with

quadratic convergence properties [23, 126]. Another algorithm adapted for quantum

control problems that uses piece-wise constant pulses is Krotov’s method [14, 132, 133].

Whereas GRAPE updates each time-slice in a control pulse concurrently, Krotov uses a

sequential update of every time-slice [134]. Krotov’s method has also been extended to

second-order Newton and quasi-Newton type optimisation [24, 135].

An alternative to using piece-wise constant control pulses is to reduce the number of

parameters by using a Fourier series representation of the pulse shapes. Not only does

this approach guarantee smooth solutions, but it reduces the dimension of the pulse

optimisation problem by reducing the task to finding a small number of basis coefficients,

and was used in early NMR pulse design [118, 136, 137]. Methods that take such an

approach include the (gradient-free) chopped random basis (CRAB) algorithm [20, 21],

the gradient optimisation of analytical controls (GOAT) method [25], and the algorithms

outlined in [22, 26].
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5.2 Gradient ascent pulse engineering

Gradient ascent pulse engineering, known as GRAPE, is a well-known optimal control

algorithm originally developed by Khaneja et al. [9] for the control of spin systems in

NMR. As the name suggests, GRAPE combines the numerical optimisation algorithm

gradient ascent (often known by its complementary name gradient descent) with control

pulse design. In this section we begin with a description of the numerical optimisation

method known as gradient ascent, before explaining how a quantum control problem

may be set up and solved using GRAPE.

5.2.1 Gradient ascent

Gradient ascent is an algorithm used to optimise a multi-variable function by repeatedly

computing the gradient of the function with respect to the variables. The gradient gives

the direction of the greatest ascent of the objective function, and by making a step in

this direction or against it, one moves towards a local maximum or minimum in the

space of variables.

Let Φ(x) be a general objective function we want to maximise, where x is a vector of

real numbers. Let x0 be our initial guess for the values of our variables which maximises

Φ. We assume that Φ is a smooth function and that it can therefore be continuously

differentiated at any point. This property allows us to approximate the value of our

objective function at a new position x1 = x0 +αh displaced from x0 by α in a direction

h using a Taylor expansion

Φ(x0 + αh) ≈ Φ(x0) + α∇Φ(x0)Th, (5.1)

where ∇Φ(x0) is the gradient of the function Φ evaluated at position x0. If we therefore

choose our step direction as the gradient of the function at our point x0, and assume that

the linear approximation of the Taylor series is valid i.e. that the function is smooth and

the step size is small, the objective function at the new position x1 will be higher than

at x0: Φ(x1) ≥ Φ(x0). We can therefore summarise gradient ascent by the following

update rule at each iteration j:

xj+1 = xj + α∇Φ(xj). (5.2)

Using a constant step length α for each iteration of gradient ascent is clearly sub-optimal:

one could end up repeatedly overshooting the target or end up taking needless additional

steps to reach it. A line-search method is used to adapt the step size at each iteration

by choosing the length of step that maximises the objective function along the step

direction (provided by the gradient). We return to this problem and discuss line-search

methods in more detail in Section 5.3.2.
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Gradient ascent needs objective functions that are smooth functions of their variables to

be able to compute the gradient, and often slows down when nearing maxima or minima

as the gradient becomes small. There is also no guarantee of finding a global maximum

because the algorithm can become stuck if the landscape has local maxima.

5.2.2 Setting up the control problem

We begin by writing the total time-dependent Hamiltonian for our system

Ĥ(t) = Ĥ(0) +
M∑
n=1

c(n)(t)Ĥ(n), (5.3)

where we have split the Hamiltonian into controllable and uncontrollable parts. The

part that is beyond experimental control is known as the drift Hamiltonian Ĥ(0) and

represents the free evolution of the system. The Hermitian control operators Ĥ(n) cor-

respond to the M available experimental control fields and c(n)(t) are the corresponding

real-valued control amplitudes, where n = 1, ...,M .

Our aim is to find the particular values of the control amplitudes - a control sequence

or ‘pulse’ - that maximises a chosen measure of performance or fidelity. Typically, this

fidelity is the accuracy with which an initial state or set of states is transformed into

a particular target state or set of target states by a specific modulation of the control

fields. In such a case, we may define our fidelity F as

F ≡ f(〈σ|ψ(tf )〉), (5.4)

where |σ〉 is the target state, |ψ(tf )〉 is the final state of the system after evolution from

time 0 to final time tf , and f is a differentiable function. The choice of fidelity used

in the optimisation is crucial, determining both what the pulse does and affecting the

convergence properties of the pulse optimisation.

In general, we will have experimental limits on the control amplitudes, such as the total

available energy or maximum available frequencies. These costs must be minimised and

are therefore subtracted from the fidelity in the resulting optimisation. In practice, how-

ever, applying penalties in this way requires careful consideration of the balance between

the possibly competing goals of maximising the fidelity and minimising the penalties,

and therefore each contribution to the total objective function must be weighted appro-

priately. We discuss some relevant penalties in Section 5.6, but here we focus on the

more challenging problem of maximising the fidelity.

Upon solving the time-dependent Schrödinger equation, the final state of a system evolv-

ing from initial state |ψ(0)〉 under the action of a time-dependent Hamiltonian is given
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by

|ψ(tf )〉 = exp(o)

(∫ tf

0
− i
~
Ĥ(t)dt

)
︸ ︷︷ ︸

Û(0; tf )

|ψ(0)〉 , (5.5)

where exp(o) is the time-ordered exponential [138] and Û is the propagator for time-

evolution.

Using our expression for the final state (Equation 5.5) and our Hamiltonian (Equa-

tion 5.3), our expression for the fidelity becomes

F = f(〈σ| exp(o)

[ ∫ tf

0
− i
~

(
Ĥ(0) +

M∑
n=1

c(n)(t)Ĥ(n)

)
dt

]
|ψ(0)〉) (5.6)

and is therefore a functional of the control sequences c(n)(t), and we have a variational

calculus problem where we require the M continuous functions of time c(n)(t) that

maximise F .

GRAPE begins by instead assuming piece-wise constant controls. We therefore discretise

the M control sequences c(n)(t) into finite-dimensional vectors each with N slices c
(n)
k of

equal duration ∆t, where during each time-slice the control amplitude c
(n)
k is a constant

and k = 1, ..., N . With this simplification, the propagator for time-evolution under a

specific control sequence becomes a time-ordered product of N propagators for each slice

Û(0; tf ) =
−→∏
k

exp

(
− i

~
(
Ĥ(0) +

M∑
n=1

c
(n)
k Ĥ(n)

)
︸ ︷︷ ︸

Ĥk

∆t

)
≡
−→∏
k

Ûk, (5.7)

where Ĥk is the total Hamiltonian and Ûk is the propagator, for the time-slice k. Using

piece-wise constant controls is not an assumption in our case (or indeed in many NMR

situations [19]) because the arbitrary waveform generator used to program our pulses

outputs a piece-wise constant waveform, which is then applied to the Raman beams as

described in Chapter 6.

Our example fidelity, Equation 5.4, can now be written as

F = f
(
〈σ| ÛN ÛN−1 . . . Ûk . . . Û2Û1 |ψ(0)〉

)
, (5.8)

making the fidelity a function of M ×N control amplitudes c
(n)
k instead of a functional

of M functions c(n)(t) and allowing us to employ gradient ascent. In Spinach, the M

vectors, each with N control amplitudes for each time-step, are combined into a single

control vector c [126]

c ≡
(
c

(1)
1 ... c

(1)
N | c

(2)
1 ... c

(2)
N | ... | c

(M)
1 ... c

(M)
N

)T
, (5.9)
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and the fidelity becomes a scalar function of c: F(c).

To use the gradient ascent algorithm summarised in Section 5.2.1, we require the deriva-

tives of the fidelity with respect to each control amplitude during each time-slice, namely

the derivatives ∂F/∂c(n)
k for every n and every k. Once we know the gradient, we can

iteratively update the sequence of M×N control amplitudes c
(n)
k from some initial guess

and climb up the fidelity landscape. GRAPE computes the gradient of F in an efficient

way, which can be seen by making the observation that the only element within the

fidelity (Equation 5.8) that depends on c
(n)
k is the propagator Ûk

1:

∂

∂c
(n)
k

(
〈σ| ÛN ÛN−1 . . . Ûk . . . Û2Û1 |ψ(0)〉

)
=

〈σ| ÛN ÛN−1 . . . Ûk+1︸ ︷︷ ︸
backward propagation

∂Ûk

∂c
(n)
k

forward propagation︷ ︸︸ ︷
Ûk−1 . . . Û2Û1 |ψ(0)〉 . (5.10)

Therefore, computing the entire gradient requires just two complete simulations: one

complete backwards propagation from the target state |σ〉, and one complete forwards

propagation from the initial state |ψ(0)〉. It is important to store each intermediate state

in the forwards and backwards propagation:

|ψk〉 ≡ ÛkÛk−1 . . . Û2Û1 |ψ(0)〉 (5.11)

〈σk| ≡ 〈σ| ÛN ÛN−1 . . . Ûk+1Ûk. (5.12)

The only remaining calculations required to obtain the full gradient are the M × N

derivatives of the individual propagators for each slice, ∂Ûk/∂c
(n)
k . Once these deriva-

tives are computed, the entire gradient can be obtained by evaluating the overlaps

〈σk+1| ∂Ûk/∂c
(n)
k |ψk−1〉.

Much like the control amplitudes, the gradient of the fidelity with respect to each control

amplitude ∂F/∂c(n)
k is flattened into a single vector gradient of length M ×N to make

the subsequent optimisation simpler:

∇F ≡
(
∂F
∂c

(1)
1

...
∂F
∂c

(1)
N

∣∣∣∣ ∂F
∂c

(2)
1

...
∂F
∂c

(2)
N

∣∣∣∣ ... ∣∣∣∣ ∂F
∂c

(M)
1

...
∂F
∂c

(M)
N

)T

. (5.13)

The power of GRAPE lies in the efficiency with it computes the gradient. What if we

were to use a conventional finite-difference method to obtain the derivatives ∂F/∂c(n)
k ?

Such an approach would require at least M ×N + 1 complete evolutions of the system

from time 0 to tf [9]. GRAPE by contrast needs just 2 such simulations: one forwards,

and one backwards. This enables the fast optimisation of pulses with many time-steps.

1We have dropped the arbitrary function f from our fidelity here. As long as f is a differentiable
function of the state overlap, then one can use the chain rule to find the required derivatives.
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5.2.3 Propagator derivatives and matrix exponentials

To complete the gradient calculation we need derivatives of the slice propagators. Specif-

ically, we need to compute the derivatives

∂Ûk

∂c
(n)
k

=
∂

∂c
(n)
k

exp

(
− i

~
(
Ĥ(0) +

M∑
n=1

c
(n)
k Ĥ(n)

)
∆t

)
, (5.14)

i.e. derivatives of matrix exponentials. This is a tricky operation as the control operators

and the drift operators will not necessarily all commute with each other, and the approx-

imation to these derivatives given in the original presentation of GRAPE [9] limited the

convergence and accuracy of the algorithm [19]. There are various techniques to com-

pute derivatives of matrix exponentials, each incurring a different computational cost.

Examples include simply differentiating the Taylor series expansion of the matrix expo-

nential [19], using commutator series [19], and employing finite-difference approximations

with a careful choice of finite-difference step size [19]. As explained by DeFouquieres et

al. [19], using a finite-difference approximation only for the propagator derivatives is a

more reasonable approach than applying finite differencing to obtain derivatives of the

fidelity ∂F/∂c(n)
k .

An alternative approach to evaluate propagator derivatives is the auxiliary matrix method,

developed and deployed in the context of NMR optimal control by Goodwin and Kuprov [139].

The method makes use of the following relation [126]:

exp

(
− i

~Ĥk∆t − i
~Ĥ

(n)∆t

0 − i
~Ĥk∆t

)
=

exp(− i
~Ĥk∆t)

∂

∂c
(n)
k

Ûk

0 exp(− i
~Ĥk∆t)

 . (5.15)

If we therefore form the composite matrix in Equation 5.15, and compute its exponential,

we obtain both the propagator Ûk and the derivative ∂Ûk/∂c
(n)
k in a single step. Using

the relationship in Equation 5.15, the expression for the entire gradient may be simplified

to

∂F
∂c

(n)
k

=

(
|σk+1〉

0

)† [
exp

(
− i

~Ĥk∆t − i
~Ĥ

(n)∆t

0 − i
~Ĥk∆t

)](
0

|ψk−1〉

)
. (5.16)

This is how propagator derivatives are computed in Spinach.

Therefore, computing both the fidelity and the gradient requires evaluating matrix ex-

ponentials. Matrix exponentials can be computed by evaluating their Taylor approxi-

mation until convergence. This entails many matrix-matrix multiplications. However,

computing each matrix exponential in isolation is not actually necessary. We observe

from Equations 5.11, 5.12, and 5.16 that what we actually need to compute is the ac-

tion of matrix exponentials on vectors and matrix-vector multiplication is significantly

cheaper than matrix-matrix multiplication. This allows us to break up the power series
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expansion of a matrix exponential into repeated matrix-vector multiplications and make

use of Krylov subspace methods [140], implemented in Spinach [125, 141].

We can now summarise the steps of the first-order GRAPE algorithm as follows:

1. Identify the drift and M control operators, choose a time-step size and the number

of time-slices N , and provide an initial guess for the control amplitudes. Choose

a fidelity of the form given by Equation 5.4, specifying an initial state and target

state for the system.

2. Propagate the initial state forward and store the intermediate states for all N

time-steps.

3. Propagate the target state backwards and store the intermediate states for all N

time-steps.

4. Compute the fidelity using Equation 5.4 by computing the inner-product between

the final state after the complete forward propagation and the target state.

5. Compute the M ×N elements of the gradient using Equation 5.16.

6. Carry out a line-search to choose an appropriate step-length (see Section 5.3.2).

7. Update the controls by stepping in the direction of the gradient using the gradient

ascent update formula (Equation 5.2).

8. Repeat steps 2 to 7 until the norm of the gradient falls below some tolerance level,

or a maximum number of iterations is exceeded.

5.3 Second-order gradient ascent

We can reach a local maximum significantly faster if we can compute not only the di-

rection of steepest ascent (the gradient) but also the curvature of the fidelity landscape

(the matrix of second derivatives known as the Hessian). To explain this, let us return

to our general numerical optimisation problem: finding the particular set of variables

that maximises an objective function Φ(x). Let us again evaluate the objective function

at a position x1 = x0 + h, where x0 is an arbitrary initial point, and h is the displace-

ment. This time we will use the multi-variable Taylor series to approximate Φ(x1) by a

quadratic surface

Φ(x0 + h) ≈ Φ(x0) +∇Φ(x0)Th +
1

2
hTH(x0)h, (5.17)

where H(x0) is the matrix of second derivatives of Φ known as the Hessian with elements

H(x0)ij given by

H(x0)ij =
∂2Φ(x)

∂xi∂xj

∣∣∣∣
x0

. (5.18)
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We can compute what displacement we need to maximise our quadratic approximation

of Φ in a single step starting at x0. To do this we need to choose a value of h that

maximises or minimises Φ(x1) and therefore set the derivative of 5.17 with respect to h

to zero:

0 = ∇Φ(x0)T + hTH(x0) (5.19)

0 = ∇Φ(x0) +H(x0)h. (5.20)

Equation 5.20 can be rearranged to give the step-direction for Newton’s method:

h = −(H(x0))−1∇Φ(x0). (5.21)

Depending on whether the Hessian is positive- or negative-definite, the Newton step

direction will either be one which minimises or maximises Φ, or approaches a saddle

point when the Hessian is indefinite. Finally, we arrive at the following update formula

for Newton’s method:

xj+1 = xj − (H(xj))
−1∇Φ(xj). (5.22)

We also see that Newton’s method reduces to first-order gradient ascent with a step size

of unity and where the Hessian matrix is the identity.

5.3.1 The Limited-memory Broyden-Fletcher-Goldfarb-Shanno method

Computing the Hessian at each iteration and then inverting it is a far more costly

operation than simply computing the gradient of the objective function, and therefore

it is often advantageous to use an approximation to the true Hessian. This is the basis

of quasi-Newton methods [123], where during each iteration j an approximation to the

HessianHj or its inverse Ij = H−1
j is either formed or updated using gradients computed

at previous iterations. Using a computationally efficient approximation to the Hessian

enables one to combine the comparatively low-cost of computing only gradients with the

improved convergence rate of Newton’s method.

One well-known Hessian-update method is known as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method [123]. In BFGS, the Hessian is updated according to the for-

mula [123]

Hj+1 = Hj −
Hj∆xj∆xT

j Hj
∆xT

j Hj∆xj
+

∆yj∆yT
j

∆yT
j ∆xj

, (5.23)

where ∆yj = ∇Φ(xj+1) − ∇Φ(xj) is the difference between successive gradients and

∆xj = xj+1 − xj is the difference between successive positions. The update to the

Hessian is computed at the end of each iteration, and the update formula is derived such

that the approximate Hessian satisfies the condition known as the secant equation [123]:

Hj+1∆xj = ∆yj . (5.24)
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In other words, the approximate Hessian must reflect how much the gradient changes

from position to position. The BFGS method provides a symmetric and positive-definite

approximation to the Hessian, assuming an initial positive-definite guess is provided and

that the curvature condition is satisfied by ∆xj and ∆yj :

∆xT
j ∆yj > 0. (5.25)

Equation 5.23 may also be reformulated as an update rule for an approximation to the

inverse Hessian [123]

Ij+1 = V T
j IjVj +

∆xj∆xT
j

∆yT
j ∆xj

, (5.26)

where

Vj = 1−
∆yj∆xT

j

∆yT
j ∆xj

. (5.27)

The BFGS quasi-Newton method can therefore be summarised by the following update

rule for maximisation of Φ(x):

xj+1 = xj + αIj∇Φ(xj). (5.28)

Quasi-Newton techniques such as the BFGS update formula (Equation 5.23) can be

memory intensive for high-dimensional optimisation problems, especially if the Hessians

are not sparse matrices. The BFGS method successively forms an approximation to the

Hessian based on the entire history of past gradients. However, an alternative and more

memory efficient approach, known as the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) algorithm [124], involves forming an approximate Hessian using only

the m most recent values of ∆xj and ∆yj . This prevents the storage and manipulation

of large and dense Hessian approximations. The idea is that the most recent gradients

and positions are the most important when approximating the Hessian [123]. Equa-

tion 5.26 can be used to obtain a recursive procedure that generates an approximation

to Ij using the m most recent values of ∆xj and ∆yj . A ‘two-loop’ recursion L-BFGS

algorithm [123] is implemented in Spinach where m = 5 by default.

5.3.2 Completing the line-search

Computing the gradient, and calculating or estimating the Hessian of an objective func-

tion Φ provides the direction in which to step in an attempt to maximise or minimise Φ.

However, the step size needs to be carefully chosen and updated during each iteration:

if the step size is too large then one could overshoot the target and if it is too small it

could take forever to get there. More specifically, we require the particular step size for

a given iteration αj that maximises (or minimises) Φ(xj + αjhj), where the direction
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hj is provided using straightforward gradient ascent or a quasi-Newton method such as

L-BFGS. This one-dimensional optimisation problem is known as the line-search [123].

It is not feasible to find an exact solution to the line-search problem. Instead, an inexact

solution is found that satisfies certain conditions. The most obvious condition on α for

a maximisation problem is to demand that the value of the objective function at the

next step is higher than at the current step: Φ(xj + αhj) > Φ(xj). We can rewrite this

condition for an ascent direction by requiring that

∇Φ(xj + αhj)
Thj > 0. (5.29)

However, we must also ensure that there is a sufficient increase in the objective function

along the search direction because Equation 5.29 alone does not ensure convergence.

We therefore introduce the condition for sufficient increase, also known as the Armijo

condition [123]:

Φ(xj + αhj) ≥ Φ(xj) + αC1∇Φ(xj)
Thj . (5.30)

The constant C1 is typically a small number (10−2 is the default value in Spinach).

The condition for sufficient increase will always be satisfied for very small values of

α (this follows from the fact that we have already identified an ascent direction before

commencing the line-search). We therefore introduce another condition for an acceptable

step-length that will exclude very short step-lengths which are not ruled out by the

condition of sufficient increase. This new condition is known as the strong curvature

condition [123]:

|∇Φ(xj + αhj)
Thj | ≤ C2|∇Φ(xj)

Thj |. (5.31)

The constant C2 must be between C1 and 1 and takes the value of 0.9 in Spinach. The

curvature condition means that the gradient at the new position must be lower than at

the starting position. Combining the conditions in Equations 5.30 and 5.31 yields what

are known as the strong Wolfe conditions for α [123].

Now that we have some conditions on acceptable values of α for a given iteration of

the optimisation, we need to employ an algorithm to find and trial different step sizes.

The particular line-search method implemented in Spinach uses two phases known as

bracketing and sectioning and the particular steps are outlined in detail in [126, 142].

The essence of this method is to identify an interval in which a reasonable guess for the

step-length should lie, and progressively shrink the interval until a step-length is found

that satisfies the strong Wolfe conditions.
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5.4 Optimised Raman pulse construction

In this section, we explain how we can optimise tailored Raman laser pulses using the

formalism and algorithms presented in this chapter.

The Hamiltonian of our system (Equation 2.49) can be expressed as

ĤR =
~δ
2
σ̂z +

~
2

ΩR(t)

[
cos(φL(t))σ̂x + sin(φL(t))σ̂y

]
, (5.32)

where the drift Hamiltonian is Ĥ(0) = (~δ/2)σ̂z and we identify two control operators

Ĥ(1) and Ĥ(2) with the Pauli matrices σ̂x and σ̂y respectively. The two control am-

plitudes c(1)(t), c(2)(t) are given by ΩR(t) cos(φL(t)) and ΩR(t) sin(φL(t)) respectively.

φL(t) is the phase-profile and ΩR(t) is the pulse amplitude.

Using GRAPE we can therefore optimise piece-wise constant functions ΩR(t) cos(φL(t)) =

{Ω1 cos(φ1), ..., ΩN cos(φN )} and ΩR(t) sin(φL(t)) = {Ω1 sin(φ1), ..., ΩN sin(φN )}. In

Spinach, these two vectors, each with length N equal to the number of time-steps in the

pulse, are stacked and combined into a single vector c of length 2N which is fed into the

optimisation and updated at each iteration:

c =
(
Ω1 cos(φ1), ..., ΩN cos(φN ), Ω1 sin(φ1), ..., ΩN sin(φN )

)T
. (5.33)

We can convert the elements of c into piece-wise constant functions of ΩR(t) and φL(t)

using the relations [126]

ΩR =
√

(c(1))2 + (c(2))2 (5.34)

φL = atan2(c(2)/c(1)), (5.35)

where atan2 is the four-quadrant inverse tangent which correctly maps the phase φL

into the range −π < φL ≤ π taking into account the signs of c(1) and c(2).

Since GRAPE actually obtains the gradient of the fidelity F with respect to control

amplitudes c(1) and c(2), if we wish to optimise a purely phase-modulated pulse with a

constant or user-defined amplitude profile, for example, we must change the variables of

the gradient. This can be done using the following transformations [126]:

d

dΩR
= cos(φL)

d

dc(1)
+ sin(φL)

d

dc(2)
(5.36)

d

dφL
= c(1) d

dc(2)
− c(2) d

dc(1)
. (5.37)

Therefore, we can ignore the derivative with respect to the pulse amplitude and optimise

phase-modulated pulses defined by piece-wise constant functions of laser phases φL.
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5.5 Robustness

An important problem in quantum control is the design of control sequences that imple-

ment a desired operation in a way that is robust to variations or noise in the experimental

parameters [11]. A common approach to achieve robustness involves replacing the single

system fidelity measure by an average over the specific variations present in an ensemble

of systems. By maximising the ensemble-average fidelity, one maximises the fidelity for

each member of the ensemble, thereby finding a robust solution. This method has been

used widely in NMR pulse optimisation in recent years [7–10], and it is the approach we

adopt in this thesis because of its simplicity and generality.

There are, however, alternative methods used to design robust control pulses. For exam-

ple, instead of maximising the ensemble-average fidelity we could repeatedly maximise

the “worst-case” fidelity within the ensemble [143–146] (also known as “minimax” op-

timisation). Alternatively, we could deploy geometric arguments, such as those used in

early composite pulse design [5], but these are best suited to simple pulse shapes only.

There are also many analytical [147–149] and iterative [120, 150] schemes that can nullify

the dependence of the fidelity upon, for example, variations in detuning and coupling

strength. Additionally, enforcing adiabatic behaviour [6] can lead to robustness; and

in some cases the sensitivity to variations can be directly minimised by modifying the

fidelity measure [151].

Interestingly, many optimal control pulses exhibit an inherent robustness to fluctuations

in the control parameters [152, 153], a feature which may be understood by analysing the

curvature of the control landscape around local maxima [154–156]. This naturally leads

to a convenient way to characterise the robustness of solutions to control noise [157],

thereby allowing one to select those solutions which are most resilient.

5.5.1 Robust Raman pulses

In atom interferometers, the spread in atomic velocities and positions gives rise to a

variation in detuning δ and Rabi frequency ΩR across the ensemble. In other words,

each atom possesses a different drift Hamiltonian and different amplitudes of the control

operators. This means our single-atom fidelity (Equation 5.4) is actually a function of

the detuning and Rabi frequency experienced by the atom during the pulse:

F → F(δ,ΩR). (5.38)

Robustness to off-resonance and pulse-length errors may be obtained by replacing our

fidelity measure by an average over fidelities computed each using a different drift Hamil-

tonian (defined by a discrete sample of Nδ resonant offsets δ, running from δmin to δmax)
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and different Rabi frequencies (defined by a discrete sample of NΩR amplitudes ΩR,

running from Ωmin to Ωmax):

F =
1

Nδ

1

NΩR

δ=δmax∑
δ=δmin

ΩR=Ωmax∑
ΩR=Ωmin

Wδ(δ)WΩR(ΩR)F(δ,ΩR). (5.39)

Wδ(δ) and WΩR(ΩR) are optional weighting factors which can be used to represent par-

ticular distributions of δ and Ω. The ensemble-averaged fidelity is normalised to unity

to enforce consistency across ensembles with different sizes, and the gradient becomes

the average of the gradients for each individual member of the ensemble. The spe-

cific distributions of detuning and amplitude errors determine the range of errors for

which the pulse will be optimised to compensate. GRAPE will attempt to find a pulse

that maximises the ensemble-average fidelity and hence the fidelity for each ensemble

member. Furthermore, since computing the fidelities and gradients for each individual

ensemble member is independent, this process is parallelised in Spinach. Additionally,

the approach allows different members of the ensemble to be associated with different

fidelities, a feature we exploit in Chapter 9.

5.6 Penalties

There are occasions when we wish to apply constraints to our pulses. For example, we

may wish to minimise the pulse duration, constrain the maximum amplitude, or enforce

smooth solutions. This can be done by subtracting a penalty term from the fidelity such

that the numerical optimisation also attempts to minimise the chosen penalty:

F(c)→ F(c)− wP(c). (5.40)

w is a weight that may be adjusted to help the algorithm find a good pulse. Much like

the fidelity choice, the gradient of each penalty term must be calculated and the Hessian

estimated or calculated to permit second-order quasi-Newton or Newton optimisation.

In this section we present two different penalties that we use throughout this thesis:

a spill-out norm-square (SNS) penalty that restricts the maximum amplitude during a

pulse; and a derivative-norm-square (DNS) penalty that constraints the jaggedness of a

pulse and leads to smoother solutions. For a thorough discussion of these penalties and

a derivation of their gradients and Hessians, we refer the reader to the thesis of David

Goodwin [126].

Longer pulses are more susceptible to decoherence arising from spontaneous emission

and effects caused by the motion of atoms during the pulses. Although it is possible to

mitigate these effects by minimising the pulse duration, we choose not to apply such a

penalty in this work. Instead, our approach is to optimise pulses for an experimentally
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feasible range of durations and compare the performance with composite and ARP

pulses - the focus of previous studies [42, 46] - of the same durations. As effects such as

spontaneous emission will affect pulses with the same pulse area equally, this approach

allows us to compare the expected performance in a range of experimental configurations

and decay scenarios.

It is important to limit the maximum amplitude or Rabi frequency ΩR(t) during a

pulse. This is because the maximum power of our Raman lasers represents a physical

limitation of the experiment. We could therefore penalise the amplitude during the pulse

by subtracting the following penalty from the fidelity

PNS =
1

N

2N∑
i=1

c2
i (5.41)

=
1

N

N∑
k=1

Ω2
k, (5.42)

where ci are the elements of the flattened vector of 2N control amplitudes (Equa-

tion 5.33), and Ωk is the amplitude ΩR for the time-step k. We refer to this as the

norm-square (NS) penalty [126]. One problem with this penalty is that it will constantly

drive the amplitude during the pulse to zero and prevent any algorithm converging to a

high-fidelity solution: a pulse with no amplitude will have zero fidelity.

A better option, implemented in Spinach, is only to apply the NS penalty if the amplitude

for a given time-step and iteration passes beyond a user-defined limit - proportional to

the maximum Rabi frequency available experimentally. Hence, we define the spill-out

norm-square (SNS) penalty by [126]

PSNS =

 1
N

∑2N
i=1(|ci| −A)2, |ci| > A

0, |ci| ≤ A.
(5.43)

Application of this penalty will constrain the magnitudes of the control amplitudes

ΩR(t) cos(φL(t)) and ΩR(t) sin(φL(t)) such that the maximum Rabi frequency ΩR(t) ≤
A
√

2. The derivative of the SNS penalty with respect to the controls is required in

gradient-based optimisations and given by

∂PSNS

∂ci
=

 2
N

∑2N
i=1(|ci| −A), |ci| > A

0, |ci| ≤ A.
(5.44)

We may sometimes wish to ensure that our optimised pulses possess smooth waveforms

(a specific example relating to phase noise is given in Chapter 8), and we therefore

introduce a derivative-norm-square (DNS) penalty that acts to smooth the control pulse

throughout the optimisation. The DNS penalty is proportional to the squared-norm of
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the second derivatives of the control amplitudes c(1)(t) and c(2)(t),

P(n)
DNS =

1

N

N∑
k=1

( N∑
l=1

Dklc
(n)
l

)2

, (5.45)

where Dkl is an operator that obtains an approximation to the second-derivative of

c(n)(t), for example by using finite differencing. We can find the derivative of this

penalty with respect to the control amplitudes as follows:

∂P(n)
DNS

∂c
(n)
j

=
2

N

∑
k

(∑
l

Dklc
(n)
l

)(
∂

∂c
(n)
j

∑
l

Dklc
(n)
l

)
(5.46)

=
2

N

∑
k

(∑
l

Dklc
(n)
l

)(∑
l

Dklδjl

)
(5.47)

=
2

N

∑
k

∑
l

Dklc
(n)
l Dkj . (5.48)

The derivatives of the DNS penalty with respect to each of the control amplitudes

c(1)(t) and c(2)(t) may then be flattened into a single vector of length M ×N , and fed

back into the optimisation. In Spinach, D represents a second-order finite-difference

approximation the second-derivative using five stencil points with left- and right-sided

finite-difference schemes for the edges.





71

Part III

Experimental setup and

procedures
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Chapter 6

Experimental procedures

To implement and test the optimised pulses which are the main focus of this thesis we

require a cold sample of 85Rb that we can localise in space and in which we can induce

Raman transitions between the two hyperfine ground states |g〉 = |52S1/2, F = 2〉 and

|e〉 = |52S1/2, F = 3〉. We also need ways to prepare all the atoms in the same state,

measure the temperature of the atom cloud, apply the optimised Raman pulses to the

atoms, and detect the resulting fraction of the atoms in a given state after a pulse

sequence. We employ a combination of optical and magnetic fields to trap and cool 85Rb

in a magneto-optical trap (MOT) [70]. In this chapter, we first provide an overview of

how a MOT works, before providing a description of the experimental procedures and

systems used to implement Raman pulses in the atom cloud.

I developed the pulse designs, optimisations, and simulations which form the key results

of this thesis. The experiments were performed by Max Carey, and I advised and assisted

with the experimental implementation of the pulses; the results of this collaboration are

presented in [3].

6.1 Magneto-optical trapping of atomic rubidium

85Rb atoms may be captured and cooled within a magneto-optical trap (MOT) [70].

A MOT works by using a combination of optical and magnetic fields which lead to

velocity- and position-dependent forces on individual atoms. In this section we provide

an overview of the theory underlying a MOT and explain how such a trap is implemented

experimentally.

Photons have momentum and therefore a laser beam can impart a scattering force F

to a two level atom, given by the product of the imparted photon momentum ~k and
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the rate of absorption of photons by the atom1. If the atom is moving towards the laser

source, this force will be in the direction opposite to the atomic motion since the atoms

are given a kick by the momentum of absorbed photons. Upon absorption of the incident

photons, the atoms will spontaneously emit the photons randomly in all directions, thus

resulting in a net force on the atoms. This force on our two-level atom can be written

as

F = (~k)× Γ

2

Ω2/2

δ2 + Ω2/2 + Γ2/4
, (6.1)

where ~k is the photon momentum, Γ is the spontaneous decay rate of the transition,

Ω is the Rabi frequency, and δ is the detuning of the laser beam from resonance. The

detuning is given by

δ = (ωL − ω0)− δDoppler − δZeeman, (6.2)

where ω0 is the transition frequency, ωL is the laser frequency, δDoppler = k · v is the

Doppler shift dependent on the atomic velocity v, and δZeeman = mFµBgFB/~ is the

Zeeman shift (Equation 2.42), which depends on the magnetic field B.

If atoms are illuminated by counter-propagating beams which are red-detuned from

resonance (δL = ω0−ωL > 0), then δ2 decreases when the wavevectors k and the atomic

velocities are in opposite directions. This means that although for an atom at rest the

forces from each beam are balanced, if the atom is travelling towards a given beam it

becomes resonant with the beam and the forces become imbalanced. This means there

is a velocity-dependent damping force which will cool atoms along the beam axis. This

technique is known as optical molasses, and if counter-propagating beams are aligned

with all three Cartesian axes, the result is cooling in three dimensions.

Optical molasses cannot cool atoms without limit; the cooling process is opposed by

heating due to fluctuations in the random momentum kicks associated with sponta-

neous emission. This leads to a theoretical minimum temperature known as the Doppler

limit, determined by the linewidth of the atomic transition. For 85Rb, it is approxi-

mately 146 µK. However, in practice we can reach considerably lower temperatures by

exploiting sub-Doppler cooling mechanisms [71, 158], which rely on factors such as reg-

ular variations in the polarisation of the electric field vector along the cooling axis. A

detailed treatment of the sub-Doppler cooling mechanisms at play in our experiment is

beyond the scope of this work.

No real atoms behave as perfect two-level systems and to implement optical molasses

one must identify a ‘closed transition’ within a given atom. The cooling process requires

many cycles of absorption and spontaneous emission. If the atoms spontaneously emit

1In the steady state the rate of absorption is equal to the rate of scattering, and is given by the product
of the spontaneous decay rate and the steady-state population of the excited state, which may be found
by solving the optical Bloch equations in the presence of a damping term to account for spontaneous
decay [53].
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Figure 6.1: Diagram showing the cooling and repump optical transitions used in a
85Rb MOT. The solid lines show the absorption routes and the dotted lines show the
allowed routes of spontaneous emission. The cooling laser is red-detuned, δL, from the
|52S1/2, F = 3〉 → |52P3/2, F

′ = 4〉 transition. The cooling beam will also excite atoms
into the |52P3/2, F

′ = 3〉 state with a small non-zero probability and these atoms can
spontaneously decay into the lower level |52S1/2, F = 2〉 [56]. The repump beam is
therefore tuned to the |52S1/2, F = 2〉 → |52P3/2, F

′ = 3〉 transition to return atoms to
the cooling cycle.

to ‘dark’ states from which they cannot be excited back by the same lasers then they

can no longer be cooled.

85Rb is a reasonably good choice of atomic species to trap and cool in a MOT because of

the existence of a closed transition route to implement optical molasses. In order to cool
85Rb, the MOT cooling laser is red-detuned from the |52S1/2, F = 3〉 → |52P3/2, F

′ = 4〉
transition on the D2 line, as shown in Figure 6.1. The solid line shows the route of

absorption of a photon from the beam, and the dotted line shows the dipole-allowed

route of spontaneous emission. However, atoms are lost from this cycle because the

cooling laser can, with a small probability, also excite atoms to the |52P3/2, F
′ = 3〉

level. Atoms excited to this state can spontaneously emit to the ‘dark’ lower ground

hyperfine state, |52S1/2, F = 2〉, which is no longer coupled by the cooling laser, and

therefore no longer participate in the cooling. At least one repump beam is therefore

required to pump atoms out of this state and back onto the cooling cycle, also shown

in Figure 6.1. This repump beam is tuned to the |52S1/2, F = 2〉 → |52P3/2, F
′ = 3〉

transition.

Although optical molasses slows atoms down through a velocity-dependent force, it
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does not trap them. A position-dependent force is needed to confine atoms to a re-

gion of space. In a MOT, this is done by engineering a position-dependent magnetic

field and exploiting the Zeeman splitting of the atomic energy levels [70]. A pair of

current-carrying coils in which the current flows in alternating directions (known as an

anti-Helmholtz configuration) generate a quadrupole magnetic field in the region be-

tween the coils. In a quadrupole magnetic field, the field strength increases linearly

from zero as an atom moves away from the centre in any direction. Thus, the Zee-

man splitting also increases linearly in all directions from the centre. If the 3 pairs of

counter-propagating red-detuned cooling beams carry opposite circularly-polarised light,

the result is a position-dependent absorption of light in all directions.

To illustrate how this provides a trapping force, we can consider what happens in one

direction, say the z direction. As an atom moves away from the centre of the quadrupole

field in the positive z direction, the energy splitting induced between the mF levels

increases, and the ∆mF = −1 transition moves closer to resonance with red-detuned σ−

light propagating in the -z direction, leading to a restoring force directed towards z = 0.

Conversely, for an atom at a position z < 0, the opposite direction of the magnetic field

leads to the opposite shift in the mF levels. As a result, the ∆mF = +1 transition

becomes resonant with red-detuned σ+ polarised light travelling in the +z direction.

Thus, we have a position-dependent restoring force directed towards the centre of the

magnetic field.

Figure 6.2 depicts the experimental arrangement of the MOT, showing how the cooling

and repump beams are delivered to the vacuum chamber. The cooling and repump

beams are generated using two Vescent D2-100-DBR distributed Bragg reflector (DBR)

lasers. Both lasers are locked to the correct transition frequencies as described in [103]

and each beam is coupled into fibres and passed twice through separate acousto-optic

modulators (AOMs) to control the amplitude of the light sent to the vacuum chamber

without applying an additional frequency shift to each beam: by double-passing through

an AOM, the shift in frequency is added and then subtracted.

The cooling light is divided equally between 3 perpendicular axes by a combination of

half-waveplates (HWPs), polarising beamsplitting cubes (PBSCs), and mirrors. Rotat-

ing the HWPs allows us to finely balance the intensity of the light along each axis.

Quarter-wave plates (QWPs) are used to polarise the light before it enters the vacuum

chamber. The light along each axis is retro-reflected back into the chamber and an

additional QWP ensures that the counter-propagating beams have the correct opposite

circular polarisations needed for the MOT. The repump beam is divided using a PBSC

between the two horizontal axes. Finally, current carrying coils in an anti-Helmholtz

configuration above and below the vacuum chamber are used to generate the required

quadrupole field for the MOT’s trapping force.
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Figure 6.2: Experimental arrangement of MOT laser beams and vacuum chamber. (a)
is a side-view of the vacuum chamber; while (b) depicts a top-down view. The cooling
light is divided by a polarising beamsplitting cube (PBSC) below the chamber and
one-third of the light is sent upwards through the chamber, and subsequently reflected
down again. The quarter waveplates (QWPs) ensure that the beams have opposite
circular polarisations. The remaining two-thirds of the cooling light is directed to the
upper level and split by another PBSC which divides the light evenly between the two
horizontal axes. The half waveplates (HWPs) are used to control the balance of the
cooling light between the axes. The repump beam enters on the upper level and, after
passing through the same PBSC as the cooling light, is split between the two horizontal
axes. The MOT coils in anti-Helmholtz configuration are also shown in (a) along with
a representation of the quadrupole magnetic field. The fluorescence from atomic decays

is captured by a photo-multiplier tube (PMT), shown in (b).

6.2 Raman laser system

The coherent control schemes in this thesis rely on the ability to induce stimulated Ra-

man transitions in atomic rubidium. To implement such Raman transitions between

the ground hyperfine levels |52S1/2, F = 2〉 and |52S1/2, F = 3〉 in 85Rb we require two

phase-coherent beams that we can separate spatially with a frequency difference match-

ing the hyperfine splitting ωeg = 2π×3.03573244 GHz. We also need the ability to apply

a tunable additional detuning δL to the Raman beams. Furthermore, we require precise

control of the relative phase φL between the two frequency components, as this is the

main control parameter used to construct our optimised Raman pulses. In this section

we describe how we generate two Raman beams with the correct frequencies, and how

we can control their relative phase.

Figure 6.3 provides a simplified overview of how the Raman beams are generated and

controlled in the experiment. Both Raman beams are generated from a single 780 nm Ea-

gleyard distributed feedback (DFB) diode laser. The light at frequency ω0 is first passed

through one of two acousto-optic modulators (AOMs) (selected by a radio-frequency
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switch) driven at a fixed frequency of ωA = 310 MHz. One AOM will diffract the incom-

ing light into the first positive order with frequency ω0 + ωA and the other will diffract

the light into the first negative order with frequency ω0 − ωA. The effective wavevector

of the Raman transition may be reversed by alternating which AOM is used to diffract

the light from the DFB diode laser. This is explained in subsection 6.2.1.

Suppose the positive first-order deflected beam is selected to form one of the Raman

beams. The undeflected light is sent through an electro-optic modulator (EOM) driven

at a frequency of ωE = ωeg−ωA+δL ≈ 2.7 GHz. The EOM produces spectral sidebands

at frequencies ω0 ± nωE where n is an integer.

Unlike the AOM, the different frequency components at the output of the EOM are

not spatially separated, and the central or carrier frequency component at ω0 must

be removed. This is done using an optical fibre Mach-Zehnder Interferometer (MZI),

described in [103]. After the carrier has been removed from the EOM output, the

frequency difference between the deflected AOM output light and the n = −1 sideband

from the EOM output, is given by

ωA + ω0 − [ω0 − (ωeg − ωA + δL)] = ωeg + δL, (6.3)

hence forming a Raman pair with the correct frequency difference2. The light from the

AOM and EOM is then sent through two separate tapered amplifiers (TA) to increase

the optical power, and combined using a polarising beamsplitter cube (PBSC).

The output intensity of the Raman beams is controlled by passing both beams through

a final AOM. The undeflected beam is dumped, and the first diffracted order is only

present when the radio-frequency (RF) signal generator driving the AOM is switched

on, thus providing an effective switch for the Raman beams.3 This AOM also shifts the

frequency of both Raman beams but since the shift is common to both components the

resonance condition of the Raman transition is unaffected.

Following the final AOM, both beams are fibre-coupled and sent through refractive

beam-shaping optics [56]. These beam-shapers produce an output beam with a top-hat

beam intensity profile with a cross-sectional area of approximately 1.2 mm2. Although

the resulting intensity profile of the beam-front is approximately flat, there are variations

in intensity of the order of ± 5%, and these variations cause the Rabi frequency of the

Raman transition to vary across the atom cloud [56].

2We note that, in the experimental arrangement used to obtain the data in this thesis, the off-resonant
n = 1 sideband from the EOM was not removed, leading to a small additional light shift in the Raman
detuning [103].

3In principle this AOM can provide more precise continuous control of the amplitude of the deflected
beams but, at present, it only functions as a switch. This switch is not instantaneous, however, and in
reality there is a rise-time of approximately 100 ns before the output light reaches maximum intensity.
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Figure 6.3: Simplified diagram of the Raman laser system used to generate two
spatially separated Raman beams with a frequency difference matching the ground
hyperfine splitting in 85Rb. The light from a single 780 nm Eagleyard distributed
feedback (DFB) diode laser is passed through one of two acousto-optic modulators
(AOMs). The selected first-diffracted order (dashed red line) is passed through a non-
polarising beamsplitter cube (BSC) and forms one component of the two Raman beams.
The remaining component is formed by passing the undeflected light from the AOM
though an electro-optic modulator (EOM). After the carrier frequency is removed from
the EOM output using an optical Mach-Zehnder interferometer (MZI), both beams
are amplified using tapered amplifiers (TA) and sent through single-mode (SM) fibres,
recombined with a polarising beamsplitter cube (PBSC), and passed through another
AOM which controls whether the Raman light enters the vacuum chamber or not.
Both beams are then separated again with another PBSC and sent through polarisation
maintaining (PM) fibres. They are then passed through refractive beam-shaping (BS)

optics and directed into the MOT chamber.

6.2.1 Switching the effective wavevector direction

We can reverse the effective wavevector direction keff by using a radio-frequency switch

to alternate between two AOMs both driven at the same frequency ωA. The first AOM

diffracts the incoming light at frequency ω0 into the first positive order (ω0 + ωA) and

the second AOM diffracts incoming light into the first negative order (ω0 − ωA). If

the first positive order AOM is selected, a Raman pair is formed between ω0 + ωA and

the n = −1 sideband from the EOM output (as shown in Equation 6.3). This means

the EOM-output beam becomes the lower frequency Raman beam (ω2) and the AOM-

shifted beam becomes the higher frequency beam (ω1). In this situation the n = +1

EOM sideband is far off-resonance. However, if the first negative order AOM is selected,

a Raman pair is formed between ω0−ωA and the n = +1 EOM sideband. This means the

EOM-output beam becomes the higher frequency component (ω1) and the AOM-output

beam becomes the lower frequency beam (ω2). The n = −1 EOM sideband is now far
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off-resonance and the two Raman frequencies each enter the chamber from the opposite

direction. Consequently, the atoms experience a reversal of effective wavevector.

6.2.2 Implementing optimal pulses

As explained in Chapter 5, our optimised pulses are described by piece-wise constant

waveforms φL(t) = φ1, φ2, ..., φN where the relative laser phase between the two Raman

beams takes a different value for each time-step in the pulse.

We achieve control of the relative phase between the two Raman beams by modulating

the phase of the radio-frequency (RF) signal driving the EOM. The phase of this RF

signal is controlled using a Miteq SDM0104LC1CDQ I&Q modulator, where the in-phase

(I) and quadrature (Q) inputs are provided by the two outputs of a Keysight 33612A

arbitrary waveform generator (AWG). Given an optimised pulse φL(t), the AWG is

programmed to output waveforms I = A0 sinφL(t) and Q = A0 cosφL(t), where A0 is

the modulation amplitude. This leads to a phase shift in the signal driving the EOM4

of φ(t) = arctan(I/Q). The phase profile is therefore applied to the phase of the Raman

frequency component at the EOM output.

6.3 Experimental procedure

A typical experimental sequence, illustrated in Figure 6.4, may be summarised as follows:

1. MOT: The MOT B-field, cooling lasers, and repump beams are all switched on

for approximately 1 second. Atoms are consequently trapped and cooled to a

temperature between 80 and 230 µK [56]. A photo-multiplier tube (PMT) with

a fixed lens system [56] focused on the trap centre captures a proportion of the

photons associated with the decays from the excited states |52P3/2, F
′ = 4〉 and

|52P3/2, F
′ = 3〉 that occur during the MOT cooling cycle.

2. Molasses cooling: In this stage, the magnetic quadrupole field is extinguished,

and the intensity of the cooling light is lowered gradually. Atoms continue to cool

in an optical molasses for approximately 10 milliseconds. Varying the intensity of

the cooling light in this stage allows us to control the temperature of the cloud

in the range 10-100 µK. Lower levels of cooling intensity during this stage result

in more efficient sub-Doppler cooling and hence lower cloud temperatures. A full

characterisation of this temperature control can be found in [103].

4The phase mapping provided by the I&Q modulator does not follow a perfect linear relationship [56],
and in fact becomes less linear as the amplitude voltage A0 is increased. In this work, we did not apply
a correction to our optimised pulse sequences to account for this, but instead decreased the modulation
amplitude until the mapping became approximately linear.
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Figure 6.4: Diagram showing the sequence of experimental operations outlined in
the text. The timings are not to scale, and the particular sequence of Raman pulses

depends on the experiment performed.

3. State preparation: Atoms are prepared in the lower ground hyperfine state |g〉 =

|52S1/2, F = 2〉 by applying the cooling beams for approximately 4 milliseconds.

In the absence of the repump beam, atoms are eventually lost from the cooling

cycle and decay to the state |52S1/2, F = 2〉. The signal on the PMT decays

exponentially as atoms are lost from the cooling cycle.

4. Raman pulses: Now we have a cold localised sample of 85Rb all in the state

|g〉 = |52S1/2, F = 2〉 and our experiments with Raman pulses can begin. During

this stage of the experiment, the cooling and repump beams are switched off and

the atom cloud expands and falls under gravity. Although typically this stage

lasts 1 millisecond, we have a maximum interaction window of approximately 5

milliseconds before the atoms fall out of the 1.2 mm2 region illuminated by the

horizontal Raman beams.

5. State read-out: Following a Raman pulse sequence, we must determine what

fraction of atoms has been transferred to the excited state |e〉 = |52S1/2, F = 3〉.
First, the cooling beams are turned on for τSR ≈ 500 µs. This excites all atoms

in the state |52S1/2, F = 3〉 to the upper state |52P3/2, F
′ = 4〉. The resulting flu-

orescence is captured using a photo-multiplier tube (PMT). We fit an exponential

curve to the resulting decay in PMT signal, and determine the amplitude A1 of

this decay. In order to normalise this signal by the total number of atoms and

thereby estimate the fraction of atoms transferred to the state |52S1/2, F = 3〉 by

the Raman pulse sequence, we apply the repump beam for τR ≈ 100 µs. This

pumps all atoms into the state |52S1/2, F = 3〉, and we perform another exponen-

tial fit following a second application of the cooling light for τSR. The amplitude
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Figure 6.5: Illustration of the principles behind Raman velocimetry. (a) The
simulated transfer efficiency of a long and low-power π pulse with Rabi frequency
ΩR = 20 kHz and the velocity distribution for a 32 µK cloud of 85Rb. (b) Data
showing the measured fraction of atoms transferred to the excited state by a selective
π pulse as the laser detuning is scanned. From this measured distribution we estimate

a cloud temperature of approximately 32 µK.

of this decay, A2, is proportional to the total number of atoms. Therefore, the

fraction of atoms transferred to the excited state by the Raman pulse sequence is

given by A1/A2.

6.4 Raman velocimetry

Counter-propagating Raman beams induce velocity-sensitive two-photon transitions be-

tween states |g〉 = |52S1/2, F = 2〉 and |e〉 = |52S1/2, F = 3〉. The two-photon detuning

δ (Equation 2.26) depends on the component of the atomic velocity in the direction of

the effective wavevector. Thus, as discussed in Chapter 2, the probability for a π pulse

to transfer an atom from |g〉 to |e〉 depends on the atomic velocity. In Raman velocime-

try [92], we exploit this sensitivity to obtain a measurement of the velocity distribution

and hence temperature of the atomic cloud.

If the two-photon Rabi frequency ΩR is lowered, the π pulse becomes more velocity-

selective: a very long π pulse will transfer atoms to the state |e〉 only within a narrow

range of velocities. By scanning the laser detuning δL and measuring the fraction of

atoms transferred to the excited state, we can therefore reveal the velocity distribu-

tion of the atom cloud. The width of the measured velocity distribution is determined
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by the temperature of the atom cloud along the Raman beam axis, and assuming the

distribution is well-modelled by a Maxwell-Boltzmann distribution, we calculate the

temperature T using the relation T = mσ2
v/kB, where σv is the width of a Gaussian

fit to the measured distribution. Figure 6.5 illustrates Raman velocimetry in action.

Figure 6.5a shows the simulated transfer efficiency for a long, low-power π pulse, high-

lighting its velocity selectivity, and Figure 6.5b shows velocimetry data taken in our

experiment for a cloud with a calculated temperature of ∼ 32 µK.

When using Raman velocimetry one isn’t actually measuring the atomic velocity dis-

tribution directly, but rather the convolution of the π pulse excitation spectrum and

the atomic velocity distribution. This convolution exhibits artefacts that come from the

sinc-like lobes of the π pulse excitation, and although in principle the resolution of the

measurement can be increased by using longer and hence more selective π pulses with

lower beam intensities, the fraction of atoms transferred at each laser detuning in the

scan is reduced, incurring a loss in the signal-to-noise ratio of the measurement.

We note that more advanced techniques such as interferometric velocimetry [2, 102, 103]

can provide much cleaner and more accurate measurements of atomic velocity distribu-

tions and overcome the limitations present in Raman velocimetry.
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Chapter 7

Robust mirror pulses for atom

interferometry

Mirror, or inversion, pulses are crucial for atom interferometry. Every closed interferom-

eter has at least one mirror to send the diverging paths back towards each other; LMT

interferometers may have many mirror pulses; and we also use inversion pulses in the

readout after the interferometer sequence has finished.

In each case, the mirror pulse fidelity affects the interferometer performance. We always

care about the fraction of the atomic population transferred to the target state; but we

may also care about the effect of the mirror pulse upon the phase of the superposition,

and its dependence upon external contributions to the Lagrangian. We may know the

initial state, or we may need pulses that work for a variety of initial states. Whereas

mirror pulse always refers to inversion, its meaning can therefore be different according

to the application. This means that, for optimisation, the choice of fidelity measure is

important.

Most optimisations are trade-offs: a better compensation of one type of error might be

possible if we do not also need to accommodate another error; and we might expect

that having more control parameters at our disposal (more time-steps, longer pulse

duration, amplitude as well as phase) would allow for higher terminal fidelities to be

reached. The way that constraints are implemented can also change the optimisation

landscape, possibly making it harder to find a good solution. We therefore expect

the optimum solution to vary as the design parameters and constraints are varied. The

dependence of the sensitivity and performance of the solution upon these parameters and

constraints, and the nature of this dependence (smooth or discontinuous) are important

in determining the generality of the solution.

In this chapter, we therefore review previous implementations of mirror pulses, and a

range of applications in which they are used, mentioning the effects of past shortcomings
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upon performance in these applications. We consider different fidelity measures for the

mirror operation, and identify the constraints and optimisation parameters for typical

applications. We then present the results of GRAPE optimisations, and identify some

interesting features in the computational solutions. We compare our pulses with previ-

ous approaches; and we establish the dependence of the solutions and their predicted

performance upon these parameters and constraints, and their sensitivity to the initial

guess.

Finally, we demonstrate experimentally a pulse design that achieves a ground hyperfine

state-transfer efficiency of 99.8(3)% in a 35 µK thermal cloud of atomic rubidium, com-

pared with a conventional π pulse efficiency of 75(3)%. This inversion pulse is highly

robust to variations in laser intensity and detuning, with a fidelity that remains above

90% at detunings for which the π pulse fidelity is below 20%, and is thus suitable for

large-momentum-transfer interferometers using thermal atoms or operating in non-ideal

environments. Sections of this chapter have been published [1, 3] and the experimental

data were taken in collaboration with Max Carey.

7.1 Mirror pulse fidelities and design objectives

The choice of a mirror pulse fidelity measure depends on the application. We consider

below two examples in which mirror pulses play a different role in the interferometer

sequence, and consider what fidelity measure is appropriate in each case.

First we examine the LMT interferometer, in which the beamsplitter and mirror opera-

tions are extended by multiple ‘augmentation’ pulses with alternating effective wavevec-

tors that are designed to swap the population between the internal states in each inter-

ferometer arm whilst imparting additional momentum to the atoms [40, 42, 45]. Each

successive augmentation pulse must efficiently transfer atomic population within inter-

ferometer arms that become increasingly separated in resonance frequency due to the

momentum imparted by the successive (two-photon) recoils. To optimise an augmenta-

tion pulse for LMT interferometry, which we represent by the propagator Û , it may be

sufficient to consider the point-to-point (PP) fidelity

Fsquare ≡ | 〈e|Û |g〉 |2 (7.1)

without concern for the relative phase introduced between the two states. This is be-

cause, in LMT interferometers, the augmentation pulses appear in pairs within the

extended pulse sequence so that the interferometer phase introduced by each pulse is, to

first order, cancelled out by that introduced by a subsequent one [42, 46, 50]. Choosing

to optimise a PP operation as opposed to a universal rotation (UR) pulse effectively

gives the pulse optimisation algorithm a larger target to shoot at, allowing impressive

fidelity to be achieved with a modest pulse area.
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However, in our second example, for the mirror pulse at the centre of the three-pulse

Mach-Zehnder interferometer sequence, a PP pulse is expected to lead to a loss in

interferometer contrast and sensitivity. This is because the central mirror pulse must

be applied to atoms that lie ideally at a range of points on the equator of the Bloch

sphere. The mirror pulse in this case must provide a π rotation about a fixed axis in the

equatorial plane for atoms in the ensemble that naturally have different initial states. If

the mirror pulse provides a rotation about different axes for different atoms, the atoms

will exit the interferometer with a spread in phase. This will scramble the interferometric

measurement and lead to fringes washing out when averaged over the entire atom cloud.

One option, therefore, is to optimise the mirror pulse to be a universal rotation (UR)

180◦ pulse with a fixed rotation axis in the xy plane for all atoms with the range of

Raman detunings and coupling strengths found in the ensemble. We therefore consider

the following UR fidelity measure [10]

FUR =
1

2
Tr(Û †πÛ), (7.2)

which is maximised when Û = Ûπ, where Ûπ = exp (−iπ2 σ̂y) is the propagator for an

‘ideal’ π rotation about the y-axis of the Bloch sphere.

We can also simplify this UR fidelity in a useful way as follows:

FUR =
1

2
Tr(Û †πÛ) (7.3)

=
1

2
Tr

[(
0 −1

1 0

)†(
〈g|Û |g〉 〈g|Û |e〉
〈e|Û |g〉 〈e|Û |e〉

)]
(7.4)

=
1

2
(〈e|Û |g〉 − 〈g|Û |e〉) (7.5)

= Re(〈e| Û |g〉) (7.6)

≡ Freal. (7.7)

We therefore see that maximising the UR mirror pulse fidelity is equivalent to maximising

the real part of the overlap 〈e| Û |g〉, which we denote Freal. Maximising Freal will

therefore maximise the state-transfer efficiency Fsquare and fix the phase of the overlap

〈e| Û |g〉. These two conditions must be met by any mirror pulse because the contrast of

the fringes depends on the state-transfer efficiency (Equation 3.13) and the contribution

of the mirror pulse to the interferometer phase is given by 2φ(〈e|Û |g〉) (Equation 3.14).

Therefore, maximising Freal over an ensemble of off-resonance and pulse-length errors

both minimises variations in the interferometer phase over that ensemble and maximises

the visibility of the interference fringes.

We note here that Fsquare and Freal are only two choices of mirror pulse fidelities out of

many possibilities. For example, in the Mach-Zehnder interferometer the mirror pulse is

expected to operate on atoms whose states are distributed close to the equatorial plane
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of the Bloch sphere (assuming the initial beamsplitter pulse is reasonably efficient), and

therefore only certain initial states need be rotated about a fixed axis. The mirror pulse

therefore need not strictly be a universal π rotation for all initial states - only for a

specified initial distribution of states. Such a ‘not-quite’ UR pulse may be easier to

optimise than a full UR designed to work for any and all initial sates of a two-level

atom. Also, the fidelity Freal treats phase uniformity and state-transfer efficiency on an

equal footing, and it may be advantageous to uncouple these two properties such that

they may be weighted differently in the optimisation: it may be more advantageous in

an interferometric measurement application to prioritise phase uniformity over state-

transfer efficiency, for example.

As discussed in Chapter 5, we construct our control pulses as piece-wise constant wave-

forms where the combined Raman laser phase φL (and potentially amplitude or Rabi

frequency ΩR) is varied for each step in the pulse. The goal of our optimisation proce-

dure is to find the sequence of laser phases that maximises our chosen inversion fidelity

(Fsquare or Freal) over the entire atomic cloud.

We build robustness into our optimal control designs by replacing our single-atom inver-

sion fidelity by an average over the detuning and amplitude errors present in the atomic

sample,

F →
∑

ensemble

F . (7.8)

The ensemble of off-resonance and pulse-length errors supplied to the optimisation must

reflect those present in the experimental atom sample. The dominant contribution to

off-resonance errors in our experiment comes from the temperature of our atom cloud,

which is typically in the range of (10 - 200) µK [56]. For these temperatures, the spread in

atomic velocity leads to a spread in Raman detuning that can be many hundreds of kHz

and comparable in size to the Rabi frequency - this can thus lead to significant reductions

in the fidelity of π and π/2 pulses in our interferometer. In LMT applications, however,

the dominant contribution to off-resonance errors comes from the increased momentum

separation of the diffracting wave-packets.

Similarly, the ensemble of pulse-length errors fed into the optimisation should ideally

reflect the distribution of such errors found in the atom sample. Sources of pulse-

length errors for our system include spatial inhomogeneity in the Raman beam intensity

profiles, and the occupation of different mF sub-levels which each have a different two-

photon Rabi frequency. Rather than optimising pulses for a system-specific distribution

of coupling strengths, in this chapter we focus on designing pulses that can withstand

variation of the two-photon Rabi frequency within an experimentally feasible range of

the nominal field strength of ± 10% Ωeff , where Ωeff is the nominal or effective Rabi

frequency.
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In this chapter we focus on designing mirror pulses using optimal control that mitigate

off-resonance errors that arise from the temperature of a cloud of atomic 85Rb. In this

case the distribution of detuning, f(δ), comes from the distribution of velocities along

the Raman beam axis f(v) of an atomic cloud at a given temperature T - which we take

to be a Maxwell-Boltzmann or Gaussian distribution:

f(δ) = kefff(v) (7.9)

f(v) =
1

σv
√

2π
e
− v2

2σ2
v . (7.10)

Here, σv =
√
kBT/m is the width or standard deviation of the velocity distribution

where m is the atomic mass, v is the atomic velocity component parallel to the Raman

beams, and kB is the Boltzmann constant. We define our ensemble of off-resonance errors

to be a sample of detunings in the range (± 3keffσv), where each ensemble member’s con-

tribution to the final fidelity is weighted in the optimisation according to Equation 7.10.

This ensures that the optimisation prioritises maximising the fidelity for the region in

frequency space where most of the atoms in the ensemble are expected to be.

The number of detunings used in the ensemble of off-resonance errors and the number of

amplitude errors used in the ensemble of pulse-length errors is limited by the available

computational resources because the single-atom fidelity must be averaged over both

distributions during each iteration of the optimisation. In practice, therefore, we only

optimise pulses to compensate error distributions that are approximations to the true

distribution.

7.2 Mirror pulse performance

Our approach is to optimise inversion pulses using our two mirror fidelities (Fsquare

and Freal) in the presence of typical off-resonance and pulse-length errors found in a

thermal sample of 85Rb, before comparing the resulting performance with that achieved

using composite pulses and adiabatic rapid passage schemes. In general, given a fixed

available Raman beam power, we seek to find the shortest mirror pulse that reaches

the highest inversion fidelity in our atom cloud. This is important to both reduce the

effect of spontaneous emission and minimise effects caused by atomic motion through

non-uniform fields during the pulse. We are therefore interested in how the maximum

achievable fidelity varies with the duration of the pulse and also how the performance

compares with existing composite and ARP pulses.

We have optimised phase-modulated inversion pulses using both the Fsquare and Freal

fidelities for a range of pulse durations from 1tπ to 8tπ varied in increments of tπ, where tπ

is the duration of a rectangular π pulse. We have repeated each individual optimisation

50 times to examine the dependence of the final pulse on the initial guess which is taken
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to be a random series of laser phases1: our gradient-based optimisation algorithm has

no guarantee of finding a global maximum of the fidelity and we therefore expect that

multiple attempts will be required to obtain a good pulse. Each pulse was optimised

using the L-BFGS GRAPE method (described in Chapter 5) to mitigate off-resonance

errors arising from a thermal sample of 85Rb at a typical experimental temperature of

40 µK and a range of pulse-length errors of ± 10% Ωeff . The pulse time-step was fixed to

be tπ/50, and the nominal Rabi frequency, Ωeff , was set to 200 kHz in line with previous

experimental values [45]. Each optimisation was set to terminate after 1000 iterations,

or when the norm of the gradient fell below 10−6, or the norm of the step size fell below

10−3.

Figure 7.1 shows histograms corresponding to the distributions of terminal fidelities

found for both the UR and PP fidelity optimisation. We see that, starting from random

phase profiles, the UR pulses converge in general to a smaller number of solutions than in

the PP case and that these solutions have lower terminal fidelities. With the exception

of the shorter pulses with durations less than 2tπ where each fidelity measure always

converged to a given solution, the PP fidelity distributions are broader implying that it

is worth trying multiple guesses to find the best pulse for a given set of parameters. The

maximum and average terminal fidelity increases as the pulse duration and available

pulse area is increased.

A selection of the best pulses found for each fidelity choice is depicted in Figure 7.2.

Even in the case of random initial guesses for the phase-profiles and no constraint on

the smoothness of the resulting waveforms, we typically find smooth pulses appearing

for each fidelity choice. Furthermore, different classes of Fsquare and Freal mirror pulses

emerge from the optimisation depending on the overall sequence length: some of these

pulses are symmetrical about the temporal midpoint while some are highly asymmetric.

We find that a specific class of high fidelity Fsquare pulses may be found consistently by

GRAPE for each duration when starting from a parabolic guess for the phase profile2.

Although the initial guess was a parabolic phase profile for these pulses, the resulting

shape is not well-fitted by a parabolic approximation. These pulses belong to a partic-

ular class of non-linear frequency sweeps redolent of ARP pulses, a feature also found

in the NMR optimal control literature [8, 159]. Despite their appearance, these non-

linear frequency sweeps are not of high adiabaticity. Figure 7.3 shows the action of the

non-linear frequency swept pulse from Figure 7.2g on the Bloch sphere. Even when

detuned by a considerable amount (δ = 1.5Ωeff), the final state ends up much closer to

the intended target state than a simple π pulse, thereby demonstrating a considerable

resilience to off-resonance errors.

1Initial random phase profiles are obtained using MATLAB’s randn function, which is used to generate
normally distributed random numbers for each time-slice in a pulse.

2We define this parabolic guess by φguess(t) = −2π ×
( (t−τ/2)

τ/2

)2
, where τ is the pulse duration.
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Figure 7.1: Histograms showing the distribution of terminal fidelities for a selection
of pulse durations (2, 4, 6, and 8tπ) where the initial guess for the waveforms was a
random series of phases. With the exception of shorter pulses where the duration is
less that 2tπ, the PP fidelity distribution is broader than the UR one, meaning the UR
optimisations in general converge to a smaller number of solutions. The red vertical
lines indicate the terminal Fsquare fidelity that may be obtained when starting from
a parabolic guess for the phase profiles. Each pulse was optimised for a 40 µK 85Rb
cloud with pulse-length errors in the range ± 10% Ωeff . The nominal Rabi frequency

was 200 kHz.

7.2.1 Robust state-transfer

To compare the state-transfer efficiency of the GRAPE pulses with ARP and composite

pulse alternatives, we took the GRAPE-optimised pulses optimised for each fidelity

measure and duration choice and calculated the expected fraction of atoms transferred to

the excited state, 〈Pe〉, in a 40 µK cloud with pulse-length errors within the design range

of ± 10%. This involved drawing a sample of atomic velocities (and hence detunings)

from a Maxwell-Boltzmann distribution corresponding to a temperature of 40 µK and a

sample of Rabi rates from a uniform distribution with a range of 20% the nominal Rabi

rate of 200 kHz. The final fraction of atoms in the excited state after application of a
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Figure 7.2: Selection of the highest fidelity GRAPE-optimised phase-modulated in-
version pulse waveforms found for a range of pulse durations optimising fidelities Fsquare

((a) to (h)) and Freal ((i) to (l)) for a 40 µK 85Rb cloud with pulse-length errors in the
range ± 10% Ωeff . Pulses (e) to (h) represent the terminal Fsquare waveforms starting
from a parabolic guess for the phase profiles. The remaining pulses represent the best
pulse found from 50 individual optimisations at each duration starting from a random

initial phase profile. The terminal fidelity is shown above each panel.

given pulse to an atom in the ground state was evaluated numerically for each detuning

and amplitude in the sample, and the average transfer efficiency (final fraction of atoms

in the excited state) computed3. The results for the best GRAPE pulses for each fidelity

measure are shown in Figure 7.4 along with those for a selection of the best-performing

ARP and composite pulses taken from [42, 44–46].

The particular selection of composite pulses we have considered includes: WALTZ [43],

Knill [160], CORPSE [61], Levitt [5], 90-225-315 [161], and 90-240-90 [162]. In agree-

ment with previous studies [42, 45], we find that the WALTZ pulse obtains the highest

fidelity out of the composite pulses tested. Alongside the selection of composite pulses,

Figure 7.4 shows the simulated transfer efficiency for the well-known ARP tanh/tan

pulse [51] with the same sweep parameters as those used by Kotru et al. [46]. The tan-

h/tan ARP pulse is a particularly efficient frequency-swept pulse that is able to maintain

3More details on the simulations can be found in Appendix B.
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Figure 7.3: Bloch sphere trajectories for the Fsquare (PP) pulse of duration 6tπ taken
from Figure 7.2g acting on (a) a resonant atom initially in the state |g〉 and (b) a
detuned atom starting in the same initial state. (b) also depicts the state trajectory
for the standard π pulse (red dotted curve) under the same detuning of δ = 1.5Ωeff .
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Figure 7.4: Simulated fraction of excited atoms following different inversion pulses
with durations ranging from tπ to 8tπ in a 40 µK sample with a range of pulse-length
errors ± 10% Ωeff . The nominal Rabi frequency, Ωeff , was 200 kHz. The composite
pulses were taken from [45] and the tanh/tan ARP pulse from [44]. Phase-modulated
GRAPE inversion pulses found using fidelity Fsquare obtain the highest ensemble fidelity

at all pulse durations.

100% inversion efficiency on resonance at considerably shorter durations than alternative

ARP pulses [44].

We find that at all pulse durations explored GRAPE Fsquare pulses reach a higher average

inversion fidelity compared with the selected ARP and composite pulses. The largest

improvement shown by GRAPE is at durations less than 4tπ where tπ is the duration of a

π pulse; the ARP tanh/tan pulse becomes more robust to both off-resonance and pulse-

length errors as it becomes longer and thereby more adiabatic [44]. The Freal fidelity is
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more restrictive than the PP Fsquare fidelity (restricting variations in the phase of the

final state across the ensemble in addition to purely maximising state-transfer) and the

UR pulses must therefore be longer to reach similar average state-transfer efficiency to

the PP pulses.

The results in Figure 7.4 conflate resilience to off-resonance and pulse-length errors by

averaging over an ensemble of both error sources. We can instead simulate how the

state-transfer efficiency of a given pulse varies as a function of off-resonance and pulse-

length errors to examine the robustness to both error classes. The results are depicted

using contour plots in Figure 7.5 where we have shown the results for a non-linear

frequency swept GRAPE pulse of duration 6tπ (derived from a parabolic guess for the

phase profile with terminal waveform depicted in Figure 7.2g) and also depict results

for the WALTZ composite pulse and the ARP tanh/tan pulse (the duration of ARP

was fixed to be 6tπ to ensure a fair comparison with GRAPE). The red hatched regions

show the region of optimisation of both error sources (± 3keffσv for δ at 40 µK and a

20% offset range for amplitude). The GRAPE solution proves to be significantly more

robust to off-resonance errors than the WALTZ and ARP pulses within the ensemble

range and, interestingly, we find that the GRAPE solution can withstand a significantly

larger range of pulse-length errors than it is designed to compensate for.

We conclude that phase-modulated GRAPE pulses can yield significantly more robust

state-transfer in a two-level atom than may be achieved with the best-performing ARP

and composite pulses that have been used in atom interferometry to-date. Furthermore,

the increased robustness to off-resonance errors afforded by GRAPE Fsquare pulses makes

them an attractive option for use as augmentation pulses within LMT interferometers.

Using such GRAPE augmentation pulses should enable larger interferometer areas and

hence greater intrinsic sensitivity gains than can be achieved with conventional π pulses,

composite pulses, or ARP pulses.

7.2.2 Interferometric phase variation and contrast

What is the effect on the interferometer phase when replacing the π pulse in a three-

pulse interferometer with an optimised alternative? Previous experimental studies of

frequency-swept Raman ARP and composite inversion pulses in atom interferometry

have focused on the problem of providing robust state-transfer [41, 42, 45, 46], and not

on the effect of a pulse on the phase of the interferometer when employed as the central

mirror operation within a sequence. We expect that mirror pulses found by optimising

Freal will minimise variation in the interferometer phase for an ensemble of atoms with

a distribution of off-resonance and pulse-length errors. This will be crucial if these

pulses are to find application in interferometric sensors because any variation in the

interferometer phase across an atomic sample will result in the fringes washing out

when the output is averaged over the atomic cloud at the end of the interferometer.
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(b) WALTZ, duration 3tπ.
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(c) tanh/tan ARP, duration 6tπ.
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(d) GRAPE Fsquare, duration 6tπ.

Figure 7.5: State-transfer efficiency (Fsquare) of different pulses as a function of off-
resonance and pulse-length errors. The hatched region represents the region of opti-
misation and the contours correspond to fidelities of 0.8, 0.9, and 0.95. The GRAPE

pulse is taken from Figure 7.2g.

Using Equation 3.14 from Chapter 3, we can simulate the dependence of the interferom-

eter phase on the Raman detuning for the π/2− π − π/2 sequence where the central π

pulse is replaced by a robust alternative such as an ARP or composite pulse but the ini-

tial and final π/2 pulses remain as fractional Rabi oscillations. The results are shown in

Figure 7.6. We see that the GRAPE Freal pulse of duration 8tπ (taken from Figure 7.2)

minimises variation in the interferometer phase with the Raman detuning δ but the

Fsquare pulse of identical duration introduces a large unwanted variation in phase with

detuning much like the ARP pulse. This means that although the PP Fsquare pulses can

provide robust state-transfer between states |g〉 and |e〉, when applied within a three-

pulse sequence different atoms (with different velocities) will exit the interferometer with

different phases. The same is true of the PP WALTZ pulse and the ARP schemes. The

phase shift following the conventional π/2 − π − π/2 sequence is Doppler-insensitive

providing the Rabi rate does not vary from pulse to pulse [109].
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Figure 7.6: Variation of single-atom interferometer phase ∆φ with Raman detuning
simulated for different sequences where the central mirror pulse is replaced by a robust
alternative but the initial and final π/2 pulses remain as rectangular fractional Rabi
oscillations. We have applied a uniform phase shift to the Freal, Fsquare, and ARP

curves to aid visual clarity.

If the interferometer phase varies with the Raman detuning, this implies that in an

ensemble of atoms with a velocity spread, different atoms will exit the interferometer

with different phases [108]. This can lead to a reduction in fringe visibility when the

output signal is averaged over the entire atom cloud. We can simulate the thermally-

averaged interferometer signal for a given pulse sequence and atomic cloud temperature

by integrating the final excited state probability Pe (Equation 3.11) over the atomic

velocity distribution corresponding to a specific temperature [108]. We can then generate

a simulated fringe by varying the phase of the final beamsplitter, which we take to be

a conventional π/2 pulse. We then find the average contrast by fitting a sinusoidal

function to the thermally-averaged output fringe.

The results of such a simulation are depicted in Figure 7.7 for atomic cloud temperatures

for 85Rb in the range 1 to 150 µK. As expected, the Freal GRAPE pulse leads to a

significant improvement in the ensemble-averaged contrast as the temperature and hence

velocity spread of the cloud is increased. This is because Freal pulses minimise the

dependence of the interferometer phase on the detuning, allowing for a robust central

mirror pulse. The black dotted curve in Figure 7.7 corresponds to a sequence with a

‘perfect’ π pulse that is resonant for all atoms in the ensemble - thus illustrating the

decay in contrast due to the Doppler sensitivity of the rectangular beamsplitters alone

and providing a target performance when optimising the mirror operation in isolation.

GRAPE Freal pulses approach the ‘perfect’ mirror pulse as their duration and fidelity

increase.
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Figure 7.7: Simulated interferometer contrast B for different pulse sequences as a
function of atomic cloud temperature. In each case the mirror pulse is substituted by
either a GRAPE pulse, a composite inversion pulse, or the ARP tanh/tan pulse. The
GRAPE Fsquare pulse was the 8tπ pulse depicted in Figure 7.2c, and the 8tπ GRAPE
Freal pulse was also taken from Figure 7.2. The ARP pulse duration was 8tπ to ensure
a fair comparison with GRAPE alternatives. The black dotted curve corresponds to
a sequence with a “perfect” π pulse that is resonant for all atoms and the associated
decay highlighted by the shaded region is due entirely to the rectangular π/2 pulses.

The nominal Rabi frequency was 200 kHz

Table 7.1 summarises the results for the thermally-integrated interferometer contrast at

three temperatures of 30, 60, and 80 µK for a selection of composite and ARP pulses. The

only composite pulses that improve the contrast relative to the conventional sequence

of π/2 and π pulses are the Knill and ‘90-240-90’ sequences. This can be explained by

recalling that these sequences were designed as UR pulses [56], and as a result the phase

of the overlap 〈e|Û |g〉 is uniform near resonance.

Although substituting the π pulse in the π/2− π − π/2 sequence with a PP composite,

optimised Fsquare, or adiabatic pulse leads to different atoms exiting the interferometer

with different phases, it may be possible to cancel the detuning-dependent phase errors

by using an alternative pulse sequence with a pair of inversion pulses, much like in LMT

interferometer sequences that employ additional mirror pulses in pairs to increase the

interferometer area. For example, using a π/2−π−π−π/2 sequence [159] where the first

mirror pulse occurs immediately after the first beamsplitter and is used only to cancel

the phase shift of the second mirror pulse. This would only work if the Rabi frequency

for a given atom did not vary much during the first dwell-time, otherwise the phase

compensation would be imperfect. Indeed this is also a problem when adiabatic pulses

are used in LMT interferometers [46], and we explore this aspect of LMT interferometers

in greater detail in Chapter 9.
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Table 7.1: Simulated contrast values for different interferometer sequences at temper-
atures of 20, 40, and 80 µK. In each sequence the beamsplitters were π/2 pulses and
the mirror pulse was replaced by either: a GRAPE inversion pulse, a composite pulse,
or an ARP pulse. The “perfect” π pulse sequence contains a π pulse that is fixed to be
resonant with every atom in the velocity distribution thus giving an indication of the
decay in contrast with temperature that can be attributed to the imperfections in the
beamsplitters only. Bold values indicate the best-performing pulse at each temperature.

Interferometer contrast
Inversion pulse Type Length (t/tπ)

20 µK 40 µK 80 µK

π UR 1 0.76 0.64 0.50
“Perfect” π UR 1 0.99 0.97 0.91
WALTZ [43] PP 3 0.27 0.22 0.20
Knill [160] UR 5 0.88 0.75 0.58
Levitt [5] PP 2 0.75 0.64 0.52
90-225-315 [161] PP 3.5 0.67 0.59 0.48
90-240-90 [162] UR 2.3̇ 0.80 0.68 0.56
CORPSE [61] UR 4.3̇ 0.73 0.56 0.42

ARP tanh/tan [51] PP
6 0.60 0.44 0.31
8 0.53 0.38 0.27

GRAPE Fsquare PP
6 0.46 0.33 0.22
8 0.33 0.22 0.15

GRAPE Freal UR
6 0.95 0.91 0.82
8 0.97 0.93 0.85

7.3 Dependence on optimisation parameters

We find that optimised Raman pulses yield significant improvements in simulated fi-

delity, phase uniformity, and contrast when compared with composite and adiabatic

pulse alternatives. However, it is also useful for practical users and for fundamental

interest to know how sensitive the optimisation is to the choices made in performing it.

In this section we therefore present the results of a preliminary investigation into the

dependence of GRAPE-optimised solutions on the parameters used in the optimisation

and highlight considerations that are important when designing robust mirror pulses

using optimal control. We explore the dependence of the solutions on the number of

time-steps used to form the piece-wise constant waveforms and how the solutions depend

on the ensemble of off-resonance and pulse-length errors used.

7.3.1 Number of time-steps

How does the terminal fidelity reached by GRAPE depend on the number of time-steps

N used to define the piece-wise constant waveforms? Do different solutions emerge as

the number of time-steps is increased? To answer these questions we have optimised

mirror pulses for a 40 µK cloud with pulse-length errors in the range ± 10% Ωeff using

fidelities Fsquare and Freal, varying the number of time-steps used to form the waveforms

from 10 to 300 in increments of 10. The total duration of the pulses was fixed to be 4tπ

and the optimisation was repeated for each time-step choice 12 times where in each case
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Figure 7.8: Terminal fidelity for GRAPE inversion pulses of duration 4tπ as the
number of time-steps N is varied from 10 to 300 in increments of 10. Each point
corresponds to the best pulse found out of 12 optimisations of each mirror fidelity
measure starting from random guesses. No significant increase is observed beyond 30

time-steps for each fidelity choice.

the initial guess was a different random series of laser phases. The maximum terminal

fidelities reached by GRAPE for each fidelity choice and time-step are displayed in

Figure 7.8.

Figure 7.8 shows that beyond approximately 30 time-steps, there was no significant

increase in terminal fidelity obtained from further increasing the number of time-steps.

Fsquare pulses exhibit what look like oscillations in the maximum fidelities indicating that

some time-step periodicities may be better than others although since each optimisation

was repeated only 12 times this could be due to choosing a poorer sample of initial

guesses for certain values of N. The Freal pulses all converge to the same shape beyond

30 time-steps, and the terminal fidelity reached with 300 steps is only 0.003 greater than

that found using 30.

We observe significant stability in the shape of the optimal solutions as the number

of time-steps is varied. For example, Figure 7.9 depicts terminal Fsquare waveforms

optimised from the same parabolic initial guess as the number of time-steps, N, is varied.

We observe a smooth convergence to the non-linear frequency swept pulses discussed in

Section 7.2 and there are no sudden changes in fidelity or pulse shape as N is increased.

Sometimes, however, different shapes can be found for different numbers of time-steps

starting from the same guess. This is illustrated in Figures 7.10 and 7.11, where we

depict colourmap plots of terminal waveforms found optimising our two mirror pulse

fidelities starting this time from random initial guesses. For the Freal pulses shown in

Figure 7.10, we find that the majority of time-step choices lead to a symmetrical pulse

shape, but for a few specific values of N, a slightly asymmetrical solution is obtained with

similar fidelity to the symmetrical case. In the case of the Fsquare pulses from Figure 7.11

some solutions that appear to be different shapes are actually related by a symmetry

transformation (e.g. Figure 7.11d), while others yield almost identical fidelities yet

appear to have unrelated shapes (e.g. Figure 7.11c).
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Figure 7.9: (a) Colour-map depicting how the terminal phase profile for Fsquare pulse
optimisation varies with the number of time-steps, N. Each pulse was optimised starting
from a parabolic guess for a cloud of temperature 40 µK with pulse-length errors in
the range ± 10% Ωeff . The terminal fidelities for each time-step are shown in panel
(b). Panels (c) and (d) show the shape of the solutions at N = 8, 12, 44, and 64. The
waveforms converge to a smooth shape and no new features are found in the solutions

as N is increased.

7.3.2 Ensemble size and specification

7.3.2.1 Ensemble density

The ensemble of off-resonance errors used to optimise a robust solution must be carefully

constructed. If the ensemble consists of too few individual detunings within the desired

range of error compensation, the optimal control algorithm may obtain a superficially

high-fidelity solution that, upon closer inspection, only obtains high-fidelity for those

specific detunings included in the ensemble and not for the region in frequency between

them. An example of this is depicted in Figure 7.12. Using an ensemble of only 41

detunings to represent the distribution in detuning arising from a 160 µK atom cloud,
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Figure 7.10: (a) Colour-map depicting how the terminal phase profile for Freal pulse
optimisation varies with the number of time-steps, N. Each pulse was optimised starting
from the same random guess for a cloud of temperature 40 µK with pulse-length errors
in the range ± 10% Ωeff . The terminal fidelities for each time-step are shown in panel
(b). Panel (c) shows the solutions for N = 16 and N = 20 and panel (d) shows the
solutions at N = 24 and N = 28. The solutions for N = 16 and N = 20 have an
asymmetry which is not apparent in the other solutions, which all resemble smoother
versions of the symmetrical N = 24 and N = 28 waveforms. Despite the different shapes

of the solutions in (c) they have a similar fidelity to the symmetrical shapes.

we obtained a mirror pulse that introduced high-frequency variations in the transfer

efficiency. The peaks in fidelity occur at exactly the specific detunings of the ensemble

and are clearly sub-optimal elsewhere. Re-running this particular optimisation with

twice as many detunings in the sample resulted in a smoother pulse waveform that

maintains high fidelity for the entire range of detuning in the ensemble. It is also

possible that this problem could be mitigated by applying a smoothing penalty in the

optimisation.
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Figure 7.11: (a) Colour-map depicting how the terminal phase profile for Fsquare

pulse optimisation varies with the number of time-steps, N, when the initial guess is a
random phase profile. Each pulse was optimised for a cloud of temperature 40 µK with
pulse-length errors in the range ± 10% Ωeff . The terminal fidelities for each time-step
are shown in panel (b). Panel (c) shows the solutions for N = 52 and N = 56 and
panel (d) shows the solutions at N = 60 and N = 64. While the pair of solutions in (c)
have near-identical fidelities they appear to have fundamentally different shapes. The
pair of solutions depicted in panel (d) appear to be different solutions but are in fact
almost identical and related by a symmetry transformation: the solution for N = 64
is approximately the time-reversed and inverted form of the N = 60 solution with an
additional phase offset. Such a symmetry transformation leaves the ensemble fidelity

Fsquare of the pulse unchanged.

7.3.2.2 Ensemble distribution

Throughout this chapter we have optimised pulses using a Gaussian distribution of

detunings whereby each offset in the sample is weighted according to the distribution

arising from a specific atomic temperature (described by Equation 7.10). However, we

could alternatively choose a uniform distribution that encompasses the majority of the

atomic velocity distribution. Figure 7.13 shows the waveforms and transfer efficiencies
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Figure 7.12: (a) Waveforms for Fsquare pulses optimised for an ensemble of atoms at a
temperature of 160 µK. The blue solid line represents a pulse optimised for an ensemble
consisting of 41 detunings and the black dotted curve represents an optimisation of the
same fidelity but where the ensemble consisted of 81 detunings. (b) and (c) show
the simulated transfer efficiency as a function of detuning for each pulse shown in
(a) along with the specific detunings included in each ensemble. The shaded blue
regions correspond to the distribution of detuning arising from a cloud of atoms at a

temperature of 160 µK.

as a function of detuning for two pulses found optimising Fsquare for a 40 µK cloud.

For one optimisation we used a linear ensemble with detunings sampled within the
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Figure 7.13: Phase profiles (a) and transfer efficiencies (b) of two PP state-transfer
pulses optimised using GRAPE for a 40 µK cloud of 85Rb. The dashed orange curve
represents a pulse found optimising Fsquare for a uniform distribution of detunings
spanning 6 keffσv of the true detuning distribution (represented by the blue shaded
region). The solid blue curve represents an optimisation from the same initial guess but
for a Gaussian-weighted ensemble. This Gaussian-weighted pulse prioritises the transfer
efficiency on resonance, and will therefore maintain efficiency even if the temperature

of the distribution is lower than expected.

6 keffσv range of the true distribution and for the second pulse we used a Gaussian-

weighted sample spanning the same range. The initial guess was the same in both

cases. We see from Figure 7.13 that the Gaussian-weighted distribution is clearly the

better ensemble choice for this pulse duration. This is because the linear-ensemble choice

leads to a pulse that sacrifices the transfer efficiency for resonant atoms to increase the

fidelity of atoms further from resonance. The Gaussian-weighted pulse will clearly also

maintain high fidelity if the temperature of the distribution is lower than expected. We

therefore expect that pulses designed using Gaussian-weighted ensembles of detuning will

provide an improvement in inversion performance in a thermal atom cloud, especially

for short pulse durations where it is harder to provide near-perfect transfer for the entire

range of resonant offsets within the atomic ensemble. We note in passing that linear

ensembles of resonant offsets are used in many NMR optimal control studies of robust

pulse design [8, 10] and, while we sometimes obtain similar waveforms, the ‘best’ pulse

in the atomic context will therefore likely differ.

7.4 Amplitude modulation

In our pulse design we have the freedom to allow both the amplitude ΩR(t) and laser

phase φL(t) to vary with each time-step. Allowing amplitude modulation forces us to

impose a constraint on the maximum amplitude during a pulse. If no such constraint
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Figure 7.14: Panels (a) and (b) represent the phase and amplitude profiles of two
pulses optimised using GRAPE. The dotted blue curve represents a phase-only optimi-
sation and the solid red curve represents the results of an optimisation where both phase
and amplitude were allowed to vary in each time-step with no limit on the maximum
amplitude. Panel (c) shows the simulated transfer efficiency as a function of the Ra-
man detuning for each pulse including a re-scaled version of the amplitude-modulated
pulse (purple dot-dashed curve). The blue shaded region in (c) represents the velocity

distribution due to a 40 µK atom cloud.

is applied, the algorithm will increase the pulse amplitude to become robust to off-

resonance errors via power broadening [56]: the higher the Rabi frequency, the less the

atomic state trajectory is deflected by a given detuning. To illustrate this problem, we

repeated the 40 µK inversion pulse optimisation using fidelity Fsquare for a fixed duration

of 4tπ from Section 7.2 using an initial guess of a random phase profile and a rectangular

amplitude envelope but this time allowed ΩR(t) to vary. As expected, and after only

100 iterations, GRAPE was able to reach a fidelity of .999 (the peak fidelity obtained in

Section 7.2 for the same temperature and duration with no amplitude modulation was

0.981) by increasing the amplitude and hence available pulse area. Figure 7.14 shows

the resulting phase and amplitude profiles in comparison to the best phase-only pulse

of the same duration from Section 7.2. The robustness to off-resonance errors is signif-

icantly greater than the constant-amplitude pulse. However, the maximum amplitude

is approximately three times that of the original pulse! If we re-scale the maximum

amplitude back to 1 (corresponding to the nominal Rabi frequency Ωeff) and scale the

duration of each time-step accordingly to ensure the same rotation on resonance, we see

a significant reduction in bandwidth. This simple example demonstrates the necessity

of limiting the maximum amplitude when using optimal control.

In practice there is a maximum attainable laser power and Rabi frequency for a given
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Figure 7.15: Initial and final waveform for a Fsquare pulse optimised for a temperature
of 40 µK and a range of pulse-length errors of ± 10% Ωeff . Both the laser phase (a)
and amplitude (b) were allowed to vary and the SNS penalty was imposed to keep the

Rabi frequency from exceeding Ωeff .

experimental arrangement. Furthermore, reducing peak laser power requirements is a

necessary step in the development of mobile quantum sensors. We therefore seek to make

a fair comparison of pulse performance by fixing the maximum amplitude of each pulse

to be identical. There are different ways of imposing penalties on the pulse amplitude

ΩR(t). As explained in Chapter 5, we could minimise the amplitude during the pulse by

adding to the fidelity a penalty proportional to the sum of the amplitudes for each time-

step. This approach is often used in NMR radio-frequency pulse optimisation where it

is advantageous to minimise the power-requirements of a pulse [8–10, 21, 23, 126, 163].

However, applying this type of penalty can be problematic as it will simultaneously

act to reduce the amplitude (satisfying the penalty reduction) and lower the inversion

fidelity.

A preferable option, therefore, is to limit the amplitude to within some user-defined

experimental limits, and only constrain the pulse if the amplitude passes beyond the limit

in a single step of the optimisation. This could be achieved by “clipping” the waveform

if it passes beyond the amplitude limit [164], or by imposing the spill-out norm-square

(SNS) penalty [23, 126] introduced in Chapter 5, applied only if the amplitude limit

is exceeded and which is proportional to the norm square of the amplitude beyond the

limit. The SNS penalty will immediately steer the optimisation back to a solution within

the limits if it passes beyond them.

A further complication that could arise when employing pulses with variable amplitude

is the effect of an uncompensated AC stark shift. Varying the intensity of the light

as a function of time would lead to a time-dependent Stark shift, thus resulting in a

time-dependent off-resonance error.

We have repeated the optimisations carried out in Section 7.2, but this time allowed the

pulse amplitude ΩR(t) to vary whilst implementing a SNS penalty. We find the following:

solutions appear to converge to the constant-amplitude phase-modulated pulses obtained

in Section 7.2 and no improvement is found in terms of fidelity. Indeed, we find very
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similar pulse shapes as depicted in Figure 7.15. Figure 7.15 shows the results of an

individual pulse optimisation using fidelity Fsquare, where the amplitude has converged

to a rectangular envelope following 1000 iterations of GRAPE. This shows that there

is no clear advantage to introducing amplitude modulation in terms of terminal fidelity

because our optimisations converge to constant-amplitude solutions. It may be that

using a different penalty on the amplitude such as a sine/cosine mapping allows for

better solutions but this is a question left for future work.

We note here that optimising amplitude-modulated pulses does prove useful in some

situations such as designing interferometer sequences to suppress high-frequency laser

phase noise (explored in Chapter 8) and to design frequency-selective LMT pulses that

suppress excitation of atoms within certain detuning bands (explored in Chapter 9).

7.5 Experimental results

In this section we demonstrate experimentally a robust GRAPE-optimised inversion

pulse design in our Raman system and compare its performance with the rectangular π

pulse and the WALTZ composite pulse, which was the best composite pulse tested in

this system previously. In both cases we find large improvements in peak fidelity and

robustness to Raman detuning with GRAPE. Our hardware was limited to realising

pulses of constant amplitude when these experiments were performed and therefore

ARP pulses were not tested.

We have designed a population inversion pulse using GRAPE that maximises the transfer

of atoms initially in the state |g〉 to the state |e〉 for a cloud with a temperature of 120 µK

and a large variation in Rabi frequency of ± 10% Ωeff . The pulse duration was chosen to

be 12 µs for a Rabi frequency of 310 kHz, making it 7.4 times longer than a rectangular

π-pulse, and allowing for a high terminal optimisation fidelity. The Rabi frequency used

in the optimisation was determined empirically from the duration of a rectangular π

pulse.

This pulse had 100 time-steps and the algorithm converged to the symmetric wave-

form shown in Figure 7.16 when optimising the point-to-point fidelity measure (Equa-

tion 7.1) with the derivative-norm-square (DNS) penalty term added (see Chapter 5),

proportional to the difference between adjacent pulse steps, to enforce waveform smooth-

ness [23]. We found that increasing the number of time-steps in this pulse led only to a

negligible increase in fidelity.

As explained in Chapter 6, and recalled here for convenience, we realise our pulses

on a thermal cloud of ∼ 107 85Rb atoms, released from a 3-D magneto-optical trap

(MOT), cooled in an optical molasses for ∼ 10 ms and optically pumped into the
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Figure 7.16: Optimal state-transfer pulse designed using GRAPE to transfer atoms
between levels |g〉 and |e〉. The fidelity choice was Fsquare (Equation 7.1) and the pulse
was optimised to provide efficient state-transfer for a 120 µK cloud of 85Rb with pulse-
length errors in the range ± 10% Ωeff . The effective Rabi frequency, Ωeff , was 310 kHz.

|5S1/2, F = 2〉 ≡ |g〉 state with a distribution over the five mF sub-levels which, as the

pumping is performed with the MOT light along all axes, is assumed to be uniform [45].

The cloud temperature is tuned by adjusting the intensity of the cooling light during

the optical molasses and is measured by performing Raman Doppler velocimetry with

the Raman beams at low power [92]. The temperature can be adjusted in the range

of 20 − 200 µK and, combined with the multiple Rabi frequencies due to the different

coupling strengths of the fivemF levels present in the sample, provides an inhomogeneous

system with which to explore the performance of pulses designed to provide robustness

against the resulting off-resonance and pulse-length errors.

As explained in Chapter 6, control of the relative laser phase between the two Raman

beams is achieved by modulating the phase of the radio-frequency signal driving the

EOM (electro-optic modulator) using an I&Q modulator. The I and Q inputs of the

I&Q modulator are controlled by the dual outputs of an arbitrary waveform generator

(AWG). To realise a phase sequence φn, n = 1, 2, ..., N , the outputs are programmed

with the waveforms In = sin(φn) and Qn = cos(φn) and are configured to hold the final

phase value φN until a hardware trigger is received and the waveforms are played at a

sample rate that is adjusted to set the total duration of the modulation τmod
4.

4In practice, the time required for the AWG to respond to a hardware trigger is determined by the
sample rate. We therefore oversample waveforms, so that each φn comprises many “subsamples” of equal
phase, in order to keep the AWG sample period much less than the ∼ 100 ns rise-time of the AOM that
shutters the Raman beams.
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Figure 7.17: Illustration, not to scale, of the timing parameters optimised to realise
optimal inversion pulses. The Raman light (top) is turned on at t = 0, and off again at
t = τ by an AOM with a rise-time of ∼ 100 ns. The sample rate of the AWG controlling
the phase (bottom) is adjusted to set the total duration of the phase waveform τmod, and
this is adjusted together with the trigger delay τoffset to achieve the optimal peak transfer
when τ is scanned. When the phase waveform has finished, the phase is maintained at

its final value φN .

By concurrently triggering the phase modulation AWG and the AOM that shutters the

Raman beams to initiate a pulse, then measuring 〈Pe〉 once the AOM shutter has been

turned off again after a variable time τ , we can track the temporal evolution of the

atomic state during a phase sequence. The hardware trigger delay and sample rate of

the AWG are adjusted in order to vary the start time τoffset and duration τmod of the

phase waveform respectively (Figure 7.17) and maximise the peak excited fraction in

these temporal scans.

Having chosen the experimental pulse timings such that the fidelity is maximised at a

single value of the Raman detuning δ, set to the centre of the light-shifted resonance

determined from the spectral profile of a rectangular π-pulse, a spectral profile can be

measured by measuring 〈Pe〉 upon completion of the pulse at a range of detuning values.

7.5.1 Temporal scans

The temporal profile, after optimising τoffset, is shown in Figure 7.18, showing a peak in

the excited fraction at the end of the phase sequence, represented by the vertical dashed

line, after which damped Rabi oscillations are evident as the phase is kept constant.
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Figure 7.18: (a) Optimal state-transfer pulse designed using GRAPE to transfer
atoms between levels |g〉 and |e〉. (b) Measured fraction (circles) of atoms in the excited
state |e〉 after the Raman light is extinguished at various times during a pulse. The
solid line is a theoretical curve produced by the model from [45], in which the two-
level Hamiltonian is numerically integrated over the range of detunings and coupling
strengths present in a thermal cloud of 85Rb atoms, assuming that the light reaches
full intensity instantaneously and concurrently with the start of the phase modulation.

Excellent agreement is observed for a simulated temperature of 35 µK.

We find that optimised pulses demonstrate a considerable resilience to variations in the

trigger delay τoffset, and can be started as much as a quarter of a π-pulse duration after

the light is turned on with little change to the peak transfer.

The highest excited fraction for all pulses is achieved when the light is kept on for

slightly longer than the phase sequence, with τ > τmod by ∼ 200 ns. The AOM rise-time

is not factored into the optimisation process and this is the only effect of it that we

observe experimentally, with the temporal data being well fitted by a numerical model

that assumes the light reaches full intensity instantaneously at the start of the phase

sequence as shown in Figure 7.18.

The temporal scan shows good agreement between our model (outlined in Appendix B)

and experiment, which gives us reason to believe that we have a) correctly compensated

for the pulse errors in our atom cloud and b) that the atoms are ‘seeing’ the intended

and undistorted waveform.

7.5.2 Robustness

We now turn our attention to exploring the robustness of our pulses to variations in the

Raman detuning. In order to do this, we prepare all atoms in the lower ground hyperfine

state |g〉, apply our chosen inversion pulse, and measure the final fraction of atoms in
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Figure 7.19: Fraction of atoms transferred to the excited state as a function of the
laser detuning δL in (a) a 35 µK atom cloud and (b) a 150 µK cloud. Data are shown
for the GRAPE pulse from Figure 7.16 (diamonds), the WALTZ pulse (empty circles)
and a rectangular π-pulse (filled circles). The effective Rabi frequency was 270 kHz.
Solid lines show theory curves produced from the model used by Dunning et al. [45],
which assumes a Maxwell-Boltzmann atomic velocity distribution. The offset of the

peaks from δL = 0 is due to the light shift.

the excited state. This procedure is repeated while varying a fixed laser detuning δL

between the Raman beams and the atoms. We obtain these ‘spectral scans’ for two

different atomic cloud temperatures, one at ∼ 35 µK, and the other one at ∼ 150 µK.

We compare our GRAPE pulse with the WALTZ composite pulse and the familiar π

pulse.

In a sub-Doppler cooled cloud at 35 µK, GRAPE and WALTZ pulses achieve close

to 99.8(3)% and 96(2)% transfer respectively at the light-shifted resonance, while a

rectangular π-pulse achieves just 75(3)%. This is shown in Figure 7.19, where the
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broadband nature of the GRAPE pulse is evident: while the fidelity of the WALTZ

pulse drops below 90% when detuned 100 kHz from resonance, the GRAPE pulse can

be detuned by 380 kHz for the same fidelity. This broad spectral profile can also be a

signature of a good LMT augmentation pulse, which must work equally well for atoms

that have received a large number of recoil kicks [42].

In a cloud with a temperature much closer to the Doppler cooling limit ∼ 150 µK, for

which the peak transfer of a rectangular π-pulse is just 54(2)%, the broader spectral

width of the WALTZ and GRAPE pulses results in more efficient state-transfer on

resonance. This is also shown in Figure 7.19, where the GRAPE pulse achieves 89(4)%

transfer on resonance compared with 81(4)% for WALTZ.

7.6 Conclusions

Tolerance of pulse-length and off-resonance errors is essential for the pulse operations

in atom interferometers, where a range of velocities, beam intensities and Zeeman sub-

states may be encountered. We have used the optimal control technique of gradient

ascent pulse engineering (GRAPE) to obtain robust mirror pulses, tailored to accommo-

date the inhomogeneities found in cold-atom matter-wave interferometers, and find such

pulses to outperform all the other composite pulses and adiabatic rapid passage pulses

that we have tested. The improved fidelity should allow improvements in the sensitivity

of interferometric measurements by increasing the fringe contrast and permitting greater

use of augmentation pulses for large-momentum-transfer interferometers. The tolerance

of atom velocity variations will lower measurement noise by allowing the use of warmer

atom clouds, and hence higher atom numbers, without incurring the losses of further

cooling or filtering.

Our optimal control approach depends upon an appropriate choice of the measure of

performance. We have presented and analysed two different choices of mirror pulse fi-

delity: a point-to-point (PP) state-transfer fidelity (Equation 7.1) and a phase-preserving

universal-rotation (UR) fidelity (Equation 7.3). Pulses designed using the PP fidelity

maximise the transfer of atoms between the two states of the interferometer in the pres-

ence of large off-resonance and pulse-length errors, and should therefore improve the

sensitivity of large-momentum-transfer (LMT) interferometers. Alternatively, our UR

pulse designs are tailored to replace the central pulse in the three-pulse Mach-Zehnder

atom interferometer sequence used for inertial sensing applications. While many com-

posite and adiabatic pulses can lead to improvements in state-transfer efficiencies when

compared with the π pulse, their effect on the interferometer phase can be detrimental,

leading different atoms to exit the interferometer with different phases. Our optimised

UR pulses are designed specifically to maximise the interferometer contrast by reducing
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unwanted variation in the interferometer phase with detuning and coupling strength

errors.

We have also experimentally demonstrated a PP inversion pulse that achieves 99.8(3)%

transfer between the hyperfine ground states in a thermal cloud of 85Rb atoms, compared

with a conventional π pulse efficiency of 75(3)%. Our optimised inversion pulse is robust

to variations in laser intensity and detuning, maintaining a transfer efficiency of 90% at

detunings for which the π pulse fidelity is below 20%. Furthermore, we find excellent

agreement between the predicted state-evolution during the pulse and that observed

experimentally, thus confirming the validity of the optimisation approach and our model

of the specific inhomogeneities present. The best results of Raman LMT interferometers

to date have been achieved with adiabatic augmentation pulses [46, 48], but optimal

control pulses such as this have the potential to realise similarly robust transfer with

significant reductions in pulse duration [8].

The optimal control solutions depend on the parameters used in the optimisation, and

we have conducted a preliminary investigation into the nature of this dependence. We

have found that GRAPE-optimised mirror pulses do not always converge to the same

solution when the initial guess for the phase profile is varied. This implies the existence

of multiple peaks on the fidelity landscape and that, while many solutions differ only

slightly in terms of terminal fidelity, they may differ in other respects. For example,

some solutions may be more robust to off-resonance and pulse-length errors outside the

desired compensation range; and others may be robust to control noise and therefore

the best choice to implement experimentally.
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Chapter 8

Optimised interferometer

sequences

In this chapter we extend optimal control from the design of mirror pulses addressed in

the previous chapter to the optimisation of the beamsplitter operation and the entire

interferometer sequence. We present tailored pulse sequences that improve the contrast

and phase-sensitivity of atom interferometers subject to systematic inhomogeneities in

detuning and Rabi frequency. These pulse sequences are investigated through simula-

tions, and preliminary experimental data are presented which show a threefold improve-

ment in fringe visibility in a thermal cloud of 85Rb atoms with our optimised pulse se-

quence over that obtained using conventional π and π/2 pulses. We also investigate how

the symmetry of the pulses is related to their performance, proposing a symmetry-based

“flip-reverse” pulse design, and examine the susceptibility of optimised pulse sequences

to laser phase noise. Parts of this chapter have been published [1, 3], and the results

represent the first reported application of optimal control theory to design tailored Ra-

man pulse sequences for atom interferometry. The experimental data presented in this

chapter were taken in collaboration with Max Carey.

8.1 Beamsplitter pulses

Following application of the Mach-Zehnder three-pulse π/2 − π − π/2 sequence to an

atom initially in the state |g〉, the probability to exit the interferometer in the state |e〉
varies according to Equation 3.11,

Pe =
1

2
(A− B cos(Φ + ∆φ)), (8.1)
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where A is the fringe offset, B is the fringe visibility or contrast, and Φ is the interfer-

ometer phase which depends on the acceleration or rotation rate of the atom relative to

the fixed laser beams. ∆φ is a shift to the interferometer phase.

An optimal three-pulse interferometer sequence, represented by propagators Û1, Û2, Û3

should maximise the fringe contrast B, minimise any unwanted variation of/in the in-

ertial phase, ∆φ, and fix the offset A for all atoms with the range of detunings and

coupling strengths found in the atomic cloud. Ideally, sequences should be robust to

variations in these quantities that occur both spatially (i.e. across the atom sample)

and temporally (i.e. from pulse to pulse).

In Chapter 3 we showed that in order to obtain the optimum offset and interferometer

contrast the following condition on the beamsplitter pulses (pulses 1 and 3) must be

met:

| 〈e|Û1,3|g〉 |2 =
1

2
. (8.2)

This condition is equivalent to requiring that the first beamsplitter pulse produce an

equal superposition of the two states of the interferometer - effecting a 90◦ rotation of

the quantum state. Also, in addition to maximising the visibility of the interference

fringes, it is crucial that the contribution of each pulse to the interferometer phase shift

∆φ is fixed for all atoms in the ensemble:

∆φ = φ1 − 2φ2 + φ3 (8.3)

φ1 ≡ φ(〈e|Û1|g〉)− φ(〈g|Û1|g〉) = constant (8.4)

φ2 ≡ φ(〈e|Û2|g〉) = constant (8.5)

φ3 ≡ φ(〈g|Û3|g〉) + φ(〈e|Û3|g〉) = constant. (8.6)

φ1 is equivalent to the phase of the resultant superposition state, or ‘superposition

phase’, formed by application of the first beamsplitter to the initial state |g〉.

Our first interferometer pulse Û1 should take atoms from the initial state |g〉, to an

equal superposition with well-defined phase on the equator of the Bloch sphere, e.g.

|ψT 〉 = (|g〉+ |e〉)/
√

2. This means our fidelity measure, F1, may be written as

F1 = | 〈ψT | Û1 |g〉 |2, (8.7)

yielding a PP 90◦ state-transfer pulse. This choice of fidelity measure, if maximised,

results in a beamsplitter which satisfies the conditions | 〈e|Û1|g〉 |2 = 1/2 and φ1 =

φ(〈e|Û1|g〉) − φ(〈g|Û1|g〉) = 0. We note that it is not necessary for the first pulse to

perform a universal 90◦ rotation as all atoms start in the same state, namely |g〉. This

makes the optimisation less restrictive, as PP pulses are easier to find and shorter than

UR pulses [10].
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Our chosen PP beamsplitter fidelity measure treats population split and phase unifor-

mity in equal measure, but it is possible to modify the fidelity measure to prioritise,

for example, phase uniformity in the resulting superposition over producing an equal

population split. This approach was adopted by Skinner et al. [165] in the design of 90◦

rotation pulses for NMR applications.

To investigate how the pulse design varies with the desired compensation range of off-

resonance and pulse-length errors, we have optimised two PP beamsplitter pulses using

the fidelity measure given by Equation 8.7 to compensate different combinations and

magnitudes of control errors. The first pulse, which we denote beamsplitter 1 (BS 1)

was designed to compensate off-resonance errors arising from a cloud at 10 µK and

amplitude errors in the range ±5% Ωeff , while the second pulse, beamsplitter 2 (BS 2),

was designed to compensate off-resonance errors arising from a much colder cloud at

1 µK and a larger range of amplitude errors in the range ±60% Ωeff . The off-resonance

errors used in the optimisation corresponded to a uniform distribution spanning 6keffσv

rounded to the nearest 10 kHz, where σv is the width of the ‘true’ Maxwell-Boltzmann

velocity distribution for 85Rb at each temperature. The pulse durations were 12tπ each

with 400 time-slices, leading to terminal fidelities of 0.999 for BS 1 and 0.998 for BS

2. The nominal Rabi frequency Ωeff was 200 kHz. The L-BFGS GRAPE algorithm

was used to optimise each pulse. The algorithm was set to terminate if the number of

iterations passed 1000 or if the norm of the gradient fell below 10−6. The initial guess

for each pulse was a random series of laser phases and the algorithm converged to the

asymmetric waveforms shown in Figure 8.1.

Figures 8.1c and 8.1d show the simulated probability for an atom to be transferred to

the excited state by each pulse as a function of the Raman detuning in the case of

no amplitude error and Figures 8.1g and 8.1h show the probability as a function of

amplitude error for a resonant atom. The resulting superposition phase, φ1, defined

by Equation 8.4, is depicted as a function of detuning and amplitude offset in Fig-

ures 8.1e, 8.1f, 8.1i, and 8.1j. The same quantities are depicted for the rectangular π/2

beamsplitter pulse for comparison and the shaded blue regions correspond to the ranges

of off-resonance and pulse-length errors included in the optimisation ensemble.

We can see that the GRAPE optimised pulses satisfy the design goals by minimising

variation in the superposition phase and producing an equal population split over the

design ranges of detunings and pulse-length errors. We can also see from Figures 8.1e

and 8.1f that the superposition phase, φ1, following the rectangular π/2 exhibits an

(almost) linear dependence on the detuning. This is easy to understand when one

recalls that an off-resonance error corresponds to a tilt in the rotation axis in the Bloch

sphere picture. This linear dependence of the superposition phase is cancelled by the

final beamsplitter in the conventional π/2 − π − π/2 sequence, providing the coupling

strength does not vary between the pulses [109].
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Figure 8.1: Optimisation results for two PP 90◦ beamsplitter pulses: (a) a pulse
optimised for a 10 µK cloud with pulse-length errors in the range ±5% Ωeff (BS 1), and
(b) a pulse optimised for a 1 µK cloud with pulse-length errors in the range ±50% Ωeff

(BS 2). (c) and (d) show the state-transfer efficiency of BS 1 and BS 2, respectively, as
a function of the Raman detuning. (e) and (f) show the resulting superposition phase
φ1 for each pulse as a function of the Raman detuning. The state-transfer efficiency on
resonance as a function of amplitude error is shown in (g) and (h) and, finally, (i) and
(j) show the superposition phase φ1 for each pulse as a function of amplitude error on
resonance. Phases have been unwrapped and shifted by a constant amount to aid visual
clarity. The shaded regions correspond to the compensation range of off-resonance and

pulse-length errors.
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There exists a range of composite 90◦ rotation pulses designed to compensate various

degrees of off-resonance and pulse-length errors in NMR [63, 166, 167]. Like composite

180◦ pulses, 90◦ rotation pulses may be categorised into belonging to the class of point-

to-point (PP) or universal rotation (UR) transformations. A UR 90◦ pulse is designed

to effect a 90◦ rotation about a fixed axis for any initial spin state, and a PP 90◦ pulse is

designed to transform a specific initial state to a specific target e.g. rotate a Bloch vector

initially aligned along the z-axis to a specific point on the equator. However, 90◦ pulses

may also be designed to transform an initial Bloch vector aligned with the z-axis to a

range of states on the equator where the superposition phase has a certain dependence

on the detuning [63, 168]. The family of ICEBERG (Inherent Coherence Evolution

optimised Broadband Excitation Resulting in constant phase Gradients) pulses [169]

is an example of this class of pulse, designed in this case to produce a superposition

phase with a linear dependence on offset frequency. While strictly not a PP operation

in isolation, such pulses may be easier to optimise than PP or UR pulses and may be

combined with a delay period with the control fields extinguished to reproduce an overall

PP transformation.

Frequency swept ARP pulses can also be used as beamsplitters [49, 101], known as adi-

abatic half-passage or AHP (in contrast to the adiabatic full passage AFP for inversion

applications). By terminating an ARP inversion pulse mid frequency sweep, a resonant

atom will end up in an equal superposition state with well-defined phase. Unlike ARP in-

version pulses that impart an intensity dependent dynamic phase when applied to super-

position sates, the ARP beamsplitter leads to a superposition phase that is independent

of intensity and detuning in the adiabatic limit. However, ARP beamsplitters cannot

take atoms with different detunings to the equator: if an atomic ensemble contains

atoms with a spread in detunings, different atoms will under- and over-shoot the equa-

tor, thereby introducing a Doppler sensitivity to the pulse. ARP beamsplitters therefore

trade robustness against off-resonance errors for robustness against pulse-length errors.

Figure 8.2 shows fidelity contour plots for a range of beamsplitter pulses, including two

composite 90◦ pulses and the tanh/tan AHP pulse. The 90◦ composite pulses correspond

to those with the highest degree of compensation of off-resonance and pulse-length errors

taken from [150, 166]. Fidelity contours are also shown for the two GRAPE pulses (BS 1

and BS 2) taken from Figure 8.1. GRAPE-optimised beamsplitters clearly demonstrate

an increased robustness to both errors sources compared with the ARP and composite

alternatives.

8.1.1 “Flip-reverse” operation

It is clear that the final beamsplitter cannot be produced using the same fidelity choice

as the first because it must be applied to atoms that have different initial states (ideally
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(a) π/2 pulse.
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(b) Composite 90◦ [150], duration
12.5tπ.
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(c) Composite 90◦ [166], duration 14.1tπ.
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(d) tanh/tan AHP, duration 12tπ
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(e) GRAPE BS 1, duration 12tπ.
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(f) GRAPE BS 2, duration 12tπ.

Figure 8.2: State-transfer beamsplitter efficiency (Equation 8.7) of different pulses
as a function of off-resonance and pulse-length errors. The hatched regions represent
the regions of optimisation (included only for the GRAPE pulses) and the contours

correspond to fidelities of 0.8, 0.9, 0.95, and 0.99.
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at a range of points on the Bloch sphere equator). How then do we optimise the final

pulse in the Mach-Zehnder sequence?

The third pulse must accurately map the relative phase acquired between the two internal

states at the end of the second dwell-time, onto a difference in atomic population. This

pulse does not need to be a universal 90◦ rotation, as only the z-component of the final

Bloch vector matters when measuring the excited state population at the end of the

interferometer. The action of this pulse can be thought of as a phase sensitive π/2

rotation, and may be obtained by taking the pulse profile for the first pulse φ(t) with

duration τ , and reversing it in time about the temporal midpoint and inverting the pulse

profile to obtain −φ(τ − t). We refer to this as the “flip-reverse” operation.

Our pulses are represented by waveforms φ(t) in the combined Raman laser phase which

are piece-wise constant functions φ(t) = φ1, φ2, ..., φn. They can therefore be represented

by a series of propagators, Û i, or series of rotations Ri, where i = 1, 2, ..., n for a

pulse with n steps. The overall effect is a combined pulse propagator and effective

rotation, Ûpulse and Rpulse, which are functions of the detuning and Rabi frequency. If

the laser phase φi → −φi is inverted for an individual rotation element in the pulse, Ri,

then this is equivalent to inverting the y-component of that step’s rotation axis (this

follows from the fact that during a time-step, the quantum state rotates about the field

vector Ω = ΩR cos(φ)x̂+ ΩR sin(φ)ŷ+ δẑ). We denote this phase inversion operation by

Ri → RY
i .

Let
1
R represent the effective rotation of the first beamsplitter, and

3
R the rotation of

the last pulse. If φ3(t) = −φ1(τ − t), then it follows that

3
R =

1
R
Y

1

1
R
Y

2 ...
1
R
Y

n (8.8)

=R−1
y (π)Ry(π)(

1
R
Y
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y (π)

1
R
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Ry(π) (8.13)

=
1
R
Y

, (8.14)

where in lines 8.10 and 8.13 we have applied the geometric identity [113]

R−1 ≡ Ry(π)RY R−1
y (π). (8.15)
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Ry(π) represents a rotation by π about the y-axis. Therefore, the rotational axes for

pulses 1 and 3 are related by inverting the y component of the effective rotation axis.

Suppose pulse 1 performs an effective rotation about the axis n̂ = (nx, ny, nz) by an

angle θ. Its propagator may then be written as1

Û1 =

(
cos( θ2)− i sin( θ2)nz − sin( θ2)ny − i sin( θ2)nx

sin( θ2)ny − i sin( θ2)nx cos( θ2) + i sin( θ2)nz

)
. (8.16)

Applying the flip-reverse procedure gives us

Û3 =

(
cos( θ2)− i sin( θ2)nz + sin( θ2)ny − i sin( θ2)nx

− sin( θ2)ny − i sin( θ2)nx cos( θ2) + i sin( θ2)nz

)
. (8.17)

From this we can see that | 〈e|Û3|g〉 |2 = | 〈e|Û1|g〉 |2, φ(〈g|Û3|g〉) = φ(〈g|Û1|g〉), and

φ(〈e|Û3|g〉) = −φ(〈e|Û1|g〉)+π, meaning φ1 = −φ3 +π. Therefore, if pulse 1 is optimised

to be a 90◦ point-to-point pulse using the fidelity measure given by Equation 8.7, φ1 will

be constant and pulse 3 will fulfil the optimal conditions on ∆Φ, the contrast, and the

offset.

Optimising the three-pulse interferometer with these symmetry constraints (the final

pulse has the time-reversed and inverted profile of the first beamsplitter) minimises

the unwanted modification to the inertial phase term Φ and maximises the contrast of

resulting fringes. Furthermore, the optimisation procedure is simplified because instead

of searching for 3 pulses, only 2 are required to form a complete Mach-Zehnder sequence.

Using the flip-reverse construction introduces a cancellation in the contributions of the

first and final beamsplitter pulses to the interferometer phase: any variation in the

superposition phase introduced by the first pulse can be cancelled by the final one.

This means that the beamsplitter does not strictly need to be a PP pulse, but could

instead simply be designed to bring atoms down to the Bloch sphere equator with some

phase spread. However, in reality, the cancellation between the phase terms relies on

the Rabi frequency and detuning for a given atom remaining constant throughout the

sequence, which may not be the case especially in situations where the atom cloud

expands over significant variations in optical intensity. We therefore build in robustness

to this imperfect cancellation by optimising PP pulses and thereby minimising variation

in φ1 and φ2.

Figure 8.3 depicts the simulated interferometer phase following sequences formed of

GRAPE beamsplitters (BS 1 and BS 2) combined using the flip-reverse procedure with

π mirror pulses. Figure 8.3a shows the case where the Rabi frequency for a given atom

is the same for the first and final pulses, i.e. Ω1 = Ω3. In this situation the cancellation

1This follows from the fact that the propagator for a rotation by angle α about an arbitrary axis
described by the unit vector n̂, is given by exp(−iαn̂ · σ̂/2), where σ̂ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli
spin matrices.
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of phases φ1 and φ2 is perfect. If the flip-reverse transformation is not applied and the

final beamsplitter is simply the same as the first pulse, then the result is a large and

unwanted variation in the interferometer phase as a function of the Raman detuning.

This variation with detuning will wash out the fringes in a cloud of atoms with non-zero

temperature, and different atoms will exit the interferometer with different phases.

Figure 8.3b and Figure 8.3c illustrate what happens when the Rabi frequency for the

final pulse Ω3 is decreased relative to the Rabi frequency for the first pulse Ω1. In this

situation the cancellation of beamsplitter phases is imperfect, and ripples reappear in

the phase response. Although the magnitude of unwanted phase variation increases as

the discrepancy in Rabi frequencies between the pulses is increased, the beamsplitter

pulse optimised to withstand large variations in amplitude for a cold atom cloud, BS 2,

exhibits a far more uniform phase response near resonance than BS 1.

Figure 8.4 shows how the simulated interferometer contrast B following different pulse

sequences varies with the detuning of an atom throughout the sequence and when the

coupling strength varies from pulse to pulse. The conventional π mirror pulse, with

its increased Doppler sensitivity compared with the π/2 pulse, is the primary source of

contrast loss due to off-resonance errors within the π/2−π−π/2 sequence. This explains

why - as demonstrated in the previous chapter - significant increases in interferometer

contrast may be obtained by optimising the mirror operation alone. As a result, the

effect of the beamsplitters on the contrast was isolated in the simulation by replacing

the central π pulse by a ‘perfect’ π pulse that effects the same rotation regardless of

detuning. The ARP beamsplitter sequence shows an increased sensitivity to detuning

with a narrow corridor of high contrast extending over a large range of pulse-length

errors. The two GRAPE sequences display a large increase in the robustness of the

interferometer contrast, with the BS 2 sequence capable of maintaining contrast above

99% even when the Rabi frequency during the final pulse is 0.4× that of the first.

8.2 Antisymmetric mirror pulses

In this section we revisit the mirror pulse and use symmetry arguments to show that

mirror pulses with antisymmetric phase profiles automatically fulfil the condition that

the interferometer phase should be unaffected by detuning and/or variations in coupling

strength. This property is useful because even the highest-fidelity UR pulses found

using the mirror pulse fidelity measure Freal from Chapter 7 lead to small ripples in the

contribution of the pulse to the interferometer phase. These ripples could lead to a bias

in the interferometer phase when the signal is averaged over a distribution of atoms, and

introduce a sensitivity to any asymmetry in the velocity distribution.

The symmetry of a pulse determines how the effective rotation axis behaves as a func-

tion of the offset from resonance and variation in the field strength [10]. Consider an
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Figure 8.3: The effect of a variation in Rabi frequency between pulses on the inter-
ferometer phase ∆φ following different interferometer sequences. The interferometer
phase is simulated as a function of a constant detuning. (a) shows the interferometer
phase following the standard π/2 − π − π/2 sequence and the phase following two se-
quences formed of the GRAPE beamsplitters from Figure 8.1 combined in flip-reverse
configurations with conventional π mirror pulses. The red dotted line shows the inter-
ferometer phase that results from a sequence where the flip-reverse transformation is
not applied and the final beamsplitter is identical to the first one. (b) and (c) show the
interferometer phase in the situation where the Rabi frequency during the final pulse
Ω3 is 0.75× and 0.5× the Rabi frequency during the first pulse Ω1, respectively. To aid

visibility, the curves have been separated by a constant phase shift.

antisymmetric pulse profile φ(t), where φ(t) = −φ(τ − t). Recalling our definition of the

phase inversion operation for a particular rotation segment, the total effective rotation



8.2. Antisymmetric mirror pulses 127

0.0 0.5 1.0 1.5

Amplitude variation Ω3/Ω1

−2

−1

0

1

2

D
et

u
n

in
g
δ/

Ω
e
ff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

rf
er

o
m

et
er

co
n
tr

a
st
B

(a) π/2− π − π/2

0.0 0.5 1.0 1.5

Amplitude variation Ω3/Ω1

−2

−1

0

1

2

D
et

u
n

in
g
δ/

Ω
e
ff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

rf
er

o
m

et
er

co
n
tr

a
st
B

(b) tanh/tan-π-tanh/tan.

0.0 0.5 1.0 1.5

Amplitude variation Ω3/Ω1

−2

−1

0

1

2

D
et

u
n

in
g
δ/

Ω
e
ff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

rf
er

o
m

et
er

co
n
tr

a
st
B

(c) BS 1-π-flip reverse(BS 1).
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(d) BS 2-π-flip reverse(BS 2)

Figure 8.4: Simulated contrast B following different interferometer sequences as a
function of constant Raman detuning throughout the sequence (y-axis) and Rabi fre-
quency mismatch between pulse 3 and 1 (x-axis). The mirror in each case is a ‘perfect’
π pulse which is completely Doppler-insensitive and therefore the contribution to the
contrast is purely due to the effect of the beamsplitter pulses. Both the GRAPE-
optimised beamsplitters and the ARP beamsplitter have the same duration of 12tπ.
The contours correspond to contrast values of 0.8, 0.9, 0.95, and 0.99. The region of

error compensation is shown by the hatched box for each GRAPE pulse.

represented by this pulse is [10]

Rpulse =Rn...R2R1 (8.18)

=RY
1 RY

2 ...R
Y
n (8.19)

=RY
pulse. (8.20)

This result implies that the y-component of the pulse’s effective rotation axis must be 0.

This leads to the well-known result in NMR that any pulse with symmetric amplitude

profile and an antisymmetric phase profile must have an effective rotation axis confined

to the xz plane [10, 93, 113].
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Given that the effective rotation axis of a pulse with this symmetry is confined to the

xz plane of the Bloch sphere, we can show that an antisymmetric mirror pulse used in

a three-pulse interferometer will ensure the inertial phase is not detrimentally modified

for different atoms.

Consider again the form of a general pulse propagator for the spin 1/2 system, repre-

senting a rotation by angle θ about an axis n̂ = (nx, ny, nz),

Ûpulse = exp

(
− iθn̂ · σ̂

2

)
. (8.21)

The effective angle and axis depend on both the detuning δ and Rabi frequency ΩR

during the pulse.

If the pulse profile for this pulse is antisymmetric, then n̂ = (nx, 0, nz), which implies

Ûpulse =

(
cos( θ2)− i sin( θ2)nz −i sin( θ2)nx

−i sin( θ2)nx cos( θ2) + i sin( θ2)nz

)
. (8.22)

Finally, we see that φ(〈e|Û2|g〉) = constant, and therefore for a mirror pulse with this

symmetry ∆φ has no contribution from the mirror pulse for any detuning or Rabi

frequency error that remains constant during the pulse. Mirror pulses with antisymmetry

automatically fulfil the condition that the interferometer phase should be unaffected by

detuning and/or variations in coupling strength. Antisymmetric UR 180◦ pulses may

be constructed by first optimising a single PP 90◦ pulse and following the steps outlined

by Luy et al. [170] 2.

To illustrate this useful property of antisymmetric mirror pulses and compare them with

those designed following the procedure outlined in Chapter 7, we have optimised two

distinct UR mirror pulses: one using Freal (unconstrained UR), and the other using the

construction procedure outlined by Luy et al. [170] which results in an antisymmetric UR

180◦ pulse (antisymmetric UR). The temperature was 20 µK and the pulse-length error

compensation range was ±10% Ωeff , where the effective Rabi frequency was 200 kHz.

The phase profiles obtained using GRAPE for each pulse type are shown in Figure 8.5.

Figure 8.5 also shows the simulated transfer efficiency of each pulse as a function of

detuning and pulse-length errors, and the variation in the contribution of each pulse

to the interferometer phase. While it is clear that both pulses optimise the transfer

efficiency over the design range, and that the Freal pulse has minimised variation in the

phase, the antisymmetric pulse results in no phase variation by symmetry.

2Alternatively, we could impose antisymmetry as a constraint and optimise the state-transfer mirror
pulse fidelity measure given by Equation 7.1.
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Figure 8.5: Phase profiles (a) and (b) for UR mirror pulses designed without and
with antisymmetric symmetry constraints for a cloud of 85Rb at 20 µK and a range
of pulse-length errors of ± 10% Ωeff . (c) and (d) depict the transfer efficiency of each
pulse as functions of detuning and pulse-length errors respectively. (e) and (f) show
the simulated contribution of each mirror pulse to the interferometer phase, ∆φ, as
functions of detuning and pulse-length errors respectively. There is no phase variation
caused by the antisymmetric pulse. The optimisation ranges for off-resonance errors

and pulse-length errors are shown by the shaded blue regions.

8.3 Interferometric phase noise

We have so far focused our attention on the design of pulse sequences that mitigate errors

in the control field such as detuning and amplitude offsets that do not vary on the time-

scale of individual pulses or interferometer sequences. This is often a good assumption

if the atoms do not move much during individual pulses or interferometer sequences and

therefore see an approximately constant laser intensity and phase. In this section we

investigate the effect of time-dependent noise in the control parameters themselves, and

explore the effect of phase noise in the Raman beams on the interferometer sensitivity

when employing GRAPE-optimised pulses.
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The sensitivity of a conventional atom interferometer is degraded in the presence of

laser phase noise in the Raman beams. Fluctuations in the laser phase throughout the

interferometer manifest in fluctuations in the phase of resulting fringes, thus limiting

the sensitivity of the interferometer [94]. Cheinet et al. [94] demonstrated that the

π/2−π−π/2 interferometer sequence of rectangular pulses acts like a low-pass filter for

phase noise, suppressing the influence of noise on the interferometer phase at frequencies

above the Rabi frequency.

Replacing the conventional π and π/2 pulses with alternatives in which the amplitude

and/or phase vary in time changes the response of the interferometer to phase noise at

high frequencies. For example, Fang et al. [96] studied the effect of shaped pulses on

the phase sensitivity of a Mach-Zehnder atom interferometer. They found that using

pulses with smooth amplitude profiles led to a rejection of high-frequency phase noise

by the interferometer. Among the pulse shapes tested, the Gaussian pulse [118], where

the temporal amplitude of the pulses is modulated according to a truncated Gaussian

function, demonstrated the best noise rejection at high frequencies. This behaviour

was attributed to the gradual rise and fall in the pulse amplitude when compared with

rectangular pulses. Although the Gaussian pulses yielded the best noise rejection, their

robustness to amplitude and detuning offsets is similar to the standard rectangular

pulses [96, 118]. We are therefore interested in how robust phase-modulated sequences

obtained through optimal control perform in the presence of phase noise. Phase noise will

manifest as a distortion of the pulse waveforms, lowering the individual pulse fidelities,

and therefore it is important to investigate the sensitivity or otherwise of GRAPE-

optimised pulses to this effect.

Our aim is to calculate the variance of the interferometer phase σ2
Φ following a spe-

cific pulse sequence in the presence of phase noise at different frequencies. To do this

we draw a sample of noise realisations at a given frequency ω, simulate the temporal

evolution of the quantum state throughout the Mach-Zehnder interferometer for each

noise realisation in the sample and, finally, compute the mean-squared variation in the

interferometer phase compared with its noise-free value. Variations in the interferometer

phase can be determined by evaluating variations in the final transition probability at

the midpoint of a fringe [94, 171].

We model Raman phase noise at fixed frequency ω by the sinusoidal modulation φnoise(t) =

A sin(ωt+B) [94, 171, 172]. Furthermore, we assume that the amplitude of this noise A

is constant, but that the offset phase B is uniformly distributed in the interval [−π, π].

To accurately model the effect of high-frequency noise during interferometer pulses, the

pulse propagators used to evolve the atomic state must be subdivided e.g. using Python’s

numpy.repeat function [173] into a large number of time-steps, making the calculation
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Figure 8.6: Interferometer sensitivity to phase noise with amplitude A = π/10 for a
range of noise frequencies computed for an interferometer composed of rectangular π/2
and π pulses (solid red curve) and Gaussian pulses (dashed purple curve). (a) shows
the amplitude profiles of all pulses in the interferometer (pulse separations are not to
scale). (b) shows the phase response to noise. The dwell-time of the interferometer was
250 µs and the effective Rabi frequency was 200 kHz. The noise sample size was 500.

highly resource intensive3. Since we are only interested in the effect of phase noise on

the interferometer, we consider only resonant interactions (δ = 0).

The results for the π/2 − π − π/2 sequence and for a sequence composed entirely of

Gaussian pulses are shown in Figure 8.6. Our approach reproduces the analytical results

obtained in [94] for rectangular pulses and the high-frequency suppression obtained

with Gaussian pulses is also evident. Our Gaussian pulses are truncated such that

the total length of each pulse is 12 standard deviations of the width. Smoothing the

mirror pulse alone results in little improvement to the response compared with the

π/2−π−π/2 sequence and smoothing the beamsplitters is required to achieve maximum

suppression [96]. The low frequency behaviour remains identical for rectangular and

Gaussian pulses and is due to the overall three-pulse structure of the Mach-Zehnder

sequence. Gaussian pulses were simulated using piece-wise constant approximations to

the ideal pulse shapes with 500 time-slices per pulse. As expected, the coarseness of these

3To model the effect of phase noise up to a frequency of 102Ωeff , we ensure each pulse waveform is
subdivided such that the duration of each time-step is < 1/(103Ωeff).
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waveforms affects the results: if the number of time-steps used to realise the Gaussian

pulse is small, then peaks in the response appear at high-frequencies. Similarly, if the

truncation of the Gaussian is changed such that the length is reduced to 6 standard

deviations instead of 12, for example, the response becomes similar to that for the

rectangular sequence at frequencies greater than 10 Ωeff . This suggests that to see the

full benefit of using Gaussian pulses, the individual waveforms must be truncated such

that the pulse lengths are as large as possible.

8.3.1 Phase noise and GRAPE sequences

We now examine the effect of phase noise on optimised phase-modulated GRAPE se-

quences. We also wish to compare the performance of constant-amplitude GRAPE

pulses with those in which the amplitude profile has been smoothed. There are several

approaches we could take to obtain pulses with smooth amplitude profiles. One option

is to optimise only the phase of our pulses within a user-defined smooth amplitude en-

velope. Another is to optimise both the pulse phase and amplitude simultaneously but

impose penalties which enforce waveform smoothness, limit the maximum amplitude

during the pulse, and fix the initial and final points in the waveforms to be 0. We adopt

the first strategy because it makes the optimisation procedure simpler and allows us to

investigate the effect of pulses with a well-defined and reproducible amplitude profile.

We evaluate the effect of a smooth “Gaussian-flat” envelope, defined by the convolu-

tion of a Gaussian and rectangular profile. The resulting pulse has an approximately

rectangular profile but with a gradual rise and fall.

Figure 8.7 shows the simulated interferometer response, σ2
Φ, to phase noise for two

different GRAPE flip-reverse sequences: a constant rectangular amplitude pulse and

a pulse with a smooth amplitude profile. The duration of each pulse was 12tπ and

the number of time-steps in each pulse was 1000. The pulses in each sequence were

optimised using fidelities from Equations 8.7 and 7.3 for the beamsplitter and mirror

pulses respectively. Each pulse was optimised for pulse-length errors of ±10%Ωeff , where

Ωeff = 200 kHz, and off-resonance errors of δ = ±0.5Ωeff (approximately corresponding

to the 4σ width of a 4 µK sample of 85Rb).

The behaviour of both the constant-amplitude and Gaussian-flat amplitude sequences

is similar to that of the rectangular sequence - demonstrating that while GRAPE

pulses are not necessarily more susceptible to phase noise than conventional rectan-

gular pulses, smoothing the amplitude profile alone is no guarantee of noise suppression.

We therefore repeated the optimisation and imposed a smoothing penalty on the phase

profiles proportional to the squared difference between adjacent phase values. When

the derivative-norm-square (DNS) smoothing penalty is applied in combination with a

smooth Gaussian-flat amplitude profile, the resulting GRAPE sequence demonstrates a
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Figure 8.7: Interferometer sensitivity to phase noise with amplitude A = π/10 for
a range of noise frequencies computed for interferometers composed of flip-reverse
GRAPE sequences. The dot-dashed blue curves represent a sequence where the ampli-
tude remains constant, and the solid orange curve represents a phase-modulated pulse
sequence optimised using the Gaussian-flat amplitude profile. There was no smoothing
penalty applied to the phase profiles. The dwell-time of the interferometer was 250 µs

and the effective Rabi frequency was 200 kHz. The noise sample size was 500.
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suppression of phase noise at frequencies above the Rabi frequency, though not to the

same extent as the Gaussian pulses. This is depicted in Figure 8.8.

We observe a peak in the response near a noise frequency of 80 Ωeff , which we believe is

due to the number of time-slices in the GRAPE pulses. For example, if we replace each

of the 1000-step pulse waveforms with a smooth 10,000-step spline interpolation, this

peak in the response vanishes. Conversely, if we repeat the optimisation with pulses of

the same duration but only 200 time-steps, we observe multiple peaks in the response

at frequencies beyond 10 Ωeff , suggesting that the number of time-steps used to build

the pulses plays a significant role in the suppression of high-frequency phase noise.

These results represent a preliminary investigation into the potential of phase noise

suppression with optimised pulses. In conclusion, constant-amplitude phase-modulated

GRAPE pulses do not necessarily result in a worse phase noise susceptibility when

compared with the conventional rectangular sequence, and smoothing the amplitude

and phase profiles can suppress phase noise at frequencies above the Rabi frequency

which may be useful if the experimental noise spectrum includes high-frequency phase

noise. Future work will focus on building noise robustness into the optimisation directly

by modifying the fidelities to suppress noise given knowledge of the experimental noise

spectrum.

8.4 Preliminary experimental results

Using fidelity measures for optimal beamsplitter and mirror pulses (Equations 8.7 and 7.3,

respectively) we optimised all three pulses of the Mach-Zehnder interferometer sequence

for an atomic sample with a temperature of 120 µK and a coupling strength variation

of ±10% Ωeff . The resulting pulse profiles are shown in Figure 8.9. The phase sequence

of the final pulse was taken to be the inverted and time-reversed profile of the first

according to the flip-reverse design procedure outlined in Section 8.1.1. We expect our

optimal Mach-Zehnder sequence of pulses to be capable of maintaining a higher contrast

than conventional rectangular pulses despite significant variations in detuning and Rabi

frequency in the atomic cloud.

We have started to test these three-pulse interferometer sequences in our experimental

apparatus, comparing the performance with that obtained using a sequence of conven-

tional rectangular π/2 and π pulses. Interferometer fringes are obtained by scanning

the phase offset φbs applied to the final pulse in the sequence (shown in Figure 8.10).

The dwell-time between pulses is limited, at present, to 100 µs by suspected phase noise

between the counter-propagating beams that also limits the overall contrast. The ini-

tial results are promising, and the relative improvement in contrast provided by the

GRAPE-optimised sequence as the cloud temperature is varied is shown in Figure 8.11.

GRAPE improved the contrast of the fringes at all temperatures investigated and, in a
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Figure 8.8: Interferometer sensitivity to phase noise for different noise frequencies
computed for interferometers composed of GRAPE sequences with the DNS smooth-
ing constraint applied to the phase profiles. The dot-dashed blue curves represent a
sequence where the amplitude remains constant, and the solid orange curve represents
a phase-modulated pulse sequence optimised using the Gaussian-flat amplitude profile.
The interferometer dwell-time was 250 µs and the effective Rabi frequency was 200 kHz.

The noise sample size was 500 and the noise amplitude was A = π/10.
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Figure 8.9: Optimisation results for a PP 90◦ beamsplitter pulse (a), and an anti-
symmetric UR 180◦ mirror pulse (b). The pulse profiles are plotted against time as a
fraction of the duration of a rectangular π pulse, tπ. Each optimisation was continued
until fidelities greater than 0.99 were reached. Each pulse was optimised for an ensem-
ble of atoms with a temperature of 120 µK and a range of coupling strengths of ± 10%

Ωeff . Ωeff , or the effective Rabi frequency, was 420 kHz.

hot 94(4) µK sample where the contrast loss is dominated by atomic temperature and

not the laser phase noise, nearly a threefold enhancement is observed, the fringes for

which are shown in Figure 8.12. This enhancement is also apparent in the uncertainties

in the phases of the fitted sinusoids. At 94(4) µK the average uncertainty in the fitted

phase due to the GRAPE sequence was a factor of 2.9 smaller than the uncertainty in

the fitted phase from the rectangular pulse sequence.

Applying the flip-reverse operation to obtain the final beamsplitter is necessary to ob-

serve an increase in contrast with GRAPE. For example, at a temperature of ∼25 µK,

the contrast following the full antisymmetric flip-reverse sequence depicted in Figure 8.10

was higher by a factor of 2 than the contrast following a sequence which was in all respects

identical but where the flip-reversal procedure was not applied to the final beamsplitter.

In this case, the sequence will lead to a large variation of the interferometer phase with

detuning thereby causing atoms with different velocities to exit the interferometer with

different phases and the interference to wash out when the signal is averaged over the

ensemble.

Some experimental evidence suggests that GRAPE sequences are less susceptible to

drifts in offset and phase of the interferometer fringes. The variation of the fringe offsets

and phases from their respective means for a range of temperatures for GRAPE and

rectangular interferometers is shown in Figures 8.13b and 8.13c, and we hope to explore

this aspect more systematically in future work. In particular, there appears to be a

systematic shift in the interferometer phase as the temperature is increased which could
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Figure 8.10: Illustration, not to scale, of an optimised interferometer sequence. Three
pulses, as depicted in figure 8.9, are combined, with a time τdwell between the light of
one pulse turning off and the subsequent pulse turning on. Fringes are generated by
measuring the fraction of atoms in the excited state at the end of the sequence as a
function of a phase offset φbs applied to the phase sequence for the final beamsplitter

pulse.

be caused by an offset of the laser detuning from the centre of the atomic momentum

distribution [109]. It is notable that the GRAPE interferometer appears less susceptible

to this shift.

Another route of inquiry will be to explain why the increase in contrast is quite so

large only when employing a fully optimised pulse sequence. While the mirror pulse,

with its increased Doppler sensitivity, should be the dominant source of contrast loss in

a Mach-Zehnder interferometer [1], only a slight enhancement was observed when just

this pulse was replaced. To see significant improvement from a fully optimised sequence,

maintaining the overall anti-symmetry in a flip-reversed configuration proved necessary.

When this constraint was met, the contrast improvement far exceeded that of replacing

just the mirror, or indeed the beamsplitters, in isolation.

8.5 Conclusions

We have introduced and experimentally demonstrated a design for optimal pulses that

improves the contrast of the three-pulse Mach-Zehnder sequence. We expect such opti-

mal pulse sequences to have applications in improving the sensitivity and robustness of

atom interferometric sensors operating in non-ideal environments, relaxing the require-

ment for low atomic temperatures and potentially reducing their susceptibility to drifts

in the signal phase and offset.
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Figure 8.11: Ratio of contrasts obtained by fitting sinusoidal functions to fringes
obtained from optimised flip-reversed GRAPE and rectangular interferometer sequences
for a range of cloud temperatures. GRAPE consistently improves the interferometer
contrast with a significant 2.8(6) times improvement at the highest cloud temperature
of 94(4) µK where temperature and not laser phase noise is the dominant source of

contrast loss.
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Figure 8.12: Interferometer fringes obtained at 94(4) µK for rectangular pulses
(empty circles) and the optimised GRAPE sequence (filled circles). The GRAPE se-
quence improved the contrast of the fringes by a factor of 2.8(6). The average or,
‘effective’ Rabi frequency was approximately 420 kHz, and was determined empirically
from the optimal duration of a rectangular π pulse. We attribute the slight deviation
of the fringes from a sinusoidal form to a small non-linearity in the response of the I&Q

modulator.
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Figure 8.13: Variation in fitting parameters for sinusoidal functions fitted to fringes
obtained from GRAPE optimised (filled circles) and rectangular (empty circles) inter-
ferometer sequences at a range of cloud temperatures. (a) shows the fringe contrast
B, while (b) and (c) show the shifts in the fringe offset 2A and phase from their re-
spective mean values. The GRAPE interferometer has consistently higher contrast
than the rectangular counterpart, and exhibits less variation in both fringe offset and
phase. Temperature error bars are omitted for clarity, but are the same as in Fig-
ure 8.11. The vertical error bars represent the fitting uncertainty of the sinusoidal
curves to each experimental run; for the contrast and fringe offset measurements these
have magnitudes ∼ ±0.005, while the phase becomes more uncertain with reduced
contrast. Consequently, at 25 µK and 94 µK the phase variation errors for GRAPE
pulses are ∼ ±0.04 rad and ∼ ±0.1 rad respectively, while those for rectangular pulses
are ∼ ±0.07 rad and ∼ ±0.3 rad. Data points for several experimental runs at each
temperature are shown, and their vertical spread gives an indication of the variation of

each parameter over longer time-scales measured in tens of minutes.

Specifically, we have detailed a strategy for optimising three-pulse Mach-Zehnder type

interferometer sequences in which optimised beamsplitter and mirror pulses are com-

bined in a “flip-reversed” configuration to maximise the contrast of interferometer fringes

where the phase of atomic superpositions is important. We have discussed how a careful

choice of pulse fidelities that preserve the interferometer phase across an ensemble is

necessary to prevent the interference washing out when measuring the ensemble-average

signal. Also, we have highlighted how restricting the symmetry of the mirror pulse leads

to a tolerance of inhomogeneities in detuning and Rabi frequency.
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We have shown up to a threefold contrast improvement in a proof-of-principle interfer-

ometer with hot 94(4) µK atoms, although our current investigations have been lim-

ited by experimental phase noise. Although the interferometer dwell-time is limited to

100 µs at present, our technique can mitigate errors in coupling strength and detun-

ing that are often present in more sensitive interferometers, for example those which

increase the scale-factor by increasing the momentum splitting of the diffracting wave-

packets [42, 46].

Future work will extend our experimental study of optimised interferometer sequences

to test their efficacy and robustness when experimental noise is no longer such a limiting

constraint.
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Chapter 9

Bi-selective pulses for large-area

atom interferometry

Most atom interferometers for inertial sensing use Bragg [89] or Raman [36, 92] transi-

tions driven by counter-propagating laser pulses as the beamsplitters and mirrors that

split and direct the atomic wave-packets. The two-photon recoil accompanying these

stimulated scattering processes imparts a momentum difference of 2 ~k between the two

interferometer paths, where k is the single-photon wave number. As with an optical in-

terferometer, the measurement sensitivity depends upon the spatial area enclosed. This

is proportional to the momentum separation, and can hence be increased by using addi-

tional mirror pulses - known as augmentation pulses - to impart further impulses to the

atomic wave-packets forming a large-momentum-transfer (LMT) interferometer [40].

In practice, inhomogeneities such as variations in beam intensity and atomic velocity

reduce the fidelity of the augmentation pulses. The accrued effect of such imperfections

limits the fringe visibility and can reverse the LMT sensitivity gains [40, 42, 46]. Cool-

ing the atoms or filtering their velocity distribution can improve the initial fidelity at

the expense of a weaker signal, but a velocity spread is inevitable in LMT interferom-

etry because of the increasing momentum separation introduced between the primary

interfering arms. Techniques such as increasing the Rabi frequency [174] and employing

beam shaping optics [110] increase the experimental complexity and power requirements

of the interferometer.

High-order Bragg diffraction pulses [89, 175, 176] and Bloch oscillations within opti-

cal lattices [91, 177, 178] can impart multi-photon recoils with a single pulse, and have

allowed interferometry with wave-packets separated by as much as 408 ~k [179, 180].

However, both techniques require sub-recoil cooling or velocity selection [90, 181], limit-

ing the signal-to-noise ratio (SNR). Furthermore, Bloch oscillations require long pulses

that can constitute a considerable fraction of the total interferometer duration and are

therefore sensitive to laser intensity and wavefront inhomogeneities [179].
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An alternative approach is to seek robust Raman augmentation pulses that retain high

fringe visibility for large momentum separations while enabling the use of large thermal

atomic samples and electronic state read-out adopted by many inertial sensor proto-

types [39, 182]. Composite [45, 111] and adiabatic rapid passage (ARP) [49] Raman

pulses have been used to achieve momentum splittings of 18 ~k [42] and 30 ~k [46]

respectively. Both these techniques can increase the velocity acceptance of the aug-

mentation pulses at the expense of an increase in pulse duration, but in practice fringe

visibility was lost after 4-7 augmentation pulses.

In this chapter, we apply optimal control to the specific case of LMT interferometry. We

present designs for the augmentation pulses of LMT atom interferometers that maintain

their fidelity as the wave-packet momentum difference is increased. We do so by tai-

loring these “bi-selective” pulses using optimal control to the evolving bi-modal atomic

momentum distribution, which should allow greater interferometer areas and hence in-

creased inertial measurement sensitivity, without requiring elevated Rabi frequencies or

extended frequency chirps. This technique is a departure from previous approaches in

which the same robust pulse has been used for every augmentation pulse in the inter-

ferometer sequence [40, 42, 46], ultimately limiting the achievable momentum splitting

to the velocity acceptance of the individual pulse.

Using a previously validated model [46], we have simulated the application of our pulse

designs to large-momentum-transfer atom interferometry using stimulated Raman tran-

sitions in a laser-cooled atomic sample of 85Rb and compared their performance with

the best composite and ARP schemes. After the wave-packets have separated by 42

photon recoil momenta at 1 µK, our pulses maintain a fringe contrast of 90% whereas,

for adiabatic rapid passage and conventional π pulses, the contrast is less than 10%. Fur-

thermore, we show how bi-selective pulses can tolerate variations in Rabi frequency that

occur throughout an interferometer and how the technique may be adapted to suppress

the detrimental off-resonant excitation that limits other broadband pulse schemes. The

bi-selective technique has broad applicability because many interferometer arrangements

are already set up to implement similar modulation sequences and, as the algorithm op-

timises tolerance of variations, the designs do not depend critically upon experimental

parameters.

The material in this chapter is adapted from [4].

9.1 LMT using robust pulses

Figure 9.1 shows the space-time diagram of a typical Raman LMT interferometer. While

the standard π/2 − π − π/2 interferometer sequence produces a momentum splitting

between the interferometer arms of ~keff , where keff = 2k is the effective wavevector

of the atom-optics, a greater momentum splitting can be achieved by augmenting the
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Figure 9.1: Positions of atomic trajectories (left) as a function of time within a LMT
interferometer sequence showing the case where the beamsplitter and mirror operations
are extended by a sequence of 4 augmentation pulses (18 ~k trajectory). The initial
momentum distribution (right), represented by the red shaded region, is separated
into two arms. The momentum distribution seen by each pulse throughout the LMT
sequence for 85Rb atoms with a Maxwell-Boltzmann temperature of ∼ 1 µK is shown
by the blue shaded regions on the right. As more pulses are added to increase the
interferometer area, the separation in the resonance conditions for the arms begins to
exceed the velocity acceptance of a π-pulse, shown bottom right for a Rabi frequency

of 200 kHz.

mirror and beamsplitter pulses with additional pulses with alternating wavevectors [40].

These augmentation pulses are designed to transfer atomic population between two

internal states (|g〉, |e〉) and increase the momentum splitting between the wave-packets

in the interferometer. By extending the beamsplitter operation by N augmentation

pulses, and the mirror operation by 2N augmentation pulses, the momentum splitting

may be increased to (2N + 1)~keff , thereby increasing the intrinsic phase sensitivity of

the interferometer.

The increased momentum splitting between the interferometer arms introduces differ-

ential Doppler shifts between them, quantised in multiples of the two-photon recoil shift

δrecoil = ~k2
eff/2m, that depend on the atomic mass m. Indeed, this is automatic, since

the Doppler shift and inertial sensitivity have the same origin. For the nth augmen-

tation pulse (n = 1, 2, 3, ...,N), the arms of the interferometer have Raman resonance

conditions separated by 4nδrecoil [42, 44, 50] (for Raman transitions on the 85Rb D2 line,

δrecoil ≈ 2π × 15.4 kHz). The distribution of detunings for the nth augmentation pulse

may thus be visualised as two Gaussian distributions, corresponding to the Maxwell-

Boltzmann temperature of the atomic source, separated in frequency space by 4nδrecoil.
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As illustrated in Figure 9.1, the augmentation pulses are only efficient as long as this

split distribution fits within the velocity acceptance of the pulses. For conventional π-

pulses this can span just a few recoil momenta1, fundamentally limiting the momentum

transfer achievable before fringe visibility is lost [40, 42].

Atom-optics that are robust to off-resonance errors and hence possess large velocity ac-

ceptance are therefore of particular interest in LMT applications. ARP and composite

pulses can achieve efficient state transfer in the presence of large detuning offsets, mak-

ing them potentially attractive choices for LMT augmentation pulses. Butts et al. [42]

employed the WALTZ composite pulse [43] to improve the contrast within a LMT inter-

ferometer using a 0.5 µK sample of 133Cs atoms obtained using laser-cooling and velocity

selection. WALTZ enabled a momentum splitting of 18 ~k, increasing the intrinsic sen-

sitivity over that obtained using simple π pulses. However, visibility was lost after 4

augmentation pulses and when WALTZ was used in a similar experiment with a hotter

atomic sample, there was no improvement in contrast compared with that achieved us-

ing rectangular π pulses [44]. The ARP tanh/tan pulse was implemented in a large-area

atom interferometer by Kotru et al. [46] increasing the interferometer contrast over that

obtained using simple π pulses and achieving a momentum splitting of 30 ~k in a 9 µK
133Cs atomic sample.

Although ARP can obtain impressive population transfer efficiency, with a detuning

bandwidth that increases with the pulse duration, its potential utility in interferometry

is limited by the dynamic phase imprinted on the diffracting wave-packets and the

variation in effective time origin [44, 48–50]. The dynamic phase depends on the optical

intensity, and rapid dephasing is therefore inevitable when the atom cloud expands

through variations in laser intensity. In practice this effect is limited because ARP pulses

applied in quick succession approximately cancel the dynamic phase, but it leads to a

trade-off between longer and theoretically more efficient pulses, and dephasing caused by

imperfect dynamic phase cancellation when the beam quality is non-ideal [46]. There is

therefore a need for pulses which match or improve upon ARP in terms of state transfer

efficiency, but which are robust to temporal variations in the Rabi frequency during the

interferometer sequence.

LMT interferometry requires augmentation pulses that provide efficient population trans-

fer across the atom cloud and throughout the sequence. To maintain sensitivity and pre-

vent loss of fringe visibility, the interferometer sequence itself should impart the same

phase to all atoms, and all atoms should have the same sensitivity to the external in-

fluence being measured. Pulses need not satisfy these conditions individually, provided

that subsequent cancellation achieves them for the sequence as a whole.

1The velocity acceptance of the π pulse is determined by the Rabi frequency ΩR. For example, when
δ = ΩR/3, the state-transfer efficiency of the π pulse is approximately 90%. For a feasible experimental
Rabi frequency of 200 kHz, this corresponds to δ ≈ 4δrecoil for 85Rb.
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9.2 Bi-selective pulses

In this section we introduce the concept of “bi-selective” augmentation pulses for LMT

atom interferometry. Specifically, we discuss how these pulses may be obtained using

optimal control and introduce figures of merit that characterise their performance.

Consider the following two possible fidelity measures for augmentation pulses,

Fsquare = | 〈e|Û |g〉 |2 (9.1)

Freal = Re(〈e|Û |g〉). (9.2)

Both of these measures of fidelity, if maximised, will yield pulses that efficiently transfer

population from one basis state to the other, the essential requirement of an augmen-

tation pulse. If the fidelities are averaged over an ensemble of detunings and a range of

Rabi frequencies, the resulting pulse will be made robust to these specific errors. Max-

imising Fsquare leads to pulses where the phase of the overlap 〈e|Û |g〉 is unimportant but

the quantum state is rotated by 180◦ from pole to pole on the Bloch sphere. Conversely,

maximising Freal leads to pulses where the phase of the overlap 〈e|Û |g〉 is well-defined.

If the phase of the overlap 〈e|Û |g〉 varies from pulse to pulse across an atomic sample

in an LMT sequence, the resulting interference fringes can be washed out when the

contributions from each atom in the cloud are averaged at the end of the interferome-

ter. Providing the Rabi frequency does not change much between pulses, these phases

approximately cancel in LMT interferometers because the augmentation pulses occur

in pairs. However, if the Rabi frequency varies temporally throughout the interferom-

eter, rapid dephasing can occur. This is readily observed with ARP, which requires

a high degree of cancellation in the phase factors introduced by each pulse in the se-

quence [46, 48, 50]. Optimising Freal for a range of Rabi frequencies will mean the phase

of the overlap 〈e|Û |g〉 remains fixed even if the coupling strength varies within that

range2. Therefore, we expect Freal to yield augmentation pulses that are insensitive to

dephasing caused by temporal changes in the Rabi frequency due, for example, to noisy

beam intensity profiles and/or the ballistic expansion of the atom cloud.

For the nominal three-pulse π/2 − π − π/2 interferometer, the Raman detunings arise

from the velocity components parallel to the Raman beam axis and hence the temper-

ature of the atomic cloud. As the sequence is extended by augmentation pulses with

alternating effective wavevector directions, the resonant frequencies of each interferom-

eter arm separate due to the imparted photon momentum (shown on the right-hand

side of Figure 9.1). This means the detuning distribution splits in two, and continues to

separate as more momentum is imparted. Optimal control can optimise a pulse for any

assumed velocity distribution [183]. We use this feature to design bi-selective pulses,

2Fixing the phase of the overlap 〈e|Û |g〉 also fixes the phase of the overlap 〈g|Û |e〉 because 〈g|Û |e〉 =

eiπ 〈e|Û |g〉∗ (Equation 2.52).



146 9. Bi-selective pulses for large-area atom interferometry

tailored to yield efficient population transfer only in the frequency ranges occupied by

the primary interferometer arms. By optimising each pulse in the sequence individually,

as opposed to employing a single augmentation pulse design throughout the interferom-

eter [40, 42, 46], we can therefore take advantage of the fact that the transfer efficiency

in the frequency space in between the two arms is unimportant. This allows bi-selective

pulses to be shorter than ARP, composite, or optimised shaped pulses of the equivalent

efficiency.

A LMT interferometer of ‘order’ N includes a total of 4N augmentation pulses in order

to separate and recombine interferometer arms whose momenta differ by (2N + 1)~keff

resulting in a corresponding increase in phase sensitivity, although the separation is often

also quoted for Raman interferometers in units of the single-photon recoil momentum

~k ≈ ~keff/2. In a LMT interferometer with optimised bi-selective pulses, each of

the 4N augmentation pulses will be one of N individually optimised pulses indexed

n = 1, 2, ..., N , concatenated in the manner shown in Figure 9.1 and optimised to be

resonant with two Doppler momentum distributions centred about δ = ±2nδrecoil.

We express the bi-selective fidelity measure for the nth augmentation pulse as

FA
n =

∑
δ,ΩR∈Ln

F(δ,ΩR) +
∑

δ,ΩR∈Un

F(δ,ΩR), (9.3)

where F = Freal, square is the single-atom augmentation pulse fidelity measure (Equa-

tion 9.1 or 9.2) and Ln and Un are the ensembles representing the atomic frequency

distributions of the lower and upper arms during the nth augmentation pulse respec-

tively. In order to normalise the fidelity measure such that the maximum value is unity,

we divide Equation 9.3 by the number of detunings and amplitude errors included in

the entire ensemble.

We compose the detuning ensembles for the lower and upper interferometer arms for the

nth augmentation pulse from two uniform discrete distributions centred at ±2nδrecoil.

The ensembles used in the optimisation should represent the velocity distribution of the

atoms. However, in order to reduce computation time we approximate the true distribu-

tion using two uniform distributions each with a sample size of 20. The range spanned by

each distribution is given by 4 standard deviations of detuning arising from the velocity

distribution along the Raman beam axis, which we assume follows a Maxwell-Boltzmann

distribution.

Our LMT pulses are individually optimised, which assumes there are no correlations

in residual errors between pulses. However, it may be possible to develop alternative

measures of performance which reflect the fidelity of the entire interferometer and allow

pulses within a sequence to be optimised cooperatively [184], for example by compen-

sating each other’s imperfections.
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An alternative approach to achieve bi-selectivity involves concatenating two inversion

pulses with the appropriate frequency shifts to address each interferometer arm sepa-

rately. While this makes the individual optimisations simpler, the resulting pulses are

longer, give different velocity classes different pulse origins, and lose fidelity as the classes

begin to overlap. A simple superposition of the two components would cure the prob-

lems of length and origin, though not overlap, and requires amplitude modulation in

addition [185].

The concept of bi-selective pulses for LMT interferometry bears resemblance to the

technique of band-selective pulses in NMR spectroscopy [137, 185–187], where pulses

have been designed to excite or invert nuclear spins within single or multiple frequency

bands, but suppress the response of spins outside the desired frequency range. Typically,

these pulses require smooth waveforms because the response at large resonance offsets

is determined by the Fourier transform of the pulse shape [188]. As a result, composite

pulses, which are composed of concatenated sequences of constant-amplitude pulses with

discrete phase shifts, lead to non-negligible excitation far off-resonance.

The suppression of the action of a pulse outside a specific frequency range may be

useful in interferometer geometries where, for example, the counter-propagating Raman

beams are obtained by retroreflection of a single beam with both Raman frequencies

and there are necessarily four frequency components that may interact with the atom

cloud [108]. When there is no acceleration of the atoms along the beam axis then double-

diffraction interferometry schemes can be employed that make use of all of the frequency

components simultaneously [189, 190]. However, in vertically-orientated, ground-based

atom interferometers, the Doppler shift caused by gravitational acceleration is commonly

used to isolate a single frequency pair by shifting the other pair off resonance [42].

However, broadband pulses such as composite or ARP pulses often have non-zero transfer

efficiency at large detunings [44, 188], meaning one must wait longer to ensure negligible

excitations from the off-resonant pair, costing time which may otherwise be used to

enhance the sensitivity.

By directly suppressing the transfer efficiency outside a specific range of frequencies,

such off-resonant excitation with broadband pulses may be avoided. We achieve this

suppression of unwanted excitation by modifying our bi-selective pulse fidelity measure

(Equation 9.3), adding the following penalty term which represents the suppression band

of detunings where the transfer efficiency should be minimised,

Fsuppress =

δmax∑
ΩR,δ=δmin

| 〈g|Û |g〉 |2 +

−δmax∑
ΩR,δ=−δmin

| 〈g|Û |g〉 |2. (9.4)

Here, δmin,max represent the initial and final Raman detuning values for the two sup-

pression bands.
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Figure 9.2: Bi-selective phase-modulated augmentation pulses optimised with the
phase-sensitive fidelity measure Freal for a temperature of 1 µK. The resulting phase
profiles for the 1st, 4th, 7th, and 10th augmentation pulses are shown in the left panel.
The right panel shows the simulated transfer efficiency of each bi-selective pulse (red
solid curve), the ARP tanh/tan pulse of equivalent length (orange dashed curve), and
the WALTZ composite pulse (purple dotted curve) as a function of the Raman detuning.
The corresponding detuning distributions seen by each augmentation pulse for the
primary interferometer arms are shown by the shaded regions. The range of detunings

included in each optimisation is shown by the hatched regions.

9.3 Characterisation of bi-selective pulses

We have optimised phase-modulated, constant-amplitude, bi-selective augmentation pulses

with GRAPE for LMT interferometers of orders up to and includingN = 10, correspond-

ing to a momentum separation of 42 ~k. We have performed the optimisations using

both the phase insensitive fidelity measure Fsquare and the phase sensitive fidelity mea-

sure Freal, and have investigated their performance through simulation of the resulting

interferometer contrast in a laser-cooled sample of 85Rb at 1 µK. In all optimisations, the

timestep of the pulses was 25 ns, and the effective Rabi frequency was 200 kHz, meaning
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Figure 9.3: Bi-selective phase-modulated augmentation pulses optimised with the
phase-insensitive fidelity measure Fsquare for a temperature of 1 µK. The resulting
phase profiles for the 1st, 4th, 7th, and 10th augmentation pulses are shown in the left
panel. The right panel shows the simulated transfer efficiency of each bi-selective pulse
(blue solid curve), the ARP tanh/tan pulse of equivalent length (orange dashed curve),
and the WALTZ composite pulse (purple dotted curve) as a function of the Raman
detuning. The corresponding detuning distributions seen by each augmentation pulse
for the primary interferometer arms are shown by the shaded regions. The range of

detunings included in each optimisation is shown by the hatched regions.

the duration of a rectangular π pulse (tπ) should be 2.5 µs in the absence of any off-

resonance or pulse-length errors. The pulses were optimised for an atomic temperature

of 1 µK, and a range of amplitude errors of ±10 % the effective Rabi frequency. The

length of the augmentation pulses was fixed to be 4tπ. This duration allowed for a suf-

ficiently good pulse to be obtained when using both fidelities, although optimising Freal

typically requires a longer pulse to reach an equivalent fidelity to the phase-insensitive

case because of the extra constraint on phase. The initial guess for the phase profile of

the pulses was in each case a sequence of random phases.

The NMR spin simulation software suite for MATLAB, Spinach [125], and its optimal



150 9. Bi-selective pulses for large-area atom interferometry

control module, were modified to optimise bi-selective pulses using the L-BFGS GRAPE

method [19]. Each pulse optimisation was set to terminate following 300 iterations or

when either the norm of the fidelity gradient became smaller than 10−7 or the norm

of the step size dropped below 10−3. The resulting waveforms, optimising the fidelities

Freal and Fsquare, are shown in Figures 9.2 and 9.3 respectively. The waveforms are

shown for pulses tailored to the velocity distributions expected for the 1st, 4th, 7th, and

10th augmentation pulses of the LMT sequence. Efficient population transfer is achieved

in each case. Interestingly, smooth and symmetrical waveforms are found despite there

being no constraint on symmetry or waveform smoothness included in the optimisation.

As n is increased, the magnitudes of the individual phase excursions within each pulse

grows, and phase variations appear symmetrically about the temporal midpoint for the

Freal pulses. Interestingly, we observe that for the n = 1 Fsquare optimisation, the

solution strongly resembles the class of non-linear frequency swept pulses discussed in

Chapter 7.

Figure 9.4 shows the phase profile and simulated transfer efficiency of the 10th augmen-

tation pulse when the fidelity measure Fsquare is optimised. Results are also shown for

the WALTZ composite pulse and the tanh/tan ARP pulse with durations of 4tπ and

8tπ. The corresponding detuning distributions for the upper and lower interferometer

arms are also shown as shaded regions. Whereas the efficiencies of the WALTZ and

ARP augmentation pulses are limited by the finite velocity acceptances, the bi-selective

pulse is tailored for the split momentum distribution of the two primary interferometer

arms, allowing it to achieve a higher efficiency than a tanh/tan ARP pulse of twice its

duration.

Freal pulses are designed to minimise variation in the phase of the overlap 〈e|Û |g〉 over

the range of Rabi frequencies and detunings included in the optimisation ensemble. This

property is illustrated in Figure 9.5, where we have simulated the phase of the overlap

〈e|Û |g〉 for the 10th Freal augmentation pulse as a function of amplitude error (pulse-

length error) ΩR/Ωeff and the Raman detuning (off-resonance error) δ. The results are

also shown for the 10th Fsquare pulse, the tanh/tan ARP pulse, and WALTZ. The detun-

ing was set to the centre of the Doppler-shifted resonance of the upper interferometer

arm during the 10th pulse. Both the tanh/tan and Fsquare pulses exhibit a large variation

of this phase with amplitude. We find that the Freal pulse, however, minimises variation

in the phase over a range of amplitude errors larger than the design range (±10% Ωeff).

This should make Freal pulses less susceptible to the dephasing that can occur with ARP

and Fsquare pulses if the Rabi frequency varies from pulse to pulse across the atom cloud.

We have kept the amplitude constant when optimising the bi-selective fidelity measure

FA
n (Equation 9.3) because allowing the amplitude to vary does not lead to a higher

terminal fidelity. When the amplitude is allowed to vary and the maximum number of

iterations is extended, both the phase-sensitive and phase-insensitive fidelities lead to
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Figure 9.4: Phase profile (a) and simulated transfer efficiency (b) for the 10th bi-
selective pulse found optimising the fidelity measure Fsquare (blue solid line). The
transfer efficiency for the ARP tanh/tan pulse (orange dashed line for duration 4tπ
and green dot-dashed line for duration 8tπ) and the WALTZ pulse (purple solid line)
are shown in (c). The detuning distributions of the two primary interferometer arms,
corresponding to a temperature of 1 µK during the 10th augmentation pulse are shown
by shaded regions. The hatched regions represent the bands of detuning where the

transfer efficiency is maximised using GRAPE.

solutions that approach constant-amplitude, purely phase-modulated pulses. However,

when the penalty to suppress off-resonant excitation is included in the optimisation

(Equation 9.4) we find this is not the case and that allowing amplitude modulation can

lead to better solutions.
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Figure 9.5: Phase of overlap 〈e|Û |g〉 for different pulses as a function of the Raman
detuning (a) and amplitude error (b). The solid red and dot-dashed blue curves corre-
spond to the 10th Freal and Fsquare bi-selective pulses, respectively. The orange dashed
curve represents the tanh/tan pulse of the same duration (4tπ) and the purple dotted
curve shows the results for WALTZ. The hatched regions represent the design ranges in
detuning and amplitude errors over which the phase is minimised when using Freal. In
(a) ΩR = Ωeff and in (b) the detuning corresponds to the centre of the Doppler-shifted
resonance of the upper interferometer arm during the 10th augmentation pulse. The
curves have been unwrapped and a uniform phase shift has been applied to enhance

visual clarity.

9.3.1 Parabolic approximation of Fsquare bi-selective pulses

Optimal control can sometimes find particularly simple solutions which prompt us to

wonder about their deeper significance. For example, many of the profiles found opti-

mising Fsquare have a strong parabolic component corresponding to a frequency chirp -

although we are far from the adiabatic regime, and some include a π phase step near the

temporal midpoint. Consider the phase profile shown in Figure 9.4 for the n = 10 Fsquare

pulse. How much of the bi-selective behaviour of this pulse is captured by these two fea-

tures? To investigate this question we have fitted a parabola (φ = −a(t/tπ − b)2 + c) to

this phase profile with a π jump midway and simulated the resulting transfer efficiency

as a function of detuning. We have ignored the initial phase jump in the parabolic fit.

The results are shown in Figure 9.6. The fitting parameters were a = 0.88π, b = 2.10,

and c = 0.31.

We find that the parabolic approximation captures most of the bi-selective behaviour:

the π-flip leads to zero transfer efficiency on resonance, and the parabolic curve leads

to good - although imperfect - state transfer at two symmetric off-resonant frequencies.

Figure 9.6 also shows the resulting waveform when this parabolic fit is used as an initial

guess in the optimisation. Following 300 iterations, the basic parabolic shape and phase

jump remain, but symmetric variations are superimposed on the profile that flatten

out and improve the efficiency off-resonance. The initial rapid phase sweep present in
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Figure 9.6: Phase profiles ((a) and (c)) and simulated transfer efficiency ((b) and (d))
corresponding to n=10 Fsquare bi-selective pulses. The orange dashed curve represents
a simple parabolic approximation to the Fsquare pulse from Figure 9.5 and captures
most of the spectral behaviour. The dot-dashed black curve represents the results of

an optimisation using the parabolic approximation as a starting point.

the original waveform seems not to affect the pulse performance: as the phase is quickly

swept from 0 to ≈ −3π, the field vector rapidly rotates around the z-axis thereby keeping

atomic states near the north pole of the Bloch sphere. When the pulse is simulated

without this initial phase sweep, the transfer efficiency as a function of detuning remains

almost unchanged.

The simulated trajectory of the Bloch vector under the evolution of the n = 10 Fsquare

pulse from Figure 9.4 is shown in Figure 9.7. The trajectory is shown for a resonant

atom, and two off-resonant detunings (± 300 kHz). The phase jump midway through

the pulse leads the resonant atom to approximately retrace its steps during the second

half of the pulse. The positively detuned atomic trajectory is inverted during the first

half of the pulse, then kept near the pole for the second half. This happens in reverse for

the negatively detuned atom, and the pulse does most of its work inverting the atomic

state in the second half of the pulse.

Although we are able to gain some insight into how this particular class of bi-selective

pulse works, there are remaining questions. For example, although we can identify

that specific sections and features of the pulse waveforms act on atoms with different

resonant frequencies leading to the desired bi-selectivity, it is unclear how features in

the waveforms give robustness to fluctuations in amplitude and detuning. This will be

the subject of future investigations.
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Figure 9.7: Trajectories of the state vector under the n=10 Fsquare pulse in Figures 9.4
and 9.6 for an atom with δ = +300 kHz (a), δ = −300 kHz (b), and δ = 0 (c).

9.4 LMT contrast

We have investigated the performance of bi-selective pulses through simulation of the

resulting interferometer contrast in a laser-cooled sample of 85Rb at cloud tempera-

tures of 1 and 5 µK. We have simulated LMT interferometers of different LMT orders,

and compared the performance using our bi-selective augmentation pulses with that us-

ing rectangular π and tanh/tan ARP augmentation pulses. The contrast in each case

is averaged over a thermal distribution of atoms and a uniform distribution of Rabi

frequencies that is either kept temporally constant – to represent a non-uniform laser

intensity distribution – or else varied from pulse to pulse – to represent the motion of

atoms across such a distribution. Following the approach taken by Kotru [44], only the

primary interfering paths are included in the calculation to reduce computation time.

The numerical model is outlined in Appendix B.
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Figure 9.8: Simulated interferometer contrast for a cloud of 85Rb at 1 µK as a function
of LMT order for different pulse sequences. The contrast is numerically averaged over
Raman detunings due to a velocity distribution corresponding to a temperature of
1 µK and a uniform distribution of static Rabi frequency errors of ±10% (a) or a
random temporal variation of Rabi frequency errors of ±10% from pulse to pulse (b).
Contrast values for bi-selective GRAPE pulses found with fidelities Fsquare and Freal

(blue dotted line with diamonds and red solid line with diamonds respectively) are
shown. The results for π augmentation pulses (black dotted line with rectangles) and

the tanh/tan ARP pulse (dashed orange line with circles) are also shown.

The simulation results for an atomic temperature of 1 µK are shown in Figure 9.8. To

meaningfully compare the performance of the GRAPE bi-selective pulses with ARP,

the total duration of the sequences is kept the same. GRAPE bi-selective pulses far

outperform basic rectangular π pulses, and tanh/tan ARP pulses of equivalent duration.

When no thermal expansion is modelled, the dynamic phase cancellation of the ARP

pulses is perfect, meaning the reduction in contrast with increasing LMT order is purely

due to the limited velocity acceptance of the pulses as the arms separate in detuning.

For the ARP contrast to match that achievable with bi-selective pulses, the ARP pulse

duration must be increased, thus increasing the susceptibility to spontaneous emission

(not modelled currently) and dynamic phase dephasing [46]. This highlights one key

advantage of our adaptive approach.

If the Rabi frequency varies from pulse to pulse for different atoms, the dynamic phase
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imprinted on the atoms by ARP is not cancelled in the interferometer, meaning differ-

ent atoms obtain different phases and the interference is washed out. Although ARP

pulses have a velocity acceptance which increases with pulse duration, longer ARP pulses

become more susceptible to errors in dynamic phase cancellation [46].

When the Rabi frequency is instead varied randomly between pulses in the simulation

- within the ±10% interval for which the pulses are optimised - to emulate noise in the

Raman beam intensity profile (Figure 9.8b), the bi-selective pulses found optimising the

phase-sensitive fidelity measure Freal are able to maintain significantly higher contrast

than other pulse sequences. This is because the phase variation of the wave-packets is

minimised with respect to variations in the Rabi frequency. This is not the case with

pulses found using Fsquare or ARP, and the contrast is significantly reduced in such cases.

While we vary the Rabi frequency randomly from pulse to pulse, the resilience to the

variations is quite general and would extend to systematic changes in Rabi frequency

throughout the interferometer due to, for example, expansion of an atom cloud within

a Gaussian beam.

We have repeated the bi-selective optimisation and contrast simulation for a hotter

atomic temperature of 5 µK and for a longer pulse duration of 5tπ. The results are

summarised in Table 9.1. We also show the results for the WALTZ composite pulse and

phase-modulated pulses obtained using GRAPE maximising Fsquare for a large range of

detunings centred on resonance. These non-selective pulses were optimised following the

procedure outlined in [1] and Chapter 7 - to compensate the off-resonance errors arising

from a 40 µK atom cloud with pulse-length errors in the range ±10% Ωeff . Longer pulses

can achieve higher terminal fidelities, and using the phase-sensitive fidelity measure Freal

requires a longer duration than Fsquare to reach an equivalent terminal fidelity. This is

shown most clearly when optimising for the hotter cloud. There is no guarantee that

we have found the global maximum for each choice of duration and temperature. Even

so, pulse sequences were found which outperform the composite and ARP alternatives

tested. Although for a given pulse duration, the phase-insensitive fidelity measure yields

the highest expected interferometer contrast, phase-sensitive bi-selective pulses are ex-

pected to provide robustness to Rabi frequency variations throughout the interferometer,

and therefore may still be the best choice in practice.

It is important to highlight the expected difference in performance between pulses found

using the bi-selective approach and the non-selective robust mirror pulses introduced

in Chapter 7. The non-selective GRAPE augmentation pulse of duration 5tπ found

optimising Fsquare yields a contrast of 0.74 following an n = 10 LMT sequence at a

temperature of 1 µK. As we would expect from the results in Chapter 7, this contrast is

significantly larger than that expected following a sequence comprised of ARP tanh/tan

pulses of the same length. However, the contrast using this particular non-selective

GRAPE pulse rapidly decays when the LMT order is extended beyond n = 10. For

example, when simulating an n = 16 sequence, we observe that the contrast decays to
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Table 9.1: Simulated contrast values at temperatures of 1 and 5 µK for different mo-
mentum separations with no Rabi frequency variation between pulses. The π, WALTZ,
and Fsquare non-selective pulses are previous results with either defined (π, WALTZ) or
previously chosen (non-selective) durations. The results for the ARP and bi-selective
pulses are presented for two different durations. Bold values indicate the best perform-

ing pulse at each temperature.

Length 1 µK Contrast 5 µK Contrast
Pulse

(T/tπ) 10~k 26~k 42~k 10~k 26~k 42~k

π 1 0.50 - - 0.35 - -

WALTZ 3 0.73 0.51 0.00 0.72 0.41 0.00

4 0.95 0.62 0.06 0.88 0.52 0.04
ARP tanh/tan

5 0.96 0.79 0.19 0.90 0.69 0.15

4 0.92 0.72 0.38 0.85 0.67 0.34Fsquare non-selective
5 0.95 0.88 0.74 0.89 0.82 0.64

4 0.91 0.78 0.69 0.79 0.43 0.22Freal bi-selective
5 0.95 0.87 0.82 0.85 0.60 0.50

4 0.97 0.92 0.90 0.83 0.64 0.57Fsquare bi-selective
5 0.96 0.94 0.93 0.89 0.81 0.76

0.01. By comparison, we optimised 4tπ Fsquare bi-selective pulses up to n = 16 and

observed that the contrast obtained at n = 16 was 0.88.

As the bi-selective pulses are the result of individual optimisations, there is no need to fix

the duration of each pulse to be the same. In fact, a more adaptive approach would be

to choose the minimum pulse duration that obtained a given fidelity for each pulse in the

sequence (n = 1, 2, ...,N). This tactic could reduce the total sequence duration, because

optimising the pulses for higher n (larger momentum separation) generally requires a

longer pulse to reach the same fidelity.

9.5 Suppression of off-resonant excitation

When the Doppler shift from gravitational acceleration is used to discriminate between

retroreflected frequency pairs in vertically-orientated interferometers, off-resonant exci-

tations from broadband atom-optics can lead to unwanted double-diffraction [44, 108].

For example, following a 10 ms drop time [42], the resonance conditions of the two

frequency pairs will shift by 2gkeff × 10 ms ≈ 500 kHz for 85Rb, where g is the local

gravitational acceleration. Conventional robust pulses can result in a non-zero transfer

at comparable detunings (Figure 9.9), potentially leading to double-diffraction if the

unwanted frequency pair has not been shifted far enough from resonance [42, 44].

We have optimised bi-selective pulses which suppress the transfer efficiency outside the

detuning bands of interest using a suitable modification of our bi-selective fidelity mea-

sure (Equation 9.4). Figure 9.9 shows the preliminary results and depicts a pulse that
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Figure 9.9: Panels (a) and (b) show the phase and amplitude profiles for two bi-
selective pulses maximising Fsquare. The dashed blue curve shows the case where no
suppression of off-resonant excitation is included in the optimisation and the solid red
curve shows the case where off-resonant excitation is suppressed. The transfer efficiency
of these two pulses as a function of detuning is shown in panel (c), and panel (d) shows
the transfer efficiency of the WALTZ and tanh/tan pulses. The diagonally hatched re-
gions coinciding with the shaded detuning distributions show the optimisation bands of
detuning during the 8th augmentation pulse. The outer hatched regions show the range
of the detunings for which the state transfer is suppressed (δmin, δmax = 500, 2500 kHz).

The response is unconstrained outside the hatched regions.

effectively suppresses far off-resonant excitation and still yields efficient state-transfer

for the two frequency separated interferometer arms.

In order to achieve a good level of suppression at large detunings we have found it

necessary to allow both the phase and amplitude of the pulse to vary in the optimisation

procedure. If the amplitude of the pulse is fixed, noisy phase-profiles are obtained such as

those in Figure 9.10. Although these pulses obtain good bi-selective efficiency and good

suppression of excitation within the suppression band of detuning, significant unwanted

excitation is “pushed” outside the suppression band. These ripples far off-resonance are
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Figure 9.10: Panels (a) and (b) show the phase and amplitude profiles for n=10 bi-
selective pulses maximising Fsquare where we have added a penalty (Equation 9.4) to
suppress excitation far off-resonance. The dot-dashed blue curve shows a purely phase-
modulated pulse, the dashed red curve shows a phase-modulated pulse with a smoothing
constraint, and the solid orange curve shows an amplitude and phase-modulated pulse
with a smoothing constraint. The transfer efficiency of these pulses as a function of
detuning is shown in (c) and (d). The amplitude and phase-modulated pulse yields the

best bi-selectivity and off-resonant suppression.

removed by applying the derivative-norm-square (DNS) smoothing penalty, proportional

to the difference between adjacent phase steps. Smoothing the pulse waveform removes

far off-resonant excitation, meaning the suppression band of detuning can consist of fewer

detunings.3 However, the highest bi-selective fidelities and best off-resonant suppression

are found when the amplitude is allowed to vary and a smoothing constraint is applied.

We also applied the spill-out norm-square (SNS) penalty to limit the maximum intensity

during a pulse [23].

3Alternatively, a low-pass filter could be applied to the waveform at each iteration of the optimisation.
This was the approach taken by Janich et al. [187] when optimising slice-selective pulses for NMR
applications.
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9.6 Conclusions

We have presented an optimised Raman pulse scheme for the augmentation pulses in

large-area atom interferometry, whereby individually tailored Raman pulses found us-

ing optimal control techniques maintain resonance with the diverging wave-packets as

the Raman detuning increases between the interferometer arms. We optimise our bi-

selective pulses to provide maximum state-transfer while minimising variation in the

interferometer phase across the atomic ensemble. The pulses can be made robust to

large spatial and temporal variations in the Rabi frequency, potentially allowing LMT

interferometry in non-ideal experimental environments such as those with warmer atom

clouds and inhomogeneous laser beam fronts. Our simulations show that our pulses

can maintain contrast at significantly higher momentum splittings than interferometers

that have employed the best augmentation pulses demonstrated to-date, including the

WALTZ composite pulse and the tanh/tan adiabatic rapid passage pulse, whose finite

velocity acceptances limit the LMT momentum range.

For large LMT orders, our pulses can be considerably shorter than ARP or composite

equivalents of the same efficiency, reducing the susceptibility to spontaneous emission

which - although assumed to cause negligible decoherence in our simulations - can be

significant in some experiments [40, 46, 191] where, for instance, the single-photon de-

tuning of the Raman lasers is kept lower than the ground state hyperfine splitting in

order to null differential light-shifts [192]. In such cases the relative improvements of

bi-selective pulses with respect to equal-duration ARP pulses are unaffected and, in fact,

using pulses that optimise the phase-sensitive fidelity measure Freal could allow such in-

terferometers to suppress spontaneous emission by operating further from single-photon

resonance 4. We have also shown how the technique may be adapted to suppress dele-

terious off-resonant excitation, which can limit the applicability of broadband pulses to

atom interferometer configurations.

Future work will involve extending our analysis of the pulse shapes to gain further insight

into how and why they work, and implementing the scheme experimentally to obtain a

real-terms sensitivity enhancement in an LMT interferometer with bi-selective pulses.

4The light-shift manifests as a detuning error which, if it differs from pulse to pulse due to intensity
variations, can result in an accumulated phase uncertainty. Optimising pulses that maintain a fixed
interferometric phase over a range of off-resonance and pulse-length errors ensures a first-order robustness
to these variations, thus negating the need to operate close to single-photon resonance to negate the
light-shift.
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Chapter 10

Conclusions and outlook

In this thesis we have adapted NMR optimal control methods to design robust, high-

fidelity Raman pulses for atom interferometry by treating the laser phase and in some

cases intensity as controllable parameters. The resulting pulses compensate variations

in atomic detuning and Rabi frequency that limit the sensitivity of interferometers using

conventional π/2 and π pulses with constant laser phase and intensity. We have explored

different individual pulse fidelity measures, the role of pulse symmetry in interferometry,

the resilience of optimised pulses to laser phase noise, and developed pulse sequences

tailored to improve the sensitivity of large-momentum-transfer (LMT) interferometers.

Optimised pulses yield significant improvements in the fidelity of interferometric beam-

splitter and mirror operations compared with π/2 and π pulses, and also with the best

composite [42, 45], and adiabatic rapid passage (ARP) [46] pulses that have been applied

in atom interferometers to-date. Importantly, we have also verified many of these pulse

designs experimentally, finding an immediate threefold increase in fringe visibility in a

three-pulse Mach-Zehnder interferometer using an inhomogeneous cloud of 85Rb atoms

at ∼ 100 µK. In the following, we discuss the implications of this work and outline

directions for future investigation.

In many interferometers designed for sensing applications steps are taken to restrict

inhomogeneities in the atom-light interaction such as those due to a spread in atomic

velocity and/or variations in laser intensity. Often this involves reducing the number of

atoms by selecting those with the correct positions, states, and velocities, and discarding

the rest. However, such filtering processes lower the signal-to-noise ratio (SNR) of the

measurement. Our optimised pulses mitigate these inhomogeneities and should therefore

enable interferometry to be performed with high fringe visibility using less homogeneous

atomic samples, for example at higher temperatures, and enable the use of more complex

interferometer sequences. We expect these techniques will also enhance the robustness

and sensitivity of new compact and portable atom-based sensors, which must tolerate

larger variations in the atom-light interactions than lab-based interferometers.
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A spread in resonant frequency within the atomic sample cannot always be reduced

by filtering the cloud. For example, a change in resonant frequency is integral to the

technique of LMT interferometry, which is therefore an important application of the

work in this thesis. In Raman pulse LMT interferometers, additional light pulses are

used to impart extra photon momentum kicks to diffracting atoms and increase the

measurement scale-factor. This technique requires that the extra “augmentation” pulses

maintain fidelity as the two arms of the interferometer separate in resonant frequency.

When π pulses are used, their finite velocity acceptance leads to a rapid decay in fringe

visibility, limiting the increase in sensitivity [40]. Optimised augmentation pulses are

more robust to off-resonance errors than π, composite [42], and ARP pulses [46], and

the bi-selective pulse technique, introduced in Chapter 9, is a tailored solution for LMT.

By optimising each pulse in the sequence to track the changing resonant frequency of

each interferometer arm, significantly more momentum may be imparted before visibility

is lost. Bi-selective pulses should therefore enable large increases in the sensitivity of

Raman pulse LMT interferometers, and an important next step is to test this idea

experimentally.

We have also discussed how modifying the bi-selective fidelity measure allows us to op-

timise pulses which suppress atomic state transfer within unwanted frequency bands, a

modification necessary to suppress deleterious double diffraction in specific interferom-

eter arrangements. However, in some interferometers, for example those operating in

micro-gravity environments, double diffraction can be a useful technique [189, 190], and

optimal control could be deployed to optimise the mirror and beamsplitters operations

which, due to the double-diffraction geometry, lead to population loss into unwanted

diffraction orders [193]. Our application of optimal control demonstrates that we can

tailor the velocity-selectivity of a pulse. In future work, this feature may be used to opti-

mise cooling schemes, either by tailoring the pulses within existing interferometric [105]

and algorithmic [107] cooling sequences, or by designing new ones.

Central to this work has been the question of which fidelity measure to use in the

optimisation. We have explored fidelity measures for individual pulses, including those

that minimise unwanted variations in interferometer phase with errors in detuning and

Rabi frequency, and we have also begun to investigate the role of pulse symmetry in

sequence design, allowing one pulse to correct errors due to another. In all these cases,

we have optimised the pulses within interferometer sequences individually. However, it is

reasonable to expect that better performance could be reached and possibly in a shorter

time by optimising the entire pulse sequence in one go. Such “cooperative” multi-pulse

optimisation has recently been developed for Ramsey and spin-echo type sequences in

NMR [184, 194] with the resulting pulses yielding a reduction in the total duration of a

sequence needed to obtain a given fidelity. However, the results of these studies do not

directly transfer to atom interferometry. The goals of the experiments and the errors

involved are quite different; in interferometry we care about measurement sensitivity,
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and both the laser intensity and resonant frequency can change from pulse to pulse due

to the expansion of the atomic cloud. New measures of performance that incorporate

measurement sensitivity, scale-factor stability, and application-dependent trade-offs will

therefore be needed to realise optimisation of the entire interferometer, and perhaps this

will also involve lifting the constraint of a three-pulse sequence, allowing the computer

complete freedom to vary the order and timings of the individual operations.

Designing pulse sequences that suppress time-dependent noise is another important

problem and the sensitivity of many interferometers is limited by phase and vibrational

noise [182]. Although some studies have shown that certain NMR pulse shapes can

suppress different frequencies of laser phase noise [96], and we have shown that these

results also apply to optimised pulses with a fixed smooth amplitude profile, no attempt

has yet been made in atom interferometry to incorporate phase noise suppression into

the pulse optimisation itself. Here, an analysis of the fidelity landscape of the control

problem is likely to be important, as properties of this landscape in the vicinity of lo-

cal maxima provide information about the tolerance of a pulse to noise in the control

parameters [157].

10.1 Physical interpretation of optimised pulses

A fundamental question raised by this work is: how do the pulses found by numeri-

cal optimisation compensate errors? Although it is satisfactory to find that optimised

pulses provide significant improvements in the fidelity and robustness of interferome-

ter operations, we would ideally like to explain why the pulses take the smooth and

symmetrical shapes that they do. Understanding how individual optimal control pulses

work is an important problem in quantum control more generally [11], and while in-

tuitive geometric explanations are available for the simplest pulse shapes, such as the

original Levitt pulse [5] and the adiabatic frequency sweeps [6], analysing more com-

plicated pulses is not straightforward. Some approaches based on a Fourier analysis of

NMR pulse shapes [195] may provide insight, and an analysis of noisy pulse shapes can

reveal surprising structure in the state evolution [196]. In this section, we discuss some

interpretations of the pulse shapes presented in this thesis and provide suggestions for

future investigations.

Many solutions found by optimal control exhibit smooth features and possess distinct

symmetries. In Chapter 7, we showed that different pulse shapes may emerge for a given

choice of fidelity measure when the initial guess for the pulse is varied: some solutions

are symmetric, some highly asymmetric, and some resemble adiabatic frequency sweeps.

The optimised frequency-swept pulses appear to work using a similar mechanism to

ARP but are of low adiabaticity at the pulse edges, and this departure from adiabatic

behaviour allows for superior off-resonance error compensation.
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The variety of pulse shapes found suggests that multiple error compensation strategies

are being exploited by the algorithm. We have begun to explore how the pulse shapes

depend upon parameters of the optimisation such as the number of time-steps. It is

possible that more insight into the underlying pulse mechanisms may be found by ex-

ploring the dependence of the optimised pulse shapes upon the range of detuning and

amplitude errors that are used. For example, how do the pulse shapes change as the

detuning or amplitude error range is varied?

Pulse symmetry is an important property of optimised pulses: it determines how the

overall Bloch sphere rotation described by a pulse behaves as a function of resonance

offset. For example, inversion pulses with fully symmetric phase profiles have a trans-

fer efficiency that is identical for positively and negatively detuned atoms1. This could

explain why these pulses arise naturally when a symmetric detuning range is supplied

in the ensemble. Symmetry can also be exploited in the design of pulses and pulse

sequences. In Chapter 8 we explored the role of antisymmetry, and found that anti-

symmetric mirror pulses and beamsplitters combined in a “flip-reverse” configuration

allowed phase errors in the interferometer sequence to cancel.

For many of the pulse shapes a simple explanation of the underlying mechanism remains

elusive. One approach to tackle this problem may be to parameterise the distribution

of atomic states on the Bloch sphere for an ensemble of atoms with different detunings

and Rabi frequencies. We could, for example, compute statistics such as the spread and

elliptical orientation of this distribution of points on the Bloch sphere. The next step

would be to see how these parameters change throughout the pulse. Do different sections

of the optimised waveform correspond to different transformations of the distribution?

For example, certain parts of a pulse may rotate and stretch the distribution to minimise

the spread in interferometer phase or excitation probability. Such an approach may offer

insight into the role of each part of a pulse, and thereby improve our understanding of

how optimised pulses work.

1This fact follows from the symmetry relationships listed by Kobzar et al. [10] and the form of the
pulse propagator given in Equation 8.16.
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Appendix A

Mach-Zehnder interferometer

output

In this appendix, we show for a general sequence of 3 interferometer pulses, represented

by the propagators Ûi=1,2,3, that the probability for a given atom to exit the interfer-

ometer in the internal state |e〉 is given by

Pe =
1

2
(A− B cos(Φ + ∆φ)), (A.1)

and derive expressions for the offset A, contrast B, and phase shift ∆Φ in terms of

elements of the pulse propagators. Φ represents the inertial phase shift, introduced in

Chapter 3 and is given by Equation 3.5 in the case of a constant acceleration. In deriving

Equation 3.11, we follow the procedure outlined by Stoner et al. [60], and assume that

the change in detuning due to acceleration is negligible during the interferometer pulses.

We start by recalling the form of the propagator for a Raman pulse of constant laser

phase, frequency, and amplitude (Equation 2.52):

Ûi =

(
C∗i −iS∗i
−iSi Ci

)
. (A.2)

In this expression, the terms Ci and Si are defined by Equations 2.53 and 2.54. We

emphasise that these definitions apply only for a pulse with constant amplitude, phase,

and frequency. As long as a general pulse with time-dependent amplitude, phase, and

frequency may be approximated by a piece-wise constant Hamiltonian, the propagator

can still be written in the form of Equation 2.52, but in this case Ci and Si are no longer

defined by Equations 2.53 and 2.54 and must be computed numerically by concatenating

the propagators for each time-step.
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The propagators for the two periods of free-evolution, known as the dwell-times, take

the form

ÛT1 =

(
exp

(
− i

2φT1

)
0

0 exp
(

+ i
2φT1

)) (A.3)

ÛT2 =

(
exp

(
− i

2φT2

)
0

0 exp
(

+ i
2φT2

)) , (A.4)

where T1 refers to the first dwell-time and T2 to the second. The phases φT1,T2 are

given by the following integrals:

φT1 =

∫ ti+T1

ti

δ(t) dt (A.5)

φT2 =

∫ ti+T1+T2

ti+T1

δ(t) dt. (A.6)

Here ti is some arbitrary initial time and δ(t) is the time-dependent Doppler detuning

during the dwell-times. The interferometer phase Φ is then defined to be φT2−φT1, the

difference between the free-evolution phases.

The final excited state amplitude following the three-pulse Mach-Zehnder sequence is

given, after a small number of matrix multiplications, by

〈e|Û3ÛT2Û2ÛT1Û1|g〉 = i(−S3C
∗
2C
∗
1e
− i

2
(φT1+φT2)

+ S3S
∗
2S
∗
1e
− i

2
(φT2−φT1)

− C3S2C
∗
1e

i
2

(φT2+φT1)

− C3C2S1e
i
2

(φT1+φT2)). (A.7)

By computing the squared modulus of this amplitude and grouping together similar

terms, we find the following expression for the excited state probability Pe:

Pe = |S3|2|C2|2|C1|2 + |S3|2|S2|2|S1|2

+ |C3|2|S2|2|C1|2 + |C3|2|C2|2|S1|2

− 2 cos
[
φ(C1S1(S∗2)2S3C

∗
3 )− (φT2 − φT1)

]
+ 2 cos

[
φ(C1S1C

2
2C3S

∗
3) + (φT2 + φT1)

]
+ (|C3|2 − |S3|2)× 2 cos

[
φ(S∗1C

∗
1S2C

∗
2 ) +

1

2
(φT2 − φT1)− 1

2
(φT2 + φT1)

]
+ (|C1|2 − |S1|2)× 2 cos

[
φ(S2C2C3S

∗
3) +

1

2
(φT2 − φT1) +

1

2
(φT2 + φT1)

]
. (A.8)

In this expression, we have used the notation φ(A) to denote the argument of the complex

number A. Following the argument made by Stoner et al. [60], we note that the phase

combination φT2 + φT1 exhibits a significant dependence on the initial atomic velocity

because it contains terms proportional to keffv(T1 + T2). If we let v = σv ≈ 10 mm s−1
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(the standard deviation of the Maxwell-Boltzmann velocity distribution for a cloud of
85Rb at a temperature of 1 µK) and choose a combined dwell-time (T1 + T2) of 1 ms,

we find that φT2 + φT1 ≈ 1.6 × 102 radians. Consequently, the terms in Pe which

contain the phase combination φT2 + φT1
1 oscillate rapidly and will average-out when

the excited state probability is integrated over a cloud of atoms with a distribution of

atomic velocities, and we therefore drop these terms from our expression. The phase

combination Φ = φT2 − φT1 does not depend on the initial velocity providing the two

dwell-times are exactly equal. This gives us our final expression for Pe in the form of

Equation 3.11.

1These terms are only present when the interferometer pulses are imperfect.
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Appendix B

Numerical Simulations

In this appendix we provide more details of the numerical models used to simulate

interferometer pulses and sequences in this thesis. Simulations were carried out in Python

using the NumPy [173] and SciPy [197] libraries. To reduce the computation time of

some functions we employed just-in-time compilation using the Numba library [198].

The QuTiP library [199] was used to obtain Bloch sphere plots. All the optimisations

were carried out using modifications to the Spinach spin dynamics software suite [125]

in MATLAB and the optimal control methods are explained in detail in Chapter 5.

B.1 Modelling individual Raman pulses

Throughout this thesis, we model 85Rb atoms undergoing Raman transitions as two-

level systems, described by the basis states |g,p〉 and |e,p + ~keff〉 with corresponding

time-dependent amplitudes cg,e(t). Pulses are described by propagators of the form

given by Equation 2.52, and are given by time-ordered products of the propagators

for individual slices in the case of shaped and composite pulses, where the amplitude,

detuning (frequency), and phase may be varied for each step1. Once the total propagator

for a pulse is computed, we can find the final state of an atom subjected to that pulse

for a given initial state and two-photon Rabi frequency ΩR. We can then repeat this

calculation for a range of detunings and/or Rabi frequencies to examine the effect of off-

resonance and pulse-length errors on the final state. We can also compute the average

fraction of atoms transferred to the excited state after a pulse within an ensemble of

atoms with a distribution of sub-states, atomic velocities, and pulse-length errors.

1To simulate adiabatic pulses we divide the adiabatic frequency sweeps and amplitude profiles into a
large number of time-steps to ensure the piece-wise constant approximation is valid. When the tanh/tan
pulse is simulated, we use the same sweep parameters as those used by Kotru et al. [46] and divide the
waveforms into 2500 steps.
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When simulations are compared against experimental data in Chapter 7, we use mea-

sured values of the Raman beam intensities and single-photon detuning to compute the

two-photon Rabi frequency and AC Stark shift for each atom in an ensemble defined by a

uniform distribution over the 5 Zeeman sub-levels and a Gaussian distribution of atomic

velocities at an empirically determined temperature. The two-photon Rabi frequency

and AC Stark shift for each Zeeman sub-level are found for the ‘lin-perp-lin’ polarisation

arrangement using Equations 2.45 and 2.46 respectively, following the approach taken by

Alex Dunning [56] using the dipole matrix elements for each Raman route given in [57].

We may then find the average fraction of atoms in the excited state throughout a pulse

for a given laser detuning (Figure 7.18), or compute the average fraction of atoms in the

excited state after a pulse for a range of laser detunings (Figure 7.19). In both cases we

find good agreement between the data and the simulation results.

B.2 Modelling Mach-Zehnder sequences

To simulate the interferometer contrast following a Mach-Zehnder pulse sequence in

Chapter 7, we first draw a random sample of atoms with different detunings and Rabi

frequencies all in the magnetically insensitive mF = 0 sub-level. The distribution of

detunings is taken to come from the velocity distribution along the beam axis at a

given temperature, and the distribution of pulse-length errors is typically taken from a

uniform distribution with a given width. We then evolve the state amplitudes for an

atom initially in the ground internal state |g〉 by applying the relevant pulse propagators

in the correct order for each atom in the ensemble. This allows us to compute the average

or expected population in the state |e〉 at the output of the interferometer.

We simulate interference fringes by repeating the evolution of the final beamsplitter

pulse while varying a constant laser phase shift φbs between 0 and 2π. The ensemble

average fringe is then fitted to the sinusoidal function 0.5(A + B cos(φbs + C)), where

A is an offset, B is the contrast, and C is a phase shift. This gives us the contrast of

the average interferometer signal. Since this approach relies on averaging over a random

sample of atoms, the sample size is increased until the results do not change appreciably

from run to run.

B.3 Modelling LMT sequences

To simulate LMT sequences in Chapter 9 we adopt a similar approach to that outlined

in Section B.2 for the Mach-Zehnder sequence but with some important distinctions.

Just as with the Mach-Zehnder simulations, we compute how the LMT interferometer

contrast is affected by the atomic temperature and variations in the Rabi rate across



B.3. Modelling LMT sequences 173

Figure B.1: Diagram of the first half of an N=1 LMT pulse sequence, shown up to
the central mirror pulse, indicating how the momentum and atomic state vary in each
arm of the interferometer during the sequence. The resonant Raman frequency depends
upon the pair of states coupled at each stage. ‘A’ represents an augmentation pulse.
Single and double arrows represent the internal states |g〉 and |e〉 respectively. Dotted

arrows represent loss trajectories that are discarded in the simulation.

the atom cloud. In order to do this, we draw a sample of initial atomic velocities (and

hence Raman detunings) from a Maxwell-Boltzmann distribution for 85Rb at a given

temperature and a uniform distribution of Rabi frequencies in the range ±10% of the

intended Rabi frequency. Alternatively, the Rabi frequency may be randomly varied

from pulse to pulse within ±10% of the intended Rabi frequency in order to explore the

robustness of sequences to temporal variation throughout the interferometer.

In an LMT interferometer, the detuning and basis states change for atoms in each of the

two primary arms of the interferometer. We therefore make sure that for a given LMT

order the pulses are applied in the correct sequence and with the correct detunings

for each arm. To reduce computation time, only the amplitudes following the two

primary interferometer arms are included in the calculation, as shown in Figure B.1. This

involves setting the C term (defined by Equation 2.53) in the propagators describing each

augmentation pulse to zero, which is a good assumption when the pulses providing the

large-momentum-transfer are efficient, or when there is no interference from atoms that

have not followed the primary interferometer paths [44]. We simulate the state evolution

for atoms within each interferometer arm separately, and coherently recombine the result

before applying the final rectangular beamsplitter pulse. Repeating the calculation while

varying the phase of the final beamsplitter allows us to generate a fringe and determine

the contrast, as described in Section B.2.



174 B. Numerical Simulations

The effect of spontaneous emission is not modelled at present but will ultimately limit

the achievable contrast with extended pulse sequences in LMT interferometers.
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Appendix C

Conference posters

This appendix contains a selection of two relevant posters presented at academic con-

ferences.
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Introduction
The sensitivity of atom interferometers is ultimately
limited by the fidelity of the beamsplitter and mir-
ror operations, which may be improved by the use of
NMR composite pulses. We have used the gradient
ascent pulse engineering (GRAPE) algorithm
to design broadband mirror and beamsplitter pulses
to increase the fringe contrast of a Mach-Zehnder
interferometer in the presence of systematic inho-
mogeneities [1].

Model parameters
We drive stimulated Raman transitions between hy-
perfine ground levels |52S1/2, F = 2〉 and |52S1/2, F = 3〉
(states |1〉 and |2〉 respectively) in a cloud of ∼ 80µK
85Rb. Our Hamiltonian may be expressed as:

Ĥ(t) =
δ

2
σ̂z +

1

2
ΩR

(
cos[φL(t)]σ̂x + sin[φL(t)]σ̂y

)
. (1)

The effect of the laser pulse is to rotate the quantum state
|ψ〉 on the surface of the Bloch sphere about a fixed axis,
which we denote the field vector:

Ω = ΩR cos(φL)x + ΩR sin(φL)y + (δ)z. (2)

The field vector’s position in the xy plane of the Bloch
sphere is determined by the relative phase of the two
lasers φL. Detuning from resonance δ causes a deflection
of the atomic state, and variations in coupling strength
or Rabi frequency ΩR lead to incorrect rotation angles.

Optimal control theory
Optimal control theory optimises shaped pulses which
are highly robust to the specific inhomogeneities present
in an ensemble of systems. An interferometer sequence
may be optimised through appropriate choices of pulse
fidelity. We apply the gradient-based method, GRAPE
[2], to our system. Our tailored pulses are characterised
by smooth variations of the Raman laser phase φL(t).
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Figure 1: Robust beamsplitter (left) and mirror (right)
pulses designed using GRAPE.
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Robust beamsplitter and mirror pulses
Inhomogeneities include: nonuniform beam intensity, variations in magnetic environment, Zeeman degener-
acy, and broad velocity distributions. We characterise these pulse-errors as falling in two categories:

1. Off-resonance errors → Caused by non-zero detuning from resonance, δ

2. Pulse-length errors: → Caused by variations in coupling strength or Rabi-frequency, ΩR/Ωeff
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Figure 2: Final excited state probability for square π (left), composite WALTZ [5] (middle), and GRAPE (right) pulses.

Design Procedure: Pulse fidelities characterise how accurately our system is driven from an initial state
|ψ0〉 to a target state |ψD〉:

F = f

(
〈ψD| T̂ exp

[
− i

~

∫ t2

t1

Ĥ(t)dt

]
|ψ0〉

)
= f(〈ψD| ÛN ÛN−1 . . . Û2Û1 |ψ0〉). (3)

GRAPE computes derivatives of the chosen fidelity w.r.t. the control pulse sequence efficiently, to permit fast
optimisation. Pulses are discretised into N slices, and the choice of f , |ψ0〉, and |ψD〉 determine which pulse
is obtained. Robustness to errors is achieved by averaging over an ensemble of pulse-length and off-resonance
errors in the fidelity calculation, maximising F for an ensemble of atoms.

Augmentation pulses for LMT interferometers
The use of extended pulse sequences to increase interferometer area requires robust high-fidelity augmentation
pulses. We have demonstrated broadband pulses that optimise state transfer within a warm cloud of 85Rb
atoms in the presence of large off-resonance and pulse-length errors. We expect these pulses to:

• Improve the contrast for a given number of augmentation pulses (and equivalent interferometer area)
compared with standard rectangular and composite pulses

• Allow for a greater interferometer area and sensitivity without the need to filter the atomic sample
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Figure 3: Temporal evolution of atoms (left) and simulated Bloch sphere trajectories (right) for two GRAPE pulses
showing optimised state transfer in a ∼ 30µK cloud. Our model has good agreement with the data, demonstrating optimal
control theory works for our system.

GRAPE interferometer sequences
We obtain pulse sequences that optimise the contrast of interferometer fringes in warm, inhomogeneous
clouds. We use symmetry in the design of pulse sequences to preserve the interferometer phase.
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Figure 4: Mach-Zehnder fringes (left) with optimised GRAPE pulse sequence vs. rectangular pulses. The temperature
was ∼ 100µK. Contrast was improved by a factor of 3. A spectral comparison of pulses is also shown (right).

Outlook
GRAPE pulses prove more robust than established composite pulses and increases in pulse fidelity therefore allow for
greater interferometric areas, increased contrast, warmer atom clouds, and thus improved interferometric sensitivity.
We have demonstrated a three-fold improvement in fringe visibility for a ∼ 100µK cloud.

Figure C.1: Poster presented at the 2018 Frontiers of Matterwave Optics (FOMO)
conference 17-21 September, Orthodox Academy of Crete, Greece. For this poster I

was awarded a runner-up prize in the conference’s poster competition.
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Figure C.2: Poster presented at the 2019 International Conference on Quantum Error
Correction (QEC) 29 July - 2 August, Senate House, London, UK.
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Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” The European

Physical Journal D 69, 279 (2015).

[12] D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reaction via control

of wave packet evolution,” The Journal of Chemical Physics 83, 5013 (1985).

[13] R. Kosloff, S. Rice, P. Gaspard, S. Tersigni, and D. Tannor, “Wavepacket dancing:

Achieving chemical selectivity by shaping light pulses,” Chemical Physics 139, 201

(1989).
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[25] S. Machnes, E. Assémat, D. Tannor, and F. K. Wilhelm, “Tunable, Flexible, and

Efficient Optimization of Control Pulses for Practical Qubits,” Physical Review

Letters 120, 150401 (2018).

[26] B. Bartels and F. Mintert, “Smooth optimal control with Floquet theory,” Physical

Review A 88, 052315 (2013).
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[115] A. Tannús and M. Garwood, “Improved Performance of Frequency-Swept Pulses

Using Offset-Independent Adiabaticity,” Journal of Magnetic Resonance, Series A

120, 133 (1996).

[116] M. Garwood and L. DelaBarre, “The Return of the Frequency Sweep: Designing

Adiabatic Pulses for Contemporary NMR,” J. Magn. Reson. 153, 155 (2001).

[117] L. S. Pontryagin, V. G. Bol’tanskii, R. S. Gamkrelidze, and E. F. Mischenko, The

Mathematical Theory of Optimal Processes (Pergamon Press, New York, 1964).

[118] R. Freeman, “Shaped radiofrequency pulses in high resolution NMR,” Progress in

Nuclear Magnetic Resonance Spectroscopy 32, 59 (1998).

[119] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” The

Computer Journal 7, 308 (1965).

[120] M. H. Levitt and R. Ernst, “Composite pulses constructed by a recursive expansion

procedure,” Journal of Magnetic Resonance (1969) 55, 247 (1983).

[121] C. P. Koch, J. P. Palao, R. Kosloff, and F. Masnou-Seeuws, “Stabilization of

ultracold molecules using optimal control theory,” Physical Review A 70, 013402

(2004).

[122] A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul,

P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter

optimisation of a magneto-optical trap using deep learning,” Nature Communica-

tions 9, 4360 (2018).

[123] J. Nocedal and S. J. Wright, Numerical Optimization (Springer, New York, 2006).

[124] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale

optimization,” Mathematical Programming 45, 503 (1989).

[125] H. Hogben, M. Krzystyniak, G. Charnock, P. Hore, and I. Kuprov, “Spinach - A

software library for simulation of spin dynamics in large spin systems,” Journal of

Magnetic Resonance 208, 179 (2011).

[126] D. L. Goodwin, Advanced Optimal Control Methods for Spin Systems, Ph.D. thesis,

University of Southampton (2018).

[127] C. G. Broyden, “The Convergence of a Class of Double-rank Minimization Algo-

rithms 1. General Considerations,” IMA Journal of Applied Mathematics 6, 76

(1970).

[128] C. G. Broyden, “The Convergence of a Class of Double-rank Minimization Al-

gorithms: 2. The New Algorithm,” IMA Journal of Applied Mathematics 6, 222

(1970).

http://dx.doi.org/10.1006/jmra.1996.0110
http://dx.doi.org/10.1006/jmra.1996.0110
http://dx.doi.org/10.1006/jmre.2001.2340
http://dx.doi.org/ 10.1016/S0079-6565(97)00024-1
http://dx.doi.org/ 10.1016/S0079-6565(97)00024-1
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/ 10.1016/0022-2364(83)90236-6
http://dx.doi.org/ 10.1103/PhysRevA.70.013402
http://dx.doi.org/ 10.1103/PhysRevA.70.013402
http://dx.doi.org/10.1038/s41467-018-06847-1
http://dx.doi.org/10.1038/s41467-018-06847-1
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/ 10.1016/j.jmr.2010.11.008
http://dx.doi.org/ 10.1016/j.jmr.2010.11.008
http://dx.doi.org/10.5258/soton/t0003
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/imamat/6.3.222
http://dx.doi.org/10.1093/imamat/6.3.222


BIBLIOGRAPHY 189

[129] R. Fletcher, “A new approach to variable metric algorithms,” The Computer Jour-

nal 13, 317 (1970).

[130] D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization,”

Mathematics of Computation 24, 647 (1970).

[131] D. Goldfarb, “A Family of Variable-Metric Methods Derived by Variational

Means,” Mathematics of Computation 24, 23 (1970).

[132] V. Krotov, Global Methods in Optimal Control (Marcel Dekker, New York, 1996).

[133] S. E. Sklarz and D. J. Tannor, “Loading a Bose-Einstein condensate onto an optical

lattice: An application of optimal control theory to the nonlinear Schrödinger

equation,” Physical Review A 66, 053619 (2002).

[134] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer,
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