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Propulsive flapping foils are widely studied in the development of animal-like autonomous

systems, energy harvester and other engineering applications. The numerical studies of this

topic are mainly two-dimensional (2D) using strip theory for quick and inexpensive results

but excluding the three-dimensional (3D) evolution of both onboard and shed vortices. In

this work, we are trying to clearly separate the applicability of 2D to 3D studies because of 3D

effects. We simulate a NACA0016 foil both in 2D and 3D simulations at a Reynolds number

of 5300 with prescribed kinematics based on heave and pitch in 2D motion frame. A general

parameter used for flapping foil is the amplitude-based Strouhal number StA representing the

flow dynamics produced by the kinematics. StA is constructed from two main components

i.e. peak-to-peak amplitude 2A and frequency f normalised by the inflow U∞.

Firstly, we study the infinite foil in comparison with 2D (strip) simulation and discovered

an intermediate range of StA where both 2D and 3D simulations are equal and the flow

structures are uniform —allowing the strip theory application. The range is StA ≈ 0.3 for

heaving but wider for pitching and coupled motion, whereas the 3D effects dominate outside

of these ranges. The 2D range starts when the flapping motions overpower the 3D vortex

shedding of a stationary foil with 10◦ angle of attack, and it ends with vortex spanwise

perturbation because the strength of the shed vortices overwhelms the stabilizing influence

of viscous dissipation. Secondly, we study the finite flapping foil where 3D effects dominate

the flow but the average peak forces show the possibility to scale from 2D simulation (strip

theory). A finite foil experiences 3D kinematics of roll and twist, a linearly increased 2D

kinematics of heave and pitch towards the tip, in various A. The lowest A is more affected

by the pitch/heave derivative, whereas the highestA is less affected thus exhibits similarity

to infinite foil. An aspect-ratio correction for flapping foils is developed analogous to Prandtl

finite wing theory, enabling future use of strip theory in finite flapping-foil design.

Lastly, we study the importance of the leading-edge sweep angle used by unsteady swim-

ming and flying animals where mixed conclusions are shown in the results of biologists and

fluid experimentalists. We provide extensive studies with careful control on variables using

3D simulations of a finite foil undergoing tail-like (pitch-heave) and flipper-like (twist-roll)
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iv

kinematics for a range of sweep angles. No significant change is observed in mean force,

power, moment and efficiency for tail-like and flipper-like motions as the sweep angle in-

crease. This leads to a conclusion that fish tails, flukes and flippers can have a large range

of potential sweep angles without a negative impact on hydrodynamic performance, and a

slight adjustment in kinematics to maintain high thrust and efficiency at the same time.
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h Heaving Motion

k Reduced frequency

l∗ Length extent

L Length towards streamwise
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Q Second invariant of the velocity gradient
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S rate-of-strain tensor
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St Strouhal number
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StD Thickness-based Strouhal number
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α Angle of attack

Γ Flow circulation

∆x,∆y,∆z Streamwise, lateral, spanwise grid cell unit

ε Relative error
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θ Pitch angle

θ0 Pitch angle amplitude

Λ Sweep angle
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σ Standard deviation
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Ω Vorticity tensor
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NACA National Advisory Committee for Aeronautics
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RMS Root Mean Square

TEV Trailing-Edge Vortex

2D Two dimension, two dimensional

3D Three dimension, three dimensional







Chapter 1 Introduction to

Propulsive Flapping

Biologists and engineers have long been interested in the locomotion of swimming and flying

animals for the application of animal-like robots. Animals are widely studied because of their

efficient self-propelled motions through intricate repetitive kinematics known as flapping, and

the distinct planform shape of their limbs or wings. The current development of robots in-

creases the need to imitate even on a deeper level such as maneuvering flexibility or sudden

change of direction without huge momentum loss, operating-condition flexibility like ground

effect and gust, and the capability of morphing planform for reducing drag and pitch/roll

control. These types of capability are desirable for autonomous systems like micro air vehi-

cles (MAVs), unmanned aerial vehicles (UAVs) and unmanned underwater vehicles (UUVs).

Unlike animals, they are known to be less flexible and less efficient in terms of motions and

structures, and we are slowly adding more natural features on them.

Besides its robotic purpose, the flapping mechanism is also found in energy harvesters and

vehicle propulsion. The examples of energy harvester or energy generators are the wind and

tidal turbines. Turbine blades experience unsteady dynamic loads, similar to the flapping

wing. They are capable to generate higher efficiency in a certain way if the design is not

stationary but flexible to rotate (pitching) adjusting to the incoming flow. Thus, they are

more adaptive to a wider range of environmental conditions. Similar applications are found

in air transport vehicles for generating efficient propulsion, higher lift and delaying stall such

as the airplane wings with ailerons and helicopter rotor blades.

Animals’ propulsion mechanisms in water and air are divided into four categories, i.e. os-

cillatory, undulatory, drag base and pulsating jet Smits (2019). The two last categories are

not lift-based and will not be discussed in this work, i.e. pulsating jet (squids and jellyfishes)

and drag base (land swimmers such as frogs, ducks, and human). The undulatory motion,

seen in anguilliform such as eels, sea snakes, and several types of ray, belongs to animals

that use traveling waves and high body-flexibility to propel the whole body against the fluid.

The undulatory is also out of the scope of this thesis. Most efficient, fast and large animals

in the sea and air are dominated by oscillatory propulsion or known as lift-based propulsion

such as fishes, marine mammals and birds. Small bio-flyers like insects and sea creatures like

sea-angel pteropods are also seen to oscillate for routine movement. In the next chapters,

1
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(a) (b) (c) (d)

Figure 1.1: Lift-based animal propulsors are presented in colors for (a) mammal fluke, (b)
fishtail (caudal fin), (c) flippers, and (d) wings.

the effect of twist on the foil span will also be studied as a controlled flexibility but the main

function is not similar to the passive flexibility as in the undulatory propulsion, but rather a

complementary effect to the oscillatory mechanism.

In this work, we are going to examine the flow over a rigid oscillating foil similar to fishtail

(caudal fins), mammal flukes and flippers (see Figure 1.1), or generally known as the flapping

foil. These propulsors provide the biggest forces to propel the animal’s body against the

fluid and are considered as the main source of forces. Whereas body thickness, for example

in fast swimming fishes, contributes to secondary effect in oscillatory propulsion (Wu 2011).

The relatively inactive body parts but sometimes flapping, like dorsal, pectoral, anal fins,

finlets and rear flippers, mainly serve as stability and maneuver control. Despite that, some

fishes like Mola mola sunfishes use their dorsal and anal fins called clavus as their lift-base

propulsors similar to flippers.

1.1 Flow physics of oscillating bluff body and flapping foil

Characteristics of the flow over an oscillating bluff body such as a cylinder or a foil are related

to the vortices generated in the wakes which can be expressed by the Strouhal number as

a non-dimensional parameter reflecting their dynamics. The experiments of Koochesfahani

(1989) prove that the axial flow of the wake vortices is highly affected by the amplitude

and frequency of the oscillation. The maximum excursion of foil’s trailing edge known as the

double amplitude 2A and the frequency of oscillation f are the two major parameters defining

the Strouhal number. The combination of f and A normalized with the free-stream velocity

U∞ is called the amplitude-based Strouhal number StA = 2Af/U∞. The most effective

flapping motions are found in the range of StA = [0.2, 0.4] for swimming animals as proven

by (Triantafyllou et al. 1991, 1993). Most research is oriented in this range even though the

natural range can be larger (Rohr & Fish 2004, Eloy 2012).

If both A and f or one of them is increased, the wake patterns show the transition from drag-

producing to thrust-producing motion as shown in Andersen et al. (2016), Godoy-Diana

et al. (2008), Schnipper et al. (2009). Certain wake types in flapping foil are known to either

produce drag or thrust despite the controversy of their precise transition (Floryan et al. 2020).
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The drag–thrust transition, shown by the blue line in Figure 1.2, is preceded by the change

of vortex pattern from BvK (Bénard–von Kármán vortex) or other drag-producing types into

rBvK (reverse Bénard–von Kármán) the thrust-producing. The transition is marked by the

appearance of 2S wakes, or so-called the neutral wakes. They appear in both pure heaving (up

and down movement) and pure pitching (rotating around its pivot point) following sinusoidal

motions, although pure pitching needs to flap 75% faster than pure heaving to reach this

transition (Zhang 2017). Complete samples for wake types are provided in Appendix A.

(a) Pure Heaving

(b) Pure Pitching

Figure 1.2: Wake types by Andersen et al. (2016) with soap-film experiment for AD =
2A/D versus StD = fD/U∞, where D is foil thickness. ( ) BvK, ( ) rBvK, (N) 2P wakes,
(�) 2S wakes, (+) 2P+2S and (♦) periodic vortex, blue line = drag–thrust transition, dashed

black line = the nearest StA line StA=0.16 for heaving, StA=0.28 for pitching)

A high-A (aspect ratio) flapping foil has certain cross-sections experiencing two-dimensional

(2D) kinematics, often considered as 2D foils for easier investigation, but they are not guaran-

teed to produce 2D flow. These sections are found along the tail and fluke which are relatively
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unaffected by the tip. Similarly, the farthest cross-section from the root of a flipper or a wing

experiences low rotational acceleration and more affected by the vertical translational ac-

celeration. These sections can be analysed as a foil strip or an infinite foil experiencing a

periodical vertical translation such as pure heaving, pitching and their combination. Even

though both motion and geometry are two dimensional, foil’s wakes are not always two di-

mensional as seen in the experiment of Koochesfahani (1989) where the axial flow parallel to

span is discovered. A long and non-oscillating (stationary) cylinder is known to produce sim-

ilar spanwise instabilities in the near wakes at certain Reynolds numbers. These instabilities

are caused by the braid centrifugal effect or mode A (at Re = 200) and shear layer instability

or mode B (Re = 270) (Williamson 1996, 2006). An oscillating infinite foil hypothetically

should produce the same types of instability but probably at different Reynolds and Strouhal

numbers.

Near-tip flow is highly affected by three-dimensional (3D) effects due to finiteness (tip effect),

A effect (ratio of the square of the foil span to planform area), and the ratio between motion

amplitude and span. The three-dimensionality in finite foil is guaranteed not just for the flow

over the tip, known as tip vortex, but it can be also on the vortices along the foil span if the

A relatively low. For the sinusoidal pitching plate, the tip and low-A affect the dynamic

of the leading-edge vortex (LEV) especially at higher frequency (Hartloper et al. 2012), or

at higher amplitude (higher angle of attack) (Yilmaz & Rockwell 2011). Tip vortices of very

low A compress the LEV and induce spanwise vorticity transport inside the vortex core.

This condition will affect the flow circulation and the force coefficients due to additional

transient drag. In the case of translated plate, suppressing the tip flow is found to lower

drag (Ringuette et al. 2007). Comparing the tip shape, the performance of the elliptical tip

surpasses the rectangular tip, especially at high Strouhal case (Calderon et al. 2013). Besides

foil A, the ratio between span and flapping amplitude is also important. Although the A

does not influence the efficiency except at A < 0.83 according to Buchholz & Smits (2008),

the increase of amplitude to span ratio influence inversely to the efficiency. The behavior of

tip-vortex interaction with onboard vortices in flipper-type flapping foil is rarely discussed

compare to fishtail-type, and so is the A effect.

The tip effect is closely linked to another 3D effect, i.e. the spanwise flow, a special feature

of revolving (continuously rotating) and delta wings which can give hint to a flipper-type

flapping foil. Along with the appearance tip vortices, the spanwise velocity and vorticity

flux appear from root to tip on one side and opposite on the other side. Their influence on

the stability of leading-edge vortex (LEV) is greater when A decreases (Carr et al. 2013).

The spanwise velocity in the revolving plate is induced by centrifugal and pressure gradient

forces similar to the delta wing which are suspected to prevent separation of tip vortex and

prolong the attachment of LEV (Garmann & Visbal 2014). Unlike revolving, the vortices on

periodical flapping foil might not reach a fully formed state before they start another phase.

Thus, the vortex-shedding pattern of the flipper-type flapping foil and its spanwise flow can

be the combination between the initial stage of revolving and whole-span flapping such as

pitching-up or heaving motions.
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A subject of interest in flapping compared to stationary foil is the formation of strong LEV

known to produce high lift force, its attachment duration, and how it can be affected by

foil flexibility. The experiments of Ellington et al. (1996) postulate that an intense LEV is

found to remain attached producing high lift on insect’s flapping wings. Its mechanism is still

debated between the stabilization caused by the spanwise flow (Ellington et al. 1996) and the

vorticity attenuation due to downwash induced by previously shed wake vorticity (Birch &

Dickinson 2001, Eldredge & Jones 2019). Lentink & Dickinson (2009) found that LEV remains

attached in low Rossby number (ratio between inertia to rotational acceleration or Coriolis

effect), whereas Reynolds number only affects the bursting of LEV. Slight foil flexibility is

seemingly beneficial in the evolution of LEV but high flexibility can be detrimental. Passive

spanwise flexibility in a pure heaving plate is found to increase lift (Barnes et al. 2013,

Cleaver et al. 2016), whereas chord flexibility is more favorable to thrust (Cleaver et al. 2014,

Van Buren et al. 2018). This suggests that span twist, a more controlled and combination of

both chordwise and spanwise flexibility, can be beneficial for flapping foil.

1.2 A perspective of sweptback planform in bio propulsors

Figure 1.3: Longitudinal stability limit on swept wings by Shortal & Maggin (1946) showing
A is inversely proportional to the sweep angle.
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An implication of having three-dimensionality effects such as spanwise flow and others is

closely linked to a specific feature in animal’s propulsors, i.e. the sweptback planform. A

delta-wing planform has been a long interest to reduce drag. A study indicates that a certain

combination of aspect ratio and sweep angles can produce stability for the near-stall flow

(Shortal & Maggin 1946) as shown in Figure 1.3. All shapes above the stability-margin line

in that figure correspond to unstable flight, and vice versa. If the flapping foil is similar to

the steady delta wing, there will be a similar margin on both aspect ratio and sweep angle on

which animals prefer. (Thomas & Taylor 2001) postulate that birds need to sweep their wing

backward to counteract pitching-up moments for stability in an unstable and slow forward

flight. The sweptback planform is also a common feature seen in fish caudal fins, the flukes

of marine mammals, pectoral and dorsal fins (Fish & J. 1999, Fish & Battle 1995, Magnuson

1978, Gurdek Bas et al. 2015). Klaassen van Oorschot et al. (2016) run experiments using bird

wing specimens proving an increase of 30% in vertical to horizontal force ratio during flapping

motion. Despite their capability to sweep forward and backward —known as dynamic sweep

or inline motion, swimming animals with flippers like turtle and penguin are found to have

less forward sweep during vigorous swimming but high roll and twist angles as depicted by

Davenport et al. (1997), Clark & Bemis (1979). It sparks a hypothesis that perhaps the

sweptback feature has a benefit on the aero- or hydro-dynamics of animal propulsors.

Several analytical studies declare the benefit of sweptback planform, while there are several

contradictory results from experiments. The potential-flow-based analysis shows that having

a sweptback angle in propulsor is beneficial in flapping foils for reducing drags by Chopra

& Kambe (2006), Liu & Bose (1993), van Dam (1987). However, current experimental re-

sults are showing that forces are not significantly changed between non-swept and sweptback

features for foils or plates experiencing pure heaving (Beem et al. 2011), rotating (Lentink

& Dickinson 2009), and even for a full body of manta ray robot (Arastehfar et al. 2019).

Despite the insignificant force change, sweptback planform is reported to delay the formation

and breakdown of LEV in a plate undergoing pitching (Onoue & Breuer 2017) and rolling

but not heaving (Wong et al. 2013). Because of these uncertainties, the sweptback feature

in flapping foils is an interesting subject and an important part in the study of nature-like

flapping foils.

Numerical simulation is more suitable for isolating the pure effect of the sweep angle and to

avoid more complex mechanical set up in the experiment. We can easily modify the sweep

angle and still be able to combine it with other single or mixed parameters with simulation.

This gives a freedom to match the sweptback planform to any kinematics giving the highest

propulsion and efficiency provided by biologist data.

Studying flapping foils using the analytical method of classic potential flow shows dissimilar

results with experiments due to the 3D effects. Calderon et al. (2013) compare the results of

flapping foil experiment with the linear potential flow analysis showing that the potential flow

contributes to the over-prediction of thrust force because of tip effects. For 3D effects, adjust-

ments on analytical methods of unsteady potential flow based on Garrick’s or Theodorsen’s

theories (Garrick 1936, Theodorsen 1935) must be added such as the contribution of large
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amplitude separation shear layer and vortex proximity (Moored & Quinn 2019, Ayancik et al.

2019). This brings an interesting discussion in the next section about the importance of 3D

numerical simulation for flapping foil.

1.3 Dimensionality effect and challenges in flapping foil com-

putational method

Computational fluid dynamic (CFD) approach to solve Navier-Stokes equations (NS) sur-

passes other methods for flapping foil analysis but also has a drawback. It surpasses the

experimental method for its flexibility on the number of modified kinematic parameters, non-

repetitiveness, thin strip effect and infinite/no-end effect. It also surpasses the analytical

method on detailed flow field data that can be extracted and analysis especially the turbu-

lent breakdown and dissipation. However, when the Reynolds number increases, CFD has

a disadvantage of being very expensive especially for 3D simulation. In order to overcome

this problem, several comprehensive two-dimensional (2D) NS simulations are more preferable

than a full 3D NS simulation. Strip theory is based on this approach and widely used with the

assumption of no interaction between each strip so that their integration outcome is expected

to be the same as running a full 3D simulation. This approach has some consequences.

(a)
(b)

(c)

Figure 1.4: (a) An infinite foil experiences a fishtail-like motion, (b) a finite foil experiences
flipper-like motion, and (c) a strip or 2D foil simulation.

The 2D simulations for stationary body are reported to produce incorrect flow fields even

with sufficient grid refinement and the absence of 3D effects. A comparison of lift and drag

coefficients between 3D and 2D simulations for steady foil at deep stall shows high fluctuation

and irregularity in the 2D simulation that do not appear in 3D simulation (Taira & Colonius

2009). The force coefficient values are shown exaggeratedly higher in 2D simulation especially

for a higher angle of attack. The difference between 2D and 3D simulation is presented for

the flow over a stationary cylinder by Lei et al. (2001) for Re = 1000. At a given Reynolds



8 Chapter 1 Introduction to Propulsive Flapping

number, inaccurate prediction of global parameters and local flow fields are found in 2D

simulation. The 2D flow separation is delayed and the recirculation area is shorter causing

very low base pressure reading and over-predicted mean drag and lift-coefficient RMS. Mittal

& Balachandar (1995) found similar results for circular and elliptic cylinders reporting higher

Reynolds stresses in the 2D simulation that affects the mean pressure distribution. In the

absence of 3D effects, the efficiency of 2D-strip simulation is found 10% higher than 3D

infinite simulation (Bansmer & Radespiel 2012).

There has not been a comprehensive study about the comparison of 2D and 3D simulations

for infinite oscillating foils, although several studies have reported the 3D effects on higher

Strouhal numbers. On finding the similarity with Williamson (1996) for oscillating cylinder,

Deng & Caulfield (2015) have reported the appearance of 3D spanwise instability behind the

simulation of an oscillating foil with a cylindrical leading edge. In other publications, Deng

et al. (2016, 2015) located the transitions region from 2D to 3D above the transition line

of deflected or jet-like wake for both heaving and pitching motion for Re = 1500 inflow but

without known Re transition location and clear cause of transition. Moriche et al. (2016)

reported the same finding using NACA12 and Re = 1000 with an interesting conclusion.

Despite the spanwise instability in the flow structures, the aerodynamic forces of 3D DNS are

very close to its 2D simulation. This poses a question of whether running a 2D simulation

for infinite oscillating foil is sufficient unlike for stationary bodies.

Numerical simulation is an appropriate tool to study theA variation and tip vortex dynamic

in flapping foil, but most studies are dedicated only for fishtail-type of kinematics and re-

volving wings. These studies are already conclusive, for instance, Drofelnik & Campobasso

(2015) compare an A-10 foil experiencing heave and pitch and find that tip vortices reduce

the power coefficient by 6% than the infinite foil. The same conclusion is found by Dong

et al. (2005) for efficiency of very low A in Reynolds number 100 to 400. Varying A for

revolving/rotating wings has been observed by Harbig et al. (2013), Jardin (2017). A rotating

wing undergoes a similar effect as flapping but the unsteady effect from kinematics is only

limited at the beginning of the rotation. Despite several finite cases for heave-pitch, there

have not been conclusive 3D flapping simulations for flipper-like or wing-like motion with

various A especially for the comparison with 2D strip simulation.

Studying the flipper-type flapping kinematics requires special set-ups due to complex inter-

action between the fluid and solid parts. It is also important that the grid set-up to be

consistent between 2D and 3D simulations. A simulation type of immersed boundary is suit-

able for this study. The following chapter is presented to explain briefly about the numerical

tool used for all the studies in this work, the Boundary Data immersion Method.

1.4 Boundary data immersion method

This research is based on the computational method using a CFD package Lotus. A com-

putational method is more suitable for studying the comparison between 3D and 2D flow
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because of its integrity to maintain the same configuration such as grid density and domain,

whereas general experiments (3D based) require different set-ups than the 2D-based method

such as the soap film. The computational package —Lotus —is Boundary Data Immersion

Method (BDIM) which was firstly introduced by Weymouth & Yue (2011) containing im-

plicit LES solver and Cartesian grid. The set-ups for 3D and 2D simulation grids in Lotus

can be made consistent to focus on the difference between the flow physics of 2D and 3D

simulations. The following discussion will talk further about the difference between BDIM

and former immersed boundary (IB) method or other IB derivative methods.

Immersed Boundary (IB) method was introduced by Peskin (2003) to study the fluid-structure

interaction of biological movement and heart simulation. Peskin (2003) uses Dirac delta func-

tion as a kernel to switch between the Lagrangian part (the elasticity material equation) and

the Eulerian part (the incompressible viscous fluid) in the boundary domain. The disadvan-

tage of IB is the imposed boundary condition which is not trivial to resolve. Some parts of

fluid, which are inside the solid and should not be resolved, are counted.

One of the earlier works of IB was also done by Fadlun et al. (2000). They explain that the

solid part from NS equations in the conservation of momentum equation has been used in

this initial research as the direct forcing method. Direct forcing is named based on the usage

of forcing f discretized in time. The forcing is then related to the velocity imposed on the

boundary without dynamical process (Fadlun et al. 2000) as one of the advantages of IB.

The limitation comes from the boundary itself when the first grid points in the boundary

don’t resolve the NS. Instead, it enforces the velocity to the boundary from the linearization

process. Further work for IB was also applied for solid particle flow by Uhlmann (2005).

Uhlmann (2005) found undesired force oscillation for the particulate flow simulation from the

method proposed by Fadlun et al. (2000). Thus, he proposed a smoother transfer between

the Lagrangian and Eulerian locations as offered by Peskin (2003), viz. using regularized

delta function for more stable force.

New research emerges to develop IB from the initial standard method to a more applicative

one. Some modifications of Peskin (2003) Dirac delta kernel are offered using a 6-point kernel

for force spreading and velocity interpolation for IB (Bao et al. 2016). Goza & Colonius (2016)

used IB to simulate flow around the thin deforming body using linearization and block LU

factorization to handle the non-linearity of the system. Nevertheless, this research has not

solved the drawbacks of IB near the boundary domain.

BDIM, meanwhile, uses a robust and efficient Cartesian grid. BDIM itself is an analytic meta-

equations for an immersed body in multi-phase flow with a smoothed interface domain using

an integral kernel. Unlike the direct forcing method, BDIM modifies analytically the pressure

term in the equation of motion. It also uses distance function to represent boundary instead

of Lagrangian points as in other former IB. Those differences make BDIM have a smoother

pressure field around the boundary. Later on, Maertens & Weymouth (2015) improved BDIM

by adding higher-order term formula in the boundary interaction domain. This higher-

order term even improves the accuracy of high Reynolds-number flow to reduce high-pressure
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fluctuation because of the thin boundary layer. Despite the need for improvement on the skin

friction prediction, BDIM is capable of resolving the flow up to Re 105 for moving bodies

such as flapping foils. Hence, BDIM is suitable as the computational analysis tool for this

research.

1.5 Goal of thesis, aims and objectives

The ultimate goal of this research is to characterize the 3D flow features on the flapping

foil. This research aims to find the most crucial aspects of flapping foil undergoing propulsor

locomotion of swimming and flying animals with the purpose of the advancement or the

development of novel robotic and other related engineering applications. This research will

only use the computational approach using Boundary Data Immersion Method (BDIM). The

following points describe the objectives of the thesis per chapter.

1. Proving that the difference between 2D and 3D simulation for infinite foil is substantial

(Chapter 3).

2. Finding the range where 3D simulation is more beneficial than 2D, or vice versa (Chap-

ter 3).

3. Analysing the parameters affected by the appearance of spanwise structures on the flow

(Chapter 3).

4. Analysing the most crucial 3D effects in finite foil in comparison with 2D strip or infinite

foils (Chapter 4).

5. Characterizing the impact of 3D effects on forces, vortex structures and spanwise flow

(Chapter 4).

6. Finding a possibility to scale 3D from 2D simulations (Chapter 4).

7. Quantifying the evolution of forces and efficiencies on sweeptback foils (Chapter 5).

8. Concluding hydrodynamic advantage/disadvantage of sweptback angle in comparison

with biologist data (Chapter 5).

1.6 Structures of the thesis

This thesis is divided into 6 chapters with three of them are the main research projects.

Chapter 1 consists of the introduction, literature review, research statement, objective and

goals. In Chapter 2, the main methodology of this work will be explained generally including

the setups of the simulation, the convergence studies and the validation in comparison with
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experimental research from others. The specific setups or methods for each of the main

projects will require separate explanations and will be placed in each of main-project chapters.

The first main project starts in Chapter 3 where the 3D flow features will be analysed

for infinite flapping foil cases and compared with 2D strip cases. In most literature, the

infinite foil is considered similar to the 2D case due to the absence of tip, periodic boundary

conditions, and kinematics involving only the two-dimensional axis. In this chapter, we will

discuss that this is not always true. Certain parameters define the transition between 2D and

3D features where the spanwise dimension is indeed crucial.

The fully 3D behavior of flapping foil is discussed in Chapter 4, where 3D effects are explored

more extensively. In this chapter, the foil planform comprises a root and a tip while the

kinematics are set to move in a three-dimensional axis. Each cross-section of finite foil is set

to have identical kinematic with 2D strip or infinite foil comparable to Chapter 3 so that we

can relate the flow directly to 2D strip cases. In this chapter, we also see that the forces of

finite foil relate unexpectedly with the 2D strip cases which makes the 3D finite foil scaling

from 2D strips possible.

The 3D simulation set-ups in the finite flapping from Chapter 4 will be extended with addi-

tional feature i.e. the variation of sweep angle in Chapter 5. In this way, we will see how the

sweep angle seen in animal propulsors affects the flow. This chapter concludes the influence

of sweptback planform in flapping propulsors and how this will be used to interpret biologist

data collected from other publications.

The three main projects in this thesis have been and are under preparation for publications

with the same title as the chapter names. They are located from Chapter 3 to Chapter 5.

1. Chapter 3: Zurman-Nasution, A. N., Ganapathisubramani, B. & Weymouth, G. D.,

Influence of three-dimensionality on propulsive flapping. J. Fluid Mech. 886 (2020).

https://doi.org/10.1017/jfm.2019.1078.

2. Chapter 3: Hendrickson, K. , Zurman-Nasution, A. N. , Weymouth, G. D. , Debunking

the two-dimensional assumption on infinitely long wings. APS Gallery of Fluid Motion

(2018). https://doi.org/10.1103/APS.DFD.2018.GFM.V0103.

3. Chapter 4: Zurman-Nasution, A. N., Ganapathisubramani, B. & Weymouth, G. D.,

Effects of aspect ratio on rolling and twisting foils. Physical Review Fluids (accepted).

4. Chapter 5: Zurman-Nasution, A. N., Ganapathisubramani, B. & Weymouth, G. D.,

Fin sweep angle does not determine flapping propulsive performance. The Journal of

Royal Society Interface (under consideration).

In addition, these works were presented by the Author in the following conference and sym-

posium.

https://doi.org/10.1017/jfm.2019.1078
https://doi.org/10.1103/APS.DFD.2018.GFM.V0103
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1. ECCM & ECFD Glasgow 2018. Minisymposia of the unsteady aerodynamics of small

wings at moderate Reynolds numbers I: 3D influence on propulsive flapping at low

Reynolds number.

2. UK Fluids Manchester 2018. Session aerodynamics 2: 3D influence on propulsive flap-

ping foil.

3. 71st Annual Meeting of the APS Division of Fluid Dynamics Atlanta 2018. Session

biological fluid dynamics, locomotion flapping: 3D influence on propulsive flapping at

low Reynolds number.

4. 72nd Annual Meeting of the APS Division of Fluid Dynamics Seattle 2019. Session

tandem and flapping wings: rolling and twisting of finite foil.

5. 73rd Annual Meeting of the APS Division of Fluid Dynamics Chicago 2020 (virtual

conference). Session biological fluid dynamics - locomotion and high Reynolds number

swimming: Sweep angle is negligible for propulsive flapping.



Chapter 2 Methodology

The chapter explains the parameters used generally in the main projects from Chapter 3

to Chapter 5, while the specific parameters used for those projects will be explained in the

designated methodology section in each chapter. This chapter also provides the studies for

grid convergence and the validation with experiments.

2.1 General parameters

General parameters will be used in all simulations of the main project chapters. The foil

uses a NACA0016 profile with chord length C and a foil thickness D = 0.16C for main

simulations, except in the validation with the experiment of stationary foil using NACA0012.

There is no specific reason for thickness choice although large swimming-animals tend to

have relatively thick foil-section for their propulsors. The flow separation is delayed at higher

angle-of-attacks for thick airfoils (Uddin et al. 2017), giving benefit for flapping foils. An

elliptic tip is chosen as a gradual transition of the tip to reduce the tip effect for the finite

foil case Chapter 4. The Reynolds number of the inflow U∞ is kept at Re = 5300 with

viscosity ν = CU∞/Re. This Reynolds number is in the range of shear-layer transition

regime Re ≈ 1e3 − 1e6 (Schlichting & Kestin 1979). In this regime, the same Strouhal

number of flapping foil affects less on power and thrust coefficients except on bluff body

drag (Senturk & Smits 2019). Different bluff body types like cylinder will shift the effective

Reynolds number. This regime covers propulsor-size ranges from dragonflies to dolphins.

Above the critical Re, the effect on Strouhal number is unknown. Whereas, small animals

(low Re) use a different mechanism such as a clap-and-fling motion to generate high lift.

The flapping kinematics are characterized by the amplitude-base Strouhal number or StA =

2Af/U∞. Both the amplitude and frequency part can be separated as StA = Stl∗ ·Al∗ into

Stl∗ =
fl∗

U∞
Al∗ =

2A

l∗
(2.1)

where l∗ can be defined from any length parameter such as D, C, or other lengths, adjusting

the context of the kinematics and planform shapes. The foil will have an offset angle-of-attack

13
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(AoA) called the bias angle θbias either at 10◦ or 0◦ (no bias angle). Bias angle 10◦ is used

to sufficiently perturb the flow at stationary motion to create 3D structures along the span.

The results will be presented in the coefficients of lift force CL, thrust force CT , drag force

CD (or −CT ), pitching moment CMz and power Cpow, which can be defined as

CT = − Fx
0.5ρSpU2

∞
, CL =

Fy
0.5ρSpU2

∞
, (2.2)

CMz = − Mz

0.5ρSpU2
∞C

, CPow =
P

0.5ρSpU3
∞
, (2.3)

where measured thrust force (−Fx), lift force (Fy), pitching moment (−Mz), and power (P )

are calculated from the integration of pressure and viscous forces over the foil. Sp is the foil

planform area and overline signifies cycle averaging.

The efficiency is defined based on the ratio of mean thrust and mean power η = CT /Cpow.

The unsteadiness is presented using standard deviation σ (RMS is zero-mean σ), variance σ2

and fast Fourier transform or FFT of the force coefficient data.

All vortex-structure visualizations are constructed using Paraview which will be presented in

spanwise vorticity ωzC/U∞, λ2−, and Q− criterions. Q is defined as Q = 1
2(‖ΩΩΩ‖2 − ‖SSS‖2),

where ΩΩΩ is vorticity and SSS rate-of-strain tensors. Q presents a vortex as a connected fluid

region with a positive second invariant of velocity gradient tensor Q > 0 , while λ2 the

second eigenvalue of (ΩΩΩ2 + SSS2) is presented as λ2 < 0. The iso-contour of 1% maximum

value is deemed sufficient for clarity in Q−criterion (King et al. 2018), and similarly to 1%

of minimum value for λ2−criterion.

2.2 Convergence

Lotus arranges grids as depicted in Figure 2.1. A foil is placed in the uniform Cartesian grids

with cell size ∆x, ∆y, ∆z consecutively in streamwise, lateralwise, and spanwise. Outside

of the uniform zone, the grids are stretched with a maximum growth rate maintained below

8%. The spanwise grid is either totally uniform with ∆z/∆x = 3 (explained further in

Section 2.2.2) in the infinite case or stretched in the finite case. All 3D simulations are run

in HPC Iridis 4 Southampton to speed up a simulation using MPI for parallel computating.

2.2.1 Streamwise and lateralwise grid convergence

The graphs in Figure 2.2 present the study of grid convergence study for C/∆x (streamwise)

and C/∆y (lateral direction). The parameters for this study are NACA16, Re = 5300,

coupled motion, 2A/D = 1, fD/U∞ = 0.3, and bias angle 10◦. As the grid increased, the

implicit LES solver presents more small structures. On the contrary, coarsening the grids

will smoothen the small structures and incorrectly predict mean force coefficients.
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Figure 2.1: Lotus grid arrangement

The relative error ε is calculated to the maximum refined grid C/∆x = 256 as (n−nmax)/nmax,

where n is the reviewed value. The convergence study presents zero-mean standard deviation

σ0 or RMS values for lift CL and thrust CT coefficients. The RMS is more suitable to rep-

resent flapping foils (unsteady simulations) than the mean values of force coefficients which

tend to oscillate around zero. The simulation relative error ε ≤ 3.3% for 2D and 3D are

deemed sufficient to capture the 3D effects. This error value is equivalent to 3.7% off to the

grid-independent solution based on Richarson extrapolation.

2.2.2 Spanwise grid convergence for stationary foil

The spanwise grid (z direction) is coarsened and presented in Figure 2.3. This study is

obtained using stationary foil NACA0012, C/∆x = 150, AoA = 10◦ and at Re = 5300. For

∆z/∆x = 3, the relative error for CL and CD are below 2%. At ∆z/∆x > 4, there is an

increase in relative error. The grids become very coarse and the convergence is no longer

monotonic. At a low value of ∆z/∆x, the computation cost is more expensive. Thus, it is

more advantageous to use ∆z/∆x = 3 for further simulation. This coarsening study was

repeated with Re = 5.1e4 and produced the same tendency. The same results for NACA0016

are expected at the same angle of attack and Reynolds number.

2.3 Validation with experiment

2.3.1 Infinite stationary foil

Lotus is validated using the experimental results using NACA0012 from Alam et al. (2009),

Zhou et al. (2011), Wang et al. (2014) for stationary foil. The simulation domain sizes

replicate the ones in the experiment. Both Alam et al. (2009), Zhou et al. (2011) state that

they have used a blockage corrector for CD and CL. Their blockage corrector methodology

refer to Maskell (1965), which is modified by Hackett & Cooper (2016) for the calculation of
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(a) (b)

(c) (d)

Figure 2.2: Convergence studies are presented in zero-mean standard deviation σ0
(RMS) of force coefficicents. Black lines are the nominal value for σ0 at C/∆x =
48, 64, 96, 128, 192, 256, while blue lines are the relative errors to the highest nominal grid

C/∆x = 256 for (a, b) 2D and (c, d) 3D simulations.

(a) (b)

Figure 2.3: Spanwise coarsening study, (A) CL, (B) CD. Error presented is relative to the
lowest dz/dx
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Source Re AoA (◦) CL CD fC/U∞

Alam et al. (2009), Zhou et al. (2011) (corrected) 5.3e3 10 0.39 0.14 1.3
Alam et al. (2009), Zhou et al. (2011) (uncorrected) 5.3e3 10 0.45 0.15 -

Wang et al. (2014) 5.3e3 10 0.47 0.14 -
Lotus 5.3e3 10 0.44 0.13 1.35

Alam et al. (2009), Zhou et al. (2011) (corrected) 5.3e3 40 0.84 0.90 0.23
Alam et al. (2009), Zhou et al. (2011) (uncorrected) 5.3e3 40 1.12 1.22 -

Lotus 5.3e3 40 1.24 1.14 0.31

Table 2.1: Experimental results are compared with Lotus at Re = 5300 for stationary
NACA0012. Uncorrected values are calculated based on Maskell III method. The values of
fC/U∞ are the frequency of vortex shedding measured as the PSD peak of CD signals.

CD and CL (Maskell III method). For this validation, Lotus results are obtained using 3D

simulations with parameters C/∆x = 150, ∆z/∆x = 3 and span length/C = 1.

The results in Table 2.1 present the value of CD and CL corrected for Re = 5300 at two AoA

at 10◦ and 40◦. To get uncorrected results, the blockage corrector method from Maskell III is

used. For a fair comparison, Lotus results in Table 2.1 should be compared with uncorrected

experimental CD and CL. Table 2.1 shows comparison between Lotus and the experiment

results for CD and CL for Re = 5300. The relative error for Lotus CL from Alam et al.

(2009) uncorrected result are 2.2% and 10.7% for AoA 10◦ and 40◦ consecutively, whereas

for CD are 13.3% and 6.5%. Apart from mean forces, the wake streamwise velocity contours

in Figure 2.4 of Lotus at Re = 5300 correspond well with the experiment from Alam et al.

(2009) despite a slight deviation in separation region and at the highest velocity gradient

area near the leading edge and trailing edge.

Discrepancies between Lotus and the experiment might come from several things. The exper-

iment most probably uses an imperfect NACA12 with a blunt trailing-edge and non-smooth

surface causing more attached flow on the foil’s suction side. Other discrepancies come from

non-uniform inflow, turbulent intensity and blockage-effect calculation. From the numerical

side, the relative errors of mean forces look bigger when the values are closer to zero, and

averaging force calculation in highly turbulent flow like in AoA 40◦ unavoidably contains

higher noise. The main difficulty of IB lies on the closest grid to the boundary without a wall

model. Lotus especially struggles more inside the boundary layer and the separation area

without refining grids. The more the iLES grids are refined, the closer the results to DNS.

An effort is done to refine grids lateralwise to ∆y/∆x = 1/5 at 40◦ AoA resulting a vortex

shedding frequency of 21.2% discrepancy from the experiment which is originally 34.2% in

Table 2.1. This small improvement costs excessive computational resource, viz. simulation

time to 16 times longer with core numbers to 5 times more. Thus, similarly refined grids are

unnecessary to be used further. In flapping cases for the same Reynolds number, the un-

steady flow is dominated more by the inertia effect of the kinematics and less by the viscous

effect. Thus, Lotus’ weakness in the viscous boundary layer can be ignored. Validating Lotus

against the experimental results for stationary foils is more conservative than for flapping

foil. The errors for flapping foils are expected to be lower than the stationary foil cases.
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(a) (b)

(c) (d)

Figure 2.4: Mean streamwise velocity contour of experimental results of steady foil (Alam
et al. 2009) for (a) Re = 5300, at 10◦, (c) Re = 5300, at 40◦, with corresponding Lotus

results (b,d)

2.3.2 Finite flapping foil

The flapping finite foil case is validated against the experiment of King et al. (2018) in

Figure 2.5 for Chapter 5. This is a validation of the unsteady-wake amplitude and frequency

generated by the kinematics. Experiment uses rigid trapezoidal plate with mid chord C =

101mm, span length b = 254mm and A = 4.17 in an inflow of Re = 5800 or U∞ = 57m/s.

The motion is pure pitching with pitching amplitude θ = 7.5◦ and StA = 0.46 which is

constructed from reduced frequency k = fC/U∞ = 1.772 and specific amplitude 2A/C =

0.261. The same motion parameters are applied to Lotus using NACA16 finite foil with elliptic

tip experiencing sinusoidal pitching and fixed sweep angle 45◦. There are small insignificant

differences in simulation such as Re = 5300,A = 4, and NACA16 cross-section and concave

trailing-edge for the coherence with simulations in Chapter 5. In the simulation, the chord

length starts at the root z = 0 and ends when the tip vortex starts to be equivalent to the

experiment chord-length. Both simulation and experiment show general similarity in the

wakes especially for the wake shape, spanwise vorticity, phase, frequency and amplitude of
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(a)
(b)

(c) (d)

Figure 2.5: Lotus 3D pitching foil using NACA16 in (b) and (d) is validated using trape-
zoidal plate (a) and (c) from experiment of King et al. (2018). Isocontours are presented in
phase average of 1% of max Q-criterion, while the colors represent the same values of span-
wise vorticity. Axial direction x is normalised with chord C while lateral y with oscillation
amplitude A. Parameters are the same both simulation and experiment except the planform

and thickness. Lotus simulation are mirrored with z = 0 for visualization purpose.

vortex shedding. The simulation shows smaller Q isocontours which can be caused by smaller

area (lower A) and concave trailing-edge promoting wake suction. According to Van Buren

et al. (2017), the 45◦ will decrease the thrust by ∆CT ≈ 0.1 and efficiency by ∆η ≈ 0.03, which

explain the smaller Q contours. There is no force data from provided in the experiment of

King et al. (2018) for comparison, but both the experiment and Lotus simulation show inverse

BvK wakes indicating the thrust-producing wakes. The latest version of Lotus (second-order

BDIM) has been validated with an experiment for a pithing and heaving foil in Maertens &

Weymouth (2015). The mean drag coefficients converges within 5% for Re = 1e5 using grid

resolution C/∆x = 67.









Chapter 3 Influence of three

dimensionality on infinite flapping

foil

Abstract

Propulsive flapping foils are widely studied in the development of swimming and fly-

ing animal-like autonomous systems. Numerical studies in this topic are mainly two-

dimensional (2D) studies as they are quicker and cheaper, but, this inhibits the three-

dimensional (3D) evolution of the shed vortices from leading- and trailing-edges. In

this work, we examine the similarities and differences between 2D and 3D simulations

through a case study in order to evaluate the efficacy and limitations of using 2D sim-

ulations to describe a 3D system. We simulate an infinite-span NACA0016 foil both in

2D and 3D at a Reynolds number of 5300 and an angle-of-attack of 10◦. The foil is sub-

ject to prescribed heaving and pitching kinematics with varying trailing-edge deflection

amplitude A. Our primary finding is that the flow and forces are effectively 2D at inter-

mediate amplitude-based Strouhal numbers (StA = 2Af/U where U is the freestream

velocity and f is the flapping frequency); StA ≈ 0.3 for heaving, StA ≈ 0.3–0.6 for

pitching and StA ≈ 0.15–0.45 for coupled motion, while 3D effects dominate outside of

these ranges. These 2D regions begin when the fluid energy induced by the flapping mo-

tion overcomes the 3D vortex shedding found on a stationary foil, and the flow reverts

back to 3D when the strength of the shed vortices overwhelms the stabilizing influence

of viscous dissipation. These results indicate that 3D-to-2D transitions or vice-versa are

a balance between the strength and stability of leading-/trailing-edge vortices and the

flapping energy. 2D simulations can still be used for flapping flight/swimming studies

provided the flapping amplitude/frequency is within a given range.
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3.1 Introduction

Engineering applications such as MAVs (micro air vehicles) and energy harvesting are de-

signed to mimic the propulsive flapping mechanism of swimming and flying animals although

these applications are less efficient. The early research on propulsive flapping of swim-

ming animals by Triantafyllou et al. (1991, 1993) set a range for effective Strouhal numbers

(StA = 2Af/U , where A is the trailing-edge amplitude, f is the flapping frequency and U

is the freestream velocity) as 0.25–0.35, but it was argued only for large aspect-ratio (AR)

tails (Eloy 2012, Rohr & Fish 2004). Nevertheless, flapping foil research primarily focus

on StA = 0.2–0.4 as proven by experiments where interesting transitions exist, i.e drag–

thrust transition and wake transition from Bénard-von-Kármán (drag-producing) to reverse

Bénard-von-Kármán (thrust-producing) vortex street (Andersen et al. 2016, Godoy-Diana

et al. 2008).

The majority of numerical studies for flapping foil are mostly in 2D—due to its simplicity and

cost savings—and have shown consistency with experiments. Koochesfahani (1989) indicated

that the flow at certain range of StA over a high A foil, which experiences periodical 2D

motions such as pure heaving and pure pitching, is mostly assumed to be 2D. Researchers

found that soap film experiments agreed with 2D simulations (Andersen et al. 2016, Schnipper

et al. 2009, Zhang 2017), and high A foil experiments agreed with 2D simulations (Moriche

et al. 2016, Muscutt et al. 2017). These studies, however, did not explain why the flapping foil

being subjected to periodic high angles of attack remains two-dimensional while a stationary

foil at the same (or similar) angles of attack experiences strong separation (Uddin et al. 2017)

where 3D effects are not negligible.

Despite experiments using high A foils to ensure 2D flow, three-dimensional effects should

not be ruled out. Apart from tip vortices, the effect of leading-edge vortices (LEVs) has been

shown to be important for highA rotating wings (Fu et al. 2015, Lu et al. 2006, Carr et al.

2013). These vortices are the major contributors for force evolutions in flapping foil especially

along the span because LEVs stabilise the spanwise force-variations (Triantafyllou et al. 2004)

but only at low Rossby (Ro = R/C , where R is wingtip radius and C is mean chord length) as

stated by Lentink & Dickinson (2009). At higher Ro, the LEVs are unstable due to Coriolis

acceleration creating spanwise instability which is also predicted by Williamson (2006) for

flow over a circular cylinder. These 3D effects have consequences on the 2D assumption

for predictions, especially in spanwise force-fluctuations and would lead to inaccuracies in

global parameters and local flow fields (Lei et al. 2001, Garcia et al. 2017), delayed and

shortened recirculation area causing very low base pressures and over-predicted mean drag

and lift-coefficient fluctuations (Mittal & Balachandar 1995).

In very recent work, the appearance of 2D to 3D transition in flow structures was observed

by Deng et al. (2016). This was based on linear Floquet stability without any comprehensive

3D simulations thereby making the source/regime of this transition uncertain. In this work,

this 2D to 3D transition is investigated using comprehensive 2D and 3D simulations across
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the range of flapping kinematics, including the analysis of average and fluctuating force-

coefficients, vorticity metrics and energy distribution. The results demonstrate the limitations

of strip theory and the parameter space where there is a need for full 3D simulations to

examine propulsive flapping mechanisms of animals and animal-like like autonomous systems.

3.2 Methodology

3.2.1 Kinematics

(a) (b) (c)

Figure 3.1: Kinematics with bias angle-of-attack, (a) pitching, (b) heaving and (c) coupled
motions.

The foil used in this research is NACA0016 with thickness D = 0.16C, where C is the chord

length. The foil is placed in uniform flow with constant inflow speed U and fluid density ρ.

The Reynolds number of Re = UC/ν = 5300 was chosen in order to be in the middle of

Reynolds number regime of flapping flyers and swimmers (1000 < Re < 10000). Moreover,

this Reynolds number also corresponds to the shear-layer transition regime of Williamson

(1996). Finally, the simulations at higher Reynolds numbers (Re ≈ 10600) for a limited

number of cases did not change the conclusions reached in the following sections.

The governing kinematic parameter is the amplitude-based Strouhal number StA = StD ·AD.

In order to isolate the amplitude and frequency, we use

StD =
Df

U
AD =

2A

D
(3.1)

where StD is the thickness-based Strouhal number, AD is the thickness-based amplitude, f

is the frequency of flapping (in Hz) and the double amplitude 2A is measured at the trailing

edge.

The foils are prescribed to undergo pure heave h, pure pitch θ and coupled pitch and heave.

The motions are harmonic, with functional form

h(t) = A sin(2πft) (3.2)

θ(t) = θ0 sin(2πft+ ψ) + θbias (3.3)

θ0 = sin−1
(
A/(0.75C)

)
(3.4)
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The pivot point for pitching motion is 0.25C from the leading edge. The coupled motion has

a phase angle ψ = 90◦, which was found as the most effective for propulsive flapping (Isogai

et al. 1999). Due to this phase angle, pitching lags behind heaving for a quarter of a cycle

causing it to be at minimum θ(t) when heaving has reached maximum h(t). A bias angle-

of-attack is employed to focus on lift-producing propulsive motion used mainly by bio-flyers,

although some swimming animals were also reported to benefit from lift e.g. shark’s pectoral

fins. The bias angle-of-attack is fixed at θbias = 10◦ = π/18 rad. This 10◦ angle is chosen

because it sufficiently induces unsteadiness to the flow for stationary foil case.

In this work, we vary StA by discretely increasing the amplitude from AD = 0.0625–3.75 but

keeping the frequency fixed at StD = 0.3 following one vertical line in StD-versus-AD map of

Andersen et al. (2016). This frequency is slightly above the stationary-foil vortex shedding

frequency.

3.2.2 Measurement metrics

Results are presented based on thrust- (CT ) and lift- (CL) force coefficients as follows:

CT = − Fx
0.5ρSpU2

∞
CL =

Fy
0.5ρSpU2

∞
(3.5)

where measured thrust force (−Fx) and lift force (Fy) are calculated from the integration of

pressure and viscous forces over the foil and Sp is the foil planform area. The mean, variance

and power-spectral-density analysis of force-coefficient time-histories are used to highlight

the differences across different kinematics.

3.2.3 Computational method

For computational consistency between 2D and 3D simulations, the 3D grids are the spanwise

extrusion of 2D grids and both simulations use Lotus as computational tool. Periodic bound-

ary conditions are enforced along the spanwise direction of the foil and a span length of 6C is

used for 3D simulation. The verification of grid convergence for 2D and 3D were carried out

at Re = 5300 to identify the appropriate grid required and presented in Section 2.2. As a bal-

ance between the grid resolution and the number of simulations, a resolution of C/∆x = 128

is deemed sufficient to captures the dynamics of the flow and the parametric study in the

following sections were carried out at this resolution but at a higher Reynolds number. A

3D simulation for a stationary NACA0012 is compared with the experiment result of Wang

et al. (2014) in figure 3.2 showing an accurate instability location, and the drag coefficient is

within 5%. The errors associated with mesh are also provided in Table 2.1.
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Figure 3.2: Accuracy comparison for instability starting-location of stationary NACA0012
at Re = 5300 and angle of attack 10◦, (a) LIF flow visualisation of Wang et al. (2014), mean
drag-coefficient CD = 0.14, and (b) spanwise-vorticity of 3D simulation, CD = 0.133. The

instability starts at the first vortex roll-up.

3.3 Comparison between 2D and 3D simulations

The two- and three-dimensional simulations are further compared based on the vortex-

structure evolution, mean force-coefficients (CT and CL), phase-averaged spanwise component

of vorticity and fluctuations of force-coefficient signals.

3.3.1 Overview and flow structures

Figure 3.3 shows the variation of CT with StA for 2D and 3D simulations across three different

kinematics (heave, pitch and coupled motions). The inset in the figures also show iso-surfaces

of spanwise vorticity (ωz) for a few selected cases (the cases as indicated with arrows in the

figure). Starting at the lowest AD (the lowest StA), the flow structures appear to be three-

dimensional with strong separation on the foil suction-side similar to a stationary foil. The

values of CT for both 2D and 3D simulations appear to be very similar to the CT of a

stationary-foil with the small discrepancy between 2D and 3D simulations.

With a slight increase in amplitude, the flow structures appear to be more coherent and

become more two-dimensional. The CT of 2D and 3D simulations now collapse to the same

value(s). These 2D structures are found to persist at around AD = 1 or StA = 0.3 in all three

types of motion. The beginning of 2D flow structures is accompanied by propulsive wakes

evolving to reverse Bénard-von-Kármán in coupled motion or to asymmetric/deflected in

heave and pitch. When AD increases even higher, the 3D flow structures reappear eliminating

the uniform 2D structures. They are followed by a substantial discrepancy in CT between 2D

and 3D simulations. The vortices appear to breakdown along the spanwise direction in the

wake and this breakdown starts to creep up to the trailing-edge with increasing amplitude,

which is consistent with the observations of Moriche et al. (2016). The flow structures at the

trailing-edge are more “chaotic” along the spanwise direction, while the leading-edge vortices

are relatively coherent along the span even at higher AD.

The appearance of uniform 2D structures in all three types of motion shows that 2D simula-

tions would indeed be sufficient over a certain range of Strouhal numbers, but the ranges are

not the same for the three types of motion. The range is very limited for heaving motion,

while the range is very similar for both pitching and coupled motions but the transition to



26 Chapter 3 Influence of three dimensionality on infinite flapping foil

(a)

(b)

(c)

Figure 3.3: 3D iso-surfaces of ωz on mean thrust-coefficient CT versus trailing-edge am-
plitude AD graph showing structure transitions at (a) heaving, (b) and pitching (c) coupled
motions. Shaded areas locate 2D structures and non-shaded for 3D structures. Complete

wakes can be viewed in Appendix B
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3D is earlier for the coupled motion. The similarity between pitching and coupled motion

is understandable as the coupled motion is dominated by pitch motion in these current sim-

ulations. A heave dominant coupled motion would lead to the breakdown of 2D structures

earlier and the range would be more similar to heaving-only motions.

3.3.2 Effect of spanwise domain size

Figure 3.4: Convergence of CT and CT variance with reduction in spanwise domain.

In order to isolate the effect of spanwise domain size of the 3D simulations on the above

observed results, a series of simulations with different spanwise lengths were carried out. All

the simulations were confined at one kinematics: coupled motion at AD = 0.25 where 3D

structures begin to re-organise into 2D structures. Figure 3.4 shows that even when the span

is reduced at 0.75C, the CT and CT variance are almost constant and the 3D structures

remain significant. This signifies the importance of the three-dimensionality of the spanwise

vortices. This also suggests that a small spanwise domain length might be sufficient to capture

the 3D effects provided the kinematics are in a certain range of amplitudes and frequencies.

3.3.3 Statistics of thrust coefficient

Along with the appearance of uniform 2D structures, the statistics of force coefficients (CT

and CL) i.e. average, maximum, minimum and variance are similar for both 2D and 3D

simulations. At lower and higher AD when 3D structures appear, the force coefficients in 2D

simulation exhibit very high levels of fluctuations. Similar force-coefficient fluctuations are

shown for 2D simulation by Taira & Colonius (2009) for stationary flat-plates at a higher

angle of attack.

Figure 3.5 presents the comparison of CT evolution for both 2D and 3D simulation for pitching

motion. The tendency of CT evolution for heaving and coupled motion are similar (not

presented here for brevity). It can be seen that the 2D simulations exhibit cycle-to-cycle

variations at lower and higher AD while these variations are minimal for the intermediate

amplitude. The cycle-to-cycle variations for the 3D simulations are weaker and only apparent

for the low amplitude case. It was also found that both 2D and 3D simulations converged

faster for the intermediate amplitude since the variations in the flow and the forces are

minimal.



28 Chapter 3 Influence of three dimensionality on infinite flapping foil

(a) (b) (c)

Figure 3.5: CT comparison between 2D and 3D simulations of pitching motion for ten-
cycles at (a) AD = 0.0625, (b) AD = 1 and (c) AD = 3.75.

3.3.4 Spanwise vorticity

The instantaneous ωz and the phase-averaged ωz for 2D and 3D simulations are compared in

Figure 3.6. For the 3D simulations, the vorticity is first spanwise-averaged prior to comparing

it with 2D simulations. The presented figures are the cases where 3D structures appear at the

lowest and the highest AD in coupled motion. These are representative and similar features

are observed in other kinematics as well.

As seen in figure 3.6(a) for a flapping amplitude of AD = 3.75, the instantaneous cases

for 2D and 3D simulations differ mainly in the wakes. The wakes in 2D simulation appear

to be aperiodic and perhaps more chaotic. Meanwhile, the span-averaged vorticity in 3D

simulations appears “cleaner” and more converged, making phase-averaging easier. This is

because, in 3D simulations, the effect of spanwise averaging eliminates small perturbations

in ωz structure. However, in 2D simulations, this is not possible. Any small variation is

exacerbated since there is no smoothing process and leads to the appearance of a chaotic

wake.

In phase-averaged coupled motion (similar to other kinematics), the LEVs appear to be

slightly smaller for 2D simulations compared to 3D simulations due to “jitter” in the position

of these vortices over different cycles. On the other hand, both types of simulations preserve

one vortex pair behind the trailing edge. In the “far” wake, 2D simulations are chaotic

since the vortices are strong and their self-induced motions alter the trajectories of the wake.

Moreover, there are no mechanisms that can reduce the strength of these vortices (other

than viscosity) and therefore they remain strong for an extended length/time. For the 3D

simulations, the spanwise length provides a route for the transport of vorticity from the vortex

core, thereby weakening the wakes downstream.

At the lowest AD in figure 3.6(b), the difference between 2D and 3D simulations are not

only in the wakes but also in the separation and recirculation areas. Similar to high AD,

the wakes for instantaneous 3D simulation have the spanwise direction to transport/diffuse

vorticity compared to 2D simulations. Nonetheless, the wake widths of phase-averaged 2D

and 3D simulations are similar. This perhaps explains why the difference in values of CT

in 2D and 3D simulations at lower AD is relatively small. At lower AD, the LEVs in both
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(a)

(b)

Figure 3.6: Instantaneous and phase averaged ωz for coupled motion at (a) AD = 3.75
and (b) AD = 0.0625. The 3D simulations have been span-averaged prior to phase-average.

2D and 3D simulations look similar but the trailing-edge vortices (TEVs) are different due

to recirculation and flow inside the separation region. The vortices in 2D simulations at

the separation region oscillate back and forth, while in 3D simulations they are more stable.

This oscillation appears at a lower frequency than the shedding frequency, which explains the

appearance of additional low-frequency energy content in 2D simulation (see next section).

3.3.5 Fourier analysis of force time-histories

The power spectral density for the thrust coefficient time history is computed and plotted

against frequencies normalised by the flapping frequency in figure 3.7(a). The peak frequency

at f̃ = 1 shows the flapping frequency. The ordinate is pre-multiplied by the frequency and

presented in linear scale to ensure that equal areas under the curve represent equal “energy”.

The term energy here is used to represent the strength of the fluctuations in the signal. In

fact, it should be noted that the total area under the curve is equal to the variance of CT
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(a)

(b)

Figure 3.7: (a) Category division for CT power spectra versus frequency (normalised to
flapping frequency), and (b) CT power-spectra integral or variance in percentage for 3 dif-
ferent ADs. Each 3D-bar is scaled as 100% with its total variance on top, provided with the
category divisions and accompanied by 2D on its left scaled as a percentage corresponding

to the 3D.

signal. Furthermore, the fluctuations can be categorised into three main regimes: f̃ < 1

(low frequency), f̃ = 1 (exactly at the flapping frequency) and f̃ > 1 (high frequency). The

integral of the area under the curve within these regimes provide the contributions from each

of these regimes to the overall fluctuations.

Figure 3.7(b) shows a bar chart that compares the energy in force fluctuations from 2D

simulations to their 3D counterparts. The total variance from the 3D simulations is taken as

the reference to calculate percentages and this numerical value is indicated at the top of the

bars. Consequently, the bars for the 2D simulations are sometimes higher than 100% since

the variance in 2D is higher than 3D simulations. The contributions of three regimes to these

fluctuations are shown in three colours as marked in figure 3.7(a). Different bars are shown

for different kinematics and flapping amplitudes. Two bars on the left are also shown for the

stationary foil where the total energy of 2D simulation is 8 times higher than the 3D value.

However, the absolute values of these fluctuations are orders of magnitude smaller than the

flapping motions as seen from the numerical value on the top of the bars.

It is clear from figure 3.7 that the appearance of coherent 2D structures is accompanied by

a very similar distribution of fluctuations in the three different regimes in 2D and 3D sim-

ulations. Meanwhile, the appearance of 3D structures (spanwise variations) is accompanied
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by the discrepancy of force-fluctuation variance between 2D and 3D simulations where 2D

simulation tends to exaggerate the levels of force fluctuations. Pitching has the lowest total

energy among the three types of motion due to the nature of its kinematics, while pure heav-

ing motion produces the largest levels of fluctuations. Meanwhile, coupled motion energy is

slightly lower than heaving because of 90◦ phase-lag between pitching and heaving parts of

the motion.

The vortex shedding frequency of a stationary foil also appears in the flapping foil (as a low

frequency) and can be seen to contribute to force fluctuations for low values of AD. However,

2D simulations exhibit other additional low frequencies, which is stems from cycle-to-cycle

variations as discussed in the previous section. As AD increases, the energy from kinematics

far exceeds the energy from vortex shedding. This explains the transition from 3D to 2D

uniform structures. The energy from kinematics arranges the flow structures into uniform,

reattaching separation zone so that the vortices move consistently from the leading-edge until

detachment at the trailing-edge, leading to more organised downstream wakes. At higher

values of AD, higher harmonic frequencies start to appear and these make a contribution to

the force fluctuations. The contributions from these higher frequencies are significantly higher

in 2D simulations compared to 3D simulations since there are additional higher frequencies

due to the appearance/movement of chaotic vortices as seen in figure 3.6 and figure 3.5.

It is seen that coupled and pitching motions have large contributions (over 20%) from f̃ > 1

at high values of AD. The relative contributions are small for heave motions, however, since

the absolute value of fluctuations in heave motions are much higher than other kinematics

(as seen by the numerical value at the top), the absolute value from f̃ > 1 is very comparable

across different kinematics. This suggests that there could be a universal mechanism that

leads to higher frequency force fluctuations regardless of kinematics. This mechanism could

be related to the breakdown of the leading-edge vortices along the spanwise direction. This

is further explored below.

3.3.6 Breakdown of LEVs

The transition from 2D back to 3D with increasing AD is expected to be due to spanwise

instability that leads to the breakdown of the vortices. As they grow in strength, vortices

burst and form non-uniform small structures along the span. This breakdown appears to

be at different values of AD for different kinematics. This can be examined by calculating

the circulation of the leading-edge vortex for different values of AD and different kinematics.

Figure 3.8 shows the variation in the circulation of LEVs, now represented as a Reynolds

number (with Re = Γ/ν). This circulation is calculated as the integral of vorticity over a box

as shown in the inset in figure 3.8. This box was chosen at a given phase where a vortex is just

shed from the leading-edge separation bubble. Since the frequency of flapping is the same for

all simulations, the location and size of this box did not have to change across the different

kinematics. The sensitivities for box sizes and locations are provided in figure 3.9 showing

that Γ is robustly estimated as long as the integration region encloses the LEV pinch-off
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Figure 3.8: Evolution of leading-edge vortex circulation over kinematic viscosity along the
increase of AD. The flow above dotted black line show 3D structures.

location. Finally, a comparison of the circulation between 2D and 3D simulations did not

reveal any noticeable difference before the vortices start to breakdown. This is because we

are examining the “first” vortex that is shed, which are very similar regardless of the case.

The figure indicates that Reynolds numbers (or the circulation) of the LEVs appear to grow

exponentially with increasing AD. The rate of increase is different for different kinematics.

The growth in heaving is the fastest among the three types of motion indicated why it has

the shortest range of Strouhal numbers with 2D structures. In comparison, pitching and

coupled motions have a more gradual growth leading to wider ranges for the presence of

2D structures. It should be noted that the coupled motion is dominated by pitching and

therefore resembles the pitching kinematics.

(a) (b)

Figure 3.9: Sensitivity analysis for heaving at AD = 1.5 (a) box locations and (b) box
sizes. The highlighted box size and location were chosen for the study and the results are

shown in figure 3.8.

The horizontal dotted black line in figure 3.8 indicates the circulation of the LEVs where

uniforms 2D structures transition to 3D structures. The cases where the circulation of LEVs
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are higher than this value show vortex breakdown and smaller-scale structures accompanied

by force fluctuations in higher frequencies. This is universally true regardless of the kine-

matics. This circulation or Reynolds number of LEVs, Γ/ν ≈ 4000 is the critical Reynolds

number where the balance between vortex strength (induced by the kinematics) and viscous

diffusion is lost leading to vortex breakdown. This critical Reynolds number is akin to the

Reynolds number of a cylinder where there is a spanwise breakdown of vortices. However, for

that case, the Reynolds number based on the cylinder diameter is much smaller than 4000.

Regardless, the mechanism for the transition from 2D to 3D type flow structures appears to

be similar. In conclusion, this critical LEV Reynolds number is valid for any kinematics and

freestream Reynolds number but not for different geometry due to the bluff-body drag effect.

3.4 Conclusion

This work demonstrates that spanwise-uniform 2D structures are discovered at intermediate

StA of flapping foil, while strong 3D structures are found at higher and lower StA. These 3D

structures are produced over the span without being initiated by tip effect. In the intermedi-

ate StA region with spanwise-uniform (2D) structures, all statistics of force coefficients (lift

and drag) such as mean, maximum and variance are similar between 2D and 3D simulations.

These 2D structures are found at StA ≈ 0.3 in heaving motion, StA ≈ 0.3–0.6 in pitching and

StA ≈ 0.15–0.45 in coupled motion. Critically, the coupled motion gives a sufficient range for

2D structures to cover the optimal-efficiency StA region for swimming animals mentioned by

Triantafyllou et al. (1993), proving that 2D simulations are valid in this region.

In the regions where 3D vortex structures appear at higher and lower StA, we discover

discrepancy of mean force-coefficients between 2D and 3D simulations and over-prediction in

2D-simulation variances. The appearance of 3D structures at lower StA is accompanied by

more stable LEVs and discrepancies in the separation and recirculation areas. Meanwhile,

the flow field of 2D simulation at higher StA indicates non-dissipative vortices causing high

force fluctuations and disturbance in the wake trajectories, LEVs and TEVs.

By analysing the variance of thrust-coefficient signals, we conclude that the transition from 3D

to 2D vortex wake at intermediate StA is due to the kinematics overwhelming the stationary

foil’s 3D drag wake. This is supported by the fact that the transition occurs at the same

amplitude as the occurrence of reverse Bénard-von-Kármán propulsive wakes. Meanwhile, the

2D-to-3D transition from intermediate to higher StA is due to high-energy LEVs overpowering

the damping effect of viscosity causing the LEVs breakdown at Γ/ν ≈ 4000.

The application of strip theory may still be valid but only at the range of StA where the

flow structures are uniformly 2D. Outside of this, the validity is questionable signifying that

the strip theory should not be applied at high StA or low StA. The 2D-structure window is

found relatively wider in pitch-dominating motion. For manoeuvring and taking off flying,

where heaving motion is significant and normally at higher StA, 3D simulations are necessary

regardless of the effect of tip vortices. In the future, this research will be continued using 3D



34 Chapter 3 Influence of three dimensionality on infinite flapping foil

shape (including tip effect) and 3D motion (rolling and twisting motions) to comprehensively

study the application of strip theory to finite flapping foils.







Chapter 4 Effects of aspect ratio

on rolling and twisting foils

Abstract

Flapping flight and swimming are increasingly studied both due to their intrinsic sci-

entific richness and their applicability to novel robotic systems. Strip theory is often

applied to flapping wings, but such modeling is only rigorously applicable in the limit

of infinite aspect ratio (A) where the geometry and kinematics are effectively uniform.

This work compares the flow features and forces of strip theory and three dimensional

flapping foils, maintaining similitude in the rolling and twisting kinematics while vary-

ing the foil A. We find the key influence of finite A and spanwise varying kinematics

is the generation of a time-periodic spanwise flow which stabilizes the vortex structures

and enhances the dynamics at the foil root. An aspect-ratio correction for flapping

foils is developed analogous to Prandtl finite wing theory, enabling future use of strip

theory in analysis and design of finite aspect ratio flapping foils.

4.1 Introduction

Biologically inspired robotic systems offer benefits in their flexibility, maneuverability, energy

savings, and speed. However, development of bio-inspired micro air vehicles (MAVs) and

autonomous underwater vehicles (AUVs) requires a detailed understanding of unsteady three-

dimensional fluid mechanics of propulsive flapping at intermediate Reynolds-number (Re ≈
1000 − 10000). Because of the cost and complexity of three-dimensional (3D) simulations,

most propulsive flapping studies are conducted using a strip theory approach which assumes

a simplified two-dimensional (2D) flow across the wing sections. However, this approach can

lead to poor engineering predictions for the forces and efficiency due to the inherently 3D

nature of the geometry, motion, and flow structures (Mittal & Balachandar 1995).

The key 3D fluid dynamic effects on a finite flapping foil undergoing 3D motion are spanwise

flow, tip vortices, and 3D instabilities of the vortex wake. Spanwise flow promotes the fluid

35
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dynamic interaction between sections of the wing which can result in high lift generation

(Hong & Altman 2008, Ellington et al. 1996, Maxworthy 2007). The exact mechanism of this

high lift on bird or insect wings is still highly debated between the spanwise flow (Ellington

et al. 1996, Wong et al. 2017, Eldredge & Jones 2019) and downwash-induced flow caused by

the tip (Lentink & Dickinson 2009, Birch & Dickinson 2001, Lu & Shen 2008). In addition,

the tip of a finite foil definitely produces non-planar wakes which have been shown to influ-

ence stall on an impulsively translated flat plates (Taira & Colonius 2009), pitching flat plates

(Hartloper & Rival 2013), revolving wings (Harbig et al. 2013, Jardin 2017, Kim & Gharib

2010, Garmann & Visbal 2014) and a finite foil undergoing 2D kinematics (Dong et al. 2005).

Finally, even on an infinite wing with no tip effect or mean spanwise flow, 3D evolution of

the vortex wake limits strip theory applications. Zurman-Nasution et al. (2020) showed there

is only exist a narrow band of kinematics, for instance at Strouhal number ≈ 0.15 − 0.45

for heaving-pitching motion, where the wake remains two-dimensional and 2D force predic-

tions are accurate. In this 2D range, the motion of the foil stabilize the spanwise-perturbed

3D structures found in the separated wake of a stationary foil, but 3D structures reappear

when the amplitude of motion increases the shed vortex circulation above a 2D viscous sta-

bility limit. This secondary instability along spanwise-aligned vortex tubes also causes the

transition from 2D to 3D flow in circular cylinder wakes (Karniadakis & Triantafyllou 2006,

Williamson 2006). Despite the importance of these effects, wake analysis for finite foils un-

dergoing 3D kinematics is still rare because of the greatly reduced simulation cost when using

2D strip theory.

The key geometric parameter in the flow and forces on 3D flapping foil is the aspect ratio,A,

defined as the square of total wing span length over the planform area. Chopra (2006) pro-

vided potential flow calculations indicating that decreasingA would reduce thrust coefficient

and efficiency. On the contrary, move recent experiments by Fu et al. (2015) show that the

circulation over the tip velocity increases withA but drops atA = 4, potentially explaining

why many insects have low A wings. These contradicting results show the need for simula-

tions detailing the A influence on the flow and forces of wings undergoing 3D kinematics.

For a finite wing undergoing simple 2D pitching motion, pressure and thrust coefficient data

are found to scale well with 1/(1+c′A) where c′ is a constant (Green & Smits 2008, Ayancik

et al. 2019). This is similar to Prandtl finite wing theory although Smits (2019) emphasizes

that this added mass scaling is somehow misleading because it neglects the circulatory forces.

In addition, these studies and others such as (Calderon et al. 2013, Yilmaz & Rockwell 2011)

which use purely 2D kinematics cannot study the contributions of 3D kinematics on the flow

features and force scaling.

The ability to make 3D predictions from 2D simulations using analogous concepts to Prandtl’s

finite wing theory is an intriguing approach for speeding up computations, but it must be

based on a strong understanding of the influence of A on the unsteady 3D flow. In this

work, we provide a detailed analysis using 3D simulations of rolling and twisting foils; a

combination of 3D kinematics that imitates the natural flapping motion of animal’s flippers

(Clark & Bemis 1979, Davenport et al. 1997) but can also be directly mapped to simple
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pitch and heave motion of each section. The addition of 3D twist to the foil kinematics also

relates the current work to previous studies which indicate improved lift (Van Buren et al.

2018, Cleaver et al. 2014) and thrust coefficients (Cleaver et al. 2016, Barnes et al. 2013)

for flexible foils. The instantaneous and phase-averaged vortex structures in the tip flow

and wake, the spanwise flow along the foil, and the unsteady sectional forces on the foil are

studied while aspect ratio is varied. Finally, we relate the sectional forces on the 3D foils

to Prandtl finite-wing theory in order to scale the 2D strip theory force predictions onto 3D

flapping wings.

4.2 Methodology

4.2.1 Geometry and kinematics

(a)

(b)

Figure 4.1: (a) Kinematic illustration for a 3D foil undergoing rolling and twisting motions
whose cross sections are comparable to 2D foil experiencing linearly increased heave and
pitch amplitude along the span. (b) Illustration of 4 phases in one cycle period (T) for pure

rolling kinematic and twisting-rolling combination.

This study uses a NACA0016 foil with chord length C, thickness D = 0.16C, pivot point at

0.25C from the leading edge, a rectangular planform section with span length S, and a tapered

elliptic tip with a length of 1C as shown in Figure 4.1. We will characterize the aspect ratio

by S/C which is varied from 1 . . . 6. The foil is placed in a uniform flow with constant inflow

speed U∞ and a fluid density ρ and the chord-based Reynolds number Re = U∞C/ν = 5300.
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The 3D foil is prescribed to move in either pure roll or a combination of roll and twist, where

roll is defined as rigid rotation around the streamwise axis x and twist is rotation around the

spanwise axis z with linearly increasing amplitude towards the tip, Figure 4.1.

In a strip theory approach, these 3D kinematics are converted into 2D kinematics for each

section along the span. The 2D sectional kinematics can be linearized for small amplitude

roll to simple heave H(t) and pitch θ(t) motion in each spanwise plane, with functional form

H(t) = a sin(2πft) (4.1)

θ(t) = θ0 sin(2πft+ ψ) + θbias (4.2)

θ0 = sin−1
(
a/(0.75C)

)
(4.3)

where f is the cycle frequency of flapping and a and θ0 are the amplitudes of heave and pitch

at each section. The term θbias = 10◦ is a pitch bias angle used to ensure non-zero average

mean lift as in Zurman-Nasution et al. (2020) and the phase difference is set to ψ = 90◦ to

maximize performance (Isogai et al. 1999). In order to isolate the amplitude (which varies

section by section) from the frequency, these motions are characterized as

StD =
Df

U∞
AD =

2a

D
(4.4)

where StD is the thickness-based Strouhal number, AD is the thickness-based amplitude and

in this work we fix StD = 0.3. Combining these two gives the commonly used amplitude-

based Strouhal number StA = StD · AD (Triantafyllou et al. 1991) which is proportional to

the maximum heave velocity on a section Ḣmax = 2πfa scaled by the incoming flow velocity.

Strip theory assumes that both the geometry and the motions change slowly along the span.

The geometric constraint is unavoidably violated at the tip, but the kinematic condition is

still a concern over the rectangular region of the planform. Slowly varying kinematics are

contingent on large aspect ratio; a relationship that can be made explicit by noting that the

pitch amplitude at each section is θ0 = θT z/S where θT is the twist amplitude at the foil

tip, Figure 4.1. Therefore the scaled spanwise derivative of the 2D strip theory kinematics

is C∂zθ0 = θTC/S. The larger the aspect ratio, the smaller this derivative, and the better

strip-theory should apply. Similarly, for small roll amplitude arc-lengthR, the sectional heave

amplitude is a = Rz/S and therefore ∂za = R/S. To focus on the aspect ratio effect, we

prescribe a constant roll amplitudeR = 0.3C from which all other amplitudes are determined.

Another way to measure the spanwise change in 2D kinematics along the foil, used recently

by Wong et al. (2017), is the sectional angle-of-attack α

α(t) = tan−1
( ˙H(t)/U∞)

)
− θ(t) (4.5)

Because ˙H(t) increases towards the tip, so do the sectional angle-of-attack α and it’s time

derivative α̇. Figure 4.2 shows α̇max increases linearly along the span, while trigonometry

causes the change in αmax to taper off near the tip. In either case, the spanwise derivative
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Figure 4.2: The gradient of maximum angle of attack αmax (π rad) towards the tip is
positive with linear rate α̇max (π rad/t).

of these parameters depend inversely on S/C and we show they strongly impact the flow

three-dimensionality.

4.2.2 Numerical methods

For computational consistency, the 2D and 3D simulations use the same solver. Symmet-

ric conditions are enforced on both spanwise boundaries for the finite foil simulation. The

domains extend from the pivot point to 4C at the front, 11C at the rear, 5.5C at the top

and bottom. Meanwhile, the tip distance to maximum spanwise domain is 3.5C. A grid

convergence study with an infinite foil with span length of 3C and periodic spanwise bound-

ary conditions and a 2D foil are used to verify the grid convergence for the lift and drag

coefficients

CL =
Fy

0.5ρSpU2
∞

CD =
Fx

0.5ρSpU2
∞

(4.6)

where Fx, Fy are the integrated fluid force in the global coordinate directions and Sp =

CS + π
4C

2 is the foil planform area. Figure 2.2 in Section 2.2 shows the standard deviation

of the forces predicted using C/∆x = 128 are within 3.3% of simulations with double the

resolution in both 2D and 3D and this resolution is used for all results presented in this work.

The error number presented is associated with mesh.

4.3 Results

In this section, we compare the flow-structure evolutions and forces of foil undergoing rolling

and twisting-rolling motions over one cycle, across four aspect ratios.

4.3.1 Vortex structures

This section presents the qualitative features of the flow structures induced by the 3D kine-

matics on the finite foil. As a representative result, Figure 4.3 visualizes an instantaneous
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snapshot of the turbulent vortex wake using λ2 iso-contours colored by the spanwise vorticity

ωzC/U∞ for an intermediate aspect ratio S = 3C and for both 3D kinematics. The small

turbulent structures indicating vortex breakdown are present for both kinematics. In order

to focus on the most important aspects of the wake, the flow was phase-averaged at phases

t/T = 0, 1/4, 1/2, 3/4. Figure 4.4 shows this simplifies the visualization, revealing the domi-

nant structures which occur every cycle and removing higher frequency turbulent structures

related to vortex breakdown. The pure roll and twist-roll cases have distinct vortex struc-

tures due to their different kinematics, but the periodic formation of the vortices such as

the leading-edge (LEVs), trailing-edge (TEVs) and tip vortices are much more clear in the

phase-averaged representation.

Both the instantaneous flow (Figure 4.3) and the phase-averaged flow (Figure 4.4) show

strong three-dimensionality in their vortex structures along the span. Because the amplitude

of motion increases linearly along the span, the sectional Strouhal StA increases linearly as

well. Starting from the root, we see the vortices are initially coherent and skewed obliquely,

tilted further downstream as you progress towards the tip. This is especially clear in the

near phase-averaged wake, where coherent structures persist all the way to the tip. Both

the coherence and skew are in direct contrast to the complete 3D vortex breakdown found in

the wake of infinite foils heaving and pitching with the same amplitudes (Zurman-Nasution

et al. 2020), and therefore this must be due to the spanwise derivative of the kinematics not

present in the infinite foil case. Indeed, the oblique near-wakes resembles the vortices of delta

or swept wing and hints that the spanwise derivative of the kinematics induces a stabilizing

spanwise flow —as found in swept wings and rotating foils at low revolution angles (Jardin

2017). For this finite foil, the far wake vortex structures break down into 3D non-periodic

turbulence above section z/S = 0.27. This corresponds to a sectional StA = 0.3 where 2D

uniform structures were observed for both pure heaving and heaving-pitching combination

for the infinite foil cases in Zurman-Nasution et al. (2020).

Contrasting the pure roll to the twist-roll case, we see that the tip vortex flow is much

cleaner in the twist-roll case. The correspondence between the instantaneous and phase-

averaged plots shows that the LEV vortex is essentially periodic near the foil, and does not

breakdown until further downstream in the wake. This is due to the twist motion being out

of phase with roll, reducing the angle of attack on the tip, Figure 4.2, and thereby reducing

the strength of the tip vortices. This is further quantified in the next section. In contrast,

the pure rolling TEV begins to breakdown as soon as it separates, see Figure 4.3. This also

implies that the foil tip is more lightly loaded in the roll-twist case, reducing the lift forces

that can be achieved at compared to rolling kinematics, as will be discussed further in the

following sections.

4.3.2 Aspect-ratio effects

This section presents results on the influence ofA on the flow and forces. Figure 4.5 compares

the instantaneous wake structures for S = 3C and S = 6C for a foil undergoing pure roll.
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Roll Twist-roll

Figure 4.3: Instantaneous vortex wake visualization at t/T = 0.5 for both kinematics and
S = 3C. Vortices are visualized with isocontours of λ2 colored by dimensionless spanwise
vorticity ωzC/U∞. Free-stream flow U∞ is flowing right to left and spanwise scale given in

z/S.

Motion t/T = 0 t/T = 0.25 t/T = 0.5 t/T = 0.75

Roll

Twist-
Roll

(a)

Figure 4.4: Phase-averaged velocities for pure rolling and twisting-rolling motions for S =
3C. Visualization as in Figure 4.3.
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3C 7C

Figure 4.5: Instantaneous flow at t/T = 0.5 for finite foils undergoing the same pure roll
kinematics. Labels contrast the relatively weaker wake vortices on the centerline (z = 0)
and less turbulent tip flow on the S = 6C foil compared to S = 3C. Visualization as in

Figure 4.3.

Note that the 2D kinematics on each z/S slice match between these cases, e.g. StA = 0.3

on z/S = 0.27 for both foils. Therefore the strip theory solution is identical for the two

cases, while the 3D simulations show obvious important differences. Because the span is

twice as long, the spanwise derivatives of the kinematic parameters StA, α, α̇ are half as

strong, weakening the three-dimensionality of the flow. First, the turbulent tip flow and

wake breakdown is less uniform in the S = 6C case, with a few clean vortex structures

identifiable over a longer span length. In addition, the center-line (z = 0) reversed Kármán

vortex street is completely different between the 3C and 6C cases. As the foil is motionless at

the centerline, these vortices would not even appear in a strip theory approach, and as they

are far from the tip, they isolate the influence of the spanwise derivative of the kinematics on

the 3D flow. Figure 4.5 shows that the S = 6C foil allows characteristics of the infinite foil

to appear, including very weak and 3D vortex structures in regions with very low amplitude

(Zurman-Nasution et al. 2020). This area is dominated by the stationary foil vortex-shedding

induced only by the bias angle of attack θbias = 10◦.

These effects are reiterated and quantified in Figure 4.6 which shows the phase-averaged flow

across the full range of tested S/C. As before, the kinematics for each z/S slice match across

the foil sizes. The plot also quantifies the viscosity scaled circulation of the tip vortices (Γx)

and centerline vortices (Γz). The circulation is computed by integrating the phase-averaged

vorticity over a rectangular slice through the vortex cores (see Fig.4.6 insets) and are kept

the same size as span is varied, but not between Γz and Γx. The tip vortices are seen to

dominate a larger portion of the flow as A is reduced, as expected. However, the relative
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Motion 1C 2C 3C 6C

Roll

Twist-roll

Figure 4.6: Phase-averaged flow for pure roll and twist-roll motions for different aspect
ratios at t/T = 0.5. Flow visualization as inFigure 4.3. Inset figure I1 shows the spanwise
vorticity on a center-line slice and I2 shows the streamwise vorticity on a slice through the

tip. The inset tables give the viscosity-scaled circulation of the shed vortices.

strength of the tip vortices only grows by a factor of 2 as the span is reduced from S = 6C to

S = C for either motion type. A much stronger effect is observed in the center-line (z = 0)

circulation of the vortices in the reversed Kármán street. Fig.4.6 quantifies that these vortices

strengthen by an order of magnitude when the span is reduced from S = 6C to S = C for

the pure roll case, and nearly two orders of magnitude for the twist-roll case.

To further quantify the impact ofA on the flow, Figure 4.7 shows the phase-averaged pressure

coefficient Cp = P/(0.5ρU2
∞) at three slices along the span for the twist-roll case. The roll

case is similar and so not shown. We find that all A produce a similar Cp distribution near

the tip (z/S = 1), whereas the near-root pressure coefficient is substantially higher for lower

aspect ratios. This is in agreement with the wake circulation findings and supports that the

near-root sections are dominated by the spanwise derivative in the kinematics.

Finally, Figure 4.8 shows the phase-averaged lift coefficient CL for all span lengths and both

pure roll and twist-roll kinematics over a motion cycle. First, we note that the relative

magnitude of the lift is substantially reduced when adding twist to the kinematics. This is
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(a) (b) (c)

Figure 4.7: Phase-averaged pressure coefficient of twisting-rolling foil for cross sections
z/S = (a) 0.02, (b) 0.27 and (c) 1.0, at t/T = 0.5 for upper and lower side of the foil. Section

close to tip is kinematic dominated, whereas the one close to root is gradient dominated.

(a) (b)

Figure 4.8: Phase-averaged lift coefficient CL evolution for various S/C of foil undergoing
(a) roll and (b) twist-roll motions over one cycle.

because twist is out of phase with roll, reducing the angle of attack (Figure 4.2) and therefore

unloading the foil. Comparing the results within each kinematic case, we can see that despite

the large differences in the flow and the Cp distribution, the lift coefficients are quite similar.

A clear difference in the force response shown in Figure 4.8 is the large bumps in CL on the

shortest foil at around t/T = 0.4, 0.9 during roll and t = 0.6, 0.1 during twist-roll. These

large lift forces are due to the LEV remaining near the foil longer, and thereby reducing the

local pressure substantially.

4.3.3 Spanwise flow

The previous section shows that foils with the strongest spanwise derivatives in their kinemat-

ics have stronger three dimensionality which increases the strength of their wake vorticities

and increases the stability of their LEV, both of which increase pressure forces. Previous

work in revolving wings suggests that spanwise flow helps stabilize and keep LEVs attached

by draining their vorticity outboard (Wong & Rival 2015, Jardin 2017) and we next investi-

gate if spanwise flow is induced by the kinematic derivatives on 3D flapping wings.
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(a) (b)

Figure 4.9: Sectional spanwise velocity normalized by the heave velocity at each z/S
section for (a) roll, and (b) twist-roll at t/T = 0.5. Solid/dashed lines indicate flow on the

upper/lower side of the foil. Positive values indicate flow towards the tip and vice versa.

We define the sectional spanwise flow velocity over the foil surface as US
±

= 1
C

∫ C
0 US(x±)dx

where US is the flow velocity tangent to the foil surface and perpendicular to the free stream

direction, x is the position on C, and ± represents either the velocity on the upper or lower

surface of the section. Figure 4.9 plots this quantity scaled by the maximum sectional heave

velocity Ḣmax ∝ z/S at each section along the span.

The figure shows US is roughly proportional to Ḣmax ∝ z/S from the mid span to the tip for

both pure roll and twist-roll. As the span length increases (i.e. for higher A) this relatively

flat region occurs earlier and the strength of the spanwise velocity decreases, both of which

indicate a more 2D flow. Close to the root, both the heave velocity and spanwise velocity

go to zero by symmetry, but their ratio is finite and ∼ 1 . Also note the strength of the

spanwise velocity for twist-roll is smaller than for pure roll due to relative decrease in the

kinematic derivative in that case. The drop in spanwise velocity for S = 6C at z = S shown

in Figure 4.9 marks the location of strong vortex breakdown in Figure 4.5 and indicates that

the small spanwise derivative of the kinematics for this large aspect ratio case is not sufficient

to overcome the spanwise vortex instabilities found on an infinite foil (Zurman-Nasution et al.

2020).

4.4 Discussion

The spanwise derivative in the 3D flapping foil kinematics has been shown to induce a span-

wise flow of proportional strength and this has a strong impact on the flow field. This
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(a) (b)

Figure 4.10: Peak sectional lift coefficients against U2
k = Ḣ2

max/U
2
∞ for (a) roll and (b)

twist-roll kinematics for 3D foils of different spans. Strip theory results from 2D foils with
the same kinematics are also shown.

Table 4.1: 3D slope (a3D) change based on aspect-ratio compared to a2D for t/T = 0.5.
The slopes are measured using best-fit linear trend lines to the peak sectional lift from the

root up to z/S = 0.8. Data from t/T = 0 produce the same trend (not presented here).

Roll at t/T = 0.5, a2D = 6.52 Twist-roll at t/T = 0.5, a2D = 5.55
s/c AReff a3D(pred) a3D(sim) |ε| (%) a3D(pred) a3D(sim) |ε| (%)

6 7.2 5.07 4.06 24.8 4.46 4.47 0.2
3 4.2 4.37 4.37 0.2 3.92 4.10 4.4
2 3.2 3.97 4.13 3.9 3.59 3.81 5.9
1 2.2 3.38 3.74 9.5 3.10 3.18 2.5

spanwise flow overwhelms the documented behaviour of flapping infinite foils where the vor-

tex strength is proportional to the scaled kinematic velocity StA, and vortex instabilities

leading to 3D structures are found at both very low and high StA (Zurman-Nasution et al.

2020). On a finite wing undergoing 3D kinematics, the spanwise flow helps distribute vortic-

ity along the span, greatly increasing the strength of the vortices at the root and increasing

the LEV stability for foils with short spans. Only the longest span length S = 6C shows

similar behavior to infinite foils since the spanwise derivatives and spanwise flow are small.

Nominally these values will falls to zero as the span length grows infinitely. Even for S = 6C

the vortex structures are generally 3D and it is only safe to apply 2D strip theory to cross

sections experiencing medium Strouhal number StA ∼ 0.3.

However, the forces on the foil are much less sensitive to A than the wake, implying that it

could possible for a simple model to modify 2D strip-theory sectional forces to approximately

predict 3D finite foil loading. Consider the sectional lift coefficient Cl(z/S) =
∮
Cpnyds/C,

where s is the 1D path around the z/S foil section, such that CL ∝
∫ S
0 Cldz/S. Figure 4.10

shows the peak Cl at each section along the span of the finite wings as well as from 2D

simulations with the same sectional kinematics. Again, the kinematics at each value of z/S

match for all 3D and 2D simulations, and so the strip theory predictions must be modified

to represent finite wing sectional forces.
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The unsteady Bernoulli equation suggests that the peak sectional lift should scale with the

peak kinetic energy of the foil section, i.e. 1
2ρḢ

2
max. Figure 4.10 tests this scaling by plotting

peak Cl against a normalized sectional kinetic energy U2
k = (Ḣmax/U∞)2 ∝ St2A. We see that

this scaling hold linearly for the 2D strip theory, and monotonically for the 3D sectional lift.

Indeed, the slope of the peak sectional lift a3D = dCL/d(U2
k ) changes with the aspect ratio,

tending towards the strip theory slope as S/C increases. This lift-curve slope, a3D can be

determined using Prandtl’s lifting line theory (Anderson 2017) as,

a3D =
a2D

1 + a2D/πA
(4.7)

where a2D is the lift-curve slope of the 2D case. This finite-length correction developed

for steady flow works surprisingly well to correct the peak sectional lift on flapping foils,

Table 4.1. The only deviation greater than 10% is the S = 6C roll case, where the lack of

significant spanwise flow to stabilize the extremely strong tip vortices has greatly reduced the

sectional lift on the end of the foil. In contrast, the corrected strip theory prediction have

less than 6% error for all the 3D foils undergoing twist-roll case because of its more moderate

loading.

In addition to the slope, the peak sectional Cl at the root (z = 0) also depends on S/C,

as isolated in Figure 4.11. The forces for finite S/C fit a simple power law extremely well,

tending to zero as S/C becomes large in agreement with the strip theory result. The constant

multiplier of the power law depends on the foil shape and tip kinematics.

The scaling from 2D strip simulation with Equation 4.7 begins by providing peak sectional Cls

at the root for a relatively long S/C (infinite foil). The infinite flapping foil at very low StA

or at AD = 0.0625 gives a peak Cl = 1.4 which coincides with the peak Cl value at S/C = 10

for a finite foil in Figure 4.11. The root peak Cl values in Figure 4.11 are extrapolated from

AD = 0.0625 for each of finite-foil cases but relatively close. Using infinite foil simulation

at a very low AD is more appropriate than the stationary infinite foil (AD = 0). This is

because the energy of a very small kinematic is far greater than the vortex-shedding energy

of a stationary foil as shown in Figure 3.7. The difference in power-law equations for roll and

twist-roll at higher S/C is relatively minor. Likewise, the total energy difference between

the heave and coupled motions in Figure 3.7 (b) is very small which will not significantly

contribute to the errors.

4.5 Conclusion

In this work, we analyze the vortex structures and force characteristics of foils with pre-

scribed rolling and twisting kinematics. Using three-dimensional Navier-Stokes simulations

and matched kinematics per cross-section, we study the influence of increasing As up to

an idealized infinite span and compare it with the strip theory (2D analysis). If the A is
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Figure 4.11: Peak sectional Cl at the root z/S = 0.

sufficiently long, the flow induced by a finite foil undergoing 3D kinematics shows character-

istics of the infinite foil flow. However, this flow is still generally 3D and strip theory is only

applicable to the sections experiencing Strouhal numbers with 2D characteristics StA ≈ 0.3

(Zurman-Nasution et al. 2020). By decreasing theA, the spanwise derivative in the applied

kinematics increases, inducing a strong spanwise flow on both upper and lower sides of the foil

(in opposite directions) which promotes flow interaction between the sections. The shortest

aspect ratio (S/C = 1) therefore produces much stronger vortices, particularly at the root

where they are 10-90 times stronger than the longest finite foil (S/C = 6) depending on the

kinematics applied.

Overall, we find that adding a 90◦-lag twist can reduce the vortex breakdown produced by

pure rolling motion near the tip. Twist also delays the LEV detachment. It indicates that

small chordwise flexibility towards the tip, as seen in the animal’s flipper or bird’s wing, likely

promotes more stable vortex structures and possibly improved force production.

The forces on the finite wings are also sensitive to A, but the impact is less extreme than

on the flow structures. We find the peak sectional Cl scales with local St2A, recognized as the

added mass scaling (Garrick 1936, Van Buren et al. 2019), and this scaling becomes linear

in the limit of infinite A. The slope dCl/d(St2A) surprisingly follows the Prandtl finite-wing

trend, i.e. lower slope for lowA and vice versa. This aspect ratio scaling has been reported

to fit the circulatory force by varying aspect ratios (Ayancik et al. 2019, Moored & Quinn

2019, Green & Smits 2008), but this scaling has not been previously used to scale 3D forces

from 2D strips. We find strip theory predictions with an A correction have error below 6%

for a finite wing undergoing twist-roll motion, indicating it is possible to scale the sectional

forces experienced by 3D foils based on results from 2D strips using a version of Prandtl

finite-wing theory.







Chapter 5 Fin sweep angle does

not determine flapping propulsive

performance

Abstract

The importance of the leading-edge sweep angle of propulsive surfaces used by unsteady

swimming and flying animals has been an issue of debate for many years, spurring

studies in biology, engineering, and robotics with mixed conclusions. In this work we

provide results from an extensive set of three-dimensional simulations of a finite foil

undergoing tail-like (pitch-heave) and flipper-like (twist-roll) kinematics for a range of

sweep angles while carefully controlling all other parameters. No significant change in

force and power is observed for tail-like motions as the sweep angle increases, with a

corresponding efficiency drop of only ≈ 2%. The same findings are seen in flipper-like

motion although the efficiency decrease is slightly higher ≈ 13% due to thrust reduction.

This leads to a conclusion that fish tails or mammal flukes can have a large range of

potential sweep angles without negative propulsive impact. A similar conclusion applies

to flippers; although there is a slight benefit to avoid large sweep angles for flippers,

this could be easily compensated by adjusting other hydrodynamics parameters such

as flapping frequency, amplitude and maximum angle of attack to gain higher thrust

and efficiency.

5.1 Introduction

A large fraction of swimming and flying animals use propulsive flapping to move, and there

are significant potential applications for this biologically inspired locomotion in engineering

and robotics. As such, significant research effort has been devoted towards understanding

and optimizing both the kinematics and morphology of the propulsion surface itself, with a

particular emphasis on explaining propulsive efficiency.

49
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Figure 5.1: Collection of biologist data for sweep angles and aspect ratioA for fish caudal
fins and mammal flukes (in red) and flippers, pectoral fins, and wings (in blue) shows the
extremely wide scatter across this evolutionary parameter space for different successful ani-
mals. The current computational study takes place over sweep angles from 20◦ − 40◦ (grey

rectangle) and A = 2, 4, 8 to maximize the relevance to biological propulsive surfaces.

The leading edge sweptback angle is a key geometric feature observed in fish tails, mammal

flukes, aquatic-animal flippers, bird and insect wings. There have been extensive studies

collecting sweep back angle data from a variety of animal propulsion surfaces. The data in

Figure 5.1 are collected from marine mammals (Fish & J. 1999), fish caudal fins (Magnuson

1978), flyer wings (Hubel et al. 2016, Von Busse et al. 2012, Klaassen van Oorschot et al.

2016, Willmott & Ellington 1997, Pennycuick 1968), and aquatic animal flippers and pectoral

fins (Gurdek Bas et al. 2015, Fish & Battle 1995, Carpenter et al. 2010, Rivera et al. 2013,

Sato et al. 2010, Russo et al. 2015, Astarloa et al. 2008, Rambahiniarison et al. 2016) (see

Appendix C for detail). There is a strong correlation between fin aspect ratio, A, and

kinematics. Undulatory motion (such as pectoral fins of skates and rays) are limited to the

low A ≈ 2 fins, while the highest A ≥ 8 region is populated only by flippers and wings

which performing rolling and twisting motions, such as penguins and most plesiosaurs. Most

fish caudal fins, mammal flukes and many flippers and wing are found in the intermediate

A region. In contrast, the sweep angle Λ dependence is much less clear, with flippers and

propulsive pectoral fins spanning a wide range of angles. While some individual studies

indicate that increased sweep angles are correlated with animals with lower aspect ratios

A fins, there is extensive variation between animals within the groups and no strong trend

is found when including all the groups using propulsive flapping. Additionally, there are

hundreds of differences in the specific geometry and kinematics of each of these animals and

just as many biological pressures other than propulsive efficiency at play, making it difficult

to conclusively determine the influence of sweep angle from biological data directly.

Focused engineering studies have also been applied to determine the impact of sweep angle
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on the performance of flapping propulsion surfaces. While these would hopefully clarify the

issues at play, the findings are somewhat contradictory, especially between analytical and

experimental analysis. Most analytical studies using lifting-line theory indicate sweep is

advantageous, increasing the thrust and propulsive efficiency (Liu & Bose 1993, van Dam

1987, Chopra & Kambe 2006). While such methodologies are effective at determining lift

characteristics on steady wings, they cannot model unsteady rotational three-dimensional

flow, including the evolution of vortices that form at the fin’s leading edge and tip which

lead to the high forces observed in flapping foil propulsion (Liu et al. 2015, Zurman-Nasution

et al. 2020).

While some experimental studies have measured a small flapping propulsive benefit to sweep,

the effect is smaller than the analytic studies and other experiments have found no impact at

all. A study on the spanwise flow caused by sweep angle found that it did not stabilize the

LEV on an impulsively heaved foil (Beem et al. 2011), in contrast to the known stabilizing

effect on a stationary wing. Another study reported affected forces and vortex strength on a

45◦-sweptback flapping plate for relatively big LEV produced by an impulsively heaved plate

Wong et al. (2013). Insignificant force change is also seen in the experiment of manta robot

with rolling flexible flippers (Arastehfar et al. 2019). Varying sweep angle from zero to 60◦ in

rotating wings were reported with no stabilized LEV (Lentink & Dickinson 2009). For pure

pitching flat plate, the data of circulation time-histories show varying reduced frequencies

can change the LEV circulation slightly more on the lower frequency cases (Onoue & Breuer

2017). This indicates that it is important to test a variety of kinematics relevant to the

problem, as well as controlling for as many other parameters as possible, something which is

very difficult to accomplish in physical experiments.

5.2 Methodology

In this work, we carefully isolate the effect of varied sweep angles from all other geometric

parameters to help address the conflicting and scattered results of previous biological, ana-

lytical and experimental studies. Using 3D unsteady numerical simulations, we add sweep to

a simple base geometry and test its flapping propulsive performance for two types of biolog-

ically inspired kinematics, i.e. tail-like and flipper-like motions, Figure 5.2(a). We also test

the combined impact of A and sweep as well as other kinematic parameters to determine

the relative influence of sweep angle on propulsive flapping.

The prescribed form of the heaving H(t) and pitching θ(t) functions are given by

H(t) = A sin(2πft) (5.1)

θ(t) = θ0 sin(2πft+ ψ) (5.2)

θ0 = sin−1(A/l∗) (5.3)
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(a) (b) (c)

Figure 5.2: Diagram of the propulsive fin geometry and kinematics. (a) Foil planform
with various sweep angle Λ for two different kinematic i.e. (b) fishtail-like kinematics i.e.
pitch-heave combined with A = 4, and (c) flipper-like kinematics i.e. twist-roll combined

with A = 8. Phase steps per cycle are denoted from 1© to 4©.

where θ0 the trailing-edge tip rotation amplitude, and the phase difference ψ = 90◦ are set

based on the maximum performance for 2D motions (Isogai et al. 1999). The twist is defined

equivalently to pitch, with the amplitude increasing with distance from the root section. The

pivot point of pitch and twist is at the leading edge of the root section. The roll motion is

simply rotation about the inline axis, and the amplitude is set to achieve the same amplitude

A.

The correlation methods in Figure 5.7 (b) use widely known Pearson coefficient of correlation

between two continuous sets of data, and correlation ratio between a category set and a

continuous data set. A correlation ratio is defined as√∑
x nx(yx − y)2∑
x,i(yxi − y)2

(5.4)

where

yx =

∑
i yx,i
nx

, y =

∑
x nxyx∑
x nx

, (5.5)

x category in each observation yxi, i index, nx the number of observation in category x, and

yx is the mean of category x.

Symmetric conditions are enforced on both spanwise boundaries for the finite foil simulation.

The domains extend from the pivot point to 4C at the front, 11C at the rear, 5.5C at the

top and bottom. Meanwhile, the tip distance to the maximum spanwise domain is 3.2C. The

grid convergence study provided in Figure 2.2 using an infinite foil with a span length of 6C

in Re = 5300 as a comparison of time-averaged thrust coefficient for different resolutions.

The zero-mean standard deviation for force coefficients converge to within 3.3% error of the

finer mesh simulations (for 2D and 3D simulation) using a resolution of C/∆x = 128. As a

balance between the grid resolution and the number of simulations, this resolution is deemed

sufficient to captures the dynamics of the flow.

Specifically, we define our geometry to use a NACA0016 foil cross-section with chord length

C, defined parallel to the inflow the U∞, and thickness D = 0.16C. A rectangular planform
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is combined with a tapered elliptic tip with a length of 1C. The sweep angle Λ, defined in

Figure 5.2, is varied from Λ = [20◦, 30◦, 40◦] to cover the most populated biological range,

Figure 5.1. As the sweep is adjusted, the tip-to-tip foil span B is adjusted to maintain the

desired aspect ratio A = B2/Sp, where Sp is the planform area. As with sweep, we use a

wide range ofA =[2, 4, 8] to cover most propulsive surfaces found in nature. The chord-wise

Reynolds number Re = U∞C/ν = 5300, where ν is the fluid kinematic viscosity, is kept fixed

to isolate the influence of the geometry and kinematics.

This geometry is subjected to sinusoidal “tail-like” and “flipper-like” motions diagrammed

in Figure 5.2. The tail-like kinematics are inspired by measurements of fish caudal fins and

mammal flukes and made up coupled heave and pitch motions, Fig 5.2(b). The flipper-

like kinematics are inspired by aquatic animal pectoral flippers and bird/insect wings, and

is made up twist and roll motions, Fig 5.2(c). These motions are quantified by Strouhal

number St = 2Af/U∞ and reduced frequency k∗ = fl∗/U∞, where f is the motion frequency,

2A is the total perpendicular amplitude envelope for the motion, and l∗ is a length-scale

equal to the total inline extent L for tail-like motions and B/2 for flipper-like motions.

The majority of the simulations use a fairly low frequency k∗ = 0.3 and high amplitude

2A = l∗ condition to imitate the average mammal-fluke kinematics as reported in biologist

data (Fish & J. 1999), and the Strouhal number St = 0.3 is fixed in the middle of the

optimal thrust production range (Triantafyllou et al. 1991). A few special cases outside these

conditions were also simulated: A flipper-like motion using higher k∗ = 0.6 and St = 0.6

to imitate penguin and turtle swimming data with high roll and twist angles to maintain

high propulsion and efficiency due to high A. Also, a tail-like motion at lower amplitude

A = 0.13l∗ and much higher frequency at St = 0.46 inspired by recent robotics studies at

similar operating conditions (Zhu et al. 2019, King et al. 2018).

5.3 Impact of sweep on wake structures and propulsive char-

acteristics

A set of example simulation results for both tail-like and flipper-like motions are shown in

Figure 5.3, with the flow’s vortex structures visualized using the Q-criterion (King et al.

2018). These wake visualizations show that small scale features such as the generation of

small turbulent vortices depends on both the geometry and the kinematics. However, the

large-scale underlying flow structures illustrated in the bottom row sketches are the same

for a given set of kinematics; changing the sweep angle from 20◦ to 40◦ simply shifts and

scales those structures. Specifically, for the tail-like motions in the left column, the leading

edge vortex (LEV) detaches from the top of the fin halfway along the inline length l∗ = L

for tail-like motions. Similarly, while increasing the sweep angle pushes the LEV back for

flipper-like motions, the separation for both cases occurs around 70% along the fin width

l∗ = B/2 for these cases. The period and wavelength of the trailing wake structures also

scale with l∗ because we have used l∗ to define the reduced frequency k∗ and the amplitude
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(a)
(b)

(c)
(d)

(e) (f )

Figure 5.3: Flow structures generated by tail-like and flipper-like propulsive swimming at
position 1© shown in Figure 5.2. Tail-like motions are depicted in pitch-heave for (a) Λ20,
(c) Λ40 for A= 4, and flipper-like motions as in twist-roll for (b) Λ20, (d) Λ40 for A= 8.
Instantaneous vortex structures are visualized using iso-surfaces with 1% of Qmax colored
by the spanwise vorticity ωzC/U∞. Illustration of vortex-shedding process every half period

(l∗/(2k∗U∞)) of cycle for (e) tail-like motion and (f) flipper-like.
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envelop 2A = l∗. In other words, the sweep angle does not fundamentally change the resulting

propulsive flow around the fins other than changing the characteristic length l∗.

We can quantify this invariance of the flow in terms of the integrated propulsive metrics; the

coefficients of thrust CT lift CL and power CPow as defined in Equation 2.2 and Equation 2.3,

and also the propulsive efficiency η defined as

η =
FxU∞

P
=

CT

CPow
(5.6)

where measured thrust force (Fx), lift force (Fy), and power (P ) are calculated from the

integration of pressure and viscous forces over the foil. Sp is the foil planform area and

overline signifies cycle averaging.

The tail-like kinematics exhibit insignificant changes in the statistics of the force-coefficients

with the increase of sweep angle, Fig. 5.4(a). There is a small increase in the range of

lift coefficient (maximum and minimum CL) as well as and the mean and maximum power.

However, the thrust coefficients (CT ) show minimal change. This causes the efficiency (η),

i.e. the ratio of average thrust to power, to decrease from 31% to 29% as the sweep angle

increases. The flipper-like kinematics as presented in Fig. 5.4(b) show the same tendency as

the tail-like other than the mean CT which drops with increasing Λ. This condition makes the

flipper-like motions lose ≈ 13% efficiency between Λ20◦ and Λ40◦, while the tail-like motions

only drop ≈ 2.2%.

We next check the significance of the sweep angle and different A. For tail-like motion, we

halve the A while maintaining the same St and k∗, Figure 5.5 (a). As a result, the statistic

trends are even more insignificant than A = 4 especially the decrease in power coefficients,

with an efficiency loss of only ≈ 1.7%.

We use flipper kinematics to check the performance of long A ≈ 8 foils since nearly flippers

tend to have higher A, Figure 5.1. In addition, turtles and penguins are observed to use

higher frequency and higher twist amplitude (Rivera et al. 2013, Bannasch et al. 1994).

This combination of kinematics is important because the observed large roll amplitude and

frequency induces a high local angle of attack αmax towards the end of the foil, which would

increase drag and reduce efficiency if applied alone. The increase in twist angle compensates

for this, limiting αmax toward the foil tip to maintain high efficiency (Hover et al. 2004,

Zurman-Nasution et al. 2020). In our tests withA= 8 the large roll-angle amplitude 30◦−45◦

and high twist-angle amplitude 45◦ − 60◦ increase propulsive CT while maintaining similar

sectional maximum angle of attack αmax. As such, these optimized flipper-like kinematics

improve the efficiency, which now only drops ≈ 6% for various sweep angle because CT are

almost constant.

We also studied the other two proposed arguments for the benefit of increased sweep angle

i.e. the LEV detachment delay and its effect in moment coefficients. Our simulations do not

see any significant delay on the LEV detachment benefited from sweptback angle variation,
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(a)

(b)

Figure 5.4: Statistics of (a) tail-like and (b) flipper-like kinematics with the variation of
sweep angle Λ on A = 4 foil, St = 0.3, and k∗ = 0.3. The tail-like cases in (a) correspond
to those shown in Figure 5.3(a,c). Statistics are presented as the mean of coefficients of lift
force (CL), thrust force (Ct) and power (Cpow), shown in dashed lines, while grey shade
represents the range the maximum and minimum values over a cycle. Force statistics are
generally constant while a slight increase in power reduces the average efficiency η when Λ

increases.

Figure 5.6. Contrarily, Wong et al. (2013) reported a modulated CL peak for rolling high-

A flat plate between Λ45◦ and Λ0◦, because their ratio of LEV width to chord length are

relatively big (unlike flipper) affecting slightly the LEV detachment timing in between the

two sweep angles. The similarity in the LEV appearance on Λ20◦ and Λ40◦ (Figure 5.3) can

also indicate why there is no CL peak delay meaning that the LEV stability does not change

with Λ. Depending on the kinematics andA, there are slight variations in the breakdown of

the main vortex structures, but this is not observed to have a consistent or significant impact

on the force statistics.

We have checked the coefficients of moment for A 2, 4 and 8, but there is also no signifi-

cant alteration on the coefficients of pitching and rolling moment caused by the sweep-angle

variation (see Appendix E).



Chapter 5 Fin sweep angle does not determine flapping propulsive performance 57

(a)

(b)

Figure 5.5: Sweep angle variation even become more insignificant in different A such as
(a) lower A = 2 of tail-like in St = 0.3 and k∗ = 0.3, and (b) higher A = 8, St = 0.6, and
k∗ = 0.6 of the flipper-like motion for optimum thrust and efficiency shown in Figure 5.3 (b)

and (d).

5.4 Discussion

Finally, the 12 simulation cases discussed above and 27 others are collected in Figure 5.7(a)

using parallel coordinates to simultaneously present the geometric and kinematics inputs and

the propulsive statistics outputs in one graph along with their correlations in Figure 5.7(b).

The complete data are presented in Appendix D. Here, the main inputs are the motion types,

sweep angles, As, and flapping amplitude A/l∗. Different St and k∗ are represented by two

flapping amplitudes for biological-inspired (high amplitude, low frequency) and engineering-

inspired (low amplitude, high frequency) motions, whereas different motion types represent

the change in αmax. Only cases with negligible CL are presented while CL RMS data are

presented as one of the outputs together with CT , CPow and η. Full data are presented in

the Appendix D.

These plots summarize our primary finding that the sweep angle is not responsible for the

large potential variation in propulsive statistics we have observed over this simulation set.

The large variation in the sweep angle explains low correlation coefficients with the outputs.

Similarly the A lines, for instance A = 4, spread all over the output range. It shows that
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(a) (b)

Figure 5.6: Lift coefficient of (a) tail-like and (b) flipper-like motion in Figure 5.4 in one
cycle period (T). Both graphs show no LEV detachment delay as Λ increases.

the influence from the sweep angle, the A and their combination on the flow are secondary

compared to other parameters.

Unlike Λ andA, the kinematics inputs i.e. motion and A/l∗ show higher correlations to the

outputs especially motion to the efficiency. Combined motions are seen to be more beneficial

than single motions as shown in Figure 5.7(a). The efficiencies above 25% belong to the

cases with combined motions and higher amplitude (biological-inspired) conditions, with

flipper-like motion giving the highest efficiency. All types of motion with lower amplitude

(engineering-inspired) gives efficiencies between 4%-20% with combined motions and pure

pitching giving higher efficiencies above 13%. The tail-like motions with high frequency

(engineering-inspired) produce relatively higher CT than the flipper-like, and single motions

in animal operating condition give no benefit at all. High correlations of output with motion

indicate a similar correlation with the αmax or spanwise derivative of maximum angle-of-

attack as previously concluded in Chapter 4. Other strong correlations are seen in the

forces and power to the amplitude A/l∗ input indicating a similar correlation to the flapping

frequency and St. The correlations prove that modification of kinematic parameters is more

influential than the planform geometry for propulsive flapping.

5.5 Conclusion

In conclusion, we have fixed other parameters so that they do not interfere with the main

parameters i.e. the sweep angle and A. This method produces a more extensive and more

reliable analysis for the influence of sweep angle in propulsive flapping foil. Generally, we

have seen no advantages for having sweptback leading-edge of flapping with tail-like motions.

Despite no benefit, having swept planform also does not contribute to a significant disad-

vantage. This can explain why biologist data for fish caudal fins and mammal flukes have

a greater range of sweep angle and look scattered on a wider range of aspect ratio. From a

biology perspective, this signifies that the so-called fastest fishes from the Scombridae family
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(a)

(b)

Figure 5.7: The relations from 39 simulations among the various inputs and output pa-
rameters i.e. the mean thrust coefficient CT , zero-mean standard deviation σ0CT , mean
power coefficients CPow and efficiency η, are presented in (a) a parallel-coordinate graph
with grey shaded inputs, and (b) a heat-map graph of correlation coefficients using Pearson
and correlation ratio with a box highlighting Λ correlation. Continuous lines in Fig.(a) are
for the tail-like and dotted lines for the flipper-like motions. The lines on the output area
of Fig.(a) regroup to their 3-color Λ showing that sweep angles have an insignificant impact
on the output in spite of the large input variation convinced by the correlation values in the

box of Fig (b).
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or mammals from the Delphinidae family can have either high or low sweep angle given any

A range without losing thrust and hurting much of their propulsive efficiency.

Similarly, the sweep angle does not give advantage to flipper-like motions, but an increased

sweep angle tends to lose efficiency due to increased power requirements and loss of thrust,

although this loss can be mitigated by optimizing the kinematics. The sweep angle also does

not affect the lift coefficient, which is beneficial as flippers are also used as a lift regulator

in animal swimming (Cooper et al. 2008). Overall, flippers can be sweptback but need to

compensate by increasing tip frequency and Strouhal number to recover the lost thrust force.



Chapter 6 Summary and outlook

This work studies the flow characteristic of flapping foil seen in animal propulsors mainly using

3D simulations, while at the same time presents the possibilities to relate the 3D simulation

from the 2D or the strip theory, and characterizes the 3D, 2D flows and their transitions. As

previously stated in Chapter 1, the flow over an infinite bluff body experiencing 2D kinematics

is reported to not always produce 2D flow in experiments. There are transitions from 2D

to 3D flow structures that have been reported for a non-oscillating cylinder in low-Reynolds

experiments caused by 2 types of instabilities, i.e. the braid centrifugal and the shear layer

instability. Some numerical studies also show this transition in oscillating foil just after the

deflected wakes. The causes of these transitions are unclear, contributing to the confusion of

whether strip theory is or is not valid for infinite flapping-foil studies.

Meanwhile, a finite foil experiencing heave, pitch, or rotation is bound to 3D flow mainly

due to the 3D effects such as the tip vortex, aspect ratio, and spanwise flow affecting the

foil’s vortex dynamic, forces and efficiency. Tip vortex and aspect ratio are general finite

foil’s characteristics but the spanwise flow is mainly found in a rotating foil or a delta wing.

Similar to infinite foil, using strip theory can produce incorrect flow fields but 3D effects add

more complexities. Literatures show that using 2D simulation, when the flow is affected by

3D effects, produces irregularity and fluctuation of forces in stationary bodies, along with the

low base-pressure reading and overprediction of mean drag and lift coefficients.

Flapping foils are extensively studied in this work using 3D simulations starting from their

flow characteristics, 3D effects, comparison with 2D simulations and applications in biological

swimming/flying. Firstly, an infinite foil is combined with 2D kinematics of heaving, pitching

and their combination to explain where 2D simulation or strip theory can be applied and

where it cannot. Secondly, the flow over a finite foil with 3D kinematics of rolling, twisting

and their combination is studied along with the influence of the tip, A, and the appearance

of spanwise flow. A finite foil experiencing 3D kinematics similar to flipper-like motion is the

least studied compared to the one experiencing 2D kinematics or tail-like motion, leaving a

room to analyse their special flow characteristics. The flow is expected to have a combination

of a finite foil with 2D kinematics and the beginning phase of revolving foil. The twist motion,

i.e. increasing pitching amplitude along the span (twist), is introduced which imitates the

flipper motion during pronation-supination. This is an approach of controlled flexibility which

combines the benefits of having chordwise and spanwise flexibility. Lastly, the spanwise flow
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effect is studied in the form of a sweptback angle as found in natural planforms such as

fishtails, mammal flukes, flippers and wings. Biologist data of sweep angles for flapping

foils are relatively scattered in a wider range of A, unlike the stationary swept/delta wings

that have clear limits on stability effect. One literature describes the sweep angle benefit

for birds during gliding for drag reduction, but the effect during constant flapping should

not necessarily the same. Several analytical results show promising advantages while other

experimental studies find the opposite. Brief summaries are further explained in each of the

following sections, listing the important findings from three main projects in Chapter 3 to

Chapter 5.

6.1 Influence of three dimensionality on infinite flapping foil

Flapping foil kinematics can regulate the flow into spanwise-uniform or 2D flow when the

flow previously exhibits spanwise perturbation (3D flow) in stationary foil promoted solely

by 10◦ bias angle in shear-layer transition flow Re ≈ 103–104. These 2D ranges can be found

at medium Strouhal number StA ≈ 0.3 in heaving, pitching and the coupled motions, with

the ranges of pure pitching and coupled motions are slightly wider. The 2D range for coupled

motion lies at StA ≈ 0.15–0.45 similar to the optimal Strouhal numbers for swimming animals

found by Triantafyllou et al. (1993). In the 2D ranges, the flow characteristics are similar

between 2D and 3D simulations creating a possibility to apply strip theory. Outside of these

ranges, either below or above the medium StA, running 2D simulation will incorrectly model

the 3D characteristics of the flow. The flow in 2D simulations will produce non-dissipative

vortices creating wake disturbance and high force fluctuations. It is conclusive that applying

the strip theory outside of the 2D range will provide incorrect flow fields.

The transition from 3D flow in stationary foil into 2D flow in medium Strouhal number is

mainly promoted by the kinematics. Meanwhile, the 2D-to-3D transition at higher Strouhal

number is caused by increased energy in the vortices that overpower the viscous effect. While

the shear layer transition for infinite stationary cylinder happens at Re ≈ 270 (Williamson

2006), the transition for infinite flapping foil happens at higher Reynolds numbers ReLEV ≈
4000. The 2D-to-3D transition is not related only after the wake deflection as previously

stated by Deng & Caulfield (2015), Deng et al. (2016). The wakes in our case are naturally

deflected due to the bias angle, yet the flow can still be regulated into 2D in medium StA by

the kinematics.

6.2 Effects of aspect ratio on rolling and twisting foils

A finite foil experiencing 3D kinematics like flipper motion produces more complicated vortex

dynamics and wakes than an infinite foil due to aspect ratio and tip effects. The 2D charac-

teristics from the infinite foil at medium StA = 0.3 are similar, but the flow at the lowest StA

(root section) does not exhibit any spanwise perturbation ifA is not relatively long. This is
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due to the strong flow interaction between sections indicated by the appearance of spanwise

flow, similar to rotating and delta wing cases, whose strength evolves with the variation of

aspect ratio.

The cross-sections of the foil experience a spanwise kinematic-derivative or a change of angle

of attack along the span towards the tip due to roll. The shorter the aspect ratio, the stronger

the spanwise derivative affects the flow. As theA is reduced, augmentations are seen in the

peak of spanwise flow, near-wake circulation at the root, tip circulation and root CL . As the

aspect ratio is progressively increased to reach idealised infinite span, the case of S/C = 6,

the characteristics of infinite foil re-appear reducing all those values to the minimum. The

root section is now dominated by spanwise perturbation and vortex dissipation seen in the

infinite stationary-foil case.

Adding a quarter-cycle twist, or progressive pitch towards the tip, decreases the maximum

angle of attack attained by a pure rolling motion, and so does the spanwise derivative. The

combination of twist and roll causes lower peak values of the spanwise flow, circulations and

forces such as CL. However, these conditions are apparently advantageous to reduce vortex

breakdown at the tip and near wakes, and also to prolong the attachment of the vortices.

Despite all the 3D flow characteristics in finite foil with 3D kinematics, the average values

of peak CL show that it is still possible to use scaled 2D-simulation. The evolution of CL

derivative over the St2A —the added mass or body acceleration component—surprisingly

follows the Prandtl finite wing theory. Each of the finite foil’s slope can be scaled from 2D

(strip) CL and aspect ratio. It opens the possibility to scale even at the sectional level of CL

from 2D simulation while the aspect ratio is varied.

6.3 Fin sweep angle does not determine flapping propulsive

performance

Several biologists hypothesize the importance of having a sweep angle for swimming or flying

animals supported by some analytical results. However, experimental results for any single

motion, both impulsive and periodic motions in heaving, pitching and rolling, do not see

significant improvement on the forces, moments and efficiency. (Fish & J. 1999) provide an

extensive data collection of marine mammals for sweep angle withA limitation trend similar

to delta wings described in (Shortal & Maggin 1946). However, adding more data from other

literatures enlarge this collection and make the trend in Figure 5.1 are far scattered covering

the real influence of the sweep angle.

Keeping kinematic and dimension parameters constant helps to isolate the influence of sweep

angle andA, yet they surprisingly do not show significant contribution to the propulsion and

performance. The correlation of sweep angle andA show far less significant compared to the

parameters that build the kinematics such as Strouhal number, reduced frequency, flapping

amplitude and maximum angle of attack. With the adjustment of kinematic parameters,



64 Chapter 6 Summary and outlook

coupled motion can also reach maximum propulsion and optimum efficiency which cannot be

achieved by single motions. It proves that animals can actually have a wider range of sweep

angles and As, as shown in the collection of biologist data, with proper adjustment on the

kinematics to support optimum propulsive performance.

6.4 General conclusion and outlook

The following important remarks conclude all the studies we have done for flapping foils.

1. The strip theory application is possible for flapping foils as long as their kinematics are in

the ranges of medium Strouhal numbers, close to the optimum performance of swimming

animals, where the flow is generally two dimensional. Applying strip theory outside of

these ranges produces incorrect flow fields.

2. Even though general finite-foil flows are three dimensional, the sectional average of peak

force coefficients can be scaled using Prandtl finite wing theory from 2D simulations, thus

facilitate the use of scaled strip theory for various A finite foils.

3. For flipper-like motion, the spanwise derivative of kinematics drives the sectional flow

distribution, and its effect is stronger as A decreases.

4. Combination of two motions both in two-dimensional (tail-like) and three-dimensional

motions (flipper-like) are more advantageous for propulsion and efficiency. It explains

why animals have more variety of motions for lift-based locomotion.

5. Once a flapping kinematic is added, the parameters that generally affect stationary-foil

such as sweep angle andA are far less significant compared to the kinematic parameters.

6. The flow characteristics of each of single kinematics are distinct, and so are the combi-

nation motions which are not the product nor addition of the singles.

In the future, several items below are worthwhile to consider for the next flapping foil research.

1. Animals are able to control the flow over their propulsors through bone movement ac-

comodating a flexible morphing in addition to the propulsor’s structural flexibility. It is

interesting to study in detail the 3D controlled flexibility in a wider range instead of some

single-axis flexibility.

2. We have understood that coupled motions are different than the combination of two

single motions. Thus, a combination of three kinematics might also produce a unique

flow. Two single motions, i.e. surge (2D) and yaw (3D), have not been studied in this

work as either single of a part of combined motions.
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3. We also have not studied the combination between any 2D and 3D motions. Shark tails

are seen to have a combination of pitch, heave and twist.

4. Despite the extensive research and publications for animal locomotion, animals behave

differently in captivity than in nature where they are more unpredictable due to the

adjustment of environmental conditions. For future experimental fluid dynamics, an in-

situ measurement tool —such as underwater PTV (Particle Tracking velocimetry) —is

favorable to record the flow fields of swimming animals in their natural habitats.





Appendix A Wake shape

BvK 2P

2P+2S P+S

2S 2P evolving into 2S

rBvK Deflected wake

Figure A.1: Wake shed types based on Williamson & Roshko (1988), Andersen et al. (2016)
produced with BDIM 2D simulations. Type P means vortex pair and S means single. Type
2S is an indicator of drag-to-thrust transition, whereas BvK is a drag-producing and rBvK is
a thrust-producing. Deflected wakes here is a thrust producing while the remaining of other

types are mostly drag producing.
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Appendix B Infinite foil wake
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Table B.1: 3D spanwise-vorticity contour at StD = 0.3 for infinite foil experiencing heave,
pitch and coupled motions

AD (StAStAStA) Heave Pitch Coupled

0.0625 (0.019)

0.125 (0.037)

0.25 (0.075)

0.5 (0.15)

1.0 (0.3)

1.5 (0.45)

2.0 (0.6)

3.0 (0.9)

3.75 (1.125)



Appendix C Biologist data

Table C.1: Sweep angle and A data from various literature

Species name Common name Body part A Λ(◦) Source

Delphinapterus leucas Beluga Fluke 3.3 29.9

Fish & J. (1999)Delphinapterus leucas Beluga Fluke 4 14.6

Delphinapterus leucas Beluga Fluke 3.4 27.7

Cephalorhynchus commer-

sonii

Commerson Dolphin Fluke 3.3 37.5

Delphinus delphis Dolphin Fluke 4 33.1

Delphinus delphis Dolphin Fluke 3.5 36.3

Delphinus delphis Dolphin Fluke 3.9 31.7

Delphinus delphis Dolphin Fluke 3.8 32.5

Delphinus delphis Dolphin Fluke 4.1 34.1

Delphinus delphis Dolphin Fluke 4.5 36.2

Delphinus delphis Dolphin Fluke 4.9 34.7

Delphinus delphis Dolphin Fluke 4.4 31

Delphinus delphis Dolphin Fluke 4.2 32.9

Delphinus delphis Dolphin Fluke 4.5 37

Delphinus delphis Dolphin Fluke 4.1 34.6

Delphinus delphis Dolphin Fluke 4.3 32.6

Delphinus delphis Dolphin Fluke 4.1 34.4

Grampus griseus Risso Dolphin Fluke 5.7 29.9

lnia geoffrensis Amazon river dolphin Fluke 2 42.8

lnia geoffrensis Amazon river dolphin Fluke 2.6 38.9

Lagenorhynchus acutus Atlantic white-sided dol-

phin

Fluke 3.9 41.3

Lagenorhynchus acutus Atlantic white-sided dol-

phin

Fluke 4 39.6

Lagenorhynchus acutus Atlantic white-sided dol-

phin

Fluke 3.9 40.5

Lagenorhynchus acutus Atlantic white-sided dol-

phin

Fluke 4.8 35.3

Lagenorhynehus obliq-

uidens

Pacific white-sided dolphin Fluke 4.4 36.9

Lagenorhynehus obliq-

uidens

Pacific white-sided dolphin Fluke 4.8 29

Lagenorhynehus obliq-

uidens

Pacific white-sided dolphin Fluke 4.5 29.4

Lagenorhynehus obliq-

uidens

Pacific white-sided dolphin Fluke 4.7 32.1
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Lipotes vexillifer Baiji fresh-water dolphin Fluke 3.1 40.4

Lissodelphis borealis Northern right whale dol-

phin

Fluke 3.1 38.6

Pseudorca crassidens false killer-whale dolphin Fluke 5 28.5

Pseudorca crassidens false killer-whale dolphin Fluke 4.6 29.1

Pseudorca crassidens false killer-whale dolphin Fluke 6.2 26

Steno bredanensi Rough-toothed dolphin Fluke 4 30

Stenella clymene Clymene dolphin Fluke 5.2 23.6

Stenella coeruleoalba Striped dolphin Fluke 5.2 26.4

Stenella eoeruleoalba Striped dolphin Fluke 5.2 32.3

Stenella eoeruleoalba Striped dolphin Fluke 4.4 26.6

Stenella plagiodon Atlantic spotted dolphin Fluke 4.6 29.2

Stenella plagiodon Atlantic spotted dolphin Fluke 4.3 27.5

Stenella plagiodon Atlantic spotted dolphin Fluke 4 32.1

Stenella plagiodon Atlantic spotted dolphin Fluke 5.3 26.3

Stenella plagiodon Atlantic spotted dolphin Fluke 4 30.3

Stenella plagiodon Atlantic spotted dolphin Fluke 4.1 30.4

Stenella plagiodon Atlantic spotted dolphin Fluke 4.5 25

Tursiops truncatus Bottlenose dolphin Fluke 3.8 34.5

Tursiops truncatus Bottlenose dolphin Fluke 3.6 25.8

Tursiops truncatus Bottlenose dolphin Fluke 3 34.4

Tursiops truncatus Bottlenose dolphin Fluke 3.1 38.8

Tursiops truncatus Bottlenose dolphin Fluke 3.4 34.8

Tursiops truncatus Bottlenose dolphin Fluke 4.1 27.6

Tursiops truncatus Bottlenose dolphin Fluke 3 37.6

Tursiops truncatus Bottlenose dolphin Fluke 4.1 34.4

Orcinus orca Orca Fluke 4.5 27.7

Orcinus orca Orca Fluke 4.9 17.8

Orcinus orca Orca Fluke 5 22.8

Orcinus orca Orca Fluke 5.5 17.3

Orcinus orca Orca Fluke 4.7 4.4

Phoeoenoides dalli Dall’s porpoise Fluke 4.4 5.4

Phoeoenoides dalli Dall’s porpoise Fluke 4.8 12.3

Phocoena phocoena Harbour porpoise Fluke 3.5 32

Phocoena phocoena Harbour porpoise Fluke 3.9 35.2

Globicephala

macrorhynchus

Pilot Whale Fluke 5.8 27.1

Globicephala

macrorhynchus

Pilot Whale Fluke 5.2 29.3

Globicephala

macrorhynchus

Pilot Whale Fluke 5 14.4

Globicephala melaena long finned pilot whale Fluke 4.6 33.7

Kogia breviceps Pygmy sperm whale Fluke 3.7 36.3

Kogia breviceps Pygmy sperm whale Fluke 5.1 25.8

Kogia breviceps Pygmy sperm whale Fluke 3.9 33.4

Mesoplodon densirostris Blainville’s beaked whale Fluke 5.1 28.2

Mesoplodon europaeus Gervais’ beaked whale Fluke 4.8 26.9

Mesoplodon europaeus Gervais’ beaked whale Fluke 4.1 33.3

Mesoplodon europaeus Gervais’ beaked whale Fluke 5.3 26.9

Mesoplodon europaeus Gervais’ beaked whale Fluke 5.1 28.5

Mesoplodon mirus True’s beaked whale Fluke 4.8 31.4

Peponocephala electra Melon-headed whale Fluke 4.4 34.2
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Ziphius cavirostris Cuvier’s beaked whale Fluke 3.8 30

Ziphius cavirostris Cuvier’s beaked whale Fluke 3.9 31.7

Ziphius cavirostris Cuvier’s beaked whale Fluke 3.7 39.3

Scomber japonicus Pacific mackarel Caudal fin 3.8 47.5
Magnuson

(1978)
Sarda chiliensis Pacific bonito Caudal fin 4.6 44

Auxis rochei Bullet mackarel Caudal fin 6.6 31.5

Euthynnus affinis Kawakawa Caudal fin 6.55 35

Euthynnus pelamis Skipjack tuna Caudal fin 6.85 35

Thunnus albacores Yellowfin tuna Caudal fin 6.35 43.5

Thunnus obesus Bigeye tuna Caudal fin 6 42

T. Brasiliensis Bat Wing 8.2 38 Hubel et al.

(2016)M. Velifer Bat Wing 6.2 35.65

Leptonycteris yerbabuenae Bat Wing 6.95 12 Von Busse et al.

(2012)

Falconidae Falcon Wing 4.2 26.5 Klaassen van

Oorschot et al.

(2016)

Accipitridae Hawk Wing 4.1 23

Strigidae Owl Wing 3.75 16.5

Hawkmoth Manducs Sexta Hawkmoth Wing 5.48 20.37 Willmott &

Ellington (1997)

Columba Livia Pigeon Wing 6 30 Pennycuick

(1968)

Megaptera novaeangliae Humpback Whale Pectoral

fin

6.1 19 Fish & Battle

(1995)

Plesiosaurus dolichodeirus Plesiosaurus Fore limb 9.85 18

Carpenter et al.

(2010)

Plesiosaurus dolichodeirus Plesiosaurus Hind limb 10.6 29

Romaleosaurus victor Plesiosaurus Fore limb 9.51 37.5

Romaleosaurus victor Plesiosaurus Hind limb 10.99 45

Thalassiodracon hawkinsi Plesiosaurus Fore limb 9.59 13

Thalassiodracon hawkinsi Plesiosaurus Hind limb 10.29 35

Mola-Mola Ocean sunfish Clavus fin 5.725 15.04 Gurdek Bas

et al. (2015)

Carettochelys insculpta Pig-nosed turtle Fore limb 3.46 77.5 Rivera et al.

(2013)Caretta caretta Loggerhead sea turtle Fore limb 7.92 45

Aptenodytes forsteri Emperor Penguin Pectoral

fin

9.84 26 Sato et al.

(2010)

Rhinoptera bonasus cownose ray Pectoral

fin

4.12 32.2 Russo et al.

(2015)

Dasyatis sabina Antlantic ray Pectoral

fin

1.96 29.78

Dipturus argentinensis longnose skate Pectoral

fin

1.96 31 Astarloa et al.

(2008)

Manta alfredi Manta ray Pectoral

fin

6.52 25.58 Rambahiniarison

et al. (2016)





Appendix D Sweep angle andA

simulation results

Table D.1: Simulation results for sweep angle and A variation

Motion St k∗ A/l∗ A Λ(◦) CT σ0CT CPow η (%)

Pitch-Heave 0.3 0.3 0.5 4 20 2.36E-01 2.36E-01 7.48E-01 31.5

Pitch-Heave 0.3 0.3 0.5 4 30 2.29E-01 2.29E-01 7.79E-01 29.4

Pitch-Heave 0.3 0.3 0.5 4 40 2.37E-01 2.37E-01 8.07E-01 29.4

Twist-Roll 0.3 0.3 0.5 4 20 2.95E-02 2.95E-02 6.75E-02 43.7

Twist-Roll 0.3 0.3 0.5 4 30 2.66E-02 2.66E-02 7.11E-02 37.4

Twist-Roll 0.3 0.3 0.5 4 40 2.34E-02 2.34E-02 7.44E-02 31.4

Pitch 0.3 0.3 0.5 4 20 -2.55E-01 -2.55E-01 3.77E-01 0.0

Pitch 0.3 0.3 0.5 4 30 -2.94E-01 -2.94E-01 3.83E-01 0.0

Pitch 0.3 0.3 0.5 4 40 -3.35E-01 -3.35E-01 3.79E-01 0.0

Heave 0.3 0.3 0.5 4 20 3.28E-02 3.28E-02 1.10E+00 3.0

Heave 0.3 0.3 0.5 4 30 3.67E-02 3.67E-02 1.20E+00 3.1

Heave 0.3 0.3 0.5 4 40 3.66E-02 3.66E-02 1.28E+00 2.9

Roll 0.3 0.3 0.5 4 20 -1.64E-04 -1.64E-04 2.32E-01 0.0

Roll 0.3 0.3 0.5 4 30 -3.13E-03 -3.13E-03 2.14E-01 0.0

Roll 0.3 0.3 0.5 4 40 -7.24E-03 -7.24E-03 2.05E-01 0.0

Pitch-Heave 0.3 0.3 0.5 2 20 1.92E-01 1.92E-01 6.43E-01 29.9

Pitch-Heave 0.3 0.3 0.5 2 30 1.74E-01 1.74E-01 6.16E-01 28.2

Pitch-Heave 0.3 0.3 0.5 2 40 1.82E-01 1.82E-01 6.37E-01 28.6

Twist-Roll 0.6 0.6 0.5 8 20 1.59E-01 1.59E-01 3.64E-01 43.6

Twist-Roll 0.6 0.6 0.5 8 30 1.63E-01 1.63E-01 3.97E-01 41.1

Twist-Roll 0.6 0.6 0.5 8 40 1.61E-01 1.61E-01 4.23E-01 38.0

Roll 0.6 0.6 0.5 8 20 2.06E-02 2.06E-02 1.42E+00 1.5

Roll 0.6 0.6 0.5 8 30 5.50E-03 5.50E-03 1.39E+00 0.4

Roll 0.6 0.6 0.5 8 40 -1.11E-02 -1.11E-02 1.33E+00 0.0

Pitch-Heave 0.46 1.77 0.13 4 20 7.95E-01 7.95E-01 5.46E+00 14.6

Pitch-Heave 0.46 1.77 0.13 4 30 8.05E-01 8.05E-01 5.67E+00 14.2

Pitch-Heave 0.46 1.77 0.13 4 40 7.65E-01 7.65E-01 5.56E+00 13.7

Twist-Roll 0.46 1.77 0.13 4 20 1.19E-01 1.19E-01 7.23E-01 16.5

Twist-Roll 0.46 1.77 0.13 4 30 9.76E-02 9.76E-02 6.70E-01 14.6

Twist-Roll 0.46 1.77 0.13 4 40 8.49E-02 8.49E-02 6.29E-01 13.5

Pitch 0.46 1.77 0.13 4 20 2.40E-01 2.40E-01 1.38E+00 17.4

Pitch 0.46 1.77 0.13 4 30 2.11E-01 2.11E-01 1.34E+00 15.7

Pitch 0.46 1.77 0.13 4 40 1.70E-01 1.70E-01 1.21E+00 14.0
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Heave 0.46 1.77 0.13 4 20 2.82E-01 2.82E-01 4.26E+00 6.6

Heave 0.46 1.77 0.13 4 30 3.03E-01 3.03E-01 4.38E+00 6.9

Heave 0.46 1.77 0.13 4 40 3.15E-01 3.15E-01 4.37E+00 7.2

Roll 0.46 1.77 0.13 4 20 3.55E-02 3.55E-02 7.76E-01 4.6

Roll 0.46 1.77 0.13 4 30 3.12E-02 3.12E-02 7.49E-01 4.2

Roll 0.46 1.77 0.13 4 40 2.73E-02 2.73E-02 6.81E-01 4.0



Appendix E Pitching moment

coefficients

Figure E.1: Pitching moment coefficients and pitching-moment RMS for swept cases.

77





Bibliography

Alam, M. M., Zhou, Y., Yang, H. X., Guo, H. & Mi, J. (2009), ‘The ultra-low reynolds

number airfoil wake’, Experiments in Fluids 48(1), 81–103.

Andersen, A., Bohr, T., Schnipper, T. & Walther, J. H. (2016), ‘Wake structure and thrust

generation of a flapping foil in two-dimensional flow’, Journal of Fluid Mechanics 812.

Anderson, J. D. (2017), Fundamental of Aerodynamics, McGraw-Hill series in aeronautical

and aerospace engineering, 6th edn, McGraw-Hill, New York.

Arastehfar, S., Chew, C. M., Jalalian, A., Gunawan, G. & Yeo, K. S. (2019), ‘A relationship

between sweep angle of flapping pectoral fins and thrust generation’, Journal of Mechanisms

and Robotics-Transactions of the Asme 11(1), 1–17.

Astarloa, J. M. D., Mabragana, E. & Hanner, R. (2008), ‘Morphological and molecular evi-

dence for a new species of longnose skate (rajiformes: Rajidae: Dipturus) from argentinean

waters based on dna barcoding’, Zootaxa 1921, 35–46.

Ayancik, F., Zhong, Q., Quinn, D. B., Brandes, A., Bart-Smith, H. & Moored, K. W. (2019),

‘Scaling laws for the propulsive performance of three-dimensional pitching propulsors’,

Journal of Fluid Mechanics 871, 1117–1138.

Bannasch, R., Wilson, R. P. & Culik, B. (1994), ‘Hydrodynamic aspects of design and attach-

ment of a back-mounted device in penguins’, Journal of Experimental Biology 194(1), 83–

96.

Bansmer, S. E. & Radespiel, R. (2012), ‘Validation of unsteady reynolds-averaged navier-

stokes simulations on three-dimensional flapping wings’, Aiaa Journal 50(1), 190–202.

Bao, Y., Kaye, J. & Peskin, C. S. (2016), ‘A gaussian-like immersed-boundary kernel with

three continuous derivatives and improved translational invariance’, Journal of Computa-

tional Physics 316(1505.07529v2), 139–144.

Barnes, C. J., Visbal, M. R. & Gordnier, R. E. (2013), ‘High-fidelity simulations of a flexible

heaving finite-aspect-ratio wing’.

Beem, H. R., Rival, D. E. & Triantafyllou, M. S. (2011), ‘On the stabilization of leading-edge

vortices with spanwise flow’, Experiments in Fluids 52(2), 511–517.

79



80 BIBLIOGRAPHY

Birch, J. M. & Dickinson, M. H. (2001), ‘Spanwise flow and the attachment of the leading-

edge vortex on insect wings’, Nature 412(6848), 729–33.

Buchholz, J. H. & Smits, A. J. (2008), ‘The wake structure and thrust performance of a rigid

low-aspect-ratio pitching panel’, J Fluid Mech 603, 331–365.

Calderon, D. E., Wang, Z., Gursul, I. & Visbal, M. R. (2013), ‘Volumetric measurements and

simulations of the vortex structures generated by low aspect ratio plunging wings’, Physics

of Fluids 25(6), 067102.

Carpenter, K., Sanders, F., Reed, B., Reed, J. & Larson, P. (2010), ‘Plesiosaur swimming

as interpreted from skeletal analysis and experimental results’, Transactions of the Kansas

Academy of Science 113(1/2), 1–34.

Carr, Z. R., Chen, C. & Ringuette, M. J. (2013), ‘Finite-span rotating wings: three-

dimensional vortex formation and variations with aspect ratio’, Experiments in Fluids

54(2).

Chopra, M. G. (2006), ‘Hydromechanics of lunate-tail swimming propulsion’, Journal of Fluid

Mechanics 64(2), 375–392.

Chopra, M. G. & Kambe, T. (2006), ‘Hydromechanics of lunate-tail swimming propulsion.

part 2’, Journal of Fluid Mechanics 79(1), 49–69.

Clark, B. D. & Bemis, W. (1979), ‘Kinematics of swimming of penguins at the detroit zoo’,

Journal of Zoology 188(3), 411–428.

Cleaver, D. J., Calderon, D. E., Wang, Z. & Gursul, I. (2016), ‘Lift enhancement through

flexibility of plunging wings at low reynolds numbers’, Journal of Fluids and Structures

64, 27–45.

Cleaver, D. J., Gursul, I., Calderon, D. E. & Wang, Z. (2014), ‘Thrust enhancement due to

flexible trailing-edge of plunging foils’, Journal of Fluids and Structures 51, 401–412.

Cooper, L. N., Sedano, N., Johansson, S., May, B., Brown, J. D., Holliday, C. M., Kot,

B. W. & Fish, F. E. (2008), ‘Hydrodynamic performance of the minke whale (balaenoptera

acutorostrata) flipper’, J Exp Biol 211(Pt 12), 1859–67.

Davenport, J., Munks, S. A. & Oxford, P. (1997), ‘A comparison of the swimming of marine

and freshwater turtles’, Proceedings of the Royal Society of London. Series B. Biological

Sciences 220(1221), 447–475.

Deng, J. & Caulfield, C. P. (2015), ‘Three-dimensional transition after wake deflection behind

a flapping foil’, Phys Rev E Stat Nonlin Soft Matter Phys 91(4), 043017.

Deng, J., Sun, L. P., Teng, L. B., Pan, D. Y. & Shao, X. M. (2016), ‘The correlation between

wake transition and propulsive efficiency of a flapping foil: A numerical study’, Physics of

Fluids 28(9), 094101.



BIBLIOGRAPHY 81

Deng, J., Sun, L. & Shao, X. (2015), ‘Dynamical features of the wake behind a pitching foil’,

Phys Rev E Stat Nonlin Soft Matter Phys 92(6), 063013.

Dong, H., Mittal, R. & Bozkurttas, M. (2005), Wake structure and performance of finite

aspect-ratio flapping foils, in AIAA, ed., ‘43rd AIAA Aerospace Science Meeting and Ex-

hibit’, Nevada.

Drofelnik, J. & Campobasso, M. S. (2015), ‘Three-dimensional turbulent navier-stokes hydro-

dynamic analysis and performance assessment of oscillating wings for power generation’.

Eldredge, J. D. & Jones, A. R. (2019), ‘Leading-edge vortices: Mechanics and modeling’,

Annual Review of Fluid Mechanics, Vol 51 51(1), 75–104.

Ellington, C. P., vandenBerg, C., Willmott, A. P. & Thomas, A. L. R. (1996), ‘Leading-edge

vortices in insect flight’, Nature 384(6610), 626–630.

Eloy, C. (2012), ‘Optimal strouhal number for swimming animals’, Journal of Fluids and

Structures 30, 205–218.

Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. (2000), ‘Combined immersed-

boundary finite-difference methods for three-dimensional complex flow simulations’, Jour-

nal of Computational Physics 161(1), 35–60.

Fish, F. E. & Battle, J. M. (1995), ‘Hydrodynamic design of the humpback whale flipper’, J

Morphol 225(1), 51–60.

Fish, F. E. & J., R. J. (1999), Review of dolphin hydrodynamics and swimming performance,

Technical report, SSC San Diego.

Floryan, D., Van Buren, T. & Smits, A. J. (2020), ‘Swimmers’ wake structures are not reliable

indicators of swimming performance’, Bioinspir Biomim 15(2), 024001.

Fu, J. J., Hefler, C., Qiu, H. H. & Shyy, W. (2015), ‘Effects of aspect ratio on flapping wing

aerodynamics in animal flight’, Acta Mechanica Sinica 30(6), 776–786.

Garcia, B. F., Weymouth, G. D. & Tutty, O. R. (2017), Analysis of two-dimensional and

three-dimensional wakes of long circular cylinders, in ‘OCEANS 2017’, Aberdeen, pp. 1–8.

Garmann, D. J. & Visbal, M. R. (2014), ‘Dynamics of revolving wings for various aspect

ratios’, Journal of Fluid Mechanics 748, 932–956.

Garrick, I. E. (1936), Propulsion of a flapping and oscillating airfoil, Technical report, Langley

Memorial Aeronautical Laboratory.

Godoy-Diana, R., Aider, J. L. & Wesfreid, J. E. (2008), ‘Transitions in the wake of a flapping

foil’, Phys Rev E Stat Nonlin Soft Matter Phys 77(1 Pt 2), 016308.

Goza, A. & Colonius, T. (2016), ‘A strongly-coupled immersed-boundary formulation for thin

deforming surfaces, with application to elastic beams’.



82 BIBLIOGRAPHY

Green, M. A. & Smits, A. J. (2008), ‘Effects of three-dimensionality on thrust production by

a pitching panel’, J Fluid Mech 615, 211–220.

Gurdek Bas, R., Serra, W., Trinchin, R., Leoni, V., Rubio, L., Sampognaro, L., Nagy, G.,

Cravino, A. & Acuña, A. (2015), ‘Confirmation of mola mola (tetraodontiformes: Molidae)

and historical records of ocean sunfishes (mola sp.) in the coastal area of uruguay’, Marine

Biodiversity Records 8, 1–5.

Hackett, J. E. & Cooper, K. R. (2016), ‘Extensions to maskell’s theory for blockage effects

on bluff bodies in a closed wind tunnel’, The Aeronautical Journal 105(1050), 409–418.

Harbig, R. R., Sheridan, J. & Thompson, M. C. (2013), ‘Reynolds number and aspect ratio

effects on the leading-edge vortex for rotating insect wing planforms’, Journal of Fluid

Mechanics 717, 166–192.

Hartloper, C., Kinzel, M. & Rival, D. E. (2012), ‘On the competition between leading-edge

and tip-vortex growth for a pitching plate’, Experiments in Fluids 54(1).

Hartloper, C. & Rival, D. E. (2013), ‘Vortex development on pitching plates with lunate and

truncate planforms’, Journal of Fluid Mechanics 732, 332–344.

Hong, Y. & Altman, A. (2008), ‘Lift from spanwise flow in simple flapping wings’, Journal

of Aircraft 45(4), 1206–1216.

Hover, F. S., Haugsdal, O. & Triantafyllou, M. S. (2004), ‘Effect of angle of attack profiles

in flapping foil propulsion’, Journal of Fluids and Structures 19(1), 37–47.

Hubel, T. Y., Hristov, N. I., Swartz, S. M. & Breuer, K. S. (2016), ‘Wake structure and

kinematics in two insectivorous bats’, Philos Trans R Soc Lond B Biol Sci 371(1704), 1–

12.

Isogai, K., Shinmoto, Y. & Watanabe, Y. (1999), ‘Effects of dynamic stall on propulsive

efficiency and thrust of flapping airfoil’, Aiaa Journal 37(10), 1145–1151.

Jardin, T. (2017), ‘Coriolis effect and the attachment of the leading edge vortex’, Journal of

Fluid Mechanics 820, 312–340.

Karniadakis, G. E. & Triantafyllou, G. S. (2006), ‘Three-dimensional dynamics and transition

to turbulence in the wake of bluff objects’, Journal of Fluid Mechanics 238, 1–30.

Kim, D. & Gharib, M. (2010), ‘Experimental study of three-dimensional vortex structures in

translating and rotating plates’, Experiments in Fluids 49(1), 329–339.

King, J. T., Kumar, R. & Green, M. A. (2018), ‘Experimental observations of the three-

dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel’,

Physical Review Fluids 3(3), 1–20.

Klaassen van Oorschot, B., Mistick, E. A. & Tobalske, B. W. (2016), ‘Aerodynamic con-

sequences of wing morphing during emulated take-off and gliding in birds’, J Exp Biol

219(Pt 19), 3146–3154.



BIBLIOGRAPHY 83

Koochesfahani, M. M. (1989), ‘Vortical patterns in the wake of an oscillating airfoil’, AIAA

Journal 27(9), 1200–1205.

Lei, C., Cheng, L. & Kavanagh, K. (2001), ‘Spanwise length effects on three-dimensional

modelling of flow over a circular cylinder’, Computer Methods in Applied Mechanics and

Engineering 190(22-23), 2909–2923.

Lentink, D. & Dickinson, M. H. (2009), ‘Rotational accelerations stabilize leading edge vor-

tices on revolving fly wings’, J Exp Biol 212(Pt 16), 2705–19.

Liu, P. & Bose, N. (1993), ‘Propulsive performance of three naturally occurring oscillating

propeller planforms’, Ocean Engineering 20(1), 57–75.

Liu, T. S., Wang, S. Z., Zhang, X. & He, G. W. (2015), ‘Unsteady thin-airfoil theory revisited:

Application of a simple lift formula’, Aiaa Journal 53(6), 1492–1502.

Lu, Y. & Shen, G. X. (2008), ‘Three-dimensional flow structures and evolution of the leading-

edge vortices on a flapping wing’, J Exp Biol 211(Pt 8), 1221–30.

Lu, Y., Shen, G. X. & Lai, G. J. (2006), ‘Dual leading-edge vortices on flapping wings’, J

Exp Biol 209(Pt 24), 5005–16.

Maertens, A. P. & Weymouth, G. D. (2015), ‘Accurate cartesian-grid simulations of near-

body flows at intermediate reynolds numbers’, Computer Methods in Applied Mechanics

and Engineering 283, 106 – 129.

Magnuson, J. J. (1978), Locomotion by scombrid fishes: Hydromechanics, morphology, and

behavior, in W. H. Randall & D.J., eds, ‘Locomotion’, Vol. 7, Academic Press, pp. 239–313.

Maskell, E. C. (1965), A theory of the blockage effects on bluff bodies and stalled wings in a

closed wind tunnel, Technical report, Ministry of Aviation Aeronautical Research Council.

Maxworthy, T. (2007), ‘The formation and maintenance of a leading-edge vortex during the

forward motion of an animal wing’, Journal of Fluid Mechanics 587, 471–475.

Mittal, R. & Balachandar, S. (1995), ‘Effect of three-dimensionality on the lift and drag of

nominally two-dimensional cylinders’, Physics of Fluids 7(8), 1841–1865.

Moored, K. W. & Quinn, D. B. (2019), ‘Inviscid scaling laws of a self-propelled pitching

airfoil’, AIAA Journal 57(9), 3686–3700.

Moriche, M., Flores, O. & Garcia-Villalba, M. (2016), ‘Three-dimensional instabilities in the

wake of a flapping wing at low reynolds number’, International Journal of Heat and Fluid

Flow 62, 44–55.

Muscutt, L. E., Weymouth, G. D. & Ganapathisubramani, B. (2017), ‘Performance augmen-

tation mechanism of in-line tandem flapping foils’, Journal of Fluid Mechanics 827, 484–

505.



84 BIBLIOGRAPHY

Onoue, K. & Breuer, K. S. (2017), ‘A scaling for vortex formation on swept and unswept

pitching wings’, Journal of Fluid Mechanics 832, 697–720.

Pennycuick, C. J. (1968), ‘A wind-tunnel study of gliding flight in the pigeon columba livia’,

J Exp Biol 49(3), 509–526.

Peskin, C. S. (2003), ‘The immersed boundary method’, Acta Numerica 11, 479–517.

Rambahiniarison, J. M., Araujo, G., Lamoste, M. J., Labaja, J., Snow, S. & Ponzo, A.

(2016), ‘First records of the reef manta ray manta alfredi in the bohol sea, philippines, and

its implication for conservation’, Journal of Asia-Pacific Biodiversity 9(4), 489–493.

Ringuette, M. J., Milano, M. & Gharib, M. (2007), ‘Role of the tip vortex in the force

generation of low-aspect-ratio normal flat plates’, Journal of Fluid Mechanics 581, 453–

468.

Rivera, A. R., Rivera, G. & Blob, R. W. (2013), ‘Forelimb kinematics during swimming in the

pig-nosed turtle, carettochelys insculpta, compared with other turtle taxa: rowing versus

flapping, convergence versus intermediacy’, J Exp Biol 216(Pt 4), 668–80.

Rohr, J. J. & Fish, F. E. (2004), ‘Strouhal numbers and optimization of swimming by odon-

tocete cetaceans’, J Exp Biol 207(Pt 10), 1633–42.

Russo, R. S., Blemker, S. S., Fish, F. E. & Bart-Smith, H. (2015), ‘Biomechanical model

of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin

kinematics: implications for bio-inspired design’, Bioinspir Biomim 10(4), 046002.

Sato, K., Shiomi, K., Watanabe, Y., Watanuki, Y., Takahashi, A. & Ponganis, P. J. (2010),

‘Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim

optimally to minimize cost of transport’, Proc Biol Sci 277(1682), 707–14.

Schlichting, H. & Kestin, J. (1979), Boundary-layer theory, 7th ed. edn, McGraw-Hill, New

York ; London.

Schnipper, T., Andersen, A. & Bohr, T. (2009), ‘Vortex wakes of a flapping foil’, Journal of

Fluid Mechanics 633, 411–423.

Senturk, U. & Smits, A. J. (2019), ‘Reynolds number scaling of the propulsive performance

of a pitching airfoil’, Aiaa Journal 57(7), 2663–2669.

Shortal, J. A. & Maggin, B. (1946), Effect of sweptback and aspect ratio on longitudinal

stability characteristics of wings at low speeds, Technical report, National Advisory Com-

mittee for Aeronautics.

Smits, A. J. (2019), ‘Undulatory and oscillatory swimming’, Journal of Fluid Mechanics

874, 1–70.

Taira, K. & Colonius, T. (2009), ‘Three-dimensional flows around low-aspect-ratio flat-plate

wings at low reynolds numbers’, Journal of Fluid Mechanics 623, 187–207.



BIBLIOGRAPHY 85

Theodorsen, T. (1935), General theory of aerodynamic instability and the mechanism of

flutter, Technical report, NASA.

Thomas, A. L. & Taylor, G. K. (2001), ‘Animal flight dynamics i. stability in gliding flight’,

J Theor Biol 212(3), 399–424.

Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. (1993), ‘Optimal thrust

development in oscillating foils with application to fish propulsion’, Journal of Fluids and

Structures 7(2), 205–224.

Triantafyllou, M. S., Techet, A. H. & Hover, F. S. (2004), ‘Review of experimental work in

biomimetic foils’, Ieee Journal of Oceanic Engineering 29(3), 585–594.

Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. (1991), ‘Wake mechanics for

thrust generation in oscillating foils’, Physics of Fluids a-Fluid Dynamics 3(12), 2835–2837.

Uddin, E., Naseem, M. A., Khalid, S. U., Mubashar, A. & Shah, S. R. (2017), ‘Investigation

of the flow around uncambered airfoils at 1000 reynolds number using computational fluid

dynamics for micro air vehicles’.

Uhlmann, M. (2005), ‘An immersed boundary method with direct forcing for the simulation

of particulate flows’, Journal of Computational Physics 209(2), 448–476.

Van Buren, T., Floryan, D., Brunner, D., Senturk, U. & Smits, A. J. (2017), ‘Impact of

trailing edge shape on the wake and propulsive performance of pitching panels’, Physical

Review Fluids 2(1).

Van Buren, T., Floryan, D. & Smits, A. J. (2018), ‘Bio-inspired underwater propulsors’.

Van Buren, T., Floryan, D. & Smits, A. J. (2019), ‘Scaling and performance of simultaneously

heaving and pitching foils’, AIAA Journal 57(9), 3666–3677.

van Dam, C. P. (1987), ‘Efficiency characteristics of crescent-shaped wings and caudal fins’,

Nature 325(6103), 435–437.

Von Busse, R., Hedenstrom, A., Winter, Y. & Johansson, L. C. (2012), ‘Kinematics and wing

shape across flight speed in the bat, leptonycteris yerbabuenae’, Biol Open 1(12), 1226–38.

Wang, S., Zhou, Y., Alam, M. M. & Yang, H. (2014), ‘Turbulent intensity and reynolds

number effects on an airfoil at low reynolds numbers’, Physics of Fluids 26(11), 115107.

Weymouth, G. D. & Yue, D. K. P. (2011), ‘Boundary data immersion method for cartesian-

grid simulations of fluid-body interaction problems’, Journal of Computational Physics

230(16), 6233–6247.

Williamson, C. H. K. (1996), ‘Vortex dynamics in the cylinder wake’, Annual Review of Fluid

Mechanics 28, 477–539.

Williamson, C. H. K. (2006), ‘Three-dimensional wake transition’, Journal of Fluid Mechanics

328(-1), 345–407.



86 BIBLIOGRAPHY

Williamson, C. H. K. & Roshko, A. (1988), ‘Vortex formation in the wake of an oscillating

cylinder’, Journal of Fluids and Structures 2(4), 355–381.

Willmott, A. P. & Ellington, C. P. (1997), ‘The mechanics of flight in the hawkmoth manduca

sexta. ii. aerodynamic consequences of kinematic and morphological variation’, J Exp Biol

200(Pt 21), 2723–45.

Wong, J. G., Kriegseis, J. & Rival, D. E. (2013), ‘An investigation into vortex growth and

stabilization for two-dimensional plunging and flapping plates with varying sweep’, Journal

of Fluids and Structures 43, 231–243.

Wong, J. G., laBastide, B. P. & Rival, D. E. (2017), ‘Flow separation on flapping and rotating

profiles with spanwise gradients’, Bioinspir Biomim 12(2), 026008.

Wong, J. G. & Rival, D. E. (2015), ‘Determining the relative stability of leading-edge vortices

on nominally two-dimensional flapping profiles’, Journal of Fluid Mechanics 766, 611–625.

Wu, T. Y. (2011), ‘Fish swimming and bird/insect flight’, Annual Review of Fluid Mechanics,

Vol 43 43(1), 25–58.

Yilmaz, T. O. & Rockwell, D. (2011), ‘Flow structure on finite-span wings due to pitch-up

motion’, Journal of Fluid Mechanics 691, 518–545.

Zhang, J. (2017), ‘Footprints of a flapping wing’, Journal of Fluid Mechanics 818, 1–4.

Zhou, Y., Alam, M. M., Yang, H. X., Guo, H. & Wood, D. H. (2011), ‘Fluid forces on a very

low reynolds number airfoil and their prediction’, International Journal of Heat and Fluid

Flow 32(1), 329–339.

Zhu, J., White, C., Wainwright, D. K., Di Santo, V., Lauder, G. V. & Bart-Smith, H. (2019),

‘Tuna robotics: A high-frequency experimental platform exploring the performance space

of swimming fishes’, Science Robotics 4(34), 1–12.

Zurman-Nasution, A. N., Ganapathisubramani, B. & Weymouth, G. D. (2020), ‘Influence of

three-dimensionality on propulsive flapping’, Journal of Fluid Mechanics 886, 1–14.


	Table of Tables
	Table of Figures
	Research Thesis: Declaration of Authorship
	Acknowledgements
	Nomenclature
	1 Introduction to Propulsive Flapping
	1.1 Flow physics of oscillating bluff body and flapping foil
	1.2 A perspective of sweptback planform in bio propulsors
	1.3 Dimensionality effect and challenges in flapping foil computational method
	1.4 Boundary data immersion method
	1.5 Goal of thesis, aims and objectives
	1.6 Structures of the thesis

	2 Methodology
	2.1 General parameters
	2.2 Convergence
	2.2.1 Streamwise and lateralwise grid convergence
	2.2.2 Spanwise grid convergence for stationary foil

	2.3 Validation with experiment
	2.3.1 Infinite stationary foil
	2.3.2 Finite flapping foil


	3 Influence of three dimensionality on infinite flapping foil
	3.1 Introduction
	3.2 Methodology
	3.2.1 Kinematics
	3.2.2 Measurement metrics
	3.2.3 Computational method

	3.3 Comparison between 2D and 3D simulations
	3.3.1 Overview and flow structures
	3.3.2 Effect of spanwise domain size
	3.3.3 Statistics of thrust coefficient
	3.3.4 Spanwise vorticity
	3.3.5 Fourier analysis of force time-histories
	3.3.6 Breakdown of LEVs

	3.4 Conclusion

	4 Effects of aspect ratio on rolling and twisting foils
	4.1 Introduction
	4.2 Methodology
	4.2.1 Geometry and kinematics
	4.2.2 Numerical methods

	4.3 Results
	4.3.1 Vortex structures
	4.3.2 Aspect-ratio effects
	4.3.3 Spanwise flow

	4.4 Discussion
	4.5 Conclusion

	5 Fin sweep angle does not determine flapping propulsive performance
	5.1 Introduction
	5.2 Methodology
	5.3 Impact of sweep on wake structures and propulsive characteristics
	5.4 Discussion
	5.5 Conclusion

	6 Summary and outlook
	6.1 Influence of three dimensionality on infinite flapping foil
	6.2 Effects of aspect ratio on rolling and twisting foils
	6.3 Fin sweep angle does not determine flapping propulsive performance
	6.4 General conclusion and outlook

	A Wake shape
	B Infinite foil wake evolution
	C Biologist data
	D Sweep angle and A simulation results
	E Pitching moment coefficients
	Bibliography
	Blank Page



