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Abstract

G protein-coupled receptor kinase 6 (GRKO6) is expressed in various tissues and is involved in the
development of several diseases including lung cancer. We previously reported that GRK6 is down-
regulated in lung adenocarcinoma patients, which induces cell invasion and metastasis. However,
further understanding of the role of GRK6 in lung adenocarcinoma is required. Here we explored the
functional consequence of GRK6 inhibition in lung epithelial cells. Analysis of TCGA data was
coupled with RNA sequencing (RNA-seq) in alveolar epithelial type II (ATII) cells following
depletion of GRK6 with RNA interference (RNA1). Findings were validated in ATII cells followed
by tissue microarray analysis. Pathway analysis suggested that one of the Hallmark pathways
enriched upon GRK6 inhibition is ‘Hallmark Hypoxia’ (FDR = 0.014). We demonstrated that GRK6
depletion induces HIF1a (hypoxia-inducible factor 1 alpha) levels and activity in ATII cells. The
findings were further confirmed in lung adenocarcinoma samples, in which GRK6 expression levels
negatively and positively correlate with HIF 1o expression (P = 0.015) and VHL expression (P <
0.0001), respectively. Mechanistically, we showed the impact of GRK6 on HIF activity could be
achieved via regulation of VHL levels. Taken together, targeting the HIF pathway may provide new
strategies for therapy in GRK6-depleted lung adenocarcinoma patients.

This is a provisional file, not the final typeset article
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GRKG6 in lung adenocarcinoma

1 Introduction

G protein-coupled receptor kinases (GRKs) are a family of kinases that play a critical role in G
protein-coupled receptors (GPCRs) homologous desensitization. GRKs phosphorylate specific serine
and threonine residues of activated GPCRs which promote high affinity binding of arrestins and then
suppress further G protein activation by interrupting receptor-G protein coupling (Bouvier et al.,
1988; Vroon et al., 2006; Raghuwanshi et al., 2013). Desensitization of GPCRs has a critical role in
maintaining homeostasis. As such, abnormal GPCRs desensitization can cause a variety of human
diseases, including autoimmune diseases (Balabanian et al., 2005), asthma (Wang et al., 2009), heart
failure (Rockman et al., 1998), Parkinson’s disease (Gainetdinov et al., 2003), inappropriate diuresis
(Barak et al., 2001) and tumour progression and metastasis (Yu et al., 2018). Therefore, GRKs are
important therapeutic targets for these diseases.

G protein-coupled receptor kinase 6 (GRK6) is a member of the GRK family, which is expressed
in various tissues and involved in the development of several diseases (Willets et al., 2002; Ahmed et
al., 2010; Tiedemann et al., 2010). High expression of GRK6 has been reported in hepatocellular
carcinoma (Li, 2013), colorectal cancer (Tao et al., 2018); whilst lower expression was reported in
hypopharyngeal squamous cell carcinoma (Qiu et al., 2016) compared to normal tissues. Further,
Grk6 knock out mice (Grk6”-) showed a significant increase in the growth and metastasis of Lewis
lung cancer (LLC) compared to the control mice (Grk6'/") (Raghuwanshi et al., 2013). Our previous
study suggested that GRK6 expression was significantly down-regulated in lung adenocarcinoma
patients, and its level was an independent prognostic factor for overall survival (Yao et al., 2016).
Moreover, we also showed that the promoter region of the GRK6 gene was hyper-methylated in lung
adenocarcinoma tissues compared to the normal tissue samples, leading to a down-regulation of
GRKG6 expression and in turn, inducing cell invasion and metastasis (Yao et al., 2019b). However,
further understanding of the role of GRK6 in lung adenocarcinoma is required.

In this study, we aimed to investigate the functional consequence of GRK6 depletion in lung
epithelial cells. Analysis of TCGA data was coupled with RNA sequencing (RNA-seq) in alveolar
epithelial type II (ATII) cells following the depletion of GRK6 with RNA interference (RNA1).
Tissue microarrays were used to investigate the expression and function of GRK6 in lung
adenocarcinoma. Our data suggests that GRK6 depletion induces HIF 1o (hypoxia-inducible factor 1
alpha) activity. Targeting the HIF pathway may provide new strategies for therapy in GRK6-depleted
lung adenocarcinoma patients.
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2 Materials and Methods
2.1 Cell culture, transfections and reagents

ATII (alveolar epithelial type II, kindly provided by Prof Julian Downward, The Francis Crick
Institute, UK) cells (Molina-Arcas et al., 2013; Coelho et al., 2017; Hill et al., 2019; Yao et al., 2019a)
were cultured in DCCM-1 (Biological Industries Ltd) supplemented with 10% new-born calf serum
(NBCS) (Life Technologies), 1% penicillin, 1% streptomycin, and 1% L-glutamine (all from Life
Technologies). All cells were kept at 37 °C and 5% CO». No mycoplasma contamination was detected
in the cell lines used.

Short interfering RNA (siRNA) oligos against GRK6 or control siRNA were purchased from
Biomics Biotechnologies Co., Ltd, China. Sequences were available from an earlier publication (Yao
et al., 2019b). Cells were transfected with the indicated siRNA oligos at a final concentration of 35 nM
using Dharmafect 2 reagent (Dharmacon).

2.2 RNA isolation, library construction, and sequencing

To identify global transcriptomic changes in ATII cells upon GRK6 depletion, RNA sequencing
(RNA-seq) was performed. In brief, ATII cells were transfected with either control siRNA or siRNA
against GRKG6 for 3 days. Total RNA was isolated using an RNeasy mini kit (Qiagen) according to the
manufacturer’s instructions and quantified using a Nanodrop Spectrophotometer 2000c (Thermo
Fisher Scientific). A total amount of 3 pg RNA per sample was used as input material for library
construction. Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep Kit
for Illumina® (NEB, Ipswich, Massachusetts, USA) following the manufacturer’s instructions.
Libraries were pooled in equimolar and sequenced using the paired-end strategy (2 x 150) on the
[llumina NovaSeq 6000 platform following the standard protocols (Novogene, UK). RNA-seq data
have been deposited in the Gene Expression Omnibus (GEO) database (accession code GSE164921).

2.3 RNA-seq data analysis

Quality control of RNA-seq data was performed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC (Ewels et al., 2016). Trim
Galore (https://github.com/FelixKrueger/TrimGalore) was used to trim adapters, reads with low
quality (< 30), and short length (< 50 bp). RNA-seq reads were mapped to Human genome Ensembl
GRCh38 using Hisat2 (Kim et al., 2015) (version 2.1.0) with default codes. Sam files were
transformed into bam files using samtools (Li et al., 2009) (version 1.9). The read counts of each
gene were summarized using featureCounts (Liao et al., 2014) (version 1.6.5). Raw read counts were
imported into RStudio (version 3.6.1) and analysed by using R package of DESeq2 (Love et al.,
2014) (version 1.26.0). Transcripts with low abundance (under 10 counts across all samples) were
removed. Genes with a false discovery rate (FDR) P-value less than 0.05 adjusted by using
Benjamini—-Hochberg (BH) method (or g-value) were considered as differentially expressed genes
(DEGs). Gene ontology (GO) enrichment analysis was generated through ToppGene (ToppGene
Suite for gene list enrichment analysis and candidate gene prioritization) website
(https://toppgene.cchmc.org/). Parameter was set as FDR < 0.05. All downstream analysis was
performed in RStudio (version 3.4.4).

2.4 Data mining GRKG6 related data from the Cancer Genome Atlas (TCGA)

This is a provisional file, not the final typeset article
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The expression of mRNAs in the TCGA lung adenocarcinoma (LUAD) (IlluminaHiSeq) dataset
was obtained from the UCSC Xena Browser (https://xenabrowser.net/). To separate the low and high
GRKG6 group in the TCGA dataset, hierarchical cluster was performed on the high correlated genes
with GRK6 via Pearson analysis in RStudio (version 3.4.4). According to the correlation analysis,
there were 17 samples in the high GRK6 group and 26 samples in the low GRK6 group. Then, an
unpaired ¢-fest was performed to identify significantly expressed mRNAs (FDR < 0.05) between the
high and low GRK6 groups in RStudio (version 3.4.4). Codes are available upon request.

2.5 Identification of top hit genes and pathway analysis

The statistically significant (FDR < 0.05) differentially expressed mRNAs in the TCGA
(IlluminaHiseq) dataset that were highly expressed in the low GRK6 lung adenocarcinoma group
were merged with statistically different genes in the RNA-sequencing dataset, which showed higher
gene expression in siGRK6 samples compared to the control samples by using RStudio (version
3.4.4) to identify the top hit candidate gene(s) (Fig. 2).

For pathway analysis, Metascape (https://metascape.org/gp/index.html#/main/stepl) was used to
detect functional enrichment of the identified top hit genes. The pathways were sorted from lowest g-
value and pathways with a g-value less than 0.05 were chosen to create a histogram plot in GraphPad
Prism 8.

2.6 Western blot analysis

Western blot analysis was performed with lysates from cells lysed with urea buffer (§8M urea, 1M
thiourea, 0.5% CHAPS, 50 mM DTT and 24 mM spermine). The bound proteins were separated on
SDS polyacrylamide gels and subjected to immunoblotting with the indicated antibodies. Primary
antibodies were from Proteintech (GRK®6, Catalog No. 11439-1-AP, 1:1000) BD Transduction
Laboratories™ (HIF1a, Catalog No. 610958, 1:1000) and Cell Signalling Technology (B-tubulin,
Catalog No. 86298, 1:5000). Signals were detected using an Odyssey imaging system (LI-COR) or
an ECL detection system (GE Healthcare, Chicago, IL, USA), and evaluated by ImageJ
(versionl.42q) software (National Institutes of Health) (Berhesda, MD, USA).

2.7 gRT-PCR

Real-time quantitative RT-PCR was performed using gene-specific primers (QuantiTect Primer
Assays, Qiagen) for CA9 (QT00011697), NDRGI (QT00059990) or ACTB (B-actin) (QT01680476)
with QuantiNova SYBR Green RT-PCR kits (Qiagen). Relative transcript levels of target genes were
normalised to ACTB (B-actin).

2.8 Clinical data and tissue samples

The study population comprised of 174 lung adenocarcinoma (LUAD) patients who were
examined and treated at the Thoracic Surgery Department of the Affiliated Hospital of Nantong
University and Thoracic Surgery Department of Second Affiliated Hospital of Nantong University
between January 1, 2015, and December 31, 2016. The median age of patients at the time of
diagnosis was 63 years (range 41-83 years). Study protocol was approved by the Ethics Committee
of the Affiliated Hospital of Nantong University (No. 2018-L068), and all experiments were
performed in accordance with approved guidelines of the Affiliated Hospital of Nantong University.
Written informed consent was obtained from the patients for publication of this study and any
accompanying images. Details of the clinical and demographic information were collected
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retrospectively. All patients underwent standard surgery aiming for maximal tumour resection.
Patient clinical data were recorded in detail, and the diagnoses were confirmed by at least two
pathologists. Tumour histological grades and clinical stages were evaluated according to the
pathological results after surgery. All tumours were staged according to the pathological
tumour/node/metastasis (pTNM) classification (7th edition) of the International Union against
Cancer.

2.9 Tissue microarray (TMA) construction and immunohistochemistry analysis (IHC)

Tissue microarray system (Quick-Ray, UT06, UNITMA, Korea) in the Department of Clinical
Pathology, Nantong University Hospital, Jiangsu, China, was used to generate TMA. Specifically,
core tissue biopsies (2 mm in diameter) were taken from individual FFPE blocks and arranged in
recipient paraffin blocks. TMA specimens were cut into 4 pm sections and placed on super frost-
charged glass microscope slides. TMA analysis was used as a quality control for hematoxylin and
eosin staining. Tissue sections were deparaffinized and rehydrated through graded ethanol. Antigen
retrieval was performed with 0.01 M citrate buffer pH 6.0 and microwave heat induction.
Endogenous peroxidase activity was blocked with 3% H>O; for 30 min. Sections were then incubated
with a rabbit polyclonal antibody specific to GRK6 (1: 100; Proteintech, 11439-1-AP), HIF la
(1:100; Proteintech, 20960-1-AP) and VHL (1:100; Abcam, ab140989) at 4°C overnight, followed by
incubation with a biotinylated anti-rabbit secondary antibody at 37 °C for 30 min. Slides were then
processed using horseradish peroxidase and 3,3-diaminobenzidine chromogen solution and
counterstained with hematoxylin. The staining intensity of GRK6, HIFla or VHL for each slide was
evaluated and scored by two independent pathologists. Staining intensity was scored as follows: 0
(negative), 1+ (weak staining), 2+ (moderate staining), and 3+ (intense staining). For each of the four
staining intensity scores, the percentage of cells stained at each intensity were determined and
intensity percentage score is the product of staining intensity and percentage of staining cells. The
final staining scores were then evaluated from the sum of the four intensity percentage scores; thus,
the staining score had a range from the minimum value of 0 (no staining) to a maximum of 300
(100% of cells with 3+ staining intensity), as described previously (Sun et al., 2014). The cut-off 140
was selected to evaluate: score 0—140 was considered low expression, while 141-300 was considered
high expression. For all subsequent analyses, GRK6, HIF1a and VHL protein expression levels were
considered either as “low” or “high” according to these cut-off values.

2.10 Statistical analysis

Two-tailed, unpaired Student’s #-fest for the TCGA data were performed in RStudio (version
3.4.4). For multiple t-test, P-values were adjusted by using Benjamini-Hochberg (BH) method. Codes
are available upon request. Fisher’s exact test was used to evaluate the relationship of GRK6 and
HIF1a expression in lung adenocarcinoma patient samples in IHC using GraphPad Prism 8 software.
P <0.05 was considered statistically significant.

This is a provisional file, not the final typeset article
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191
192 3 Results

193 3.1 Global transcriptomic changes in ATII cells upon GRK6 depletion

194 We previously reported that GRK6 knockdown promotes cell migration and invasion in lung

195  epithelial cells (Yao et al., 2019b). To determine if, and how, lung epithelial cells responded to GRK6
196  inhibition, we characterised the global transcriptomic changes in alveolar epithelial type II (ATII)
197  cells transfected with either siRNAs against GRK6 (siGRK6) or control siRNA (Control) by

198  performing RNA sequencing (RNA-seq). Principal component analysis (PCA) showed good

199  separation between Control compared to siGRK6 samples (n = 3 in each group) (Supplementary Fig.
200 1).

201 Genes with a false discovery rate (FDR) adjusted P value (or g-value) of less than 0.05 were
202  considered as differentially expressed genes (DEGs). In total, 7,116 DEGs were identified, including
203 3,430 up-regulated (Supplementary Table 1) and 3,686 down-regulated (Supplementary Table 2). We
204  then performed gene ontology (GO) enrichment analysis of the identified DEGs using ToppGene

205  (ToppGene Suite for gene list enrichment analysis and candidate gene prioritization) website

206  (https://toppgene.cchmc.org/). The results were grouped into molecular function (MF), biological
207  process (BP), and cellular component (CC). Interestingly, several disease-related pathological terms
208  were identified, including mRNA metabolism, ribonucleoprotein complex biogenesis, and regulation
209  of cellular response to stress (FDR < 0.05; Fig. 1A and B; Supplementary Tables 3 and 4).

210

211 3.2 Candidate pathways enriched upon GRK6 inhibition are identified by TCGA analysis
212 coupled with RNA-seq

213 To understand the role of GRK6 in lung adenocarcinoma, we performed TCGA analysis coupled
214  with the RNA-seq data described above. As shown in Fig. 2A, correlation analysis was performed in
215  the TCGA lung adenocarcinoma (LUAD) (IlluminaHiseq) dataset; samples were separated into high
216  vs. low GRKG6 expression based on an unsupervised hierarchical clustering (Supplementary Fig. 2).
217  We identified 2,345 genes as differentially expressed in the high vs. low GRK6 samples in the TCGA
218  dataset (Fig. 2B). A total of 7,116 genes were differentially expressed in ATII cells transfected with
219  control siRNA or siRNA against GRK6 (siGRK6) in RNA-seq, among which 3,430 up-regulated
220  (Fig. 2C). By cross-referencing the results from the TCGA analysis with the RNA-seq analysis, we
221  identified 274 candidate genes, which were highly expressed in low GRK6 samples in the TCGA
222  dataset (Fig. 3A; Supplementary Table 5) and in siGRK6 samples in the RNA-seq analysis (Fig. 3B;
223 Supplementary Table 6).

224 Metascape (https://metascape.org/gp/index.html#/main/stepl) was used to investigate whether
225  these genes were enriched in certain cellular pathways. We found that several Hallmark pathways,
226  including mitotic spindle, epithelial mesenchymal transition (EMT), protein secretion, 1L2

227  (interleukin 2) STATS (signal transducer and activator of transcription 5) signalling, glycolysis,
228  hypoxia and TGFp signalling, were enriched upon GRK6 inhibition in lung adenocarcinoma (Fig.
229  3C; Table 1).

230
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3.3 GRKG6 inhibition induces hypoxia-inducible factor (HIF) activity in the lungs

One of the Hallmark pathways enriched upon GRK6 inhibition is ‘Hallmark Hypoxia’ (FDR =
0.014; Fig. 3C; Table 1). In our RNA-seq analysis, knockdown of GRK6 in ATII cells (Fig. 4A) led
to significant increases in several hypoxia-induced genes, including CA9 (carbonic anhydrase 9),
NDRGI (N-Myc downstream-regulated 1), SLC2A41 (solute carrier family 2 member 1, also known as
GLUTI, glucose transporter 1), P4HAI (prolyl 4-hydroxylase subunit alpha 1) and ENOI (enolase 1)
(Buffa et al., 2010) (Fig. 4A). A significant increase in the mRNA levels of C49 (P < 0.0001) and
NDRGI (P <0.001) were confirmed with Q-RT-PCR (Fig. 4B). In addition, the protein level of
HIF1a, a key regulator of the cellular response to hypoxia (Kaelin and Ratcliffe, 2008), was
significantly increased upon GRK6 depletion in the ATII cells as shown by western blot (Fig. 4C and
D; P <0.01). To check how GRK6 may regulate HIF activity, the mRNA levels of HIF 1o (HIF1A),
HIF2a (EPASI), HIF1B (ARNT) and VHL (Von Hippel-Lindau) were screened in the RNA-seq
dataset. No changes in the expression levels of HIF 1A, EPASI and ARNT were observed (Fig. 4E; P
> (.05), while the VHL mRNA level was decreased upon GRK6 inhibition in ATII cells (Fig. 4E; P <
0.001). These findings suggest that GRK6 inhibition induces HIF activity in the lungs potentially by
regulating VHL, which functions as a master regulator of HIF activity by targeting the HIFa subunit
for degradation (Cockman et al., 2000; Ohh et al., 2000; Schofield and Ratcliffe, 2004; Ratcliffe,
2013).

To further validate the in vitro findings, the correlation between GRK6 expression and HIF 1a
levels or GRK6 expression and VHL levels were analysed in lung adenocarcinoma samples using
tissue microarrays (Fig. 5). Representative images of low and high expression of GRK6, HIF1a or
VHL in lung adenocarcinoma samples are shown in Fig. 5A, Fig. 5B and Fig. 5C, respectively.
Importantly, the percentage of patients with high HIF1a expression (61%) in the low GRK6 group
was significantly higher than in the high GRK6 group (41%) (Fig. 5D; P < 0.05), while patients with
low GRK6 tended to have a low level of VHL compared to those within high GRK6 group (Fig. 5D;
P <0.0001).

This is a provisional file, not the final typeset article
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4 Discussion

Lung cancer is the most prevalent and the leading cause of cancer death (Bray et al., 2018).
Adenocarcinoma is the most common type of lung cancer, in both smokers and non-smokers, in both
females and males, and represents 40% of the lung cancer cases (Denisenko et al., 2018). Lung
adenocarcinoma progresses from the small airway; one of the most abundant cell types present here
are alveolar type II epithelial cells, which secrete mucus and other substances (Noguchi et al., 1995).
Lung adenocarcinoma is one of the most aggressive cancers and the survival rate of patients is short
after diagnosis with overall survival rate less than 5 years (Denisenko et al., 2018). The major
challenge for lung adenocarcinoma is its resistance to conventional radiotherapies and
chemotherapies (Denisenko et al., 2018).

Hypoxia is one of the typical features of the tumour microenvironment that increases the
aggressiveness of different tumours such as lung cancer (Le et al., 2006), colorectal cancer (Qureshi-
Baig et al., 2020), hepatocellular carcinoma (Kung-Chun Chiu et al., 2019) and oesophageal
squamous cell carcinoma (Zhang et al., 2019b). Hypoxic conditions lead to the activation of various
transcription factors, such as HIF1; and the activation of downstream signalling pathways that
regulate cell death, motility and proliferation (Semenza, 2012). HIF1 is a heterodimeric transcription
factor, capable of controlling the cellular adaptive response to hypoxia and has two subunits; HIF1a
and HIF 1B (Jiang et al., 1996, Semenza, 2000). Cellular oxygen concentration regulates the protein
expression of HIF1a so is a key factor for cellular adaptive response to hypoxia (Jiang et al., 1996).
HIF activities can also be up-regulated by other mechanisms (Zhao et al., 2014; Zhang et al., 2019c).

G protein-coupled receptor kinases (GRKs) are a family of kinases which can desensitize G
protein-coupled receptors (GPCRs) homologous (Vroon et al., 2006). GRK6 is of the members of the
GRK family (Willets et al., 2002; Ahmed et al., 2010; Tiedemann et al., 2010) and we previously
showed that GRK6 is down-regulated in lung adenocarcinoma, which is associated with malignant
tumour progression (Yao et al., 2016, 2019b), by an unknown mechanism.

To identify global transcriptomic changes in ATII cells upon GRK6 depletion, RNA-seq coupled
with siRNA-mediated depletion of GRK6 was performed in ATII cells. We identified 3,430 up-
regulated and 3,686 down-regulated DEGs. GO functional analysis with DEGs demonstrated that
DEGs are mainly enriched in mRNA metabolism, ribonucleoprotein complex biogenesis, and
regulation of cellular response to stress. To understand the role of GRK6 in lung adenocarcinoma,
analysis of TCGA data was coupled with the RNA-seq data, described above. Pathway analysis
suggested that one of the Hallmark pathways enriched upon GRK®6 inhibition is
‘Hallmark Hypoxia’. We demonstrated that GRK6 depletion induces HIF 1a expression and activity
in ATII cells. The findings were further confirmed in lung adenocarcinoma samples, in which GRK6
expressions negatively correlate with HIF 1 a protein levels. Mechanistically, the impact of GRK6 on
HIF activity could be achieved via regulation of VHL levels, which is a master regulator of HIF
activity by targeting the prolyl-hydroxylated HIF la subunit for ubiquitylation and rapid proteasomal
degradation (Cockman et al., 2000; Ohh et al., 2000; Schofield and Ratcliffe, 2004; Ratcliffe, 2013).
This study provides evidence that GRK6 inhibition causes a decrease in VHL expression, leading to
HIFa stabilisation with increased activity in lung adenocarcinoma, although the underlying
mechanism merits further investigation.

Earlier reports suggest that hypoxia regulates mRNA translation (Liu et al., 2006). RNA-binding
proteins (heterogeneous nuclear ribonucleoproteins) have a role in post-transcriptional gene
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regulation under hypoxic conditions and are associated with hypoxia-induced transcripts that regulate
encoded protein levels (Yang et al., 2006). Hypoxia can affect tumour cells; by acting as a stressor
and inhibiting cell growth or inducing cell death. Alternatively, it can act by contributing to
carcinogenesis progression and resistance to treatments, leading to hypoxia-induced genomic and
proteomic changes in the cancer cells (Hockel and Vaupel, 2001; Vaupel et al., 2001).

We previously demonstrated that cell migration and invasion in lung epithelial cells is induced
upon GRK6 knockdown (Yao et al., 2019b). In addition to the hypoxia, this analysis showed EMT is
also enriched upon GRK6 inhibition, which can explain our previous findings (Yao et al., 2019b).
The hypoxic tumour microenvironment can regulate EMT (Wei et al., 2016; Joseph et al., 2018).
EMT is a biological process and the cell polarity and cell-cell adhesion of epithelial cells are lost and
in turn become mesenchymal cells, which have migratory and invasive features (Polyak and
Weinberg, 2009). In a similar manner to our findings (Yao et al., 2019b), previous studies in
medulloblastoma (Yuan et al., 2013) and Lewis lung carcinoma (Raghuwanshi et al., 2013) show
that when GRK6 was downregulated, migration and metastasis were increased. Consistently, it has
been found that hypoxia-related genes CA9, NDRG1, SLC2A1, P4HAI and ENOI induced EMT in
hepatocellular carcinoma (Hyuga et al., 2017), bladder cancer (Li et al., 2019), laryngeal cancer
(Starska et al., 2015) and gastric cancer (Xu et al., 2019; Zhang et al., 2019a), respectively. Our study
showed an increase of hypoxia-induced gene expression and HIF 1 a expression in GRK6 knockdown
cells, this suggests that GRK6 knockdown may induce EMT in lung adenocarcinoma.

In summary, this study shows that GRK6 is involved in different disease-related pathological
features; mRNA metabolism, ribonucleoprotein complex biogenesis, regulation of cellular response
to stress, as well as EMT and hypoxia. Targeting the HIF pathway may provide new strategies for
therapy in GRKo6-depleted lung adenocarcinoma patients.

. . . 10
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Figure Legends

FIGURE 1 | Global transcriptomic changes in ATII cells upon GRK6 depletion. (A)
REVIGO TreeMap showing Gene Ontology (GO) analysis of upregulated differentially
expressed genes (DEGs) in ATII cells transfected with siRNAs against GRK6 vs. control
siRNA. Common colours represent groupings based on parent GO terms, and each rectangle is
proportional to the relative enrichment of the GO term compared to the whole genome. Genes
with false discovery rate (FDR) < 0.05 were considered as DEGs (differentially expressed
genes). (B) Scatter plot showing the top 10 enriched GO terms from 3 categories (biological
process, cellular component and molecular function) according to rich factors. Rich factor is
the percentage of DEGs enriched gene count in the given annotated GO terms. The sizes of
circles represent gene counts, and the colours of circles represent the -Logio of the adjusted
P-values (padj). Values less than 0.05 were considered as statistically significant.

FIGURE 2 | The analysis to identify candidate genes upon GRK6 inhibition. (A) In brief,
TCGA analysis coupled to RNA sequencing in ATII cells upon GRK6 depletion (siGRK6) was
used (details in Methods). FDR: false discovery rate. (B) Heat-map showing DEGs
(differentially expressed genes) between low GRK6 (n = 26) and high GRK6 (n=17)
expressing lung adenocarcinoma samples from TCGA analysis. Red indicates up-regulation
and blue down-regulation. Genes with false discovery rate (FDR) adjusted P-values less than
0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg (BH)
method. (C) Heat-map showing DEGs in ATII cells transfected with siRNA against GRK6
(siGRK6) vs. control siRNA (Control). Red indicates up-regulation and blue down-regulation. n
= 3 samples per group. DESeq2 Wald test was performed for statistical analysis. Genes with
false discovery rate (FDR) adjusted P-values less than 0.05 were considered as DEGs. P-values
were adjusted by using Benjamini-Hochberg (BH) method.

FIGURE 3 | Candidate pathways enriched upon GRK6 inhibition are identified by TCGA
analysis coupled to RNA sequencing. (A) Heat-map showing genes that are over-expressed in
lung adenocarcinoma samples with low GRK6 (n = 26) compared to those with high GRK®6 (n
= 17) from TCGA analysis. Red indicates up-regulation and blue down-regulation. Genes with
false discovery rate (FDR) adjusted P-values less than 0.05 were considered as DEGs. P-values
were adjusted by using Benjamini-Hochberg (BH) method. (B) Heat-map showing DEGs
(differentially expressed genes) that are over-expressed in ATII cells transfected with siRNA
against GRK6 (siGRKG6) vs. control siRNA. Red indicates up-regulation and blue down-
regulation. n = 3 samples per group. DESeq2 Wald test was performed for statistical analysis.
Genes with false discovery rate (FDR) adjusted P-values less than 0.05 were considered as
DEGs. P-values were adjusted by using Benjamini-Hochberg (BH) method. (C) Pathways
enriched upon GRK6 inhibition were visualised on a bar chart, showing number of shared
genes and -Logio (q value).

FIGURE 4 | GRKG6 depletion induces HIF (hypoxia-inducible factors) activity in ATII
(alveolar epithelial type II) cells. (A) RNA-seq showing relative expressions

of GRK6, CA9, NDRG1, SLC2A1, P4HAI and ENOI in ATII cells transfected with control or
GRKG6 siRNA. Data are mean + s.d. n = 3 samples per group. Multiple t-test was performed for
statistical analysis. Genes with false discovery rate (FDR) adjusted P-values less than 0.05 were
considered as DEGs. P-values were adjusted by using Benjamini-Hochberg (BH) method. B)
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Fold change in mRNA levels of CA9 and NDRG1 in ATII cells transfected with control or
GRKG6 siRNA. ACTB (B-actin)-normalised mRNA levels in control cells were used to set the
baseline value at unity. Data are mean + s.d. n =3 samples per group. Multiple t-test was
performed for statistical analysis. Genes with false discovery rate (FDR) adjusted P-values less
than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg
(BH) method. (C) Protein expression of HIF1a and GRK6 in ATII cells transfected with
control or GRK6 siRNA. B-tubulin was used as a loading control. (D) Quantification of Figure
4C. Graph showing protein level of HIF1a in ATII cell line with indicated transfections. Data
are mean + s.d. n = 3 per group. Two tailed, unpaired Student’s ¢-fest was performed for
statistical analysis. P-value less than 0.05 was considered as statistically significant. (E) RNA-
seq showing relative expressions of HIF'1A, ARNT, EPASI and VHL in ATII cells transfected
with control or GRK6 siRNA. Data are mean + s.d. n = 3 samples per group. Multiple t-test was
performed for statistical analysis. Genes with false discovery rate (FDR) adjusted P-values less
than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg
(BH) method.

FIGURE 5 | GRKG6 expression levels negatively and positively correlate with HIF1a and
VHL expressions in lung adenocarcinoma, respectively. (A) Representative GRK6 staining
pattern (low or high GRK6) in lung adenocarcinoma tissue microarray cores. Scale bar:

500 um. (B) Representative HIF 1 a staining pattern (low or high HIF1a) in lung
adenocarcinoma tissue microarray cores. Scale bar: 500 um. (C) Representative VHL staining
pattern (low or high VHL) in lung adenocarcinoma tissue microarray cores. Scale bar: 500 um.
(D) Graph showing the number and percentage of lung adenocarcinoma patients with low/high
HIF1la or low/high VHL in high vs. low GRK6 group. High GRK6 n =82. Low GRK6 n = 92.
Fisher’s exact test was performed for statistical analysis. P-values less than 0.05 were
considered as statistically significant.
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Table 1 | List of pathways enriched upon GRKS6 inhibition.

Number of

-Logio

shared genes (q-value) Genes
APC, ARHGAPS, NOTCH?,
RFCI, ROCKI, TIAMI, TRIO,
HALLD:?%{’[;TOTIC 13 4.653 ARHGAP29, RASAL2,
ARHGEF12, SUN2, DYNLL?2,
PPP4R2
HALLMARK EPITHELIAL Dpygff %3%42 ]VC]Df;bA ,
MESENCHYMAL 12 4122 ' » VL ’
NOTCH2, PTX3, SDCI,
TRANSITION TGRBI SLIT?
AL LA TS RG T CLCN3, GOLGA4, IGF2R,
SECRETION 8 3.664 PAM, RPS6KA3, ZW10),
SCRN1, STXI2
HALLMARK UV RUNXI, LTBPI1, NOTCH?,
RESPONSE DN 9 3.321 ATXNI, NRP1, MAGI2,
NRID2, SIPAILI, MIOS
CD44, IGF2R, ITGAV, PRNP,
HALLS/I[éNRfI}IL; GS TATS 10 3.042 TIAM1, NRPI1, DENNDS5A,
TWSG1, RRAGD, SPRED2
CD44, ENOI, ILI3RAI, PAM,
HALLMARK GLYCOLYSIS 9 2418 SDCI, TGFBI, P4HA2,
HS2STI, RRAGD
ENOI, GBE1, PAM, PFKFB3,
HALLMARK HYPOXIA 8 1.847 TGFBI, P4HA2, KDM34,
RRAGD
HALLMARK TGF BETA
SIGNALING 4 1.701 ACVRI, APC, SLC2041, NOG
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12.1 Table 1 List of pathways enriched upon GRK6 inhibition.
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Supplementary Material

Supplementary Tables

Supplementary Table 1 Up-regulated DEGs in ATII cells transfected with siRNA against GRK6
vs. control siRNA.

Supplementary Table 2 Down-regulated DEGs in ATII cells transfected with siRNA against
GRKG6 vs. control siRNA.

Supplementary Table 3 GO analysis of up-regulated DEGs in ATII cells transfected with
siRNA against GRK6 vs. control siRNA.

Supplementary Table 4 GO analysis of down-regulated DEGs in ATII cells transfected with
siRNA against GRK6 vs. control siRNA.

Supplementary Table 5 List of candidate genes that are over-expressed in lung adenocarcinoma
samples with low GRK6 compared to those with high GRK6 from TCGA analysis.

Supplementary Table 6 List of candidate genes that are over-expressed in ATII cells transfected
with siRNA against GRK6 (siGRK6) vs. control siRNA.
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Supplementary Figure 1. Principal component analysis (PCA) between control and siGRK6
samples from RNA-Seq data. ATII cells were transfected with control siRNA (Control, in red) or
siRNA against GRK6 (siGRK6, in blue) for 3 days, followed by RNA-Seq analysis. Each point
represents an RNA-Seq sample. Samples that have similar gene expression patterns are clustered

together.
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Supplementary Figure 2. Lung adenocarcinoma samples with either low or high GRK6 are
identified in TCGA by unsupervised hierarchical clustering. Heat-map showing genes that are
positively or negatively correlated with GRK6 expression levels in TCGA lung adenocarcinoma
samples. A total of 17 samples were identified as high GRK6 (green box) and 26 as low GRK6 (yellow
box). Red in heatmap indicates up-regulation and blue down-regulation.





