

GRK6 depletion induces HIF activity in lung adenocarcinoma

1 **Sumei Yao^{1,7}, Ayse Ertay^{2,7}, Yilu Zhou^{2,3,7}, Liudi Yao², Charlotte Hill², Jinliang Chen¹, Yangbo
2 Guan⁴, Hui Sun⁵, Rob M. Ewing^{2,3}, Yifei Liu^{5,6,*}, Xuedong Lv^{1,*}, and Yihua Wang^{2,3,*}**

3 ¹Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong
4 226001, People's Republic of China.

5 ²Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton,
6 Southampton SO17 1BJ, UK.

7 ³Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.

8 ⁴Department of Urology, Affiliated Hospital of Nantong University, Nantong 226001, People's
9 Republic of China.

10 ⁵Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, People's
11 Republic of China.

12 ⁶Medical School of Nantong University, Nantong 226001, People's Republic of China.

13 ⁷These authors contributed equally to this work

14 *** Correspondence:**

15 Yifei Liu (ntdxliuyifei@sina.com)

16 Xuedong Lv (email: lvxuedong1968@163.com)

17 Yihua Wang (e-mail: yihua.wang@soton.ac.uk)

18 **Keywords: GRK6, HIF, lung adenocarcinoma, hypoxia, EMT**

19

20

21 **Abstract**

22 G protein-coupled receptor kinase 6 (GRK6) is expressed in various tissues and is involved in the
23 development of several diseases including lung cancer. We previously reported that GRK6 is down-
24 regulated in lung adenocarcinoma patients, which induces cell invasion and metastasis. However,
25 further understanding of the role of GRK6 in lung adenocarcinoma is required. Here we explored the
26 functional consequence of *GRK6* inhibition in lung epithelial cells. Analysis of TCGA data was
27 coupled with RNA sequencing (RNA-seq) in alveolar epithelial type II (ATII) cells following
28 depletion of *GRK6* with RNA interference (RNAi). Findings were validated in ATII cells followed
29 by tissue microarray analysis. Pathway analysis suggested that one of the Hallmark pathways
30 enriched upon *GRK6* inhibition is 'Hallmark_Hypoxia' (FDR = 0.014). We demonstrated that *GRK6*
31 depletion induces HIF1 α (hypoxia-inducible factor 1 alpha) levels and activity in ATII cells. The
32 findings were further confirmed in lung adenocarcinoma samples, in which *GRK6* expression levels
33 negatively and positively correlate with HIF1 α expression ($P = 0.015$) and VHL expression ($P <$
34 0.0001), respectively. Mechanistically, we showed the impact of *GRK6* on HIF activity could be
35 achieved via regulation of VHL levels. Taken together, targeting the HIF pathway may provide new
36 strategies for therapy in *GRK6*-depleted lung adenocarcinoma patients.

37

38

39 **1 Introduction**

40 G protein-coupled receptor kinases (GRKs) are a family of kinases that play a critical role in G
41 protein-coupled receptors (GPCRs) homologous desensitization. GRKs phosphorylate specific serine
42 and threonine residues of activated GPCRs which promote high affinity binding of arrestins and then
43 suppress further G protein activation by interrupting receptor-G protein coupling (Bouvier et al.,
44 1988; Vroon et al., 2006; Raghuwanshi et al., 2013). Desensitization of GPCRs has a critical role in
45 maintaining homeostasis. As such, abnormal GPCRs desensitization can cause a variety of human
46 diseases, including autoimmune diseases (Balabanian et al., 2005), asthma (Wang et al., 2009), heart
47 failure (Rockman et al., 1998), Parkinson's disease (Gainetdinov et al., 2003), inappropriate diuresis
48 (Barak et al., 2001) and tumour progression and metastasis (Yu et al., 2018). Therefore, GRKs are
49 important therapeutic targets for these diseases.

50 G protein-coupled receptor kinase 6 (GRK6) is a member of the GRK family, which is expressed
51 in various tissues and involved in the development of several diseases (Willets et al., 2002; Ahmed et
52 al., 2010; Tiedemann et al., 2010). High expression of GRK6 has been reported in hepatocellular
53 carcinoma (Li, 2013), colorectal cancer (Tao et al., 2018); whilst lower expression was reported in
54 hypopharyngeal squamous cell carcinoma (Qiu et al., 2016) compared to normal tissues. Further,
55 *Grk6* knock out mice (*Grk6*^{-/-}) showed a significant increase in the growth and metastasis of Lewis
56 lung cancer (LLC) compared to the control mice (*Grk6*^{+/+}) (Raghuwanshi et al., 2013). Our previous
57 study suggested that GRK6 expression was significantly down-regulated in lung adenocarcinoma
58 patients, and its level was an independent prognostic factor for overall survival (Yao et al., 2016).
59 Moreover, we also showed that the promoter region of the *GRK6* gene was hyper-methylated in lung
60 adenocarcinoma tissues compared to the normal tissue samples, leading to a down-regulation of
61 *GRK6* expression and in turn, inducing cell invasion and metastasis (Yao et al., 2019b). However,
62 further understanding of the role of GRK6 in lung adenocarcinoma is required.

63 In this study, we aimed to investigate the functional consequence of *GRK6* depletion in lung
64 epithelial cells. Analysis of TCGA data was coupled with RNA sequencing (RNA-seq) in alveolar
65 epithelial type II (ATII) cells following the depletion of *GRK6* with RNA interference (RNAi).
66 Tissue microarrays were used to investigate the expression and function of *GRK6* in lung
67 adenocarcinoma. Our data suggests that *GRK6* depletion induces HIF1 α (hypoxia-inducible factor 1
68 alpha) activity. Targeting the HIF pathway may provide new strategies for therapy in *GRK6*-depleted
69 lung adenocarcinoma patients.

70

71

72 **2 Materials and Methods**73 **2.1 Cell culture, transfections and reagents**

74 ATII (alveolar epithelial type II, kindly provided by Prof Julian Downward, The Francis Crick
 75 Institute, UK) cells (Molina-Arcas et al., 2013; Coelho et al., 2017; Hill et al., 2019; Yao et al., 2019a)
 76 were cultured in DCCM-1 (Biological Industries Ltd) supplemented with 10% new-born calf serum
 77 (NBCS) (Life Technologies), 1% penicillin, 1% streptomycin, and 1% L-glutamine (all from Life
 78 Technologies). All cells were kept at 37 °C and 5% CO₂. No mycoplasma contamination was detected
 79 in the cell lines used.

80 Short interfering RNA (siRNA) oligos against *GRK6* or control siRNA were purchased from
 81 Biomics Biotechnologies Co., Ltd, China. Sequences were available from an earlier publication (Yao
 82 et al., 2019b). Cells were transfected with the indicated siRNA oligos at a final concentration of 35 nM
 83 using Dharmafect 2 reagent (Dharmacon).

84 **2.2 RNA isolation, library construction, and sequencing**

85 To identify global transcriptomic changes in ATII cells upon *GRK6* depletion, RNA sequencing
 86 (RNA-seq) was performed. In brief, ATII cells were transfected with either control siRNA or siRNA
 87 against *GRK6* for 3 days. Total RNA was isolated using an RNeasy mini kit (Qiagen) according to the
 88 manufacturer's instructions and quantified using a Nanodrop Spectrophotometer 2000c (Thermo
 89 Fisher Scientific). A total amount of 3 µg RNA per sample was used as input material for library
 90 construction. Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep Kit
 91 for Illumina® (NEB, Ipswich, Massachusetts, USA) following the manufacturer's instructions.
 92 Libraries were pooled in equimolar and sequenced using the paired-end strategy (2 × 150) on the
 93 Illumina NovaSeq 6000 platform following the standard protocols (Novogene, UK). RNA-seq data
 94 have been deposited in the Gene Expression Omnibus (GEO) database (accession code GSE164921).

95 **2.3 RNA-seq data analysis**

96 Quality control of RNA-seq data was performed using FastQC
 97 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>) and MultiQC (Ewels et al., 2016). Trim
 98 Galore (<https://github.com/FelixKrueger/TrimGalore>) was used to trim adapters, reads with low
 99 quality (< 30), and short length (< 50 bp). RNA-seq reads were mapped to Human genome Ensembl
 100 GRCh38 using Hisat2 (Kim et al., 2015) (version 2.1.0) with default codes. Sam files were
 101 transformed into bam files using samtools (Li et al., 2009) (version 1.9). The read counts of each
 102 gene were summarized using featureCounts (Liao et al., 2014) (version 1.6.5). Raw read counts were
 103 imported into RStudio (version 3.6.1) and analysed by using R package of DESeq2 (Love et al.,
 104 2014) (version 1.26.0). Transcripts with low abundance (under 10 counts across all samples) were
 105 removed. Genes with a false discovery rate (FDR) *P*-value less than 0.05 adjusted by using
 106 Benjamini–Hochberg (BH) method (or q-value) were considered as differentially expressed genes
 107 (DEGs). Gene ontology (GO) enrichment analysis was generated through ToppGene (ToppGene
 108 Suite for gene list enrichment analysis and candidate gene prioritization) website
 109 (<https://toppgene.cchmc.org/>). Parameter was set as FDR < 0.05. All downstream analysis was
 110 performed in RStudio (version 3.4.4).

111 **2.4 Data mining *GRK6* related data from the Cancer Genome Atlas (TCGA)**

112 The expression of mRNAs in the TCGA lung adenocarcinoma (LUAD) (IlluminaHiSeq) dataset
113 was obtained from the UCSC Xena Browser (<https://xenabrowser.net/>). To separate the low and high
114 *GRK6* group in the TCGA dataset, hierarchical cluster was performed on the high correlated genes
115 with *GRK6* via Pearson analysis in RStudio (version 3.4.4). According to the correlation analysis,
116 there were 17 samples in the high *GRK6* group and 26 samples in the low *GRK6* group. Then, an
117 unpaired *t-test* was performed to identify significantly expressed mRNAs (FDR < 0.05) between the
118 high and low *GRK6* groups in RStudio (version 3.4.4). Codes are available upon request.

119 2.5 Identification of top hit genes and pathway analysis

120 The statistically significant (FDR < 0.05) differentially expressed mRNAs in the TCGA
121 (IlluminaHiSeq) dataset that were highly expressed in the low *GRK6* lung adenocarcinoma group
122 were merged with statistically different genes in the RNA-sequencing dataset, which showed higher
123 gene expression in *siGRK6* samples compared to the control samples by using RStudio (version
124 3.4.4) to identify the top hit candidate gene(s) (Fig. 2).

125 For pathway analysis, Metascape (<https://metascape.org/gp/index.html#/main/step1>) was used to
126 detect functional enrichment of the identified top hit genes. The pathways were sorted from lowest q-
127 value and pathways with a q-value less than 0.05 were chosen to create a histogram plot in GraphPad
128 Prism 8.

129 2.6 Western blot analysis

130 Western blot analysis was performed with lysates from cells lysed with urea buffer (8M urea, 1M
131 thiourea, 0.5% CHAPS, 50 mM DTT and 24 mM spermine). The bound proteins were separated on
132 SDS polyacrylamide gels and subjected to immunoblotting with the indicated antibodies. Primary
133 antibodies were from Proteintech (*GRK6*, Catalog No. 11439-1-AP, 1:1000) BD Transduction
134 Laboratories™ (*HIF1α*, Catalog No. 610958, 1:1000) and Cell Signalling Technology (β -tubulin,
135 Catalog No. 86298, 1:5000). Signals were detected using an Odyssey imaging system (LI-COR) or
136 an ECL detection system (GE Healthcare, Chicago, IL, USA), and evaluated by ImageJ
137 (version1.42q) software (National Institutes of Health) (Berhesda, MD, USA).

138 2.7 qRT-PCR

139 Real-time quantitative RT-PCR was performed using gene-specific primers (QuantiTect Primer
140 Assays, Qiagen) for *CA9* (QT00011697), *NDRG1* (QT00059990) or *ACTB* (β -actin) (QT01680476)
141 with QuantiNova SYBR Green RT-PCR kits (Qiagen). Relative transcript levels of target genes were
142 normalised to *ACTB* (β -actin).

143 2.8 Clinical data and tissue samples

144 The study population comprised of 174 lung adenocarcinoma (LUAD) patients who were
145 examined and treated at the Thoracic Surgery Department of the Affiliated Hospital of Nantong
146 University and Thoracic Surgery Department of Second Affiliated Hospital of Nantong University
147 between January 1, 2015, and December 31, 2016. The median age of patients at the time of
148 diagnosis was 63 years (range 41–83 years). Study protocol was approved by the Ethics Committee
149 of the Affiliated Hospital of Nantong University (No. 2018-L068), and all experiments were
150 performed in accordance with approved guidelines of the Affiliated Hospital of Nantong University.
151 Written informed consent was obtained from the patients for publication of this study and any
152 accompanying images. Details of the clinical and demographic information were collected

153 retrospectively. All patients underwent standard surgery aiming for maximal tumour resection.
154 Patient clinical data were recorded in detail, and the diagnoses were confirmed by at least two
155 pathologists. Tumour histological grades and clinical stages were evaluated according to the
156 pathological results after surgery. All tumours were staged according to the pathological
157 tumour/node/metastasis (pTNM) classification (7th edition) of the International Union against
158 Cancer.

159

160 **2.9 Tissue microarray (TMA) construction and immunohistochemistry analysis (IHC)**

161 Tissue microarray system (Quick-Ray, UT06, UNITMA, Korea) in the Department of Clinical
162 Pathology, Nantong University Hospital, Jiangsu, China, was used to generate TMA. Specifically,
163 core tissue biopsies (2 mm in diameter) were taken from individual FFPE blocks and arranged in
164 recipient paraffin blocks. TMA specimens were cut into 4 μ m sections and placed on super frost-
165 charged glass microscope slides. TMA analysis was used as a quality control for hematoxylin and
166 eosin staining. Tissue sections were deparaffinized and rehydrated through graded ethanol. Antigen
167 retrieval was performed with 0.01 M citrate buffer pH 6.0 and microwave heat induction.
168 Endogenous peroxidase activity was blocked with 3% H₂O₂ for 30 min. Sections were then incubated
169 with a rabbit polyclonal antibody specific to GRK6 (1: 100; Proteintech, 11439-1-AP), HIF1 α
170 (1:100; Proteintech, 20960-1-AP) and VHL (1:100; Abcam, ab140989) at 4°C overnight, followed by
171 incubation with a biotinylated anti-rabbit secondary antibody at 37 °C for 30 min. Slides were then
172 processed using horseradish peroxidase and 3,3-diaminobenzidine chromogen solution and
173 counterstained with hematoxylin. The staining intensity of GRK6, HIF1 α or VHL for each slide was
174 evaluated and scored by two independent pathologists. Staining intensity was scored as follows: 0
175 (negative), 1+ (weak staining), 2+ (moderate staining), and 3+ (intense staining). For each of the four
176 staining intensity scores, the percentage of cells stained at each intensity were determined and
177 intensity percentage score is the product of staining intensity and percentage of staining cells. The
178 final staining scores were then evaluated from the sum of the four intensity percentage scores; thus,
179 the staining score had a range from the minimum value of 0 (no staining) to a maximum of 300
180 (100% of cells with 3+ staining intensity), as described previously (Sun et al., 2014). The cut-off 140
181 was selected to evaluate: score 0–140 was considered low expression, while 141–300 was considered
182 high expression. For all subsequent analyses, GRK6, HIF1 α and VHL protein expression levels were
183 considered either as “low” or “high” according to these cut-off values.

184 **2.10 Statistical analysis**

185 Two-tailed, unpaired Student’s *t*-test for the TCGA data were performed in RStudio (version
186 3.4.4). For multiple *t*-test, P-values were adjusted by using Benjamini-Hochberg (BH) method. Codes
187 are available upon request. Fisher’s exact test was used to evaluate the relationship of GRK6 and
188 HIF1 α expression in lung adenocarcinoma patient samples in IHC using GraphPad Prism 8 software.
189 *P* < 0.05 was considered statistically significant.

190

191

192 **3 Results**193 **3.1 Global transcriptomic changes in ATII cells upon *GRK6* depletion**

194 We previously reported that *GRK6* knockdown promotes cell migration and invasion in lung
195 epithelial cells (Yao et al., 2019b). To determine if, and how, lung epithelial cells responded to *GRK6*
196 inhibition, we characterised the global transcriptomic changes in alveolar epithelial type II (ATII)
197 cells transfected with either siRNAs against *GRK6* (si*GRK6*) or control siRNA (Control) by
198 performing RNA sequencing (RNA-seq). Principal component analysis (PCA) showed good
199 separation between Control compared to si*GRK6* samples (n = 3 in each group) (Supplementary Fig.
200 1).

201 Genes with a false discovery rate (FDR) adjusted *P* value (or *q*-value) of less than 0.05 were
202 considered as differentially expressed genes (DEGs). In total, 7,116 DEGs were identified, including
203 3,430 up-regulated (Supplementary Table 1) and 3,686 down-regulated (Supplementary Table 2). We
204 then performed gene ontology (GO) enrichment analysis of the identified DEGs using ToppGene
205 (ToppGene Suite for gene list enrichment analysis and candidate gene prioritization) website
206 (<https://toppgene.cchmc.org/>). The results were grouped into molecular function (MF), biological
207 process (BP), and cellular component (CC). Interestingly, several disease-related pathological terms
208 were identified, including mRNA metabolism, ribonucleoprotein complex biogenesis, and regulation
209 of cellular response to stress (FDR < 0.05; Fig. 1A and B; Supplementary Tables 3 and 4).

210

211 **3.2 Candidate pathways enriched upon *GRK6* inhibition are identified by TCGA analysis
212 coupled with RNA-seq**

213 To understand the role of GRK6 in lung adenocarcinoma, we performed TCGA analysis coupled
214 with the RNA-seq data described above. As shown in Fig. 2A, correlation analysis was performed in
215 the TCGA lung adenocarcinoma (LUAD) (IlluminaHiseq) dataset; samples were separated into high
216 vs. low *GRK6* expression based on an unsupervised hierarchical clustering (Supplementary Fig. 2).
217 We identified 2,345 genes as differentially expressed in the high vs. low *GRK6* samples in the TCGA
218 dataset (Fig. 2B). A total of 7,116 genes were differentially expressed in ATII cells transfected with
219 control siRNA or siRNA against *GRK6* (si*GRK6*) in RNA-seq, among which 3,430 up-regulated
220 (Fig. 2C). By cross-referencing the results from the TCGA analysis with the RNA-seq analysis, we
221 identified 274 candidate genes, which were highly expressed in low *GRK6* samples in the TCGA
222 dataset (Fig. 3A; Supplementary Table 5) and in si*GRK6* samples in the RNA-seq analysis (Fig. 3B;
223 Supplementary Table 6).

224 Metascape (<https://metascape.org/gp/index.html#/main/step1>) was used to investigate whether
225 these genes were enriched in certain cellular pathways. We found that several Hallmark pathways,
226 including mitotic spindle, epithelial mesenchymal transition (EMT), protein secretion, IL2
227 (interleukin 2) STAT5 (signal transducer and activator of transcription 5) signalling, glycolysis,
228 hypoxia and TGF β signalling, were enriched upon GRK6 inhibition in lung adenocarcinoma (Fig.
229 3C; Table 1).

230

231 **3.3 GRK6 inhibition induces hypoxia-inducible factor (HIF) activity in the lungs**

232 One of the Hallmark pathways enriched upon GRK6 inhibition is ‘Hallmark_Hypoxia’ (FDR =
233 0.014; Fig. 3C; Table 1). In our RNA-seq analysis, knockdown of *GRK6* in ATII cells (Fig. 4A) led
234 to significant increases in several hypoxia-induced genes, including *CA9* (carbonic anhydrase 9),
235 *NDRG1* (N-Myc downstream-regulated 1), *SLC2A1* (solute carrier family 2 member 1, also known as
236 *GLUT1*, glucose transporter 1), *P4HA1* (prolyl 4-hydroxylase subunit alpha 1) and *ENO1* (enolase 1)
237 (Buffa et al., 2010) (Fig. 4A). A significant increase in the mRNA levels of *CA9* ($P < 0.0001$) and
238 *NDRG1* ($P < 0.001$) were confirmed with Q-RT-PCR (Fig. 4B). In addition, the protein level of
239 HIF1 α , a key regulator of the cellular response to hypoxia (Kaelin and Ratcliffe, 2008), was
240 significantly increased upon *GRK6* depletion in the ATII cells as shown by western blot (Fig. 4C and
241 D; $P < 0.01$). To check how GRK6 may regulate HIF activity, the mRNA levels of HIF1 α (*HIF1A*),
242 HIF2 α (*EPAS1*), HIF1 β (*ARNT*) and *VHL* (Von Hippel-Lindau) were screened in the RNA-seq
243 dataset. No changes in the expression levels of *HIF1A*, *EPAS1* and *ARNT* were observed (Fig. 4E; P
244 > 0.05), while the *VHL* mRNA level was decreased upon GRK6 inhibition in ATII cells (Fig. 4E; $P <$
245 0.001). These findings suggest that GRK6 inhibition induces HIF activity in the lungs potentially by
246 regulating VHL, which functions as a master regulator of HIF activity by targeting the HIF α subunit
247 for degradation (Cockman et al., 2000; Ohh et al., 2000; Schofield and Ratcliffe, 2004; Ratcliffe,
248 2013).

249 To further validate the *in vitro* findings, the correlation between GRK6 expression and HIF1 α
250 levels or GRK6 expression and VHL levels were analysed in lung adenocarcinoma samples using
251 tissue microarrays (Fig. 5). Representative images of low and high expression of GRK6, HIF1 α or
252 VHL in lung adenocarcinoma samples are shown in Fig. 5A, Fig. 5B and Fig. 5C, respectively.
253 Importantly, the percentage of patients with high HIF1 α expression (61%) in the low GRK6 group
254 was significantly higher than in the high GRK6 group (41%) (Fig. 5D; $P < 0.05$), while patients with
255 low GRK6 tended to have a low level of VHL compared to those within high GRK6 group (Fig. 5D;
256 $P < 0.0001$).
257

258

259 4 Discussion

260 Lung cancer is the most prevalent and the leading cause of cancer death (Bray et al., 2018).
261 Adenocarcinoma is the most common type of lung cancer, in both smokers and non-smokers, in both
262 females and males, and represents 40% of the lung cancer cases (Denisenko et al., 2018). Lung
263 adenocarcinoma progresses from the small airway; one of the most abundant cell types present here
264 are alveolar type II epithelial cells, which secrete mucus and other substances (Noguchi et al., 1995).
265 Lung adenocarcinoma is one of the most aggressive cancers and the survival rate of patients is short
266 after diagnosis with overall survival rate less than 5 years (Denisenko et al., 2018). The major
267 challenge for lung adenocarcinoma is its resistance to conventional radiotherapies and
268 chemotherapies (Denisenko et al., 2018).

269 Hypoxia is one of the typical features of the tumour microenvironment that increases the
270 aggressiveness of different tumours such as lung cancer (Le et al., 2006), colorectal cancer (Qureshi-
271 Baig et al., 2020), hepatocellular carcinoma (Kung-Chun Chiu et al., 2019) and oesophageal
272 squamous cell carcinoma (Zhang et al., 2019b). Hypoxic conditions lead to the activation of various
273 transcription factors, such as HIF1; and the activation of downstream signalling pathways that
274 regulate cell death, motility and proliferation (Semenza, 2012). HIF1 is a heterodimeric transcription
275 factor, capable of controlling the cellular adaptive response to hypoxia and has two subunits; HIF1 α
276 and HIF1 β (Jiang et al., 1996; Semenza, 2000). Cellular oxygen concentration regulates the protein
277 expression of HIF1 α so is a key factor for cellular adaptive response to hypoxia (Jiang et al., 1996).
278 HIF activities can also be up-regulated by other mechanisms (Zhao et al., 2014; Zhang et al., 2019c).

279 G protein-coupled receptor kinases (GRKs) are a family of kinases which can desensitize G
280 protein-coupled receptors (GPCRs) homologous (Vroon et al., 2006). GRK6 is of the members of the
281 GRK family (Willems et al., 2002; Ahmed et al., 2010; Tiedemann et al., 2010) and we previously
282 showed that GRK6 is down-regulated in lung adenocarcinoma, which is associated with malignant
283 tumour progression (Yao et al., 2016, 2019b), by an unknown mechanism.

284 To identify global transcriptomic changes in ATII cells upon *GRK6* depletion, RNA-seq coupled
285 with siRNA-mediated depletion of *GRK6* was performed in ATII cells. We identified 3,430 up-
286 regulated and 3,686 down-regulated DEGs. GO functional analysis with DEGs demonstrated that
287 DEGs are mainly enriched in mRNA metabolism, ribonucleoprotein complex biogenesis, and
288 regulation of cellular response to stress. To understand the role of GRK6 in lung adenocarcinoma,
289 analysis of TCGA data was coupled with the RNA-seq data, described above. Pathway analysis
290 suggested that one of the Hallmark pathways enriched upon GRK6 inhibition is
291 'Hallmark_Hypoxia'. We demonstrated that *GRK6* depletion induces HIF1 α expression and activity
292 in ATII cells. The findings were further confirmed in lung adenocarcinoma samples, in which GRK6
293 expressions negatively correlate with HIF1 α protein levels. Mechanistically, the impact of GRK6 on
294 HIF activity could be achieved via regulation of VHL levels, which is a master regulator of HIF
295 activity by targeting the prolyl-hydroxylated HIF1 α subunit for ubiquitylation and rapid proteasomal
296 degradation (Cockman et al., 2000; Ohh et al., 2000; Schofield and Ratcliffe, 2004; Ratcliffe, 2013).
297 This study provides evidence that GRK6 inhibition causes a decrease in VHL expression, leading to
298 HIF α stabilisation with increased activity in lung adenocarcinoma, although the underlying
299 mechanism merits further investigation.

300 Earlier reports suggest that hypoxia regulates mRNA translation (Liu et al., 2006). RNA-binding
301 proteins (heterogeneous nuclear ribonucleoproteins) have a role in post-transcriptional gene

302 regulation under hypoxic conditions and are associated with hypoxia-induced transcripts that regulate
303 encoded protein levels (Yang et al., 2006). Hypoxia can affect tumour cells; by acting as a stressor
304 and inhibiting cell growth or inducing cell death. Alternatively, it can act by contributing to
305 carcinogenesis progression and resistance to treatments, leading to hypoxia-induced genomic and
306 proteomic changes in the cancer cells (Höckel and Vaupel, 2001; Vaupel et al., 2001).

307 We previously demonstrated that cell migration and invasion in lung epithelial cells is induced
308 upon *GRK6* knockdown (Yao et al., 2019b). In addition to the hypoxia, this analysis showed EMT is
309 also enriched upon *GRK6* inhibition, which can explain our previous findings (Yao et al., 2019b).
310 The hypoxic tumour microenvironment can regulate EMT (Wei et al., 2016; Joseph et al., 2018).
311 EMT is a biological process and the cell polarity and cell-cell adhesion of epithelial cells are lost and
312 in turn become mesenchymal cells, which have migratory and invasive features (Polyak and
313 Weinberg, 2009). In a similar manner to our findings (Yao et al., 2019b), previous studies in
314 medulloblastoma (Yuan et al., 2013) and Lewis lung carcinoma (Raghuvanshi et al., 2013) show
315 that when *GRK6* was downregulated, migration and metastasis were increased. Consistently, it has
316 been found that hypoxia-related genes *CA9*, *NDRG1*, *SLC2A1*, *P4HA1* and *ENO1* induced EMT in
317 hepatocellular carcinoma (Hyuga et al., 2017), bladder cancer (Li et al., 2019), laryngeal cancer
318 (Starska et al., 2015) and gastric cancer (Xu et al., 2019; Zhang et al., 2019a), respectively. Our study
319 showed an increase of hypoxia-induced gene expression and HIF1 α expression in *GRK6* knockdown
320 cells, this suggests that *GRK6* knockdown may induce EMT in lung adenocarcinoma.

321 In summary, this study shows that *GRK6* is involved in different disease-related pathological
322 features; mRNA metabolism, ribonucleoprotein complex biogenesis, regulation of cellular response
323 to stress, as well as EMT and hypoxia. Targeting the HIF pathway may provide new strategies for
324 therapy in *GRK6*-depleted lung adenocarcinoma patients.

325

326

327 **5 Data availability Statement**

328 RNA-seq data associated with this study have been deposited in the Gene Expression Omnibus (GEO)
329 database (accession code GSE164921).

330 **6 Ethics Statement**

331 This study was approved by the Ethics Committee of the Affiliated Hospital of Nantong University
332 (No. 2018-L068).

333 **7 Author Contributions**

334 Conceptualization: Y.W, Y.L, X.L; Investigation: S.Y, A.E, Y.Z, L.Y, C.H, J.C, Y.G, H.S; Formal
335 analysis: S.Y, A.E, Y.Z, H.S, Y.W; Writing: A.E, S.Y, Y.Z, L.Y, C.H with support from Y.W and
336 R.M.E; Supervision: Y.W, Y.L, X.L; Funding acquisition: Y.W, Y.L, S.Y.

337 **8 Funding**

338 This project was funded by grants from Medical Research Council (UK) [MR/S025480/1], Jiangsu
339 Post-doctoral Foundation Research Project, China [No. 2019Z142], Key Talents of Medical Science
340 in Jiangsu Province, China [No. QNRC2016682], and Science and Technology Project of Nantong
341 [No. JCZ18130]. AE was supported by the Wessex Medical Trust. YZ was supported by an Institute
342 for Life Sciences (University of Southampton) PhD Studentship. CH was supported by Gerald
343 Kerkut Charitable Trust and University of Southampton Central VC Scholarship Scheme. We thank
344 Prof. Julian Downward (The Francis Crick Institute, UK) for providing ATII cells.

345

346

347 **9 References**

348 Ahmed, M. R., Berthet, A., Bychkov, E., Porras, G., Li, Q., Bioulac, B. H., et al. (2010). Lentiviral
349 overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson's
350 disease. *Science Translational Medicine* 2(28), 28ra28. doi:10.1126/scitranslmed.3000664.

351 Balabanian, K., Lagane, B., Pablos, J. L., Laurent, L., Planchenault, T., Verola, O., et al. (2005).
352 WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4
353 desensitization to CXCL12. *Blood* 105(6), 2449–2457. doi:10.1182/blood-2004-06-2289.

354 Barak, L. S., Oakley, R. H., Laporte, S. A., and Caron, M. G. (2001). Constitutive arrestin-mediated
355 desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes
356 insipidus. *Proceedings of the National Academy of Sciences of the United States of America*
357 98(1), 93–98. doi:10.1073/pnas.98.1.93.

358 Bouvier, M., Hausdorff, W. P., De Blasi, A., O'Dowd, B. F., Kobilka, B. K., Caron, M. G., et al.
359 (1988). Removal of phosphorylation sites from the $\beta 2$ -adrenergic receptor delays onset of
360 agonist-promoted desensitization. *Nature* 333(6170), 370–373. doi:10.1038/333370a0.

361 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global
362 cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
363 cancers in 185 countries. *CA: a cancer journal for clinicians* 68(6), 394–424.
364 doi:10.3322/caac.21492.

365 Buffa, F. M., Harris, A. L., West, C. M., and Miller, C. J. (2010). Large meta-analysis of multiple
366 cancers reveals a common, compact and highly prognostic hypoxia metagene. *British Journal of
367 Cancer* 102(2), 428–435. doi:10.1038/sj.bjc.6605450.

368 Cockman, M. E., Masson, N., Mole, D. R., Jaakkola, P., Chang, G. W., Clifford, S. C., et al. (2000).
369 Hypoxia inducible factor- α binding and ubiquitylation by the von Hippel-Lindau tumor
370 suppressor protein. *Journal of Biological Chemistry* 275(33), 25733–25741.
371 doi:10.1074/jbc.M002740200.

372 Coelho, M. A., de Carné Trécesson, S., Rana, S., Zecchin, D., Moore, C., Molina-Arcas, M., et al.
373 (2017). Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1
374 mRNA. *Immunity* 47(6), 1083–1099.e6. doi:10.1016/j.immuni.2017.11.016.

375 Denisenko, T. V., Budkevich, I. N., and Zhivotovsky, B. (2018). Cell death-based treatment of lung
376 adenocarcinoma. *Cell Death and Disease* 9(2), 117. doi:10.1038/s41419-017-0063-y.

377 Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: Summarize analysis results
378 for multiple tools and samples in a single report. *Bioinformatics* 32(19), 3047–3048.
379 doi:10.1093/bioinformatics/btw354.

380 Gainetdinov, R. R., Bohn, L. M., Sotnikova, T. D., Cyr, M., Laakso, A., Macrae, A. D., et al. (2003).
381 Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. *Neuron*
382 38(2), 291–303. doi:10.1016/S0896-6273(03)00192-2.

383 Hill, C., Li, J., Liu, D., Conforti, F., Brereton, C. J., Yao, L., et al. (2019). Autophagy inhibition-
 384 mediated epithelial–mesenchymal transition augments local myofibroblast differentiation in
 385 pulmonary fibrosis. *Cell Death and Disease* 10(8), 591. doi:10.1038/s41419-019-1820-x.

386 Höckel, M., and Vaupel, P. (2001). Tumor hypoxia: Definitions and current clinical, biologic, and
 387 molecular aspects. *Journal of the National Cancer Institute* 93(4), 266–276.
 388 doi:10.1093/jnci/93.4.266.

389 Hyuga, S., Wada, H., Eguchi, H., Otsuru, T., Iwagami, Y., Yamada, D., et al. (2017). Expression of
 390 carbonic anhydrase IX is associated with poor prognosis through regulation of the epithelial–
 391 mesenchymal transition in hepatocellular carcinoma. *International Journal of Oncology* 51(4),
 392 1179–1190. doi:10.3892/ijo.2017.4098.

393 Jiang, B. H., Semenza, G. L., Bauer, C., and Marti, H. H. (1996). Hypoxia-inducible factor 1 levels
 394 vary exponentially over a physiologically relevant range of O₂ tension. *American Journal of
 395 Physiology - Cell Physiology* 271(4), C1172-1180. doi:10.1152/ajpcell.1996.271.4.c1172.

396 Joseph, J. P., Harishankar, M. K., Pillai, A. A., and Devi, A. (2018). Hypoxia induced EMT: A
 397 review on the mechanism of tumor progression and metastasis in OSCC. *Oral Oncology* 80(1),
 398 23–32. doi:10.1016/j.oraloncology.2018.03.004.

399 Kaelin, W. G., and Ratcliffe, P. J. (2008). Oxygen sensing by metazoans: the central role of the HIF
 400 hydroxylase pathway. *Molecular Cell* 30(4), 393–402. doi:10.1016/j.molcel.2008.04.009.

401 Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory
 402 requirements. *Nature Methods* 12(4), 357–360. doi:10.1038/nmeth.3317.

403 Kung-Chun Chiu, D., Pui-Wah Tse, A., Law, C. T., Ming-Jing Xu, I., Lee, D., Chen, M., et al.
 404 (2019). Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through
 405 HIF/HEY1/PINK1 pathway. *Cell Death and Disease* 10(12), 934. doi:10.1038/s41419-019-
 406 2155-3.

407 Le, Q. T., Chen, E., Salim, A., Cao, H., Kong, C. S., Whyte, R., et al. (2006). An evaluation of tumor
 408 oxygenation and gene expression in patients with early stage non-small cell lung cancers.
 409 *Clinical Cancer Research* 12(5), 1507–1514. doi:10.1158/1078-0432.CCR-05-2049.

410 Li, A., Zhu, X., Wang, C., Yang, S., Qiao, Y., Qiao, R., et al. (2019). Upregulation of NDRG1
 411 predicts poor outcome and facilitates disease progression by influencing the EMT process in
 412 bladder cancer. *Scientific Reports* 9(1), 5166. doi:10.1038/s41598-019-41660-w.

413 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence
 414 Alignment/Map format and SAMtools. *Bioinformatics* 25(16), 2078–2079.
 415 doi:10.1093/bioinformatics/btp352.

416 Li, Y. P. (2013). GRK6 expression in patients with hepatocellular carcinoma. *Asian Pacific Journal
 417 of Tropical Medicine* 6(3), 220–223. doi:10.1016/S1995-7645(13)60027-9.

418 Liao, Y., Smyth, G. K., and Shi, W. (2014). FeatureCounts: An efficient general purpose program for
 419 assigning sequence reads to genomic features. *Bioinformatics* 30(7), 923–930.
 420 doi:10.1093/bioinformatics/btt656.

421 Liu, L., Cash, T. P., Jones, R. G., Keith, B., Thompson, C. B., and Simon, M. C. (2006). Hypoxia-
 422 induced energy stress regulates mRNA translation and cell growth. *Molecular Cell* 21(4), 521–
 423 531. doi:10.1016/j.molcel.2006.01.010.

424 Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion
 425 for RNA-seq data with DESeq2. *Genome Biology* 15(12), 550. doi:10.1186/s13059-014-0550-8.

426 Molina-Arcas, M., Hancock, D. C., Sheridan, C., Kumar, M. S., and Downward, J. (2013).
 427 Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS -
 428 mutant lung cancer. *Cancer Discovery* 3(5), 548–563. doi:10.1158/2159-8290.CD-12-0446.

429 Noguchi, M., Morikawa, A., Kawasaki, M., Matsuno, Y., Yamada, T., Hirohashi, S., et al. (1995).
 430 Small adenocarcinoma of the lung. Histologic characteristics and prognosis. *Cancer* 75(12),
 431 2844–2852. doi:10.1002/1097-0142(19950615)75:12<2844::aid-cncr2820751209>3.0.co;2-#.

432 Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., et al. (2000).
 433 Ubiquitination of hypoxia-inducible factor requires direct binding to the β -domain of the von
 434 Hippel - Lindau protein. *Nature Cell Biology* 2(7), 423–427. doi:10.1038/35017054.

435 Polyak, K., and Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states:
 436 acquisition of malignant and stem cell traits. *Nature Reviews Cancer* 9(4), 265–273.
 437 doi:10.1038/nrc2620.

438 Qiu, X., Chen, J., Zhang, Z., You, Y., and Wang, Z. (2016). Aberrant GRK6 promoter methylation is
 439 associated with poor prognosis in hypopharyngeal squamous cell carcinoma. *Oncology Reports*
 440 35(2), 1027–1033. doi:10.3892/or.2015.4469.

441 Qureshi-Baig, K., Kuhn, D., Viry, E., Pozdeev, V. I., Schmitz, M., Rodriguez, F., et al. (2020).
 442 Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the
 443 PRKC/PKC-EZR (ezrin) pathway. *Autophagy* 16(8), 1436–1452.
 444 doi:10.1080/15548627.2019.1687213.

445 Raghuvanshi, S. K., Smith, N., Rivers, E. J., Thomas, A. J., Sutton, N., Hu, Y., et al. (2013). GRK6
 446 deficiency promotes angiogenesis, tumor progression and metastasis. *Journal of immunology*
 447 190(10), 5329–5336. doi:10.4049/jimmunol.1202058.GRK6.

448 Ratcliffe, P. J. (2013). Oxygen sensing and hypoxia signalling pathways in animals : the implications
 449 of physiology for cancer. *The Journal of physiology* 591(8), 2027–2042.
 450 doi:10.1113/jphysiol.2013.251470.

451 Rockman, H. A., Chien, K. R., Choi, D. J. U., Iaccarino, G., Hunter, J. J., John Ross, J. R., et al.
 452 (1998). Expression of a β -adrenergic receptor kinase 1 inhibitor prevents the development of
 453 myocardial failure in gene-targeted mice. *Proceedings of the National Academy of Sciences of
 454 the United States of America* 95(12), 7000–7005. doi:10.1073/pnas.95.12.7000.

455 Schofield, C. J., and Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. *Nature Reviews
 456 Molecular Cell Biology* 5(5), 343–354. doi:10.1038/nrm1366.

457 Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression.
 458 *Critical Reviews in Biochemistry and Molecular Biology* 35(2), 71–103.

459 doi:10.1080/10409230091169186.

460 Semenza, G. L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for
461 cancer therapy. *Trends in Pharmacological Sciences* 33(4), 207–214.
462 doi:10.1016/j.tips.2012.01.005.

463 Starska, K., Forma, E., Józwiak, P., Bryś, M., Lewy-Trenda, I., Brzezińska-Błaszczyk, E., et al.
464 (2015). Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human
465 laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1 α expression,
466 tumor invasiveness, and patient prognosis. *Tumor Biology* 36(4), 2309–2321.
467 doi:10.1007/s13277-014-2838-4.

468 Sun, R., Wang, X., Zhu, H., Mei, H., Wang, W., Zhang, S., et al. (2014). Prognostic value of LAMP3
469 and TP53 overexpression in benign and malignant gastrointestinal tissues. *Oncotarget* 5(23),
470 12398–12409. doi:10.18632/oncotarget.2643.

471 Tao, R., Li, Q., Gao, X., and Ma, L. (2018). Overexpression of GRK6 associates with the progression
472 and prognosis of colorectal carcinoma. *Oncology Letters* 15(4), 5879–5886.
473 doi:10.3892/ol.2018.8030.

474 Tiedemann, R. E., Zhu, Y. X., Schmidt, J., Yin, H., Shi, C. X., Que, Q., et al. (2010). Kinome-wide
475 RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a
476 lymphoid-restricted kinase, GRK6. *Blood* 115(8), 1594–1604. doi:10.1182/blood-2009-09-
477 243980.

478 Vaupel, P., Thews, O., and Hoeckel, M. (2001). Treatment resistance of solid tumors: Role of
479 hypoxia and anemia. *Medical Oncology* 18(4), 243–259. doi:10.1385/MO:18:4:243.

480 Vroon, A., Heijnen, C. J., and Kavelaars, A. (2006). GRKs and arrestins: regulators of migration and
481 inflammation. *Journal of Leukocyte Biology* 80(6), 1214–1221. doi:10.1189/jlb.0606373.

482 Wang, W. C. H., Mihlbachler, K. A., Brunnett, A. C., and Liggett, S. B. (2009). Targeted
483 transgenesis reveals discrete attenuator functions of GRK and PKA in airway β 2-adrenergic
484 receptor physiologic signaling. *Proceedings of the National Academy of Sciences of the United
485 States of America* 106(35), 15007–15012. doi:10.1073/pnas.0906034106.

486 Wei, L., Sun, J. J., Cui, Y. C., Jiang, S. L., Wang, X. W., Lv, L. Y., et al. (2016). Twist may be
487 associated with invasion and metastasis of hypoxic NSCLC cells. *Tumor Biology* 37(7), 9979–
488 9987. doi:10.1007/s13277-016-4896-2.

489 Willets, J. M., John Challiss, R. A., and Nahorski, S. R. (2002). Endogenous G protein-coupled
490 receptor kinase 6 regulates M3 muscarinic acetylcholine receptor phosphorylation and
491 desensitization in human SH-SY5Y neuroblastoma cells. *Journal of Biological Chemistry*
492 277(18), 15523–15529. doi:10.1074/jbc.M111217200.

493 Xu, X., Chen, B., Zhu, S., Zhang, J., He, X., Cao, G., et al. (2019). Hyperglycemia promotes Snail-
494 induced epithelial-mesenchymal transition of gastric cancer via activating ENO1 expression.
495 *Cancer Cell International* 19(1), 344. doi:10.1186/s12935-019-1075-8.

496 Yang, R., Weber, D. J., and Carrier, F. (2006). Post-transcriptional regulation of thioredoxin by the

497 stress inducible heterogenous ribonucleoprotein A18. *Nucleic Acids Research* 34(4), 1224–
 498 1236. doi:10.1093/nar/gkj519.

499 Yao, L., Conforti, F., Hill, C., Bell, J., Drawater, L., Li, J., et al. (2019a). Paracrine signalling during
 500 ZEB1-mediated epithelial–mesenchymal transition augments local myofibroblast differentiation
 501 in lung fibrosis. *Cell Death and Differentiation* 26(5), 943–957. doi:10.1038/s41418-018-0175-
 502 7.

503 Yao, S., Wu, D., Chen, J., Wang, P., Lv, X., and Huang, J. (2019b). Hypermethylation of the G
 504 protein-coupled receptor kinase 6 (GRK6) promoter inhibits binding of C/EBP α , and GRK6
 505 knockdown promotes cell migration and invasion in lung adenocarcinoma cells. *FEBS Open Bio*
 506 9(4), 605–617. doi:10.1002/2211-5463.12606.

507 Yao, S., Zhong, L., Liu, J., Feng, J., Bian, T., Zhang, Q., et al. (2016). Prognostic value of decreased
 508 GRK6 expression in lung adenocarcinoma. *Journal of Cancer Research and Clinical Oncology*
 509 142(12), 2541–2549. doi:10.1007/s00432-016-2244-y.

510 Yu, S., Sun, L., Jiao, Y., and Lee, L. T. O. (2018). The role of G protein-coupled receptor kinases in
 511 cancer. *International Journal of Biological Sciences* 14(2), 189–203. doi:10.7150/ijbs.22896.

512 Yuan, L., Zhang, H., Liu, J., Rubin, J. B., Cho, Y. J., Shu, H. K., et al. (2013). Growth factor
 513 receptor-Src-mediated suppression of GRK6 dysregulates CXCR4 signaling and promotes
 514 medulloblastoma migration. *Molecular Cancer* 12(1), 18. doi:10.1186/1476-4598-12-18.

515 Zhang, J., Guo, S., Wu, Y., Zheng, Z. C., Wang, Y., and Zhao, Y. (2019a). P4HB, a Novel Hypoxia
 516 Target Gene Related to Gastric Cancer Invasion and Metastasis. *BioMed Research International*
 517 2019(1), 9749751. doi:10.1155/2019/9749751.

518 Zhang, Q., Zhang, J., Fu, Z., Dong, L., Tang, Y., Xu, C., et al. (2019b). Hypoxia-induced microRNA-
 519 10b-3p promotes esophageal squamous cell carcinoma growth and metastasis by targeting
 520 TSGA10. *Aging* 11(22), 10374–10384. doi:10.18632/aging.102462.

521 Zhang, W. C., Wells, J. M., Chow, K.-H., Huang, H., Yuan, M., Saxena, T., et al. (2019c). miR-
 522 147b-mediated TCA cycle dysfunction and pseudohypoxia initiate drug tolerance to EGFR
 523 inhibitors in lung adenocarcinoma. *Nature Metabolism* 1(4), 460–474. doi:10.1038/s42255-019-
 524 0052-9.

525 Zhao, F., Malm, S. W., Hinchman, A. N., Li, H., Beeks, C. G., and Klimecki, W. T. (2014). Arsenite-
 526 induced pseudo-hypoxia results in loss of anchorage-dependent growth in BEAS-2B pulmonary
 527 epithelial cells. *PLoS ONE* 9(12), e114549. doi:10.1371/journal.pone.0114549.

528

529

530 **10 Figure Legends**

531 **10.1 FIGURE 1 | Global transcriptomic changes in ATII cells upon *GRK6* depletion.** (A) REVIGO TreeMap showing Gene Ontology (GO) analysis of upregulated differentially expressed genes (DEGs) in ATII cells transfected with siRNAs against *GRK6* vs. control siRNA. Common colours represent groupings based on parent GO terms, and each rectangle is proportional to the relative enrichment of the GO term compared to the whole genome. Genes with false discovery rate (FDR) < 0.05 were considered as DEGs (differentially expressed genes). (B) Scatter plot showing the top 10 enriched GO terms from 3 categories (biological process, cellular component and molecular function) according to rich factors. Rich factor is the percentage of DEGs enriched gene count in the given annotated GO terms. The sizes of circles represent gene counts, and the colours of circles represent the -Log₁₀ of the adjusted *P*-values (padj). Values less than 0.05 were considered as statistically significant.

542 **10.2 FIGURE 2 | The analysis to identify candidate genes upon *GRK6* inhibition.** (A) In brief, TCGA analysis coupled to RNA sequencing in ATII cells upon *GRK6* depletion (si*GRK6*) was used (details in Methods). FDR: false discovery rate. (B) Heat-map showing DEGs (differentially expressed genes) between low GRK6 (n = 26) and high GRK6 (n = 17) expressing lung adenocarcinoma samples from TCGA analysis. Red indicates up-regulation and blue down-regulation. Genes with false discovery rate (FDR) adjusted *P*-values less than 0.05 were considered as DEGs. *P*-values were adjusted by using Benjamini-Hochberg (BH) method. (C) Heat-map showing DEGs in ATII cells transfected with siRNA against *GRK6* (si*GRK6*) vs. control siRNA (Control). Red indicates up-regulation and blue down-regulation. n = 3 samples per group. DESeq2 Wald test was performed for statistical analysis. Genes with false discovery rate (FDR) adjusted *P*-values less than 0.05 were considered as DEGs. *P*-values were adjusted by using Benjamini-Hochberg (BH) method.

554 **10.3 FIGURE 3 | Candidate pathways enriched upon *GRK6* inhibition are identified by TCGA 555 analysis coupled to RNA sequencing.** (A) Heat-map showing genes that are over-expressed in 556 lung adenocarcinoma samples with low GRK6 (n = 26) compared to those with high GRK6 (n 557 = 17) from TCGA analysis. Red indicates up-regulation and blue down-regulation. Genes with 558 false discovery rate (FDR) adjusted *P*-values less than 0.05 were considered as DEGs. *P*-values 559 were adjusted by using Benjamini-Hochberg (BH) method. (B) Heat-map showing DEGs 560 (differentially expressed genes) that are over-expressed in ATII cells transfected with siRNA 561 against *GRK6* (si*GRK6*) vs. control siRNA. Red indicates up-regulation and blue down- 562 regulation. n = 3 samples per group. DESeq2 Wald test was performed for statistical analysis. 563 Genes with false discovery rate (FDR) adjusted *P*-values less than 0.05 were considered as 564 DEGs. *P*-values were adjusted by using Benjamini-Hochberg (BH) method. (C) Pathways 565 enriched upon *GRK6* inhibition were visualised on a bar chart, showing number of shared 566 genes and -Log₁₀(q value).

567 **10.4 FIGURE 4 | *GRK6* depletion induces HIF (hypoxia-inducible factors) activity in ATII 568 (alveolar epithelial type II) cells.** (A) RNA-seq showing relative expressions 569 of *GRK6*, *CA9*, *NDRG1*, *SLC2A1*, *P4HA1* and *ENO1* in ATII cells transfected with control or 570 *GRK6* siRNA. Data are mean ± s.d. n = 3 samples per group. Multiple t-test was performed for 571 statistical analysis. Genes with false discovery rate (FDR) adjusted *P*-values less than 0.05 were 572 considered as DEGs. *P*-values were adjusted by using Benjamini-Hochberg (BH) method. B)

573 Fold change in mRNA levels of *CA9* and *NDRG1* in ATII cells transfected with control or
574 *GRK6* siRNA. *ACTB* (β -actin)-normalised mRNA levels in control cells were used to set the
575 baseline value at unity. Data are mean \pm s.d. $n = 3$ samples per group. Multiple t-test was
576 performed for statistical analysis. Genes with false discovery rate (FDR) adjusted P-values less
577 than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg
578 (BH) method. (C) Protein expression of *HIF1 α* and *GRK6* in ATII cells transfected with
579 control or *GRK6* siRNA. β -tubulin was used as a loading control. (D) Quantification of Figure
580 4C. Graph showing protein level of *HIF1 α* in ATII cell line with indicated transfections. Data
581 are mean \pm s.d. $n = 3$ per group. Two tailed, unpaired Student's *t-test* was performed for
582 statistical analysis. P-value less than 0.05 was considered as statistically significant. (E) RNA-
583 seq showing relative expressions of *HIF1A*, *ARNT*, *EPAS1* and *VHL* in ATII cells transfected
584 with control or *GRK6* siRNA. Data are mean \pm s.d. $n = 3$ samples per group. Multiple t-test was
585 performed for statistical analysis. Genes with false discovery rate (FDR) adjusted P-values less
586 than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg
587 (BH) method.

588 **10.5 FIGURE 5 | GRK6 expression levels negatively and positively correlate with HIF1 α and**
589 **VHL expressions in lung adenocarcinoma, respectively.** (A) Representative GRK6 staining
590 pattern (low or high GRK6) in lung adenocarcinoma tissue microarray cores. Scale bar:
591 500 μ m. (B) Representative HIF1 α staining pattern (low or high HIF1 α) in lung
592 adenocarcinoma tissue microarray cores. Scale bar: 500 μ m. (C) Representative VHL staining
593 pattern (low or high VHL) in lung adenocarcinoma tissue microarray cores. Scale bar: 500 μ m.
594 (D) Graph showing the number and percentage of lung adenocarcinoma patients with low/high
595 HIF1 α or low/high VHL in high vs. low GRK6 group. High GRK6 $n = 82$. Low GRK6 $n = 92$.
596 Fisher's exact test was performed for statistical analysis. P-values less than 0.05 were
597 considered as statistically significant.

598

599

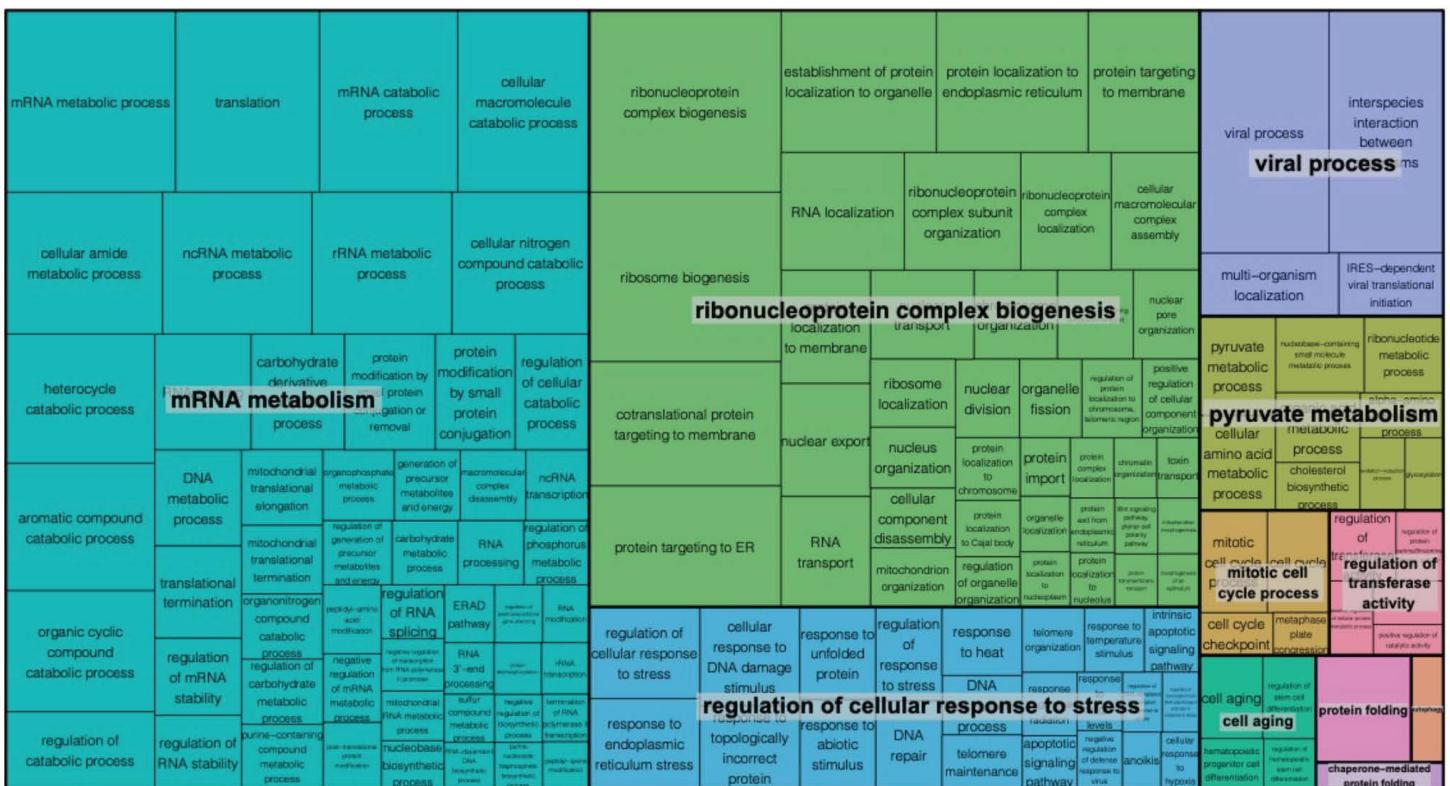
600 11 Tables

601 11.1 Table 1

602 Table 1 | List of pathways enriched upon GRK6 inhibition.

	Number of shared genes	-Log ₁₀ (q-value)	Genes
HALLMARK MITOTIC SPINDLE	13	4.653	<i>APC, ARHGAP5, NOTCH2, RFC1, ROCK1, TIAM1, TRIO, ARHGAP29, RASAL2, ARHGEF12, SUN2, DYNLL2, PPP4R2</i>
HALLMARK EPITHELIAL MESENCHYMAL TRANSITION	12	4.122	<i>CALU, CD44, CD59, DPYSL3, FBN2, FN1, ITGAV, NOTCH2, PTX3, SDC1, TGFB1, SLIT2</i>
HALLMARK PROTEIN SECRETION	8	3.664	<i>CLCN3, GOLGA4, IGF2R, PAM, RPS6KA3, ZW10, SCRNI, STX12</i>
HALLMARK UV RESPONSE DN	9	3.321	<i>RUNX1, LTBP1, NOTCH2, ATXN1, NRPI, MAGI2, NRID2, SIPA1L1, MIOS</i>
HALLMARK IL2 STAT5 SIGNALING	10	3.042	<i>CD44, IGF2R, ITGAV, PRNP, TIAM1, NRPI, DENND5A, TWSGI, RRAGD, SPRED2</i>
HALLMARK GLYCOLYSIS	9	2.418	<i>CD44, ENO1, IL13RA1, PAM, SDC1, TGFB1, P4HA2, HS2ST1, RRAGD</i>
HALLMARK HYPOXIA	8	1.847	<i>ENO1, GBE1, PAM, PFKFB3, TGFB1, P4HA2, KDM3A, RRAGD</i>
HALLMARK TGF BETA SIGNALING	4	1.701	<i>ACVR1, APC, SLC20A1, NOG</i>

603


604

605 12 Table Legends

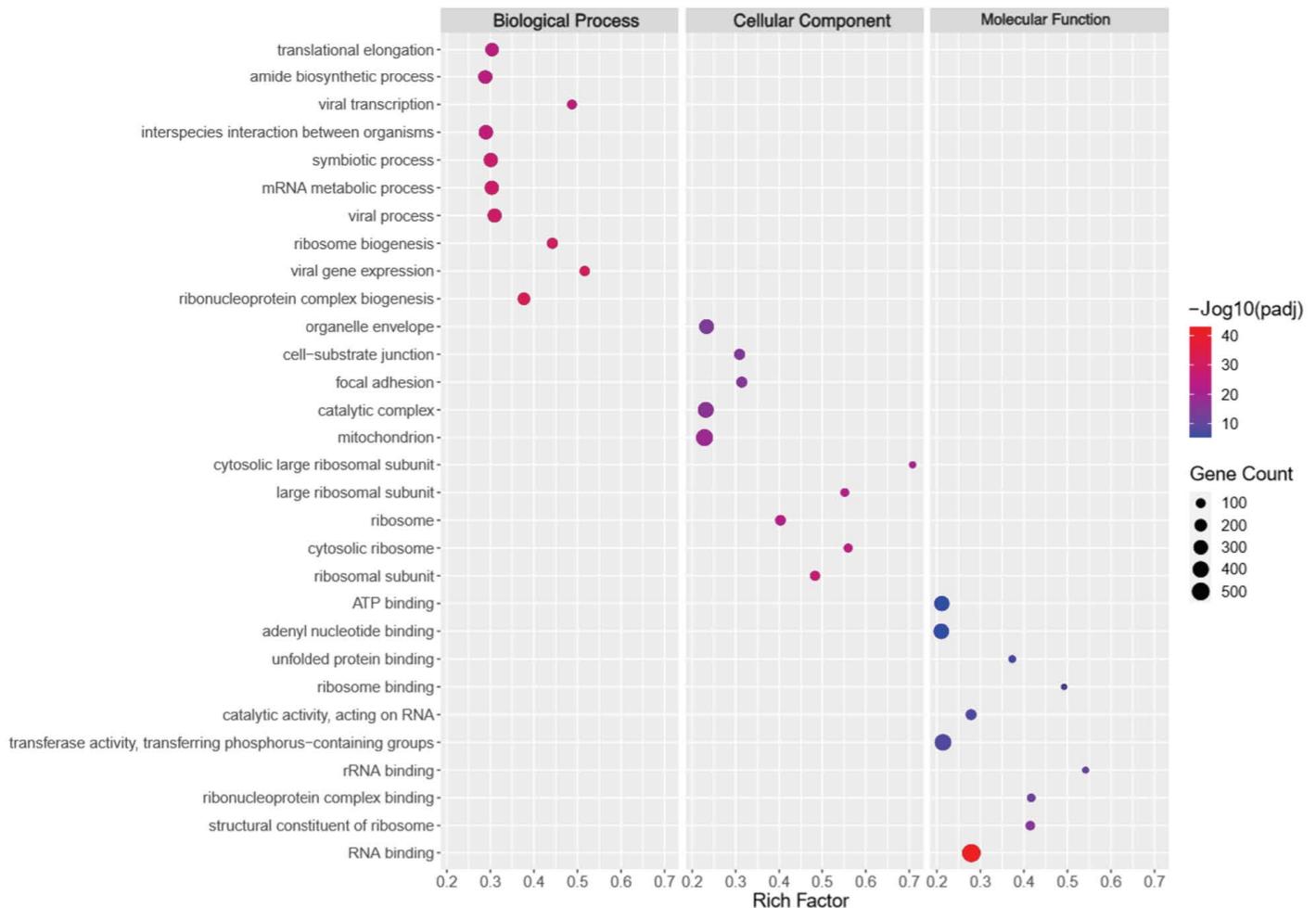

606 12.1 Table 1 List of pathways enriched upon GRK6 inhibition.

Figure 1

A

B

Figure 2

A

**mRNA expressions of TCGA
Lung Adenocarcinoma
(IlluminaHiSeq)**

Correlation analysis.

High (n=17) and low (n=26) GRK6 expressing samples, according to the correlation analysis.

Gene expression with FDR < 0.05 between high and low GRK6 samples.

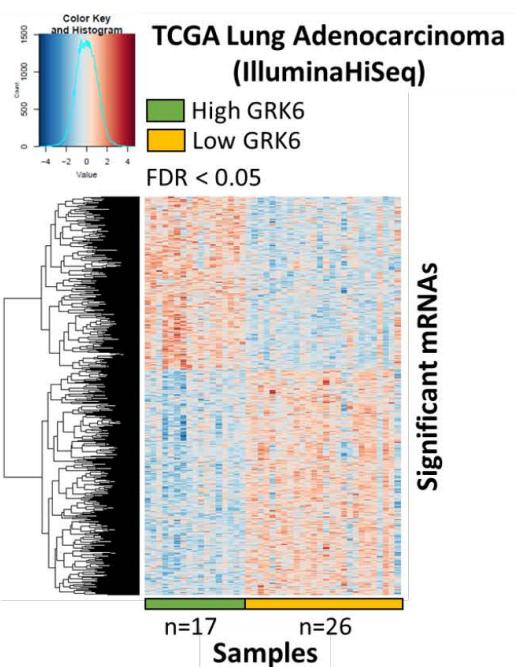
RNA-Sequencing

Genes with FDR < 0.05 between control and siGRK6 samples.

↓ 2,345

↓ 7,116

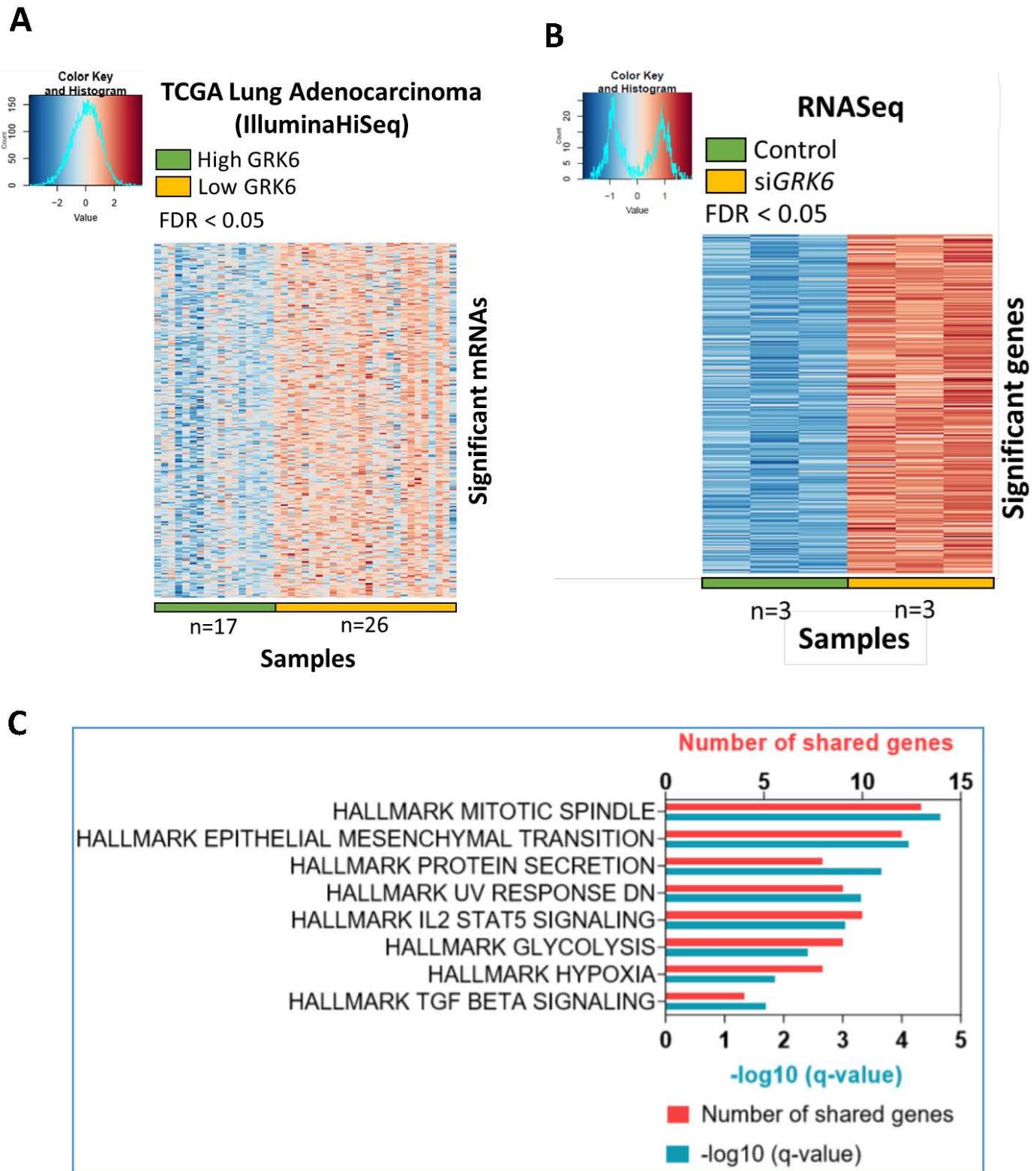
Higher mRNA expression in low GRK6 samples.


Higher mRNA expression in siGRK6 samples.

Merging the identified genes

Identification top hit candidate genes.

↓
Pathway analysis.


B

C

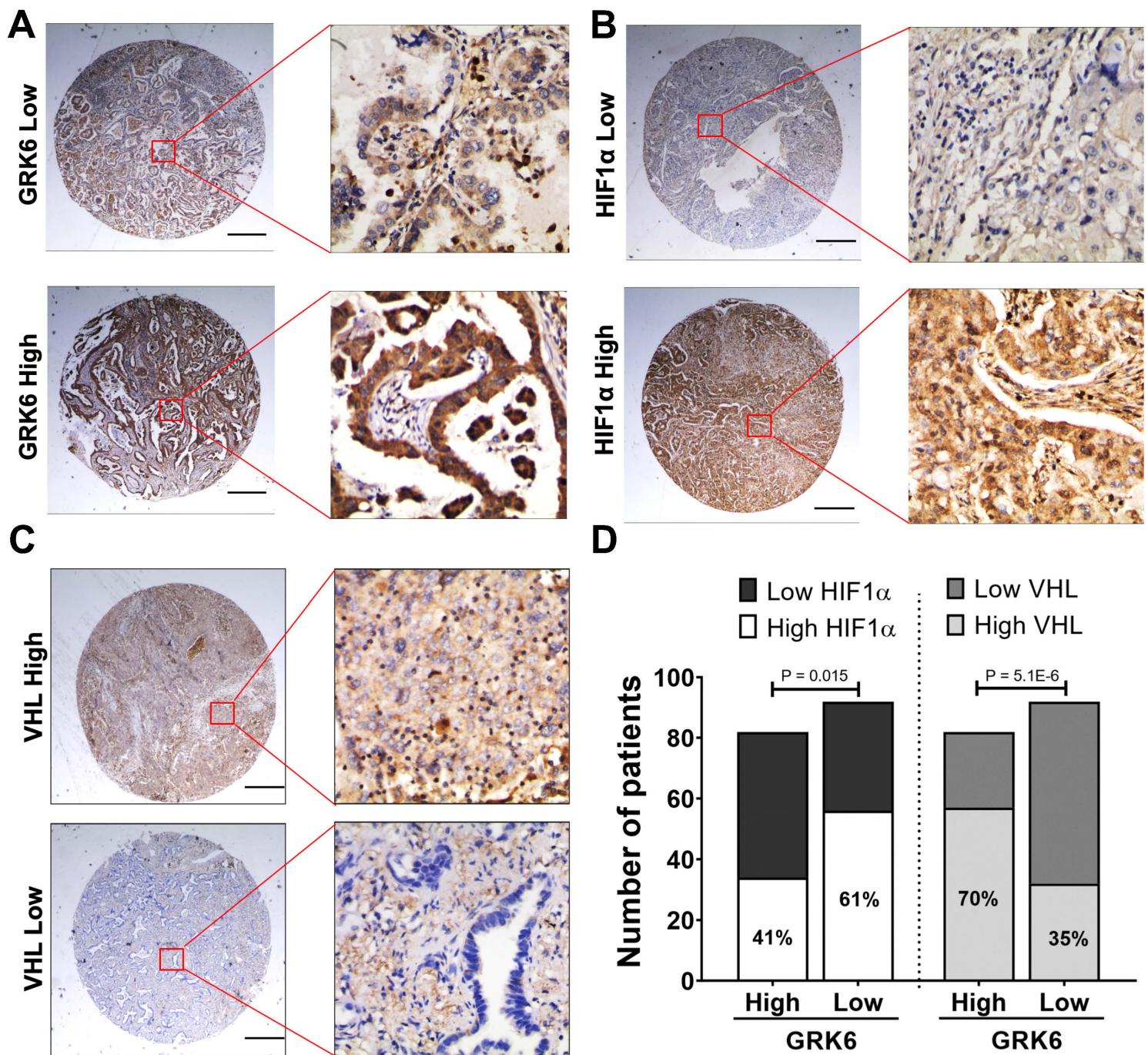
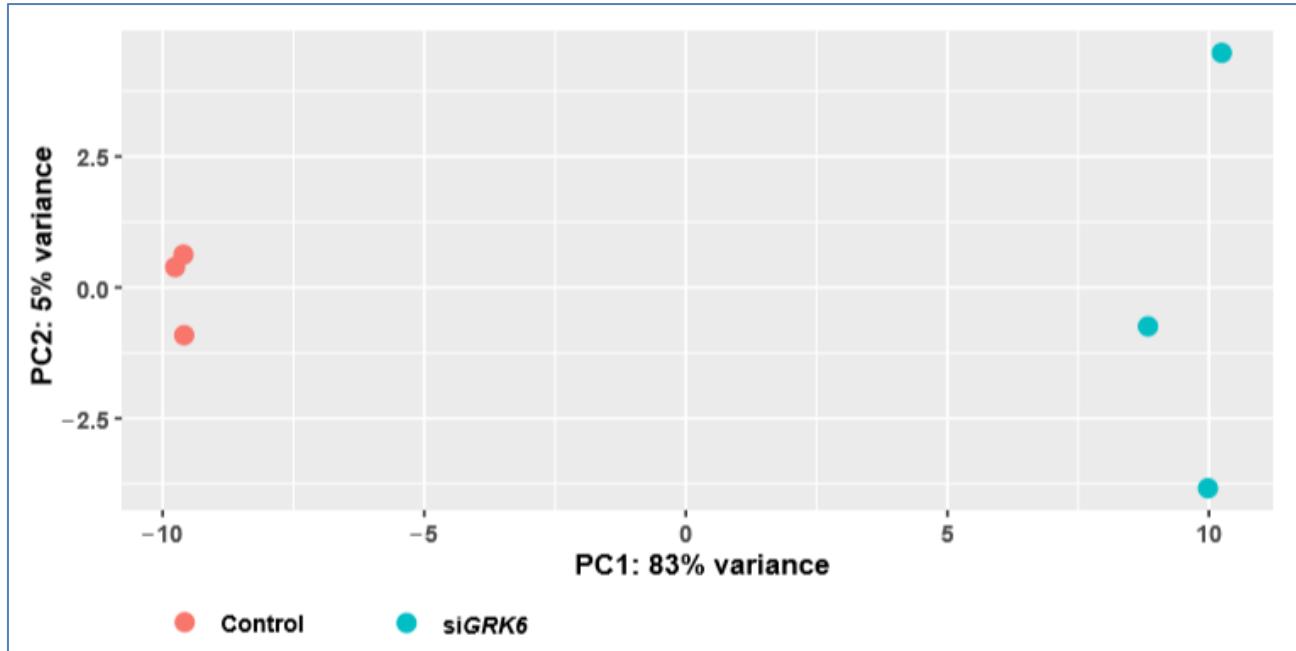
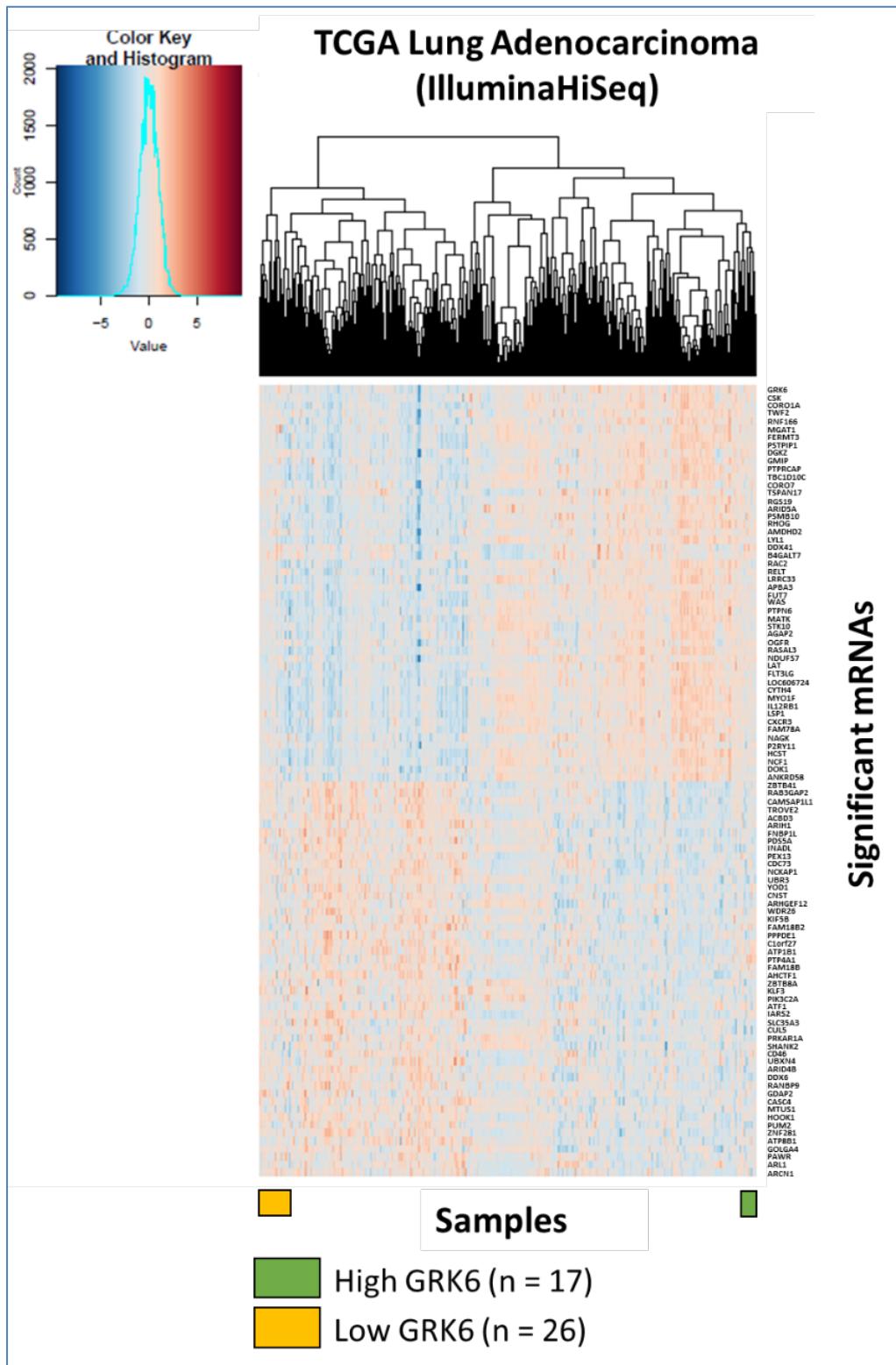

Figure 3

Figure 4

Figure 5



Supplementary Material


1 Supplementary Tables

- 1.1 Supplementary Table 1** Up-regulated DEGs in ATII cells transfected with siRNA against *GRK6* vs. control siRNA.
- 1.2 Supplementary Table 2** Down-regulated DEGs in ATII cells transfected with siRNA against *GRK6* vs. control siRNA.
- 1.3 Supplementary Table 3** GO analysis of up-regulated DEGs in ATII cells transfected with siRNA against *GRK6* vs. control siRNA.
- 1.4 Supplementary Table 4** GO analysis of down-regulated DEGs in ATII cells transfected with siRNA against *GRK6* vs. control siRNA.
- 1.5 Supplementary Table 5** List of candidate genes that are over-expressed in lung adenocarcinoma samples with low *GRK6* compared to those with high *GRK6* from TCGA analysis.
- 1.6 Supplementary Table 6** List of candidate genes that are over-expressed in ATII cells transfected with siRNA against *GRK6* (si*GRK6*) vs. control siRNA.

2 Supplementary Figures

Supplementary Figure 1. Principal component analysis (PCA) between control and siGRK6 samples from RNA-Seq data. ATII cells were transfected with control siRNA (Control, in red) or siRNA against *GRK6* (siGRK6, in blue) for 3 days, followed by RNA-Seq analysis. Each point represents an RNA-Seq sample. Samples that have similar gene expression patterns are clustered together.

Supplementary Figure 2. Lung adenocarcinoma samples with either low or high GRK6 are identified in TCGA by unsupervised hierarchical clustering. Heat-map showing genes that are positively or negatively correlated with GRK6 expression levels in TCGA lung adenocarcinoma samples. A total of 17 samples were identified as high GRK6 (green box) and 26 as low GRK6 (yellow box). Red in heatmap indicates up-regulation and blue down-regulation.