
  

UNIVERSITY OF SOUTHAMPTON 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES  

School of Engineering 

Department of Civil, Maritime and Environmental Engineering 

 

  

DEVELOPMENT OF TRAVEL TIME ESTIMATION MODELS: 

CONSIDERATION OF LINK GEOMETRY FOR KOREAN MOTORWAYS 

 

by 

 

SUNGBAE YOON 

 

 

 

Thesis for the degree of Doctor of Philosophy 

JANUARY 2021 

 





  

i 

 

UNIVERSITY OF SOUTHAMPTON 

Abstract 
FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 

Department of Civil, Maritime and Environmental Engineering 
Thesis for the degree of Doctor of Philosophy 

DEVELOPMENT OF TRAVEL TIME ESTIMATION MODELS:  
CONSIDERATION OF LINK GEOMETRY FOR KOREAN MOTORWAYS 

Sungbae Yoon 

Traffic assignment in transport appraisal is an important procedure that allocates future origin-
destination trip demand to every route. A link cost function, which is also called a volume-delay 
function (VDF), has been used to predict travel time consumed by traffic demand passing through 
each link in traffic assignment. In order to cover various road characteristics such as the number of 
lanes, road types, different parameters in VDF have been proposed commonly with road capacity 
and free-flow travel time. VDF has the advantage in that it is simple enough to analyse the entire 
network, explaining the relationship mainly with traffic flow. However, VDF has two drawbacks: 
uncertainty in road capacity and difficulty in spatial transferability. The former includes the 
conceptual uncertainty that there is little consensus of the definition and the measurement 
uncertainty of which traffic flow is chosen for road capacity (e.g. the highest or 95 percentile one, 
etc.). The other drawback is that current VDFs cannot account for change in link geometry and as 
such are not spatially transferable. Because of the two drawbacks, current VDFs could result in 
inaccurate traffic assignment; and hence cause inappropriate provision of road space. 

In order to overcome the limitations, this study implements the empirical analysis of 72 Korean 
motorway links by quantifying the dependent variable of link travel time and the independent 
variables of traffic flow and link geometric features. The dataset was collected from intelligent 
transport systems and road design drawings. Fixed effects modelling by least squares dummy 
variables identified influential factors on travel time. In order to develop feasible travel time 
estimation models, three statistical methods were introduced as follows: firstly, this study 
introduces linear statistical estimations, which are ordinary least squares (OLS) and generalised 
least squares (GLS) estimated by likelihood maximisation. In the modelling process, strict 
statistical assumptions of the OLS estimation are tested and different variance-covariance 
structures in the GLS estimation are scrutinised to deal with statistical violations such as 
heteroscedasticity and serial correlation. Secondly, nonlinear least squares (NLS) estimation, which 
is widely used for VDF customisation, is applied by combining link geometric variables with an 
existing model. In order to clarify the uncertainty of road capacity, sensitivity analysis using 
different road capacity values shows the impact on NLS estimated models. Lastly, the most 
appropriate model is selected by the comparison with statistical accuracy measures after a 10-fold 
cross-validation with the application to practical traffic assignment and transport appraisal.  

In conclusion, this study develops new types of travel time estimation models that include link 
geometric variables by testing many statistical approaches. The results suggest that not only traffic 
flow in existing models but also many influential factors such as weather, brightness and link 
attributes can affect travel time. In particular, some link geometric variables of upgrade, downgrade 
and tunnel ratios are statistically significant as explanatory variables in the models. In addition, it is 
worth noting that it is possible to develop a new type of VDF with link geometry instead of road 
capacity. The statistical significance of the developed models and their application to transport 
planning demonstrate that the selected model can replace existing VDFs in traffic assignment.  





iii 

  

 

Table of Contents 
 

Chapter 1. Introduction ........................................................................................... 1 

1.1. Background ............................................................................................................ 1 

1.2. Motivation .............................................................................................................. 3 

1.3. Aim and objectives................................................................................................. 6 

1.4. Research Scope ...................................................................................................... 8 

1.5. Structure of the thesis ........................................................................................... 11 

Chapter 2. Travel Time Estimation Models in Traffic Assignment .................. 13 

2.1. Introduction .......................................................................................................... 13 

2.2. Traffic assignment................................................................................................ 14 

2.2.1. Traffic assignment from the economic perspective .....................................14 

2.2.2. Traffic assignment in transport appraisal .....................................................16 

2.2.3. Two classifications of traffic assignment .....................................................18 

2.2.4. Implication to thesis .....................................................................................23 

2.3. Travel time estimaiton models ............................................................................. 25 

2.3.1. Theoretical background for traffic modelling ..............................................25 

2.3.2. Volume Delay Function (VDF) ...................................................................30 

2.3.3. VDF in South Korea ....................................................................................34 

2.3.4. Implication to thesis .....................................................................................38 

2.4. Free-Flow Speed and Road Capacity ................................................................... 39 



  iv  

 

2.4.1. FFS and road capacity in highway capacity manuals .................................. 39 

2.4.2. Uncertainty of FFS and road capacity ......................................................... 41 

2.4.3. Implication to thesis ..................................................................................... 46 

2.5. Road geometry in travel time estimation models ................................................ 47 

2.5.1. Observation of traffic data by different road geometry ............................... 47 

2.5.2. Link geometry in travel time estimation models ......................................... 48 

2.5.3. Road geometry in South Korea .................................................................... 52 

2.5.4. Implication to thesis ..................................................................................... 54 

2.6. Research gaps in the current literature and potential improvements ................... 55 

Chapter 3. Research Methodology ....................................................................... 57 

3.1. Introduction ......................................................................................................... 57 

3.2. Initial case study .................................................................................................. 59 

3.2.1. Overview of intial case study ...................................................................... 59 

3.2.2. Measurement of traffic data on each location .............................................. 61 

3.2.3. Estimation of models between travel time and traffic flow ......................... 63 

3.2.4. Findings ....................................................................................................... 67 

3.3. Development of model estimation methdology ................................................... 69 

3.3.1. Overview of model estimation ..................................................................... 69 

3.3.2. Multivariate linear estimation ...................................................................... 70 

3.3.3. Nonlinear least squares (NLS) estimation ................................................... 80 

3.4. Identification of variables .................................................................................... 84 

3.4.1. Variables for model estimations .................................................................. 84 

3.4.2. Data collection ............................................................................................. 87 

3.4.3. Data processing ............................................................................................ 93 



v 

  

3.5. Case study ............................................................................................................ 95 

3.5.1. How to select cases ......................................................................................95 

3.5.2. Descriptive statistics for the selected cases ..................................................97 

3.6. Model selection .................................................................................................. 100 

3.6.1. Comparison of results across methodologies .............................................100 

3.6.2. 10-fold cross-validation .............................................................................102 

3.7. Summary ............................................................................................................ 104 

Chapter 4. Identification of Influential Factors for Models ............................. 105 

4.1. Introduction ........................................................................................................ 105 

4.2. Data selection ..................................................................................................... 106 

4.2.1. Plot observation ..........................................................................................106 

4.2.2. Framing panel data (entity identification) ..................................................111 

4.3. Analysis of factors by BPR function .................................................................. 114 

4.3.1. Model specification ....................................................................................114 

4.3.2. Customisation of BPR function (existing approach)..................................114 

4.3.3. Customisation of BPR function including geometric features ...................116 

4.3.4. Sensitivity analysis of differences in road capacity ...................................118 

4.3.5. Summary ....................................................................................................118 

4.4. Analysis of factors by OLS linear estimation .................................................... 120 

4.4.1. Model specification ....................................................................................120 

4.4.2. POLS and FE models with DV and TF ......................................................121 

4.4.3. POLS and FE models including geometric variables .................................127 

4.4.4. Comparison between fixed effects models ................................................133 

4.4.5. Model finding with panel data: POLS, FE and RE modelling ...................135 

4.4.6. Summary ....................................................................................................139 



  vi  

 

4.5. Findings ............................................................................................................. 141 

Chapter 5. Development of Feasible Models ..................................................... 143 

5.1. Introduction ....................................................................................................... 143 

5.2. Data selection .................................................................................................... 144 

5.2.1. Data filtering .............................................................................................. 144 

5.2.2. Discussion on one-day data selection ........................................................ 145 

5.2.3. Plot observation ......................................................................................... 148 

5.3. Customisation of BPR function by NLS estimation .......................................... 150 

5.3.1. Model specification ................................................................................... 151 

5.3.2. Sensitivity analysis by road capacity ......................................................... 154 

5.3.3. Summary .................................................................................................... 154 

5.4. OLS estimation models...................................................................................... 156 

5.4.1. Model specification ................................................................................... 156 

5.4.2. Model findings ........................................................................................... 156 

5.4.3. OLS assumption tests ................................................................................ 160 

5.4.4. Summary .................................................................................................... 165 

5.5. GLS estimation models...................................................................................... 166 

5.5.1. Model specification ................................................................................... 166 

5.5.2. Dealing with heteroscedasticity ................................................................. 167 

5.5.3. Dealing with serial correlation ................................................................... 173 

5.5.4. Dealing with both heteroscedasticity and serial correlation ...................... 176 

5.5.5. Summary .................................................................................................... 179 

5.6. Findings ............................................................................................................. 181 

Chapter 6. Application ......................................................................................... 183 



vii 

  

6.1. Introduction ........................................................................................................ 183 

6.2. Selection of the most appropriate link-cost function ......................................... 184 

6.2.1. Validation of models ..................................................................................184 

6.2.2. Investigation of statistical significance between models ...........................186 

6.2.3. Practical applicability .................................................................................188 

6.2.4. Summary ....................................................................................................192 

6.3. Application to transport planning ...................................................................... 193 

6.3.1. Impacts on travel time estimation ..............................................................193 

6.3.2. Application to traffic assignment ...............................................................197 

6.4. Findings .............................................................................................................. 201 

Chapter 7. Conclusion .......................................................................................... 203 

7.1. Main conclusions ............................................................................................... 203 

7.1.1. Uncertainty of FFTT and road capacity in existing VDF approaches .......204 

7.1.2. Identification of factors affecting travel time .............................................205 

7.1.3. Significance of link geometry for travel time estimation ...........................206 

7.1.4. Suggestion of new travel time estimation models ......................................207 

7.2. Contributions of the thesis ................................................................................. 210 

7.3. Limitation and future work ................................................................................ 212 

A. Appendices ....................................................................................................... 215 

A.1. Korean motorways ............................................................................................. 216 

A.1.1. Status of motorways in South Korea ..........................................................216 

A.1.2. Design criteria for motorways in South Korea...........................................218 

A.2. Cost-Benefit Analysis (CBA) in Transportation ................................................ 220 



  viii  

 

A.2.1. CBA in Many Countries ............................................................................ 220 

A.2.2. CBA Benefit Estimation in the UK ........................................................... 222 

A.2.3. CBA limitation or difficulties .................................................................... 227 

A.3. CBA in Korea .................................................................................................... 230 

A.3.1. History and significance of CBA in Korean transportation projects ......... 230 

A.3.2. The procedure of Korean CBA .................................................................. 231 

A.3.3. The benefit factors in Korean CBA ........................................................... 233 

A.4. Initial case study ................................................................................................ 236 

A.4.1. Case selection and Data collection ............................................................ 236 

A.4.2. Measurement of Traffic data in the intial case study ................................. 240 

A.5. Statistical results ................................................................................................ 248 

A.5.1. FE modelling ............................................................................................. 248 

A.5.2. OLS estimation on one-day dataset ........................................................... 252 

A.5.3. Box-Cox test for selecting log-linear versus linear-linear form ................ 253 

A.5.4. Coding for 10-fold cross validation ........................................................... 254 

A.5.5. Estimated travel time on three links by three models (part of result) ........ 256 

A.5.6. Application to traffic assignment by three models .................................... 257 

References ................................................................................................................ 259 

 

 

  



ix 

  

 

List of Tables 
 

Table 2-1 Values of travel time savings (VTTS) and vehicle operating cost (VOC) ................. 16 

Table 2-2 Environmental impact appraisal on noise, air quality and greenhouse gases ............. 17 

Table 2-3 Classification of traffic assignment by equilibrium principles ................................... 17 

Table 2-4 Comparison between STA and DTA .......................................................................... 23 

Table 2-5 Factors of the Korean VDF by different road types ................................................... 37 

Table 2-6 Limitations of road capacity ....................................................................................... 40 

Table 2-7 Formulae for the macroscopic traffic flow on gradient motorways ........................... 49 

Table 2-8 Design speed in Korea by the type of terrain ............................................................. 53 

Table 2-9 The number and ratio of Korean bridges and tunnels ................................................. 54 

Table 3-1 Geometrical features with ILDs’ locations in the initial case study ........................... 60 

Table 3-2 Data source and purpose in the initial case study ....................................................... 60 

Table 3-3 Observations of FFS and road capacity in the initial case study ................................ 61 

Table 3-4 Nonlinear estimation based on BPR function in the initial case study ....................... 64 

Table 3-5 Different curve estimation results in the initial case study ......................................... 66 

Table 3-6. Strengths and weaknesses of linear and nonlinear estimation ................................... 69 

Table 3-7 Table form for sensitivity analysis focusing on the change in parameters ................. 83 

Table 3-8 Table form for sensitivity analysis focusing on spatial transferability ....................... 83 

Table 3-9 Candidates and selection of geometric variables ........................................................ 85 

Table 3-10. Example of DSRC raw data ..................................................................................... 87 

Table 3-11 Example of raw data from ILD ................................................................................. 89 

Table 3-12 Calculation of average traffic flow ........................................................................... 89 

Table 3-13 Example of raw data from FTMS ............................................................................. 90 

Table 3-14 Procedure for the case selection ............................................................................... 95 

Table 3-15 List of the selected cases .......................................................................................... 97 

Table 3-16 Descriptive statistics of the 72 selected cases........................................................... 99 



  x  

 

Table 3-17 Statistical accuracy measures for the model evaluation .......................................... 102 

Table 4-1 Research about reduction rate of traffic values by hourly rainfall ............................ 112 

Table 4-2 Daily rainfall by regional observatories in September of 2018 ................................. 113 

Table 4-3 Customised models based on BPR function ............................................................. 114 

Table 4-4 Existing approach based on BPR function between DV and TF ............................... 115 

Table 4-5 NLS estimation with TF and geometric variables ..................................................... 116 

Table 4-6 Sensitivity analysis of NLS estimation by different values of road capacity ............ 118 

Table 4-7 POLS and FE models based on a quadratic function with DV and TF ..................... 120 

Table 4-8 POLS and FE models after the inclusion of geometric variables on MODEL1........ 121 

Table 4-9 Pooled OLS estimation between DV and IV1 by a quadratic function ..................... 122 

Table 4-10 Result of FE modelling (LSDV) with the ‘Link’ entity .......................................... 123 

Table 4-11 Result of FE modelling (LSDV) with ‘Date’ entity (without geometric variables) 125 

Table 4-12 Result of two-way FE modelling (LSDV) with both ‘Date’ and ‘Link’ entities ..... 126 

Table 4-13 Pooled OLS estimation with TF and geometric independent variables .................. 127 

Table 4-14 Result of FE modelling (LSDV) with the ‘Route’ entity ........................................ 128 

Table 4-15 Result of FE modelling (LSDV) with the ‘Brightness’ entity ................................. 129 

Table 4-16 Result of FE modelling (LSDV) with the ‘Day (weekday and weekend)’ entity ... 130 

Table 4-17 Result of FE modelling (LSDV) with the ‘Weather’ entity .................................... 131 

Table 4-18 Result of FE modelling (LSDV) with the ‘Date’ entity (with geometric variables)131 

Table 4-19 Summary of FE modelling by LSDV (without geometric variables) ...................... 134 

Table 4-20 Summary of FE modelling by LSDV (with geometric variables) ........................... 134 

Table 4-21 Panel data definition with the entity of links and 15-minute intervals .................... 135 

Table 4-22 Pooled OLS estimation with the panel data ............................................................ 135 

Table 4-23 FE modelling by the method of ‘within’ estimation ............................................... 136 

Table 4-24 RE modelling with panel data ................................................................................. 137 

Table 4-25 F-test for investigating individual effects ................................................................ 138 

Table 4-26 Hausman test for model selection between FE and RE modelling ......................... 138 

Table 4-27 Breusch and Pagan Lagrangian Multiplier (LM) test .............................................. 139 

Table 4-28 RMSE comparison between OLS and NLS estimation (one-month data analysis) 142 



xi 

  

Table 5-1 OLS estimation by different daily data selection ..................................................... 147 

Table 5-2 Impact of BEND variable on estimated models from the dataset on 25th of Sep ..... 148 

Table 5-3 NLS estimation models by inclusion of geometric variables ................................... 150 

Table 5-4 Example of NLS estimation (with all geometric variables) ..................................... 151 

Table 5-5 Feasible NLS estimation models by different combinations of IVs ......................... 153 

Table 5-6 Coefficients of feasible NLS estimation models by different road capacity ............ 154 

Table 5-7 OLS estimation models by inclusion of geometric variables ................................... 156 

Table 5-8 Model estimations by variable selection................................................................... 157 

Table 5-9 Model estimations by interaction variables .............................................................. 158 

Table 5-10 Model estimation by log-transformation ................................................................ 159 

Table 5-11 Change of R-square by log-transformation of IVs ................................................. 160 

Table 5-12 Result of the variance inflation factor (VIF) .......................................................... 161 

Table 5-13 Breusch-Pagan test by using fitted values for FMODEL3-1 .................................. 162 

Table 5-14 Breusch-Pagan test of independent variables for MODEL3-1 ............................... 163 

Table 5-15 Breusch-Pagan test of independent variables for FMODEL3 ................................ 163 

Table 5-16 Durbin-Watson test for MODEL3-1 and FMODEL3 ............................................ 164 

Table 5-17 GLS estimation models by different variance-covariance matrices ....................... 166 

Table 5-18 Various variance structures for dealing with heteroscedasticity ............................ 167 

Table 5-19 Example of GLS estimation dealing with heteroscedasticity (stratified variance) . 168 

Table 5-20 GLS estimation considering different variance structures ...................................... 170 

Table 5-21 ANOVA after dealing with heteroscedasticity ....................................................... 172 

Table 5-22 Example of GLS estimation dealing with serial correlation (ARMA (2, 2)) ......... 174 

Table 5-23 GLS estimation considering different serial correlation structures ........................ 175 

Table 5-24 ANOVA after dealing with serial correlation ......................................................... 176 

Table 5-25 GLS estimation dealing with heteroscedasticity and serial correlation .................. 177 

Table 5-26 Selection between OLS and GLS estimated models .............................................. 180 

Table 5-27 Summary of feasible models within each estimation method ................................ 181 

Table 6-1 RMSE derivation by 10-fold cross-validation .......................................................... 185 

Table 6-2 MAPE derivation by 10-fold cross-validation .......................................................... 185 



  xii  

 

Table 6-3 ANOVA of RMSEs and MAPEs between five models ............................................ 185 

Table 6-4 Comparison of accuracy measures between the feasible models .............................. 187 

Table 6-5 O-D trip demand depending on transportation in Korea (as of 2013) ....................... 190 

Table 6-6 Propagation of errors by road capacity uncertainty ................................................... 192 

Table 6-7 Three models for application ..................................................................................... 193 

Table 6-8 Three hypothetical links with different geometric features ....................................... 196 

Table 6-9 Sum of estimated travel times on three links for 30 days by both models ................ 196 

Table 6-10 Equilibrium points between motorway and city road ............................................. 199 

Table 6-11 Result of traffic assignment by three models .......................................................... 200 

Table A-1 Korean arterial road network .................................................................................... 216 

Table A-2 Comparison with traffic volume between Korean motorways and highways .......... 216 

Table A-3 Minimum width of lane by road types and design speed in Korea .......................... 218 

Table A-4 Minimum central barrier width by road types in Korea ........................................... 218 

Table A-5 Right clearance by road types and design speed in Korea ....................................... 218 

Table A-6 Left clearance by road types and design speeds in Korea ........................................ 218 

Table A-7 Maximum degree of vertical slope by road types and design speed in Korea ......... 219 

Table A-8 Radius of the horizontal curve by design speed and super-elevation in Korea ........ 219 

Table A-9 Main contents of UK CBA in WebTAG (DfT, 2018) .............................................. 224 

Table A-10 AMCB table (UK) .................................................................................................. 224 

Table A-11 Valuation of VTTS and VOC in UK ...................................................................... 226 

Table A-12 Impacts appraisal on noise, air quality and greenhouse gases in UK ..................... 227 

Table A-13 Preliminary feasibility assessment by project types in Korea ................................ 230 

Table A-14 Average value of time per vehicle (entire area) in Korea ...................................... 234 

Table A-15. Cost of reducing atmospheric pollutants in Korea ................................................ 235 

Table A-16 Influenced distance by each detector in the initial case.......................................... 240 

Table A-17. Observation of free-flow speed on ILDs in the initial case ................................... 242 

Table A-18 Measurement of road capacity on ILD locations in the initial case study .............. 243 

Table A-19 Various criteria for finding breakdown points ....................................................... 246 

Table A-20 Finding traffic flow at breakdown points with Condition 1 ................................... 247 



xiii 

  

Table A-21 Finding traffic flow at breakdown points with Condition 2 .................................. 247 

Table A-22 Finding traffic flow at breakdown points with Condition 3 .................................. 247 

Table A-23 Finding traffic flow at breakdown points with Condition 4 .................................. 247 

 

  



  xiv  

 

 

List of Figures 
 

Figure 2-1 Traffic assignment in traffic demand forecasting ...................................................... 14 

Figure 2-2 Change in consumer surplus ...................................................................................... 15 

Figure 2-3 Typical speed–flow (left) and cost–flow (right) relationship in STA ........................ 19 

Figure 2-4 General DTA algorithmic procedure ......................................................................... 22 

Figure 2-5 Flow-density, speed-flow, and speed-density curves ................................................. 25 

Figure 2-6 Practical change of the speed-flow relationship ........................................................ 26 

Figure 2-7 Comparison of three flow-density diagrams .............................................................. 27 

Figure 2-8 Relationship between flow and density in free-flow (F) and jam (J) conditions ....... 27 

Figure 2-9 Two-regime relationship between flow and density .................................................. 27 

Figure 2-10 Three traffic phase based on the spatiotemporal measurement ............................... 29 

Figure 2-11 Example of flow variation on link AB dependent on the trip demand .................... 30 

Figure 2-12 Difference between theoretical and practical relationship ....................................... 31 

Figure 2-13 Convex and nonconvex function ............................................................................. 32 

Figure 2-14 Impact area by the variable and parameters in BPR function .................................. 36 

Figure 2-15 Adjustment of parameters in BPR function ............................................................. 37 

Figure 2-16 LOS for basic freeway segments ............................................................................. 39 

Figure 2-17 Road capacity measurement from boundary conditions .......................................... 42 

Figure 2-18 Road capacity measurement by the average of top 5% traffic flows ....................... 43 

Figure 2-19 Road capacity measurement by regression analysis ................................................ 43 

Figure 2-20 Road capacity measurement by cumulative curve ................................................... 44 

Figure 2-21 Empirical measurement of traffic flow and speed at a bottleneck ........................... 45 

Figure 2-22 Road capacity measurement by finding breakdown effect ...................................... 45 

Figure 3-1 Flow chart for the overall methodological approach ................................................. 57 

Figure 3-2 Diagram for FFS and road capacity in the initial study ............................................. 61 

Figure 3-3 Comparison of traffic flows causing breakdown by two different criteria ................ 62 



xv 

  

Figure 3-4 Curve fittings of the initial case study based on the nonlinear estimation ................ 65 

Figure 3-5 Curve estimation by different linear equations ......................................................... 66 

Figure 3-6 Homoscedastic residual plots (left); heteroscedastic disturbances (right) ................ 73 

Figure 3-7 Patterns of serial correlation disturbances ................................................................. 74 

Figure 3-8 Elements of horizontal curve (Lc: simple curve, Ls: spiral curve) ............................. 91 

Figure 3-9 Elements of spiral curve ............................................................................................ 91 

Figure 3-10 Example of design drawing: “Kochang-Damyang Motorway (6.08-6.40km) E” ... 92 

Figure 3-11 Congestion speed identification from the initial case study .................................... 94 

Figure 3-12 Location of the selected cases ................................................................................. 96 

Figure 3-13 Process of k-fold cross-validation (training and tested set) ................................... 103 

Figure 4-1 Scatter plot including congestion states .................................................................. 106 

Figure 4-2 Scatter plot between DV and IV1 (TF) after data processing ................................. 107 

Figure 4-3 Box plot of DV by IV2 (TR) ................................................................................... 107 

Figure 4-4 Box plot of DV by IV3 (RISE) ............................................................................... 108 

Figure 4-5 Box plot of DV by IV4 (FALL) .............................................................................. 108 

Figure 4-6 Box plot of DV by IV5 (BEND) ............................................................................. 109 

Figure 4-7 15th percentile values of DV by geometric variables for one month ...................... 110 

Figure 4-8 85th percentile values of DV by geometric variables for one month ...................... 110 

Figure 4-9 Fitted line of NLS estimation (BPR function) between DV and TF ....................... 116 

Figure 4-10 Fitted line between DV and TF in BPR2 .............................................................. 117 

Figure 4-11 Residual plot of pooled OLS estimation between DV and TF .............................. 122 

Figure 4-12 Residual plot of fixed effects model within links .................................................. 124 

Figure 4-13 Residual plot of two-way FE model ...................................................................... 126 

Figure 4-14 Residual plot of pooled OLS estimation between DV and TF .............................. 128 

Figure 5-1 Box plot of daily traffic flows in September of 2018 .............................................. 144 

Figure 5-2 Scatter plot between DV and IV1 (TF) from the one-day dataset ........................... 148 

Figure 5-3 15th percentile values of DV by geometric variables from the one-day dataset ..... 149 

Figure 5-4 85th percentile values of DV by geometric variables from the one-day dataset ...... 149 

Figure 5-5 Scatter residual plots for FMODEL3-1 ................................................................... 162 



  xvi  

 

Figure 5-6 Residual plot of FMODEL3-1 against the entity of links ........................................ 172 

Figure 6-1 Fitted and observed values according to traffic flow on each model ....................... 187 

Figure 6-2 Standardised residuals vs fitted values plot on feasible models .............................. 188 

Figure 6-3 Ratio of the error variance depending on links ........................................................ 190 

Figure 6-4 Curves of FModel and Korean VDFs ...................................................................... 194 

Figure 6-5 Curve shift by different link geometry and road capacity ....................................... 195 

Figure 6-6 Comparison of total travel time on three links ......................................................... 196 

Figure 6-7 Change in an economic equilibrium from the supply-demand relationship ............ 197 

Figure 6-8 Example of a local network for application to transport appraisal .......................... 198 

Figure 6-9 Change in consumer surplus depending on three models ........................................ 199 

Figure A-1 Korean motorway frame ......................................................................................... 217 

Figure A-2 Appraisal tools and guidance for five types of business cases (UK) ...................... 223 

Figure A-3 Further appraisal process for the technical project manager (UK) ......................... 223 

Figure A-4 Overall vehicle operating costs (KRW/km) in Korea ............................................. 233 

Figure A-5 Initial case location ................................................................................................. 236 

Figure A-6. Design Map of the initial case ................................................................................ 237 

Figure A-7 Example of speed calculation from ILD ................................................................. 238 

Figure A-8 Calculation of travel time in a section..................................................................... 239 

Figure A-9 Volume-speed relationship for 45 days in the initial case ...................................... 241 

Figure A-10 Breakdown Dynamics during breakdown and recovery (German motorway)...... 243 

Figure A-11 Breakdown effect for 45 days in the initial case ................................................... 244 

Figure A-12 Congestion process from ILD No.30 to No.33 in the initial case study ............... 245 

 

  



xvii 

  

Declaration of Authorship 
 

I, Sungbae Yoon declare that this thesis entitled as “Development of Travel Time Estimation Models: 

Consideration of Link Geometry for Korean Motorways” and the work presented in it are my own 

and has been generated by me as the result of my own original research. 

I confirm that: 

1. This work was done wholly or mainly while in candidature for a research degree at this 

University; 

2. Where any part of this thesis has previously been submitted for a degree or any other qualification 

at this University or any other institution, this has been clearly stated; 

3. Where I have consulted the published work of others, this is always clearly attributed; 

4. Where I have quoted from the work of others, the source is always given. With the exception of 

such quotations, this thesis is entirely my own work; 

5. I have acknowledged all main sources of help; 

6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly 

what was done by others and what I have contributed myself; 

7. None of this work has been published before submission. 

 

Signed:  

Date: January 2021 

 

  



  xviii  

 

Acknowledgements 
 

This PhD thesis is dedicated to the memory of my father, Hyunsoo Yoon who always supported and 

believed me in my life. I wish you had overcome your cancer and stayed with me for a long time. I 

regretted about why I started my PhD study when you were gone in 2019 but was able to finish my 

study imagining that if you were alive, you would be very proud of me not to give it up. My mother, 

Jungja Kim, always gives me her love with devotion, your love has guided me the right way.  

My wife, Jihyun Park, always believes and encourages me. Your love and support made me complete 

my thesis. I cannot imagine my life without you. My children, Soyul, Seojun, Yejun, you are my 

enjoy and hope. Your existence has empowered and motivated me. 

I would like to extend my deepest gratitude to my supervisors who helped me in my PhD course. 

Professor John Preston, you are my first supervisor who showed me the right direction whenever I 

lost my way. I am very grateful for the attentive and invisible care that fills my shortcomings. Dr 

Ioannis Kaparias, I appreciate your delicate supervision and advices.  

I cannot finish my study without many persons’ help. Professor Taeyoung Heo, you are a very kind 

and great person who gave me statistical knowledge and solutions. It was great time to discuss many 

statistical issues during my study. Professor Dongmin Lee and Dr Sang Yeon Hong, you inspired me 

a lot. I would like to appreciate Korean Expressway Corporation that supported me with the data for 

modelling. Moreover, I will never forget the time with Wonman Oh, Jongjoon Song and many people 

during UK life even though I cannot address their names individually. 

Lastly, I express my thanks to the Korean Government that sponsored my PhD study.  

  



xix 

  

List of Abbreviations 
 

AIC  Akaike's Information Criterion 

ANOVA   Analysis Of Variance 

ARMA  Auto-Regressive and Moving Average 

AVI  Automatic Vehicle Identification 

BEND  Sum of bendiness per link distance 

BIC  Bayesian Information Criterion 

BPR   Bureau of Public Road (United States of America) 

BLUE  Best Linear Unbiased Estimator 

DfT  Department for Transport (United Kingdom) 

DSRC   Dedicated Short Range Communication 

DTA  Dynamic Traffic Assignment  

DV  Dependent Variable 

ETC  Electric Toll Collection 

FALL  Sum of falls per link distance 

FFS   Free-Flow Speed 

FFTT  Free-Flow Travel Time 

FHWA  United States Federal Highway Administration 

FIFO   First In First Out 

FTMS  Freeway Tunnel Management Systems 

GLS  Generalised Least Squares 

HCM  Highway Capacity Manual 

ILD  Inductive Loop Detector 

ITS  Intelligent Transport Systems 

IV  Independent variable 

KDI  Korean Development Institute 

KEC  Korean Expressway Corporation 



  xx  

 

KHCM  Korean Highway Capacity Manual 

KICT  Korean Institute of Civil engineering and building Technology 

KOTI  Korean Transport Institute 

kph  kilometre per hour 

KST  Korean Society of Transportation 

LOS   Level Of Service 

LSDV  Least-Squares Dummy Variable 

MAE  Mean Absolute Error 

MAPE  Mean Absolute Percentage Error 

MLE  Maximum Likelihood Estimation 

MLTM  Ministry of Land, Transport and Maritime affairs (South Korea) 

MOLIT  Ministry of Land, Infrastructure and Transport (South Korea) 

mph  miles per hour 

NATA   New Approach To Appraisal 

NLS  Nonlinear Least squares 

OBU  On-Board Unit for ETC 

OLS  Ordinary Least Squares 

O-D  Origin-Destination 

pcph  passenger cars per hour 

pcpkpl  passenger cars per kilometre per lane 

pcphpl  passenger cars per hour per lane 

pcpmpl  passenger cars per mile per lane 

RISE  Sum of rises per link distance 

RSE  Road Side Equipment 

RMSE  Root Mean Squared Error 

SMS  Space-Mean Speed 

SPV  Subjects Per Variables 

SSE  Sum of Squared Errors 



xxi 

  

STA  Static Traffic Assignment  

TF(q)  Traffic flow 

TF2(q2)  Square of Traffic flow 

TMS  Time-Mean Speed 

TR  Tunnel Ratio (sum of tunnel length per link distance) 

VDF   Volume-Delay Function 

VIF  Variance Inflation Factor 

vpk  vehicles per kilometre  

vph  vehicles per hour 

vphpl  vehicles per hour per lane  

WebTAG  Web-based Transport Analysis Guidance (United Kingdom) 

WLS  Weighted Least Squares 





 Chapter 1. Introduction  

 

1 

  

Chapter 1. Introduction 

1.1. Background 

Travel time is one of the fundamental arbiters or indicators for assessing efficiency in 

transportation policy. From the travellers’ perspective, travel time is an important factor in 

selecting transportation modes and their routes. Transportation users predict travel time based on 

the historical records or real-time measurement, which are provided by many kinds of technologies 

such as mobile communications. In comparison, from the transportation suppliers’ perspective, 

travel time can be the basic criterion for determining the priority of transportation service. In order 

to improve the feasibility of the determination, transportation suppliers (governments or planners) 

need to predict travel time considering various impacts as well as historical records.  

In terms of transportation economics, travel time prediction plays an essential role in transport 

appraisal that would determine the supply of transportation. The supply of transportation is 

determined by seeking the balance with trip demand (Jones, 1977; Sugden, 1999; Ortúzar and 

Willumsen, 2012). Suppliers provide additional transportation capacity to meet future trip demand 

or to meet current latent demand. From the economic perspective, they implement transport 

appraisal in order to justify their intervention in a market (Boardman et al., 2013). The change in 

travel time before and after the intervention is one of the comparative measures in transport 

appraisal. In particular, travel time savings by the intervention are treated as an important benefit 

factor calculated in quantitative approaches (e.g. cost-benefit analysis), which are introduced in 

many countries’ decision making processes (Hayashi and Morisugi, 2000; KDI, 2008a; DfT, 2018). 

For example, travel time saving benefits by Korean national highway projects implemented just 

before making a 2005-2010 plan was about 77.4% of total benefits (KDI, 2008b). Moreover, travel 

time (or, more correctly, travel speed) affects other benefit factors such as vehicle operating cost 

savings, traffic safety, noise and air quality (KDI, 2008b; DfT, 2018).  

Looking at a transport appraisal process more closely, travel time affects traffic assignment, which 

is implemented to find the change in future traffic flows on every route before the benefit 

estimation in transport appraisal. In other words, traffic assignment, which is one of four steps in 

traffic demand forecasting1, allocates future trip demand to the entire or local transport network 

(Ortúzar and Willumsen, 2012; Patriksson, 2015). In the process, the cost (impedance or 

performance) of each link must be determined, and the predicted travel time accounts for most of 

the cost. The benefit estimation in transport appraisal includes travel time savings and the relevant 

                                                      
1 Traffic demand forecasting consists of trip generation, trip distribution, modal split, and traffic 
assignment (KDI, 2008b; de Dios Ortúzar and Willumsen, 2012). 
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cost savings that are affected by the travelled distance of vehicles, which is assigned by travelled 

time. Travel time on each link does not need to be constant, but could differ according to link 

attributes and traffic flow. Travel time estimation models used for traffic assignment can be divided 

into two groups: at a microscopic level and a macroscopic level, respectively. At a microscopic 

level, travel time estimation models focus on the detailed change of a vehicle’s individual 

movement, which is related to instantaneous speed and acceleration focusing on the interactions 

between vehicles (Hoogendoorn and Bovy, 2001; Rakha and Tawfik, 2009). On the contrary, at a 

macroscopic level, the models can explain overall travel time on each link, which have been 

developed from traditional traffic theory (Greenshields et al., 1935; Greenberg, 1959; Underwood, 

1961; Rakha and Crowther, 2002; Kerner, 2009). A volume-delay function (VDF), which is a 

travel time estimation model at a macroscopic level, explains the relationship between travel time 

and traffic flow as a link cost function in traffic assignment. Traffic assignment tries to find the 

equilibrium iteratively by principles such as system optimum or user equilibrium (Beckmann et al., 

1956; Sheffi, 1985). 

Once a transportation project is determined through transport appraisal, the project should be 

designed in detail before the construction of the project. The design process communicates with 

transport appraisal. In the design process, engineers decide geometric features suitable for every 

link considering construction cost, environmental impacts and other limitations based on the 

predetermined design speed, which could be related to travel time estimation. Design manuals 

suggest different geometric features such as lane width, slope and curve radius depending on 

design speed. The geometric features presented in manuals are regarded as the best requirements to 

maintain the design speed. Moreover, design alternatives are sought in order to minimise the drastic 

change in average speed because it is directly related to safety and efficiency issues. While seeking 

the most appropriate road geometry throughout preliminary and detailed design processes, the past 

transport appraisal result of the project needs to be reviewed in order to reflect changes in total 

costs and benefits such as construction costs and network travel times as a result of design changes. 

In other words, the design of transportation projects would affect and be affected by transport 

appraisal results.  

This study focuses on the relationship between travel time and road geometric features. To specify 

this, this thesis tries to clarify the limitations of current travel time estimation models (VDFs) and 

to improve the accuracy of them. The variables connecting between travel time and geometric 

features in existing VDFs are free-flow travel time (FFTT) and road capacity, and as such most 

types of VDFs include the constant variables of FFTT and road capacity in spite of various forms 

of functions. (Branston, 1976; Petrik et al., 2014). Therefore, the in-depth investigation of the 

relationship between the two values in VDFs and link geometric features motivates this thesis.  
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1.2. Motivation 

This thesis is motivated by identifying errors of travel time estimation in using the existing VDFs 

from two aspects: the inclusion of inappropriate variables in the existing VDFs and relevant 

modelling process issues. The first aspect is related to the uncertainty of FFTT and road capacity in 

VDFs and the second aspect starts from the recognition that the modelling process of current VDFs 

is not suitable for representing link diversity in traffic assignment. Both aspects are connected by 

the two predetermined constant values in VDFs. Notably, although road capacity has been 

recognised as a constant value traditionally, several researchers pointed to the stochastic nature of 

road capacity, which means that it is hard to measure it as a unique value (Minderhoud et al., 1997; 

Persaud et al., 1998; Lorenz and Elefteriadou, 2001; Brilon et al., 2007; Dong and Mahmassani, 

2009; Kalaee, 2010; Kerner, 2016). In particular, Kerner (2016) showed that road capacity, which 

is closely related to traffic breakdown, is measured differently at moving bottlenecks based on 

various factors. This uncertainty of road capacity would cause errors in the current VDFs. With 

regard to these motivations, the initial case study (Section 3.2.3) identifies errors in BPR function 

(Bureau of Public Roads, 1964) of the current VDFs. 

The current approach is that travel time estimation models are dependent only on traffic flow 

without considering other influential factors that could affect travel time once FFTT and road 

capacity are predetermined. Current VDFs consist of travel time as a dependent variable, FFTT and 

road capacity as constant variables, and traffic flow as an independent variable. They focus only on 

the relationship between travel time and traffic flow after consolidating link attributes into FFTT 

and road capacity (Campbell et al., 1959; Smock, 1962; Bureau of Public Roads, 1964; Spiess, 

1990; Akçelik, 1991; USHCM, 2000; Dowling and Skabardonis, 2008).  

However, this study raises the issue about the uncertainty of FFTT and road capacity with regards 

to their definitions and measurements. Whilst free-flow speed (FFS: distance divided by FFTT) and 

road capacity are defined theoretically as the maximum hourly rate under prevailing conditions and 

the mean speed under low to moderate traffic flows respectively in highway capacity manuals 

(HCM), current VDFs adopt their practical measurements, which are different from theoretical 

definitions. Based on these findings, this study notes that the uncertainty of both values would 

cause significant errors in using travel time estimation models because their definitions and 

measurements for VDFs cannot be unified. 

In addition, despite the uncertainty of the two values, many countries have used travel time 

estimation models that are customised from existing VDF forms after predetermining the values in 

traffic assignment (Irawan et al., 2010; Leong, 2017; Nobel and Yagi, 2017). Even the 

comparatively recent studies calibrated the parameters of existing VDFs for the analysed cases 
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without a critical review of the two values (Kalaee, 2010; Huntsinger and Rouphail, 2011; Kim et 

al., 2014; Leong and Tan, 2015; Kucharski and Drabicki, 2017; Leong, 2017). As a result, they do 

not account for various geometric features of links that make up a road in the same category, even 

though their parameters can be classified by the groups such as road types and the number of lanes. 

They support the current assumptions that link attributes are included by FFTT and road capacity in 

VDFs and that the analysed links are homogeneous. The assumptions have the advantage of 

simplifying functions but the drawback of not taking into account the diversity of link attributes. In, 

particular, Leong and Tan (2015) pointed to the limitation of BPR function in that the model is 

developed for only accounting for a certain link type and vehicle. In the same vein, Manzo et al. 

(2014) identified the uncertainty of both the parameters and link capacity in the Danish national 

transport model, which is based on the BPR function, by using a bootstrap resampling method. 

Although He and Zhao (2014) tried to improve the BPR function by suggesting the model that 

combines the BPR function with the simple linear function including the variables of bus stop 

density and intersection density, they still did not focus on how road capacity is determined in the 

model. 

With regard to link geometry, whilst many studies tried to show the impact on traffic characteristics 

of link geometry based on the change in speed or traffic flow (Iwasaki, 1991; Koshi et al., 1992; 

Bando et al., 1995; Brilon, 2000; Hong-Di et al., 2009; Komada et al., 2009; Yun and Shengrui, 

2012; Zhang et al., 2012; Wu et al., 2014; Zhou et al., 2014), there have been only a few trials that 

connect it with travel time estimation models in traffic assignment (Brilon and Bressler, 2004; 

Cartenì and Punzo, 2007; DfT, 2018). In particular, Brilon and Bressler (2004) proposed the speed 

estimation model with uphill gradient and its length discretely due to the range of the heavy vehicle 

percentage and the gradient. DfT (2018) applied the variables of bendiness and hilliness to linear 

speed-flow relationship in an uncongested condition. Despite such studies, there was insufficient 

effort to develop statistical significant models by identifying various geometric features. Therefore, 

this study is also motivated by finding link geometric variables that need to be identified in travel 

time estimation models and by developing statistically and practically appropriate models including 

the related variables. In this process, not only existing VDF forms but also generalised functional 

forms need to be scrutinised and compared. 

In summary, current VDFs have limitations in that they do not reflect the diversity of links because 

of the uncertainty sorrounding FFTT and road capacity. Mackie and Preston (1998) suggested 21 

reasons about inaccurate transport appraisal, and they illustrated that one of the reasons is that 

important variables would not be considered at all or exactly. Fagnant and Kockelman (2012) 

found that link capacity and the parameters of the BPR function had greater impact on the 

feasibility analysis of transportation projects than other influential factors on the analysis. Although 

current VDFs are a simple way to estimate future travel time depending on trip demand, they need 
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to be improved by introducing new forms of models with new variables and constants. Link 

geometry is one of the considerations that can improve the accuracy of travel time estimation 

models. In order to replace the current VDFs, new travel time estimation models need to be 

developed by identifying link geometry effects that have an impact on travel time. Therefore, 

research questions in this study can be organised as follows; 

(1) Are FFTT and road capacity appropriate variables for VDFs?  

(2) To what extent do uncertainties around FFTT and road capacity result in errors in the 

current VDFs? 

(3) If FFTT and road capacity cause serious errors, is it possible to develop travel time 

estimation models that could replace current VDFs? 

(4) What functional forms can be introduced for travel time estimation models? 

(5) What variables need to be included in the new travel time estimation models and how can 

they be quantified and identified? 

(6) Is it possible to apply the developed models to traffic assignment in practice? 
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1.3. Aim and objectives 

This study aims to find feasible travel time estimation models as an alternative to current VDFs 

based on the better understanding of the relationship between travel time and its influencing 

factors. Finding models based on the empirical analysis can be implemented statistically and 

systematically. Therefore, the objectives, which are connected to the previous research questions, 

can be stated as follows; 

(1) To examine factors that can influence travel time over long time periods. 

(2) To clarify the impact on travel time of FFTT and road capacity utilisation in VDFs in order 

to confirm the hypothesis that such values are not appropriate for explaining the diversity 

of link travel time. 

(3) To identify the statistical significance of link geometric features that can be used for travel 

time estimation models as well as in the appraisal process. 

(4) To investigate feasible travel time estimation models that can be used for traffic 

assignment in practice. 

The first objective is to examine what factors have an impact on travel time estimation and by how 

much. Firstly, with regard to finding influential factors, there may be a number of factors that could 

affect travel time as well as link geometry. This study tries to isolate the factors such as links, 

routes, weather, brightness, day and date from the one-month dataset that consists of traffic data 

and geometric features. A review of existing studies helps select the factors that affect travel time. 

Moreover, the empirical analysis of the one-month dataset statistically identifies how much the 

selected factors influence the accuracy of the estimated models. In particular, it is important to 

investigate the impact by the diversity of links because it is closely related to different geometry on 

every link.  

The second objective can quantitatively show the limitations of existing VDFs including FFTT and 

road capacity. First, it can investigate how link geometry affects traffic patterns by examining how 

FFTT and road capacity can change at every location over short time and space intervals. The 

result can indicate whether it is appropriate to apply the values measured at specific locations to 

produce generalised functions for link travel time estimation. Furthermore, this study examines the 

impact of the accuracy of current VDF approaches by sensitivity analysis with respect to FFTT and 

road capacity. By verifying the hypothesis of this study, link attribute variables need to be set in 

estimated models in order to replace FFTT and road capacity in current VDFs. 

The third objective is to find the statistical significance of the geometric variables and their 

coefficients when the variables as link attributes are reflected in the estimated models. Firstly, 

identification is made in respect of which geometric features can be extracted during the design 
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process. Since all variables should represent link characteristics as mentioned above, this study sets 

the geometric variables that can explain the space of links. In addition, this objective examines how 

geometric variables play a role on the various models developed by different statistical estimation 

methodologies in this study. The result can be meaningful through the comparison of the models 

with and without geometric variables.  

The last objective is related to the final goal of this study. Travel time estimation models that can 

replace current VDFs in traffic assignment need to be developed through many kinds of statistical 

verification. It can be confirmed that other statistical models with different variables are applicable 

to travel time estimation by introducing different methodologies from the existing VDFs. 

Moreover, the developed models should be spatially transferable between links and can be used 

practically in the traffic assignment of transport appraisal. Therefore, investigation will be carried 

out to establish that the estimated models satisfy statistical assumptions and can be validated 

statistically. It is expected that the developed models can overcome the limitations of using road 

capacity and FFTT in VDFs. 

In conclusion, this thesis will make a contribution to knowledge through the development of new 

statistical travel time estimation models that can replace the current VDFs, through considering 

geometric features of links after identifying various factors that could affect travel time as well as 

through clarifying the limitation of current VDFs. 
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1.4. Research Scope 

The final goal of this study is to develop travel time estimation models that depend on link 

geometric features in order to improve the reliability of transport appraisal. It is necessary to clarify 

the scope of research because travel time estimation could be different according to the range of 

cases studied, the selection of link geometric features (variables), and the comparison with existing 

VDF approaches. Therefore, prior to Chapter 3 for the detailed methodology development, this 

section narrows the scope of research from a broad range. 

Case study: Korean motorways 

The cases to be analysed in this study are confined to Korean motorways even though there are 

many different types of transportation cases that travel time estimation models can be applied to in 

transport appraisals. 

Firstly, motorways are important national infrastructure and as such motorways can be compared to 

arteries in the body because they account for most of the passenger and freight transport on 

highways (Appendix A.1). When looking at the aspect of government investment, the investment 

for motorways requires long-term discussion and detailed transport appraisal such as CBA because 

the projects involve large budgets. In addition, Korea introduced a hierarchical road construction 

and maintenance system; especially all motorways other than public-private partnership in Korea 

are managed by the Korean Expressway Corporation (KEC). As a result, construction and 

management manuals by KEC exist to improve the consistency of the analysed cases (KEC, 2016).  

Secondly, in terms of data collection, intelligent transport systems (ITS) are well established in 

Korean motorways because of their importance in traffic management. As the traffic data are 

measured accurately and densely, models can be estimated precisely. As mentioned in Section 3.4 

and 3.5, inductive loop detectors (ILDs) and Dedicated Short Range Communication (DSRC) are 

well established in motorways. In particular, Korea has well-established ITS; specifically DSRC is 

an efficient way to measure space-mean speed (SMS) that can be essential for link travel time 

estimation as the dependent variable. 

Lastly, link geometry can affect travel time on motorways more than on other types of roads 

because the homogeneity and continuity on motorways are more important than on other roads. For 

instance, motorways have smaller curvature, wider lane width and multi-level intersections. These 

characteristics would be in line with the fact that most motorways are operated without traffic 

signals. After developing travel time estimation models for motorways first, it is necessary to 

demonstrate whether the methodologies introduced in this study can be applied to models for other 

roads. 
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Range of link geometric features 

Roads have their own varying geometric features that are influenced by the terrain where they are 

located. Although various geometric features for different links could affect travel time estimation, 

it is necessary to confine the influential features from the viewpoint of traffic demand forecasting 

to clarify the scope of the study. The measurable factors that could have effects on travel time 

estimations will be investigated. The condition of “measurable” is very important because this 

study also aims to develop quantitative feasible models in transport appraisal.  

This study focused on the change in three aspects of link geometry, which are tunnel segments, 

vertical slopes and horizontal curves by referring to the previous studies and manuals that estimate 

models between the speed and geometric features (Brilon and Bressler, 2004; Cartenì and Punzo, 

2007; Kim et al., 2014; DfT, 2018). The scope of geometric features can be described in detail as 

follows. 

Firstly, gradient or curve sections must be clearly one of the considerations for travel time 

estimation models based on many previous guidelines and studies (Brilon and Bressler, 2004; 

Cartenì and Punzo, 2007; DfT, 2018). In particular, the geometric features for gradient sections 

need to be investigated for replacing road capacity because road capacity is affected by the degree 

of the gradient and its length (USHCM, 2010; MLTM, 2013). On the other hand, lane width and 

pavement types in this study cannot be identified because most motorway links in South Korea 

have the same lane width and pavement type. 

Moreover, although tunnels could be another influential factor on travel time (Iwasaki, 1991; Koshi 

et al., 1992; Brilon, 2000; Yun and Shengrui, 2012), the impact of tunnels would not be taken into 

account as a quantitative variable in travel time estimation models. Many European countries 

including Norway, Italy and Switzerland, as well as East Asian countries including China and 

Japan, have many road tunnels. Likewise, Korea has many tunnels because of wide mountainous 

areas. Overall, 70% of the total area of Korea is covered with mountainous terrain and this terrain 

has resulted in a large number of tunnels and bridges. According to MOLIT (2016a), tunnels 

occupy 8.7% of the total Korean motorway length as of 2015. Tunnels would be one of the most 

unusual environments for drivers because of their enclosed concrete linings or rocks and their 

different designs and brightness compared with open sections.  

Lastly, this study is focusing more on geometric features that can replace FFTT and road capacity 

in traffic assignment. Although various statistical measures are used to verify the significance of 

variables (e.g. weather, brightness and day) that are not related to link attributes, they are not 

quantified in the modelling process. In addition, the current FFTT and road capacity in VDFs do 

not assume specific situations that could affect travel time estimation. If it is validated to estimate 
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models by quantifying the variables of link geometric features, other variables that could affect 

travel time are expected to be quantified and added to the models based on the established 

methodologies.  

Consideration of existing VDFs  

As mentioned in Section 1.1, this study focuses on travel time prediction in transport appraisal at a 

macroscopic level. Of the many VDFs already introduced in traffic assignment (Campbell et al., 

1959; Smock, 1962; Bureau of Public Roads, 1964; Spiess, 1990; Akçelik, 1991; USHCM, 2000; 

Dowling and Skabardonis, 2008), only the BPR function is used for modelling and model 

comparison in this thesis.  

Firstly, the BPR function is known to be suitable for travel time prediction on motorways (Kalaee, 

2010; Huntsinger and Rouphail, 2011). Secondly, it is also significant to compare the performances 

of the current VDF and the newly developed estimated models in the selected Korean motorway 

cases. Currently, the Korean government adopts the BPR function as a VDF for motorways in 

traffic assignment. Lastly, this study is focusing more on the impact of geometric features and on 

the development of alternative feasible models rather than the selection of better existing VDFs 

through the comparison between existing VDF approaches. One of the objectives in this study can 

be achieved by examining the accuracy of the BPR function to clarify the limitation of FFTT and 

road capacity. Most VDFs have been developed to more accurately estimate only the relationship 

between travel time and traffic flow, and little attention has been paid to the impact of FFTT and 

road capacity (Petrik et al., 2014). 

In conclusion, this section suggests three main reasons for a Korean motorway case study, the 

range of geometric features to be examined, and the need for a consideration of existing VDFs. The 

detailed methodology can be seen in Chapter 3. Although the research scope needs to be confined 

in order to clarify the objectives because of practical issues such as data collection, this study has 

presented methodologies for developing generalised travel time estimation models.  
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1.5. Structure of the thesis 

This thesis consists of eight chapters. The literature review is divided into two chapters. Chapter 2 

discusses a theoretical review of traffic assignment in transport appraisal and traffic modelling in 

traffic assignment comprehensively. In addition, it is investigated that the decisive factors that may 

affect travel time estimation models in the previous studies. In particular, road capacity and free-

flow speed are examined in depth because they are the important factors that motivate this thesis.  

Chapter 3 introduces the research methodology to achieve the objectives of this study. The initial 

case study describe the basis for establishing the methods for travel time model development as 

well as illustrating the motivation for this research. A large part of the chapter is devoted to 

explaining the statistical estimation methods for the model development based on the initial data 

analysis. The uncertainty of road capacity requires alternative variables and statistical estimation 

methods to overcome the limitations of existing VDFs. Firstly, in order to replace the existing 

approach that is nonlinear least squares (NLS) estimation, this thesis adopts linear estimation 

methods including ordinary least squares (OLS) and generalised least squares (GLS) estimation. 

Moreover, the independent variables of geometric features are suggested to explain travel time for 

72 selected motorway links. Lastly, various statistical measures are used to compare the estimated 

models based on different statistical assumptions and to validate the developed models.  

Prior to the feasible model development in traffic assignment, Chapter 4 identifies the influential 

factors on travel time estimation models. FE modelling by least squares dummy variables is an 

efficient way to find the explanatory power of each entity as well as to generalise the developed 

models. In particular, the impact on estimated models by link geometric features is investigated in 

detail by comparing the estimated models with and without the features.  

Chapter 5 shows the modelling results to develop the feasible travel time estimation models for 

traffic assignment. The OLS linear estimation is used to find appropriate base models by 

considering the interaction effects and model transformations. The GLS linear estimation is said to 

be a more advanced approach, reflecting heterogeneity and serial correlation in modelling. In 

addition to both linear estimations, the NLS estimation with link geometric variables through 

sensitivity analysis is suggested to minimise the drawbacks of existing approaches.  

Chapter 6 selects the most appropriate models to replace the current VDFs from the statistical and 

practical perspectives. 10-fold cross validation is conducted for verifying the spatial transferability 

of developed models and various statistical accuracy measures are compared for the selection of the 

alternative model. This thesis emphasises how the selected model changes the traffic assignment 

and furthermore transport appraisal. Lastly, Chapter 7 concludes this thesis, suggesting some 

limitations and required future works.  
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Chapter 2. Travel Time Estimation Models in Traffic Assignment 

2.1. Introduction  

This chapter provides the theoretical background to explore the role of traffic assignment in 

transport appraisal, as well as explaining the theoretical background and potential application of the 

travel time estimation models to be developed in this thesis. In addition, this chapter reviews 

existing studies with reference to the road geometry that would affect travel time estimation models 

in order to find the contributions of this thesis to the knowledge. The contents of this chapter can be 

summarised in following four ways: an examination of traffic assignment procedures and theories; 

the theoretical background and utilisation of travel time estimation models; the review of free-flow 

speed and road capacity; the investigation of the studies about road geometry in transportation.  

Section 2.2 examines how traffic assignment play a role in transport economics. In particular, it 

was scrutinised how traffic assignment have an impact on the benefit estimation in transport 

appraisal. In addition, this section reviews two main streams in traffic assignment: static traffic 

assignment (STA), which is the focus of this study, and dynamic traffic assignment (DTA).  

After outlining different approaches of travel time estimation models in STA and DTA, Section 2.3 

focuses more on a volume-delay function (VDF), which is used as a link cost function in STA, 

connecting it with the theoretical background of the traffic relationships. In detail, this section 

investigates the role, principle, overall characteristics and types of VDF including the Korean VDF.  

Section 2.4 reviews existing manuals and studies on free-flow speed (FFS) and road capacity 

because both values are important factors commonly included in VDFs. The unclear definitions of 

both values are presented in different highway capacity manuals and further different methods for 

measurements are illustrated from many studies. This study seeks to demonstrate that the 

uncertainty of both values would affect travel time estimation models.  

Section 2.5 introduces the studies that have analysed the effects of road geometry on travel time 

estimations. Some studies investigate the change in fundamental traffic characteristics on different 

road geometry such as slopes, interchanges, S-curves, and tunnels. A few studies attempt to 

develop travel time estimation models using link geometric features.  

In summary, based on the literature review, Section 2.6 summarises the research gaps in travel time 

estimation models from four perspectives: the uncertainty of free-flow travel time and road 

capacity in existing VDFs; the necessity for the identification of influential factors on travel time; 

the consideration of link geometric features in travel time estimation models; and the implications 

for future feasible models.  
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2.2. Traffic assignment 

2.2.1. Traffic assignment from the economic perspective 

From general economic perspectives, traffic assignment can be defined as the process that finds the 

equilibrium points between the marginal cost and benefit across the entire transportation network 

(Ortúzar and Willumsen, 2012). In practice, traffic assignment can be defined as the process that 

distributes trip demand between origins and destinations to every link in the entire network 

(Ortúzar and Willumsen, 2012; Patriksson, 2015). Traffic assignment is one of four steps in traffic 

demand forecasting or transportation modelling: trip generation, trip distribution, modal split and 

traffic assignment (KDI, 2008b; Ortúzar and Willumsen, 2012). The output of traffic assignment 

commonly contains traffic volume and travel times or costs on each link even though its purpose 

and the detail of cost estimation can vary (Patriksson, 2015).  

The traffic assignment model interacts with trip demand, which means it affects trip demand but is 

also affected by the trip demand (Figure 2-1). Origin-Destination (O-D) trip demand pairs for 

generating future trip demand, which are initially examined by stated preference surveys and 

revealed preference information at the base year, are finally verified and calibrated by four steps in 

traffic demand forecasting (Ortúzar and Willumsen, 2012; MOLIT, 2014; DfT, 2018).  

Figure 2-1 Traffic assignment in traffic demand forecasting 

  
Source: “TAG unit M1-1 principles of modelling and forecasting” in WebTAG (DfT, 2018) 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427118/webtag-tag-unit-m1-1-principles-of-modelling-and-forecasting.pdf
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This interaction between traffic assignment and trip demand is connected to the economic theory 

on user benefits derived from a transport project such as the concept of consumer surplus (Jones, 

1977). When demand (e.g. trips) increases from T0 to T1 and cost (e.g. travel time) decreases from 

P0 to P1 through an additional supply (e.g. road construction) (Figure 2-2), the change in consumer 

surplus could be calculated simply using the Rule of a Half (ROH) formula (Equation 2-1). The 

change by a transport project intervention would be generalised by transport modes such as 

Equation 2-2 suggested by Sugden (1999). This relationship can be explained in the following two 

aspects: from the suppliers’ perspective, providing additional transport modes or improvement of 

existing transport modes generates consumer surplus by making existing customers shift from old 

modes or routes to new ones as well as accommodating newly created demand. From the users’ 

perspective, newly created demand requires additional supply and existing customers can benefit 

from the additional supply. Traffic assignment is closely related to this demand-supply relationship 

in that it determines the equilibrium of the relationship based on the cost and benefit estimation.  

𝑅𝑅𝑅𝑅𝑅𝑅 =  
1
2

 × (𝑇𝑇0 + 𝑇𝑇1)  ×  (𝑃𝑃0 − 𝑃𝑃1)                 Equation 2-1 

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚

=  
1
2
���𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚0 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚1 �

𝑖𝑖𝑖𝑖

  ×  �𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚0 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚1 �                 Equation 2-2 

where T:  the number of trips; P: unit cost per trip; and the subscripts of i, j and m: origin, 

destination and mode (or route) respectively. 

Figure 2-2 Change in consumer surplus 

 
Source: “TAG unit A1.3 user and provider impacts” in WebTAG (DfT, 2018) 

https://en.wikipedia.org/wiki/Equals_sign#Approximately_equal
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/603254/webtag-tag-unit-a1-3-user-and-provider-impacts-march-2017.pdf
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2.2.2. Traffic assignment in transport appraisal 

Transport appraisal is defined as the feasibility analysis implemented before determining whether 

to invest in projects (Preston, 2017). Although appraisal includes a qualitative process such as 

NATA in the UK (Nellthorp and Mackie, 2000), most countries focus more on quantitative results 

such as cost-benefit analysis (CBA) by which a project can be implemented if benefit exceeds the 

total cost (Appendix A.2.1). In governmental affairs, CBA is used to justify governmental 

intervention in a market (Boardman et al., 2013). CBA can be divided into several phases: 

establishing alternatives, cost and benefit identification, monetisation of value, comparison through 

sensitivity analysis, and conclusion (Hanley and Spash, 1993; Boardman et al., 2013). More 

specifically, traffic assignment contributes to cost and benefit identification by simulating the 

changes in allocated traffic and total travel time across the entire transport network.  

The impact of traffic assignment on the benefit estimation 

Traffic assignment crucially affects the estimation and valuation of benefit in CBA. As an example 

of CBA in the UK, WebTAG (DfT, 2018) include travel time savings and vehicle operating costs 

as impacts on economic efficiency (Table 2-1) and defines environmental impacts including noise, 

air pollution and greenhouse gasses (Table 2-2). Most of these impacts are predicted based on the 

traffic flows or travel time (average speed) on each link derived from traffic assignment (see detail 

in Appendix A.2.2).  

Table 2-1 Values of travel time savings (VTTS) and vehicle operating cost (VOC) 

 
Source: Adapted from “TAG unit A1.3 user and provider impacts” in WebTAG (DfT, 2018) 

Methodology of Valuation Marginal monetary values

Working time 
- Willingness-To-Pay (WTP)
- Cost Saving Approach (CSA)

- Car and rail employer's business only: 

  (U, Xmid, k: parameters; D: travel distance)
- Other working time: suggested in TAG Data Book

Non-working 
time

WTP
- Commuting: 9.95 £/hour 
- Other: 4.54 £/hour

Fuel operating 
costs

National Atmospheric 
Emissions Inventory (NAEI)

The fuel cost function:
L = (a + b·v + c·v2 + d·v3) / v 
  (L: fuel costs; v: speed; a, b, c, d: parameters)

Non-fuel 
operating costs

TAG Data Book
Non-fuel operating costs function
C = a1 + b1/V
  (C: non-fuel cost;  V: speed; a1, b1: parameters)

VOC

Impact

VTTS

𝑃𝑃𝑇𝑇𝑇𝑇𝑎𝑎 =
𝑈

1 +  𝑎𝑎
𝑥𝑥𝑚𝑖𝑖𝑑−𝐿𝐿

𝑘𝑘

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/603254/webtag-tag-unit-a1-3-user-and-provider-impacts-march-2017.pdf
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Table 2-2 Environmental impact appraisal on noise, air quality and greenhouse gases 

 
where DMRB is the UK design manual for roads and bridges 

Source: Adapted from “TAG Unit A3 Environmental Impact Appraisal” in WebTAG (DfT, 2018) 

Equilibrium principles 

Traffic assignment aims to allocate link flows from constant O-D pairs during the analysis period 

and to estimate link and network travel costs mainly with reference to three issues: multiple user 

classes, stochastic effects and congested equilibrium (Table 2-3). The first issue is caused from the 

different individual perceptions of benefits and costs. The second one is related to the unreasonable 

route choices that result from the level of cost information. These two issues are ignored in some 

cases of traffic assignment (Ortúzar and Willumsen, 2012), even though it is possible to 

approximate effects by multiple user classes (Leurent, 1998). In comparison, the last issue has been 

recognised as a basic assumption in most cases of traffic assignment for a long time (Ortúzar and 

Willumsen, 2012). 

Table 2-3 Classification of traffic assignment by equilibrium principles 

 
Source: Ortúzar and Willumsen (2012) 

Quantification or Estimation
Dependent on a distance, layout, traffic flow and 
average speed (DMRB 11.3.7)

Local Air Quality:
PM10, NO2
Regional Air 
Pollution: NOx, CO2

Related to fuel consumption prediction by vehicle 
types 

Greenhouse Gases

Dependent on daily traffic flow, heavy duty 
vehicles and speed change (DMRB 11.3.1)

Impact

Noise

Air Quality
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The widely used principle for explaining congested equilibrium in traffic assignment is Wardrop 

(1952)’s first principle (Correa and Stier-Moses, 2010) as:  

“The journey times on all the routes actually used are equal, and less than those which 

would be experienced by a single vehicle on any unused route.” 

Later, this principle has become known more formally as:  

“Under equilibrium conditions traffic arranges itself in congested networks in such a way 

that no individual trip maker can reduce his path costs by switching routes.”  

The first principle has been used by transportation planners for a long time and is still used today 

for finding the equilibrium across the entire network. The principle assumes that each user selects 

routes in order to minimise the cost of travel and unselected routes have more cost than those 

selected. Most transport modelling packages including TRANSCAD, EMME and VISUM adopt 

this principle for their assignment function even though their algorithms for convergence to 

equilibrium vary based on Frank and Wolfe (1956)’s method (Correa and Stier-Moses, 2010).  

Limitations of traffic assignment  

Ortúzar and Willumsen (2012) defined two basic components in traffic assignment: a trip matrix 

and a network including links and their properties. In comparison with economic theory, a trip 

matrix can represent demand and a network can represent supply. In detail, a trip matrix can be 

derived from O-D pairs, which is usually divided into peak and off-peak hour matrices. With 

regard to a network, commonly accepted generalised individual costs on every link are travel time 

and distance even though there could be other costs such as congestion, scenery, signposting, type 

of road, road works.  

Ortúzar and Willumsen (2012) also summarised the limitations of traffic assignment in the 

following aspects; the inaccurate node-link model of a network; the individual difference and 

definition error of perceived costs; imperfect information about costs; trip demand dynamics; and 

the imperfect estimation of travel time and input errors. In particular, they pointed out the problem 

that link-cost function generally includes only the relationship between travel time and traffic flow 

and asserted that conventional functions need to be improved.  

 

2.2.3. Two classifications of traffic assignment  

According to the level of detail, traffic assignment methods can generally be divided into two 

groups: static and dynamic traffic assignment (Saw et al., 2015). The difference between the two 
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methods starts from the detail or dynamics of demand and cost as can be inferred from their names. 

The two methods have different purposes and ranges. Static traffic assignment (STA) is used for 

appraising overall future traffic changes in traffic flows and travel time in the entire network, whilst 

dynamic traffic assignment (DTA) is more interested in the details of vehicle’s individual 

movements by inputting the diverse traffic patterns. Accordingly, STA tries to focus more on 

traffic loading and to find the impact on the entire network with the result that many countries are 

using it for feasibility analysis in respect of long-term transport projects from a wider perspective 

than DTA. By contrast, DTA puts more weight on present traffic patterns and thus it is used for 

comparatively short-term improvement of systems such as the improvement of junction structure, 

ramp-metering and road pricing.  

Static traffic assignment (STA) 

STA is a traffic flow allocation method that does not consider the instantaneous change in trip 

demand but analyses for a relatively long period. O-D pairs are suggested as average daily traffic 

without the detailed variation of traffic flow over different time period or slices (MOLIT, 2014; 

DfT, 2018). In particular, the daily traffic can be divided into traffic flow over a number of time 

periods (e.g. peak and off-peak) according to the detail or the purpose in the assignment model 

(DfT, 2018). For example, daily traffic flow based on the actual peak-hour traffic can be decided 

differently depending on countries and local regions (Weijermars and van Berkum, 2004).  

Another characteristic of STA is to admit that traffic flow can exceed road capacity while not 

considering congestion effects such as spillback and queuing even though it is impossible in reality. 

The dashed line in the left diagram of Figure 2-3 shows the real congestion, but the dashed line in 

the right diagram assumes the relationship between congested travel time and trip demand, not 

traffic flow. It can be also rationalised because of the practical reason for the computational 

iterative process, i.e., one value of traffic flow corresponds to one value of travel time.  

Figure 2-3 Typical speed–flow (left) and cost–flow (right) relationship in STA 

 
Source: Ortúzar and Willumsen (2012) 
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Saw et al. (2015) categorised STA into six groups by its method of assignment: “All or Nothing 

Assignment”, “Stochastic traffic assignment”, “Capacity Restrained Assignment”, “Incremental 

Assignment”, “User Equilibrium (UE) Assignment”, and “System Optimum (SO) Assignment”. Of 

these methods, UE and SO assignments are the most widely used methods in transport planning 

because they can reflect Wardrop (1952)’s principles which was referred to earlier. 

Sheffi (1985) illustrated the mathematical formulation for programming. Based on the UE principle 

that all travellers try to minimise the travel time to their destination, he suggested the objective 

formulation by using Beckmann et al. (1956)’s transformation as follows: 

min.𝑧𝑧(𝑥𝑥) =  ∑ ∫ 𝑡𝑡𝑎𝑎(𝑤𝑤) 𝑑𝑑𝑤𝑤𝑥𝑥𝑎𝑎
0𝑎𝑎  

subject to           ∑ 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟𝑘𝑘 =  𝑞𝑞𝑟𝑟𝑟𝑟     ∀ 𝑎𝑎, 𝑎𝑎  (Flow conservation constraints)         

                          𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟  ≥ 0               ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎   (Non-negativity constraints)  

                          𝑥𝑥𝑎𝑎 =  ∑ ∑ ∑ (𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟 · 𝛿𝛿𝑎𝑎,𝑘𝑘
𝑟𝑟𝑟𝑟

𝑘𝑘𝑟𝑟 )𝑟𝑟         ∀ 𝑎𝑎. 

where 𝑥𝑥𝑎𝑎  is flow on arc (a), 𝑡𝑡𝑎𝑎 is travel time on arc (a), 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟 is traffic flow on path (k) connecting O-

D pair (r - s), 𝑐𝑐𝑘𝑘𝑟𝑟𝑟𝑟 is travel time on path (k) connecting O-D pair (r - s), 𝑞𝑞𝑟𝑟𝑟𝑟 is trip rate between 

origin (r) and destination (s), and 𝛿𝛿𝑎𝑎,𝑘𝑘
𝑟𝑟𝑟𝑟  is an indicator variable (1 if arc(a) is on path (k), 0 

otherwise). The objective formulation is derived by the integrals of the relationship between travel 

time and traffic flow on each arc. In the formulation, 𝑡𝑡𝑎𝑎(𝑥𝑥𝑎𝑎) is a link performance function, which 

is also called a volume-delay function or a link cost function. The objective formulation can be 

solved by using the Lagrangian method for satisfying the first order condition (equivalency 

conditions) of Beckmann et al. (1956)’s transformation as follows: 

       𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟(𝑐𝑐𝑘𝑘𝑟𝑟𝑟𝑟 − 𝑎𝑎𝑟𝑟𝑟𝑟) = 0   ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎 

     𝑐𝑐𝑘𝑘𝑟𝑟𝑟𝑟 − 𝑎𝑎𝑟𝑟𝑟𝑟 ≥ 0  ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎 

      ∑ 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟𝑘𝑘 =  𝑞𝑞𝑟𝑟𝑟𝑟  ∀ 𝑎𝑎, 𝑎𝑎 

      𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟  ≥ 0  ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎 

where 𝑎𝑎𝑟𝑟𝑟𝑟 is the O-D specific Lagrange multiplier and 𝑐𝑐𝑘𝑘𝑟𝑟𝑟𝑟 is ∑ 𝑡𝑡𝑎𝑎 · 𝛿𝛿𝑎𝑎,𝑘𝑘
𝑟𝑟𝑟𝑟

𝑎𝑎 , which is the sum of travel 

times of all arcs on path (k) connecting O-D pair (r – s). In addition, in order to satisfy the 

uniqueness condition of Beckmann et al. (1956)’s transformation, the objective formulation should 

be strictly convex in analysed traffic flows (Sheffi, 1985). The convex condition can be proved by 

the Hessian derivatives of 𝑧𝑧(𝑥𝑥). In addition, the objective function has a unique solution because 

𝑧𝑧(𝑥𝑥) is the integrals of a link performance function and link performance functions have 

continuously non-decreasing curves (Ortúzar and Willumsen, 2012).  
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On the other hand, the SO assignment has a different objective formulation because it aims to 

minimise the total travel time experienced by all vehicles in the entire network. Other constraints 

and conditions such as flow conservation, non-negativity, equivalency and uniqueness are the same 

as for the UE assignment. The objective formulation can be set up as follows: 

min. 𝑧𝑧(𝑥𝑥) =  ∑ 𝑥𝑥𝑎𝑎 · 𝑡𝑡𝑎𝑎(𝑥𝑥𝑎𝑎)𝑎𝑎  

The objective formulation can be solved as follows: 

      𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟(�̃�𝑐𝑘𝑘𝑟𝑟𝑟𝑟 − 𝑎𝑎�𝑟𝑟𝑟𝑟) = 0   ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎 

     �̃�𝑐𝑘𝑘𝑟𝑟𝑟𝑟 − 𝑎𝑎�𝑟𝑟𝑟𝑟 ≥ 0  ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎 

      ∑ 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟𝑘𝑘 =  𝑞𝑞𝑟𝑟𝑟𝑟  ∀ 𝑎𝑎, 𝑎𝑎 

      𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟  ≥ 0  ∀ 𝑘𝑘, 𝑎𝑎, 𝑎𝑎 

where 𝑎𝑎�𝑟𝑟𝑟𝑟 is the Lagrange multiplier and �̃�𝑐𝑘𝑘𝑟𝑟𝑟𝑟 is ∑ �𝑡𝑡𝑎𝑎(𝑥𝑥𝑎𝑎) + 𝑥𝑥𝑎𝑎
𝑑𝑑𝑡𝑡𝑎𝑎(𝑥𝑥𝑎𝑎)
𝑑𝑑𝑥𝑥𝑎𝑎

� ·𝑎𝑎 𝛿𝛿𝑎𝑎,𝑘𝑘
𝑟𝑟𝑟𝑟 . As mentioned in 

Section 2.3.1, these principles can be used in some DTA models. 

Dynamic traffic assignment (DTA) 

DTA has been devised for supporting various considerations about the instantaneous or periodic 

change in demand and supply reflecting the diversity of human behaviours and traffic systems 

(Peeta and Ziliaskopoulos, 2001). Although much literature has referred to DTA models since the 

work of (Merchant and Nemhauser, 1978), the common characteristic of the models is that DTA 

deals with the interaction between route choice and predicted travel times as recognised by 

travellers (Chiu et al., 2011). In terms of the interaction, DTA models focus more on congestion 

because the interaction is assumed to hardly happen in steady-state conditions. To reflect as close a 

correlation between congestion and reality, DTA follows the capacity constraints that actual traffic 

flows cannot exceed capacity strictly (Heydecker and Addison, 2005).  

Chiu et al. (2011) divided general iterative DTA algorithmic procedure into three parts: network 

loading, path set update and path assignment adjustment (Figure 2-4). The first is the process that 

evaluates time varying cost (travel times) depending on vehicles loaded on each route (or link) at 

the previous interval of time. The second is the process that selects the cheapest (fastest) routes 

depending on every O-D pair and departure time. The last is the process that finds equilibrium in 

the analysed network. After the last process, the three steps are repeated until a given criterion is 

satisfied. In particular, many researchers have tried to study the network loading step, which is the 

main concern of DTA. Chiu et al. (2011) divided the network loading step into two main 

approaches, which are analytical and simulation-based, and Peeta and Ziliaskopoulos (2001) again 

subdivided analytical approaches into three groups: mathematical programming, optimal control 

and variational inequality formulations. They mentioned that the three groups have different 

characteristics. Mathematical programming models set the analysed time discretely. By contrast, 



Chapter 2. Travel Time Estimation Models in Traffic Assignment 

 

  22  

 

optimal control models assume continuous O-D or link flows. Lastly, variational inequality models 

can explain the equilibrium about various DTA problems such as asymmetric link interaction 

(Nagurney, 1998), departure time (Friesz et al., 1993), exit flow function (Wie et al., 1995), link 

inflow-only function (Chen and Hsueh, 1998). Ortúzar and Willumsen (2012) emphasised that 

variational inequality models are the most practical of the models. Mitsakis et al. (2011) found that 

there are several DTA models reflecting the assumptions of STA models while categorising DTA 

models in detail. 

Figure 2-4 General DTA algorithmic procedure 

 
Source: Chiu et al. (2011) 

In summary, DTA models can offer time-dependent results with more focus on levels of 

congestions. According to Chiu et al. (2011)’s investigation, DTA models were mainly applied to 

management or operation areas such as corridor management, network disruption, incident or 

emergency management, urban traffic management, ITS evaluation, HOV-HOT lane operation, 

congestion charging, air quality analysis and network reliability estimation. In these applications, 

DTA models estimate different detailed levels of outputs related to time and analysed network 

level. The models provide time-dependent travel times, travel distances, stop times at network level 

as well as time-dependent travel times, speeds, densities, queues and stop times at link level. 

Comparison between STA and DTA 

The difference between STA and DTA can be summarised using one word: “time-dependence”. 

Although intermediate models do exist between them in that some DTA models borrow some STA 

assumptions, the basic rational behind DTA is to estimate traffic results changing every time 

interval or continuously during the analysed period. By contrast, STA does not consider change of 
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time-dependent demand and supply (or cost) much even though O-D pairs can be divided into peak 

and off-peak hours.  

Based on literature (Peeta and Ziliaskopoulos, 2001; Chiu et al., 2011; Ortúzar and Willumsen, 

2012), other characteristics of STA and DTA can be compared as in Table 2-4. Most of the 

differences start from the consideration of time-dependence from demand and supply perspectives. 

A notable difference between STA and DTA is the assumption about queuing conditions. Queuing 

or congestion on a link is closely related to traffic inflow and outflow. Since STA always assumes 

that inflow is the same as outflow on a link, queuing conditions are not allowed in STA and 

congestion is defined as volume exceeds capacity. Instead, DTA can explain congestion and 

queuing such as spillback by formulating the relationship between inflow, the number of vehicles 

on a link and outflow. However, the different approaches do not have big variations in steady-state 

conditions because inflow would be almost the same as outflow. For example, in DynaMIT, which 

is one of DTA models, Ben-Akiva et al. (1998) assumed that the average speed is constant in the 

moving part while one of the queuing models is applied to the queuing part after dividing an 

analysed section into moving and queuing parts.  

Table 2-4 Comparison between STA and DTA 

   

 

2.2.4. Implication to thesis 

Section 2.2 reviewed that traffic assignment is a process for finding the equilibrium of a network 

based on supply-demand relationships from the broad perspective of transport economics. Traffic 

Category STA DTA
Applied areas New road construction Operation and management 

Equilibrium Precisely convergent Sometimes disequilibrium happens
Usage Used practically Used for special purposes

Network size Larger Smaller
Computational time Faster Slower

Demand Constant Variable
Period Long Short or mid-term

Inflow and Outflow Always same Different in congestion
Congestion Less focus on congestion More focus on congestion

Capacity constraint
Defined virually

(Volume can exceed capacity)
Defined close to reality

(Volume cannot exceed capacity)
Queuing condition Cannot explain Try to explain (e.g. spillback effect)
Assumption of FIFO Always follow Consider overtaking in some models
Lane-based effects Not consider Consider in some models
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assignment is not only the output for the equilibrium, but also the input for the estimation of costs 

and benefits in transport appraisal. Moreover, according to the time-dependency, it can be 

classified into static traffic assignment (STA) and dynamic traffic assignment (DTA), the different 

features of which are shown in Table 2-4. Whilst STA approximates some traffic effects in the 

process of finding the equilibrium, DTA takes into consideration the more detailed interaction 

between vehicles or groups of vehicles.  

In summary, it can be said that STA is more suitable for transport appraisal2 that analyses the 

feasibility of a long-term (e.g. 30 years or more) investment than DTA, most of which targets the 

equilibrium at a microscopic level. Although DTA is used for the feasibility analysis that focuses 

on the short-term improvement of a local transport network such as the intersection structure, 

traffic signals and lane controls, it would be not easy to take into account the time-dependency for a 

long-term appraisal. Since this study aims to improve the reliability of the current long-term 

transport appraisal, this study focuses more on STA in terms of how geometric features affect 

travel time estimation on relatively long links from a macroscopic perspective.  

                                                      
2 Cost-benefit analysis (CBA) as one of transport appraisals is examined in Appendix A.2 and A.3.  
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2.3. Travel time estimaiton models 

2.3.1. Theoretical background for traffic modelling  

Travel time estimation in STA 

A link cost function, which is called VDF in STA, is closely related to classic traffic flow theory. 

In the traffic flow theory, Equation 2-3 is based on the relationship between three key factors, 

which are traffic flow (q), density (k), and traffic speed (u) with the assumption that all vehicles 

move at the same speed (Bell et al., 1997).  

𝑞𝑞 =  𝑘𝑘𝑎𝑎 Equation 2-3 

Based on this equation, Figure 2-5 shows the empirical relationships between three factors. The 

curves would start the linear relationship (Figure 2-5c, Equation 2-4) between speed and density, 

which was suggested by Greenshields et al. (1935):  

𝑎𝑎 =  𝑎𝑎𝑓𝑓 �
𝑘𝑘𝑖𝑖 − 𝑘𝑘
𝑘𝑘𝑖𝑖

� Equation 2-4 

in which 𝑎𝑎𝑓𝑓 is the free-flow speed and 𝑘𝑘𝑖𝑖 is the jam density. 

Figure 2-5 Flow-density, speed-flow, and speed-density curves 

 
Source: Bell et al. (1997) 
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Combining Equation 2-3 and Equation 2-4, the relationship between flow and density, and between 

speed and flow are derived as in Figure 2-5b and Equation 2-5, and in Figure 2-5a and Equation 

2-6 respectively. In addition, the maximum value of traffic flow, which is defined as the road 

capacity, is derived when the derivative of Equation 2-6 is equal to zero (𝑞𝑞𝑚𝑚 in Figure 2-5a). The 

average speed used for the relationships is space mean speed, but practically time mean speed 

could be used in many countries because of its simple calculation.  

𝑞𝑞 =  𝑘𝑘𝑎𝑎𝑓𝑓 �
𝑘𝑘𝑖𝑖 − 𝑘𝑘
𝑘𝑘𝑖𝑖

� Equation 2-5 

𝑞𝑞 =  𝑘𝑘𝑖𝑖 �1 −
𝑎𝑎
𝑎𝑎𝑓𝑓

 �𝑎𝑎  Equation 2-6 

The Greenshields et al. (1935)’s relationships can be applied to VDF after transforming the 

relationship corresponding to traffic flow over capacity for approximating congestion states like the 

right dash-dotted line in Figure 2-6. The approximation of traffic flow over road capacity, which is 

actually equivalent to trip demand, can be allowed in STA because there would be little theoretical 

backgrounds of the trip demand over road capacity (Nielsen and Jørgensen, 2008; Manzo et al., 

2013). Greenberg (1959) and Underwood (1961) suggested that the relationship between speed and 

density would be defined as logarithmic and exponential function respectively. Rakha and 

Crowther (2002) compared three types of fundamental diagram, which are the Pipes (1953)’s 

triangular, the Greenshields et al. (1935)’s parabolic, and the Van Aerde (1995)’s diagram, by 

using microscopic simulation models of CORSIM and VISSIM (Figure 2-7). In addition, Kerner 

(2009) derived the different relationships between traffic flow and density in free-flow and 

congested conditions respectively from three-phase theory (Figure 2-8).  Likewise, Yousif (2009) 

proposed two-regime relationship between flow and density based on HCM (Figure 2-9). 

Figure 2-6 Practical change of the speed-flow relationship  

 
Source: Nielsen and Jørgensen (2008) 
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Figure 2-7 Comparison of three flow-density diagrams 

 
Source: Rakha and Crowther (2002) 

Figure 2-8 Relationship between flow and density in free-flow (F) and jam (J) conditions 

 
Source: Kerner (2009) 

Figure 2-9 Two-regime relationship between flow and density 

 
Source: Yousif (2009) 
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Travel time estimation in DTA 

The travel time estimation of an individual vehicle in DTA would not be given much emphasis 

because DTA takes it into consideration in the process of traffic modelling. Rakha and Tawfik 

(2009) divided the traffic modelling of DTA into two approaches: analytical modelling and 

simulation-based modelling. The first approach can be explained as transitional modelling from 

STA to DTA and it follows theoretical methods of STA mostly. By contrast, the second approach 

focuses on describing the interaction between vehicles. Peeta and Ziliaskopoulos (2001) explained 

that simulation-based models can be appropriate for simulation itself or reproduction rather than 

problem solving by analytical formulation. In other words, travel time estimation is clearer in 

analytical modelling rather than in simulation-based modelling. 

Analytical modelling in DTA assumes that each time interval, which is sliced from the analysed 

period, has static traffic conditions (Rakha and Tawfik, 2009). In other words, static UE and SO 

principles as explained in Section 2.2.3 can also be used within the time interval by using standard 

mathematical static formulation even in analytical modelling in DTA. In addition, the time 

intervals in analytic modelling are comparatively long similar to STA but different from 

microscopic simulation-based modelling in DTA. Therefore, it is possible that link cost functions 

in STA can also be used in analytical modelling in DTA.  

As mentioned earlier, simulation-based modelling emphasizes the interaction between vehicles 

more than analytical modelling does. The interaction can be affected by various traffic 

environments such as opposing traffic flows, leading vehicles, and signal operation. Rakha and 

Tawfik (2009) refer to the history of simulation-based modelling. Early models such as SATURN 

introduced the concept of platoons using 15-30 minutes time intervals, but did not consider 

congestion patterns such as upstream spillback. Intermediate simulation-based models such as 

CONTRAM introduced the concept of packets, which are the groups with the same traffic 

characteristics; and assigned traffic by considering the travel time of previous packets. However, 

this model is also unable to reflect the possibility of vehicles queuing on links. The recent DTA 

simulation-based models are more microscopic than the past ones. The models consider car-

following, vehicle instantaneous acceleration and lane-changing with an additional function of fuel 

consumption or emissions at second time intervals. Whilst it is debatable whether microsimulation-

based models can explain empirical spatio-temporal data (Rakha and Crowther, 2002; Kerner, 

2009), macroscopic and mesoscopic models follow the fundamental relationship between flow and 

density or are in line with a user specified relationship (Rakha and Tawfik, 2009). Hoogendoorn 

and Bovy (2001) defined the category of a microscopic, mesoscopic and macroscopic model more 

clearly depending on three levels of detail relating to analysed units: individuals, traffic entities and 

aggregated groups respectively. 
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In addition, Kerner (2009) suggested “Three-Phase Traffic Theory”, which means that the traffic 

state would be divided into free flow, synchronised flow, and wide moving jams (synchronised 

flow does not always appear). He defined the wide moving jam as having the characteristic that the 

outflow speed has a small range at the downstream front of the jam. By contrast, the synchronised 

flow would have an outflow speed that fluctuates greatly (Figure 2-10). He also explained that the 

synchronised flow could happen to the upstream of a bottleneck. The synchronised flow or the 

breakdown flow in this study would provide a clue as to whether link geometric features would act 

as bottlenecks and where a detailed bottleneck point is located.  

Figure 2-10 Three traffic phase based on the spatiotemporal measurement 

 
Source: Kerner (2009) 
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2.3.2. Volume Delay Function (VDF) 

Role of VDF 

VDF is a function to calculate travel time (or costs) dependent on trip demand and it is generally 

used in STA at a macroscopic level as mentioned above. VDF affects the route selection with 

relation to the amount of travel time taken on links consisting of routes connecting journey origins 

to destinations. VDF is the base formulation to follow the assignment principle such as the 

Wardrop (1952)’s first principle that road users select the route to minimise their travel time 

independent of other users in traffic assignment. When searching for the routes to minimise travel 

time, each analysed unit link would be recognised as an impedance with cost. Therefore, VDF 

plays an essential role in traffic assignment, because road user’s selection could not be modelled 

without VDF. Moreover, it is very important because almost all benefits in CBA are calculated by 

travel time, total vehicle kilometres and their speed based on assigned traffic flows on each link 

(see Appendix A.2.2 and A.3.3) 

Principle of VDF 

Branston (1976) explained the principle of VDF including the detailed changes in travel time and 

traffic volume of a link dependent on the time of day, the concept of the “steady state” condition, 

and the measurement of road capacity.  

The overall road capacity that plays a crucial role in travel time estimation would depend on the 

minimum capacity over a link. It could be naturally measured in a bottleneck section by taking 

account for the fact that the capacities of all sections that consist of a link cannot be equal. The 

simplified traffic characteristic could be explained as an example of a link AB assuming that the 

direction of traffic flow is A to B and that the capacity at node A is higher than that at node B 

(Branston, 1976). When trip demand increases over the capacity of the link, queues would be 

formed from the upstream of node B and the maximum traffic flow cannot exceed the capacity at 

node B, which is the minimum road capacity of the link (Figure 2-11).  

Figure 2-11 Example of flow variation on link AB dependent on the trip demand  
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In addition, Branston (1976) mentioned how to use the road capacity in VDFs, which is classified 

into the steady-state capacity and the practical capacity. The former is the capacity in the steady-

state condition that could be supported by the above-mentioned traffic pattern, and it could be the 

road capacity at the node that could become a bottleneck point. On the other hand, the latter uses 

traffic flow at the level of service (LOS) D or E, which could be measured at a random point. 

Therefore, it is closer to the principle of VDF to use the steady-state capacity rather than the 

practical one. However, it would be difficult to measure the steady-state capacity as demonstrated 

in the initial case study (Section 3.2). The initial case study attempted to identify the steady-state 

capacity by introducing different criteria of road capacity at inductive loop detectors having 

relatively short intervals.  

Characteristics of VDF 

Ortúzar and Willumsen (2012) suggested the following five characteristics of VDF: realism; non-

decreasing and monotone; continuous and differentiable; the existence of traffic flow over road 

capacity; and easy transferability (Figure 2-12). Of these characteristics, the non-decreasing and 

monotone condition would be clear based on fundamental traffic theory which was referred to 

earlier. In addition, to satisfy the fundamental principle of traffic assignment, VDF needs to be not 

only continuous and differentiable but also convex mathematically. Taking the example for 

Wardrop (1952)’s principles, the convex condition is necessary to minimise the objective functions 

(Section 2.2.3) as their first and second derivatives are non-negative (Sheffi, 1985; Ortúzar and 

Willumsen, 2012). In particular, the condition of a convex function is regarded as very important 

for the base and feasible model selection in the research methodology (Chapter 3) and the model 

estimation (Chapter 5). Ortúzar and Willumsen (2012) mentioned that the convex condition is 

satisfied when the line connecting two points on an examined curve lies above or in the curve 

(Figure 2-13(a) and (b)).  

Figure 2-12 Difference between theoretical and practical relationship 

 
Source: KDI (2015) 
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Figure 2-13 Convex and nonconvex function 

 
Source: Ortúzar and Willumsen (2012) 

Types of VDF 

Branston (1976) and Petrik et al. (2014) suggested that various functions have been developed in a 

number of different countries, but there has been little consensus about which function is the most 

appropriate in the traffic assignment. They asserted that countries with different road environments, 

demographics and economic characteristics have selected one or more of the VDFs. Branston 

(1976) classified types of VDF into mathematical and theoretical approaches. Whilst the former is 

simply defined based on the relationship between observed journey speed and flow without the 

suggestion of link characteristics, the latter is estimated by introducing the variables of the various 

network characteristics such as signal (spatial and time) intervals and lane widths and as such it 

requires more information about the network. Therefore, mathematical functions could not be 

easily modified without verifying the parameters used in the function. This means that the 

mathematical forms could not be used for explaining different network characteristics. 

In addition, VDFs can be classified into a single equation and multiple equations depending on the 

level of traffic flows (KDI, 2015). VDFs made up of multiple equations, which are generally 

composed of two functions, express the relationship by using different functions before and after 

congested situations. Tipping points would be formed when TF/C reaches a certain level of traffic 

flow and travel time would increase dramatically after this point. For example, Campbell et al. 

(1959) suggested the two equations for the traffic assignment (Equation 2-7) which has a tipping 

point when TF/C becomes 0.6. Most VDFs which utilise multiple equations need to be continuous 

at tipping points between equations.  

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 for   TF/C ≤ 0.6 

Equation 2-7  
 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇0 + 𝛼𝛼 �𝑇𝑇𝑇𝑇

𝐶𝐶
− 0.6� for   TF/𝐶𝐶 > 0.6 
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where TT: travel time (𝑇𝑇𝑇𝑇0: free-flow TT); TF: traffic flow; C: road capacity; 𝛼𝛼: parameter. 

For developing travel time estimation models in this study, it is necessary to verify the availability 

of existing functions. Petrik et al. (2014) reported that the exponential function (Smock, 1962), the 

BPR function (Bureau of Public Roads, 1964) and its modifications, and the conical function 

(Spiess, 1990) have been widely used recently. Smock (1962) suggested the curvilinear function 

(Equation 2-8) for Detroit, USA by using an average of the intersection capacities without 

parameters. Spiess (1990) tried to overcome the limitation that other VDFs could show in 

predicting the travel time of congested links (Equation 2-9). 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 𝑎𝑎𝑥𝑥𝑎𝑎[𝑇𝑇𝑇𝑇/𝐶𝐶] Equation 2-8 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 �2 − 𝛽𝛽 + 𝛼𝛼 �1 −
𝑇𝑇𝑇𝑇
𝐶𝐶
�+ �𝛼𝛼2 �1 −

𝑇𝑇𝑇𝑇
𝐶𝐶
�
2

+ 𝛽𝛽2� Equation 2-9 

where 𝛼𝛼 is larger than 1, and 𝛽𝛽 =  (2𝛼𝛼 − 1)
(2𝛼𝛼 − 2)� . 

Davidson (1978) tried to overcome the limitation of VDF that cannot express the trip demand over 

road capacity by adding queuing theory to the function (Equation 2-10).  

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 �1 +  
𝐽𝐽𝑑𝑑 · 𝑇𝑇𝑇𝑇𝐶𝐶

(1 − 𝑇𝑇𝑇𝑇
𝐶𝐶 )

� Equation 2-10 

where 𝐽𝐽𝑑𝑑 is delay parameter (time per unit distance). 

Akçelik (1991) proposed another type of time-dependent travel time function based on Davidson’s 

function as follows: 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 + 0.25𝐷𝐷 ��
𝑇𝑇𝑇𝑇
𝐶𝐶

 − 1� +  ��
𝑇𝑇𝑇𝑇
𝐶𝐶

 − 1�
2

+  
8𝐽𝐽𝐴𝐴 · 𝑇𝑇𝑇𝑇𝐶𝐶
𝐶𝐶 · 𝐷𝐷

 � Equation 2-11 

where D is duration of analysis period (hour) and 𝐽𝐽𝐴𝐴 is delay parameter (without a unit). 

USHCM (2000) provided the travel time estimation function developed from Akçelik’s function 

and modified it in 2002 as follows: 
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𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 + 𝑑𝑑0 + 𝑑𝑑𝑚𝑚

+  0.25𝑁𝑁𝐷𝐷 ��
𝑇𝑇𝑇𝑇
𝐶𝐶

 − 1� +  ��
𝑇𝑇𝑇𝑇
𝐶𝐶

 − 1�
2

+  
16𝐽𝐽 · 𝑇𝑇𝑇𝑇𝐶𝐶 · 𝐿𝐿2

𝑁𝑁2 · 𝐷𝐷2  � 
Equation 2-12 

where 𝑑𝑑0 is delay (hour) at signalized intersection without traffic flow, 𝑑𝑑𝑚𝑚 is segment delay (hour) 

between signals (equals zero if no signals), L is link length (mile), N is the number of signals and J 

is delay parameter (hour2/mile2).   

Afterward, Dowling and Skabardonis (2008) simplified Akçelik’s function as follows: 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 + 0.25𝐷𝐷 ��
𝑇𝑇𝑇𝑇
𝐶𝐶

 − 1� +  ��
𝑇𝑇𝑇𝑇
𝐶𝐶

 − 1�
2

+ 𝐽𝐽 ·
𝑇𝑇𝑇𝑇
𝐶𝐶

  � Equation 2-13 

The function developed by US Bureau of Public Roads (1964), which is the main concern analysed 

in the modelling process (Chapter 4 and Chapter 5), is investigated in detail in the next section.  

 

2.3.3. VDF in South Korea 

Transport appraisal in South Korea 

As mentioned above, forecasting traffic demand is one of the most important procedures in 

transport appraisal that predicts costs and benefits. Like other countries, traffic demand forecasting 

plays a very important part in Korean transport appraisal because if an incorrect trip demand 

forecast is made this will affect the estimation of benefits on every link and thereby cause a 

distortion of the total benefit (KDI, 2008b). Two kinds of software, namely EMME and TransCAD, 

are widely used for traffic demand analysis in Korea. A volume-delay function (VDF) is installed 

for trip assignment to the software. The Korean Transportation DataBase (KTDB), which has O-D 

trip demand dependent on the type of transportation in the future, is the input in forecasting traffic 

demand. The benefits of a road project intervention in transport appraisal are classified into four 

categories: vehicle operating costs reduction, travel time savings, road safety increases and 

environmental improvement (especially in respect of emission and noise) in Korea. When 

investigating the CBA results of national highway projects implemented just before making a 

2005-2010 plan, 77.4% of the total estimated benefits for those projects is represented by travel 

time savings (KDI, 2008b). With the current system of benefit estimation and valuation in transport 

appraisal, the benefit of travel time savings occupies a very large proportion of the total benefit in 
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CBA. In addition to the direct impact of the travel time savings, other benefits are closely related to 

the change in travel time on every route (Appendix A.3.3). For example, the traffic accidents 

reduction benefit is estimated considering allocated traffic flow on different types of roads; and the 

environmental costs reduction benefit such as emission is estimated depending on vehicles’ speed 

and travelled distance. Namely, traffic flow, average speed and travelled distance derived by traffic 

assignment based on travel time estimation become the essential factors on which to determine 

other benefits. Therefore, it can be said that travel time estimation is the starting point for most 

benefit estimation in transport appraisal.  

Korean VDF: BPR function 

The VDF that is widely used in Korea is the BPR function (Equation 2-14). The essential factors of 

BPR function are free-flow speed, road capacity and the parameters of α, β as with other VDFs. 

However, current VDFs cannot reflect the characteristics of networks in detail even though the 

amendment of the VDF is sometimes required to reflect the actual traffic situation more accurately 

in the feasibility analysis (KDI, 2015).  

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 �1 + 𝛼𝛼 �
𝑇𝑇𝑇𝑇
𝐶𝐶
�
𝛽𝛽
� Equation 2-14 

where TT: travel time (𝑇𝑇𝑇𝑇0: free flow TT); TF: traffic flow; C: road capacity; 𝛼𝛼,𝛽𝛽: parameter. 

Many countries including Korea use the BPR function for traffic demand forecasting. The original 

type of function (Equation 2-14) would have used the practical road capacity and the parameters 

would be generally suggested as 0.15 and 4 for α and β respectively (Branston, 1976; KDI, 2015). 

The replacement to steady-state road capacity could make the parameters change into 2.62 and 5 

for α and β respectively, which is higher than those in the original type (Steenbrink, 1974). Many 

researchers calibrated the parameters of BPR function with the measurement of road capacity and 

free-flow travel time (Singh, 1995; Kurth et al., 1996; Dowling et al., 1997; Skabardonis and 

Dowling, 1997; Singh and Dowling, 2002; Hansen et al., 2005). In particular, Hansen et al. (2005) 

modified BPR function by using 75% of road capacity and the parameters of α = 0.15 and β = 7. In 

addition, Manzo et al. (2013) modified the function from the general point of view, which is 

relevant in the cases where there are no separated lanes (Equation 2-15). 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇0 (1 + 𝛼𝛼 �
𝑇𝑇𝑇𝑇 +  𝛾𝛾 𝑇𝑇𝑇𝑇′

𝐶𝐶 �
𝛽𝛽

� Equation 2-15 
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where 𝑇𝑇𝑇𝑇′ is the traffic volume on the opposite direction and 𝛾𝛾 is the parameter due to no separated 

lane types. 

Inputs of BPR function 

BPR function consists of the inputs including free flow speed, link capacity, and the parameters of 

α, β. If BPR function is assumed to be optimal in all road sections and the road capacity in VDF is 

measured accurately, the parameters of α, β would have a huge impact on the curve of the function. 

The parameter of α would be the main factor in determining the travel time in VDF in the section 

where the ratio of traffic volume to the road capacity (TF/C) is between 0.5 and 1.0. If TF/C were 

over 1.0, the parameter of β would start to affect the result (Figure 2-14). In addition, the 

parameters of α, β could be adjusted and derived from the actual measurement of various capacities 

in many links and the statistical analysis of calculated travel time dependent on varying levels of 

traffic volume (Figure 2-15). 

Consideration of link geometry in Korean VDF  

Korean VDF is classified into 32 types depending on road types, the region (urban, rural), the 

number of lanes and the density of intersection (Table 2-5). Korean VDF is developed by the 

empirical analysis based on the traffic data observations in the links that would be in line with a 

basic segment in HCM (KOTI, 2009; KDI, 2015). In other words, the impact of link geometry was 

not considered in the modelling process. When link geometric features are reflected in the process 

of trip assignment, the only factors that can change in Korean VDFs are free-flow speed and road 

capacity. Korean VDFs do not suggest various parameters depending on different free-flow speed 

and road capacity, ignoring the fact that all the factors could have an influence on each other.  

Figure 2-14 Impact area by the variable and parameters in BPR function 

 
Source: KDI (2015) 
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Figure 2-15 Adjustment of parameters in BPR function 

 
Source: KDI (2015) 

Table 2-5 Factors of the Korean VDF by different road types 

 
Source: KDI (2015) 

Free-flow speed
(km/h) α β

Capacity
(pcphpl)

Urban 1 0 100.7 0.56 1.80 1,846       
Rural 2 0 95.2 0.55 2.09 1,786       
Urban 3 0 115.1 0.57 1.68 2,028       
Rural 4 0 108.2 0.57 2.07 1,987       
Urban 5 ≤ 2 0 95.5 0.47 2.43 1,773       
Urban 7 > 3 0 97.5 0.48 2.40 2,182       
Urban 9 66.5 0.51 2.69 1,100       
Rural 10 67.5 0.51 2.82 1,090       
Urban 11 80.7 0.67 2.16 1,420       
Rural 12 82.3 0.65 2.24 1,400       
Urban 13 63.9 0.54 2.47 957           
Rural 14 65.0 0.54 2.16 925           
Urban 15 79.2 0.68 2.08 1,341       
Rural 16 80.7 0.72 2.14 1,188       
Urban 17 55.7 0.60 2.15 873           
Rural 18 62.8 0.59 1.87 767           
Urban 19 71.0 0.69 1.93 1,242       
Rural 20 72.2 0.73 1.82 971           
Urban 21 51.0 0.60 1.92 862           
Rural 22 58.1 0.63 1.87 583           
Urban 23 69.6 0.71 1.80 985           
Rural 24 70.0 0.80 1.81 831           
Urban 25 44.1 0.67 1.86 636           
Rural 26 54.4 0.68 1.79 580           
Urban 27 62.4 0.72 1.79 936           
Rural 28 69.3 0.82 1.72 756           
Urban 29 38.3 0.80 1.82 595           
Rural 30 44.2 0.72 1.72 465           
Urban 31 57.0 0.82 1.66 801           
Rural 32 60.0 0.83 1.70 736           
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2.3.4. Implication to thesis 

Section 2.3 investigates travel time estimation models in traffic assignment reviewing theoretical 

backgrounds on travel time estimation models. Before examining VDFs in detail, which are used as 

link cost functions in STA, the section tried to scrutinise travel time estimation models in both STA 

and DTA. Although there are some approaches using travel time estimation models in DTA, most 

of DTA approaches give a more emphasis on the interaction between vehicles. The finding 

suggests that the statistically estimated travel time models based on the empirical data analysis as 

with this thesis would be more appropriate for STA. The implications from reviewing VDFs in 

STA can be summarised as follows. 

Firstly, it was confirmed that the examined VDFs commonly include road capacity and FFS, which 

are the only two values could express link attributes in VDFs. In the literature, it was not clarified 

why both values are used and how they are measured in VDFs. Although Branston (1976) tried to 

classify the link capacity as into the steady-state capacity and the practical capacity, most studies 

used the values without critical reviews and proposed different forms of models with both values. 

Therefore, the review of VDF studies motivated the necessity for a more detailed investigation of 

free-flow travel time (FFTT) and road capacity. 

Furthermore, the finding that all VDFs in STA have monotonically increasing convex curves 

depending on traffic flow contributed significantly to the selection of the base function of the 

models estimated in research methodology (Chapter 3). Although this study does not overcome a 

limitation that VDF approximates oversaturated or congested states based on the statistical 

estimation of travel time in uncongested states (see details in Section 7.3), it would also be 

significant to clarify the relationship between travel time, traffic flow and geometric features in 

uncongested and synchronised states.  

Lastly, it was reviewed that the Korean VDF (BPR function) also follows the common feature of 

VDFs, which include FFTT and road capacity. In common with many countries, the Korean VDF 

(BPR function) is useful for traffic assignment in transport appraisal, but it has a limitation in that it 

was developed based on the traffic data of links that are not affected by geometry. This study 

attempts to overcome this limitation in existing VDFs. This is also a reason why Korean 

motorways are selected for the case study and the Korean VDF is used as a reference model for the 

comparison with the developed models in this study.  
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2.4. Free-Flow Speed and Road Capacity  

2.4.1. FFS and road capacity in highway capacity manuals 

Road capacity can be defined and theoretically calculated based on HCMs in many countries. 

USHCM (2010) suggests road capacity based on the intersection between the curve related to FFS 

reflecting link geometry and the dashed line of road density at each LOS (maximum traffic flow: 

LOS E) in Figure 2-16. Thus, it could represent the performance of each link and as a result it 

could connect with link performance function. USHCM (2010) suggests the equation of free-flow 

speed in a basic segment as follows: 

𝑇𝑇𝑇𝑇𝑎𝑎 =  75.4 − 𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝐿𝐿𝐶𝐶 − 3.22𝑇𝑇𝑅𝑅𝐷𝐷0.84 Equation 2-16 

where 𝑓𝑓𝐿𝐿𝐿𝐿 is adjustment for lane width, 𝑓𝑓𝐿𝐿𝐶𝐶 is adjustment for right-side lateral clearance, and 𝑇𝑇𝑅𝑅𝐷𝐷 

is total ramp density.  

Figure 2-16 LOS for basic freeway segments 

 
Source: USHCM (2010) 

The concept of road capacity is related to traffic flow theory because it is the output combined with 

traffic speed, road density and traffic flow. Figure 2-16 shows the relationship between speed and 

traffic flow with the areas of LOS, which is related to road density. Road capacity is generally 

defined as the traffic flow at LOS E. USHCM (2010) considered gradient effects including 

upgrades, downgrades, and composite grades as well as ramp density. For example, the uniform 

gradient effects as three categories of level, rolling and mountainous terrain where grades below 

2% are below 0.25 miles long, or where grades between 2% and 3% are below 0.5 miles long. 

Other gradient links between 2% and 3% and longer than 0.5 miles; or 3% or greater and longer 
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than 0.25 miles need to be regarded as separate segments. However, USHCM (2010) does not 

include assessment of the impact of other link geometric features such as tunnels. It admits the 

limitations in the methods of current road capacity estimation and suggests the development of 

performance measurement related to this study (Table 2-6). Both the German Highway Capacity 

Manual (HBS, 2015) and Korean Highway Capacity Manual (KHCM, 2013) respectively, take into 

account the following road geometric features- grades, ramp or weaving section in their definitions 

of capacity. Compared to USHCM (2010), both HBS (2015) and KHCM (2013) analyse a segment 

over 3% grade and longer than 500m separately. Notably, even though the difference is small 

compared with a basic segment, HBS (2015) takes into consideration tunnel impact on the capacity 

(Wu, 2017). 

Table 2-6 Limitations of road capacity 

  
Source: USHCM (2010) 

The Korean Highway Capacity Manual (KHCM, 1992) was also developed based on USHCM 

(1985). The methodology for calculating capacity is similar, but some factors for other special 

conditions such as the impact of differing weather conditions, road maintenance works and the 

effect of night time are customised for the Korean road environment. There were many changes in 

the methodology of USHCM (1997) such as the introduction of free flow speed adjusted by 

correction factors based on base free-flow speed, but KHCM (2001, 2013) didn’t follow these 

major changes and uses the road capacity adjusted by correction factors based on maximum service 

traffic flow. KHCM (2013) consists of 15 chapters and they are about a motorway, a highway 

(multilane and two lane roads), an urban street (signalised, non-signalised, etc.), a roundabout, a 
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transit road, a pedestrian road and a bicycle path. The basic geometric conditions for analysis in 

Korean motorway capacity are that width is over 3.5m, that lateral clearance is over 1.5m on a level 

terrain. The factors that are used in the process of calculating basic motorway segment capacity are 

related to road width, clearance, the percentage of heavy vehicles, and the degree and distance of a 

slope.  

HCMs in many countries do suggest some impact on motorway capacity as a result of geometric 

factors. The factors identified as causing a reduction in capacity are motorway weaving, merging 

and diverting segments, whose capacity are lower than basic segments in HCMs. With reference to 

weaving segments these are divided into the configuration, the length, and the width of a weaving 

segment. The capacity of merging or diverting segments in ramp junctions is determined by the 

design speed of a ramp, the distance between adjacent ramps, the traffic volume between adjacent 

ramps, the accelerating or decelerating distance in a ramp, and the percentage of heavy vehicles in 

a ramp and adjacent ramps.  

 

2.4.2. Uncertainty of FFS and road capacity 

As mentioned in Section 2.3.2, what most VDFs have in common is is the inclusion of FFTT, 

which is derived from FFS, and road capacity. The parameters of the VDFs can be calibrated based 

on empirical traffic data analysis, but the effect that these differing parameters have on FFTT and 

road capacity is not shown. In addition, the methodology for measurement of FFS and road 

capacity differs in many studies or manuals. Therefore, both values in link performance functions 

can be said to lack clarity and to be ambiguous. 

First of all, USHCM (2010) defines road capacity as follows: 

“The capacity of a system element is the maximum sustainable hourly flow rate at which 

persons or vehicles reasonably can be expected to traverse a point or a uniform section of 

a lane or roadway during a given time period under prevailing roadway, environmental, 

traffic, and control conditions.” 

Instead of the quantitative value, the definition of road capacity in USHCM (2010) is expressed 

using vague and imprecise words such as “sustainable”, “uniform”, “expected”, “reasonably” and 

“prevailing”. Although it can be said that the definition and the measurement of road capacity are 

different issues, USHCM (2010) does not outline the definite methodology to measure road 

capacity. Notably, in USHCM (1950), road capacity was divided into three categories: basic, 

possible and practical road capacity, even though these categories were merged in later versions 

(Roess and Prassas, 2014). 
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In addition, USHCM (2010) defines FFS as “the theoretical speed when the density and flow rate 

on the study segment are both zero”, describing that FFS can be examined as a constant speed in 

traffic flows between 0 and 1,000pcphpl. The definition of FFS is clearer than that of road capacity, 

but even so its measurement methodology contains uncertainty because it is questionable whether 

there will be constant values in the low traffic flows.  

Because of the unclear measurement methodology for both fundamental values in the traffic theory, 

many studies interpreted FFS and road capacity differently. Kim (2013) divided the methodology 

for measuring road capacity into three categories: the average of high traffic flows, the derivation 

by regression analysis and the measurement by a descending cumulative traffic flow line. Another 

methodology which is based on breakdown traffic flow estimation can be added to the three 

categories.  

Capacity measurement from average of high traffic flows 

This approach is a widely used methodology for capacity measurement. The maximum or the 

average of high traffic flows is estimated as the road capacity of traffic flows observed at one or 

more locations during a given period (e.g. hour, day, month, or year). KICT et al. (1999) suggested 

the average (𝑞𝑞𝑚𝑚) of the two highest values (𝑞𝑞1 and𝑞𝑞2) in two curves that show the relationship 

between speed and traffic flow (Figure 2-17). Agarwal et al. (2005) used the average of the top 5% 

of traffic flows as road capacity (Figure 2-18). In addition, Huntsinger and Rouphail (2011) 

adopted the average of the top 1% of traffic flows and Kucharski and Drabicki (2017) used 95 

percentile traffic flow. This methodology tries to follow the description of HCM as closely as 

possible. However, the method for establishing the criterion for distinguishing between low and 

high traffic flows (e.g. 1% or 5%) is unclear. 

Figure 2-17 Road capacity measurement from boundary conditions 

 
Source: KICT et al. (1999) 
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Figure 2-18 Road capacity measurement by the average of top 5% traffic flows 

 
Source: Agarwal et al. (2005) 

Capacity Derivation by regression analysis 

This approach measures road capacity based on existing traffic models (e.g. Pipes triangular, 

Greenshield parabolic, and Van Aerde diagram) or newly developed regression equations. KICT et 

al. (1999) derived the maximum traffic flow after implementing regression analysis from observed 

speed and traffic flow data (Figure 2-19). The regression equation for Jungbu Motorway in South 

Korea is as follows: 

s =  −14.2984 ×  𝑎𝑎0.0006128×TF + 140   for uncongested conditions  

s =  5.388 ×  𝑎𝑎0.0012×TF  for congested conditions 

where q is traffic flow (pcphpl) and s is speed. The derived road capacity by these regression 

equations was 2,304pcphpl. Kim (2013) mentioned that this approach can best statistically reflect 

the features of the observed dataset although the result would depend on the distribution and 

quality of the dataset. However, if the dataset was separated into uncongested and congested traffic, 

the criteria used for this separation would also be unclear. 

Figure 2-19 Road capacity measurement by regression analysis 

 
Source: KICT et al. (1999) 
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Capacity measurement by descending cumulative traffic flow line  

This approach aims to find the inflection point from the descending cumulative curve of daily 

maximum traffic flows. For example, Kim and Seo (1999) extracted the first inflection point that 

began to record the several highest similar traffic flows from 100-day maximum traffic flows from 

1-min interval observation (Figure 2-20). It can be said that this methodology follows the concept 

of “reasonable expectation” from the road capacity definition in USHCM (2010) in that the 

repeatedly measured high traffic flow can be selected as road capacity. However, this method could 

also have the limitation in that the average of similar traffic flows would become an inflection point 

even when the values accidently happen a few times. 

Figure 2-20 Road capacity measurement by cumulative curve 

 
Source: Kim and Seo (1999) 

Capacity measurement by breakdown traffic flow estimation 

In addition to the classic relationships between speed and traffic flow, many studies have been 

carried out demonstrating and developing this relationship based on empirical data. The sudden 

speed decrease between a fluid and congested state at a bottleneck, which is called the traffic 

breakdown, began to be defined (May, 1990). Afterwards, from the probabilistic perspective, it was 

suggested that traffic breakdown would not always happen at the same traffic flow level 

(Elefteriadou et al., 1995; Persaud et al., 1998). Kerner (2009) found that the maximum traffic flow 

would precede the breakdown traffic flow, and that it would be greater than the breakdown flow 

(Figure 2-21).  

In line with the introduction of the breakdown effect, studies have been developed that try to use 

breakdown traffic flow for measuring road capacity. Lorenz and Elefteriadou (2001) suggested 

road capacity based on probability of breakdown under prevailing conditions. Kalaee (2010) used 

breakdown traffic flow by adopting the threshold speed of 55mph (88kph) and the speed drop of 

10mph between five and fifteen-minute intervals in a US highway, whose FFS is assumed to be 
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65mph. In addition, he used 75% of breakdown traffic flow as a constant of road capacity in VDF. 

Kim (2013) found road capacity by calculating the change (from minus to plus) in the derivative of 

the function between traffic flow and speed (Figure 2-22). This approach can find road capacity by 

reflecting real traffic characteristics, but it has the limitation of the subjective selection of criteria 

such as threshold speed and the level of speed reduction.  

Figure 2-21 Empirical measurement of traffic flow and speed at a bottleneck 

 
Source: Kerner (2009) 

Figure 2-22 Road capacity measurement by finding breakdown effect 

 
Source: Kim (2013) 

Various FFS measurement  

As with road capacity measurement, FFS can be estimated using different criteria. Some studies 

used design speed or enforcement speed without detailed measurement of FFS in VDF calibration. 

KDI (2015) proposed FFS for South Korean 2-lane motorways as 100.7kph in urban areas and 

95.2kph in rural areas (Table 2-5). DfT (2018) provided FFS of light vehicles as 111kph for dual 2-

lane motorways in TAG Unit M3.1. “Highway assignment modelling” (2014). USHCM (2010) 
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proposed the highest FFS in the equation for basic freeway segments as 75.4mph (121.3kph) 

(Equation 2-16). Kalaee (2010) calculated FFS as the mean value of speeds corresponding to traffic 

flows under 360vph. Kucharski and Drabicki (2017) extracted FFS as 85 percentile speed from its 

distribution. Brilon and Bressler (2004) derived FFS as 141.3kph (without consideration of heavy 

vehicle percentage) and 154.8kph (with consideration of heavy vehicle percentage) in a 2-lane 

German autobahn VDF. Therefore, as with road capacity, there was no consistent methodology for 

FFS measurement. 

 

2.4.3. Implication to thesis 

Section 2.4 reviewed FFS and road capacity in HCMs and other studies. The investigation of both 

values is a starting point of this study because most VDFs include the values and as such most 

studies adopted the methods that calibrate the parameters after predetermining the values. The 

implications from reviewing the values can be summarised from two aspects: the theoretical 

definition and the measurement.  

Firstly, whilst the definition of road capacity has the advantage of incorporating many situations, it 

has the drawback of having difficulty in being defined as a unique value. This ambivalence would 

give a flexibility but at the same time cause an error in VDFs when applying both values to VDFs. 

This study investigates the impact of both values on VDFs based on the review here. Moreover, it 

is worth noting that HCMs cannot cover all geometric features. The link geometry including the 

presence of a tunnel, which is investigated in this research, could be one of the geometric features 

reducing capacity, but this is not taken into consideration in HCMs. In the same context, HCMs 

admit varying road capacity depending on many situations that cannot be suggested in HCMs. 

Therefore, the definition of FFS and road capacity would be unclear to apply to VDFs.  

In addition, it was reviewed that existing research selected different methods of FFS and road 

capacity measurement. The different measurements on empirical data analysis could affect the 

development of VDFs. However, most existing VDFs do not propose how the values were 

measured. Even though the measurement methods would be described clearly in VDF manuals, it 

would be impossible to measure or predict those values for existing and planned roads. Therefore, 

this finding motivates to reconsider the applicability of both FFS and road capacity in VDFs.  
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2.5. Road geometry in travel time estimation models  

2.5.1. Observation of traffic data by different road geometry 

Iwasaki (1991) collected traffic data from 106 detectors in a Japanese motorway and found three 

causes of severe bottlenecks, these were an interchange decreasing from three lanes to two lanes, 

an S-curve and sag section, and the entrance to a tunnel. He asserted that the geometric features at 

each detector would affect traffic characteristics including FFS and traffic flow; and in particular 

that the maximum traffic flow in the analysed tunnel was estimated with 1,550vphpl although he 

did not suggest the equation that could explain traffic characteristics in those sections.  

Koshi et al. (1992) identified bottlenecks at sags and tunnels by measuring traffic flow and the 

average speed. They demonstrated the result of capacity measurement in ten sags and seven tunnels 

and the results ranged from 2,200vph to 2,700vph per two lanes, whilst the theoretical capacity 

would be 4,000vph per two lanes. They also observed the location of congestion, as being normally 

at the entrance of tunnels and sags, and the transition and congestion traffic patterns in the sections. 

However, as with Iwasaki (1991), they did not suggest any model for estimating traffic movements 

in tunnels. 

Brilon (2000) introduced two tunnel projects that predicted costs depending on the random and 

time-dependent characteristics of road capacity; and on time-variant average daily traffic including 

high peak trip demand. The firstly analysed project is a tunnel plan between Denmark and 

Germany (Brilon and Lemke, 1997; Brilon and Lemke, 2000; Lemke, 2000). Many scenarios were 

applied to the project considering ferry transportation, accident (or breakdown) and various average 

daily traffic. In particular, it was examined that without ferry transportation, there would be no 

significant delay for average annual daily traffic up to 15,000 vehicles per day, but the sum of 

delays dramatically increases above the level. He emphasised that flow patterns can affect design 

decision. The other project estimated the costs of travel time and vehicle operation in several 

German tunnels investigated by the German federal department of transportation (Brilon and 

Lemke, 1999). After applying the different speed-flow curves from several studies of tunnels to the 

project, the analysis result concluded that the average annual daily traffic of 70,000 vehicles per 

day without a hard shoulder could become a starting point that increases the costs; and that there 

was no significant impact of a hard shoulder below the traffic of 50,000 vehicles per day. Two 

projects attempted to identify the change in costs that happen in tunnel sections depending on 

different situations, but travel time estimation models by tunnel characteristics were not specified.  

Yun and Shengrui (2012) investigated the speed-density relationship from six inductive loop 

detectors in a 4,740m motorway tunnel: 400m before the entrance, at the entrance, 350m before the 
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middle, at the middle, at the exit, and 100m after the exit. They derived the road capacity at each 

detector assuming that the speed-density relationship is linear based on the Greenshields et al. 

(1935)’s traditional diagrams (Figure 2-5); and thus the road capacity was calculated from 

multiplying the half of free-flow speed and the half of jam density. After comparing the maximum 

traffic flows at each point, they selected the maximum traffic flow at the middle of the tunnel 

section as road capacity, which is the lowest among the maximum traffic flows. In addition, they 

recommended that a bottleneck would happen at the middle of the tunnel section where the lowest 

road capacity was derived. From this study, it was identified that a tunnel section would be a 

bottleneck that decrease the road capacity, but it was not proved how tunnel characteristics affect 

traffic characteristics quantitatively.  

Komada et al. (2009) and Hong-Di et al. (2009) revised the optimal velocity model developed by 

Bando et al. (1995). From the physical perspective, they connected a vehicle’s movement with the 

basic physical theory (Equation 2-17) considering gravitational and braking force.  

𝑎𝑎
𝑑𝑑2𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡2

= 𝑇𝑇(∆𝑥𝑥𝑖𝑖(𝑡𝑡)) − γ
𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

− 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚(∆𝑥𝑥𝑖𝑖(𝑡𝑡)) Equation 2-17 

where m is a vehicle mass, the 𝑥𝑥𝑖𝑖(𝑡𝑡) is the position of vehicle i at time t, ∆𝑥𝑥𝑖𝑖(𝑡𝑡)(= 𝑥𝑥𝑖𝑖+1(𝑡𝑡) −

𝑥𝑥𝑖𝑖(𝑡𝑡)) is the spacing of vehicle i at time t, 𝑇𝑇(∆𝑥𝑥𝑖𝑖(𝑡𝑡)) is the accelerating force, γ is the friction 

coefficient, g is the gravity, and θ is a gradient degree, and 𝑚𝑚(∆𝑥𝑥𝑖𝑖(𝑡𝑡)) is braking-related function. 

In particular, they suggested that the third term 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚(∆𝑥𝑥𝑖𝑖(𝑡𝑡)) consists of the maximal reduced 

speed (for uphill gradient), the spacing of vehicles and the braking distance. Komada et al. (2009) 

attempted to find where and when traffic jams happen by simulating the change in speed and 

spacing depending on the density in hypothetical different uphill and downhill gradients. In 

addition, Hong-Di et al. (2009) simulated traffic flow in hypothetical gradient sections under the 

periodic boundary condition, i.e. vehicles move within a circuit. They found that the slope affects 

the beginning of traffic flow and the phenomenon such as stop-and-go traffic. From the physical 

perspective, the studies by Komada et al. (2009) and Hong-Di et al. (2009) theoretically clarified 

the impact of gravity and further interaction with braking force.  

 

2.5.2. Link geometry in travel time estimation models  

Whilst the literature review in the previous section emphasises whether or which road geometry 

affects the traffic characteristics, this section focuses more on link geometry in travel time 

estimation models. It was examined that there are only a few studies that estimate travel time 

models with link geometry based on the empirical data.  
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Brilon and Bressler (2004) analysed traffic characteristics on uphill motorways in Germany. They 

measured travel time by placing video cameras between two uphill locations. The variation of 

gradients and slope lengths is 2%-6% and 2.5km-5.6km respectively. Based on this measurement 

and microscopic simulation (VISSIM) results, they found a mathematical model for predicting 

average speed and based on the division of traffic into two stages (steady and congested) (Table 

2-7). The variables for the model are the number of lanes, traffic composition, uphill grade, uphill 

section length, and traffic density. In a steady state (stage I), the variables of lane number and 

heavy vehicle percentage were considered not to have much significance. They also found that 

whilst road capacity on gradient motorways was affected by the grade, not the uphill length, the 

average speed was affected by both variables.  

Table 2-7 Formulae for the macroscopic traffic flow on gradient motorways 

 
Source: Brilon and Bressler (2004) 
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They adopted the generalised model for predicting the simple linear relationship between average 

speed and traffic density in steady and congested states by using the independent variables of a 

gradient and a slope length that could reduce average speed and by estimating their corresponding 

parameters. The study estimated models based on both empirical and simulated data while it would 

not focus much on the statistical significance of the estimated model and of its coefficients. In 

addition, they did not analyse the impact of other geometric features except for upgrades on 

motorways.  

Cartenì and Punzo (2007) tried to find a travel time function for urban road sections taking into 

account many geometric features and in particular the effects of road side parking. They collected 

data from video recordings between two points for 17 roads in Italy. Then, they calibrated their 

results by using a micro-simulation (AIMSUN) and found an equation with parameters (Equation 

2-18). They also tried to validate their function with results from six other roads that are not 

included in the calibration process. 

𝑇𝑇𝑇𝑇 =
𝐿𝐿

𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝐿𝐿 + 𝛽𝛽2𝑎𝑎𝐿𝐿 + 𝛽𝛽3𝑚𝑚 + 𝛽𝛽4𝐷𝐷 + 𝛽𝛽5𝑎𝑎𝑃𝑃 + 𝛽𝛽6𝑃𝑃𝑃𝑃 +
𝛽𝛽7 · �𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿�

2

1 + 𝑚𝑚 + 𝑎𝑎𝑃𝑃 + 𝐷𝐷

  Equation 

2-18 

where 𝑇𝑇𝑇𝑇 is the travel time in an urban road section 𝐿𝐿 (km); TF is traffic flow (vph); 𝐿𝐿𝐿𝐿 is the 

road width (m); SL is the average road slope (%); B is the average road bendiness discrete variable; 

𝐷𝐷 is the distress index (0.00, 0.33, 0.66, 1.00) referring to external factors such as bus stops and 

pedestrian crossing roads; 𝑎𝑎𝑃𝑃 is the percentage of the road side parking (%); PV is a type of 

pavement dummy variable (asphalt =1, other=0); and 𝛽𝛽𝑖𝑖 (𝑚𝑚 = 0,1 … 7) are parameters. Although 

this model is only for urban roads, it would be significant to identify which factors would affect 

travel time estimation models. Of the analysed factors, the factors with respect to road width, slope, 

bendiness and pavement types can be applied to models for motorways. In addition, it can be noted 

that the relationship between travel time and traffic flow is estimated based on the quadratic form.  

Kim et al. (2014) customised the BPR function to find the travel time prediction model for an 

urban underground tunnel. They calibrated the parameters by using traffic data at ILDs set in two 

consecutive tunnels with six lanes and a speed limit of 70kph as on an urban highway in Seoul, 

South Korea. They adopted “Golden Section Search” methodology originally developed by Kiefer 

(1953). The parameters for an urban tunnel were developed for the fixed capacity, which is 

2,200vphpl assuming different free-flow speeds. They selected the parameters by finding the 

lowest Root Mean Square Error (RMSE) with the free-flow speed of 110kph and the derived 

parameters of α, β in the BPR function were 0.894 and 2.003 respectively. Moreover, the 

parameters were validated for two motorway tunnels having four and six lanes with a speed limit of 
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100kph. Although this study would be meaningful in that it attempted to find the BPR function that 

can be used for tunnel sections, it follows the existing approach, which is the calibration of 

parameters in the current VDF with the predetermination of road capacity. In addition, other 

quantitative factors for grade sections were not taken into account in their research.  

DfT (2018) includes hilliness and bendiness in the speed-flow function of TAG Unit M3.1. 

“Highway assignment modelling” (2014). At traffic flow less than the breakpoint (TFB), estimated 

speed has the linear relationship with link geometric features and traffic flow as follows: 

𝑎𝑎𝐿𝐿 =  FFSL  −  0.1 x BEND −  0.14 x HILL (two − way links only) 

− 0.28 x RISE (one −way links only)  −  
6

1000
 x TF  

Equation 2-19 

where 𝑎𝑎𝐿𝐿 is speed of light vehicles (kph), FFSL is FFS (111kph for dual 2-lane motorways) for light 

vehicles, BEND is bendiness per link length (deg/km), HILL is sum of rises and falls per link 

length (m/km), and RISE is sum of rises per link length (m/km). TFB is the traffic breakdown point, 

which is the traffic flow where the speed-flow coefficient changes, is set at 1,200 and 1,080vphpl 

for motorway and dual carriageways respectively. At traffic flow greater than the breakpoint (TFB), 

the speed has the linear relationship only with traffic flow as follows: 

𝑎𝑎L  =  𝑎𝑎B  −  33(TF −  TFB)/1000 Equation 2-20 

where 𝑎𝑎B is speed at the breakpoint traffic flow of TFB. The speed prediction formula for heavy 

vehicles is suggested as follows: 

sH  =  FFSH  −  0.1 x BEND −  0.25 x HILL (two − way links only)  

−  0.5 x RISE (one− way links only) 
Equation 2-21 

where 𝑎𝑎𝐻𝐻 is speed of heavy vehicles, and FFS𝐻𝐻 is FFS for heavy vehicles, which is 93kph for 

motorways. DfT (2018) proposed two relationships at traffic flow over capacity (𝐶𝐶), which are 

referred to as ‘Advice Note 1A’ (AN1A) relationship (Equation 2-22) and the Akçelik relationship 

(Equation 2-11) 

s =
s𝐶𝐶

1 + 𝑎𝑎𝐶𝐶
8𝐿𝐿 (𝑇𝑇𝑇𝑇𝐶𝐶 − 1)

 Equation 2-22 

where TF is trip demand for traffic assignment, s𝐶𝐶 is speed at the road capacity of 𝐶𝐶, L is link 

length (km). The UK government proposed three piecewise simple linear models for motorway 
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speed-flow models taking into account vertical and horizontal link geometric features. Four points 

that need to be focused here were found as follows: firstly, although the research for developing the 

models is not reviewed in this study, the reason why the piecewise functions are suggested in the 

TAG would be because the split functions can approximate the nonlinear relationship between 

average speed and traffic flow. Secondly, since UK roads do not have many tunnel sections, the 

effects of tunnels would not be taken into account. Thirdly, except for in congested states, the 

models cannot include the constant of road capacity in the models. This result is in line with the 

trial that would minimise the uncertainty of road capacity raised in this study. However, the 

breakdown point traffic flow (TFB) and road capacity (C) are used for splitting the level of traffic 

flow in the models. In other words, UK models would include the uncertainty of both values near 

connecting points between the models. Lastly, the analysis of statistical significance of the models 

is not suggested in TAG.  

 

2.5.3. Road geometry in South Korea 

According to Korean Land Classification Research (1982), as much as 71.5% of South Korea is 

made up of mountainous terrain. When designing roads in South Korea as with many countries, 

engineers should consider link geometry by referring to the manual called “Road Standard 

Regulation about Structures and Facilities”. The manual had classified terrain only into a 

mountainous area or a flat area, but the category of a hilly area was added for detailed design in 

2011. In addition, Kim et al. (2011) stated that KHCM defined the flat, hilly and mountainous areas 

in order to calculate heavy vehicle adjustment parameters and it classified the gradient of a road 

into below 2% (flat), 2%-5% (hilly), over 5% (mountainous) and introduced the special slope 

section, which is for areas of over 500m of continuous slope with a gradient over 3%.  

According to MLTM (2015), the design speed in a motorway (Table 2-8) is described as 120kph on 

a level terrain and 100kph in a mountainous terrain or in an urban area (The operating speed limit is 

divided into 100kph or 110kph). Other motorway design criteria can be shown as follows (see 

details in Appendix A.1.2): with regard to the cross-section characteristics, every motorway 

generally has a minimum lane width of 3.5m and a minimum central (left) barrier width of 3.0m in 

a rural area and 2.0m in an urban area. In addition, the minimum right lane clearance is 3.0m in a 

rural area and 2.0m in an urban area, and the minimum left lane clearance is 1.0m in both rural and 

urban areas. In spite of the clearance regulation, the minimum clearance in a segment where a 

structure such as a tunnel or a bridge exists can be reduced into 1m.  When looking at a 

longitudinal section, the maximum degree of slope in a motorway ranges from 3% on a level 

terrain to 4% in a mountainous terrain in the case of the 120kph design speed and from 3% on a 
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level terrain to 5%  in a mountainous terrain in the case of the 100-110kph design speed. However, 

in practice the slope of a motorway does not seem to exceed 3% even if a road is located in a 

mountainous area. The minimum radius of the horizontal curve in a motorway ranges from 420m to 

710m depending upon the design speed and superelevation. Lastly, the regulation restricting all 

vhicles from changing lanes applies in most Korean tunnels. These geometric features interact the 

average speed as can be seen from the fact that most design manuals suggest different geometry 

with reference to design speed. In other words, these features can also be regarded as important 

factors on travel time estimaiton models. 

Table 2-8 Design speed in Korea by the type of terrain 

 
Source: MOLIT (2015) 

Note: The shadowed area is the classification of a hilly area that was added to the design manual in 

2011 

Given Korea’s mountainous terrain, it is no surprise that Korean roads have a high percentage of 

bridges and tunnels. According to Table 2-9, the total bridge and tunnel length make up 2.1% of the 

total road length. However, the more notable fact is that around 23% of Korean motorways consist 

of bridges and tunnels. This observation would be in line with that a motorway should seek to 

accommodate high-speed traffic by reducing the overall change in the road geometry such as that 

created by a change in gradient. The geometric features of tunnels were given an emphasis in this 

thesis, but the impact of relatively long bridges was not identified in this study because of the 

difficulty in the data collection. 

  

Flat Hilly Mountainous
120 110 100 100

Major Arterial 80 70 60 80
Minor Arterial 70 60 50 60
Collector 60 50 40 50
Local 50 40 40 40

Design Speed (km/h)
Rural Area

Urban Area

Motorway

Highway
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Table 2-9 The number and ratio of Korean bridges and tunnels  

(As of 2015) 

 
Source: MOLIT (2016a) 

Note: When calculating the percentage of bridge and tunnel length over road length, the road length 

doubled because the number and length of bridges and tunnels were measured separately in each 

direction of roads.  

 

2.5.4. Implication to thesis 

Section 2.5 reviewed road geometry that would affect traffic characteristics and further travel time 

estimation models in the literature. Some studies tried to determine the change in traffic 

characteristics according to different road geometry, observing the empirical traffic data. There are 

the studies that attempted to find theoretical models to clarify the geometric features such as 

gradients without the empirical data analysis. Many of these studies used the maximum traffic flow 

as a comparative measure regarding it as road capacity. Moreover, it is worth noting that the 

reviewed studies recognise that tunnels and gradients would affect traffic characteristics.  

Whilst more studies focused on the comparison of the discrete traffic data according to the sections 

that have different road geometry, only a few studies tried to quantify the impact of geometric 

features in the travel time (or speed) – flow relationship. Most of the studies are in line with this 

thesis in that they introduced link travel time or speed estimation models without road capacity, but 

they quantified only the variables of vertical or horizontal alignments in the models. In addition, 

they only assumed the simple linear relationship between travel time and traffic flow (or traffic 

density) without specifying different functional forms.   

Total  Motorway 
 National 
Highway 

 Provincial 
Road 

 Metropolitan 
Road 

 City, County 
Road 

 Road lenth (Km) 107,527 4,193 13,948 18,087 20,313 50,985 
 Bridges 

(Number) 
30,983 9,018 8,338 4,979 1,911 7,451 

 Bridges (Km) 3,077 1,190 880 333 346 421 
(%) 1.4% 14.2% 3.2% 0.9% 0.9% 0.4%

 Tunnels 
(Number) 

1,944 925 565 178 183 126 

 Tunnels (Km) 1,419 729 402 128 129 52 
(%) 0.7% 8.7% 1.4% 0.4% 0.3% 0.1%
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2.6. Research gaps in the current literature and potential improvements 

The comprehensive literature review of traffic assignment confirms that the travel time estimation 

models are the essential elements in traffic assignment to determine cost (impediment) on each 

link. Inappropriate travel time estimation models in traffic assignment can be one of the reasons for 

inaccurate traffic demand forecasting and as such can reduce the reliability of transport appraisal. 

Flyvbjerg et al. (2005) investigated that over half of the road projects showed the error over 20% 

between the actual and forecasted demand. In addition, Korean National Assembly (2017) 

examined that the error for 23 motorway projects constructed after 2000 was 40%.  

Of travel time estimation models, this study focuses on VDFs based on the statistical analysis of 

empirical data from the viewpoint of STA at a macroscopic level. Because of the uncertainty of 

FFTT and road capacity, VDFs are not well adapted to explaining travel time on different links. 

More generalised models need to be developed to satisfy the spatial transferability of travel time 

estimation models by replacing FFTT and road capacity. Therefore, the research gaps to be filled 

by this study can be summarised as follows: the proof of the uncertainty of FFTT and road 

capacity; the identification of those factors which have an influence on travel time; the 

investigation of the statistical significance of link geometry in travel time estimation models; and 

the development of feasible models.  

Uncertainty of FFTT and road capacity in VDFs 

Although FFS and road capacity imply uncertainty in their definitions and measurement as 

mentioned in Section 2.4.2, most studies have ignored the effects of the uncertainty thus suggesting 

inconsistent measurement methods. The previous studies have rarely tried to analyse how the 

variation of FFS and road capacity affects the performance of VDF. This study seeks to examine 

the impact of the variation, which is related to the change in parameters by predetermining FFS and 

road capacity using different measurements. In addition, the travel time estimation models 

developed in this study can be compared with the traditional calibration of existing VDFs with 

predetermining FFS and road capacity. 

Identification of influential factors on travel time (spatiotemporal data analysis) 

Most studies used the data measured from only a few locations, which are supposed to be ideal 

links, to calibrate the parameters of existing VDFs for weeks or months (Singh, 1995; Kurth et al., 

1996; Dowling et al., 1997; Skabardonis and Dowling, 1997; Singh and Dowling, 2002; Hansen et 

al., 2005; Kalaee, 2010; Huntsinger and Rouphail, 2011; Manzo et al., 2013; Kucharski and 

Drabicki, 2017). In other words, they aimed to calibrate existing parameters for some analysed 

links. These trials can verify only the temporal extension of existing VDFs but cannot justify the 

spatial extension of them even though it is meaningful that the trials could customise the existing 
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VDFs for the analysed countries. Because many links have different factors that could affect travel 

time, analysing only a few links would not identify the influential factors on travel time. This study 

can statistically justify the developed travel time estimation models by identifying the influential 

factors from the spatiotemporal data. 

Consideration of link geometric variables  

Since road capacity is affected by the link geometry as provided in HCMs, geometric features 

would be the variables that could replace road capacity in travel time estimation models. However, 

there are only a few studies which reflect link geometric variables in VDFs. Brilon and Bressler 

(2004) developed the speed estimation model which does incorporate the variables of uphill 

gradient with its length, heavy vehicle percentage and density. The model was developed using the 

real data measured from five German motorway links and was extrapolated by the simulated data 

produced from VISSIM. Cartenì and Punzo (2007) proposed a travel time estimation model for 

urban roads by turning road width, slope, bendiness, side parking and pavement type as well as 

traffic flow into variables. DfT (2018) is providing piecewise linear functions in an uncongested 

situation by applying the variables of bendiness and hilliness as well as traffic flow to speed-flow 

relationship for UK motorways without detailed references. This study tries to generalise travel 

time estimation models more by taking into consideration the geometric features, including tunnel 

sections and using a different functional form from the previous studies. In addition, whilst the 

previous studies did not give much emphasis on the statistical significance of developed models 

including link geometric variables, this study verifies the models with link geometric variables 

statistically by using the empirical dataset.  

Implication of linear estimation models  

As reviewed in Section 2.3.2, many studies or guidelines have proposed many types of VDFs. 

These VDFs can differ based on the various relationships between speed, density and traffic flow 

as in Section 2.3.1. Although there have been a few trials to find new forms of travel estimation 

models (Brilon and Bressler, 2004; Cartenì and Punzo, 2007; DfT, 2018), most studies have tried to 

calibrate the existing VDFs (Kalaee, 2010; Huntsinger and Rouphail, 2011; Kim et al., 2014; 

Kucharski and Drabicki, 2017). However, the studies that calibrate the parameters of existing 

VDFs share the limitation of being estimated based on statistically nonlinear estimation with 

predetermined FFS and road capacity. When using a nonlinear estimation, it is difficult to 

guarantee the statistical significance of derived parameters (Montgomery et al., 2012). This study 

tries to develop feasible travel time models with the empirical dataset based on both linear and 

nonlinear statistical estimations. Consequently, it is expected that the investigation of the statistical 

significance of the developed model can be extended in its application to other sections of Korean 

motorways. 
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Chapter 3. Research Methodology  

3.1. Introduction 

The main objective of this study is to develop travel time estimation models that can replace the 

current VDFs by identifying and incorporating influence factors such as geometric features. This 

chapter consists of five parts: initial case study (Section 3.2); the development of model estimation 

methodology (Section 3.3); the identification of variables (Section 3.4); case study (Section 3.5); 

and the model selection (Section 3.6). Figure 3-1 illustrates how the sections in this chapter 

establish the methodology in this thesis.  

Figure 3-1 Flow chart for the overall methodological approach  
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Firstly, Section 3.2 provides the motivation and some fundamental findings for the model 

development. The initial case study analyses a tunnel motorway link in Korean in order to reduce 

trial and error before analysing the main case study. The methodology of this thesis is based on the 

fundamental results derived from the initial case study in the following aspects: the observation of 

FFTT and road capacity; the comparative analysis of traffic characteristics; the direction for data 

processing; and the establishment of base functions. 

Secondly, Section 3.3 introduces statistical estimation methods used in this study: multivariate 

linear estimation and nonlinear estimation. The multivariate linear estimation is subdivided into 

ordinary least squares (OLS) estimation and generalised least squares (GLS) estimation. The OLS 

estimation not only finds the fundamental models, but also proposes fixed effects modelling to 

identify influence factors by recognizing the dataset as panel data. In addition, the GLS estimation 

generalised models by assuming the differing variance and covariance structures of residuals. 

Lastly, the nonlinear least square (NLS) estimation suggests a model form in which geometric 

variable are added to the existing BPR function.  

Thirdly, Section 3.4 presents the detailed method used for collecting variables and for selecting 

cases to be used for model estimations. The section explains by what criteria the dependent and 

independent variables are selected and how they are quantified. In particular, not only traffic flow, 

which is included in existing VDFs, but geometric variables, which can represent the attributes of 

links, are collected as independent variables. In addition, Section 3.5 shows how the cases for 

model development are selected with descriptive statistics for the cases.  

Lastly, Section 3.6 explains the methodology for selecting the appropriate travel time estimation 

models. 10-fold cross-validation is used to verify the spatial transferability of each model. 

Moreover, this study introduces adjusted R-squared, Akaike's Information Criterion (AIC), and 

Bayesian Information Criterion (BIC) as comparative measures for linear estimations as well as 

Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) as accuracy 

criteria across all models.   
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3.2. Initial case study  

3.2.1. Overview of intial case study 

The initial case analysis motivates this study, and at the same time provides the direction of 

research methodology. The ways in which the initial case study is used can be summarised as 

follows.  

Firstly, the uncertainty of FFS and road capacity needs to be clarified because most of previous 

studies used both values for travel time estimation models without the critical review. As 

mentioned in Section 1.2 and 2.4, this study started from the hypothesis that FFTT and road 

capacity in VDFs are uncertain and ambiguous for explaining road geometry. Thus, the initial 

analysis is necessary in order to confirm the hypothesis.  

Secondly, the initial case study investigates whether geometric features can be used for 

independent variables of travel time estimation models. The initial case study identifies a section 

having geometric features like the hilly tunnel section and establishes the fact that this would cause 

a change in traffic characteristics including FFS and road capacity. Although FFS and road 

capacity were expected to be uncertain in VDFs, they can be used as fundamental comparative 

criteria. The change in traffic characteristics is identified by comparing both values measured at 

different ILD points.  

Thirdly, data collection in the initial case study helps develop more appropriate methodology for 

the data quantification in this study. The initial study is based on the data from each location, but 

the data is inappropriate for the travel time estimation of links. Therefore, initial data processing 

provides an important opportunity for improving the data processing in the main study.  

Lastly, the data analysis in the initial case study provides the basis for establishing the 

methodologies for travel time estimation models in this study. Various models are applied in order 

to estimate the relationship between travel time and traffic flow. The statistical methods for model 

estimation and the base functions are determined by exploratory data analysis.  

Initial case selection (geometric features) 

The initial case is a hilly tunnel section between 36.02km and 37.86km from the starting point in 

“Seoul-Chuncheon Motorway” (Appendix A.4.1). The section includes ‘Songsan Tunnel’ the 

length of which is 1,135m; the degree of slope in the tunnel is 2.74%; the minimum radius of the 

horizontal curve is 1,900m; and the lane width is 3.5m. The clearance of 2.0m in the tunnel section 

is shorter than that (3.0m) of the open section. The reasons why this section was selected for the 

initial case study are as follows: firstly, since the section is located on a route which is frequently 
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congested, the section is suitable for the investigation of significant traffic data from steady to 

congested states. In addition, the geometric features of the initial case have a hilly gradient and 

long tunnel. Lastly, six inductive loop detectors (two outside and four inside the tunnel), which are 

installed every 280-530m within 1.8km, enable the observation of the change in traffic 

characteristics. The detailed information is summarised in Table 3-1. 

Table 3-1 Geometrical features with ILDs’ locations in the initial case study 

 

Data collection in the initial case study 

The dataset for the initial case study was collected in Korean ITS from August of 2016 to August 

of 2017. Table 3-2 summarises the data source and its purpose. Traffic flow and average speed, 

which are collected from inductive loop detectors, are essential data in the initial study. All data 

were measured on each location as well as the time-mean speed, which is calculated by 

arithmetically averaging the values of instantaneous speed. Travel time was calculated from the 

distance between ILDs divided by time-mean speed weighted by traffic flow. More detailed 

processes for data collection can be seen in Appendix A.4.1. 

Table 3-2 Data source and purpose in the initial case study 

 

ID No. Location Distance from tunnel entrance Slope Reference
29 36.02km 840m* (before) -0.78% Outside the tunnel
30 36.55km 310m (before) 2.74% Outside the tunnel
31 36.89km 30m (after) 2.74% Inside the tunnel
32 37.19km 330m (after) 2.74% Inside the tunnel
33 37.49km 630m (after) 2.74% Inside the tunnel
34 37.86km 1,000m (after) 2.74% Inside the tunnel

Data Source Purpose

Traffic flow (TF) ITS (ILD)

- Measurement of road capacity
- Identifying free-flow state
- Measurement of traffic flow at traffic breakdowns
- Independent variable of travel time model

Average speed (SPD) ITS (ILD)
- Measurement of free-flow speed 
- Identifying breakdown effects

Travel time (TT)
Output from SPD 
and ILD location - Travel time model estimation

ILD Location ITS 
- Comparison of traffic data on locations
- Matching with tunnel locations
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3.2.2. Measurement of traffic data on each location 

Measurement of FFS and road capacity  

Continuous changes in road capacity and FFS in one tunnel section were examined for one year 

(Table 3-3). FFS, which is calculated for the average of speeds corresponding to traffic flows 

below 360vph (Kalaee, 2010), dropped considerably from 103.1kph to 95.4kph after the tunnel 

entrance and increased slightly inside the tunnel. Road capacity measurements at six detectors were 

lower inside the tunnel, while recording maximum value near the entrance. The maximum traffic 

flows are much lower ranging from 2,748 to 2,948vph than the theoretical road capacity of 

3,310vph, which was calculated by reflecting the average heavy vehicle percentage of 18.1% in 

traffic survey in 2016 (MOLIT, 2017) based on KHCM (2013). The observed 10th largest traffic 

flows show the similar trend with the maximum traffic flows. From these observations, it was 

found that the tunnel section forms a virtual bottleneck, which negatively affects traffic 

characteristics. However, the calculation of road capacity is still uncertain and it is also unclear at 

which location the road capacity should be used in travel time estimation. 

Table 3-3 Observations of FFS and road capacity in the initial case study 

 
Note. The criteria for FFS and capacity are suggested differently here because of their uncertainty. 

Figure 3-2 Diagram for FFS and road capacity in the initial study 

 

ID No.
Distance from 

tunnel entrance
FFS 
(kph)

Max. TF 
(vph)

10th largest TF
(vph)

Theoretical 
road capacity

(vph)

29 840m (before) 106.0 2,872             2,772                  
30 310m (before) 103.1 2,948             2,872                  
31 30m (after) 95.4 2,836             2,768                  
32 330m (after) 98.5 2,872             2,748                  
33 630m (after) 99.2 2,748             2,704                  
34 1,000m (after) 98.6 2,820             2,748                  

3,310
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Measurement of traffic flow causing breakdown 

Secondly, breakdown effects, which can be defined as a forerunner of congestion, were identified 

in the tunnel section. Traffic flows at traffic breakdown points can be regarded as an important 

indicator for identifying traffic characteristics. Some studies treated the traffic flow at a breakdown 

point as road capacity or used it as a substitute of road capacity in VDFs (Lorenz and Elefteriadou, 

2001; Kalaee, 2010; Kim, 2013). Through observing scatter plots and time-series processes 

(Appendix A.4.2), the breakdown effects in the initial case study were identified. In addition, 

traffic flows at breakdown points were measured depending on the different criteria of threshold 

speed, speed drop between time intervals and the duration time of low speed (Brilon et al., 2005; 

Dong and Mahmassani, 2009; Kalaee, 2010). Figure 3-3 compares traffic flows at breakdown 

points and the number of breakdown points using two different criteria. From the two graphs, it can 

be seen that traffic flows at breakdown points are in line with the trend of the maximum traffic 

flows. However, as with road capacity, it is not clear which value, at which location and which 

condition can be adopted in travel time estimation. Other measurements of traffic data in the 

section can be found in Appendix A.4.2. 

Figure 3-3 Comparison of traffic flows causing breakdown by two different criteria 
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3.2.3. Estimation of models between travel time and traffic flow  

Modelling the relationship between travel time and traffic flow in the initial case study helped in 

finding the methodologies for this study. The estimation did not take into account the impact of 

geometric features because the estimate cannot include the variation of road geometry based on 

only one section. As mentioned in Section 3.2.1, travel time was calculated from the distance 

between ILDs divided by the speed measured at each ILD (Appendix A.4.2). Data was filtered 

according to three conditions: rainy days, brightness and congestion. The data for non-rainy days 

and during daylight hours between 07:00 and 19:00 were included as for the feasible model 

estimation in Section 5.2.1; and traffic data in congested states were not used in this analysis 

(Section 3.4.3). The initial modelling can be divided into two parts: by the existing BPR function 

approach and by the generalised function forms designed to scrutinise base functions in this study.  

Calibration of BPR function by predetermining FFS and road capacity  

Most studies for calibrating the parameters of existing VDFs adopt the nonlinear estimation 

methodology after predetermining FFS (FFTT) and road capacity (Hansen et al., 2005; Kalaee, 

2010; Huntsinger and Rouphail, 2011; Manzo et al., 2013). To clarify the motivation, which is the 

uncertainty of FFS and road capacity, the initial case study also follows the previous studies. The 

selected algorithm for the analysis is the “Gauss-Newton” algorithm (Montgomery et al., 2012), 

which is also adopted as a nonlinear estimation method in this study (Section 3.3.3). As mentioned 

in Section 1.4, this study uses the BPR function form for the existing VDF approach as follows; 

TT =  TT0 �1 + 𝛼𝛼 �
𝑇𝑇𝑇𝑇
𝐶𝐶
�
𝛽𝛽
� Equation 3-1 

where TT: travel time (TT0 is FFTT); TF: traffic flow; C: road capacity; and 𝛼𝛼,𝛽𝛽: parameters. 

The results of the nonlinear estimation to minimise Root Mean Squared Error (RMSE)3 vary 

depending on predetermined FFTT and road capacity (Table 3-4). As with the previous studies, the 

predetermined road capacity was inevitable for the nonlinear estimation, but it was possible to 

estimate parameters without predetermining FFS (FFTT). When the maximum traffic flow 

(2,948vph) is applied to the road capacity in the estimation, the minimum RMSE was 6.319. The 

uniquely estimated values are FFS (FFTT) and the parameter ‘β’: 101.4kph (102.2seconds) 4 and 

3.59 respectively. However, although different combinations of road capacity and the parameter ‘α’ 

                                                      
3 Since nonlinear estimation finds the best coefficient for minimising the sum of squared errors, 
RMSE is one of the best comparative measures for nonlinear estimation (see Chapter 3.6.1). 
4 Since the total influenced distance by ILDs is 2.88km (Appendix A.4.2), the free-flow travel time 
(FFTT) can be calculated from the influence distance divided by FFS. 
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can minimise RMSE of the estimated models, they could not be estimated uniquely. The parameter 

‘α’ is proportional to road capacity in the nonlinear estimation.  

When compared with both the standard BPR function (α=0.15, β=4) and the Korean BPR function 

(α=0.55, β=2.09, C=3,572vph, FFS=95.2kph) for motorways (KDI, 2015), estimated curves 

(orange lines in Figure 3-4) better reflect the relationship between observed travel time and traffic 

flow. The standard BPR function underestimates whilst the Korean BPR function overestimates 

observed travel time. However, if FFS and road capacity are predetermined inappropriately, this 

will cause an error in model estimations. In particular, whilst any predetermined road capacity from 

2,748vph to 3,884vph can minimise RMSE (Graph ‘A’ and ‘B’ in Figure 3-4), fixing both FFS and 

road capacity will cause a significant error in the existing VDF approach (Graph ‘C’ and ‘D’ in 

Figure 3-4). Therefore, this initial nonlinear estimation demonstrates how FFTT (FFS) and road 

capacity affect travel time estimation models negatively based on the nonlinear estimation.  

Table 3-4 Nonlinear estimation based on BPR function in the initial case study 

 
Note 1. Shadowed areas represent the predetermined values during the estimation 

2. 2,948vph is the maximum traffic flow in the measurement of the initial case study 

3. 3,572vph and 95.2kph are road capacity and FFS defined in the Korean VDF manual (KDI, 

2015) 

4. ‘Graph’ represents each graph in Figure 3-4 

Fixed variables
Road 

capacity 
(vph)

Free-flow 
travel time 

(sec)

Free-flow 
speed (kph) RMSE Graph

α 0.42
β 3.59
α 0.54
β 3.59
α 0.78
β 3.59
α 1.08
β 3.59
α 1.46
β 3.59
α 0.48
β 1.15
α 0.64
β 6.39
α 2.18
β 6.39

C

D

A

B

Road capacity 2,748             102.2 101.4 6.319

Road capacity

Road capacity

Road capacity

Parameters

Road capacity 102.2

6.319102.23,884             

6.319

6.319

2,948             

3,260             

101.4

102.2

102.23,572             6.319

101.4

101.4

101.4

Road capacity, 
Free-flow travel time 2,948             90.0 115.2 7.090

Road capacity, 
Free-flow travel time 2,948             108.9 95.2 7.655

Road capacity, 
Free-flow travel time 3,572             108.9 95.2 7.655
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Figure 3-4 Curve fittings of the initial case study based on the nonlinear estimation  

 
Note. Graph ‘A’, ‘B’, ‘C’, and ‘D’ show curves by FFS, road capacity and parameters in Table 3-4 

Curve estimation without FFS and road capacity  

Various function forms were applied for curve estimation: linear, quadratic, cubic, power, growth, 

and exponential functions from Equation 3-2 to Equation 3-7. Quadratic and cubic functions 

achieved the best fit for this estimation with adjusted R-squared of 0.619 and 0.626 respectively 

(Table 3-5), but the quadratic functional form is more appropriate for the statistical linear 

estimation in this study because the objective function of traffic assignment should be strictly 

convex as mentioned in Section  2.2.3. The advantage of this approach is that this model can be 

derived without defining road capacity in advance, for which there is no consensus. The intercept 

and coefficients of the estimated TF and TF2 variables in Equation 3-3 are 108.7, -0.016 and 

1.004e-05 respectively (Table 3-5). The linear regression analysis will be consolidated with results 

from the other independent variables such as geometric features (Section 3.3.2). 

𝐿𝐿𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: 𝑇𝑇𝑇𝑇 =  𝛽𝛽0  +  𝛽𝛽1 ∙ TF Equation 3-2 

𝑄𝑄𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑐𝑐: TT =  𝛽𝛽0  + 𝛽𝛽1 ∙ TF +  𝛽𝛽2 ∙ 𝑇𝑇𝑇𝑇2 Equation 3-3 

𝐶𝐶𝑎𝑎𝐶𝐶𝑚𝑚𝑐𝑐: TT =  𝛽𝛽0  + 𝛽𝛽1 ∙ TF +  𝛽𝛽2 ∙ 𝑇𝑇𝑇𝑇2 + 𝛽𝛽3 ∙ 𝑇𝑇𝑇𝑇3 Equation 3-4 
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𝑃𝑃𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎: TT =  𝛽𝛽0 ∙ 𝑇𝑇𝑇𝑇𝛽𝛽1 
Equation 3-5 

𝐺𝐺𝑎𝑎𝑎𝑎𝑤𝑤𝑡𝑡ℎ: TT =  𝑎𝑎𝛽𝛽0 + 𝛽𝛽1∙TF Equation 3-6 

𝐸𝐸𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎: 𝑡𝑡 =  𝛽𝛽0𝑎𝑎𝛽𝛽1∙TF Equation 3-7 

where 𝛽𝛽0: an intercept (constant); 𝛽𝛽𝑖𝑖 (𝑚𝑚 = 1, 2, 3): parameters; and others: same as above. 

Table 3-5 Different curve estimation results in the initial case study 

 

Figure 3-5 Curve estimation by different linear equations 

 

Dependent Variable: Travel time

Adj. R Square F df Sig. Constant b1 b2 b3
Linear 0.522 4955.988 4546 0.000 89.9 0.014

Quadratic 0.619 3690.087 4545 0.000 108.7 -0.016 1.004E-05

Cubic 0.626 2539.780 4544 0.000 97.6 0.012 -1.104E-05 4.711E-09

Power 0.428 3408.306 4546 0.000 40.7 0.137

Growth 0.539 5307.973 4546 0.000 4.5 0.000

Exponential 0.539 5307.973 4546 0.000 91.7 0.000

Parameter Estimates

Model Summary and Parameter Estimates

The independent variable is Traffic flow.

Equation

Model Summary
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3.2.4. Findings 

Limitations of FFTT and road capacity in travel time estimation models 

The initial case study confirms the hypothesis of this study that FFTT and road capacity are a cause 

of the error in travel time estimation or transport appraisal because of the uncertainty of both 

values.  

Firstly, from the perspective of the measurement of both values, it is not clear which criterion is the 

best for road capacity. Although the initial study measured the maximum, the 10th largest and 

traffic flow causing breakdown effects, nonetheless, it is difficult to determine which value is the 

best for travel time estimation models. In addition, since the values are fluctuated at the 

measurement (ILD) points, it would also not be easy to select the measurement point for road 

capacity. This is in the same line with Branston (1976)’s suggestion of using the practical road 

capacity instead of the steady-state road capacity for VDFs (Section 2.3.2). Even if the most 

suitable road capacity measurement location is identified, it is not realistic to measure traffic flow 

empirically at all locations. 

Secondly, from the perspective of model estimations, the predetermination of both values would 

cause an error in the model. The initial case study showed that the error increases if inappropriate 

values are fixed in the modelling process. In addition, the existing methodology of nonlinear 

estimation shows that it is difficult to create estimation models without the predetermination of 

road capacity. Therefore, it is concluded that the uncertainty of road capacity would be fed into the 

whole model when using the existing VDF modelling approach.  

The change in traffic characteristics: virtual bottleneck 

Although the definitions of FFS and road capacity were unclear in travel time estimation, both 

values are useful in many areas of transport research. As comparative measures of traffic 

characteristics, both values are investigated in the initial case study. The measurement of various 

traffic data indicates that traffic characteristics in the initial case are affected by geometric features, 

including the tunnel environment. In particular, the identification of breakdown effects on each 

location in the initial case study suggests the presence of a virtual bottleneck near the entrance to 

the tunnel. Traffic breakdowns are known generally to occur at the beginning of bottlenecks which 

result in the formation of a change in vehicles’ movements (Persaud et al., 1998). In order words, 

the tunnel section forms a virtual bottleneck without a decrease in the number or width of lanes, 

and as such the bottleneck affects travel time estimation and traffic assignment in these sections. 

Therefore, the initial case study confirmed that new feasible travel time estimation models which 

take into account link attributes instead of road capacity should be developed for traffic 

assignment.  



Chapter 3. Research Methodology 

 

  68  

 

Suggestion of direction for data processing 

The initial data analysis became the intermediate milestone for the main data processing in this 

study. The dataset used for feasible model estimations in this study should incorporate the 

attributes of links and likewise, traffic flow and travel time should also be measured on a link basis. 

In this regard, the initial study showed some limitations. Firstly, point-based ILD data does not 

measure the overall vehicle speed on a link but the instantaneous speed on a point, so the 

methodology in Section 3.4.2 suggests the concept of space-mean speed by using DSRC equipment 

from Korean ITS. Furthermore, geometric features were measured over the entirety of each link 

unlike the location-based measurement in the initial analysis. Lastly, the initial data analysis 

assisted in creating the methodology for filtering the dataset. 

Discovery of base functions  

Above all, the most important contribution from the initial case study was the discovery of the base 

functions for the main model development in this study. The functions are used for establishing the 

methodologies for statistical model estimation and geometric features consideration in Section 3.3.  

Firstly, the initial study demonstrates that the quadratic function form would become the base 

function for the multivariate linear estimation as one stream of the methodology. Although the 

cubic function has a little better curve fitting result than the quadratic function, it was not analysed 

in this study because it is not convex. Again the linear estimation was divided into two main parts 

(Section 3.3.2): ordinary least squares (OLS) and generalised least squares (GLS) linear estimation. 

The former is to focus on the sum of square errors based on five statistical assumptions and the 

latter to consider the violations of the OLS estimation assumptions. In particular, the GLS linear 

estimation considers the variance structure and the time-series correlation between errors by 

recognising the dataset as the panel data. 

Secondly, the BPR function form became the base function as another stream of the methodology 

in this study, which is the nonlinear estimation (Section 3.3.3). As well as trying to introduce new 

model forms for travel time estimation, this study also tries to improve the existing VDF approach 

by adding geometric features to the models. Moreover, the customised models can be used for 

comparison with the newly estimated models. However, this methodology would continue to bear 

the limitation of road capacity uncertainty as discussed through the sensitivity analysis (Section 

4.3.4 and 5.3.2) 
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3.3. Development of model estimation methdology 

3.3.1. Overview of model estimation  

Summary of existing approaches 

As previously reviewed in the literature, travel time estimation models are used in many countries 

as link cost (or performance) functions in traffic assignment. In particular, current VDFs predict 

travel time on different road links mainly at a macroscopic level. The feature which is in common 

to many types of VDFs is the inclusion of FFS and road capacity with parameters. In order to cover 

the diversity of link performance, VDFs incorporate different FFS, road capacity and parameters 

depending on link characteristics such as road classification, region and the number of lanes.  

When examining the process of customisation in detail, many studies predetermine FFS and road 

capacity based on real data before customising the parameters of analysed VDFs (Kalaee, 2010; 

Huntsinger and Rouphail, 2011; Kim et al., 2014). Firstly the studies selected a few links for a day 

or several days. Second, as mentioned in Section 2.4.2, FFS and road capacity were measured in 

different ways. Third, the studies adopted nonlinear estimation methodology most commonly by 

minimising least squares of errors. Finally, some of the studies tried to validate the derived models 

by applying them to hold-out samples.  

Two main streams for new methodology 

Two approaches for developing new travel time estimation models by the regression analysis were 

selected in this study. The strategy used for modelling can be categorised as the multivariate linear 

estimation and the nonlinear estimation. Even though most VDFs have been derived by nonlinear 

estimation methods with the nonlinear functional forms that cannot be linearised, the linear 

estimation with linearised functional forms was also selected because it has many advantages 

including clarity and transferability. The strengths and weaknesses of either approach are presented 

in Table 3-6.  

 Table 3-6. Strengths and weaknesses of linear and nonlinear estimation  

 Multivariate linear estimation 
(Using linearised functional forms) 

Nonlinear estimation 
(Using BPR function) 

Strengths • Widely used for regression analysis 
• Unique solution can be derived. 
• Easy to find the best solution 

(simpler than nonlinear estimation) 
• Possible to extend the model to 

population 

• Possible to have the best curve fit 
• Possible to use existing models or 

theories 
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• Possible to confirm the significance 
of derived parameters 

• Straightforward as it uses the 
absolute coefficient of determination 
such as R-squared 

Weaknesses • Difficult to find the best curve fit. 
• Some existing theories might be 

ignored. 
• Strictly satisfies/adheres to statistical 

assumptions. 

• Iterative method is necessary 
(computationally intensive). 

• Sometimes multiple solutions exist. 
• Sometimes local optimisation issues 

arise (constraints may be necessary) 
• Initial (starting) values are necessary. 
• Solutions could be confined to 

analysed samples (difficult to validate 
inferred results) 

• Difficult to guarantee the significance 
of derived parameters 

Source: summarised from Montgomery et al. (2012) 

 

3.3.2. Multivariate linear estimation 

Base model selection for linear estimation  

Montgomery et al. (2012) defined multivariate linear estimation models broadly as in Equation 3-8, 

𝑦𝑦 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖 + 𝑎𝑎 Equation 3-8 

where 𝑧𝑧𝑖𝑖 can be any types of functions with one or more independent variables of 𝑥𝑥𝑖𝑖 without 

parameters in the functions; and 𝑎𝑎 is the error term. For example, y =𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2 sin(𝑥𝑥2) +

𝛽𝛽3𝑥𝑥1𝑥𝑥3 + 𝛽𝛽4 exp(𝑥𝑥4) + 𝛽𝛽5𝑥𝑥52 + 𝑎𝑎 can be a functional form for the multivariate linear estimation.  

As mentioned in Section 3.2.3, the quadratic function was chosen as a base function type for the 

multivariate linear estimation. In particular, the linear estimation has the advantage that FFS and 

road capacity do not need to be predetermined as which contrasts with the existing nonlinear 

approach. After collecting data for the geometric features, the linear estimation is consolidated with 

results from the other IVs. The analysed base model for the linear estimation reflecting link 

geometric variables can be seen in Equation 3-9. As derived in Section 3.2.3, the relationship 

between travel time and traffic flow can be represented as a quadratic function and the relationship 

between travel time and geometric features as a linear function. Even though the functional forms 

for geometric variables can be various as in Equation 3-8, this study assumes the functional form is 
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linear because the relationship between travel time and geometric features has not been identified 

well unlike the relationship between travel time and traffic flow. In addition, Montgomery et al. 

(2012) explains that empirical models can be approximated with the simple linear functional form 

if the true function is unknown. 

𝑇𝑇𝑇𝑇 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇 + 𝛽𝛽2𝑇𝑇𝑇𝑇2 +  �𝛾𝛾𝑘𝑘𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑦𝑦𝑘𝑘 + 𝑎𝑎 Equation 3-9 

where the dependent variable is TT (travel time), IVs are TF (traffic flow); 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑦𝑦𝑘𝑘 (k refers to 

different link geometric features); parameters are 𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2 and 𝛾𝛾𝑘𝑘; and 𝑎𝑎 is the error term.  

OLS linear estimation analysis 

OLS linear estimation is widely used in many studies including econometrics and engineering 

because of its simplicity and the utilisation of comparative statistical measures. However, a model 

using the OLS estimation should satisfy many assumptions (these are described later in this 

section). 

OLS derives the estimators by minimising the sum of squares, which is calculated from the 

differences between the observed dependent variables and the predicted ones by the estimated 

function. Firstly, the linear matrix formulation can be described as follows; 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 Equation 3-10 

where Y is a dependent variable matrix (n×1, n = the number of samples), X is an independent 

variable matrix (n×p, p = the number of independent variables), 𝑿𝑿 is a coefficient matrix (p×1) and 

𝜺𝜺 is a residual error matrix (n×1). In order to attain the basic OLS objective, the objective function 

can be defined as follows; 

𝑎𝑎(𝛽𝛽) = ��𝑦𝑦𝑖𝑖 −�𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2𝑛𝑛

𝑖𝑖=1

= (𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒀𝒀 − 𝑿𝑿𝑿𝑿) 
Equation 3-11 

The OLS estimator 𝑿𝑿𝑶𝑶𝑶𝑶𝑶𝑶�  can be derived by solving normal equations for minimising the function 

of 𝑎𝑎(𝛽𝛽) as follows; 

𝑿𝑿𝑶𝑶𝑶𝑶𝑶𝑶� = argmin
𝛽𝛽

𝑎𝑎(𝛽𝛽) Equation 3-12 
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�𝑿𝑿𝑻𝑻𝑿𝑿�𝑿𝑿𝑶𝑶𝑶𝑶𝑶𝑶� = 𝑿𝑿𝑻𝑻𝒀𝒀, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎    𝑿𝑿𝑶𝑶𝑶𝑶𝑶𝑶� = �𝑿𝑿𝑻𝑻𝑿𝑿�−𝟏𝟏𝑿𝑿𝑻𝑻𝒀𝒀   
Equation 3-13 

OLS assumptions 

Although some studies adopted OLS linear regression analysis in the development of travel time 

estimation models, they were not much interested in statistical assumptions (Brilon and Bressler, 

2004; Cartenì and Punzo, 2007; DfT, 2018). It is imperative to check that statistical assumptions 

are satisfied because real traffic data can be influenced by many factors. There are numerous 

statistical fundamental assumptions that OLS linear regression modelling should satisfy 

(Washington et al., 2010). If any models cannot meet the assumptions, the linear regression model 

cannot have the best linear unbiased estimators (BLUE). 

Washington et al. (2010) emphasises the six main assumptions as follows: the zero mean of 

disturbances; the normality of disturbances; the uncorrelatedness of independent variables and 

disturbances; the homoscedasticity of disturbances; no serial correlation in the disturbances; and 

model specification errors. The last assumption is related to the fundamental issue of model 

estimation, so the violation of the last assumption would require a different model selection. It is 

related to the reasons such as omitting important variables, including irrelevant variables, using 

incorrect functional form and multicollinearity. Therefore, the statistical tests for OLS estimation 

models are closely related to the first five assumptions. 

The first and second assumptions can be denoted in the expression of the simple linear regression 

model (Equation 3-14) as follows; 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽𝑋𝑋𝑖𝑖 +  𝑎𝑎𝑖𝑖 
Equation 3-14 

𝐸𝐸[𝑎𝑎𝑖𝑖] = 0 Equation 3-15 

𝑎𝑎𝑖𝑖 ≈ 𝑁𝑁(0,𝜎𝜎2) Equation 3-16 

where Yi is the dependent variable; Xi is the independent variable; 𝛽𝛽0 is the intercept; 𝛽𝛽 is the 

coefficient of Xi; and 𝑎𝑎𝑖𝑖 is the error term. Equation 3-15 shows that the expected value of errors or 

the sum of errors is zero and Equation 3-16 means that errors are approximately normally 

distributed with the mean of zero and the variance of 𝜎𝜎2. With regards to these two assumptions, 
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the dataset used in this study can be assumed to be normally distributed by central limit theorem5 

because it has a large sample measured every 15 minutes. In addition, the large sample size could 

help find exact parameters in the analysed models (Washington et al., 2010).  

The third assumption implies that independent variables are influenced by factors outside the 

model; that is, the dependent variable does not directly determine independent variables. This 

requirement can be described as follows; 

𝐶𝐶𝑅𝑅𝑃𝑃�𝑋𝑋𝑖𝑖,𝑎𝑎𝑖𝑖� = 0    for all 𝑚𝑚 and 𝑗𝑗 Equation 3-17 

The fourth assumption, the violation of which is called heteroscedasticity, requires constant 

variance of residuals in the OLS regression model in Equation 3-18. The violation of this 

assumption could reduce the precision of OLS estimated parameters. Notwithstanding this, 

heteroscedasticity only affects the efficiency of estimators, but does not affect consistency and 

unbiasedness (Washington et al., 2010).  

𝑃𝑃𝑉𝑉𝑅𝑅[𝑎𝑎𝑖𝑖] = 𝜎𝜎2 Equation 3-18 

Scatter residual error plots can be used for finding heteroscedasticity intuitively (Figure 3-6). If the 

variance has an increasing or decreasing tendency on residual plots, the regression is said to be 

heteroscedastic. There are numerous statistical tests for detecting heteroscedasticity, which are 

supported by statistical software packages including R. (Goldfeld and Quandt, 1965; Park, 1966; 

Breusch and Pagan, 1979; White, 1980) 

Figure 3-6 Homoscedastic residual plots (left); heteroscedastic disturbances (right) 

 
Source: Washington et al. (2010) 

                                                      
5 If a sample has a large number of observations and each observation is calculated from the mean 
of the observed values, the sample is closely normally distributed regardless of the population 
distribution.  
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The fifth assumption, the violation of which is called serial correlation, requires the condition that 

disturbances are not correlated with adjacent disturbances. Serial correlation is related to the 

efficiency of parameters, but not to the unbiasedness and consistency of models, similar to 

heteroscedasticity (Washington et al., 2010). Serial correlation is known to occur in time-series 

datasets. This assumption can be shown as follows; 

𝐶𝐶𝑅𝑅𝑃𝑃�𝑎𝑎𝑖𝑖,𝑎𝑎𝑖𝑖� = 0    if 𝑚𝑚 ≠ 𝑗𝑗 Equation 3-19 

Figure 3-7 shows the various serial correlation patterns of scatter residual plots that result in a trend 

over independent variables. The widely used statistical test for detecting serial correlation is the 

Durbin-Watson (DW) test (Durbin and Watson, 1951). The DW statistic is derived from the 

relationship between adjacent residuals. The serial correlation is expected not to exist when the 

DW statistic is near two. There are other tests for serial correlation such as the Breusch-Godfrey 

test and the Wooldridge test (Breusch, 1978; Godfrey, 1978; Wooldridge, 2010). It is noteworthy 

that Washington et al. (2010) raised the issue that many transportation studies and projects ignored 

this assumption.  

Figure 3-7 Patterns of serial correlation disturbances 

 
Source: Washington et al. (2010) 

Panel data 

In order to specify models in the linear model estimation, it is necessary to consider the 

characteristic of dataset used in the study. The explanatory variables in the dataset are traffic flows 

measured every 15 minutes and five time-invariant geometric features varying according to 

sections. Therefore, statistical approaches which take account of the characteristics of panel data 

are worth scrutiny in this study even though the independent variables of geometric features are 

fixed over time.  
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In statistics and econometrics, panel data are defined as the combination of time-series data and 

cross-section data (Diggle et al., 2002; Fitzmaurice et al., 2004; Washington et al., 2010). Hsiao 

(2014) mentioned three advantages to panel data analysis: one is to improve the efficiency of 

parameter estimation by increasing degrees of freedom with time-series data; the second is to 

enable researchers to analyse the intervention of the specific subjects varying according to different 

periods; and the third is to make it possible to test the cross-sectional homogeneity by including 

additional parameters in estimated models.  

While cross-section data is observed on n subjects (entities), panel data incorporates observations 

on n entities at  T≥2 time periods. This can be denoted as follows; 

(𝑋𝑋𝑖𝑖𝑡𝑡 ,𝑌𝑌𝑖𝑖𝑡𝑡), 𝑚𝑚 = 1, … ,𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑡𝑡 = 1, … ,𝑇𝑇 Equation 3-20 

where the index i refers to each subject (e.g. n = 72 analysed links in this study) while t refers to the 

analysed time period (e.g. T = 1 (month) * 30 (days) * 24 (hours) * 4 (*15 minutes) = 2,880 time 

intervals in each link).  

Fixed effects modelling for panel data 

Fixed effects modelling can reflect entity (or individual) or time heterogeneity in panel data 

analysis (Baltagi, 2008; Washington et al., 2010). As travel time can be influenced by many factors 

as well as traffic volume and geometric features, it is imperative to investigate the change in the 

estimation of each model according to different entities, times or both entities and times. In 

addition, Washington et al. (2010) found that many transportation studies adopted these models 

(Eskeland and Feyzioğlu, 1997; Dee, 1999; Loizides and Tsionas, 2002; Chu and Durango-Cohen, 

2008).  

Fixed effects modelling can be divided into one-way (fixing effects by entity) and two-way (fixing 

effects by both entity and time) error component models. Heterogeneity effects across entities (or 

times) or across both entities and times can be absorbed by the intercept term under the assumption 

that heterogeneity effects are constant for each entity (or time period) or for each entity during each 

time period (Hsiao, 2014). Therefore, the model for this study (Equation 3-9) can be generalised as 

follows; 

𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡2 +  �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮 + 𝑎𝑎𝑖𝑖𝑡𝑡 
Equation 3-21 
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where i refers to the cross-sectional units; t refers to time periods; 𝛽𝛽0 is the intercept; 𝛽𝛽1 and 𝛽𝛽2 are 

the parameters of traffic flow variables (scalars); 𝜸𝜸𝒌𝒌 is the parameters of geometric feature 

variables (k×1 vector); 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 is a traffic flow variable according to entities and times; 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑦𝑦𝑘𝑘,𝑖𝑖𝑡𝑡 

is geometric feature variables (1×k vector) in this study; and 𝑎𝑎𝑖𝑖𝑡𝑡 is the section-specific error term. 

In particular, the residual term can be written as 𝑎𝑎𝑖𝑖𝑡𝑡 = 𝜇𝜇𝑖𝑖  (𝑎𝑎𝑎𝑎 𝜆𝜆𝑡𝑡) + 𝜀𝜀𝑖𝑖𝑡𝑡 in one-way error component 

modelling and 𝑎𝑎𝑖𝑖𝑡𝑡 = 𝜇𝜇𝑖𝑖 + 𝜆𝜆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 in two-way error component modelling where 𝜇𝜇𝑖𝑖 is the 

unobserved cross-sectional specific effects, 𝜆𝜆𝑡𝑡 is the unobservable time effects, and 𝜀𝜀𝑖𝑖𝑡𝑡 are random 

or idiosyncratic disturbances.  

The statistical estimation methods for fixed effects can mainly be divided into two; the least 

squares dummy variable (LSDV) and the fixed effects estimation within the group (or entity). 

Equation 3-21 can be transformed for LSDV as follows; 

𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 =  𝛽𝛽1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡2 + �𝜸𝜸𝒌𝒌𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮

+ �𝛿𝛿𝑖𝑖𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑡𝑡 

Equation 3-22 

where 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑖𝑖 (i=1, 2, 3…, n) is dummy variables for entities (e.g. 72 sections, days, routes) and 

𝛿𝛿𝑖𝑖 is the coefficient for each dummy variable. On the other hand, fixed effects estimation within the 

group uses OLS regression with the demeaning variables. In other words, after calculating the 

mean from the original variables, the demeaned variables are used for OLS regression. The 

equation after averaging the observation across time can be derived from Equation 3-21 as follows; 

TTıt����� = 𝛽𝛽0 +  𝛽𝛽1𝑇𝑇𝑇𝑇𝚤𝚤𝑡𝑡����� + 𝛽𝛽2𝑇𝑇𝑇𝑇𝚤𝚤𝑡𝑡2����� +  �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮������������������ + 𝑎𝑎𝚤𝚤𝑡𝑡���� 
Equation 3-23 

where TTıt����� = 1
𝑇𝑇
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡=1 ; 𝑇𝑇𝑇𝑇𝚤𝚤𝑡𝑡����� = 1

𝑇𝑇
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡=1 ; 𝑇𝑇𝑇𝑇𝚤𝚤𝑡𝑡2����� = 1

𝑇𝑇
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ; 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮������������������ =

 1
𝑇𝑇
∑ 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮
𝑇𝑇
𝑡𝑡=1 ; 𝑎𝑎𝚤𝚤𝑡𝑡���� =  1

𝑇𝑇
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡=1 ; and T is the count of observations. After subtracting 

Equation 3-23 from Equation 3-21, the coefficients of demeaned variables can be derived as 𝛽𝛽1𝑇𝑇𝐹𝐹, 

𝛽𝛽2𝑇𝑇𝐹𝐹, 𝜸𝜸𝒌𝒌𝑭𝑭𝑭𝑭 without an intercept because 𝛽𝛽0 is eliminated. In addition, the unobserved cross-sectional 

specific effects (𝜇𝜇𝑖𝑖) are eliminated and idiosyncratic disturbances (𝜀𝜀𝑖𝑖𝑡𝑡) remain. 

As mentioned above, both approaches of LSDV and fixed effects estimation within a group can be 

commonly used for eliminating unobserved fixed effects not varying according to time. However, 

LSDV estimation would be more appropriate for this study because the approach can identify the 

effects of entities on the model as the coefficients of dummy variables. In addition, by applying 

various entities to the model estimation, the effects of each entity were investigated. The entities 
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that can be separated from the dataset were divided into links, routes (lines), brightness (daytime 

and nighttime), date, days (weekdays and weekends), and weather. The first two entities can be 

classified as cross-sectional fixed effects and the last four ones as time fixed effects. The 

combination of cross-sectional and time fixed effects was considered in this study.  

Random effects modelling with panel data 

The biggest difference between FE modelling and random effects (RE) modelling is that whilst FE 

modelling assumes that the cross-sectional specific effects (𝜇𝜇𝑖𝑖 in Equation 3-21) are correlated with 

the explanatory variables, RE modelling does not allow the correlation (Kurt, 2018). In other 

words, FE modelling can eliminate unobserved time-invariant (potentially omitted) variables and 

their constant effects, but RE modelling cannot reflect the omitted variables. In addition, unlike FE 

modelling, RE modelling can include time-invariant explanatory variables across entities (e.g. 

geometric features across links in this study). When recalling Equation 3-21 (Equation 3-24), RE 

modelling defines the expected value and variance of cross-sectional specific effects (𝜇𝜇𝑖𝑖 in 

Equation 3-25 and Equation 3-26) unlike FE modelling. Whilst FE modelling has the same 

statistical assumptions as OLS, RE modelling assumes a homoscedastic variance of residuals 

together with serially correlated covariance of residuals. 𝑃𝑃𝑉𝑉𝑅𝑅(𝑎𝑎𝑖𝑖𝑡𝑡) = 𝜎𝜎𝜇𝜇2 + 𝜎𝜎𝜀𝜀2 (𝑓𝑓𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎𝑑𝑑 𝑡𝑡), 

and as such RE modelling considers serial correlation only for the residuals of the same cross-

sectional unit with a constant covariance, which is 𝐶𝐶𝑅𝑅𝑃𝑃�𝑎𝑎𝑖𝑖𝑡𝑡 ,𝑎𝑎𝑖𝑖𝑟𝑟� = 𝜎𝜎𝜇𝜇2 (𝑓𝑓𝑎𝑎𝑎𝑎 𝑚𝑚 = 𝑗𝑗, 𝑡𝑡 ≠ 𝑎𝑎) 

(Washington et al., 2010; Kurt, 2018).  

𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡2 +  �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑡𝑡 
Equation 3-24 

𝐸𝐸�𝜇𝜇𝑖𝑖|𝑇𝑇𝑇𝑇𝑖𝑖,𝑇𝑇𝑇𝑇𝑖𝑖2,𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊 � = 0 Equation 3-25 

𝑃𝑃𝑉𝑉𝑅𝑅�𝜇𝜇𝑖𝑖�𝑇𝑇𝑇𝑇𝑖𝑖,𝑇𝑇𝑇𝑇𝑖𝑖2,𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊� = 𝜎𝜎𝜇𝜇2  Equation 3-26 

GLS (Generalised least squares) linear estimation analysis  

Once one or more of the OLS statistical assumptions are violated, the first thing to do is to question 

the model specification. On the assumption that the established models can explain the dataset, 

some remedies can deal with the violations without discarding the predetermined models. 

Washington et al. (2010) suggested several methods for dealing with heteroscedasticity: 

transformation of the dependent variable; WLS estimation; ridge regression; and GLS estimation. 

In addition, they presented the GLS linear estimation as the time-series analysis for treating serial 

correlation. Therefore, the GLS linear estimation considering time-series data can provide an 
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alternative to the OLS linear estimation for the purposes of this study. Since the GLS estimation 

would cause the decrease of the sum of squared errors, the GLS estimation needs to be chosen only 

when the OLS statistical assumptions are violated.  

The fundamental difference between OLS and GLS is that GLS can generalise the disturbance 

terms while OLS strictly assumes that the disturbances have constant variance and are not 

correlated (Fox and Weisberg, 2010; Washington et al., 2010). For demonstrating GLS, the linear 

equation can be set out by using vectors as follows; 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 Equation 3-27 

where the statistical conditions of the matrix of disturbances (𝜺𝜺) under OLS assumptions can be 

shown as follows; 

𝐸𝐸[𝜺𝜺 | 𝑿𝑿] = 0, 𝑃𝑃𝑉𝑉𝑅𝑅[𝜺𝜺 | 𝑿𝑿] =  𝜎𝜎2𝑰𝑰 Equation 3-28 

where I is the n×n identity matrix (where n is the total number of observations). Conversely, the 

conditions of disturbances in GLS can be generalised as follows; 

𝐸𝐸[𝜺𝜺 | 𝑿𝑿] = 0, 𝑃𝑃𝑉𝑉𝑅𝑅[𝜺𝜺 | 𝑿𝑿] = 𝑭𝑭[𝜺𝜺𝜺𝜺𝑻𝑻] = 𝜎𝜎2𝜴𝜴 Equation 3-29 

where 𝝈𝝈𝟐𝟐𝜴𝜴 is a variance-covariance matrix and 𝜴𝜴 is a symmetric non-singular matrix. 𝜴𝜴−𝟏𝟏 = 𝑪𝑪𝑻𝑻𝑪𝑪 

using the lower triangular matrix C for computational iterative calculations (Amemiya, 1985). The 

general linear function (Equation 3-27) can be transformed into Equation 3-31 by pre-multiplying 

C as follows;  

𝒀𝒀∗ = 𝑪𝑪𝒀𝒀,     𝑿𝑿∗ = 𝑪𝑪𝑿𝑿,     𝜺𝜺∗ = 𝑪𝑪𝜺𝜺 Equation 3-30 

𝒀𝒀∗ = 𝑿𝑿∗𝑿𝑿 + 𝜺𝜺∗ Equation 3-31 

Equation 3-31 is satisfied with OLS assumptions as follows;  

𝐸𝐸[𝜺𝜺∗] = 𝑪𝑪𝐸𝐸[𝜺𝜺] = 𝟎𝟎 Equation 3-32 
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𝑃𝑃𝑉𝑉𝑅𝑅[𝜺𝜺∗] = 𝐸𝐸�𝜺𝜺∗𝜺𝜺∗𝑇𝑇� = 𝐸𝐸[𝑪𝑪𝜺𝜺𝜺𝜺𝑻𝑻𝑪𝑪𝑻𝑻] = 𝑪𝑪𝑭𝑭[𝜺𝜺𝜺𝜺𝑻𝑻]𝑪𝑪𝑻𝑻 = 𝜎𝜎2𝑪𝑪𝜴𝜴𝑪𝑪𝑻𝑻 = 𝜎𝜎2𝑰𝑰 Equation 3-33 

Therefore, GLS minimises the objective function as with OLS and the GLS estimator of 𝑿𝑿 can be 

derived as follows; 

𝑎𝑎(𝛽𝛽) = (𝒀𝒀∗ − 𝑿𝑿∗𝑿𝑿)𝑇𝑇(𝒀𝒀∗ − 𝑿𝑿∗𝑿𝑿) = (𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝑇𝑇𝜴𝜴−𝟏𝟏(𝒀𝒀 − 𝑿𝑿𝑿𝑿) Equation 3-34 

𝑿𝑿𝑮𝑮𝑶𝑶𝑶𝑶� = �𝑿𝑿𝑻𝑻𝜴𝜴−𝟏𝟏𝑿𝑿�−𝟏𝟏𝑿𝑿𝑻𝑻𝜴𝜴−𝟏𝟏𝒀𝒀 
Equation 3-35 

Compared to Equation 3-13, it can be seen that the GLS estimator is derived by weighting 𝜴𝜴−𝟏𝟏 to 

the equation. The GLS estimator is also derived for maximising log-likelihood (LL) function by 

using MLE for normally distributed disturbances as follows (Fox and Weisberg, 2010); 

𝐿𝐿𝐿𝐿 = −
𝑎𝑎
2

ln(2𝜋𝜋) −
1
2

ln(det(𝜴𝜴)) −
1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝑇𝑇𝜴𝜴−𝟏𝟏(𝒀𝒀 − 𝑿𝑿𝑿𝑿) 
Equation 3-36 

Especially when heteroscedasticity exists, 𝑭𝑭[𝜺𝜺𝜺𝜺𝑻𝑻] = 𝜎𝜎2𝜴𝜴, where 𝜎𝜎2𝜴𝜴 is n×n matrix as follows; 

𝜎𝜎2𝜴𝜴 =  

⎝

⎛
𝜎𝜎12 0 . 0
0 𝜎𝜎22 . 0
. . . .
0 0 . 𝜎𝜎𝑛𝑛2⎠

⎞ Equation 3-37 

As the matrix is a diagonal matrix of unequal error variances, which corresponds to the definition 

of heteroscedasticity, 𝑿𝑿𝑮𝑮𝑶𝑶𝑶𝑶�  is the same as the WLS estimators, which can be derived just by “lm()” 

function in software package R after adding weights to each of the variables (Fox and Weisberg, 

2010). In this context, WLS can be said to be a special case of GLS.  

When serial correlation is present, 𝑭𝑭[𝜺𝜺𝜺𝜺𝑻𝑻] = 𝜎𝜎2𝜴𝜴, where 𝜎𝜎2𝜴𝜴 is n×n matrix as follows; 

𝜎𝜎2𝜴𝜴 = 𝜎𝜎2  

⎝

⎜
⎛

1 𝜌𝜌1 𝜌𝜌2 . 𝜌𝜌𝑛𝑛−1 
𝜌𝜌1 1 𝜌𝜌1 . 𝜌𝜌𝑛𝑛−2
𝜌𝜌2 𝜌𝜌1 1 . 𝜌𝜌𝑛𝑛−3
. . . . .

𝜌𝜌𝑛𝑛−1 𝜌𝜌𝑛𝑛−2 𝜌𝜌𝑛𝑛−3 . 1 ⎠

⎟
⎞

 Equation 3-38 

In practice, if the matrix has different (n-1) values of 𝜌𝜌𝑖𝑖, it is impossible to estimate models with 

GLS (Fox and Weisberg, 2010). Therefore, GLS needs to establish additional structure for dealing 
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with serial correlation. Assuming that time-series data are stationary, ARMA models can be used 

for specifying the structure (Washington et al., 2010). ARMA models are the combination of the 

autoregressive models (AR) and the moving average models (MA). In ARMA (p, q), p refers to the 

autoregressive order and q refers to the moving average order. For example, the first-order auto-

regressive process, AR(1) is described as follows; 

𝜀𝜀𝑡𝑡 = 𝜙𝜙 𝜀𝜀𝑡𝑡−1 + 𝜈𝜈𝑡𝑡 
Equation 3-39 

where 𝜈𝜈𝑡𝑡 is called “Gaussian” white noise, which means 𝜈𝜈𝑡𝑡 is independent and normally 

distributed, 𝜈𝜈𝑡𝑡 ≈ NID(0, 𝜎𝜎𝜈𝜈2) (Fox and Weisberg, 2010). After applying the AR(1) model to 

Equation 3-38, 𝜌𝜌1 = 𝜙𝜙, 𝜌𝜌𝑖𝑖 = 𝜙𝜙𝑖𝑖, and 𝜎𝜎2 = 𝜎𝜎𝜈𝜈2/(1 −𝜙𝜙2).  

By contrast, the MA model assumes that the current disturbances of 𝜀𝜀𝑡𝑡 depend on white noises 

during the current and previous periods. For the example, the first-order moving average process, 

MA(1) is denoted as follows; 

𝜀𝜀𝑡𝑡 = 𝜈𝜈𝑡𝑡 + 𝑚𝑚𝜈𝜈𝑡𝑡−1 Equation 3-40 

Therefore, ARMA(1,1) can be expressed as follows; 

𝜀𝜀𝑡𝑡 = 𝜙𝜙 𝜀𝜀𝑡𝑡−1 + 𝜈𝜈𝑡𝑡 + 𝑚𝑚𝜈𝜈𝑡𝑡−1 Equation 3-41 

The ‘gls()’ function in the “nlme” library of the software package R enables regression analysis by 

using GLS with a non-constant error-variance structure including dealing with heteroscedasticity 

and serial correlation (Pinheiro and Bates, 2000). In order to derive GLS estimators, the maximum 

likelihood estimation (MLE) method can be used, which the ‘gls()’ function also supports. 

 

3.3.3. Nonlinear least squares (NLS) estimation  

Base model selection for NLS estimation 

This approach follows the methodology of existing VDF studies that predetermine road capacity 

and free-flow speed, but differs in that it separates link geometric variables, rather than condensing 

these features by set parameters. The analysed base function reflecting link geometric variables for 

the NLS estimation is seen in Equation 3-42. This model combines the finding that link geometry 
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affects travel time with the way in which existing studies set FFS and road capacity as constant 

values. As with the linear estimation (Section 3.3.2), it is approximated that the relationship 

between travel time and geometric variables is linear because the relationship has not been clearly 

identified in the previous studies. The BPR function, which is a combination of a linear and power 

equation, was used as a base model because the BPR function has a good performance for 

motorways compared with other VDFs (Kalaee, 2010; Huntsinger and Rouphail, 2011). 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �1 + 𝛼𝛼 �
𝑇𝑇𝑇𝑇
𝐶𝐶
�
𝛽𝛽
�+ �𝛾𝛾𝑘𝑘𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑦𝑦𝑘𝑘 + 𝑎𝑎 Equation 3-42 

Selection of estimation method 

An iterative method used in this study is the “Gauss-Newton” algorithm, which is widely used for 

non-linear regression analysis (Montgomery et al., 2012). Linearisation by Taylor Series theorem is 

used for this analysis, which uses partial derivatives of parameters with initial values. If 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑚𝑚) is 

a non-linear function with i IVs and p parameters, the function can be linearised with the initial 

values θ0′ = [θ10,θ20, … , θp0] as 

𝑓𝑓(𝑥𝑥𝑖𝑖,𝑚𝑚) = 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑚𝑚0) +��
𝜕𝜕𝑓𝑓(𝑥𝑥𝑖𝑖,𝑚𝑚)
𝜕𝜕𝑚𝑚𝑖𝑖

�
𝜃𝜃=𝜃𝜃0

(𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑖𝑖0)
𝑝𝑝

𝑖𝑖=1

 Equation 3-43 

𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖0 = �𝛽𝛽𝑖𝑖0𝑍𝑍𝑖𝑖𝑖𝑖0 + 𝜀𝜀𝑖𝑖,                 𝑚𝑚 = 1,2, … ,𝑎𝑎
𝑝𝑝

𝑖𝑖=1

 Equation 3-44 

where 𝑓𝑓𝑖𝑖0 =  𝑓𝑓(𝑥𝑥𝑖𝑖,𝑚𝑚0), 𝛽𝛽𝑖𝑖0 = 𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑖𝑖0 and 𝑍𝑍𝑖𝑖𝑖𝑖0 = �𝜕𝜕𝑓𝑓(𝑥𝑥𝑖𝑖,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

�
𝜃𝜃=𝜃𝜃0

. Equation 3-44 can be simplified as  

𝑦𝑦0 = 𝑍𝑍0𝛽𝛽0 + 𝜀𝜀 Equation 3-45 

so the parameter β0 after linearization can be estimated as 

𝛽𝛽0� = (𝑍𝑍0𝑇𝑇𝑍𝑍0)−1𝑍𝑍0𝑇𝑇𝑦𝑦0 =   (𝑍𝑍0𝑇𝑇𝑍𝑍0)−1𝑍𝑍0𝑇𝑇(𝑦𝑦 − 𝑓𝑓0) Equation 3-46 

Since β0 = 𝑚𝑚 − 𝑚𝑚0, 𝑚𝑚1 for the next calculation can be set as 

𝑚𝑚1� = 𝛽𝛽0� + 𝑚𝑚0 Equation 3-47 

The iteration can be finished after convergence satisfying the set small number of δ 
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[(𝑚𝑚𝚥𝚥,𝑘𝑘+1 −� 𝑚𝑚𝚥𝚥𝑘𝑘� )/𝑚𝑚𝚥𝚥𝑘𝑘� ] < 𝛿𝛿        𝑗𝑗 = 1,2, … ,𝑎𝑎 Equation 3-48 

Unlike R-squared as an absolute coefficient of determination in OLS linear estimation, Root Mean 

Square Error (RMSE) in nonlinear estimation can be a comparative statistical measure. This 

analysis would be significant through the comparison with RMSEs of previously analysed models, 

including the theoretical BPR function with parameters. However, nonlinear estimation needs 

careful consideration because it involves the issue of local optimisation as well as providing 

multiple solutions as mentioned in Table 3-6. The starting values or constraints need to be set 

because they could affect the convergence of estimators in this analysis. The starting values for α 

and β parameters in Equation 3-42 are set at 0.15 and 4 respectively, with reference to the standard 

BPR function. The starting value of an intercept for FFTT is set at 36 (seconds/km), which is 

equivalent to time per km with a speed limit of 100kph. The starting values of other parameters for 

geometric independent variables are set at zero. 

Sensitivity Analysis by road capacity  

In the literature review (Section 2.4), there is no consensus about the value of road capacity in VDF 

models even though many studies adopt various methods for measuring it. Again, as most VDF 

models commonly include road capacity and FFTT, the stochastic values of road capacity would be 

insufficient to account for travel time in the road sections. Moreover, although USHCM (2010) 

suggested a different value for road capacity according to its geometry (e.g. grade, width), it is 

unclear how much the change in road capacity affects the statistical measures of VDF models. 

Therefore, sensitivity analysis is imperative for nonlinear regression analysis to find the impact of 

the road capacity variation.  

Sensitivity analysis aims to find the level of uncertainty of the results caused by the uncertainty of 

the independent variables in many studies (Saltelli et al., 2008). The only factor for sensitivity 

analysis in this study is the predetermined road capacity in VDF models including Equation 3-42, 

therefore the sensitivity analysis can be subdivided as follows: the derivation of different 

parameters depending on the range of road capacity and an investigation of the change in outputs as 

affected by different values of road capacity when applying the derived nonlinear model to 

different sections. 

Even if there are no clear criteria used in establishing road capacity in VDF, it is necessary to 

define the value of road capacity as a reference of sensitivity analysis, which is called nominal road 

capacity (C=Cn in Equation 3-42) in this study. Moreover, although it is debatable how to fix one 

value of road capacity for covering all analysed sections, the nominal road capacity was defined as 

the mean of traffic flows corresponding to speeds from 60 to 80kph referring to various 
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measurement in many studies (see Section 2.4.2). In addition, the minimum traffic flow for the 

nominal capacity measurement was limited to 2,000vph per two lanes because abnormal traffic 

flows (caused by for example vehicle breakdown, road maintenance or measurement error) should 

be excluded. The range of threshold speeds is also related to breakdown effects and the historical 

speed at which congestion begins in motorways (see Section 2.4.2).  

The first approach for sensitivity analysis is to examine the change in parameters depending on the 

range of road capacity (fluctuation from 80% to 120%6 of the nominal capacity). The increment is 

determined as 10% of the nominal road capacity, which can be adjusted after analysing the result. 

This approach aims to find how road capacity affects the current VDF models (Table 3-7). The 

second approach is to examine the spatial transferability of the models developed from the first 

approach. Once a model had been derived from each road capacity, the model was applied to other 

road sections with each road capacity measured using the same method as the nominal capacity. 

The second approach is conducted to find out how the sum of squared errors (SSE) between 

observed travel time and the outputs by the model can vary depending on the variation of road 

capacity (Table 3-8).  

Table 3-7 Table form for sensitivity analysis focusing on the change in parameters 

 

Table 3-8 Table form for sensitivity analysis focusing on spatial transferability 

Note. SSE can be replaced by other accuracy measures (e.g. RMSE, MAPE, etc.) 

  

                                                      
6 The range was determined by considering twice the standard deviation of extracted traffic flows 
based on the criteria of the selection of nominal capacity.  

α β γk RMSE
80% of C n

90% of C n

C n

110% of C n

120% of C n

C (Measured) SSE C (Measured) SSE C (Measured) SSE
Selected Case 1
Selected Case 2
Selected Case 3
Selected Case 4
Selected Case 5

80% of C n C n 120% of C n
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3.4. Identification of variables 

3.4.1. Variables for model estimations 

Dependent variable (DV) 

DV is the inverse value of SMS in each selected link, the unit of which is seconds/km. The reason 

why the inverse value of speed is selected is that every link has a different length. Speed can be 

measured and calculated according to two types: TMS and SMS (FHWA, 1998). TMS can simply 

be calculated as the arithmetical average value of vehicles’ speeds (Equation 3-49). By contrast, 

SMS, which is the harmonic average speed, is the link length divided by the average time of 

vehicles passing between the starting and end points of a link (Equation 3-50). Both speeds can be 

approximated by using SMS variance (Equation 3-51), but SMS calculated from the travel time 

measurement is more accurate than the approximation. It is reasonable to use SMS in this study 

because the accuracy of DV measurement is very important. In addition, FHWA recommended the 

use of SMS for analysing travel time data. 

𝑇𝑇𝑚𝑚𝑎𝑎𝑎𝑎 −𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑, �̅�𝑎𝑇𝑇𝑇𝑇𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 =
∑𝑎𝑎𝑖𝑖
𝑎𝑎

=
∑ 𝑑𝑑𝑡𝑡𝑖𝑖
𝑎𝑎

 
Equation 3-49 

𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 −𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑, �̅�𝑎𝐿𝐿𝑇𝑇𝐿𝐿 =
𝑑𝑑𝑚𝑚𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑
𝑎𝑎𝑎𝑎𝑎𝑎. 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎

=
𝑑𝑑
∑𝑡𝑡𝑖𝑖
𝑎𝑎

=  
𝑎𝑎 × 𝑑𝑑
∑ 𝑡𝑡𝑖𝑖

 Equation 3-50 

�̅�𝑎𝑇𝑇𝑇𝑇𝐿𝐿 ≈ �̅�𝑎𝐿𝐿𝑇𝑇𝐿𝐿 +
𝜎𝜎𝐿𝐿𝑇𝑇𝐿𝐿2

�̅�𝑎𝐿𝐿𝑇𝑇𝐿𝐿
 Equation 3-51 

where d = distance travelled; n = number of observations; 𝑎𝑎𝑖𝑖 = speed of the ith vehicle; 𝑡𝑡𝑖𝑖= travel 

time of the ith vehicle; and 𝜎𝜎𝐿𝐿𝑇𝑇𝐿𝐿2  = variance of SMS. 

Independent variables (IVs) 

IVs in this study can mainly be divided into two groups: traffic flow and link geometry. The 

selected IVs are five: traffic flow (IV1, vph), tunnel ratio (IV2, the total tunnel length per distance, 

m/km), the sum of rises per distance (IV3, m/km), the sum of falls per distance (IV4, -m/km), and 

the sum of bendiness per distance (IV5, deg/km). Table 3-9 summarises the potential candidate 

independent variables and the reasons why only the five variables are slelected. Some of factors 

that could affect link travel time are identified by LSDV or fixed effects modelling even though 

they cannot be included in feasible models because it is difficult to measure them quantitatively. 
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Table 3-9 Candidates and selection of geometric variables 

Name Considerations 
Traffic flow All VDFs show the relationship between travel time and trip 

demand in common. 
Traffic composition Mentioned in the limitation of this study (Section 7.3). 
The number of lanes Not considered (Exclusion in the case selection). 

Lane width All motorways have the same lane width. 

Lane clearance All motorways have the same lane clearance. 

Intersection existence (type) Intersections are nodes that separate links (VDFs are defined 
for each link) and additional traffic flows arise from them. 

Tunnel length Tunnel length can be a representative variable for tunnels 
because most characteristics of a tunnel are constant. 

Tunnel light brightness Difficult to measure.  

Rises of slope (degree of 
slope) 

The criteria to define road capacity theoretically and to be 
selected by the reviewed studies. 

Falls of slope (degree of slope) The UK manual (DfT, 2018) include this variable. 

Bendiness The UK manual (DfT, 2018) include this variable. 

Barrier (or guard rail) type Most motorways have the same types of barrier. 

Signpost Difficult to measure. 
Emergency parking (service)  Not considered (Exclusion in the case selection). 

Daily change  Identified by fixed effects modelling. 

Weather (rain) impact Difficult to measure. Identified by fixed effects modelling. 

Day (week/weekend) impact Identified by fixed effects modelling. 

Note. Shadowed areas are the selected independent variables in feasible models. 

Traffic flow is the independent variable that is commonly included in existing models. The variable 

is also included in this study because the fundamental relationship in all traffic theories 

demonstrates travel time that depends on traffic flow in order to explain steady and congested 

states. Traffic composition (heavy vehicle percentage) is an important variable in relation to traffic 

flow, but this variable is not included in this study because current Korean ITS does not provide the 

data for it in sufficient detail. Automatic vehicle identification (AVI) systems, which operate by 

recognising the vehicle registration number plate, are a very efficient way of classifying vehicle 

types (Ahmed and Abdel-Aty, 2011). However, these are seldom used on Korean motorways and 

they are not therefore part of the selected links for this case study. In addition, this study tries to 

overcome this limitation through fixed effects modelling with the entity of date in the panel data 

(Section 4.2.2) and through the selection of the one-day dataset during a national holiday that could 

decrease the impact of heavy vehicle percentage for the feasible model estimation (Section 5.2.1). 

Although the traffic composition is an important variable, the three reviewed studies (Section 2.5.2) 
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that generalise travel time estimation models without road capacity do not include this variable in 

their models (Cartenì and Punzo, 2007; DfT, 2018) or include the variable only in congested states 

(Brilon and Bressler, 2004) 

Link geometry is the other group of IVs, which are analysed in this study. The selected IVs in this 

study should be measurable and quantifiable (or binary). According to the Korean road design 

manual (MOLIT, 2015), link geometric features which affect design speed in motorways are the 

number of lanes; lane width; the central barrier type and width; lane clearance; degree of slope; 

radius of the horizontal curve; types of intersection; tunnels; and road accessories for safety and 

maintenance. These features are therefore the candidates for the variables of link geometry in this 

study, but not all these features were selected as IVs as mentioned in the scope of research (Section 

1.4). First, the number of lanes is one of the criteria determining FFS, road capacity and the 

parameters in the current Korean VDF, but the variable is not included in this study. This study 

analyses only 2-lane motorway sections because the low number of 3-lane (or more) tunnel 

sections cannot confirm the spatial transferability depending on the diversity of link geometry. 

Second, lane width, central barrier width and lane clearance can be excluded from the variables in 

this study because they almost always have the same values in every motorway section. Third, 

types of intersection were not considered in this study because one of the base conditions for the 

link division is homogeneous (Rakha and Tawfik, 2009). Intersections are locations that divide 

routes into links. Lastly, variables such as road accessories cannot be measured from the freeway 

management system (FMS) for Korean motorways. Therefore, degree of slope, the radius of the 

horizontal curve and tunnels are analysed as IVs for this study. In addition, the selected geometric 

features are in line with the existing studies and manuals (Koshi, 1985; Iwasaki, 1991; Koshi et al., 

1992; Brilon and Bressler, 2004; Yun and Shengrui, 2012; Kim et al., 2014; DfT, 2018) 

In order to quantify variables and offset the effects of the different lengths of analysed links, it is 

necessary to transform the selected raw road features into adequate variables. Firstly, the degree of 

slope is divided into rises in upgrades and falls in downgrades for identifying the effects by 

upgrade and downgrade respectively with reference to UK guidance (DfT, 2018). The sum of rises 

in upgrade sections and the sum of falls in downgrade sections are divided by the total length of 

each link. Secondly, the radius of the horizontal curve is transformed into the total bendiness of the 

horizontal curve. A horizontal curve segment consists of simple curves and spiral (transition) 

curves even though a spiral curve is not necessary when the radius of simple curves is large. (UK 

Highways Agency, 2002; MOLIT, 2015). The radius cannot be used as a variable because the 

radius of a transition curve changes along the distance from the starting point. Therefore, the sum 

of bendiness of simple curves and transition curves is used as an IV in this study. Lastly, the tunnel 

ratio, which is the sum of tunnel lengths divided by the total link length, is selected as an IV 
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because most tunnels have the same structure in Korean motorways and data for other tunnel 

features such as light factors and interior design cannot be collected from FTMS.  

 

3.4.2. Data collection 

DV: Inverse of SMS (Inv_SPD) 

As mentioned in Section 3.4.1, speed can be divided into TMS and SMS. SMS is used in this study 

in order to improve the reliability of data analysis even though TMS measured from the ILDs in a 

motorway tunnel section was used for finding base models as mentioned in Section 3.3.1. There are 

two systems for measuring travel time between two or more points for calculating SMS: AVI and 

the DSRC system. The AVI system has the advantage that it collects the information from all 

vehicles but the drawback is that it is used sparsely on motorways because of the cost of CCTV 

installation. The DSRC system, which is related to ETC, collects the travel time of vehicles with 

OBU between locations of RSE. Around 71% (14.6 million) of registered vehicles have OBU and 

the usage rate of ETC is 74.2% in South Korea (ITS KOREA, 2016). This study collects the data 

for the dependent variable from the DSRC system because the distance of RSE in the DSRC 

system is very dense and the usage rate of ETC can confirm the reliability of the data. Table 3-10 

illustrates data collected from the DSRC system. The collection period covers the month of 

September 2018. During this period, one of Korea’s biggest national holidays occurred from the 

23rd to the 25th of the month, so many vehicles moved across the nation at that time.  

Table 3-10. Example of DSRC raw data 

 

DSRC_DATE
DSRC_
SECT_ID

AVG_
TRAVL_
TM

WHOLE_
DATA_
CNT

MAX_
TRAVL_
TM

MIN_
TRAVL_
TM

M_
TRAVL_
TM

USE_
DATA_
CNT

SPD_SMS

201809241215 0140LNE030 202 80 222 183 203 52 95.17
201809241220 0140LNE030 193 61 211 183 193 41 99.61
201809241225 0140LNE030 198 66 217 185 198 46 97.09
201809241230 0140LNE030 192 84 206 177 192 54 100.13
201809241235 0140LNE030 191 74 207 177 190 53 100.65
201809241240 0140LNE030 187 64 209 171 186 47 102.8
201809241245 0140LNE030 186 52 202 172 185 35 103.35
201809241250 0140LNE030 195 71 218 176 194 44 98.58
201809241255 0140LNE030 193 63 219 173 193 48 99.61
201809241300 0140LNE030 189 59 207 175 186 48 101.71
201809241305 0140LNE030 190 58 210 172 189 41 101.18
201809241310 0140LNE030 210 105 228 193 209 77 91.54
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where DSRC_DATE is measured time (5-min interval); DSRC_SECT_ID is the name of RSE unit 

pairs; AVG_TRAVL_TM is the average travel time of all vehicles having OBU during the 

measurement period; WHOLE_DATA_CNT is the number of vehicles having OBU during the 

period; MAX_TRAVL_TM is the longest travel time of all data; MIN_TRAVL_TM is the shortest 

travel time of all data; M_TRAVL_TM is the average travel time except for the longest and 

shortest travel times; USE_DATA_CNT is the number of vehicles not having the highest and 

lowest travel times; and SPD_SMS is the space-mean speed that is calculated from the distance of 

RSE unit pairs divided by AVG_TRAVL_TM. 

Travel time (TT) is used in this study after aggregating the value over 15-minute intervals; this is 

for reasons of conformity with most existing models and also because this study does not pursue 

modelling based on the instantaneous change of travel time. This data collection method is in line 

with the traffic flow measurement method, which counts vehicles passing at a point for 15 minutes 

and converts them into hourly rates by multiplying by four. When considering concepts of SMS 

and TMS in Section 3.4.1, errors can be included in analysed datasets where use is made of the 

arithmetical mean of three consecutive values of 5-minute travel time in DSRC without considering 

the number of vehicles every five minutes. Therefore, DV must be calculated from the total sum of 

travel times recorded in DSRC for 15 minutes divided by the total number of recorded vehicles 

during the same period. DV is finally created from mean travel time for 15 minutes divided by the 

distance between RSEs in DSRC, which is equivalent to the inverse of space-mean speed for 15 

minutes. The derivation of DV can be shown as follows; 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇 𝑓𝑓𝑎𝑎𝑎𝑎 15 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 =  
𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇15𝑚𝑚𝑖𝑖𝑛𝑛

𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑁𝑁𝑃𝑃15𝑚𝑚𝑖𝑖𝑛𝑛

=  
∑(𝑉𝑉𝑃𝑃𝐺𝐺_𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝐿𝐿_𝑇𝑇𝑀𝑀5𝑚𝑚𝑖𝑖𝑛𝑛 ∗ 𝐿𝐿𝑅𝑅𝑅𝑅𝐿𝐿𝐸𝐸_𝐷𝐷𝑉𝑉𝑇𝑇𝑉𝑉_𝐶𝐶𝑁𝑁𝑇𝑇5𝑚𝑚𝑖𝑖𝑛𝑛)

∑𝐿𝐿𝑅𝑅𝑅𝑅𝐿𝐿𝐸𝐸_𝐷𝐷𝑉𝑉𝑇𝑇𝑉𝑉_𝐶𝐶𝑁𝑁𝑇𝑇5𝑚𝑚𝑖𝑖𝑛𝑛
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑓𝑓 𝑎𝑎𝑃𝑃𝐷𝐷 =  
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇 𝑓𝑓𝑎𝑎𝑎𝑎 15 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎
𝑇𝑇ℎ𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡ℎ (𝑘𝑘𝑎𝑎) 𝑎𝑎𝑓𝑓 𝑎𝑎𝑎𝑎𝑐𝑐ℎ 𝑎𝑎𝑚𝑚𝑎𝑎𝑘𝑘

 

Equation 3-52 

where TT is travel time; NV is the number of vehicles; the subscripts mean the observation 

duration; others are the same as in Table 3-10.  

IV1: Traffic flow (TF, vehicles per hour: vph) 

The data for traffic flow, which is referred to as “TF” in this study and is the first IV, were 

collected from the average of the numbers measured at the different ILDs. Traffic flow can be 

differently measured depending on the measurement points because traffic flow has accordion-like 

patterns, so bottleneck point would be the best place for the measurement (Iwasaki, 1991). 
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However, it is impossible to measure traffic flow at every bottleneck point because the detecting 

location from ILDs is already fixed and the bottleneck is not stationary in real traffic situations. 

Therefore, this study used the average traffic flow measured at ILDs included in selected cases.  

ILDs include traffic information including time, location, traffic flow, TMS and occupancy rate 

(Table 3-11). The traffic data is produced every minute, but aggregated traffic information data for 

five minutes is stored in ITS servers regardless of vehicle’s types. Average traffic flow is the sum 

of traffic flows measured at ILDs divided by the number of ILDs and TF is calculated from 

multiplying the sum of three 5-min average traffic flows by four (Table 3-12). The collection 

period is the month of September 2018 as with the dependent variable. The unit of this IV is 

vehicles per hour (vph). 

Table 3-11 Example of raw data from ILD 

  
where ST_YMDHM is measured time (5-min interval); VDS_ID is the name of each ILD; VOL is 

traffic flow (vehicle count); and SPD_TMS is time-mean speed at each ILD. 

Table 3-12 Calculation of average traffic flow 

 

ST_YMDHM VDS_ID VOL SPD_TMS
201809241215 0140VDE00606 135 99.83
201809241220 0140VDE00606 139 98.02
201809241225 0140VDE00606 138 104.52
201809241230 0140VDE00606 121 104.04
201809241235 0140VDE00606 134 105.17
201809241240 0140VDE00606 122 104.87
201809241245 0140VDE00606 130 100.43
201809241250 0140VDE00606 114 101.86
201809241255 0140VDE00606 120 103.32
201809241300 0140VDE00606 121 104.26
201809241305 0140VDE00606 141 97.24
201809241310 0140VDE00606 132 102.12

VDS_DATE VDE00602_VOL VDE00606_VOL VDE00610_VOL AVG_TF TF_15Min*4
201809241205 152 122 129 134.33
201809241210 150 134 131 138.33
201809241215 154 135 129 139.33 1648.00
201809241220 172 139 144 151.67
201809241225 162 138 133 144.33
201809241230 180 121 136 145.67 1766.67
201809241235 154 134 127 138.33
201809241240 138 122 119 126.33
201809241245 162 130 133 141.67 1625.33
201809241250 150 114 124 129.33
201809241255 124 120 98 114.00
201809241300 154 121 116 130.33 1494.67
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IV2: Tunnel ratio (TR, sum of tunnel lengths per link distance: m/km) 

Tunnel ratio, which is referred to as “TR” in this study and is the second IV, was collected from 

FTMS. In order to offset the effects of the different length of links, the sum of tunnel lengths was 

divided by the length of each link. The unit of this IV is m/km. FTMS has much information on 

tunnel management, it includes not only tunnel length but also the tunnel entrance or exit milepost, 

tunnel slope degree, and the number of lanes and the horizontal curve radius (Table 3-13). Milepost 

and tunnel length were also used for matching tunnel locations with DSRC locations.  

Table 3-13 Example of raw data from FTMS 

 
Note: _E (toward ending point) and _S (toward starting point) mean the direction of tunnels 

IV3: Sum of rises per link distance (RISE, m/km) 

The sum of rises per distance, which is referred to as “RISE” in this study and is the third IV, was 

measured directly from design drawings. Design drawings contain much information for 

construction along every 20-m station such as the current ground level, horizontal alignment, 

vertical alignment, and cut and fill for earthworks (Figure 3-10). Rises were extracted from the 

difference in elevation between two stations only in upgrade segments and then the sum of rises 

was divided by the total length of each case (Equation 3-53). With reference to the UK manual 

(DfT, 2018), in order to represent the attributes of a link, not a point, the difference in elevation 

was taken into account rather than the maximum degree of slope. The unit of this IV is m/km.  

IV4: Sum of falls per link distance (FALL, m/km) 

The method for collecting the sum of falls per distance, which is referred to as “FALL” in this 

study and is the fourth IV, is the same as IV3 of RISE (Equation 3-53). This IV always has a 

negative value (-m/km) because it was extracted only in downgrade segments.  

𝑅𝑅𝑎𝑎𝑎𝑎𝐸𝐸 𝑎𝑎𝑎𝑎 𝑇𝑇𝑉𝑉𝐿𝐿𝐿𝐿 =
∑(𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑒𝑒 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛𝑒𝑒)

𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡ℎ 𝑎𝑎𝑓𝑓 𝑎𝑎𝑚𝑚𝑎𝑎𝑘𝑘
 Equation 3-53 

IV5: Sum of bendiness per link distance (BEND, deg/km) 

The sum of bendiness per distance, which is referred to as “BEND” here and is the fifth IV, is 

calculated from the sum of central angles in each horizontal curve and the sum was divided by the 

length of each case. In Figure 3-8 and Figure 3-9, the central angle is equal to the intersecting angle 

Route Tunnel_Name Milepost(km) Tunnel_length(m) Deg_Slope No._lanes Radius_Curve (m)
Kochang-Damyang Munsoosan_E* 7.20 3805 -0.5026 2 8000
Kochang-Damyang Munsoosan_S** 7.20 3820 0.5065 2 8000
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(I), which is the sum of simple curve angle (Δc) and spiral angles (θs). According to Findley et al. 

(2015), these angles are derived from Equation 3-54 and Equation 3-56. The values for this 

calculation were collected from design drawings (Figure 3-10). 

𝑎𝑎 =  𝛥𝛥𝑐𝑐 + 2𝑚𝑚𝑟𝑟 
Equation 3-54 

𝛥𝛥𝑐𝑐 ≈  
𝐿𝐿𝑐𝑐
𝑅𝑅

 Equation 3-55 

𝑚𝑚𝑟𝑟 ≈  
𝐿𝐿𝑟𝑟
2𝑅𝑅

 Equation 3-56 

Figure 3-8 Elements of horizontal curve (Lc: simple curve, Ls: spiral curve) 

Source: Findley et al. (2015) 

Figure 3-9 Elements of spiral curve 

Source: Findley et al. (2015) 
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Figure 3-10 Example of design drawing: “Kochang-Damyang Motorway (6.08-6.40km) E” 

 
Source: provided by Korean Express Corporation (KEC)  
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3.4.3. Data processing 

As road traffic has many situations that cannot be quantified as independent variables in travel time 

estimation models, raw traffic data must be filtered or cleaned. The data measured in abnormal 

situations would reduce the accuracy and precision of estimation models and their estimators. In 

the process of data refinement, a researcher’s personal perspective should be minimised. Therefore, 

raw data were filtered in the following ways.  

Exclusion of data including extremely low traffic flow 

Inevitably, there are abnormal samples in a one-month dataset for many differing reasons such as 

traffic accidents, road maintenance and vehicle breakdowns. However, such samples cannot be 

easily identified without additional information. First of all, measurement errors due to temporary 

technical failures of ILD or DSRC were excluded in the data analysis. Secondly, the rows where 

traffic flow is below 120vph (10 vehicles per five minutes) were excluded from the dataset. The 

initial data analysis found out that the variation of travel time in low traffic flow is much wider than 

that in mid or high traffic flow (Figure 3-11). Moreover, based on the frequency analysis of travel 

time recorded in DSRC, 22.8% of the raw data were not recognised in DSRC corresponding to 

hourly traffic flow from 12vph (one vehicle per five minutes) to 120vph. This means that the 

values of travel time observed on the low traffic flow would depend on a few vehicles having 

OBU. Conversely, only 0.6% of the raw data was not recorded in DSRC from 120vph to 240vph.  

Exclusion of data in congested situations 

From Greenshields et al. (1935) to Greenberg (1959) and Underwood (1961), the relationship 

between speed, density and traffic flow has been investigated. These comparative older studies 

assumed or conceptually defined the relationship between speed and traffic flow as symmetrical, so 

the half of free-flow speed is supposed to be the point at which congestion starts (the speed in the 

point is referred to as “congestion speed” hereafter). Congestion speed is also related to the speed 

at road capacity. However, this relationship has been reinvestigated by many more recent empirical 

studies (Section 2.3.1). The studies commonly defined the relationship as two-regime showing 

different curves before and after the congestion speed; and they do not therefore endorse the 

symmetrical curve assumed in earlier studies.  

VDF assumes that traffic flow can increase continuously in oversaturation states because it reflects 

the cost of travel time depending on trip demand in traffic assignment (Section 2.3.1). The analysis 

of traffic characteristics in congested states can be the area of DTA which focuses on the 

interaction of vehicles rather than VDF modelling. Therefore, this study requires the definition of 

congestion speed that is the criterion for excluding congested data from the dataset. As the value of 

congestion speed differs according to road types and countries, it was necessary to examine studies 
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to analyse the traffic data for Korean motorways. Kim (2013) found that congestion speed varies 

from 78kph to 83kph in finding maximum traffic flow and from 64kph to 70kph by using 

regression analysis. In addition, as can be seen from the initial case study (Figure 3-11), the 

congestion speed varies depending on six detecting points even in a comparatively short section 

(1.8km). Therefore, although the criterion cannot be defined uniquely, this study selected the 

congestion speed of 60kph to minimise the data exclusion referring to previous studies and the 

initial analysis.  

Figure 3-11 Congestion speed identification from the initial case study 

 
Note. Red dotted lines represent congestion speeds correspoding to the maximum traffic flows 

(five-minute observation) measured at ILDs  
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3.5. Case study 

3.5.1. How to select cases 

The choice of the number of cases for developing travel time estimation models is related to 

subjects per variable (SPV) (Schmidt, 1971; Green, 1991; Harrell, 2001) where subjects mean the 

estimated data varying according to the variable. Schmidt (1971) described the minimum number 

of SPV ranges as being from 15 to 20. Harrell (2001) suggested 10 SPV as the minimum number of 

required samples for linear regression analysis. The data to estimate the relationship between travel 

time and traffic flow are enough because the data are observed every 15 minutes. Given the 

geometric variables, subjects represent selected cases (links) because each link has a set of time-

invariant geometric features. Thus, the number of SPV needs to be taken into consideration only by 

the number of geometric independent variables. If all independent variables are included in the 

final model, the necessary number of cases would range from 40 (=4×10) to 80 (=4×20) because 

the number of geometric independent variables is four. Moreover, the number of cases can be 

finally verified referring to various statistical results in the process of regression analysis. 

The number of cases for this study is 72 sections (Table 3-14). The number of 2-lane tunnels is 935 

of a total of 1,060 Korean motorway tunnels. As it is mandatory to install ILDs in tunnel sections 

of over 1km in Korea, 239 two-lane tunnel sections with a length over 1km were examined in the 

case selection process. Firstly, 132 sections were selected after excluding routes having low traffic 

flow during the analysis period. Secondly, 40 sections where speed enforcement cameras are 

installed and data collection errors happened during the month, were excluded from this study. 

Lastly, while collecting link geometric data from design drawings, 20 sections including 

interchanges or service areas were excluded. Therefore, 72 cases were used for modelling in this 

study. As shown in Figure 3-12, the cases in this study are located in nationwide 2-lane motorways. 

Table 3-14 Procedure for the case selection  

Note: (   ); the number of excluded cases after every cut 

Total First cut Second cut Third cut
No. of cases (sections) 132 92 72
No. of Included tunnels 935 191 137 112
No. of Included tunnels over 1km 239 162 116 93

Criteria
2-lane 
tunnels

DSRC matching 
after Low-traffic cases 
exclusion

Exclusion of speed 
enforcement  or data 
error sections (40)

Exclusion of sections 
including Interchage or 
service area (20)



Chapter 3. Research Methodology 

 

  96  

 

Figure 3-12 Location of the selected cases 

  
Source: https://map.kakao.com 

Note 1. The orange lines represent Korean motorways.  

2. Green marks (31*2=62 sections) denote the selection of both direction tunnels.  

3. Red marks (10 sections) denote the selection of one of both direction tunnels. 

 

https://map.kakao.com/
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3.5.2. Descriptive statistics for the selected cases 

Dataset of cases including link geometry  

There are 72 geometric feature sets because each case has one geometric feature set of TR, RISE, 

FALL and BEND as IVs. Moreover, each case contains one-month data including 15-minute 

interval travel time and traffic flow. Dataset including geometric features was completed by 

combining data from DSRC locations, FTMS and design drawings. As shown in Table 3-15, IVs 

were derived from measured data including total length of cases, tunnel length, the sum of rises in 

upgrade segments, the sum of falls in downgrade segments and the sum of intersection angles 

(bendiness).  

Table 3-15 List of the selected cases 

 

Case_Route_Milepost_Direction
Total 

length
(km)

Total 
tunnel 

length (m)

Tunnel
Ratio 
(IV2)

Upgrade 
sum of 

rises (m)

RISE 
(IV3)

Downgrade 
sum of falls 

(m)

FALL 
(IV4)

Sum of 
bendiness 

(deg)

BEND
(IV5)

1. KochangDamyang (6.23-11.57k)_E 5.34 3,805           712.55 21.96 4.11 -33.78 -6.32 4.04 0.76
2. KochangDamyang (6.23-11.57k)_S 5.34 3,820           715.36 33.78 6.32 -21.96 -4.11 4.04 0.76
5. KochangDamyang (19.92-24.06k) E 4.14 3,598           869.08 20.16 4.87 -2.89 -0.70 0.00 0.00
6. KochangDamyang (19.92-24.06k) S 4.14 3,581           864.98 2.89 0.70 -20.16 -4.87 0.00 0.00
7. GwangjuDaegu (41.2-43.7K) E 2.5 1,592           636.80 2.04 0.82 -50.39 -20.16 56.68 22.67
8. GwangjuDaegu (41.2-43.7K) S 2.5 1,544           617.60 50.39 20.16 -2.04 -0.82 56.68 22.67
9. GwangjuDaegu (125.9-128.0K) E 2.1 1,170           557.14 32.50 15.48 -6.37 -3.03 46.85 22.31
10. GwangjuDaegu (125.9-128.0K) S 2.1 1,175           559.52 6.37 3.03 -32.50 -15.48 46.85 22.31
12. GwangjuDaegu (135.0-138.6K) S 3.6 2,787           774.17 61.68 17.13 -5.88 -1.63 24.75 6.87
14. GwangjuDaegu (138.6-143.3K) S 4.7 2,434           517.87 134.81 28.68 0.00 0.00 46.36 9.86
22. MuanGwangju (26.57-29.57) S 3 1,180           393.33 44.56 14.85 -16.08 -5.36 31.19 10.40
25. SangjuYoungduk (105.1-110.3) E 5.2 4,117           791.73 14.12 2.72 -50.05 -9.63 38.20 7.35
26. Sangju Youngduk (105.1-110.3) S 5.2 4,121           792.50 50.05 9.63 -14.12 -2.72 38.20 7.35
27. SangjuYoungduk(110.3-115.0) E 4.7 1,840           391.49 84.46 17.97 -15.19 -3.23 76.41 16.26
28. SangjuYoungduk (110.3-115.0) S 4.7 1,872           398.30 15.19 3.23 -84.46 -17.97 64.72 13.77
29. SangjuYoungduk (124.7-128.1) E 3.4 1,789           526.18 16.53 4.86 -7.58 -2.23 40.76 11.99
30. SangjuYoungduk(124.7-128.1) S 3.4 1,815           533.82 7.58 2.23 -16.53 -4.86 40.76 11.99
31. SangjuYoungduk (146.3-152.2) E 5.9 4,408           747.12 35.08 5.95 -21.81 -3.70 46.31 7.85
32. SangjuYoungduk (146.3-152.2) S 5.9 4,435           751.69 21.81 3.70 -35.08 -5.95 46.31 7.85
35. SangjuYoungduk (172.3-176.2) E 3.9 1,319           338.21 50.41 12.93 -13.15 -3.37 105.73 27.11
36. SangjuYoungduk(172.3-176.2) S 3.9 1,157           296.67 13.15 3.37 -50.41 -12.93 105.73 27.11
37. SangjuYoungduk (181.3-185.5) E 4.2 3,023           719.76 0.00 0.00 -26.15 -6.23 58.37 13.90
38. SangjuYoungduk (181.3-185.5) S 4.2 3,031           721.67 26.15 6.23 0.00 0.00 58.37 13.90
39. SangjuYoungduk(185.5-188.7) E 3.2 2,813           879.06 17.83 5.57 -9.45 -2.95 1.81 0.57
40. SangjuYoungduk (185.5-188.7) S 3.2 2,862           894.38 9.45 2.95 -17.83 -5.57 1.81 0.57
41. SeoulYangyang (63.8-70.1) E 6.33 3,431           542.04 44.59 7.04 -54.77 -8.65 33.73 5.33
43. SeoulYangyang (70.1-73.7) E 3.57 1,844           516.53 16.08 4.50 -24.32 -6.81 43.92 12.30
47. Seoul Yangyang(97.7-103.9) E 6.18 4,688           758.58 124.32 20.12 0.00 0.00 93.33 15.10
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48. Seoul Yangyang (97.7-103.9) S 6.18 4,609           745.79 0.00 0.00 -124.32 -20.12 93.33 15.10
49. Seoul Yangyang(106.9-110.9) E 4.04 3,153           780.45 0.00 0.00 -43.53 -10.77 33.59 8.31
50. Seoul Yangyang(106.9-110.9) S 4.04 3,166           783.66 43.53 10.77 0.00 0.00 33.59 8.31
54. Seoul Yangyang(115.7-119.0) S 3.39 2,257           665.78 2.50 0.74 -12.73 -3.76 50.43 14.88
55. Seoul Yangyang(143.0-149.6) E 6.53 5,052           773.66 8.10 1.24 -95.92 -14.69 111.26 17.04
56. Seoul Yangyang(143.0-149.6) S 6.53 4,976           762.02 95.92 14.69 -8.10 -1.24 111.26 17.04
57. Suncheon Wyanju (7.8-12.5) E 4.74 2,736           577.22 28.90 6.10 -14.21 -3.00 81.57 17.21
59. Suncheon Wyanju (12.5-20.0) E 7.42 4,637           624.93 64.05 8.63 -25.87 -3.49 107.49 14.49
61. Suncheon Wyanju (25.1-32.6) E 7.53 2,520           334.66 75.66 10.05 -31.04 -4.12 125.91 16.72
62. Suncheon Wyanju (25.1-32.6) S 7.53 2,532           336.25 31.04 4.12 -75.66 -10.05 125.91 16.72
65. Suncheon Wyanju (37.9-41.8) E 3.87 1,310           338.50 53.61 13.85 -7.84 -2.03 63.25 16.34
66. Suncheon Wyanju (37.9-41.8) S 3.87 1,295           334.63 7.84 2.03 -53.61 -13.85 63.25 16.34
67. Suncheon Wyanju (41.8-46.6) E 4.78 3,987           834.10 0.00 0.00 -23.25 -4.86 27.87 5.83
68. Suncheon Wyanju (41.8-46.6) S 4.78 3,944           825.10 23.25 4.86 0.00 0.00 27.87 5.83
83. Jungbunaeryuk (106.4-108.1-109.50) E 3.1 1,055           340.32 12.07 3.89 -23.28 -7.51 76.72 24.75
84. Jungbunaeryuk (106.4-108.1-109.50) S 3.1 1,045           337.10 23.28 7.51 -12.07 -3.89 76.72 24.75
93. Jungbunaeryuk (290.6-295.4) E 4.8 3,084           642.50 35.80 7.46 -27.10 -5.65 101.45 21.14
94. Jungbunaeryuk (290.6-295.4) S 4.8 3,094           644.58 27.10 5.65 -35.80 -7.46 101.45 21.14
97. Jungang (237.4-244.9) E 7.5 4,600           613.33 22.41 2.99 -77.14 -10.29 72.47 9.66
99. Jungang (267.8-270.4) E 2.6 1,190           457.69 0.00 0.00 -36.04 -13.86 33.60 12.92
100. Jungang (267.8-270.4) S 2.6 1,150           442.31 36.04 13.86 0.00 0.00 33.60 12.92
102. Jungang (349.3-351.4) S 2.1 1,429           680.48 27.99 13.33 -5.06 -2.41 13.46 6.41
103. Jungang-Branch (1.1-3.4) E 2.3 1,851           804.78 17.41 7.57 -1.87 -0.81 9.95 4.33
104. Jungang-Branch (1.1-3.4) S 2.3 1,850           804.35 1.87 0.81 -17.41 -7.57 9.95 4.33
105. Jungang-Branch (4.3-5.4) E 1.1 540              490.91 2.46 2.24 -6.44 -5.85 22.68 20.62
106. Jungang-Branch (4.3-5.4) S 1.1 550              500.00 6.44 5.85 -2.46 -2.24 22.68 20.62
107. Jungang-Branch (5.4-8.0) E 2.6 1,295           498.08 19.10 7.35 -16.73 -6.43 35.64 13.71
108. Jungang-Branch (5.4-8.0) S 2.6 1,300           500.00 16.73 6.43 -19.10 -7.35 35.64 13.71
117. TongyoungDaejeon (113.2-115.6) E 2.4 1,455           606.25 11.93 4.97 0.00 0.00 45.84 19.10
118. TongyoungDaejeon (113.2-115.6) S 2.4 1,505           627.08 0.00 0.00 -11.93 -4.97 45.84 19.10
119. TongyoungDaejeon (127.6-131.8) E 4.2 3,170           754.76 4.45 1.06 -30.35 -7.23 46.66 11.11
120. TongyoungDaejeon (127.6-131.8) S 4.2 3,170           754.76 30.35 7.23 -4.45 -1.06 46.66 11.11
121. TongyoungDaejeon (153.1-155.9) E 2.8 1,148           410.00 0.00 0.00 -46.60 -16.64 25.80 9.21
122. TongyoungDaejeon (153.1-155.9) S 2.8 1,126           402.14 46.60 16.64 0.00 0.00 25.80 9.21
123. Pyungtaek Jaecheon (48.9-52.1) E 3.2 2,300           718.75 6.12 1.91 -20.63 -6.45 27.09 8.46
124. Pyungtaek Jaecheon (48.9-52.1) S 3.2 2,355           735.94 20.63 6.45 -6.12 -1.91 27.09 8.46
125. Pyungtaek Jaecheon (105.1-107.3) E 2.2 1,062           482.73 22.93 10.42 0.00 0.00 37.90 17.23
126. Pyungtaek Jaecheon (105.1-107.3) S 2.2 1,079           490.45 0.00 0.00 -22.93 -10.42 37.90 17.23
127. Pyungtaek Jaecheon (112.0-115.7) E 3.7 2,645           714.86 0.00 0.00 -22.03 -5.95 41.24 11.15
128. Pyungtaek Jaecheon (112.0-115.7) S 3.7 2,619           707.84 22.03 5.95 0.00 0.00 41.24 11.15
129. Pyungtaek Jaecheon (115.7-118.9) E 3.2 2,499           780.94 51.28 16.03 -0.61 -0.19 25.65 8.02
130. Pyungtaek Jaecheon (115.7-118.9) S 3.2 2,465           770.31 0.61 0.19 -51.28 -16.03 25.65 8.02
131. Pyungtaek Jaecheon (118.9-123.9) E 5 4,427           885.40 0.53 0.11 -33.75 -6.75 36.18 7.24
132. Pyungtaek Jaecheon (118.9-123.9) S 5 4,465           893.00 33.75 6.75 -0.53 -0.11 36.18 7.24
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Descriptive statistics of the selected cases 

Before modelling by using the dataset, it is necessary to investigate the frequencies of the selected 

cases. As shown in Table 3-16, the descriptive statistics of geometric features for the selected 72 

cases were scrutinised briefly. The total length of the 72 cases ranges from 1.1km to 7.53km and 

the tunnel ratio (IV2) ranges from 296.67 to 894.38 (m/km) with the mean statistic of 627.78 

(m/km) and the standard deviation of 169.02 (m/km). Moreover, RISE (IV3) and FALL (IV4) are 

skewed towards zero (a flat terrain) because road engineers aim to design flat roads considering 

special constraints such as earthwork balance because of safety and energy consumption. The 

variation of both variables ranges from 0 (a flat link) to 28.68 (m/km) and from -20.16 (m/km) to 0 

(a flat link) respectively. The mean values of both variables are 6.51 (m/km) and -5.70 (m/km) 

respectively. Lastly, BEND (IV5) is examined from 0 (a straight link) to 27.11 (deg/km) with the 

mean statistic of 12.54 (deg/km). 

Table 3-16 Descriptive statistics of the 72 selected cases 

   

N Minimum Maximum Mean Std. Deviation
Total length (km) 72 1.10 7.53 4.00 1.53

Sum of tunnel lengths (m) 72 540 5052 2541 1250

Tunnel Ratio (IV2, m/km) 72 296.67 894.38 627.78 169.02

Upgrade sum of rises (m) 72 0.00 134.81 26.28 27.73

RISE (IV3, m/km) 72 0.00 28.68 6.51 6.08

Downgrade sum of falls (m) 72 -124.32 0.00 -23.34 24.76

FALL (IV4, m/km) 72 -20.16 0.00 -5.70 5.22

Sum of bendiness (deg) 72 0.00 125.91 48.43 31.47

BEND (IV5, deg/km) 72 0.00 27.11 12.54 6.75
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3.6. Model selection 

3.6.1. Comparison of results across methodologies 

This section presented the different aspects of statistical estimations for the dataset from 72 cases. 

The methodology for model development can be divided into two main streams: the regression 

analysis based on linearity between the dependent variable and independent variables; and 

nonlinear regression analysis based on BPR function among existing VDF models. Moreover, 

linear estimations consist of the OLS and GLS estimation according to the respective detailed 

assumptions for satisfying the linearity. Therefore, the models in this study can be classified into 

three groups: models by OLS, models by GLS, and models by NLS. The optimal model within 

each group can be determined according to the statistical measures produced by the estimated 

method of the group. However, other statistical measures are needed to evaluate models between 

groups. This study adopted the statistical measures of AIC, BIC, RMSE and MAPE as follows.  

AIC and BIC (comparison between linear models) 

R-squared is defined as the ratio of the regression sum of squares to the total sum of squares 

calculated from the independent variable(s) (Equation 3-57). Adjusted R-squared is calculated after 

reflecting degrees of freedom (Equation 3-58). Both measures have been widely used as 

coefficients of determination for comparison in the OLS estimation (Washington et al., 2010). 

However, the measures are not used in the GLS estimation because the GLS estimation is based on 

maximising the (log)-likelihood function (Equation 3-36) 

𝑅𝑅2 =
𝑎𝑎𝑎𝑎𝑇𝑇 − 𝑎𝑎𝑎𝑎𝐸𝐸

𝑎𝑎𝑎𝑎𝑇𝑇
=
𝑎𝑎𝑎𝑎𝑅𝑅
𝑎𝑎𝑎𝑎𝑇𝑇

= 1 −
𝑎𝑎𝑎𝑎𝐸𝐸
𝑎𝑎𝑎𝑎𝑇𝑇

 Equation 3-57 

where SST= total sum of squares (= ∑(𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�)2), SSE = sum of square errors or residuals (=

∑�𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��
2), SSR = the regression sum of squares (= ∑�𝑌𝑌𝚤𝚤� − 𝑌𝑌𝚤𝚤��

2). 

𝑅𝑅𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑟𝑟𝑡𝑡𝑒𝑒𝑑𝑑2 = 1 − �
𝑎𝑎 − 1
𝑎𝑎 − 𝑎𝑎

�
𝑎𝑎𝑎𝑎𝐸𝐸
𝑎𝑎𝑎𝑎𝑇𝑇

 Equation 3-58 

where n is the number of observations and p is the number of independent variables. 

Instead of R-square, the corrected Akaike's Information Criterion (AIC) (Equation 3-59) and the 

Bayesian Information Criterion (BIC, Equation 3-60) can be used for comparing linear models 

(Akaike, 1974; Burnham and Anderson, 2004). Since the results both from minimising the least 

squares function (Equation 3-11) and from maximising likelihood function are identical in the OLS 
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estimation (Washington et al., 2010), the statistics of AIC and BIC can be derived in OLS as well 

as GLS estimations. Therefore, the criteria can also be used for comparison between OLS and GLS 

estimated models. Both criteria are calculated from multiplying the log-likelihood by -2, so the 

models having the smallest AIC and BIC from the same dataset are regarded as better models. The 

difference between the two criteria is that BIC penalises models as the number of parameters 

increases more than AIC does. 

𝑉𝑉𝑎𝑎𝐶𝐶 = −2𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑚𝑚𝑘𝑘𝑎𝑎𝑎𝑎𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑑𝑑 + 2𝑘𝑘 +
2𝑘𝑘(𝑘𝑘 + 1)

(𝑎𝑎 − 𝑘𝑘 − 1)
 Equation 3-59 

𝑚𝑚𝑎𝑎𝐶𝐶 = −2𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑚𝑚𝑘𝑘𝑎𝑎𝑎𝑎𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑑𝑑 + 𝑘𝑘𝑎𝑎𝑎𝑎(𝑎𝑎) Equation 3-60 

where k is the number of parameters and n is the number of observations in the estimated models.  

RMSE and MAPE (comparison between linear and nonlinear models) 

In addition to the comparison between linear estimation models, finding optimal models through 

the comparison between linear and nonlinear estimation models is also important in this study. This 

is also meaningful in that the newly introduced model in this thesis is compared with the existing 

modelling approach. As discussed above, nonlinear regression analysis does not produce many 

statistical measures of determination unlike linear estimation because it estimates models through 

iterative calculations to minimize the errors between observations and predicted values without 

prior assumptions including the distribution and variance of residuals. 

Therefore, statistical accuracy measures, which are calculated from errors and observations, can be 

used to compare linear and nonlinear models. Most of the measures commonly include the absolute 

or squared of the errors in the equation, and evaluate how well the model can explain the 

observations. Among these measures, it is known that RMSE (MSE), MAD and MAPE are mainly 

used for transportation studies (Washington et al., 2010). Since RMSE gives comparatively high 

weights to large errors before they are averaged, RMSE is more useful than MAD when evaluating 

models where large errors are undesirable. In addition, MAPE can be useful in that it produces the 

average of the ratio of the predicted values to actual values. Therefore, both measures of RMSE 

and MAPE are used to compare the accuracy of all models in this study. 
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Table 3-17 Statistical accuracy measures for the model evaluation  

Measure Equation Measure Equation 

Mean error 
𝑀𝑀𝐸𝐸 =

∑𝜀𝜀𝑖𝑖
𝑎𝑎

 
Mean absolute 

deviation 
𝑀𝑀𝑉𝑉𝐷𝐷 =

∑ |𝜀𝜀𝑖𝑖|
𝑎𝑎

 

Sum of squared 

errors 
𝑎𝑎𝑎𝑎𝐸𝐸 = �𝜀𝜀𝑖𝑖2 Mean squared error 

𝑀𝑀𝑎𝑎𝐸𝐸 =
∑𝜀𝜀𝑖𝑖2

𝑎𝑎
 

Root mean squared 

error 𝑅𝑅𝑀𝑀𝑎𝑎𝐸𝐸 = �∑𝜀𝜀𝑖𝑖
2

𝑎𝑎
 

Standard deviation 

of errors 𝑎𝑎𝐷𝐷𝐸𝐸 = � ∑𝜀𝜀𝑖𝑖2

𝑎𝑎 − 1
 

Percentage error 
𝑃𝑃𝐸𝐸𝑡𝑡 =

𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

× 100% 
Mean percentage 

error 
𝑀𝑀𝑃𝑃𝐸𝐸 =

∑𝑃𝑃𝐸𝐸𝑖𝑖
𝑎𝑎

 

Mean absolute 

percentage error 
𝑀𝑀𝑉𝑉𝑃𝑃𝐸𝐸 =

∑ |𝑃𝑃𝐸𝐸𝑖𝑖|
𝑎𝑎

 
  

Source: Washington et al. (2010) 

 

3.6.2. 10-fold cross-validation 

Classification in statistics or machine learning is implemented for identifying the difference 

between a new observation and analysed dataset and as such classifiers can be defined as the 

algorithm for classification. Thus, classifiers enable a comparison of models by presenting 

meaningful conclusions in a systemic manner. Kohavi (1995) suggests that k-fold cross-validation 

(CV) has good performance when comparing the predictability of analysed models for reducing 

biases. In k-fold CV, the whole dataset is randomly split into k subsets having almost equal size 

(Figure 3-13). Firstly, (k-1) subsets are regarded as training samples and the other subset is set as 

the test samples. By using training samples, the analysed models are derived and the accuracy 

measure (𝑉𝑉𝑖𝑖 in Equation 3-61, e.g. MAPE, RMSE) of each model is calculated from true 

(observed) in test samples and predicted values. This process is repeated k times and therefore k 

individual accuracy measures are calculated. The overall accuracy of analysed models is compared 

from calculating the average of k measures as in Equation 3-58. 



 Chapter 3. Research Methodology  

 

103 

  

Figure 3-13 Process of k-fold cross-validation (training and tested set) 

  

Source: Ren et al. (2019) 

CVk =  
1
𝑘𝑘
�𝑉𝑉𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 Equation 3-61 

where CVk is the overall accuracy from k-fold CV, 𝑉𝑉𝑖𝑖 is the accuracy measure of the ith fold. 

It is necessary to select the k value carefully in k-fold CV even though there is no formal rule for k 

(Kuhn and Johnson, 2013). k=5 or k=10 are common choices in many studies. This study adopted 

10-fold CV because 5-fold CV could cause statistical problems caused by there being low number 

of training samples. In other words, the number of training samples (63=7*9) in 10-fold CV is 

more appropriate for modelling than that (56=14*4) in 5-fold CV. Although both approaches 

would be eligible to this study in that the minimum number of samples for model estimations 

ranges from 40 to 80 (Section 3.5.1), it can be said that it would be less statistically problematic to 

adopt 10-fold CV that has more number of training samples.  
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3.7. Summary 

From the literature review and the initial case study, this study raised the research issue of whether 

the current VDFs are appropriate for explaining the diversity of links only with free-flow travel 

time (FFTT) and road capacity. This chapter suggests the way in which this thesis will seek to 

overcome the limitations of current VDFs with the following two approaches: the identification of 

influential factors on travel time and the establishment of new reliable approaches for the empirical 

data analysis. The first one aims to incorporate additional variables to travel time estimation 

models and the second to develop other statistical estimation methods. 

The part of the research methodology for identifying the influential factors is as follows. The initial 

case study (Section 3.2) confirmed that the uncertainty of FFTT and road capacity cause the error 

in travel time estimation for a virtual bottleneck section. FE modelling by LSDV in Section 3.3 

suggests how to identify the influential factors on travel time estimation models to replace the 

current FFTT and road capacity. In addition, Section 3.4 explains how to represent each link 

attributes effectively, focusing on the spatial values such as space-mean speed and the overall 

geometric features of the link. 

The other part of the research methodology for establishing new statistical estimation methods is as 

follows: unlike the previous studies that used the NLS estimation with FFTT and road capacity, 

Section 3.3 devised linear estimation methods. Whilst the previous approach has the drawbacks of 

confining the estimated models to the dataset used for modelling, the linear estimation has merits of 

generalising the models by verifying the statistical significance. According to their statistical 

assumptions, the linear estimation was divided into two methods: OLS and GLS estimations. The 

base model was determined as a quadratic function from the initial case study (Section 3.2). The 

OLS estimation is appropriate when to consider the interaction effects between variables as well as 

the model transformation. However, the OLS estimation cannot guarantee the statistical 

significance when violating its assumptions, especially with regard to the variance-covariance 

structure of residuals. The GLS estimation is a more general approach than the OLS estimation in 

that the GLS estimation assumes the varying structure of residuals based on the maximum 

likelihood estimation. Therefore, this study focuses more on the GLS estimation as a means of 

replacing the current approach of the NLS estimation. 

To select the most appropriate feasible model, this chapter suggests many statistical accuracy 

measures for the comparison of the estimated models. After verifying spatial transferability by 10-

fold validation, the statistical measures including AIC, BIC, RMSE, MAPE, etc. are used for the 

comparison. As well as the statistical significance, from the viewpoint of traffic assignment, this 

study proposed the practical applicability of the estimated models.  
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Chapter 4. Identification of Influential Factors for Models 

4.1. Introduction 

The main concern of this study is to develop travel time estimation models which take into account 

geometric features; more specifically, its purpose is to develop link-performance functions that can 

replace the existing VDFs, which have road capacity and free speed as constants. Prior to 

developing feasible models, it is necessary to investigate which factors influence statistically 

estimated models and how much these factors contribute to the models. Using the dataset collected 

from the selected cases for a month, this study quantitatively measured the impact of various 

external conditions as well as geometric features. For ease of identification of these factors, this 

chapter is divided into three sections: data selection; factors identification by the OLS estimation; 

and factors identification by the NLS estimation. The GLS estimation method is excluded from this 

chapter because the estimation requires a large number of iterative calculations with one-month 

time-series data and because this chapter needs overall goodness of fit from various models, not the 

efficiency of coefficients. 

Firstly, Section 4.2 presents the descriptive analysis of the entire data depending on traffic flow and 

geometric features. In addition, the one-month dataset is identified as panel data for fixed effects 

(FE) modelling, which is one of the key points in this chapter. The entities of the panel data noted 

in this study are links, routes, brightness, date, day (weekday and weekend) and weather. Among 

these, geometric features are endogenous to the link entity. 

Secondly, Section 4.3 suggests that the existing VDF (BPR function) can customise the one-month 

dataset as a reference model in this chapter. The NLS estimation also shows how geometric 

variables change the sum of errors by adding geometric IVs to BPR function. In addition, since 

existing VDFs need to determine road capacity in advance, sensitivity analysis is conducted to 

investigate how the variation in road capacity affects model accuracy. 

Lastly, Section 4.4 attempts to identify predictors that could be included in the model through two 

OLS estimations. The comparison of pooled OLS (POLS) estimation with and without geometric 

features suggests how geometric features can affect the models. FE modelling by least squares 

dummy variables (LSDV) can determine generalized effects, dividing the entire dataset according 

to the abovementioned entities. In addition, RE modelling is implemented by recognising the 

dataset as the panel data for the comparison with FE modelling.  
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4.2. Data selection 

4.2.1. Plot observation  

Before carrying out various statistical estimations, scatter plots were examined to find the overall 

relationships between variables. Figure 4-1 shows all scatter plots including data from congested 

states. The scatter plot used for statistical estimations can be seen in Figure 4-2 after the data 

processing mentioned in Section 3.4.3. As the scatter plot between DV and TF has large variation 

because it was observed in all 72 cases every 15 minutes for one month, it is difficult to explain the 

observations in terms only of the relationship between two variables. Therefore, a more detailed 

analysis considering geometric variables was required in order to clarify the relationship between 

variables more precisely.  

Figure 4-1 Scatter plot including congestion states 

 

Box plots of DV by geometric features 

Box plots were investigated for finding linear trends of the relationships between DV and each 

geometric variable. Four box plots depending on geometric variables can show the approximate 

mean and standard errors of DV according to each section (From Figure 4-3 to Figure 4-6). All 

geometric features act to increase the average travel time without considering traffic flow; in 

particular, RISE and FALL variables have a comparatively high slope of linear relationship with 
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average travel time. However, it is necessary to note that the distribution (variation of box plots) of 

DV depends on the average traffic volume in each section. In other words, the mean value of the 

box plot of a busy motorway is higher than that of a quiet motorway.  

Figure 4-2 Scatter plot between DV and IV1 (TF) after data processing 

 

Figure 4-3 Box plot of DV by IV2 (TR) 

 
Note: The red line is a reference for finding the trend between Inv_SPD and TR. 
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Figure 4-4 Box plot of DV by IV3 (RISE) 

 

Figure 4-5 Box plot of DV by IV4 (FALL) 

 



 Chapter 4. Identification of Influential Factors for Models  

 

109 

  

Figure 4-6 Box plot of DV by IV5 (BEND) 

 

Observation of the 15th percentile values of DV by geometric features 

The 85th percentile value of speed in transportation studies is generally used for road design or data 

comparison (Abbas et al., 2011; Castro et al., 2011). The 85th percentile value of speed is 

equivalent to the 15th percentile value of inverse speed, which is close to FFS. The 15th percentile 

value of DV is useful for determining how each geometric variable changes the travel time in free-

flow states (Figure 4-7). Notably, BEND has the negative linear relationship with the 15th 

percentile value of DV, which is the opposite result compared to the box plot analysis. 

Observation of the 85th percentile values of DV by geometric features 

The 85th percentile value of DV can explain moderate or congested traffic situations. The linear 

relationship between the 85th percentile values and each geometric value can enable an examination 

to be made of how much each geometric feature can affect travel time in comparatively high traffic 

flow. Three geometric features of TR, RISE and FALL exhibit the same trends with the analysis 

from box plots and the 15th percentile values, but BEND has a different direction from the analysis 

of the 15th percentile values, which means the same direction with box plots by BEND. 
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Figure 4-7 15th percentile values of DV by geometric variables for one month 

 

Figure 4-8 85th percentile values of DV by geometric variables for one month 
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4.2.2. Framing panel data (entity identification) 

As mentioned in Section 3.3.2, panel data, which is also known as longitudinal or cross-sectional 

time-series data, enables the control of variables that cannot be measured across entities or time by 

fixed effects modelling. In addition, panel data allows multilevel or hierarchical modelling at 

different levels of entities. Therefore, identifying entities and time from the dataset should precede 

fixed effects modelling. The identified entities can be divided into the six groups: links, routes, 

dates, weather, weekday and weekend, and brightness.  

Links 

The number of links in this study is 72, which is the same as the number of cases. The entity of a 

link can explain the effects that cannot be measured between links. The effects by the link entity 

can include link geometric features (including other features not considered in this study): 

landscape, the distance from an interchange, road accessories (e.g. road signs, guardrail types), 

pavement quality and other features that vary across links but do not change across time.  

Routes (Lines) 

The entity of routes is a broader classification than links. As can be seen from Table 3-15, routes 

consist of several links. The number of routes in this study is 12 and the number of links in one 

route ranges from one to twelve. The entity of routes can reflect differences according to the region 

and overall terrain where the routes are located.  

Brightness 

Brightness can affect drivers’ behaviour because of differences in visibility between daytime and 

nighttime (Bella et al., 2014). The effects of the brightness entity were also considered in this 

study. The dataset was divided into daytime and nighttime data rows based on two time periods - 

the average time of sunrise and sunset in September 2018, which worked out as around 07.00 and 

19.00 hours respectively. This entity can explain in one model, the extent to which travel time is 

different between daytime and nighttime.  

Date 

Whilst models using the above two entities can control time-invariant effects, date can control 

time-varying unobserved variables, which are time-fixed effects. For example, traffic patterns can 

vary on any individual day in September 2018 for many different reasons such as logistics (related 

to traffic composition), road maintenance, and national holidays. The dummy variables of date can 

explain this daily change in travel time estimation models in detail.  
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Weekday and Weekend 

Days of the week are known to affect traffic patterns (Weijermars and van Berkum, 2004; Cools et 

al., 2007; Gao and Niemeier, 2007). In particular, Cools et al. (2007) found that daily traffic flows 

during weekends have different patterns from those on weekdays. By dividing the dataset into 

weekdays and weekends, this study found the effects on travel time estimation models according to 

days of the week. With this approach, the data on rainy days was excluded because the impact of 

weather could affect travel time in one model and thus the impact of days cannot be separated.  

Weather 

Weather is also one of the influential factors in travel time estimation models. Many studies found 

the reduction of FFS and road capacity due to the weather condition (Agarwal et al., 2005; Rakha 

et al., 2007; USHCM, 2010; Kim, 2013). The only factor related to weather in the dataset is based 

on the amount of rainfall because the dataset is measured during the autumn season in South Korea. 

There is no specific correlation made between traffic values and the amount of rainfall in USHCM 

(2010), but Agarwal et al. (2005), Rakha et al. (2007) and Kim (2013) suggested a reduction in 

their in proportion to the amount of hourly rainfall (Table 4-1). Although it is necessary to collect 

the information of hourly rainfall to identify weather effects in detail, this study considered only the 

amount of daily rainfall (Table 4-2) referring to the website7 of the Korean meteorological 

administration because this study does not aim to quantify the effects of rainfall. The data rows 

recorded in locally rainfall days were excluded from fixed effects modelling because it is difficult 

to identify the impact of rainfall, which is affected by how far weather observatories are from the 

selected cases.  

Table 4-1 Research about reduction rate of traffic values by hourly rainfall 

 

                                                      
7 http://www.weather.go.kr/weather/climate/past_cal.jsp 

Study Rainfall Road capacity Congestion speed FFS
trace (~0.01inch/h) 1~3% 1~2%
light(0.01~0.25inch/h) 5~10% 2~4%
Heavy(0.25inch/h~) 10~17% 4~7%
light(~0.1mm/h) 10~11% 8~10% 2~3.6%
rain(~16mm/h) 10~11% 8~14% 6~9%
0~5mm/h 20.58% 2.88%
5~10mm/h 30.42% 6.42%
10~20mm/h 31.63% 8.38%
20mm/h~ 35.25% 13.07%Kim (2013)

Manish Agarwal et al. (2005)

Hesham Rakha et al. (2006)

http://www.weather.go.kr/weather/climate/past_cal.jsp
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Table 4-2 Daily rainfall by regional observatories in September of 2018 

 
Note. Blue shades: nationwide rainfall days; Grey shades: local rainfall days. 

Source: Collected from http://www.weather.go.kr/weather/climate/past_table.jsp 

  

Date Gwangju Suncheon Namwon Busan Changwon Sangju Youngju Choongju Jecheon Wonju Chuncheon Gangreung
0901 1 34.2 82.8 46.4
0902 4.8 1.2 3.3 0.6 0.5
0903 12.7 11 4.2 57.2 48.2 8.4 22 125.7 96.5 80.3 34.1 14
0904 76.1 100 48.5 0 17 59.9 91 14.2 20 5.1 3.4
0905
0906 1.7 0 0.1 0 0 0.5 3.2
0907 8.2 6 10.3 15.6 8.5 0.4 3.3 5.5 0.9 4.2
0908 0 0.2
0909 5.7
0910 0
0911
0912 0
0913 3.9 19.5 0.9 8.6 11.6 0.9
0914 3.4 9.8 1.3 47.7 29.4 15.3 6 0.8 1.5 1 0 0.1
0915 2 0 3.6 1.4 7 2.8 5.5 1.7 4 7.5 0 0.4
0916 0.3 0.5 0.7 0.5 0.2 0.5 0.6
0917 0 0.2 0.3 0.3 0 0
0918
0919 1 1.9 0 0.5 0.5 0.7 0.7 0.3
0920 1.7 11.3 0.7 11.4 12.2 11 12.5 3.9 23.5 13.5 12.2 17.2
0921 18 20 20 27.2 28 35.5 27.5 33.4 33.5 35.1 17.9 24.4
0922 0.1 0.1
0923 0.2 0.4 0 0.1
0924
0925
0926 2.4
0927
0928 0 0
0929 37.1 6.4
0930 13.7 0.6
Sum 129.7 218.5 91.3 308.4 216.4 133.8 166.5 184.9 185.5 147.6 69.9 66.1

http://www.weather.go.kr/weather/climate/past_table.jsp
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4.3. Analysis of factors by BPR function  

4.3.1. Model specification  

When recalling the NLS estimation model based on BPR function (Equation 4-1), the model 

consists of two relationships: the relationship between travel time (DV) and traffic flow (IV1); and 

the relationship between travel time (DV) and geometric variables (from IV2 to IV5). As 

previously discussed in Section 3.3.3, the first relationship is the existing approach of BPR 

function, which is widely used for motorway VDFs. In order to compare both estimation results, 

the dataset used for the NLS estimation is the one-month dataset as with the OLS estimation in 

Section 4.3. As investigated in the initial data analysis (Section 3.2.3), the predetermination of road 

capacity is essential for the NLS estimation. The nominal capacity (Cn), which is calculated as 

2,404vph from the one-month dataset, is used for the NLS estimation (Section 3.3.3). 

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �1 + 𝛼𝛼 �
𝑇𝑇𝑇𝑇
𝐶𝐶
�
𝛽𝛽
�+ �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌 + 𝑎𝑎 Equation 4-1 

The estimated models based on BPR function are denoted as Table 4-3 according to the inclusion 

of geometric variables. In particular, BPR1 can be a reference model for the comparison between 

derived models because it is a customised model based on the BPR function by using the dataset 

collected in this study. The difference between BPR1 and BPR2 is whether geometric variables are 

included in estimated models. 

Table 4-3 Customised models based on BPR function  

Model Name Independent Variables Explanation 
BPR1 TF Customisation of BPR function by predetermining 

road capacity (existing approach) 

BPR2 TF, TR, RISE, FALL, 
BEND 

Inclusion of geometric variables in addition to the 
customised BPR function 

 

4.3.2. Customisation of BPR function (existing approach) 

Similar with the existing BPR function, this approach does not consider the geometric variables in 

the model. Namely, the term of ∑𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌 in Equation 4-1 is not included. The estimated 

model assumes that road capacity could capture all link characteristics. The difference with the 

existing BPR function customising approaches is that this approach does not predetermine FFTT. 

As FFTT is the intercept in estimated models, it is not necessary to predetermine FFTT in the 
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iteration process of “Gauss-Newton” algorithm (Section 3.3.3). This finding is in line with the 

initial data analysis. ‘nls()’ function, which is based on “Gauss-Newton” algorithm in the software 

package “R”, was used for the NLS estimation.  

The iteration results and thereafter derived parameters of the estimated model (BPR1) are shown in 

Table 4-3. The starting value of FFTT for the iteration is 36 (seconds per km), which is travel time 

corresponding to most motorway speed limit (100kph) in South Korea. The starting values of 

parameters are 0.15 and 4 for parameters respectively, which are the same values of the standard 

BPR function. FFTT in BPR1 is 35.8, and the derived parameters (‘a’ and ‘b’ in Table 4-3) of the 

models are 0.1704 and 4.040. RMSE of this model is calculated as 4.49 and the convergence 

tolerance, which means the difference of estimated errors between iterations (as it is smaller, the 

model accuracy increases), is 1.695e-06, which is the ratio change before and after iterations 

(Equation 3-48). The blue points (fitted line) in Figure 4-9 show the typical form of VDF without 

geometric variables. 

Table 4-4 Existing approach based on BPR function between DV and TF  

#Predetermination of road capacity 
Data.NLS$capacity <-2404 
 
# Nonlinear estimation without geometric IVs 
BPR1 <- nls(Data.NLS$Inv_SPD ~ FFTT*(1+a*(Data.NLS$TF/Data.NLS$capacity)^b), 
start = list(FFTT=36, a =0.15, b = 4), data=Data.NLS, trace = TRUE)      
## 2986698 :  36.00  0.15  4.00 
## 2980454 :  35.7898646  0.1703606  4.0484791 
## 2980453 :  35.7895966  0.1704273  4.0391423 
## 2980453 :  35.789640  0.170437  4.039913 
summary(BPR1) 
##  
## Formula: Data.NLS$Inv_SPD ~ FFTT * (1 + a * (Data.NLS$TF/Data.NLS$capacit
y)^b) 
##  
## Parameters: 
##       Estimate Std. Error t value Pr(>|t|)     
## FFTT 35.789640   0.013418 2667.33   <2e-16 *** 
## a     0.170437   0.003184   53.52   <2e-16 *** 
## b     4.039913   0.095716   42.21   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error (≈RMSE): 4.490 on 147828 degrees of freedom 
##  
## Number of iterations to convergence: 3  
## Achieved convergence tolerance: 1.695e-06 
 

where the coefficients of ‘a’ and ‘b’ represent ‘α’ and ‘β’ in Equation 4-1. 



Chapter 4. Identification of Influential Factors for Models 

 

  116  

 

Figure 4-9 Fitted line of NLS estimation (BPR function) between DV and TF  

 

4.3.3. Customisation of BPR function including geometric features 

Based on BPR1, this approach does consider the geometric variables in the model. In other words, 

all the terms in Equation 4-1 are used for model estimation. The estimated model (BPR2) is based 

on the assumptions that road capacity cannot capture all link characteristics and that geometric 

features can be separated from road capacity in the model. Other estimation methods are the same 

as for BPR1.  

FFTT and the derived parameters of BPR2 are shown as yellow shades in Table 4-5. The starting 

values of the geometry-related parameters are set at zero based on the assumptions that there would 

be no effects of link geometry once road capacity is defined and that the other starting values, 

except for geometry-related parameters, are same as BPR1. FFTT in BPR2 was estimated as 35.22, 

and TF-related parameters (‘a’ and ‘b’ in Table 4-5) were derived as 0.1779 and 4.051 respectively. 

The parameters of geometric independent variables (from ‘c’ and ‘f’ in Table 4-5) are 1.238e-03 

for TR, -2.560e-02 for RISE, 2.222e-01 for FALL and 9.524e-02 for BEND respectively. 

Moreover, RMSE of BPR2 is estimated as 4.35. Finally, the fitted lines of BPR2 between DV and 

TF reflecting geometric variables were derived (Figure 4-10).  

Table 4-5 NLS estimation with TF and geometric variables 

#Definition of road capacity 
Data.NLS$capacity <-2404 
 
# Nonlinear estimation with geometric IVs 
BPR2 <- nls(Data.NLS$Inv_SPD ~ FFTT*(1+a*(Data.NLS$TF/Data.NLS$capacity)^b) +
 c*Data.NLS$TR + d*Data.NLS$RISE + e*Data.NLS$FALL + f*Data.NLS$BEND, start =
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 list(FFTT=36, a =0.15, b =4, c=0, d=0, e=0, f=0), data=Data.NLS, trace = TRU
E)    
## 2986698 :  36.00  0.15  4.00  0.00  0.00  0.00  0.00 
## 2797301 :  35.2212  0.1774  4.0665  0.0012 -0.0256  0.2222  0.0952 
## 2797299 :  35.2200  0.1779  4.0484  0.0012 -0.0255  0.2222  0.0952 
## 2797299 :  35.2203  0.1779  4.0510  0.0012 -0.0256  0.2222  0.0952 
 
summary(BPR2) 
##  
## Formula: Data.NLS$Inv_SPD ~ FFTT * (1 + a * (Data.NLS$TF/Data.NLS$capacit
y)^b) + c * Data.NLS$TR + d * Data.NLS$RISE + e * Data.NLS$FALL +  
f * Data.NLS$BEND 
##  
## Parameters: 
##        Estimate Std. Error t value Pr(>|t|)     
## FFTT  3.522e+01  8.756e-02  402.22   <2e-16 *** 
## a     1.779e-01  3.170e-03   56.13   <2e-16 *** 
## b     4.051e+00  9.076e-02   44.63   <2e-16 *** 
## c     1.238e-03  9.199e-05   13.46   <2e-16 *** 
## d    -2.560e-02  2.404e-03  -10.65   <2e-16 *** 
## e     2.222e-01  2.857e-03   77.77   <2e-16 *** 
## f     9.524e-02  2.230e-03   42.70   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error (≈RMSE): 4.350 on 147824 degrees of freedom 
##  
## Number of iterations to convergence: 3  
## Achieved convergence tolerance: 9.915e-06 

where the coefficients of ‘a’ and ‘b’ represent ‘α’ and ‘β’ in Equation 4-1; and the coefficients of 

‘c’, ‘d’, ‘e’ and ‘f’ represent ‘𝜸𝜸𝒌𝒌’ (a vector) in Equation 4-1. 

 Figure 4-10 Fitted line between DV and TF in BPR2 
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4.3.4. Sensitivity analysis of differences in road capacity 

As previously discussed in Section 3.3.3, it is questionable whether the nominal road capacity (Cn) 

defined in this study would be suitable for the NLS estimation because of the road capacity 

uncertainty. Therefore, this section examines how estimated models vary according to different 

values of road capacity. Table 4-6 shows the parameters which have been estimated differently 

based on 80-120% of the nominal road capacity as well as by the road capacity of 3,572vph used in 

Korea; the latter is used for 2-lane rural motorways in the Korean VDF (Table 2-5). Only the 

parameter ‘a’ of all parameters has a positive correlation with the predetermined value of road 

capacity and the other parameters do not change despite the different values of road capacity. The 

parameter ‘a’ varies from 0.0692 for 80% of Cn to 0.3556 for 120% of Cn in BPR1; and from 

0.0720 for 80% of Cn to 0.3720 for 120% of Cn in BPR2. In particular, the value increases 

significantly in the estimated model from the road capacity proposed in the Korean VDF.   

Table 4-6 Sensitivity analysis of NLS estimation by different values of road capacity 

Note 1. ‘CKorea’ is the road capacity defined for 2-lane motorways in Korean VDF. 

2. The coefficients of ‘a’ and ‘b’ are TF-related parameters (‘α’ and ‘β’ in Equation 4-1); and the 

coefficients from ‘c’ to ‘f’ are link geometry-related parameters (‘𝜸𝜸𝒌𝒌’ in Equation 4-1). 

 

4.3.5. Summary  

Two phased approaches were adopted by NLS estimation based on the BPR function. Firstly, in 

order to clarify the effects of link geometry, two NLS estimation models were derived; BPR1 

without geometric variables as a reference model and BPR2 with them for comparison. These 

models predetermined the nominal road capacity as defined in this study, but the uncertainty of 

road capacity measurement and definition still remains. Secondly, sensitivity analysis was 

FFTT a b FFTT a b c d e f

80%  of Cn (1,923vph) 35.79 0.0692 4.0397 35.22 0.0720 4.0510 0.0012 -0.0256 0.2222 0.0953

90%  of Cn (2,164vph) 35.79 0.1114 4.0397 35.22 0.1162 4.0510 0.0012 -0.0256 0.2222 0.0953

Cn (2,404vph) 35.79 0.1704 4.0397 35.22 0.1779 4.0510 0.0012 -0.0256 0.2222 0.0953

110%  of Cn (2,644vph) 35.79 0.2503 4.0397 35.22 0.2616 4.0510 0.0012 -0.0256 0.2222 0.0953

120%  of Cn (2,884vph) 35.79 0.3556 4.0397 35.22 0.3720 4.0510 0.0012 -0.0256 0.2222 0.0953

CKorea (3,572vph) 35.79 0.8439 4.0397 35.22 0.8850 4.0510 0.0012 -0.0256 0.2222 0.0953

RMSE

                                      Model
Road Capacity

4.490 4.350

BPR1 BPR2
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implemented in order to identify the uncertainty of road capacity in the process of NLS modelling. 

The statistical significance test and validation of each of the derived coefficients of variables are 

dealt in Chapter 5 while the overall change in coefficient values was investigated in this section. 

As a result of a two phased approach, the NLS estimation results from the one-month dataset can 

be subdivided into two: the effects of geometric features and the variation of parameters by 

different road capacity. Firstly, it is noteworthy that the geometry-related parameters can change 

FFTT and TF-related parameters between both models of BPR1 and BPR2 (Table 4-4 and Table 

4-5). This result was confirmed from the fitted red points (line) (Figure 4-10) between DV and TF 

in BPR2. Each red line represents shifts that take into account the different geometry in 72 cases of 

this study. Conversely, the blue fitted line (Figure 4-9) in BPR1 cannot explain the different 

geometry and aggregated the observations into FFTT and the parameters of ‘a’ and ‘b’. Therefore, 

this suggests that the geometry-related parameters can cover some of the different link 

characteristics apart from road capacity. 

Secondly, through the sensitivity analysis, it can be concluded that the parameter of ‘a’ is strongly 

correlated with road capacity (Table 4-6). In addition, it was established that RMSE is dependent 

only on model specification regardless of road capacity. In other words, the result supports the need 

for clarification of one of the research gaps (Section 2.6) in that it is difficult to determine which 

value of road capacity is the most suitable for current VDFs.   
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4.4. Analysis of factors by OLS linear estimation  

4.4.1. Model specification 

When recalling the linear estimation model for this study (Equation 4-2), pooled OLS (POLS) 

estimation can be used by making the assumption that all the selected variables can capture all 

time-fixed and entity-fixed characteristics. When POLS estimation is applied to this study, if five 

independent variables can explain travel time perfectly, the developed model can be used for every 

motorway section. In this situation, 𝜇𝜇𝑖𝑖 in Equation 4-2, which is the unobserved individual specific 

effects, can be dropped. In order to examine how geometric features affect the one-month dataset, 

POLS estimation was divided into two parts: the estimation between only DV and TF, and the 

estimation by adding geometric features. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡2 + �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮 + 𝜇𝜇𝑖𝑖  + 𝜆𝜆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 
Equation 4-2 

Moreover, as mentioned in Section 3.3.2, fixed effects modelling is an efficient way to find entity 

or time heterogeneity. As travel time can be affected by various factors that cannot be observed in 

ITS, this study tried to exclude those fixed effects in modelling. LSDV estimation was selected in 

this study because the approach can monitor the impact by each entity. In addition, fixed effects 

modelling is closely related to classifying entities. As mentioned in Section 4.2.2, the entities can 

be classified into six: links, routes (lines), brightness, date, day (weekday and weekend), and 

weather (rain).  

The models estimated by the OLS linear estimation can be denoted as Table 4-7 and Table 4-8, 

which classify the OLS linear models based on Equation 4-2. The reference model (MODEL1) in 

Table 4-7 is POLS linear estimation model by a quadratic function between only DV and IV1 (TF 

and TF2) without geometric variables because the link entity has the perfect correlation with 

geometric variables (Section 4.4.2) and the influential factors can be identified by FE models 

including link, date and both dummy variables. In comparison with MODEL1, MODEL2 in Table 

4-8 is POLS linear estimation model based on both a quadratic function between DV and IV1 (TF 

and TF2) and a simple linear function with geometric features. FE models from MODEL 2-1 to 2-4 

in Table 4-8 take into consideration the influential factors by routes, weekend, weather and date. 

Table 4-7 POLS and FE models based on a quadratic function with DV and TF  

Model Name Independent Variables Explanation 
MODEL1 TF, TF2 Quadratic model between Inv_SPD and TF.  

Replacement of existing BPR function. 
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Exclusion of road capacity and FFTT. 

MODEL1-1 TF, TF2, Dummy_Link Identification of fixed effects across links in 
comparison with MODEL1. 

MODEL1-2 TF, TF2, Dummy_Date Identification of fixed effects by date in 
comparison with MODEL1. 

MODEL1-3 TF, TF2, Dummy_Link, 
Dummy_Date 

Identification of two-way fixed effects by links and 
date in comparison with MODEL1, 1-1 and 1-2. 

Table 4-8 POLS and FE models after the inclusion of geometric variables on MODEL1 

Model Name Independent Variables Explanation 
MODEL2 TF, TF2, TR, RISE, 

FALL, BEND 
Quadratic model among Inv_SPD, TF and 
geometric variables.  

Inclusion of four geometric variables 

Exclusion of road capacity and FFTT. 

MODEL2-1 TF, TF2, TR, RISE, 
FALL, BEND,  
Dummy_Route 

Identification of fixed effects across routes in 
comparison with MODEL2. 

MODEL2-2 TF, TF2, TR, RISE, 
FALL,  BEND, 
Dummy_Brightness 

Identification of fixed effects by day and night time 
in comparison with MODEL2. 

MODEL2-3 TF, TF2, TR, RISE, 
FALL,  BEND, 
Dummy_Weekend 

Identification of fixed effects by weekday and 
weekend in comparison with MODEL2. 

MODEL2-4 TF, TF2, TR, RISE, 
FALL, BEND, 
Dummy_Weather 

Identification of fixed effects by rainy days in 
comparison with MODEL2. 

MODEL2-5 TF, TF2, TR, RISE, 
FALL, BEND, 
Dummy_Date 

Identification of fixed effects by date in comparison 
with MODEL2. 

 

4.4.2. POLS and FE models with DV and TF 

“MODEL1”: POLS estimation between DV and IV1 (TF and TF2)  

This approach follows the assumption of most existing studies about VDF models where travel 

time is dependent only on traffic flow. As this study cannot deny the basic relationship between 

travel time and traffic flow, so the relationship became the starting point of model estimation. 

Based on the initial analysis (Section 3.2.3), the base model was set as a quadratic function. The 
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variables of 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌,𝒊𝒊𝑮𝑮 in Equation 4-2 are not considered in this model. By using ‘lm()’ 

function for OLS linear estimation in “R”, the model (“MODEL1”) was derived (Table 4-9) with 

its estimators and the residual plot (Figure 4-11). However, the adjusted R-squared of this model, 

which is known as the coefficient of determination, is only 2.5% (0.02523). 

Table 4-9 Pooled OLS estimation between DV and IV1 by a quadratic function 

# Pooled OLS: Model estimation between DV and IV1 
MODEL1<-lm(mydf$Inv_SPD~mydf$TF+mydf$TF2) 
summary(MODEL1) 
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -12.4774  -3.2450  -0.7021   2.6852  23.8481  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  3.663e+01  3.304e-02 1108.79   <2e-16 *** 
## mydf$TF     -2.957e-03  8.434e-05  -35.06   <2e-16 *** 
## mydf$TF2     2.087e-06  4.210e-08   49.58   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.484 on 147828 degrees of freedom 
## Multiple R-squared:  0.02524,    Adjusted R-squared:  0.02523  
## F-statistic:  1914 on 2 and 147828 DF,  p-value: < 2.2e-16 

Figure 4-11 Residual plot of pooled OLS estimation between DV and TF 

 

“MODEL1-1”: FE model across links  

The LSDV model with the dummy variables of links can control time-invariant fixed effects within 

each link. As can be seen from Table 4-9 and Table 4-10, compared with MODEL1 whose R-
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squared is 2.5%, the R-squared of MODEL1-1 was 59.4%. Likewise, the range of residuals, which 

is from -12.5 to 23.8 in MODEL1, was reduced to from -12.3 to 23.5 in MODEL1-1. The estimated 

intercept of the model represents one of the 1st selected link (“1. KochangDamyang (6.23-

11.57k)_E”)8 because the number of dummy variables is always one less than the number of the 

entity (links). The estimated coefficient of each dummy variable means the difference of FFTT 

between “1. KochangDamyang (6.23-11.57k)_E” and each section. The result suggests that 

unobserved effects included in each link can affect travel time considerably. In other words, every 

link has its own characteristics that can determine travel time. In addition, it is noteworthy that the 

FE within links contains link geometry because geometric features in each section are fixed across 

time. Therefore, it is natural not to consider geometric variables from IV2 to IV5 in the FE model 

with the link entity (Table 4-10). Otherwise, the coefficients of the last four dummy variables (No. 

93, 94, 97 and 99 cases) in Table 4-10 cannot be estimated (denoted as ‘NA’) due to perfect 

correlation (Appendix A.5.1). 

Table 4-10 Result of FE modelling (LSDV) with the ‘Link’ entity 

#Model with link dummies 
MODEL1_1<-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + as.factor(mydf$Link)) 
summary(MODEL1_1) 

 

                                                      
8 See the first case of the list of cases in Section 3.5.2 
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Figure 4-12 Residual plot of fixed effects model within links 
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“MODEL1-2”: time-fixed effects model by date  

The LSDV model (MODEL1-2) that eliminates invariant effects by date can be derived as Table 

4-11. R2 of the model is 13.4%, which means that time-fixed effects have less impact on travel time 

than the link entity. The intercept of the model represents FFTT on 1st of September, which is 

34.98 (seconds/km). As with MODEL 1-1, the estimated coefficients of dummy variables means 

the difference of FFTT between 1st of September and each date. 

Table 4-11 Result of FE modelling (LSDV) with ‘Date’ entity (without geometric variables) 

#Model with date dummies (No geometry) 
MODEL1_2<-lm(mydf$Inv_SPD~mydf$TF+mydf$TF2+as.factor(mydf$Date)) 
summary(MODEL1_2) 
##                                
##  
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + as.factor(mydf$Date)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -13.6965  -3.0044  -0.6062   2.5675  25.0786  
## 
## Coefficients: 
##                          Estimate Std. Error t value Pr(>|t|)     
## (Intercept)             3.498e+01  6.710e-02 521.293  < 2e-16 *** 
## mydf$TF                -2.292e-03  8.023e-05 -28.568  < 2e-16 *** 
## mydf$TF2                2.262e-06  4.043e-08  55.951  < 2e-16 *** 
## as.factor(mydf$Date)2  -6.600e-01  8.520e-02  -7.747 9.47e-15 *** 
## as.factor(mydf$Date)3   2.405e+00  8.669e-02  27.741  < 2e-16 *** 

⁞ 
## as.factor(mydf$Date)29  6.412e-01  8.457e-02   7.582 3.44e-14 *** 
## as.factor(mydf$Date)30 -5.053e-01  8.674e-02  -5.826 5.69e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.227 on 147799 degrees of freedom 
Multiple R-squared:  0.1341, Adjusted R-squared:  0.1339  
F-statistic: 738.1 on 31 and 147799 DF,  p-value: < 2.2e-16 
 

 

“MODEL1-3”: two-way FE modelling with link and date entities 

Lastly, the two-way fixed effects modelling was implemented. The selected two fixed effects are 

link and date because the two entities have the minimum number of observations in cross-sectional 

and time-fixed effects. In addition, each R-squared of FE modelling by both entities of link and 

date is the highest value of cross-sectional and time specific entities respectively. The result of FE 

modelling by considering both entities can be shown in Table 4-12 (all coefficients can be seen in 

Appendix A.5.1). R-squared of the model is 68.2% and the range of residuals varies from -11.5 to 

24.1 (Table 4-12).  
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Table 4-12 Result of two-way FE modelling (LSDV) with both ‘Date’ and ‘Link’ entities 

#Model with date and link dummies 
MODEL1_3<-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + as.factor(mydf$Date) + as.fa
ctor(mydf$Link)) 
summary(MODEL1_3) 
##                                
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + as.factor(mydf$Date) + a
s.factor(mydf$Link)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -11.4554  -1.6166  -0.2194   1.2662  24.0820  
##  
## Coefficients: 
 
##                            Estimate Std. Error  t value Pr(>|t|)     
## (Intercept)               3.525e+01  6.993e-02  504.062  < 2e-16 *** 
## mydf$TF                  -5.284e-03  5.217e-05 -101.277  < 2e-16 *** 
## mydf$TF2                  3.507e-06  2.551e-08  137.469  < 2e-16 *** 
## as.factor(mydf$Date)2    -5.959e-01  5.161e-02  -11.546  < 2e-16 *** 

⁞ 
## as.factor(mydf$Date)30   -5.353e-01  5.256e-02  -10.185  < 2e-16 *** 
## (Link)10.GwangjuDaegu()S  6.190e+00  7.909e-02   78.271  < 2e-16 *** 

⁞ 
## (Link)99.Jungang()E       6.960e-01  7.903e-02    8.806  < 2e-16 *** 
 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.56 on 147728 degrees of freedom 
## Multiple R-squared:  0.6825, Adjusted R-squared:  0.6823  
## F-statistic:  3113 on 102 and 147728 DF,  p-value: < 2.2e-16  
 

Figure 4-13 Residual plot of two-way FE model 
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4.4.3. POLS and FE models including geometric variables 

“MODEL2”: POLS estimation with geometric variables:  

In order to investigate the effects of link geometry, four link geometric variables obtained from 72 

motorway sections are added to MODEL1 as independent variables. Therefore, the number of 

independent variables of the model (“MODEL2”) becomes six (Table 4-13). The model can 

explain the relationship between DV and IV1 (TF and TF2) with four geometric variables. 

Adjusted R-squared of MODEL2 was 8.6% (0.08584), which is improved by around 6.1% 

compared to MODEL1. In the same vein, the width of residual variation decreased (Figure 4-14). 

Table 4-13 Pooled OLS estimation with TF and geometric independent variables 

# Pooled OLS: Model with geometric features 
MODEL2<-lm(mydf$Inv_SPD~mydf$TF+mydf$TF2+mydf$TR+mydf$RISE+mydf$FALL+mydf$BEN
D) 
summary(MODEL2) 
##  
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + mydf$RISE +  
##     mydf$FALL + mydf$BEND) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -12.5457  -3.0571  -0.6077   2.6507  25.0981  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  3.618e+01  9.380e-02  385.74   <2e-16 *** 
## mydf$TF     -3.163e-03  8.183e-05  -38.65   <2e-16 *** 
## mydf$TF2     2.197e-06  4.081e-08   53.83   <2e-16 *** 
## mydf$TR      1.178e-03  9.193e-05   12.81   <2e-16 *** 
## mydf$RISE   -2.565e-02  2.401e-03  -10.69   <2e-16 *** 
## mydf$FALL    2.237e-01  2.855e-03   78.38   <2e-16 *** 
## mydf$BEND    9.488e-02  2.227e-03   42.61   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.342 on 147824 degrees of freedom 
## Multiple R-squared:  0.08588,    Adjusted R-squared:  0.08584  
## F-statistic:  2315 on 6 and 147824 DF,  p-value: < 2.2e-16 
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Figure 4-14 Residual plot of pooled OLS estimation between DV and TF 

 

“MODEL2-1”: FE model across routes (lines)  

Routes consist of links and as such the entity of routes is the collective concept of links. The 

purpose of FE modelling by this classification is to find how routes affect travel time. For example, 

some routes can be mainly used for logistics and others can be used for tourism. The result of 

route-specific FE modelling can be seen from Table 4-14. The estimated intercept of each route 

dummy variable is the difference with “Gwangju-Daegu” route. R-squared (26.6%) of MODEL2-1 

is improved by 18.3% compared to MODEL2 (8.6%), but the coefficient of determination is much 

lower than MODEL1-1 (59.3%). This result would be natural in that MODEL1-1 estimates the 

model in more detail than MODEL2-1 because each route consists of links.  

Table 4-14 Result of FE modelling (LSDV) with the ‘Route’ entity 

#Model with route dummies 
MODEL2_1 <-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + mydf$RISE + mydf
$FALL + mydf$BEND + as.factor(mydf$Line)) 
summary(MODEL2_1) 
##  
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + mydf$RISE + myd
f$FALL + mydf$BEND + as.factor(mydf$Line)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -13.4027  -2.5738  -0.2008   2.2486  24.7410  
##  
## Coefficients: 
##                           Estimate Std. Error  t value Pr(>|t|)     
## (Intercept)              3.937e+01  1.545e-01  254.768  < 2e-16 *** 
## mydf$TF                 -5.631e-03  7.752e-05  -72.638  < 2e-16 *** 
## mydf$TF2                 3.297e-06  3.771e-08   87.435  < 2e-16 *** 
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## mydf$TR                  3.427e-03  1.120e-04   30.587  < 2e-16 *** 
## mydf$RISE               -3.095e-02  2.991e-03  -10.348  < 2e-16 *** 
## mydf$FALL                1.741e-01  3.209e-03   54.263  < 2e-16 *** 
## mydf$BEND                7.987e-06  2.955e-03    0.003  0.998 
## (Line)Jungang           -2.128e+00  6.784e-02  -31.375  < 2e-16 *** 
## (Line)Jungang-Branch    -4.887e-01  6.678e-02   -7.318 2.54e-13 *** 
## (Line)Jungbunaeryuk      6.689e-01  6.402e-02   10.449  < 2e-16 *** 
## (Line)KochangDamyang    -4.773e+00  8.057e-02  -59.246  < 2e-16 *** 
## (Line)MuanGwangju       -1.701e+00  9.893e-02  -17.190  < 2e-16 *** 
## (Line)PyungtaekJaecheon -4.585e+00  5.778e-02  -79.343  < 2e-16 *** 
## (Line)SangjuYoungduk    -4.390e+00  5.767e-02  -76.115  < 2e-16 *** 
## (Line)SeoulYangyang     -5.866e+00  5.100e-02 -115.026  < 2e-16 *** 
## (Line)SuncheonWyanju    -1.777e+00  6.087e-02  -29.198  < 2e-16 *** 
## (Line)TongyoungDaejeon  -1.199e+00  6.267e-02  -19.125  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.891 on 147814 degrees of freedom 
## Multiple R-squared:  0.2661, Adjusted R-squared:  0.266  
## F-statistic:  3350 on 16 and 147814 DF,  p-value: < 2.2e-16 
 

“MODEL2-2”: FE model by brightness (day and night time) 

The entity of brightness is for time-fixed modelling that identifies how both daytime and nighttime 

can affect travel time. As mentioned in Section 4.2.2, day time was treated as falling between 07.00 

and 19.00; and night time during the remaining hours of a day and night. The result of FE 

modelling suggests that during the night time FFTT is larger by 1.3 (seconds per km) than that 

during daytime (Table 4-15). However, the overall R-squared (9.8%) of this model is little 

improved compared to MODEL2.  

Table 4-15 Result of FE modelling (LSDV) with the ‘Brightness’ entity 

#Model with brightness dummies 
MODEL2_2<-lm(mydf$Inv_SPD~mydf$TF+mydf$TF2+mydf$TR+mydf$RISE+mydf$FALL+mydf$B
END+as.factor(mydf$night)) 
summary(MODEL2_2) 
##  
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + mydf$RISE +  
##     mydf$FALL + mydf$BEND + as.factor(mydf$night)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -13.2084  -3.0274  -0.5624   2.6824  24.4239  
##  
## Coefficients: 
##                          Estimate Std. Error t value Pr(>|t|)     
## (Intercept)_FFTT        3.488e+01  9.754e-02 357.555  < 2e-16 *** 
## mydf$TF                -1.727e-03  8.725e-05 -19.794  < 2e-16 *** 
## mydf$TF2                1.699e-06  4.200e-08  40.448  < 2e-16 *** 
## mydf$TR                 1.476e-03  9.154e-05  16.120  < 2e-16 *** 
## mydf$RISE              -1.785e-02  2.390e-03  -7.466 8.29e-14 *** 
## mydf$FALL               2.126e-01  2.846e-03  74.701  < 2e-16 *** 
## mydf$BEND               9.833e-02  2.213e-03  44.436  < 2e-16 *** 
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## as.factor(mydf$night)1  1.269e+00  2.807e-02  45.224  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.313 on 147823 degrees of freedom 
## Multiple R-squared:  0.09835,    Adjusted R-squared:  0.09831  
## F-statistic:  2304 on 7 and 147823 DF,  p-value: < 2.2e-16 
 

“MODEL2-3”: FE model by day (weekday and weekend) 

As a result of FE modelling with the dummy variables of weekday and weekend, the overall R-

squared of the model increased from 8.6% (MODEL2) to 13.7% (MODEL2-3), and FFTT during 

weekends is found to be lower by 2.2 (seconds per km) than on weekdays (Table 4-16).  

Table 4-16 Result of FE modelling (LSDV) with the ‘Day (weekday and weekend)’ entity 

#Model with day dummies 
MODEL2_3 <-lm(mydf$Inv_SPD~mydf$TF+mydf$TF2+mydf$TR+mydf$RISE+mydf$FALL+mydf
$BEND+as.factor(mydf$Weekend)) 
summary(MODEL2_3) 
##  
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + mydf$RISE +  
##     mydf$FALL + mydf$BEND + as.factor(mydf$Weekend)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -13.1775  -2.9247  -0.5007   2.5178  26.6557  
##  
## Coefficients: 
##                            Estimate Std. Error t value Pr(>|t|)     
## (Intercept)_FFTT          3.656e+01  9.124e-02 400.660   <2e-16 *** 
## mydf$TF                  -2.481e-03  7.986e-05 -31.063   <2e-16 *** 
## mydf$TF2                  1.952e-06  3.975e-08  49.108   <2e-16 *** 
## mydf$TR                   1.252e-03  8.934e-05  14.020   <2e-16 *** 
## mydf$RISE                -2.301e-02  2.333e-03  -9.862   <2e-16 *** 
## mydf$FALL                 2.202e-01  2.774e-03  79.386   <2e-16 *** 
## mydf$BEND                 9.522e-02  2.164e-03  44.003   <2e-16 *** 
## as.factor(mydf$Weekend)1 -2.171e+00  2.324e-02 -93.389   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.22 on 147823 degrees of freedom 
## Multiple R-squared:  0.1368, Adjusted R-squared:  0.1368  
## F-statistic:  3347 on 7 and 147823 DF,  p-value: < 2.2e-16 
 

“MODEL2-4”: FE model by weather (rainy days) 

As mentioned in Section 4.2.2, in order to identify the effects of different weathers more clearly, 

the data for local rainy days were excluded. After excluding such data, only nationwide rainy days 

and dry days remained in the dataset. FFTT in rainy days is higher by 1.2 (seconds per km) than its 
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equivalent on dry days (Table 4-17). However, as with MODEL2-2, the R-squared of MODEL2-4 

was slightly improved.  

Table 4-17 Result of FE modelling (LSDV) with the ‘Weather’ entity 

#Model with Weather dummies 
mydf<-mydf[mydf$rainy2=="0",]   #locally rainy days exclusion 
MODEL2_4 <-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + 
mydf$RISE + mydf$FALL + mydf$BEND + as.factor(mydf$rainy1)) 
summary(MODEL2_4) 
##  
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR +  
mydf$RISE + mydf$FALL + mydf$BEND + as.factor(mydf$rainy1)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -12.8878  -3.0908  -0.5738   2.6743  24.4976  
##  
## Coefficients: 
##                             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)_FFTT           3.595e+01  1.262e-01  284.94   <2e-16 *** 
## mydf$TF                   -2.976e-03  1.056e-04  -28.18   <2e-16 *** 
## mydf$TF2                   2.138e-06  5.067e-08   42.20   <2e-16 *** 
## mydf$TR                    1.324e-03  1.233e-04   10.74   <2e-16 *** 
## mydf$RISE                 -3.020e-02  3.217e-03   -9.39   <2e-16 *** 
## mydf$FALL                  2.357e-01  3.837e-03   61.44   <2e-16 *** 
## mydf$BEND                  1.043e-01  2.983e-03   34.96   <2e-16 *** 
## as.factor(mydf$raining1)1  1.205e+00  3.390e-02   35.54   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.385 on 84024 degrees of freedom 
## Multiple R-squared:  0.1055, Adjusted R-squared:  0.1054  
## F-statistic:  1416 on 7 and 84024 DF,  p-value: < 2.2e-16 
 

“MODEL2-5”: time-fixed effects model by date 

Time-fixed effects models can capture individual-invariant effects varying across every day. The 

entity of date can find the unobserved fixed effects more than the entities of weather and day 

because the date entity splits both entities more. As can be seen from Table 4-18, the daily change 

was investigated. Compared to FFTT (intercept of the model) on 1st September 2018, the 

coefficients of the other 29 days in September vary from -1.2 (23rd) to 3.2 (11th). The R-squared of 

this FE model is 19.4%, which is higher by 10.8% than that of MODEL2. 

Table 4-18 Result of FE modelling (LSDV) with the ‘Date’ entity (with geometric variables) 

#Model with date dummies 
MODEL2_5<-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR +  
mydf$RISE + mydf$FALL + mydf$BEND + as.factor(mydf$Date)) 
summary(MODEL2_5) 
##  
## Call: 
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## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + mydf$RISE +  
##     mydf$FALL + mydf$BEND + as.factor(mydf$Date)) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -13.7344  -2.7816  -0.4828   2.4113  26.0050  
##  
## Coefficients: 
##                          Estimate Std. Error t value Pr(>|t|)     
## (Intercept)             3.427e+01  1.056e-01 324.515  < 2e-16 *** 
## mydf$TF                -2.491e-03  7.757e-05 -32.111  < 2e-16 *** 
## mydf$TF2                2.373e-06  3.906e-08  60.755  < 2e-16 *** 
## mydf$TR                 1.378e-03  8.637e-05  15.954  < 2e-16 *** 
## mydf$RISE              -1.929e-02  2.256e-03  -8.551  < 2e-16 *** 
## mydf$FALL               2.158e-01  2.682e-03  80.470  < 2e-16 *** 
## mydf$BEND               9.882e-02  2.092e-03  47.232  < 2e-16 *** 
## as.factor(mydf$Date)2  -6.480e-01  8.221e-02  -7.882 3.24e-15 *** 
## as.factor(mydf$Date)3   2.384e+00  8.366e-02  28.502  < 2e-16 *** 
## as.factor(mydf$Date)4   2.683e+00  8.351e-02  32.130  < 2e-16 *** 
## as.factor(mydf$Date)5   2.817e+00  8.292e-02  33.970  < 2e-16 *** 
## as.factor(mydf$Date)6   2.649e+00  8.279e-02  32.001  < 2e-16 *** 
## as.factor(mydf$Date)7   1.569e+00  8.178e-02  19.188  < 2e-16 *** 
## as.factor(mydf$Date)8  -8.155e-02  8.011e-02  -1.018    0.309     
## as.factor(mydf$Date)9  -7.852e-01  8.119e-02  -9.671  < 2e-16 *** 
## as.factor(mydf$Date)10  2.060e+00  8.241e-02  25.001  < 2e-16 *** 
## as.factor(mydf$Date)11  3.187e+00  8.300e-02  38.396  < 2e-16 *** 
## as.factor(mydf$Date)12  2.898e+00  8.288e-02  34.965  < 2e-16 *** 
## as.factor(mydf$Date)13  2.758e+00  8.258e-02  33.400  < 2e-16 *** 
## as.factor(mydf$Date)14  2.073e+00  8.162e-02  25.401  < 2e-16 *** 
## as.factor(mydf$Date)15  5.173e-01  8.086e-02   6.397 1.59e-10 *** 
## as.factor(mydf$Date)16 -7.020e-01  8.228e-02  -8.532  < 2e-16 *** 
## as.factor(mydf$Date)17  2.484e+00  8.231e-02  30.176  < 2e-16 *** 
## as.factor(mydf$Date)18  2.940e+00  8.270e-02  35.550  < 2e-16 *** 
## as.factor(mydf$Date)19  2.893e+00  8.265e-02  35.005  < 2e-16 *** 
## as.factor(mydf$Date)20  2.824e+00  8.298e-02  34.037  < 2e-16 *** 
## as.factor(mydf$Date)21  1.974e+00  8.179e-02  24.138  < 2e-16 *** 
## as.factor(mydf$Date)22 -4.732e-01  7.975e-02  -5.933 2.98e-09 *** 
## as.factor(mydf$Date)23 -1.242e+00  7.973e-02 -15.573  < 2e-16 *** 
## as.factor(mydf$Date)24 -1.171e+00  8.267e-02 -14.171  < 2e-16 *** 
## as.factor(mydf$Date)25 -8.035e-01  8.044e-02  -9.989  < 2e-16 *** 
## as.factor(mydf$Date)26 -1.019e+00  8.089e-02 -12.595  < 2e-16 *** 
## as.factor(mydf$Date)27  1.524e+00  8.341e-02  18.268  < 2e-16 *** 
## as.factor(mydf$Date)28  2.000e+00  8.201e-02  24.387  < 2e-16 *** 
## as.factor(mydf$Date)29  6.443e-01  8.161e-02   7.895 2.92e-15 *** 
## as.factor(mydf$Date)30 -4.988e-01  8.370e-02  -5.960 2.53e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.079 on 147795 degrees of freedom 
## Multiple R-squared:  0.1937, Adjusted R-squared:  0.1935  
## F-statistic:  1014 on 35 and 147795 DF,  p-value: < 2.2e-16 
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4.4.4. Comparison between fixed effects models 

The above results by FE modelling by LSDV from the one-month dataset can be summarised in 

Table 4-19 and Table 4-20: The first table compares pooled OLS model and FE models without 

geometric variables because the perfect correlation happens between the link entity and the 

geometric variables; and the latter table compares pooled OLS model and FE models with 

geometric features. FE modelling in this section focused more on the change in the values of 

estimated coefficients with the overall coefficient of determination (adjusted R-squared) rather than 

the statistical significance of each coefficient. The statistical significance of estimated coefficients 

is examined in detail in Chapter 5 because it is imperative to develop the feasible models for traffic 

assignment. 

First of all, as can be seen from Table 4-19, it can be concluded that there are many unobserved 

effects affecting travel time across links. The adjusted R2s of two FE models (MODEL1-1 and 

MODEL1-3) which take into account the link entity are much higher than MODEL1 and other FE 

models without the link entity. Moreover, in comparison with the coefficients of MODEL1, the 

coefficients of the two FE models including the link entity fluctuated more than those of other FE 

models. This result suggests therefore that unobserved effects resulting from the entity of link 

would affect travel time more than those from the entity of date. It also implies that link geometry, 

which is one of the link attributes, needs to be reflected in travel time estimation models. 

Secondly, Table 4-20 compares the pooled OLS estimation model (MODEL2) including geometric 

variables with FE models across other entities, which are routes (lines), brightness, day, weather 

and date. The analysis has some implications for both this thesis and future study. When looking at 

MODEL2-1 including the route entity, the adjusted R2 and the coefficients of the model differ 

widely from MODEL2. This finding is in line with the observation between MODEL1 and 

MODEL1-1in that routes (lines) are the collective groups of links. With regards to MODEL2-2, 

most percentage changes of the model’s coefficients with those of MODEL2 are higher than any 

other model with time-fixed effects. This indicates that there is a difference in traffic characteristics 

between day and night time9.  

                                                      
9 This finding is also useful for filtering data in developing feasible models (Chapter 5). Brightness 
needs to be considered in travel time estimation models. 
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Table 4-19 Summary of FE modelling by LSDV (without geometric variables) 

 
Note 1. '***' means that coefficients are statistically significant at 99.9% confidence level.  

2. The underlined values are percentage changes of coefficients between MODEL1 and each 

model. 

Table 4-20 Summary of FE modelling by LSDV (with geometric variables) 

 
Note: The underlined values are percentage changes between MODEL2 and each model. 

Model
Fixed effects - Link Date Link&Date

Variables                    Coef.                    Coef.                    Coef.                    Coef.

(Intercept) 3.66E+01 *** 3.70E+01 *** 3.50E+01 *** 3.53E+01 ***

TF -2.96E-03 *** -6.42E-03 *** -2.29E-03 *** -5.28E-03 ***

-117% 22% -79%

TF^2 2.09E-06 *** 3.49E-06 *** 2.26E-06 *** 3.51E-06 ***

67% 8% 68%

Degrees of Freedom 147,828 147,757 147,799 147,728

Adjusted R-squared 0.0252 0.5940 0.1339 0.6823

MODEL1-1MODEL1 MODEL1-3MODEL1-2

Model
Fixed effects - Route Brightness Day Weather Date

Variables           Coef.           Coef.           Coef.           Coef.           Coef.           Coef.

(Intercept) 3.62E+01 *** 3.94E+01 *** 3.49E+01 *** 3.66E+01 *** 3.60E+01 *** 3.43E+01 ***

TF -3.16E-03 *** -5.63E-03 *** -1.73E-03 *** -2.48E-03 *** -2.98E-03 *** -2.49E-03 ***

-78% 45% 22% 6% 21%

TF^2 2.20E-06 *** 3.30E-06 *** 1.70E-06 *** 1.95E-06 *** 2.14E-06 *** 2.37E-06 ***

50% -23% -11% -3% 8%

TR 1.18E-03 *** 3.43E-03 *** 1.48E-03 *** 1.25E-03 *** 1.32E-03 *** 1.38E-03 ***

191% 25% 6% 12% 17%

RISE -2.57E-02 *** -3.10E-02 *** -1.79E-02 *** -2.30E-02 *** -3.02E-02 *** -1.93E-02 ***

-21% 30% 10% -18% 25%

FALL 2.24E-01 *** 1.74E-01 *** 2.13E-01 *** 2.20E-01 *** 2.36E-01 *** 2.16E-01 ***

-22% -5% -2% 5% -4%

BEND 9.49E-02 *** 7.99E-06 9.83E-02 *** 9.52E-02 *** 1.04E-01 *** 9.88E-02 ***

-100% 4% 0% 10% 4%
Degrees of 
Freedom 147,824 147,814 147,823 149,193 84,024 147,795
Adjusted
R-squared 0.0858 0.2660 0.0983 0.1340 0.1054 0.1935

MODEL2-5MODEL2 MODEL2-1 MODEL2-2 MODEL2-3 MODEL2-4



 Chapter 4. Identification of Influential Factors for Models  

 

135 

  

4.4.5. Model finding with panel data: POLS, FE and RE modelling 

This section implements POLS, FE and RE modelling after recognising the one-month dataset as 

the panel data having the cross sections of links and time-series with 15-minute intervals. The 

reason behind this is that FE modelling by LSDV in Section 4.4.2 and 4.4.3 found that the entity of 

links is the most influential factor of all the entities. However, as already mentioned in the above 

section, geometric independent variables by the panel data cannot be included in FE modelling 

because the geometric features are time-invariant variables across links. Therefore, this section 

compares three models of pooled OLS, FE and RE models after deriving models with the 

independent variables of TF and TF2 only and by using the one-month dataset10. The library that is 

used for the model estimation in the software package of “R” is “plm” and the ‘plm()’ function was 

applied to the dataset with the different arguments of ‘pooling’, ‘within’ and ‘random’.  

Panel data definition 

Unlike FE modelling by LSDV, in order to implement ‘plm()’ function in “R” and compare the 

estimated functions, the dataset needs to be defined as the panel data. As mentioned above, the one-

month dataset was firstly defined as the panel data with the entity of links and 15-minute time 

intervals as follows; 

Table 4-21 Panel data definition with the entity of links and 15-minute intervals  

 
# Panel Data Definition with the entity of links and time 
PanelData_Link_Time <- plm.data(mydf,index=c("Link","Time")) 
 

Pooled OLS modelling 

Table 4-22 shows the result of pooled OLS estimation by using ‘plm()’ function, which has the 

same result of ‘MODEL1’ in Section 4.4.2.  

Table 4-22 Pooled OLS estimation with the panel data  

 
# Pooled OLS estimation with the panel data  
Model_POLS_TF_Panel <- plm(Inv_SPD~TF+TF2, data=PanelData_Link_Time, model="p
ooling") 
summary(Model_POLS_TF_Panel) 
## Pooling Model 
##  
## Call: 

                                                      
10 Although RE modelling can include geometric variables in the estimated models, this chapter 
does not suggest the results because this chapter mainly aims to find the influential factors on travel 
time estimation models from one-month dataset. Chapter 5 scrutinises the detailed measurement of 
coefficients and their statistical significances. 
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## plm(formula = Inv_SPD ~ TF + TF2, data = PanelData_Link_Time,  
##     model = "pooling") 
##  
## Unbalanced Panel: n = 72, T = 1299-2725, N = 147831 
##  
## Residuals: 
##      Min.   1st Qu.    Median   3rd Qu.      Max.  
## -12.47743  -3.24498  -0.70206   2.68517  23.84815  
##  
## Coefficients: 
##                Estimate  Std. Error  t-value  Pr(>|t|)     
## (Intercept)  3.6632e+01  3.3037e-02 1108.789 < 2.2e-16 *** 
## TF          -2.9572e-03  8.4341e-05  -35.062 < 2.2e-16 *** 
## TF2          2.0875e-06  4.2100e-08   49.584 < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Total Sum of Squares:    3049300 
## Residual Sum of Squares: 2972300 
## R-Squared:      0.025239 
## Adj. R-Squared: 0.025226 
## F-statistic: 1913.84 on 2 and 147828 DF, p-value: < 2.22e-16 
 

 

FE modelling within entities 

Table 4-23 shows the result of FE modelling by ‘plm()’ function with the argument of ‘within’, 

whose coefficients of TF and TF2 are identical with the result of FE modelling by LSDV (Table 

4-10).  

Table 4-23 FE modelling by the method of ‘within’ estimation  

# FE modelling with the panel data by ‘within’ estimation  
Model_FE_within_Panel <- plm(Inv_SPD~TF+TF2, data=PanelData_Link_Time, model=
"within") 
summary(Model_FE_within_Panel) 
## Oneway (individual) effect Within Model 
##  
## Call: 
## plm(formula = Inv_SPD ~ TF + TF2, data = PanelData_Link_Time,  
##     model = "within") 
##  
## Unbalanced Panel: n = 72, T = 1299-2725, N = 147831 
##  
## Residuals: 
##      Min.   1st Qu.    Median   3rd Qu.      Max.  
## -12.33278  -1.74056  -0.22462   1.37627  23.46250  
##  
## Coefficients: 
##        Estimate  Std. Error t-value  Pr(>|t|)     
## TF  -6.4169e-03  5.8266e-05 -110.13 < 2.2e-16 *** 
## TF2  3.4916e-06  2.8355e-08  123.14 < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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##  
## Total Sum of Squares:    1367200 
## Residual Sum of Squares: 1237400 
## R-Squared:      0.094921 
## Adj. R-Squared: 0.094474 
## F-statistic: 7748.1 on 2 and 147757 DF, p-value: < 2.22e-16 
 

RE modelling  

Based on the assumption that each entity of links is not correlated with the explanatory variables, 

the coefficients were derived by RE modelling (Table 4-24). The coefficient values in RE 

modelling, which are -6.41e-03 for TF and 3.49e-06 for TF2 respectively, are not very different 

from those in FE modelling, which are -6.42e-03 and 3.50e-06. In comparison to FE modelling, RE 

modelling can estimate the intercept with 3.78e+01.   

Table 4-24 RE modelling with panel data 

# Random Effects Model 
Model_RE_Panel <- plm(Inv_SPD~TF+TF2, data=PanelData_Link_Time, model="random
") 
summary(Model_RE_Panel) 
## Oneway (individual) effect Random Effect Model  
##    (Swamy-Arora's transformation11) 
##  
## Call: 
## plm(formula = Inv_SPD ~ TF + TF2, data = PanelData_Link_Time,  
##     model = "random") 
##  
## Unbalanced Panel: n = 72, T = 1299-2725, N = 147831 
##  
## Effects: 
##                  var std.dev share 
## idiosyncratic  8.375   2.894 0.444 
## individual    10.475   3.236 0.556 
## theta: 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.9752  0.9799  0.9810  0.9804  0.9814  0.9829  
##  
## Residuals: 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
## -12.1801  -1.7429  -0.2320   0.0023   1.3703  23.3986  
##  
## Coefficients: 
##                Estimate  Std. Error  z-value  Pr(>|z|)     
## (Intercept)  3.7757e+01  3.8210e-01   98.815 < 2.2e-16 *** 
## TF          -6.4152e-03  5.8265e-05 -110.104 < 2.2e-16 *** 
## TF2          3.4909e-06  2.8355e-08  123.115 < 2.2e-16 *** 

                                                      
11 In order to transform the variance of errors from OLS estimation, there are many studies to 
predetermine the variance of cross-sectional specific effects (𝜎𝜎𝜇𝜇2 in Equation 3-26) and the variance 
of the random error (𝜎𝜎𝜀𝜀2) (see Baltagi (2013) in detail). However, since this study implements RE 
modelling for the comparison with pooled OLS and FE modelling rather than for coefficient 
estimation, the default method of RE modelling in ‘plm()’ function, which is Swamy and Arora 
(1972)’s transformation, was applied without a further discussion.  
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Total Sum of Squares:    1368000 
## Residual Sum of Squares: 1238100 
## R-Squared:      0.094999 
## Adj. R-Squared: 0.094987 
## Chisq: 15517.5 on 2 DF, p-value: < 2.22e-16 
 

Comparison between the modelling methods 

In order to find the most appropriate modelling method among the three methods, which are closely 

related to the establishment of the direction for the feasible model development in Chapter 5, three 

tests were implemented. Firstly, F-test between pooled OLS modelling and FE modelling was used 

for investigating the significance of individual effects (Hamilton, 2012). Secondly, the Hausman 

test (also called Durbin–Wu–Hausman test) between FE and RE modelling was conducted for the 

model selection (Hausman, 1978). Lastly, the Breusch and Pagan Lagrangian Multiplier (LM) test 

was applied for investigating random effects (Baltagi, 2008). 

The result of F-test rejects the null hypothesis that pooled OLS modelling is better than FE 

modelling (Table 4-25). In addition, the result of the Hausman test shows that FE modelling is 

superior to RE modelling. Lastly, it is confirmed that there are panel effects in the one-month 

dataset by the Breusch and Pagan LM test. Overall, it can be concluded that FE modelling is the 

most appropriate approach among the three modelling methods. 

Table 4-25 F-test for investigating individual effects 

# Testing for fixed effects, null: OLS better than FE modelling 
pFtest(Model_FE_within_Panel, Model_POLS_TF_Panel) 
##  
##  F test for individual effects 
##  
## data:  Inv_SPD ~ TF + TF2 
## F = 2917.7, df1 = 71, df2 = 147760, p-value < 2.2e-16 
## alternative hypothesis: significant effects 

Table 4-26 Hausman test for model selection between FE and RE modelling 

# Fixed vs Random: null hypothesis is that the preferred model is random effe
cts  
phtest(Model_FE_within_Panel, Model_RE_Panel) 
##  
##  Hausman Test 
##  
## data:  Inv_SPD ~ TF + TF2 
## chisq = 11.432, df = 2, p-value = 0.003293 
## alternative hypothesis: one model is inconsistent 
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Table 4-27 Breusch and Pagan Lagrangian Multiplier (LM) test  

# Breusch-Pagan Lagrange Multiplier for random effects. Null is no panel effe
ct (i.e. OLS better). 
plmtest(Model_POLS_TF_Panel, type=c("bp")) 
##  
##  Lagrange Multiplier Test - (Breusch-Pagan) for unbalanced panels 
##  
## data:  Inv_SPD ~ TF + TF2 
## chisq = 56699000, df = 1, p-value < 2.2e-16 
## alternative hypothesis: significant effects 

 

4.4.6. Summary  

In Section4.4, in order to find the factors which have an influence on travel time, the statistical 

linear estimation was implemented in the following three ways: pooled OLS estimation, FE 

modelling, and RE modelling.  

Firstly, the comparison between MODEL1 and MODEL2 concluded that four geometric variables, 

namely TR, RISE, FALL and BEND, improve the coefficient of determination of the estimated 

model. The difference of adjusted R2s between two models with and without the geometric 

variables is 6.1%. This suggests that link geometric variables need to be included in travel time 

estimation models as with the result of NLS estimation (Section 4.3). 

Secondly, FE modelling by LSDV was an efficient way to identify the influential factors on travel 

time in the one-month dataset. As is summarised in Table 4-19 and Table 4-20, the influential 

factors affecting the dependent variable were selected by comparing the change in model goodness 

of fit, introducing many entities, which are links, routes (lines), brightness, day, weather and date. 

The link entity is the most influential factor of the classified entities when investigating the 

goodness of fit in one-way FE modelling with the link entity and two-way FE modelling with both 

entities of links and date (Table 4-19). In addition, the big difference in the coefficients between FE 

models including the link entity and other models, was demonstrated.  

Lastly, of the three different models of pooled OLS, FE and RE modelling, FE modelling across 

links is the most appropriate for one-month data analysis. Since FE modelling by LSDV suggested 

that the entity of links is the most influential factor in this study, the one-month dataset was defined 

as the panel data with the link entity and 15-minute intervals. Three statistical tests for comparing 

three methods indicated that the FE model, to control unobserved fixed effects across links, is the 

best of the analysed models.  
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The intermediate result by the linear estimation from the one-month dataset concludes that the 

different link attributes affect travel time estimation models on each link. FE modelling confirmed 

that the link entity is one of the most influential factors in the models. In addition, other variables 

such as brightness, weather and day need to be considered in the models. Although link geometry 

cannot explain all link attributes, it is an important factor in the models and needs to be developed 

in this study.   
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4.5. Findings  

Unlike previous studies about travel time estimation, this study used the dataset that was collected 

from Korean ITS including ILDs and DSRCs during a comparatively long period of time (one 

month). There would be many factors (or situations) affecting travel time while traffic data was 

measured over this time. Statistical models by the NLS (based on the BPR function) and OLS 

estimation were developed for identifying those factors and the main findings are as follows. For 

the comparison between models in this chapter, BPR1 is used as the reference model that 

customises the current BPR function by the one-month dataset. 

Geometric features consideration 

This chapter investigated how geometric variables change estimated models. In NLS estimation 

models, which are based on the BPR function. RMSE can be used in this study for comparing the 

accuracy of NLS estimation models because R-squared is not an appropriate criterion for NLS 

models (Spiess and Neumeyer, 2010). RMSEs in two models (BPR1 and BPR2 in Table 4-28), one 

of which is the same as the BPR function and the other of which is the function that adds the four 

geometric variables referred to above to the BPR function, are 4.490 on 147,828 degrees of 

freedom and 4.350 on 147,824 degrees of freedom respectively. In other words, RMSE for 

measuring accuracy of forecasting models was improved by 0.140 after considering link geometry 

in NLS models.  

The above result can also be confirmed in the OLS estimation, the coefficients of determination (R-

squared) are 2.5% and 8.6% in the two models (MODEL1 and MODEL2). Only the independent 

variables of TF and TF2 were included in MODEL1 and the geometric variables of TR, RISE, 

FALL and BEND were added in MODEL2. It is noteworthy that the increase of R-squared between 

the two models is 6.1% even if both the R-squared values are not that high because of many 

influential factors other than geometric features.  

Therefore, both NLS and OLS estimation models demonstrate that geometric variables can 

improve the accuracy of travel time estimation models to some extent even if the negative sign of 

IV3 (RISE) estimated in OLS and NLS models, which produces the opposite result of scatter plots, 

requires more detailed analysis after testing statistical assumptions and applying a different 

estimation. (Chapter 5) 

Significance of FE modelling 

This chapter investigated how unobserved fixed effects influence travel time estimation models. FE 

modelling was used for identifying unobserved fixed effects in the OLS estimation. Six entities, 

which are links, routes, brightness, day, weather and date, were defined from a one-month dataset. 
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From the comparison and investigation of coefficients between pooled OLS models and FE 

models, it can be concluded that most entities exhibit different patterns of travel time. In other 

words, a one-month dataset contains various road and external situations. In particular, in FE 

modelling, there are more unobserved effects across cross-sectional entities (links and routes) than 

across time-related entities (day and date). This finding suggests that geometric features, which are 

closely related to link entities, must not be ignored in modelling.  

However, when a cross-sectional entity is defined for FE modelling, the FE model has one 

limitation which is that it cannot explain the effects by time-invariant characteristics of the entity 

because they have perfect collinearity with the entity (Torres-Reyna, 2007). Likewise, the 

coefficients of geometric variables, which are time-invariant effects varying across the entity of 

link, cannot be estimated in FE modelling. In the process of FE modelling by the entity of link 

(Section 4.4.2), it was confirmed that once geometric variables are included in the model, the 

coefficients of some link dummy variables cannot be measured because of the perfect correlation 

(denoted as ‘NA’). Therefore, FE modelling is not appropriate for quantifying the effects of 

separate geometric features in models.  

Comprehensive evaluation between OLS and NLS estimation models 

In order to compare NLS and OLS estimation models, RMSE in each model was scrutinised. As 

both estimations used the same dataset, the low RMSE can explain the statistical consistency and 

unbiasedness within the dataset (Washington et al., 2010). Based on RMSE comparison through 

one-month data analysis (Table 4-28), it is concluded that MODEL1 (the OLS estimation model 

without geometric variables) and MODEL2 (with geometric variables), which are suggested as new 

approaches in this study, are not inferior to BPR1 (the customised BPR function) and BPR2 

(inclusion of geometric variables) respectively. In addition, FE modelling can be said to improve 

model accuracy through the comparison between OLS estimated models (e.g. MODEL1 and 

MODEL1-1). However, as can also be seen from FE modelling results, it is difficult to develop 

feasible VDFs by using a one-month dataset because there are many unobserved influential factors 

within the period. Therefore, this study investigates modelling processes statistically in more detail 

by using the one-day dataset in Chapter 5.  

Table 4-28 RMSE comparison between OLS and NLS estimation (one-month data analysis) 

 

Model MODEL1 MODEL2 BPR1 BPR2 MODEL1-1 MODEL2-5

Degrees of 
freedom 147,828        147,824        147,828        147,824        147,757        147,795        

RMSE 4.484 4.342 4.490 4.350 2.894 4.079
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Chapter 5. Development of Feasible Models 

5.1. Introduction 

The previous chapter sought to establish the factors that would affect travel time estimation models 

based on one-month data analysis. Whilst the analysis of data collected over a one-month period 

has the advantage of making it possible to estimate models with reference to many factors, its 

corresponding drawback is that it is not hard to establish the feasible models for traffic assignment 

when there are so many differing situations such as weather conditions and vehicle composition. In 

order to clarify geometric features in travel time estimation models, it is necessary to minimise the 

impact of other factors except for link geometry through the use of one-day data analysis. This 

chapter selects the most appropriate one-day dataset for modelling after considering the data 

distribution and other factors which influence on travel time. In addition, three statistical estimation 

methods are used for modelling: OLS, GLS and NLS. Each of these estimation methods identifies 

the statistical significance of the developed models including their coefficients of variables.  

Firstly, the one-day dataset is extracted from the one-month dataset by focusing mainly on the 

distribution of traffic flow on each day. In addition, the dataset is cleaned and filtered in order to 

reduce unobserved fixed effects. As with the one-month data analysis in Section 4.2, the 

descriptive analysis of the dataset including scatter plots is illustrated.  

Secondly, NLS estimation models, which are customised from BPR function as a reference model, 

are investigated. Like Section 4.3, the sensitivity analysis by different road capacity is performed in 

order to clarify the impact on the model estimation of road capacity.   

Thirdly, the OLS estimation is performed based on the quadratic function and the interaction 

effects and model transformation were scrutinised. After the comparison between models with 

geometric variables, this study tests whether the developed models satisfy the assumptions for the 

OLS estimation, which are prerequisites for best linear unbiased estimators (BLUE).  

Lastly, as mentioned in Section 3.3.2, the GLS estimation generalises the variance-covariance 

matrix of errors more than the OLS estimation does. In other words, the GLS estimation is more 

effective in treating the statistical violations such as heteroscedasticity and serial correlation. 

Various variance-covariance structures for dealing with heteroscedasticity and serial correlation 

including autoregressive and moving average (ARMA) models are considered in the GLS 

estimation process. 
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5.2. Data selection  

5.2.1. Data filtering 

The one-day dataset is used for the development of feasible models by selecting a day from one-

month dataset. As discussed in Section 4.4, the unobserved fixed effects that could potentially 

affect travel time were excluded from model estimations in so far as was possible.  

The first consideration for data filtering is the distribution of traffic flow. Well-distributed traffic 

flows would help the feasible model estimation. Therefore, the distribution was examined in detail 

because high traffic flows do not always happen every day in all motorway sections. Figure 5-1 

shows the daily distribution in September 2018. Many vehicles moved across regions during the 

period from the 23rd to the 25th of the month because the period is a national holiday in South 

Korea. In particular, the data recorded on the 24th of September was used in model estimations 

because the variation in traffic flows on that day is the widest recorded for all the dates in the 

month without it having outliers12 from the box plot. Data from the day would be useful in helping 

to explain the relationship between travel time and high traffic flow compared to other days. 

Helpfully, the weather on that particular day was sunny, which means that weather effects are 

automatically excluded from estimated models.  

Figure 5-1 Box plot of daily traffic flows in September of 2018 

 

                                                      
12 Box plot recognises the data whose absolute value is over 3/2 times of upper and lower quartiles 
as outliers. 
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The second consideration for data filtering is brightness. In Section 4.4.3, models between daytime 

and night time were estimated differently; in particular, the brightness variable had more of an 

impact on the coefficients of the models compared to other time-fixed effects. Only the data 

between 07.00 and 19.00 was extracted from the dataset on the 24th of September. The last 

consideration for data filtering is the exclusion of congested traffic situations used by the 

congestion speed of 60kph (Section 3.4.3). 

 

5.2.2. Discussion on one-day data selection 

As mentioned in Section 5.2.1, the one-day dataset for modelling was extracted from the one-

month dataset with consideration given to the distribution of traffic flows. This section investigates 

how different daily datasets affect models using the OLS linear estimation. The OLS estimation, 

which can be a starting point of linear estimation, shows the basic coefficients of model 

determination as well as the coefficients for each variable together with their statistical 

significance. In addition, this investigation will help justify the dataset selection of the 24th of 

September. Table 5-1 provides the key information derived from the models and according to the 

different dates selected. The main discussion points arising are as follows.  

The first discussion point is about the traffic flow distribution and the coefficient of determination 

for the different daily datasets. Table 5-1 shows the mean and the maximum traffic flows on each 

day. Most daily data are skewed towards low traffic flow, especially on weekdays. These skewed 

datasets recognise the data corresponding to relatively high traffic flows as outliers in box plot 

observation (Figure 5-1) and as such they would lower the goodness of fit of the estimated models. 

For example, when examining the daily datasets below the mean traffic flow of 600vph and over 

the outlier ratio of 5%, the adjusted R2s range from 12.8% on the 4th to 17.8% on the 20th of 

September. However, when investigating the datasets over the mean traffic flow of 900vph and 

below the outlier ratio of 2%, most of which were recorded during weekends or holidays, the 

adjusted R2s were more improved from 30.9% on the 23rd and 43.8% on the 24th of September. In 

particular, the dataset on the 24th of September, which is used for the development of feasible 

models in this study, produces the highest R2. This result indicates that the one-day dataset 

including both low and high traffic flows increases the goodness of fit of an estimated model by 

explaining the relationship between travel time and traffic flow without weighting. 

The second discussion point is about the statistical significance of estimated coefficients. Firstly, 

all coefficients of the FALL variable have a statistical significance at a 95% confidence level 

regardless of the traffic flow distribution. This means that the FALL variable can affect the 

estimated models significantly in both low and high traffic flow. Secondly, most coefficients of 
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both TR and RISE do not have statistical significance in the models estimated from the datasets 

with relatively low mean traffic flow. This result implies that both the variables of TR and RISE 

would affect travel time more in relatively high traffic flow. Lastly, the coefficients of the TF2 

variable have more explanatory power in relatively high traffic flow, having the trade-off 

relationship with the coefficients of TF variable. Whilst the coefficients of TF and TF2 are 

statistically significant at a 95% confidence level in the dataset including both low and high traffic 

flows, but one of the coefficients is not statistically significant in the dataset with relatively low 

traffic flows. Therefore, it can be confirmed that the one-day dataset with well-distributed traffic 

flow is an important condition for travel time model estimation.  

The third discussion point is about the negative coefficients of independent variables in the models 

estimated from many datasets on the 1st, 7th, 8th, 11th, 12th, 14th, 15th, 17th, 18th, 21st and 22nd of 

September. The negative coefficients of TF variable in estimated models indicate that in situations 

with low traffic, travel time reduces as traffic increases. This not only violates the necessary 

conditions of link cost functions in traffic assignment (Ortúzar and Willumsen, 2012), but also is 

not in line with the fundamental traffic theory (Section 2.3.1). In addition, since the models with 

the negative coefficients of TF2 variable are concave functions, they cannot be applied to traffic 

assignment as a convex function is required (Ortúzar and Willumsen, 2012). Lastly, two 

coefficients of TR and RISE on the 14th and 17th of September have negative signs with their 

statistical significance at a 95% confidence level. It is also questionable whether they can be used 

in estimated models from the viewpoint of physics. Therefore, it would be not desirable to use the 

estimated models with negative coefficients in this study.  

The last discussion point is about the coefficients of the BEND variable and their statistical 

significance. The coefficients in the estimated models fluctuated on a daily basis. The coefficients 

become lower or statistically insignificant in the models using one-day datasets with high traffic 

flows rather than with low traffic flows. In particular, when confining the analysis to the models 

using the datasets from the 22nd to the 26th of September, it was found that the coefficients of the 

BEND variable are much less than those on other days or that they become not statistically 

significant. Although the model estimated from the dataset on 25th of September has the 

statistically significant coefficient of the BEND variable, the modelling result without the BEND 

variable shows just a small difference (0.12%) of adjusted R-squares between the two models 

(Table 5-2), which indicates that the BEND variable contributes little to the model’s accuracy. 

Therefore, it needs to be prudent to include the BEND variable in the models.  

In summary, it is very important to select the reasonable dataset in regression models. Since this 

study focuses on travel time estimation with geometric features in relatively high traffic flows as 

well as in low traffic ones, it can be inferred that it is desirable to estimate models by reflecting as 
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wide a distribution of traffic flow as possible. Moreover, it was confirmed that different traffic flow 

distribution affects the overall accuracy of estimated models and their coefficients. Although the 

dataset collected on the 24th of September could have a limitation in that it was a certain date 

(national holiday), it is not easy to find the well-distributed dataset in most motorways except for 

the day in a year. Therefore, the selected dataset is deemed to be the best in travel time estimation 

modelling than any other daily dataset in the whole month.  

Table 5-1 OLS estimation by different daily data selection 

 
 

Date
Mean_

TF
Max_

TF
Outlier

ratio Adj.R2
(Inter
cept)

FFS
(kph) TF TF2 TR RISE FALL BEND

0901 815     2,806 3.79% 20.3% 3.47 111.54 -3.01E-05 4.80E-08 7.84E-05 1.59E-03 2.98E-03 5.94E-04

0902 787     2,503 1.91% 16.1% 3.45 114.26 2.63E-08 5.27E-05 2.14E-03 3.23E-03 1.00E-03

0903 543     2,220 4.20% 15.6% 3.53 105.79 8.59E-05 5.25E-03 2.11E-03

0904 557     1,925 5.20% 12.8% 3.53 105.12 1.01E-04 4.37E-03 1.72E-03

0905 576     2,660 5.31% 14.4% 3.57 101.10 1.08E-04 4.76E-03

0906 592     2,368 4.64% 15.3% 3.55 103.15 1.17E-04 4.48E-03

0907 690     2,398 2.16% 13.3% 3.56 102.32 -4.83E-05 6.78E-08 4.70E-03 1.33E-03

0908 897     2,840 1.57% 23.0% 3.47 111.88 -3.54E-05 5.45E-08 7.96E-05 1.43E-03 3.58E-03 7.02E-04

0909 830     2,636 1.58% 14.8% 3.45 114.50 1.93E-08 5.93E-05 1.96E-03 3.15E-03 6.73E-04

0910 593     2,288 5.77% 12.0% 3.56 102.11 9.10E-05 4.43E-03

0911 588     2,195 5.57% 13.8% 3.50 108.21 1.33E-04 -2.49E-08 6.62E-05 5.12E-03 1.69E-03

0912 583     2,225 4.71% 16.8% 3.51 107.54 1.40E-04 -2.42E-08 3.44E-05 5.27E-03 2.19E-03

0913 593     2,280 3.19% 18.9% 3.54 104.70 1.02E-04 4.91E-03 1.63E-03

0914 675     2,529 2.48% 13.7% 3.64 94.80 -9.80E-05 9.37E-08 -3.69E-05 4.80E-03 8.02E-04

0915 812     2,623 2.23% 18.2% 3.52 107.06 -3.21E-05 5.22E-08 4.70E-05 3.80E-03 5.99E-04

0916 732     2,312 1.92% 10.4% 3.46 112.73 3.59E-05 3.68E-05 1.03E-03 3.10E-03 6.06E-04

0917 591     2,520 5.90% 15.0% 3.51 107.39 1.76E-04 -4.67E-08 3.88E-05 -9.04E-04 6.27E-03 1.40E-03

0918 591     2,304 6.20% 16.0% 3.49 109.85 1.78E-04 -4.02E-08 4.27E-05 4.52E-03 1.80E-03

0919 601     2,265 6.88% 13.6% 3.50 108.80 1.07E-04 3.70E-05 3.61E-03 2.38E-03

0920 575     2,076 7.26% 17.8% 3.53 105.02 4.61E-05 3.79E-08 4.58E-03 2.84E-03

0921 673     2,890 2.39% 13.5% 3.58 100.61 -4.56E-05 6.31E-08 4.27E-03 1.73E-03

0922 882     2,820 1.67% 31.0% 3.47 112.04 -4.27E-05 6.26E-08 6.71E-05 1.24E-03 2.68E-03

0923 938     2,868 1.50% 30.9% 3.43 116.44 4.89E-08 8.38E-05 1.51E-03 2.44E-03

0924 1,423 3,045 0% 43.8% 3.37 123.19 5.02E-05 2.30E-08 1.25E-04 2.19E-03 3.44E-03

0925 1,196 2,947 0% 37.1% 3.39 120.77 2.81E-05 3.15E-08 1.17E-04 2.46E-03 3.65E-03 8.20E-04

0926 876     2,648 0.72% 16.2% 3.46 113.02 2.33E-08 5.65E-05 1.24E-03 3.62E-03 6.84E-04

0927 571     2,256 2.40% 13.9% 3.52 106.93 8.72E-05 5.45E-03 2.15E-03

0928 617     2,049 3.11% 11.7% 3.57 101.41 5.76E-08 5.54E-03 2.14E-03

0929 698     2,241 2.24% 9.2% 3.52 106.68 3.41E-05 2.77E-05 4.50E-03 6.63E-04

0930 649     2,489 2.43% 8.6% 3.49 109.71 2.52E-08 3.43E-05 1.35E-03 3.48E-03 9.06E-04



Chapter 5. Development of Feasible Models 

 

  148  

 

Note 1. Outlier ratio is calculated from the number of samples over 3/2 times of upper and lower 

quartiles divided by the number of whole samples in the box plot. 

2. Yellow cells show weekends or holidays; and blue cells show nationwide rainy days. 

3. Grey cells show negative values of estimated coefficients. 

4. Empty cells mean that the estimated coefficients are not statistically significant at a 95% 

confidence level. 

Table 5-2 Impact of BEND variable on estimated models from the dataset on 25th of Sep 

 

 

5.2.3. Plot observation 

Scatter plot 

The scatter plot (Figure 5-2) was derived after data filtering. When recalling the one-month scatter 

plot (Figure 4-2), the biggest difference between two plots is the variation of traffic data when the 

traffic flow is low (e.g. < 500vph). From the comparison, it can be seen that travel time is affected 

by different situations especially when there is low traffic flow. The range of variation becomes 

narrower as traffic flow increases in both scatter plots. The factors which are particularly 

significant in low traffic flow include brightness, weather, day (weekday and weekend), accidents 

and maintenance work. Some of the observations was confirmed by FE modelling in Section 4.4.2 

and 4.4.3. 

Figure 5-2 Scatter plot between DV and IV1 (TF) from the one-day dataset 

 

Models Adj.R2 (Intercept) TF TF2 TR RISE FALL BEND

With BEND  37.14% 3.39 2.81E-05 3.15E-08 1.17E-04 2.46E-03 3.65E-03 8.20E-04

Without BEND 37.02% 3.42 2.63E-05 3.22E-08 9.80E-05 2.54E-03 3.52E-03
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Observation of the 15th and 85th percentile values of DV depending on geometric features 

As with one-month data analysis, the 15th and 85th percentile values of DV, both of which stand for 

the free-flow and congested (or moderate) traffic situations, were examined. Based on the 

observations of the linear relationships between both values and each geometric feature, the 

direction of overall modelling was determined. As can be seen from Figure 5-3 and Figure 5-4, the 

other three geometric features other than BEND have positive linear relationships with the 15th and 

85th values of travel time. It can be observed that the correlations between DV and each IV from 

the one-day dataset are stronger than from the one-month dataset. In addition, it is noteworthy that 

the independent variable of BEND has the negative linear relationships with both 15th and 85th 

values of DV. This observation contrasts with the positive relationship shown in Figure 4-6 and 

Figure 4-7.  

Figure 5-3 15th percentile values of DV by geometric variables from the one-day dataset 

 

Figure 5-4 85th percentile values of DV by geometric variables from the one-day dataset 
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5.3. Customisation of BPR function by NLS estimation  

As reference models of the OLS and GLS estimation models, NLS estimation models based on 

BPR function were derived by using the same dataset (Equation 5-1). The nominal road capacity 

(Cn) required for the NLS estimation is defined as the same value (2,404vph) as the derived value 

during one month based on the same conditions suggested in Section 4.3. The feasible model 

development by the NLS estimation can be divided into two parts. The first part finds the best NLS 

estimation model by investigating the change in the RMSE and MAPE of models estimated by the 

different combination of variables. The second part conducts the sensitivity analysis in order to 

determine the effect of the change in road capacity on the model. In addition to the parameter 

estimation by different road capacity in the sensitivity analysis, the change in RMSE and MAPE by 

measured road capacity from five randomly selected cases was also examined for finding how 

predetermined road capacity could affect total travel time prediction as mentioned in Section 3.3.3.  

𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �1 + 𝛼𝛼 �
𝑇𝑇𝑇𝑇
𝐶𝐶
�
𝛽𝛽
�+ �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌 + 𝑎𝑎 Equation 5-1 

The models derived by customising BPR function in this section are denoted as from FBPR1 

(without geometric variables) to FBPR6 as Table 5-3 to distinguish them from those in Section 4.3. 

This section compares the change in statistical accuracy of the estimated models according to the 

included geometric variables.  

Table 5-3 NLS estimation models by inclusion of geometric variables 

Model Name Independent 

Variables 

Explanation 

FBPR1 TF Customisation of BPR function by predetermining 

road capacity (existing approach) 

FBPR2 TF, TR, RISE, FALL, 

BEND 

Inclusion of all collected geometric variables in 

addition to the customised BPR function 

FBPR3 TF, TR, RISE, FALL Inclusion of TR, RISE and FALL in addition to the 

customised BPR function 

FBPR4 TF, TR, RISE Inclusion of TR and RISE in addition to the 

customised BPR function 

FBPR5 TF, TR Inclusion of only TR in addition to the customised 

BPR function 

FBPR6 TF, RISE, FALL Inclusion of RISE and FALL in addition to the 

customised BPR function 
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5.3.1. Model specification 

Based on the methodology mentioned in Section 3.3.3, the ‘nls()’ function in “R” was used for the 

NLS estimation. This study estimated models based on the existing BPR function approach that 

considers only the relationship between travel time and traffic flow with road capacity (without 

geometric features). In addition, different models were estimated by including the various 

combinations of geometric variables. For example of FBPR2 that inclues all IVs (Table 5-4), after 

predetermining road capacity with 2,404vph, the coefficients for the relationship between Inv_SPD 

and TF as well as for the relationship between Inv_SPD and geometric variables were estimated at 

the same time. The starting values are the same as the one-month data analysis in Section 4.3. After 

six iterative calculations, the errors were converged with the tolerance of 1.351e-06. The RMSE 

and MAPE by this estimation are 3.36 and 7.05% respectively. Table 5-5 summarises the key 

information of the models by the NLS estimation. Firstly, it can be seen that free-flow travel time 

(FFTT) of the models considering the geometric features is smaller than FFTT from the model in 

which only traffic flow is taken into account. As FFTT is estimated by an intercept, it can be 

explained that the geometric variables take a part of FFTT when they are included in models. 

Secondly, since geometric variables contribute to increase travel time (Inv_SPD), it can be 

predicted that the coefficients of TR, RISE, and FALL13 are estimated as positive values. Thirdly, 

FBPR2 and FBPR3 can be considered as better than any other model because they have fewer 

RMSE and MAPE. Lastly, when comparing the two models, it is concluded that FBPR3 the best 

model of the NLS estimation models because the coefficient of BEND is not statistically significant 

and it has the negative sign (this is in line with the previous OLS estimation results in Section 

5.4.1and scatter plot in Section 5.2.3). 

Table 5-4 Example of NLS estimation (with all geometric variables) 

#Definition of road capacity 
Data_1day$capacity <-2404 
 
# Nonlinear estimation with geometric IVs 
FBPR2 <- nls(Inv_SPD ~ FFTT*(1+a*(TF/capacity)^b) + c*TR + d*RISE + e*FALL + 
f*BEND, start = list(FFTT=36, a =0.15, b =4, c=0, d=0, e=0, f=0), data=Data_1
day, trace = TRUE)    
 
## 57730.55 :  36.00  0.15  4.00  0.00  0.00  0.00  0.00 
## 56053.32 :  30.539247976  0.241691864  0.768497485  0.004421613  0.0802441
22  0.130809177 -0.010412663 
## 48210.73 :  32.293055914  0.169310546  1.958072463  0.004534452  0.0787281
96  0.127479196 -0.006645969 
## 39378.09 :  29.425996860  0.281585982  1.632602159  0.004545583  0.0808555
41  0.126160110 -0.007307071 
## 39297.89 :  29.371359071  0.294321544  1.736666941  0.004548723  0.0807523

                                                      
13 Since FALL is defined as a negative value (Chapter 3.4.2), the downhill slope decreases when 
the value of FALL increases. 
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36  0.126083857 -0.007179447 
## 39297.87 :  29.373335243  0.294445030  1.738640033  0.004548368  0.0808153
26  0.126062498 -0.007215404 
## 39297.87 :  29.373549178  0.294439210  1.738760660  0.004548351  0.0808162
59  0.126062472 -0.007216331 
 
summary(FBPR2) 
##  
## Formula: Inv_SPD ~ FFTT * (1 + a * (TF/capacity)^b) + c * TR + d * RISE +  
##     e * FALL + f * BEND 
##  
## Parameters: 
##        Estimate Std. Error t value Pr(>|t|)     
## FFTT 29.3735492  0.4845285  60.623  < 2e-16 *** 
## a     0.2944392  0.0100629  29.260  < 2e-16 *** 
## b     1.7387607  0.1059991  16.404  < 2e-16 *** 
## c     0.0045484  0.0004631   9.822  < 2e-16 *** 
## d     0.0808163  0.0124125   6.511 8.54e-11 *** 
## e     0.1260625  0.0142558   8.843  < 2e-16 *** 
## f    -0.0072163  0.0110384  -0.654    0.513     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.363 on 3475 degrees of freedom 
##  
## Number of iterations to convergence: 6  
## Achieved convergence tolerance: 1.351e-06 
 
# Calculation of RMSE and MAPE 
RMSE.FBPR2 <- RMSE(predict(FBPR2),Data_1day$Inv_SPD) 
RMSE.FBPR2 
## [1] 3.359465 
MAPE.FBPR2 <- MAPE(predict(FBPR2),Data_1day$Inv_SPD) 
MAPE.FBPR2 
## [1] 0.070535 
 

where the coefficients of ‘a’ and ‘b’ represent ‘α’ and ‘β’ in Equation 5-1; and the coefficients of 

‘c’, ‘d’, ‘e’ and ‘f’ represent ‘𝜸𝜸𝒌𝒌’ (a vector) in Equation 5-1. 
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Table 5-5 Feasible NLS estimation models by different combinations of IVs 

  

Estimate p-value Estimate p-value Estimate p-value

FFTT (Intercept) 3.18E+01 < 2e-16 *** 2.94E+01 < 2e-16 *** 2.92E+01 < 2e-16 ***

a 2.71E-01 < 2e-16 *** 2.94E-01 < 2e-16 *** 2.97E-01 < 2e-16 ***

b 1.59E+00 < 2e-16 *** 1.74E+00 < 2e-16 *** 1.73E+00 < 2e-16 ***

c 4.55E-03 < 2e-16 *** 4.71E-03 < 2e-16 ***

d 8.08E-02 8.54e-11 *** 7.99E-02 1.05e-10 ***

e 1.26E-01 < 2e-16 *** 1.27E-01 < 2e-16 ***

f -7.22E-03 0.513

RMSE

MAPE 7.748% 7.054% 7.053%

3.601 3.359 3.360

                                      Model
Coefficient

FBPR2FBPR1 FBPR3

Estimate p-value Estimate p-value Estimate p-value

FFTT (Intercept) 2.72E+01 < 2e-16 *** 2.86E+01 < 2e-16 *** 3.29E+01 < 2e-16 ***

a 3.19E-01 < 2e-16 *** 3.05E-01 < 2e-16 *** 2.61E-01 < 2e-16 ***

b 1.72E+00 < 2e-16 *** 1.59E+00 < 2e-16 *** 1.72E+00 < 2e-16 ***

c 5.98E-03 < 2e-16 *** 5.02E-03 < 2e-16 ***

d 1.49E-01 < 2e-16 *** 2.76E-02  0.0193 *  

e 1.89E-01 < 2e-16 ***

f

RMSE

MAPE

                                      Model
Coefficient

FBPR4 FBPR5 FBPR6

3.399 3.511 3.430

7.195% 7.514% 7.191%
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5.3.2. Sensitivity analysis by road capacity 

Table 5-6 presents the result of coefficient measurements according to the change in road capacity. 

Similar to the NLS estimation performed with the one-month dataset in Section 4.3, the value of ‘a’ 

coefficient (𝛼𝛼 in Equation 2-21) is proportional to road capacity, and the other coefficients, as well 

as FFTT, are not affected by the change in road capacity. In addition, road capacity does not 

change the RMSE and MAPE, which can determine the accuracy of the NLS estimation. The result 

that the predetermined road capacity value is only related to the estimation of 'a' coefficient 

correlates with the conclusion that the coefficient is flexibly determined to minimize the sum of 

squared errors (e.g. RMSE) by the predetermined road capacity value. Therefore, it is concluded 

that the uncertainty of road capacity can be transferred into the coefficient estimation of nonlinear 

functions such as BPR function. 

Table 5-6 Coefficients of feasible NLS estimation models by different road capacity 

where the coefficients of ‘a’ and ‘b’ represent ‘α’ and ‘β’ in Equation 5-1; and the coefficients of 

‘c’, ‘d’, ‘e’ and ‘f’ represent ‘𝜸𝜸𝒌𝒌’ (a vector) in Equation 5-1, which are for the geometric variables 

of TR, RISE and FALL. 

 

5.3.3. Summary 

Modelling by the NLS estimation can be summarised in three key points. Firstly, through the 

comparison with the reference model (FBPR1), which is customised based on the current BPR 

function, the NLS estimation showed higher statistical accuracy for models that add geometric 

variables to the relationship between travel time and traffic flow. Among the NLS estimation 

FFTT a b FFTT a b c d e

80%  of Cn (1,923vph) 31.82 0.1901 1.5862 29.18 0.2014 1.7346 0.0047 0.0799 0.1275

90%  of Cn (2,164vph) 31.82 0.2292 1.5862 29.18 0.2471 1.7346 0.0047 0.0799 0.1275

Cn (2,404vph) 31.82 0.2708 1.5862 29.18 0.2966 1.7346 0.0047 0.0799 0.1275

110%  of Cn (2,644vph) 31.82 0.3149 1.5862 29.18 0.3498 1.7346 0.0047 0.0799 0.1275

120%  of Cn (2,884vph) 31.82 0.3615 1.5862 29.18 0.4067 1.7346 0.0047 0.0799 0.1275

CKorea (3,572vph) 31.82 0.5075 1.5862 29.18 0.5895 1.7346 0.0047 0.0799 0.1275

RMSE

MAPE 7.748% 7.053%

                                      Model
Road Capacity

FBPR1 FBPR3

3.601 3.360
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models analysed in this study, the model (FBPR3) including the geometric variables of TR, RISE, 

and FALL as a linear function , has the lowest RMSE and MAPE. BEND is not significant in the 

NLS estimation of the geometric features. 

Secondly, as road capacity changes, the coefficients of models are estimated flexibly without 

changing the accuracy of the models. As mentioned in Section 2.4.2, road capacity cannot be 

defined as a single value, thus sensitivity analysis was conducted by setting road capacity ranging 

from 80% to 120% nominal road capacity as defined in this study. It was confirmed that the change 

in road capacity is proportional to the 'a' coefficients of the models even though sensitivity analysis 

did not help select models because road capacity did not change the accuracy of the models. 

Lastly, once a model has been developed based on the predetermined road capacity, the model is 

not be applicable for sections with values that differ significantly from the road capacity used in the 

model. Although NLS estimation models can explain a given dataset well, the lack of spatial 

transferability is a major drawback. Therefore, it can be concluded that current VDFs including 

road capacity have difficulty in explaining different link attributes. 
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5.4. OLS estimation models 

5.4.1. Model specification  

The OLS estimation for the feasible travel time estimation model extended the analysis to identify 

the change in models’ coefficients by different variable selection. When recalling Equation 3-9, the 

estimated models are specified according to the combination of quadratic and linear function 

(Equation 5-2). It is different from the one-month data estimation (Equation 4-2) in that the OLS 

estimation does not treat the dataset as the panel data because the GLS estimation investigates 

individual and time-series effects in detail. In addition, the different combination and 

transformation of variables in Equation 5-2 was applied to the OLS estimation. In particular, the 

terms of 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑦𝑦𝑘𝑘 varied according to whether the variables were included in each model.  

𝑇𝑇𝑇𝑇 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇 + 𝛽𝛽2𝑇𝑇𝑇𝑇2 +  �𝜸𝜸𝒌𝒌𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒚𝒚𝒌𝒌 + 𝑎𝑎 Equation 5-2 

OLS estimation models in this section can be summarised due to included variables as Table 5-7. 

FMODEL represents feasible models that could replace current VDFs by analysing various 

statistical significances. The models have the difference from those in Chapter 4 in that they 

investigate the effects by geometric variables in detail.  

Table 5-7 OLS estimation models by inclusion of geometric variables 

Model Name Independent Variables Explanation 

FMODEL1 TF, TF2 Quadratic model between Inv_SPD and TF. 
Replacement of existing BPR function without road 
capacity and FFTT. 

FMODEL2 TF, TF2, TR, RISE, 

FALL, BEND 

Inclusion of all geometric variables collected in this 

study based on quadratic model. 

FMODEL3 TF, TF2, TR, RISE, 

FALL 

Exclusion of BEND from FMODEL2. 

FMODEL4 TF, TF2, TR, RISE Exclusion of FALL from FMODEL3. 

FMODEL5 TF, TF2, TR, FALL Exclusion of RISE from FMODEL3. 

FMODEL6 TF, TF2, TR Exclusion of RISE and FALL from FMODEL3. 

FMODEL7~12 TF, TF2, TR, RISE, 

FALL, BEND 

Consideration of interaction effects between 

geometric variables. 

 

5.4.2. Model findings 
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Model findings by different variable selection 

As with the pooled OLS estimation in Section 4.3, the ‘lm()’ function, provided by the software 

package “R”, was used for this analysis (Appendix A.5.2). The result of the OLS estimation models 

are summarised in Table 5-8. Adjusted R2s vary from 33.7% (without geometric variables) to 

42.2% (with all variables or with the exclusion only of BEND). All intercepts and coefficients of 

variables in estimated models except for the IV4 of BEND are statistically significant at a 95% 

confidence level. As can be observed, only the BEND variable has the negative coefficient; this is 

not statistically significant at a 95% confidence level. In addition, standardised beta coefficients, 

which are denoted as ‘std. Beta’ in Table 5-8 are derived. The coefficients enable comparisons to 

be made as to how each IV affects the DV regardless of the IV’s scale of units because they are 

calculated by dividing by the standard deviation of each variable after subtracting the mean from 

the variable (Freedman, 2009). 

Table 5-8 Model estimations by variable selection 

Coeffcient Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value
(Intercept) 3.15E+01 2.86E-01 <0.001 2.91E+01 5.18E-01 <0.001 2.89E+01 4.27E-01 <0.001

TF 1.56E-03 4.44E-04 0.22 <0.001 1.02E-03 4.17E-04 0.14 0.014 1.04E-03 4.16E-04 0.15 0.013

TF2 8.95E-07 1.55E-07 0.36 <0.001 1.11E-06 1.45E-07 0.45 <0.001 1.11E-06 1.45E-07 0.45 <0.001

TR 4.55E-03 4.63E-04 0.16 <0.001 4.72E-03 3.88E-04 0.17 <0.001

RISE 8.11E-02 1.24E-02 0.11 <0.001 8.02E-02 1.23E-02 0.11 <0.001

FALL 1.26E-01 1.43E-02 0.15 <0.001 1.27E-01 1.41E-02 0.15 <0.001

BEND -7.18E-03 1.10E-02 -0.01 0.515

Observations

R2 / R2 adjusted 0.423 / 0.422 0.423 / 0.4220.337 / 0.337

FMODEL1 FMODEL2 FMODEL3

3,482 3,482 3,482 

Coeffcient Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value
(Intercept) 2.69E+01 3.68E-01 <0.001 3.03E+01 3.76E-01 <0.001 2.83E+01 3.70E-01 <0.001

TF 1.10E-03 4.21E-04 0.16 0.009 1.16E-03 4.18E-04 0.16 0.005 1.58E-03 4.33E-04 0.22 <0.001

TF2 1.09E-06 1.47E-07 0.44 <0.001 1.06E-06 1.46E-07 0.43 <0.001 9.03E-07 1.51E-07 0.37 <0.001

TR 5.98E-03 3.66E-04 0.22 <0.001 3.84E-03 3.66E-04 0.14 <0.001 5.02E-03 3.73E-04 0.18 <0.001

RISE 1.49E-01 9.77E-03 0.20 <0.001

FALL 1.84E-01 1.11E-02 0.22 <0.001

Observations

R2 / R2 adjusted 0.410 / 0.409 0.416 / 0.415 0.370 / 0.369

                                                                 3,482                                                                  3,482                                                                  3,482 

FMODEL4 FMODEL5 FMODEL6

https://en.wikipedia.org/w/index.php?title=Scale_of_units&action=edit&redlink=1
https://www.statisticshowto.datasciencecentral.com/mean/
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Model findings by considering interaction effects  

Interaction effects can be included for better model specification. The term of 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑦𝑦𝑘𝑘 in 

Equation 5-2 can be extended by including the multiplication of two or more different geometric 

variables. Although different interactions can be combined, the interaction effects between RISE 

and FALL were excluded because both geometric features are incompatible (Table 5-9). After 

observing the change in R2s and the p-values of coefficients in various models, it can be concluded 

that the effects of interaction in the models are not clear. This conclusion is supported by the 

finding that the signs of main variables are changed or some of the coefficients of variables no 

longer have statistical significance after adding interaction effects to models, these are denoted as 

shade cells in Table 5-9. In addition, all estimated adjusted R2s (42.2%-42.6%) do not exhibit a big 

difference (0.0%-0.4%) with R2 (42.2%) from the model (FMODEL3) without considering 

interaction effects. For this reason, interaction effects were no longer considered in other statistical 

estimations.  

Table 5-9 Model estimations by interaction variables 

 

Coeffcient Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value
(Intercept) 2.96E+01 5.26E-01 <0.001 2.76E+01 5.25E-01 <0.001 2.73E+01 7.57E-01 <0.001

TF 1.04E-03 4.16E-04 0.15 0.012 1.14E-03 4.15E-04 0.16 0.006 1.08E-03 4.16E-04 0.15 0.01

TF2 1.10E-06 1.45E-07 0.45 <0.001 1.08E-06 1.45E-07 0.44 <0.001 1.12E-06 1.45E-07 0.45 <0.001

TR 3.74E-03 5.89E-04 0.14 <0.001 6.66E-03 5.80E-04 0.24 <0.001 6.96E-03 8.57E-04 0.25 <0.001

RISE -1.34E-02 4.44E-02 -0.02 0.762 8.37E-02 1.23E-02 0.11 <0.001 8.54E-02 1.25E-02 0.12 <0.001

FALL 1.30E-01 1.42E-02 0.16 <0.001 -6.93E-02 4.58E-02 -0.08 0.13 1.22E-01 1.43E-02 0.15 <0.001

BEND 1.14E-01 3.79E-02 0.17 0.003

TR:RISE 1.45E-04 6.62E-05 0.13 0.028

TR:FALL 3.12E-04 6.93E-05 0.23 <0.001

TR:BEND -1.84E-04 5.51E-05 -0.15 0.001

Observations

R2 / R2 adjusted

                                                                 3,482                                                                  3,482                                                                  3,482 

0.424 / 0.423 0.426 / 0.425 0.425 / 0.424

FMODEL7 FMODEL8 FMODEL9

Coeffcient Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value Estimates std. Error std. Beta P-Value
(Intercept) 2.93E+01 5.33E-01 <0.001 2.99E+01 5.53E-01 <0.001 2.67E+01 8.86E-01 <0.001

TF 1.04E-03 4.17E-04 0.15 0.013 9.42E-04 4.16E-04 0.13 0.024 1.17E-03 4.16E-04 0.17 0.005

TF2 1.11E-06 1.45E-07 0.45 <0.001 1.15E-06 1.45E-07 0.47 <0.001 1.08E-06 1.45E-07 0.44 <0.001

TR 4.52E-03 4.64E-04 0.16 <0.001 4.33E-03 4.66E-04 0.16 <0.001 7.92E-03 1.17E-03 0.29 <0.001

RISE 5.56E-02 2.48E-02 0.08 0.025 7.91E-02 1.24E-02 0.11 <0.001 1.57E-01 6.06E-02 0.21 0.01

FALL 1.24E-01 1.44E-02 0.15 <0.001 2.30E-01 3.13E-02 0.27 <0.001 -1.23E-01 6.31E-02 -0.15 0.052

BEND -2.03E-02 1.56E-02 -0.03 0.194 -4.89E-02 1.57E-02 -0.07 0.002

RISE:BEND 1.99E-03 1.68E-03 0.04 0.235

FALL:BEND -7.01E-03 1.87E-03 -0.15 <0.001

TR:RISE -1.12E-04 9.10E-05 -0.10 0.217

TR:FALL 3.93E-04 9.54E-05 0.30 <0.001

Observations

R2 / R2 adjusted 0.423 / 0.422 0.425 / 0.424 0.427 / 0.426

FMODEL10 FMODEL11 FMODEL12

                                                                 3,482                                                                  3,482                                                                  3,482 
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Model findings by transformations 

Based on FMODEL3, different types of models were specified by taking four transformations 

between DV and IVs: linear-linear; log-linear; linear-log14; and log-log. The estimated models are 

denoted as from FMODEL3-1 to FMODEL3-9. When examining R-square and the p-value of 

coefficients (Table 5-10), the log-linear model can be said to be the most appropriate model. In 

addition, the Box-Cox test, which is used for selecting linear-linear versus log-linear functional 

form (Maddala, 1992), supports this result (Appendix A.5.3)  

Table 5-10 Model estimation by log-transformation  

 

When considering mixed transformation according to the log-transformation of each variable 

(Table 5-11), most log-transformed IVs do not significantly affect the increase of R-square 

although log-transformed IV4 of FALL causes only 0.1% increase of R-square. Therefore, the log-

linear transformation is analysed in detail hereafter.  

                                                      
14 The IVs of RISE, FALL and BEND could have zero or negative values, so the integer more than 
the absolute value of the lowest negative value (-20.156) needs to be added to all the variables 
before log transformation of IVs. Although the integer needs to be specified for the generalisation 
of log transformed IVs, the integer of 30 in this study was temporarily added to the IVs only for the 
comparison of goodness of fit. 

Coeffcient Estimates P-Value Estimates P-Value Estimates P-Value Estimates P-Value
(Intercept) 2.89E+01 <0.001 3.37E+00 <0.001 -6.67E+01 <0.001 7.75E-01 <0.001

TF 1.04E-03 0.013 5.06E-05 <0.001

TF2 1.11E-06 <0.001 2.30E-08 <0.001

TR 4.72E-03 <0.001 1.29E-04 <0.001

RISE 8.02E-02 <0.001 2.17E-03 <0.001

FALL 1.27E-01 <0.001 3.48E-03 <0.001

log(TF + 30) 1.25E+02 <0.001 3.32E+00 <0.001

log(TF2 + 30) -5.82E+01 <0.001 -1.54E+00 <0.001

log(TR + 30) 2.83E+00 <0.001 7.76E-02 <0.001

log(RISE + 30) 2.92E+00 <0.001 8.07E-02 <0.001

log(FALL + 30) 2.46E+00 <0.001 6.75E-02 <0.001

Observations

R2 / R2 adjusted 0.406 / 0.405 0.427 / 0.426

FMODEL3-2 FMODEL3-3

                                          3,482                                           3,482                                           3,482                                           3,482 

FMODEL3 FMODEL3-1

0.423 / 0.422 0.439 / 0.438
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Table 5-11 Change of R-square by log-transformation of IVs 

 

 

5.4.3. OLS assumption tests 

Multicollinearity test 

Multicollinearity happens among IVs when IVs are correlated with each other or when IVs are 

correlated with the variables that are not considered (Washington et al., 2010). It can be 

problematic in that multicollinearity produces the large standard errors of the estimated coefficients 

of collinear IVs and thus causes the wider confidence intervals for them. Although the OLS 

estimated the smallest variance even when multicollinearity happens, it is uncertain that the 

variance is absolutely small (Greene, 2018). A variance inflation factor (VIF) as a measure of 

multicollinearity is widely used, which is the equation of 1/(1 − Rk
2) where the subscript of k 

means kth independent variable (𝑥𝑥𝑘𝑘). In the most extreme case, in which 𝑥𝑥𝑘𝑘 has the perfect collinear 

with other IVs, so that Rk
2 = 1, VIF becomes infinite (Greene, 2018). Overall, the high values of 

VIF would potentially cause problems in model specification, in regard to the estimation of 

coefficients.  

The VIFs of the IVs in two models were examined: the linear-linear OLS estimation model 

(FMODEL3) and the log-linear OLS estimation model (FMODEL3-1). As both models have the 

same IVs, the results of the two VIF tests are identical. Although the VIFs of TF and TF2 are over 

20 (Table 5-12) and this could be regarded as a problem (Belsley et al., 1980), it is reported in 

many studies that the collinearity between polynomial terms can either be ignored or treated by 

centring the IVs in that both variables are naturally collinear because the variable of TF2 is created 

Coeffcient Estimates Estimates Estimates Estimates Estimates Estimates
(Intercept) 3.19E+00 *** 3.07E+00 *** 3.46E+00 *** 2.79E+00 *** 2.98E+00 *** 3.05E+00 ***

TFplus30 5.06E-05 *** 1.59E-04 *** 5.03E-05 *** 5.07E-05 *** 5.04E-05 ***

TF2plus30 2.30E-08 *** 3.40E-08 *** 2.30E-08 *** 2.30E-08 *** 2.30E-08 ***

TRplus30 1.29E-04 *** 1.29E-04 *** 1.28E-04 *** 1.30E-04 *** 1.32E-04 ***

RISEplus30 2.17E-03 *** 2.19E-03 *** 2.11E-03 *** 2.12E-03 *** 2.35E-03 ***

FALLplus30 3.48E-03 *** 3.46E-03 *** 3.52E-03 *** 3.51E-03 *** 3.43E-03 ***

log(TFplus30) 2.39E-02 ***

log(TF2plus30) -2.55E-02 ***

log(TRplus30) 7.64E-02 ***

log(RISEplus30) 8.34E-02 ***

log(FALLplus30) 6.85E-02 ***

Observations

R2 / R2 adjusted

                         3,482 

0.437 / 0.437 0.438 / 0.437 0.440 / 0.439

FMODEL3-8 FMODEL3-9

                         3,482 

FMODEL3-4 FMODEL3-5 FMODEL3-6 FMODEL3-7

0.439 / 0.438 0.438 / 0.437 0.438 / 0.438

                         3,482                          3,482                          3,482                          3,482 
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from the variable of TF (Yu, 2000; Kraemer and Blasey, 2004; Allison, 2012; Dalal and Zickar, 

2012). Table 5-12 shows that the issue of multicollinearity can be resolved by centring the 

variables. With regard to the VIFs (< 1.7) of the geometric IVs, it can be said that multicollinearity 

does not have any significant effect on the variables.  

Table 5-12 Result of the variance inflation factor (VIF) 

 
where TFc is the centred variable of TF, which is created by subtracting the mean of TF from each 

value of TF, and TFc2 is TFc squared.  

Test for heteroscedasticity detection 

As referred to Section 3.3.2, homoscedasticity is the OLS estimation assumption that the residuals 

should have the identical distribution, which means all residuals have one value of variance 

corresponding to each independent variable. The scatter residual plots were examined for detecting 

heteroscedasticity (Figure 5-5) and the Breusch-Pagan test was implemented in order to quantify 

the level of heteroscedasticity (Table 5-13 and Table 5-14). The test was used for assessing 

heteroscedasticity in linear regression models by examining χ2 whether the variance of errors is 

dependent on the independent values (Breusch and Pagan, 1979). A large χ2 would mean that 

heteroscedasticity is present in the tested model. When examining the test against fitted values for 

FMODEL3-1 (Table 5-13), heteroscedasticity can be doubted but uncertain because χ2 is 3.73, 

indicating that a null hypothesis cannot be rejected at a 95% confidence level. It can be confirmed 

through the observation that the residual plot (top-left one in Figure 5-5) shows centred but non-

increasing or non-decreasing points. However, when examining the test against the independent 

variables (Table 5-14), the χ2s against three independent (geometric) variables of TR, RISE and 

FALL vary from 11.13 to 41.92. On the other hand, the χ2s against TF and TF2 are only 0.97 and 

0.00043 respectively (homoscedasticity). The residual plots (two bottom ones in Figure 5-5) show 

that the variations of residuals are not constant across the values of the geometric variables. 

Therefore, both results of the scatter plots and Breusch-Pagan test suggest that other statistical 

estimations for dealing with the heterogeneity need to be considered in this study.  

Coeffcient VIF Tolerance (1/VIF) Coeffcient VIF Tolerance (1/VIF)

TF 20.860 0.048 TFc 1.008 0.992

TF2 20.883 0.048 TFc2 1.013 0.987

TR 1.185 0.844 TR 1.185 0.844

RISE 1.688 0.592 RISE 1.688 0.592

FALL 1.699 0.588 FALL 1.699 0.588

Uncentred Centred
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Figure 5-5 Scatter residual plots for FMODEL3-1 

 

 

Table 5-13 Breusch-Pagan test by using fitted values for FMODEL3-1 

ols_test_breusch_pagan(MODEL3_1) 
##  
##  Breusch Pagan Test for Heteroskedasticity 
##  ----------------------------------------- 
##  Ho: the variance is constant             
##  Ha: the variance is not constant         
##  
##                   Data                    
##  ---------------------------------------- 
##  Response : log(Inv_SPD)  
##  Variables: fitted values of log(Inv_SPD)  
##  
##         Test Summary           
##  ----------------------------- 
##  DF            =    1  
##  Chi2          =    3.730069  
##  Prob > Chi2   =    0.05344118 
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Table 5-14 Breusch-Pagan test of independent variables for MODEL3-1 

ols_test_breusch_pagan(MODEL3_1, rhs=TRUE, multiple=TRUE) 
##  
##  Breusch Pagan Test for Heteroskedasticity 
##  ----------------------------------------- 
##  Ho: the variance is constant             
##  Ha: the variance is not constant         
##  
##              Data               
##  ------------------------------ 
##  Response : log(Inv_SPD)  
##  Variables: TF TF2 TR RISE FALL  
##  
##            Test Summary (Unadjusted p values)           
##  ---------------------------------------------------- 
##   Variable             chi2        df         p        
##  ---------------------------------------------------- 
##   TF               9.681590e-01     1          0.3251  
##   TF2              4.304884e-04     1          0.9834  
##   TR               4.191977e+01     1    9.509626e-11  
##   RISE             1.113442e+01     1    8.474034e-04  
##   FALL             2.667428e+01     1    2.408060e-07  
##  ---------------------------------------------------- 
##   simultaneous     1.133549e+02     5    8.002381e-23  
##  ---------------------------------------------------- 
 

 

Table 5-15 Breusch-Pagan test of independent variables for FMODEL3 

ols_test_breusch_pagan(FMODEL3, rhs=TRUE, multiple=TRUE) 
##  
##  Breusch Pagan Test for Heteroskedasticity 
##  ----------------------------------------- 
##  Ho: the variance is constant             
##  Ha: the variance is not constant         
##  
##              Data               
##  ------------------------------ 
##  Response : Inv_SPD  
##  Variables: TF TF2 TR RISE FALL  
##  
##           Test Summary (Unadjusted p values)          
##  -------------------------------------------------- 
##   Variable            chi2       df         p        
##  -------------------------------------------------- 
##   TF                46.358638     1    9.847244e-12  
##   TF2               63.153982     1    1.911627e-15  
##   TR                26.893255     1    2.150079e-07  
##   RISE               0.245749     1    6.200844e-01  
##   FALL              44.199768     1    2.965164e-11  
##  -------------------------------------------------- 
##   simultaneous     162.608262     5    2.751596e-33  
##  -------------------------------------------------- 
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Test for serial correlation detection 

As with heteroscedasticity, serial correlation (which means the correlation between the errors 

observed in a given time series and the errors in a lagged time series) can be detected by a scatter 

residual plot. However, it is difficult to detect the violation from the scatter plot because of the 

large number of points observed from 72 cases by 15-minute intervals between 7.00 and 19.00 

(Figure 5-5). Therefore, the Durbin-Watson test, which is widely used for detecting serial 

correlation, was implemented (Washington et al., 2010). When the errors are independent of each 

other, the statistic from the Durbin-Watson test (hereafter “D-W statistic”) is close to 2. If the 

errors are positively correlated, the D-W statistic is less than 2 and vice versa greater than 2. In 

addition, Durbin and Watson (1951) set the criteria of D-W statics that do not reject the null 

hypothesis only up to 200 samples. The variation becomes narrow as degrees of freedom increase 

or the number of independent variables decreases. Lee (2016) extended the expected values and 

variations of the statistic to the large samples size with the different number of IVs (Equation 5-3). 

According to Lee (2016), in a case where the sample size is 3,482 for the OLS estimated models, 

the D-W statistic should be close to 2 with the variation of around 0.0011 in order not to violate the 

serial correlation assumption. Table 5-16 shows the D-W statistics derived for both models of 

MODEL3-1 and FMODEL3. The test result indicates that the errors of the OLS estimated models 

are serially correlated and as such it is concluded that alternative model estimations need to be 

considered.   

𝑃𝑃𝑎𝑎𝑎𝑎(𝐷𝐷𝐿𝐿) =

⎩
⎨

⎧
4
𝑑𝑑𝑓𝑓

,                                                              𝑑𝑑𝑓𝑓 > 200

0.002699 +
3.1189
𝑑𝑑𝑓𝑓

,                              𝑑𝑑𝑓𝑓 ≤ 200
 Equation 5-3 

Table 5-16 Durbin-Watson test for MODEL3-1 and FMODEL3 

 
durbinWatsonTest(MODEL3_1) 
##  lag Autocorrelation D-W Statistic p-value 
##    1       0.8390613     0.3193988   <0.001 
##  Alternative hypothesis: rho != 0 
 
durbinWatsonTest(FMODEL3) 
##  lag Autocorrelation D-W Statistic p-value 
##    1       0.8115146     0.3741022   <0.001 
##  Alternative hypothesis: rho != 0 
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5.4.4. Summary 

Many OLS estimation models were constructed in order to develop feasible VDFs using different 

combinations of variables, interaction effects and transformations of logarithmic functions. Firstly, 

the IV5 of BEND in all OLS estimated models based on the one-day dataset cannot reject the null 

hypothesis at a 99% confidence level when applying different combinations to the estimated 

models. Secondly, interaction effects do not need to be considered when taking into account the 

change in overall R2s, p-values of coefficients and the signs of coefficients. Lastly, the log-linear 

function would be the most appropriate of the four transformed function types.  

On the one hand, it is prudent that the developed OLS estimated models are statistically significant 

because two statistical assumptions for the OLS estimation were violated. In the same context, 

Washington et al. (2010) mentioned that many transportation studies did not consider these OLS 

assumptions. From the strict viewpoint of OLS statistical assumption, it is not appropriate to apply 

the OLS estimated models to the traffic assignment process.  

On the other hand, as discussed in Section 3.3.2, the violations of both heteroscedasticity and serial 

correlation do not affect consistency and unbiasedness but rather the efficiency of estimators 

(Washington et al., 2010). Whilst the estimation requires that many statistical assumptions are 

satisfied, the OLS estimation method has traditionally been widely used because of its simplicity 

and clarity. Therefore, care need to be taken when excluding the OLS estimated models from this 

study.  

To sum up, FMODEL3-1 could be the best on the statistical measures of the models by OLS linear 

estimation. In addition, this study introduces another statistical estimation method for resolving 

both statistical violations of heteroscedasticity and serial correlation in Section 5.5. Generalised 

least squares (GLS) estimation is adopted for developing feasible VDFs in this study as discussed 

in Section 3.3.2.   
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5.5. GLS estimation models 

5.5.1. Model specification 

As mentioned in Section 3.3.2, the biggest difference between the OLS and GLS estimation is the 

variance-covariance matrix of errors. In the OLS estimation, it is a diagonal matrix with the same 

value assuming that the variance of the errors is constant and the covariance is zero. By contrast, 

the matrix in the GLS estimation is assumed to be symmetric and non-singular. In addition, the 

OLS estimation assumes that the errors are normally distributed, while the GLS estimation can 

cover various distributions of errors including normal, gamma, Poisson and binomial distribution 

(as with OLS, the GLS estimation predefines the type of distribution). FMODEL3-1 with the 

independent variables of TF, TF2, TR, RISE and FALL in Section 5.3 is the starting point for the 

GLS estimation. When recalling Equation 3-35 and Equation 3-36 (Equation 5-4 and Equation 

5-5), Equation 5-4 is the possible approach when the variance-covariance matrix is already known, 

but it is not realistic. Instead, the GLS estimation uses a maximum likelihood estimation (MLE) 

approach to maximise the log-likelihood (LL) by iterative calculations because it is impossible to 

define the matrix beforehand (Equation 5-5).  

𝑿𝑿𝑮𝑮𝑶𝑶𝑶𝑶� = �𝑿𝑿𝑻𝑻𝜴𝜴−𝟏𝟏𝑿𝑿�−𝟏𝟏𝑿𝑿𝑻𝑻𝜴𝜴−𝟏𝟏𝒀𝒀 
Equation 5-4 

𝐿𝐿𝐿𝐿 = −
𝑎𝑎
2

ln(2𝜋𝜋) −
1
2

ln(det(𝜴𝜴)) −
1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝑇𝑇𝜴𝜴−𝟏𝟏(𝒀𝒀 − 𝑿𝑿𝑿𝑿) Equation 5-5 

The GLS estimation models by different variance-covariance matrices are denoted as Table 5-17 in 

this section. 

Table 5-17 GLS estimation models by different variance-covariance matrices 

Model Name Independent 

Variables 

Explanation 

FMODEL3-1 TF, TF2, TR, 

RISE, FALL 

Quadratic model between Inv_SPD and IVs. 
Log-linear transformation based on FMODEL3. 
Base model for GLS estimation. 

FMODEL3-1-1 ~  

FMODEL3-1-11 

TF, TF2, TR, 

RISE, FALL 

Reflection by the various relationship between 
variances (consideration of heterogeneity effects) 

FMODEL3-1-12 ~  

FMODEL3-1-16 

TF, TF2, TR, 

RISE, FALL 

Reflection by the various relationship between 
covariances (consideration of time-series effects) 

FMODEL3-1-17 TF, TF2, TR, 

RISE, FALL 

Consideration of both heterogeneity and time-series 
effects. 
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5.5.2. Dealing with heteroscedasticity  

The heteroscedasticity detection test performed in Section 5.4.3 confirmed that the homogeneity of 

the five assumptions for OLS linear estimation was violated. Namely, residuals do not have fixed 

variance of σ2. Thus, when recalling Equation 3-37 (Equation 5-6), if heteroscedasticity exists, the 

variances of residuals against fitted values or explanatory variables can differ (𝜎𝜎12 ≠ 𝜎𝜎22 ≠  … … ≠

𝜎𝜎𝑛𝑛2 in Equation 5-6).  

𝑭𝑭[𝜺𝜺𝜺𝜺𝑻𝑻] = 𝜎𝜎2𝜴𝜴 =  

⎝

⎛
𝜎𝜎12 0 . 0
0 𝜎𝜎22 . 0
. . . .
0 0 . 𝜎𝜎𝑛𝑛2⎠

⎞ Equation 5-6 

Dealing with the heteroscedasticity requires prior assumptions about the variance structure. If there 

are no assumptions about the variance-covariance matrix for a large number of samples in the GLS 

estimation process, it would either require too much computational work to transform the matrix 

with iterative calculations or be impossible to find estimators for maximising likelihood function 

(Equation 5-5). Zuur et al. (2009) introduced many variance structures and their functions in “R” 

for formulating each variance structure following Pinheiro and Bates (2000) (Table 5-18).  

Table 5-18 Various variance structures for dealing with heteroscedasticity 

Function in “R” Variance function Explanation 

varFixed() Var(εij) =  σ2  × 𝑎𝑎ij Fixed variance 

varIdent() Var(εij) =  σ2δsij
2  Different variances per 

stratum 
varPower() Var�εij� = σ2 × �𝑎𝑎ij�

2δsij  Power of the variance 
covariate 

varExp() Var�εij� = σ2 × exp �2𝛿𝛿𝑟𝑟𝑖𝑖𝑗𝑗 × 𝑎𝑎𝑖𝑖𝑖𝑖� Exponential of the variance 
covariate 

varConstPower() Var�εij� = σ2 × �δ1,sij +  �𝑎𝑎𝑖𝑖𝑖𝑖�
δ2,𝑠𝑠𝑖𝑖𝑗𝑗  �

2
 Constant plus power of the 

variance covariate 

varComb() - A combination of variance 
functions 

where 𝑎𝑎𝑖𝑖𝑖𝑖 is a vector of variance covariates, δ is a vector of variance parameters and s is a 

stratification variable (Pinheiro and Bates, 2000). 

GLS estimation with different variance structures 

As can be seen from the Breusch-Pagan test of the residuals against each explanatory variable, the 

heteroscedasticity of the residuals happened against the geometric IVs except for TF and TF2 IVs. 
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Therefore, in order to deal with the heteroscedasticity in the modelling process, the variance 

structures of errors against each independent variable were applied to the GLS estimation focusing 

on the geometric variables. In addition, since all geometric variables can be grouped into the entity 

of links as investigated from FE modelling in Section 4.4.2, the stratified variance structure against 

each link is used for the modelling. In the modelling process, the dependent and independent 

variables are the same as the log-linear OLS estimation model, which is denoted as “FMODEL3-1” 

in Table 5-10. The functions presented in Table 5-18 are used to estimate the coefficients of the 

model and the statistical significance of each coefficient by the ‘gls()’ function in the software 

package of “R”. For example, the argument of “varIdent (form = ~1|Link)” in Table 5-19 

represents the desired variance structure, which is Var(εij) =  σ2δsij
2 . This argument indicates that 

the variance of errors is identical within each link but the variance is different across links. The 

variance model plays a role of weighting in the GLS estimation process by specifying the ‘weights’ 

argument in the ‘gls()’ function. Table 5-20 summarises the results of applying different variance 

structures to GLS estimations by focusing on the estimated coefficients with their t-value, AIC, 

BIC and logLik (log-likelihood). From this comparison, it can be concluded that the stratified 

variance structure shows the best result. 

Table 5-19 Example of GLS estimation dealing with heteroscedasticity (stratified variance) 

varIndent_1 <- varIdent(form = ~ 1|Link) 
FMODEL3_1_3 <- gls(log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL,  
weights= varIndent_1, data = Data_1day, method="ML")  
summary(FMODEL3_1_3) 
 
## Generalized least squares fit by maximum likelihood 
##   Model: log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL  
##   Data: Data_1day  
##         AIC       BIC   logLik 
##   -8575.416 -8095.297 4365.708 
##  
## Variance function: 
##  Structure: Different standard deviations per stratum 
##  Formula: ~1 | Link  
 
##Parameter estimates: 
##   1. KochangDamyang (6.23-11.57k)_E   10. GwangjuDaegu (125.9-128.0K) S 
##               1.0000000                               3.9309680  
## 100. Jungang (267.8-270.4) S         102. Jungang (349.3-351.4) S  
##               2.2513605                               1.3511151  
## 103. Jungang-Branch (1.1-3.4) E      104. Jungang-Branch (1.1-3.4) S  
##               2.5053089                               4.8325360  
## 105. Jungang-Branch (3.4-5.4) E      106. Jungang-Branch (3.4-5.4) S  
##               0.8622466                               4.2930834 
## 107. Jungang-Branch (5.4-8.0) E      108. Jungang-Branch (5.4-8.0) S  
##               1.7055257                               0.9120687  
## 117. TongyoungDaejeon (113.2-115.6)E 118. TongyoungDaejeon (113.2-115.6)S 
##               4.4932358                               1.1705882  
## 119. TongyoungDaejeon (127.6-131.8)E  12. GwangjuDaegu (135.0-138.6K) S  
##               2.3368967                               1.8843695  
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## 120. TongyoungDaejeon (127.6-131.8)S 121. TongyoungDaejeon (153.1-155.9)E 
##               2.4076936                               2.8298059 
## 122. TongyoungDaejeon (153.1-155.9)S 123. Pyungtaek Jaecheon (48.9-52.1)E 
##               1.2476784                               2.6880383 
## 124. Pyungtaek Jaecheon(48.9-52.1)S  125. Pyungtaek Jaecheon(105.1-107.3)E 
##               1.3979250                               2.9658649 
## 126. PyungtaekJaecheon(105.1-107.3)S 127. Pyungtaek Jaecheon(112.0-115.7)E 
##               1.7665557                               3.1751057 
## 128. PyungtaekJaecheon(112.0-115.7)S 129. Pyungtaek Jaecheon(115.7-118.9)E 
##               2.0985188                               2.7722589 
## 130. PyungtaekJaecheon(115.7-118.9)S 131. Pyungtaek Jaecheon(118.9-123.9)E 
##               1.2073310                               2.2780113 
## 132. PyungtaekJaecheon(118.9-123.9)S  14. GwangjuDaegu (138.6-143.3K) S  
##               2.0370626                               3.7151508 
##   2. KochangDamyang (6.23-11.57k)_S   22. MuanGwangju (26.57-29.57) S  
##               2.3986936                               2.2880818 
## 25. SangjuYoungduk (105.1-110.3) E    26. SangjuYoungduk (105.1-110.3) S 
##               0.7473644                               2.2261311  
## 27. SangjuYoungduk(110.3-115.0) E     28. SangjuYoungduk (110.3-115.0) S  
##               1.0744919                               1.0131826 
## 29. SangjuYoungduk (124.7-128.1) E    30. SangjuYoungduk(124.7-128.1) S 
##               1.4833480                               1.0781803 
## 31. SangjuYoungduk (146.3-152.2) E    32. SangjuYoungduk (146.3-152.2) S 
##               0.6528437                               1.0842468 
## 35. SangjuYoungduk (172.3-176.2) E    36. SangjuYoungduk(172.3-176.2) S 
##               0.7964520                               1.3246698 
## 37. SangjuYoungduk (181.3-185.5) E    38. SangjuYoungduk (181.3-185.5) S 
##               3.7026360                               1.7570957 
## 39. SangjuYoungduk(185.5-188.7) E     40. SangjuYoungduk (185.5-188.7) S  
##               4.3899208                               3.5291273            
## 41. SeoulYangyang (63.8-70.1) E       43. SeoulYangyang (70.1-73.7) E  
##               0.7212434                               0.8209368  
## 47. Seoul Yangyang(97.7-103.9) E      48. Seoul Yangyang (97.7-103.9) S  
##               1.2541598                               1.0513742    
## 49. Seoul Yangyang(106.9-110.9) E      5. KochangDamyang (19.92-24.06k) E  
##               1.2493440                               0.8910661    
## 50. Seoul Yangyang(106.9-110.9) S     54. Seoul Yangyang(115.7-119.0) S  
##               2.7432645                               1.4564409 
## 55. Seoul Yangyang(143.0-149.6) E     56. Seoul Yangyang(143.0-149.6) S  
##               1.9439133                               0.6557524 
## 57. Suncheon Wyanju (7.8-12.5) E      59. Suncheon Wyanju (12.5-20.0) E  
##               1.7209213                               1.3865743  
##  6. KochangDamyang (19.92-24.06k) S   61. Suncheon Wyanju (25.1-32.6) E 
##               1.9624852                               1.9552155 
## 62. Suncheon Wyanju (25.1-32.6) S     65. Suncheon Wyanju (37.9-41.8) E  
##               0.8243266                               2.6928160 
## 66. Suncheon Wyanju (37.9-41.8) S     67. Suncheon Wyanju (41.8-46.6) E  
##               0.6941331                               2.0008783   
## 68. Suncheon Wyanju (41.8-46.6) S      7. GwangjuDaegu (41.2-43.7K) E  
##               1.2052564                               0.9660230  
##  8. GwangjuDaegu (41.2-43.7K) S       83. Jungbunaeryuk (106.4-108.1) E  
##               1.8112138                               1.3713531   
## 84. Jungbunaeryuk (106.4-108.1) S      9. GwangjuDaegu (125.9-128.0K) E  
##               4.3872995                               1.7432063 
## 93. Jungbunaeryuk (290.6-295.4) E     94. Jungbunaeryuk (290.6-295.4) S  
##               0.9734423                               1.0486989 
## 97. Jungang (237.4-244.9) E           99. Jungang (267.8-270.4) E  
##               1.7812751                               4.0794553 
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## Coefficients: 
##                Value        Std.Error   t-value  p-value 
## (Intercept) 3.378419e+00  0.006715026  503.1133        0 
## TF          4.966598e-05  0.000006750    7.3582        0 
## TF2         2.421686e-08  0.000000002   10.0692        0 
## TR          8.906681e-05  0.000005954   14.9584        0 
## RISE        3.156171e-03  0.000222389   14.1921        0 
## FALL        4.874284e-03  0.000224615   21.7006        0 
 
##  Correlation:  
##      (Intr) TF     TF2    TR     RISE   
## TF   -0.585                             
## TF2   0.530 -0.976                      
## TR   -0.677 -0.017  0.017               
## RISE -0.501 -0.015  0.024  0.281        
## FALL  0.572 -0.042  0.043 -0.356 -0.635 
 
## Standardized residuals: 
##        Min         Q1        Med         Q3        Max  
## -2.7493173 -0.7252864  0.1205624  0.8846412  5.0995675  
 
## Residual standard error: 0.04158249  
## Degrees of freedom: 3482 total; 3476 residual 

Table 5-20 GLS estimation considering different variance structures 

 

Model
Form

Coeffcient Estimates t-value Estimates t-value Estimates t-value Estimates t-value

(Intercept) 3.37E+00 296.04 3.39E+00 316.60 3.37E+00 311.00 3.38E+00 503.11

TF 5.06E-05 4.57 3.68E-05 3.79 4.24E-05 3.93 4.97E-05 7.36

TF2 2.29E-08 5.91 2.78E-08 7.10 2.55E-08 6.78 2.42E-08 10.07

TR 1.29E-04 12.48 1.23E-04 11.62 1.32E-04 13.64 8.91E-05 14.96

RISE 2.17E-03 6.60 1.51E-03 4.34 2.24E-03 6.83 3.16E-03 14.19

FALL 3.48E-03 9.26 3.45E-03 8.85 3.06E-03 8.25 4.87E-03 21.70

AIC

BIC

logLik

FMODEL3-1-3

varIdent(form = ~ 1|Link)varFixed( ~ TF) varFixed( ~ TR)

FMODEL3-1 FMODEL3-1-1 FMODEL3-1-2

-8,575 -6,909 -6,036 

-5,993 

3,025 

-6,959 

-6,916 

3,487 

-8,095 

4,366 

-6,865 

3,461 
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Model selection by ANOVA  

As mentioned in Section 3.6.1, the smallest AIC and BIC can be the criteria used for selecting GLS 

estimation models if both outputs are produced from the same dataset. In addition, the ANOVA test 

can statistically confirm whether there is a difference between GLS estimation models (Pinheiro 

and Bates, 2000; Zuur et al., 2009; Fox and Weisberg, 2010). The ANOVA test (Table 5-21) shows 

that four models, which are FMODEL3-1-3, FMODEL3-1-4, FMODEL3-1-5 and FMODEL3-1-

10, have statistical differences with the adjacent model based on the likelihood ratio which is 

denoted as “L. Ratio”. Moreover, the statistical difference between FMODEL3-1 and FMODEL3-

1-3 was confirmed. Therefore, when investigating AIC and BIC with the ANOVA test, 

Model
Form

Coeffcient Estimates t-value Estimates t-value Estimates t-value Estimates t-value

(Intercept) 3.39E+00 479.52 3.37E+00 292.93 3.37E+00 307.36 3.37E+00 305.15

TF 4.14E-05 5.97 5.08E-05 4.50 4.49E-05 4.12 4.61E-05 4.22

TF2 2.75E-08 11.02 2.28E-08 5.86 2.48E-08 6.52 2.44E-08 6.40

TR 8.51E-05 13.67 1.29E-04 12.52 1.30E-04 13.30 1.28E-04 12.87

RISE 2.51E-03 10.96 2.20E-03 6.72 2.21E-03 6.75 2.19E-03 6.73

FALL 5.32E-03 21.68 3.49E-03 9.31 3.19E-03 8.56 3.25E-03 8.74

AIC

BIC

logLik

-6,955 -6,910 

-6,861 

3,463 

-6,966 

-6,917 -6,906 

3,486 3,491 

-8,413 

varIdent(form = ~ 1|RISE) varPower(form = ~ TF) varPower(form = ~ TR) varExp(form = ~ TR)

FMODEL3-1-4 FMODEL3-1-5 FMODEL3-1-6 FMODEL3-1-7

-7,982 

4,277 

Model
Form

Coeffcient Estimates t-value Estimates t-value Estimates t-value Estimates t-value

(Intercept) 3.37E+00 297.34 3.38E+00 303.07 3.37E+00 290.19 3.37E+00 307.36

TF 5.06E-05 4.56 4.66E-05 4.26 5.31E-05 4.61 4.49E-05 4.12

TF2 2.31E-08 5.96 2.39E-08 6.25 2.21E-08 5.57 2.48E-08 6.52

TR 1.31E-04 12.74 1.19E-04 11.78 1.29E-04 12.53 1.30E-04 13.30

RISE 2.23E-03 7.04 1.98E-03 5.89 2.20E-03 6.73 2.21E-03 6.75

FALL 3.43E-03 9.04 3.74E-03 10.70 3.48E-03 9.28 3.19E-03 8.56

AIC

BIC

logLik

FMODEL3-1-8 FMODEL3-1-9 FMODEL3-1-10 FMODEL3-1-11

varExp(form = ~ FALL) varConstPower(form = ~ TF) varConstPower(form = ~ TR)varExp(form = ~ RISE)

3,465 

-6,964 

-6,909 

3,491 3,466 3,477 

-6,912 

-6,856 

-6,916 

-6,866 

-6,938 

-6,888 
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FMODEL3-1-3 model can be regarded as the best of the analysed models with reference to 

heteroscedasticity. The result can be supported by the residual plot of FMODEL3-1 (Figure 5-6) 

which shows different variances against each link. This can also be due to the difference in sample 

size or the different variation of the dependent variable (Inv_SPD) (Zuur et al., 2009). 

Table 5-21 ANOVA after dealing with heteroscedasticity 

anova(FModel_OLS_Base, FMODEL3_1_1, FMODEL3_1_2, FMODEL3_1_3, FMODEL3_1_4, FM
ODEL3_1_5, FMODEL3_1_6, FMODEL3_1_7, FMODEL3_1_8, FMODEL3_1_9, FMODEL3_1_10, 
FMODEL3_1_11) 
 
##                     Model df   AIC  BIC logLik   Test     L.Ratio  p-value 
 
## FMODEL3_1               1  7 -6908 -6865 3461          
## FMODEL3_1_1             2  7 -6036 -5993 3025          
## FMODEL3_1_2             3  7 -6959 -6916 3486          
## FMODEL3_1_3             4 78 -8575 -8095 4365   3 vs 4   1757.9990  <.0001 
## FMODEL3_1_4             5 70 -8413 -7982 4276   4 vs 5    178.4078  <.0001 
## FMODEL3_1_5             6  8 -6910 -6861 3463   5 vs 6   1626.7004  <.0001 
## FMODEL3_1_6             7  8 -6966 -6916 3491          
## FMODEL3_1_7             8  8 -6955 -6905 3485          
## FMODEL3_1_8             9  8 -6915 -6866 3465          
## FMODEL3_1_9            10  8 -6937 -6888 3476          
## FMODEL3_1_10           11  9 -6911 -6856 3464 10 vs 11     23.8304  <.0001
## FMODEL3_1_11           12  9 -6964 -6908 3491          
 
anova(FMODEL3_1, FMODEL3_1_3) 
 
##                     Model df   AIC  BIC logLik   Test     L.Ratio  p-value 
## FMODEL3_1               1  7 -6908 -6865 3461                         
## FMODEL3_1_3             2 78 -8575 -8095 4365   1 vs 2    1808.888  <.0001 
 

Figure 5-6 Residual plot of FMODEL3-1 against the entity of links 
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5.5.3. Dealing with serial correlation 

The Durbin-Watson test performed in Section 5.4.3 shows that previous and lagged errors 

measured over 15-minute time intervals are not independent of each other in time-series data 

modelling. The test result shows that travel time measured in the current time interval can be 

affected by that in the previous time intervals. When recalling Equation 3-38 (Equation 5-7), if 

serial correlation exists in OLS linear estimation, the covariance (𝜌𝜌𝑖𝑖) in the variance-covariance 

matrix of errors is not zero.  

𝜎𝜎2𝜴𝜴 = 𝜎𝜎2  

⎝

⎜
⎛

1 𝜌𝜌1 𝜌𝜌2 . 𝜌𝜌𝑛𝑛−1 
𝜌𝜌1 1 𝜌𝜌1 . 𝜌𝜌𝑛𝑛−2
𝜌𝜌2 𝜌𝜌1 1 . 𝜌𝜌𝑛𝑛−3
. . . . .

𝜌𝜌𝑛𝑛−1 𝜌𝜌𝑛𝑛−2 𝜌𝜌𝑛𝑛−3 . 1 ⎠

⎟
⎞

 Equation 5-7 

In order to deal with serial correlation violation, ARMA models introduced in Section 3.3.2 are 

applied to the GLS estimation. If high-order ARMA models are included in the GLS estimation 

process with a large number of samples (3,482 observations in this study), it causes too much 

computational work to find the estimators through iterative calculations by transforming the 

variance-covariance matrix. Therefore, in this study, AR (1), AR (2), ARMA (1, 1), ARMA (2, 1) 

and ARMA (2, 2) models were considered during the GLS estimation process.  

GLS estimation with different time-series correlation 

In order to deal with the serial correlation, the argument of ‘correlation=corARMA (form=~1|Link, 

p=, q=)’ in the ‘R’ package was used for assuming various serial correlation structures of errors in 

the GLS estimation. For example, ‘correlation=corARMA (form=~1|Link, p=2, q=2)’ represents 

an AR (2, 2) model that has the second-order autoregressive and the second-order moving average 

correlation between residuals in each separated link. Table 5-22 shows the example of the GLS 

estimation with ARMA (2, 2) in the software package “R”. The base model for dealing with serial 

correlation is FMODEL3-1; it is also the model for treating heteroscedasticity as referred to in the 

previous section. Table 5-23 summarises GLS estimation models with different serial correlation 

structures. First of all, the AIC and BIC of the GLS estimation models when combined with AR 

and ARMA models decreased significantly, compared to the OLS estimation model (FMODEL3-

1). This indicates that the accuracy of models is much improved. Secondly, it can be seen that the 

coefficient values change significantly, which proves that the observed travel time is strongly 

correlated with previous observation. Lastly, it is noteworthy that some coefficients of independent 

variables cannot reject the null hypothesis that they can affect the estimated model at the 

confidence level of 95% after consideration of serial correlation. In particular, the coefficients of 
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TR, RISE and FALL become less significant as higher-order ARMA models are applied in the 

GLS estimation. 

Table 5-22 Example of GLS estimation dealing with serial correlation (ARMA (2, 2)) 

FMODEL3_1_16 <- gls(log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL,  
correlation=corARMA(form=~1|Link, p=2, q=2), data = Data_1day, method="ML")  
summary(FMODEL3_1_16) 
 
## Generalized least squares fit by maximum likelihood 
##   Model: log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL  
##   Data: Data_1day  
##         AIC      BIC   logLik 
##   -12017.37 -11949.66 6019.683 
 
## Correlation Structure: ARMA(2,2) 
##  Formula: ~1 | Link 
  
##  Parameter estimate(s): 
##       Phi1       Phi2     Theta1     Theta2  
##  0.1335614  0.8145693  0.3490224 -0.4433140 
 
## Coefficients: 
##                Value       Std.Error   t-value  p-value 
## (Intercept) 3.418510e+00  0.04894284  69.84701   0.0000 
## TF          4.741335e-05  0.00001246   3.80642   0.0001 
## TF2         1.848031e-08  0.00000000   4.88693   0.0000 
## TR          8.362728e-05  0.00005544   1.50838   0.1315 
## RISE        1.628975e-03  0.00173585   0.93843   0.3481 
## FALL        3.016913e-03  0.00201498   1.49724   0.1344 
 
##  Correlation:  
##      (Intr)    TF     TF2    TR     RISE   
## TF   -0.185                             
## TF2   0.162 -0.957                      
## TR   -0.894  0.019 -0.015               
## RISE -0.627  0.007 -0.003  0.350        
## FALL  0.641 -0.022  0.020 -0.363 -0.624                         
 
## Standardized residuals: 
##        Min         Q1        Med         Q3        Max  
## -2.4319697 -0.6745891 -0.1646449  0.5458534  4.6720321 
 
## Residual standard error: 0.09313556 
## Degrees of freedom: 3482 total; 3476 residual 
 



 Chapter 5. Development of Feasible Models  

 

175 

  

Table 5-23 GLS estimation considering different serial correlation structures 

 

 

Model
Structrue

φ1 =0.86468  φ1 =0.5641235
φ2 =0.3488619 

Coeffcient Estimates t-value Estimates t-value Estimates t-value

(Intercept) 3.37E+00 296.04 3.39E+00 105.03 3.40E+00 83.37

1% 1%
TF 5.06E-05 4.57 6.82E-05 4.78 6.46E-05 4.69

35% 28%
TF2 2.29E-08 5.91 1.09E-08 2.55 1.21E-08 2.95

-52% -47%
TR 1.29E-04 12.48 1.11E-04 3.16 9.86E-05 2.17

-14% -24%
RISE 2.17E-03 6.60 1.82E-03 1.65 1.74E-03 1.22

-16% -20%
FALL 3.48E-03 9.26 3.39E-03 2.67 3.12E-03 1.89

-3% -10%
AIC

BIC

logLik

-11,827 

FMODEL3-1 FMODEL3-1-12 FMODEL3-1-13

- AR (1) AR (2)
Correlation
Parameters

3,461 5,737 5,950 

-6,909 -11,458 -11,882 

-6,865 -11,409 

Model
Structrue

φ1 =0.9707356 θ1 =-0.4986121 φ1 =1.0393624 θ1 =-0.5560434 φ1 =0.1335614 θ1 =0.3490224
φ2 =-0.0640038 φ2 = 0.8145693 θ2 =-0.4433140 

Coeffcient Estimates t-value Estimates t-value Estimates t-value

(Intercept) 3.32E+00 70.31 3.42E+00 69.09 3.42E+00 69.85

-2% 1% 1%
TF 9.94E-05 3.86 4.62E-05 3.74 4.74E-05 3.81

96% -9% -6%
TF2 4.84E-09 4.78 1.90E-08 5.05 1.85E-08 4.89

-79% -17% -19%
TR 1.43E-04 1.53 8.30E-05 1.48 8.36E-05 1.51

11% -36% -35%
RISE 3.13E-03 0.95 1.63E-03 0.93 1.63E-03 0.94

45% -25% -25%
FALL 1.16E-03 1.51 3.01E-03 1.48 3.02E-03 1.50

-67% -13% -13%
AIC

BIC

logLik 6,017 6,018 6,020 

ARMA (1,1) ARMA (2,1) ARMA (2,2)

-12,016 -12,016 -12,017 

Correlation
Parameters

-11,960 -11,955 -11,950 

FMODEL3-1-14 FMODEL3-1-15 FMODEL3-1-16
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Model selection by ANOVA  

As with the model comparison for dealing with heteroscedasticity, the ANOVA test was performed 

while comparing the AIC and BIC measures of the estimated models. Table 5-24 shows that two 

models, which are FMODEL3-1-12 and FMODEL3-1-13, are statistical different from the adjacent 

models. Both models of FMODEL3-1-13 and FMODEL3-1-14 are similar through the ANOVA 

test in spite of the difference of AIC and BIC measures the two models. In addition, Fox and 

Weisberg (2010) recommended that a simpler model, which has less order of ARMA, would be 

best if there is no significant difference between models. Therefore, FMODEL3-1-13 in this study 

can be chosen after treating serial correlation. The model suggests that the previous dependent 

variable can affect lagged and two lagged dependent variables. 

Table 5-24 ANOVA after dealing with serial correlation 

> anova(FMODEL3_1, FMODEL3_1_12, FMODEL3_1_13, FMODEL3_1_14, FMODEL3_1_15, FM
ODEL3_1_16) 
 
##             Model df        AIC       BIC   logLik   Test  L.Ratio p-value 
## FMODEL3_1       1  7  -6908.528  -6865.44 3461.264                         
## FMODEL3_1_12    2  8 -11457.782 -11408.54 5736.891 1 vs 2 4551.254  <.0001 
## FMODEL3_1_13    3  9 -11882.386 -11826.99 5950.193 2 vs 3  426.604  <.0001 
## FMODEL3_1_14    4  9 -12015.841 -11960.44 6016.921                         
## FMODEL3_1_15    5 10 -12016.426 -11954.87 6018.213 4 vs 5    2.584  0.1079 
## FMODEL3_1_16    6 11 -12017.367 -11949.66 6019.683 5 vs 6    2.941  0.0863 
 
> anova(FMODEL3_1, FMODEL3_1_13) 
 
##             Model df        AIC       BIC   logLik   Test  L.Ratio p-value 
## FMODEL3_1       1  7  -6908.528  -6865.44 3461.264                         
## FMODEL3_1_13    2  9 -11580.240 -11524.84 5799.120 1 vs 2 4675.712  <.0001 
 
> anova(FMODEL3_1, FModel_GLS_AR11) 
 
##             Model df        AIC       BIC   logLik   Test  L.Ratio p-value
## FMODEL3_1       1  7  -6908.528  -6865.44 3461.264                         
## FMODEL3_1_14    2  9 -11649.292 -11593.89 5833.646 1 vs 2 4744.764  <.0001 
 

 

5.5.4. Dealing with both heteroscedasticity and serial correlation 

As mentioned in Section 5.5.2, if heteroscedasticity exists in the OLS estimation, the GLS 

estimation assumes that the variance in the variance-covariance matrix of errors is not identical 

(Equation 5-6). In addition, as mentioned in Section 5.5.3, if serial correlation is identified in the 

OLS estimation, it is assumed that the covariance in the variance-covariance matrix of errors is not 

zero (Equation 5-7). Therefore, the variance-covariance matrix structure for dealing with both 

heteroscedasticity and serial correlation can be derived after combining both matrices as follows. 



 Chapter 5. Development of Feasible Models  

 

177 

  

𝜎𝜎2𝜴𝜴 = 𝜎𝜎2  

⎝

⎜
⎛

1 𝜌𝜌1 𝜌𝜌2 . 𝜌𝜌𝑛𝑛−1 
𝜌𝜌1 1 𝜌𝜌1 . 𝜌𝜌𝑛𝑛−2
𝜌𝜌2 𝜌𝜌1 1 . 𝜌𝜌𝑛𝑛−3
. . . . .

𝜌𝜌𝑛𝑛−1 𝜌𝜌𝑛𝑛−2 𝜌𝜌𝑛𝑛−3 . 1 ⎠

⎟
⎞

+

⎝

⎜⎜
⎛

𝜎𝜎12 0 0 . 0
0 𝜎𝜎22 0 . 0
0 0 𝜎𝜎22 . 0
. . . . .
0 0 0 . 𝜎𝜎𝑛𝑛2⎠

⎟⎟
⎞

 Equation 5-8 

The ‘gls()’ function in the software package of “R” supports the arguments of ‘weights = varIdent 

(form = ~1 | Link)’ and ‘correlation = corARMA (form = ~1|Link, p=2, q=0)’ at the same time, 

which are selected as the most appropriate variance-covariance structures. Table 5-25 shows a GLS 

estimation result dealing with both violations in the OLS estimation. The log-likelihood value was 

estimated at 6,741; and as such AIC and BIC were derived as -13,321 and -12,829, which are the 

lowest values among the estimated models in this study. With regard to coefficient estimation, the 

coefficients of TF and RISE are not statistically significant any more at a 95% confidence level.  

Table 5-25 GLS estimation dealing with heteroscedasticity and serial correlation 

FMODEL3_1_17  <- gls(log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL,  
weights= varIndent_1, correlation=corARMA(form=~1|Link, p=2, q=0),  
data = Data_1day, method="ML") 
summary(FMODEL3_1_17) 
 
##  Generalized least squares fit by maximum likelihood 
##  Model: log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL  
##  Data: Data_1day  
##        AIC       BIC  logLik 
##  -13321.82 -12829.39 6740.91 
 
##  Correlation Structure: ARMA(2,0) 
##  Formula: ~1 | Link  
##  Parameter estimate(s): 
##       Phi1      Phi2  
##  0.5551263 0.4038067  
 
##  Variance function: 
##  Structure: Different standard deviations per stratum 
##  Formula: ~1 | Link  
##  Parameter estimates: 
##   1. KochangDamyang (6.23-11.57k)_E    10. GwangjuDaegu (125.9-128.0K) S 
##               1.0000000                               1.2115718  
## 100. Jungang (267.8-270.4) S          102. Jungang (349.3-351.4) S  
##               2.8437465                               1.0635928  
## 103. Jungang-Branch (1.1-3.4) E       104. Jungang-Branch (1.1-3.4) S  
##               0.8470087                               0.8152215  
## 105. Jungang-Branch (3.4-5.4) E       106. Jungang-Branch (3.4-5.4) S  
##               0.7824435                               0.8033950  
## 107. Jungang-Branch (5.4-8.0) E       108. Jungang-Branch (5.4-8.0) S  
##               0.7591350                               0.9174394  
## 117. TongyoungDaejeon (113.2-115.6)E  118. TongyoungDaejeon (113.2-115.6)S 
##               3.6854748                               1.4567642  
## 119. TongyoungDaejeon (127.6-131.8)E   12. GwangjuDaegu (135.0-138.6K) S  
##               2.4284418                               2.1777825  
## 120. TongyoungDaejeon (127.6-131.8)S  121. TongyoungDaejeon (153.1-155.9)E 
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##               2.1023616                               0.9295036  
## 122. TongyoungDaejeon (153.1-155.9)S 123. Pyungtaek Jaecheon (48.9-52.1)E 
##               0.7779605                               2.8839645  
## 124. Pyungtaek Jaecheon(48.9-52.1)S  125. Pyungtaek Jaecheon(105.1-107.3)E 
##               1.7134759                               0.9874397  
## 126. PyungtaekJaecheon(105.1-107.3)S 127. Pyungtaek Jaecheon(112.0-115.7)E 
##               1.1039314                               2.3568067  
## 128. PyungtaekJaecheon(112.0-115.7)S 129. Pyungtaek Jaecheon(115.7-118.9)E 
##               1.3629824                               2.1809797  
## 130. PyungtaekJaecheon(115.7-118.9)S 131. Pyungtaek Jaecheon(118.9-123.9)E 
##               1.1948284                               1.8472261  
## 132. PyungtaekJaecheon(118.9-123.9)S  14. GwangjuDaegu (138.6-143.3K) S  
##               2.4151600                               3.3638369  
## 2. KochangDamyang (6.23-11.57k)_S     22. MuanGwangju (26.57-29.57) S  
##               1.3761485                               2.7859487  
## 25. SangjuYoungduk (105.1-110.3) E    26. SangjuYoungduk (105.1-110.3) S 
##               0.8784543                               1.4647244  
## 27. SangjuYoungduk(110.3-115.0) E     28. SangjuYoungduk (110.3-115.0) S  
##               0.8944811                               0.9543687  
## 29. SangjuYoungduk (124.7-128.1) E    30. SangjuYoungduk(124.7-128.1) S 
##               0.8979334                               1.3470280  
## 31. SangjuYoungduk (146.3-152.2) E    32. SangjuYoungduk (146.3-152.2) S 
##               0.8309647                               1.0431039  
## 35. SangjuYoungduk (172.3-176.2) E    36. SangjuYoungduk(172.3-176.2) S 
##               1.1320569                               0.6975661  
## 37. SangjuYoungduk (181.3-185.5) E    38. SangjuYoungduk (181.3-185.5) S 
##               0.4085000                               0.4057204  
## 39. SangjuYoungduk(185.5-188.7) E     40. SangjuYoungduk (185.5-188.7) S  
##               0.5138131                               0.4328641  
## 41. SeoulYangyang (63.8-70.1) E       43. SeoulYangyang (70.1-73.7) E  
##               1.0534969                               1.2077253  
## 47. Seoul Yangyang(97.7-103.9) E      48. Seoul Yangyang (97.7-103.9) S  
##               1.4906727                               0.8768663  
## 49. Seoul Yangyang(106.9-110.9) E      5. KochangDamyang (19.92-24.06k) E  
##               1.4006033                               0.9182540  
## 50. Seoul Yangyang(106.9-110.9) S     54. Seoul Yangyang(115.7-119.0) S  
##               1.1820039                               1.2293540  
## 55. Seoul Yangyang(143.0-149.6) E     56. Seoul Yangyang(143.0-149.6) S  
##               1.8538189                               0.8053592  
## 57. Suncheon Wyanju (7.8-12.5) E      59. Suncheon Wyanju (12.5-20.0) E  
##               2.8203939                               1.2977953  
## 6. KochangDamyang (19.92-24.06k) S    61. Suncheon Wyanju (25.1-32.6) E 
##               0.8644404                               0.7033792  
## 62. Suncheon Wyanju (25.1-32.6) S     65. Suncheon Wyanju (37.9-41.8) E  
##               0.8727327                               2.2955222  
## 66. Suncheon Wyanju (37.9-41.8) S     67. Suncheon Wyanju (41.8-46.6) E  
##               0.8861990                               1.3207914  
## 68. Suncheon Wyanju (41.8-46.6) S      7. GwangjuDaegu (41.2-43.7K) E  
##               1.4003406                               0.9385751  
## 8. GwangjuDaegu (41.2-43.7K) S        83. Jungbunaeryuk (106.4-108.1) E  
##               0.7334058                               1.2292920  
## 84. Jungbunaeryuk (106.4-108.1) S      9. GwangjuDaegu (125.9-128.0K) E  
##               0.7069811                               0.9762135  
## 93. Jungbunaeryuk (290.6-295.4) E     94. Jungbunaeryuk (290.6-295.4) S  
##               1.4816811                               0.9030070  
## 97. Jungang (237.4-244.9) E           99. Jungang (267.8-270.4) E  
##               1.7636100                               2.8878767 
 
## Coefficients: 
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##                 Value       Std.Error   t-value  p-value 
## (Intercept)  3.445633e+00  0.04741045  72.67666   0.0000 
## TF           1.751086e-05  0.00000969   1.80693   0.0709 
## TF2          2.018223e-08  0.00000000   6.46729   0.0000 
## TR           1.881290e-04  0.00005117   3.67647   0.0002 
## RISE        -1.543135e-03  0.00189283  -0.81525   0.4150 
## FALL         5.906981e-03  0.00198397   2.97736   0.0029 
 
##  Correlation:  
##      (Intr)    TF     TF2    TR     RISE   
## TF   -0.149                             
## TF2   0.129 -0.947                      
## TR   -0.913  0.038 -0.029               
## RISE -0.675  0.001 -0.002  0.436        
## FALL  0.688 -0.012  0.014 -0.447 -0.620 
 
## Standardized residuals: 
##        Min         Q1        Med         Q3        Max  
## -2.7313871 -0.7717273 -0.2352308  0.3474124  3.7854876  
 
## Residual standard error: 0.08913695  
## Degrees of freedom: 3482 total; 3476 residual 
 

 

5.5.5. Summary 

Section 5.5 introduced the GLS estimation to deal with the violation of heteroscedasticity and 

autocorrelation in OLS linear estimation. OLS linear estimation assumes the zero mean and normal 

distribution of disturbances; non-correlation of independent variables and disturbances; 

homoscedasticity of disturbances; and non-autocorrelation of disturbances. However, as 

Washington et al. (2010) mentioned, many transportation studies tend to neglect these assumptions. 

This study assumed the structure of the variance-covariance matrix of errors in advance and then 

compared the statistical measures of the GLS estimated models through maximum likelihood 

estimation. 

Table 5-26 shows four representative models by OLS and GLS linear estimation. FMODEL3-1 is 

the selected model after stepwise variable selection, having given consideration to interaction 

effects and model transformation. FMODEL3-1-3, which is based on the stratified variance 

structure across links, shows the best performance among the models that treat heteroscedasticity. 

FMODEL3-1-13 is the best model of those that consider serial correlation structures. FMODEL3-

1-17 is estimated by considering both the variance-covariance structure of heteroscedasticity and 

serial correlation.  

To investigate the coefficients and their statistical significance in Table 5-26, the GLS estimation 

changed the coefficients of independent variables much more than the intercept, which is FFTT in 
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the estimated models. Whilst the stratified variance structure on each link affects the coefficients of 

geometric variables more than TF-related variables (TF and TF2), the AR (2) time-series structure 

on each link affects the coefficients of all independent variables. In other words, the heterogeneity 

of links mainly results in the adjustment of the impact by link geometric variables. Conversely, the 

effects by serial correlation not only change the values of coefficients but also their statistical 

significance. The consideration of serial correlation between observations would reflect the 

interaction between previous and lagged residuals and as such the explanatory power of each 

coefficient fluctuates greatly.   

To summarise, it can be said that the models derived by the GLS estimation are more statistically 

significant than those by the OLS estimation because all of them increase log-likelihood, which is a 

common objective function of OLS and GLS estimations (Section 3.3.2). In particular, FMODEL3-

1-17 has the highest log-likelihood measure and as such the model can be said to be the most 

statistically significant among the linear estimation models. If serial correlation could be 

considered practically in traffic assignment, FMODEL3-1-17 would be an alternative to the current 

VDFs. Otherwise, FMODEL3-1 and FMODEL3-1-3 which do not consider time-series 

relationships would be alternative feasible models. Therefore, the statistically linear estimations 

produced the three representative models: FMODEL3-1, FMODEL3-1-3 and FMODEL3-1-17.  

Table 5-26 Selection between OLS and GLS estimated models 

 
Note: The underlined values are percentage changes of coefficients with FMODEL3-1.  

Model

Structrue

φ1 =0.5641235 φ1 =0.5551263 

φ2 =0.3488619 φ2 =0.4038067  

Coeffcient Estimates t-value Estimates t-value Estimates t-value Estimates t-value

(Intercept) 3.37E+00 296.04 3.38E+00 503.11 3.40E+00 83.37 3.45E+00 72.68

0% 1% 2%
TF 5.06E-05 4.57 4.97E-05 7.36 6.46E-05 4.69 1.75E-05 1.81

-2% 28% -65%
TF2 2.29E-08 5.91 2.42E-08 10.07 1.21E-08 2.95 2.02E-08 6.47

6% -47% -12%
TR 1.29E-04 12.48 8.91E-05 14.96 9.86E-05 2.17 1.88E-04 3.68

-31% -24% 46%
RISE 2.17E-03 6.60 3.16E-03 14.19 1.74E-03 1.22 -1.54E-03 -0.82

46% -20% -171%
FALL 3.48E-03 9.26 4.87E-03 21.70 3.12E-03 1.89 5.91E-03 2.98

40% -10% 70%
AIC

BIC

logLik

FMODEL3-1 FMODEL3-1-3 FMODEL3-1-13

- varIdent(form = ~ 1|Link) AR (2)

3,461 4,366 5,950 

Correlation
Parameters

-6,909 -8,575 -11,882 

-6,865 -8,095 -11,827 

FMODEL3-1-17

varIdent(form = ~ 1|Link) and AR (2)

-13,322 

-12,829 

6,741 
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5.6. Findings 

This chapter attempted to derive the representative models within three statistical estimation 

methods: NLS, OLS and GLS estimation. Table 5-27 summarises the key information on the 

selected models within each method. In particular, FBPR1 is suggested as a reference model in this 

study because it is in line with the current approach used in many studies for customising VDFs. 

FBPR3 has lower RMSE and MAPE by around 10% than FBPR1 by adding geometric variables to 

the current BPR functional form. Nevertheless, FBPR1 and FBPR3 do not overcome the limitation 

of including road capacity in their functional forms. On the other hand, linear estimated models 

(FMODEL3-1, FMODEL3-1-3 and FMODEL3-1-17) do not need to predetermine road capacity 

and show statistical measures (e.g. RMSE and MAPE) equivalent to FBPR1 and FBPR3. 

Moreover, the GLS estimation models (FMODEL3-1-3 and FMODEL3-1-17) have better 

statistical significance rather than the OLS estimation model (FMODEL3-1). The five models 

selected in this chapter are discussed in detail from a statistical and practical perspective in Chapter 

6. 

Table 5-27 Summary of feasible models within each estimation method 

 

Model Name

Estimation

Base function

Equation
(underline: 
variables)

Road Capacity

Coefficient Estimate p-value Estimate p-value Estimates p-value Estimates p-value Estimates p-value

FFTT 3.18E+01 < 2e-16 *** 2.92E+01 < 2e-16 *** 3.37E+00 < 2e-16 *** 3.38E+00 < 2e-16 *** 3.45E+00 < 2e-16 ***

a 2.71E-01 < 2e-16 *** 2.97E-01 < 2e-16 *** 5.06E-05 5.13e-06 *** 4.97E-05 2.31e-13 *** 1.75E-05 0.071

b 1.59E+00 < 2e-16 *** 1.73E+00 < 2e-16 *** 2.29E-08 3.76e-09 *** 2.42E-08 < 2e-16 *** 2.02E-08 1.14e-10 ***

c 4.71E-03 < 2e-16 *** 1.29E-04 < 2e-16 *** 8.91E-05 < 2e-16 *** 1.88E-04 2.40e-4 ***

d 7.99E-02 1.05e-10 *** 2.17E-03 4.78e-11 *** 3.16E-03 < 2e-16 *** -1.54E-03 -0.415

e 1.27E-01 < 2e-16 *** 3.48E-03 < 2e-16 *** 4.87E-03 < 2e-16 *** 5.91E-03 0.003 ***

AIC: -6,909 AIC: -8,575 AIC: -13,322 

BIC: -6,865 BIC: -8,095 BIC: -12,829 

RMSE: 3.601 RMSE: 3.360 RMSE: 3.357 RMSE: 3.459 RMSE: 3.633 

MAPE: 7.748% MAPE: 7.053% MAPE: 6.947% MAPE: 6.806% MAPE: 7.867%

GLS estimation

TT = FFTT*(1 + 
a*(1 + (TF/Capacity)^b)

TT = FFTT*(1 +
 a*(1 + (TF/Capacity)^b) +

c*TR + d*RISE + e*FALL

Predetermined Predetermined 

FBPR1 FBPR3

BPR function
(current approach)

BPR function

NLS estimation

Statistical 
measures

TT = Exp (FFTT + a*TF + b *TF^2 + c*TR + d*RISE + e*FALL)

Quadratic function |
log-linear transformation

Not predetermined Not predetermined Not predetermined 

FMODEL3-1 FMODEL3-1-3 FMODEL3-1-17

OLS estimation
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Chapter 6. Application  

6.1. Introduction 

Through Chapter 4 and Chapter 5, feasible models as link cost functions have been developed by 

combining time-series traffic data and geometric information. This chapter will confirm the 

feasibility of the developed models by applying the models to the real world situation after the 

model selection.  

Section 6.2 suggests the most appropriate model to replace the existing VDF (e.g. Korean BPR 

function) by comparing the feasibility of the various models developed in Chapter 6 from three 

different perspectives: the spatial transferability, the statistical significance, and the practical 

applicability. Firstly, Section 6.2.1 validates models by investigating how the models can secure 

the spatial transferability by 10-fold cross-validation, which shows the biases by repeating 

modelling and testing after dividing the dataset into training and test subsets. In addition, Section 

6.2.2 deals with the statistical significance of the models by comprehensively evaluating the 

various statistical accuracy measures with those presented in Chapter 5. Lastly, Section 6.2.3 

examines which models can be applied practically and replace existing link cost functions in terms 

of the data specification required for models (GLS estimation models) and the error propagation by 

road capacity (NLS estimation models). 

Section 6.3 demonstrates quantitatively the extent to which different link cost functions affect the 

travel time estimation and further transport planning process between the selected model in Section 

6.2 and Korean BPR functions. First of all, Section 6.3.1 identifies the extent to which differences 

in total travel time can be predicted by applying the models to hypothetical links which have 

different geometry. In addition, Section 6.3.2 emphasises the final goal of this study by presenting 

comparative results in traffic assignment and transport appraisal between the developed model and 

Korean models when planning the construction of a new hypothetical motorway.   
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6.2. Selection of the most appropriate link-cost function 

With reference back to Table 5-27, the models discussed in this section are FBPR1, FBPR3, 

FMODEL3-1, FMODEL3-1-3 and FMODEL3-1-17. This section compared these models and 

suggested the most suitable model for traffic assignment in transport appraisal.  

6.2.1. Validation of models 

10-fold cross-validation is one of the statistical verifications for reducing the biases of a model as a 

classifier; these were mentioned in Section 3.6.2. This study used 10-fold cross-validation to 

confirm the spatial transferability of the estimated models. In other words, the classifier determines 

how well the developed models are performing when the models are applied to other sections. 

After dividing all the samples into 10 folds randomly, the model is calibrated on the training set of 

the samples in nine folds and evaluated by using the test set of the samples on one fold. Since all 

samples are divided into 10 folds, this process is repeated ten times without mixing samples 

between folds. 

As 72 sections were collected in this study, the other folds have seven cases except for one fold 

which has nine cases. The first trial estimates models with the samples in 63 training sets (= 7 cases 

* 9 folds), and evaluates the developed models with the samples in nine test sets (9 cases * 1 fold). 

The second to tenth trials estimate models with 65 training sets (=7 cases * 8 folds + 9 cases * 1 

fold), and evaluate them with seven test sets (7 cases * 1 fold). This study calculated the accuracy 

measures of RMSE and MAPE every trial for the evaluation of the models. In a ten iteration 

process, the model’s spatial transferability can be determined by the average and standard deviation 

of the measures. Therefore, the measure of determination in a 10-fold cross-validation (denoted as 

‘CV10’ in Equation 6-1) can be calculated as follows; 

CV10 =  
1

10
�𝑅𝑅𝑀𝑀𝑎𝑎𝐸𝐸𝑖𝑖

10

𝑖𝑖=1

   𝑎𝑎𝑎𝑎    
1

10
�𝑀𝑀𝑉𝑉𝑃𝑃𝐸𝐸𝑖𝑖

10

𝑖𝑖=1

 Equation 6-1 

where ‘i’ means the ith trial.   

The coding for 10-fold cross-validation was conducted, using the software package of “R” 

(Appendix A.5.4). Table 6-1 and Table 6-2 show the RMSE and MAPE for every trial in the 10-

fold cross-validation. There were no big differences between the values of both measures from five 

groups (models). In addition, the ANOVA tests demonstrate that the difference is not statistically 

significant (Table 6-3). Rather, it can be seen that the other four models exhibit lower averages for 
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RMSEs and MAPEs than FBPR1. Therefore, it can be concluded that the other models confirm the 

spatial transferability as with the current VDF structure of FBPR1.   

Table 6-1 RMSE derivation by 10-fold cross-validation 

 

Table 6-2 MAPE derivation by 10-fold cross-validation  

 

Table 6-3 ANOVA of RMSEs and MAPEs between five models 

  

Trials FBPR1 FBPR3 FMODEL3-1 FMODEL3-1-13 FMODEL3-1-17
BPR function BPR function with 

road geometry
OLS estimation Dealing with 

heteroscedasticity
Dealing with 

heteroscedasticity and 
serial correlation

1 2.950 3.031 2.972 3.289 3.197
2 3.018 2.715 2.714 2.822 2.964
3 4.010 3.565 3.589 3.866 3.380
4 4.320 3.729 3.696 3.459 4.025
5 3.968 3.647 3.669 3.773 3.356
6 3.187 3.278 3.262 3.396 3.860
7 3.707 3.470 3.521 3.733 3.689
8 3.647 3.856 3.865 4.082 4.080
9 2.968 3.209 3.123 3.033 4.033

10 4.070 3.801 3.808 3.682 4.206
Average 3.585 3.430 3.422 3.513 3.679
std.error 0.515 0.368 0.385 0.390 0.429

Trials FBPR1 FBPR3 FMODEL3-1 FMODEL3-1-13 FMODEL3-1-17

1 6.863% 6.925% 6.685% 7.928% 6.830%
2 5.196% 4.860% 4.879% 5.319% 4.879%
3 9.167% 7.872% 7.951% 8.452% 7.404%
4 9.397% 7.436% 7.242% 5.887% 8.829%
5 9.437% 7.968% 7.895% 7.750% 7.469%
6 7.315% 7.098% 6.869% 6.747% 8.666%
7 7.738% 6.843% 6.865% 6.971% 8.112%
8 7.449% 8.158% 8.095% 8.056% 9.569%
9 6.705% 7.342% 7.066% 6.661% 9.545%

10 8.787% 8.581% 8.496% 7.764% 9.591%
Average 7.805% 7.308% 7.204% 7.154% 8.089%
std.error 1.386% 1.028% 1.023% 1.013% 1.498%
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6.2.2. Investigation of statistical significance between models 

In Chapter 5, the feasible models, within each estimation, were selected by comparing the 

statistical measures derived as a result of each estimation method. This section comprehensively 

investigates the accuracy measures, fitted plots, residual plots and applicability in practice to 

compare the accuracy of models across the estimation methods. As mentioned in Section 3.6.1, 

adjusted R2, AIC and BIC can be used as statistical measures to compare linear estimation models 

with the same dependent variable, but it is difficult to use those measures for the comparison with 

non-linear estimation models. Therefore, the accuracy measures such as SSE, MAD, RMSE and 

MAPE, which are derived from differences between observed and fitted values, were used for 

model comparison. Table 6-4 compares the accuracy measures of the feasible models chosen in the 

previous sections. Some key points can be summarised as follows. 

Firstly, all estimated models with geometric variables can explain the observed travel time values 

more precisely than FBPR1; this latter model shares the same model structure as the current BPR 

function as well as that of Korean VDFs (‘KDI (2015)’ and ‘KOTI (2009)’ in Table 6-4). Whilst 

the RMSE and MAPE of FBPR1 are 3.60 and 7.75% respectively, those of the other four models 

range from 3.36 to 3.46 and from 6.95% to 7.05% respectively. Figure 6-1 shows that the four 

models estimated with geometric variables can cover a wider range of observations than FBPR1 

along with traffic flow (in fact, fitted values should be considered multi-dimensionally with respect 

to all variables).  

Secondly, from examining SSE and RMSE, which impose a penalty for large errors (the effect of 

squares), both FMODEL3-1 and FBPR3 models show better performances than other models. In 

particular, FBPR3 can explain the observations better than FBPR1 by the addition of geometric 

variables to BPR function. Both models are similar in that they aim to minimise only the sum of 

square errors without considering the correlation between variables or errors.  

Thirdly, FMODEL3-1-3 shows the best accuracy for MAE and MAPE, which impose 

comparatively the same weights to errors. In addition, Figure 6-2 shows residuals which have a 

relatively constant variance dependent on the fitted values in FMODEL3-1-3 compared to the other 

three models’ residual plots, which are clustered in the centre. Unlike the other estimations, the 

variance of FMODEL3-1-3 is defined differently for every link (72 variances for 72 links) without 

consideration of time-series structure. 

Lastly, as mentioned in Section 5.5.5, the FMODEL3-1-17 model is the statistically best model in 

terms of maximising the log-likelihood objective function. However, when focusing on the fitted 

values (Figure 6-1), it can be seen that travel time does not increase much exponentially in 

proportion to the traffic flow. In other words, the relationship between travel time and traffic flow 
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is close to the simple linear relationship, which is a different result from traditional traffic theory. 

The result can be attributed to the fact that the explanatory power of both TF and TF2 is greatly 

reduced after the AR (2) correlation structure is applied to the GLS estimation.  

Table 6-4 Comparison of accuracy measures between the feasible models 

Note. KDI (2015) and KOTI (2009) are references models, which are used in Korea 

Figure 6-1 Fitted and observed values according to traffic flow on each model 

 

 

FBPR1 FBPR3 FMODEL3-1 FMODEL3-1-13 FMODEL3-1-17 KDI 
(2015)

KOTI 
(2009)

SSE 39229 41651 45951 39303 45159 171998 94479

MAE 2.531 2.521 2.783 2.558 2.812 6.273 3.974

RMSE 3.357 3.459 3.633 3.360 3.601 7.028 5.209

MAPE 6.95% 6.81% 7.87% 7.05% 7.75% 18.33% 10.29%

AIC -6909 -8575 -13322 NA NA NA NA

BIC -6865 -8095 -12829 NA NA NA NA
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Figure 6-2 Standardised residuals vs fitted values plot on feasible models 

 

 

 

6.2.3. Practical applicability 

Briefly, going back to the starting point of this study, the models developed in this study should be 

able to be used for traffic assignment in the traffic appraisal. Therefore, this section considers the 

practical applicability of the developed models. Since FMODEL3-1 developed by OLS linear 

estimation does not have better comparative measures including AIC, BIC and log-likelihood than 

other linear estimation models, the model was excluded from comparison in this section. Therefore, 

this section discussed the practical applicability of only those models derived by GLS and NLS 

estimation methods. The models by both estimations were investigated in terms of data availability 

and capacity uncertainty. 
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Applicability of GLS estimation to practice 

Even though GLS estimation models are more statistically meaningful with reference to the 

variance-covariance structure of errors than OLS estimation models, nonetheless, even statistically 

accurate models need to be carefully applied in practice. As mentioned above, the two models to 

compare with each other in this section are FMODEL3-1-3 and FMODEL3-1-17. Whilst the first 

one treats the heteroscedasticity, the other treats both the heteroscedasticity and the serial 

correlation of errors. 

Firstly, FMODEL3-1-3 was developed based on the assumption that each link has a different 

variance structure of the error. Washington et al. (2010) mentioned that spatial data can be 

dependent on the observed location defining the heterogeneity as samples from different 

populations. With reference to the 72 cases selected in this study, the assumption that the estimated 

model error is homoscedastic means that each case has identical variance regardless of its 

attributes. However, each case (link) in this study has different features affecting travel time. 

Therefore, it would be reasonable to assume that the 72 cases have the heteroscedastic error 

distribution. Figure 6-3, which is derived from Table 5-19, compares the variance ratios15 for “1. 

KochangDamyang (6.23-11.57k) E” in the GLS estimation with the different error variance 

structure for individual links. The highest and lowest values among the estimated variances of links 

are 4.83 for “104. Jungang-Branch (1.1-3.4) S” and 0.65 for “31. SangjuYoungduk (146.3-152.2) 

E” respectively. From this result, it can be confirmed that each link has a different variance of error 

that could result from the unobserved heterogeneity of the links.  

In addition, FMODEL3-1-17 was estimated adding the assumption that the covariance of the error 

is not zero and the residuals are correlated with each other. This assumption would also be 

reasonable in that the travel time measured in the current time interval (e.g. 15 minutes in this 

study) could affect the travel time in the next and subsequent time interval16. However, the model 

has limitations in two respects: the difference of data specification between modelling and traffic 

assignment process; and the hypothesis of time-series modelling. The first one is that FMODEL3-

1-17 cannot be applied to the traffic assignment process because the O-D trip demand for traffic 

assignment in Korea is provided on a daily basis (Table 6-5). This highlights the fact that it is 

difficult to apply Korean O-D trip demand to the model estimated by considering the serial 

correlation from the dataset with 15-minute intervals. The other limitation is based on the 

assumption that a link cost function in static traffic assignment does not follow the hypothesis of 

time-series modelling that the current time-series trend continues in the future (Washington et al., 

                                                      
15 In GLS estimation, only the ratio between variances is important rather than the absolute value of 
variance (see Section 3.3.2). 
16 The GLS estimation model with AR (2) model means that the current value is affected by the 
previous two observations (travel time before 15 minutes and 30 minutes).  
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2010). In other words, it is inappropriate for a time-series model based on historical travel time 

observations to be used in current motorway planning procedures. Therefore, although time-series 

analysis has academic statistical significance, it is questionable whether FMODEL3-1-17 is 

practical in traffic assignment. 

Figure 6-3 Ratio of the error variance depending on links 

 

Table 6-5 O-D trip demand depending on transportation in Korea (as of 2013) 

 
Note: This shows the total trip demand whose raw data consists of daily trips between small zones.  

Source: MOLIT (2014)  

Passenger 
Car

Bus
Train/

Subway
Highspeed 

Train
Airplane Ship Total

Trips/day 53,413,054 18,580,517 9,820,549 140,055 60,355 36,585 82,051,115

% 65.1 22.6 12 0.2 0.1 0 100

Trips/day 55,981,759 19,440,211 10,389,324 198,817 59,158 38,168 86,107,437

% 65 22.6 12.1 0.2 0.1 0 100

Trips/day 57,039,468 19,668,285 11,417,562 194,664 60,017 38,778 88,418,774

% 64.5 22.2 12.9 0.2 0.1 0 100

Trips/day 56,935,815 19,878,385 11,511,664 197,566 66,765 39,088 88,629,283

% 64.2 22.4 13 0.2 0.1 0 100

Trips/day 56,211,307 19,646,565 11,322,806 197,033 73,766 39,256 87,490,734

% 64.2 22.5 12.9 0.2 0.1 0 100

Trips/day 54,907,198 19,132,329 10,876,490 192,867 78,837 39,374 85,227,095

% 64.4 22.4 12.8 0.2 0.1 0 100

Trips/day 53,207,396 18,469,202 10,325,562 186,749 84,257 39,453 82,312,620

% 64.6 22.4 12.5 0.2 0.1 0 100

2035

2040

2013

2015

2020

2025

2030
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Applicability of NLS estimation to practice (error propagation by road capacity)  

Based on the investigation of the impact on the NLS models of the change in road capacity in the 

previous chapters, the uncertainty of road capacity, which is mentioned in the research gaps 

(Section 2.6), can be specified as follows: 

(1) The change of a coefficient value (α in BPR function) depending on road capacity 

(2) Unclear measurement method of road capacity: measurement location for link capacity and 

the criteria of measurement (maximum, percentile, average, breakdown traffic flow, etc.) 

(3) Difficulty in the measurement of the road capacity for planned links 

Of the above uncertainties, the first one could be resolved more or less by presenting various 

combinations of road capacity and its coefficient in NLS estimation models. However, the second 

and third uncertainties would still remain. This study identified how much a model with road 

capacity (i.e. its uncertainty) increases errors in forecasting travel time when the model is used for 

links which have different road capacities. As mentioned in Section 2.2 and 2.3, the calculation of 

total travel time in the static traffic assignment is implemented by inputting the variable of traffic 

flow to VDF after predetermining road capacity and free-flow travel time based on HCM. By 

reproducing this process, this study tried to confirm the impact of road capacity predetermination 

on travel time forecasting. In order to identify the impact of road capacity during the process, it was 

assumed that the observed traffic flow is regarded as future trip demand and that Inv_SPD is future 

travel time (true value) corresponding to each traffic flow.  

Table 6-6 investigates how much the error occurs between the actual and the forecasted travel time 

in five randomly selected sections, when the model developed by using the road capacity, which is 

3,572vph (CKorea in Table 5-6) presented for motorways in ‘Korean VDF Manual’ (KDI, 2015), is 

applied to travel time forecasting. When a model estimated on the basis of the large road capacity is 

applied to the links17 with small road capacity, the error appears to be large. In the NLS model 

(FBPR1 in Table 6-6) estimated without considering the geometric features, the means of RMSE 

and MAPE were 5.9 and 13.4%, respectively. Likewise, the model (FBPR3 in Table 6-6) estimated 

with the geometric variables produced errors of RMSE 4.2 and MAPE 8.5%. Therefore, this 

confirmed that road capacity predetermined in NLS estimation models (especially a model without 

link geometric variables) can cause significant errors in travel time estimation. It can thus 

concluded that both FBPR1 and FBPR3 are not appropriate in traffic assignment because of the 

uncertainty of road capacity; this is especially significant for the sections where road capacity 

changes drastically, i.e. where road geometry could affect traffic flow considerably.  

                                                      
17 The links analysed in this study would have small road capacity in common because of the 
impact by tunnels and road geometry, which is similar with the initial case study (Appendix A.4) 
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Table 6-6 Propagation of errors by road capacity uncertainty  

 
Note: ‘a’ coefficients of FBPR1 and FBPR3 are 0.5075 and 0.5895 respectively assuming road 

capacity is 3,572vph (Table 5-6) 

 

6.2.4. Summary 

This study recommends the most appropriate model by comparing the statistical significance and 

practical application of five representative models selected within OLS, GLS and NLS estimation 

methods. Firstly, the result of 10-fold cross-validation demonstrates that all four representative 

models exhibit similar performances to the reference model by the NLS estimation without 

geometric variables, in addition to securing the spatial transferability. Secondly, the comparison of 

the accuracy measures of the models including AIC and BIC suggests that GLS estimation models 

demonstrate more statistical significance than the OLS estimation model. Lastly, the NLS 

estimation models and the GLS estimation model considering time-series effects are not suitable 

for traffic assignment because of the uncertainty of road capacity and the difference in data 

specification respectively. Therefore, this study concludes that FMODEL3-1-3 can be selected as 

the best alternative model for travel time estimation in traffic assignment when considering its 

statistical significance, its applicability in practice and the exclusion of road capacity 

comprehensively.   

Name C (Measured) Obs. RMSE MAPE RMSE MAPE

56. Seoul Yangyang(143.0-149.6) S 2,221               52 4.167 9.061% 3.004 6.892%

57. Suncheon Wyanju (7.8-12.5) E 2,259               33 6.555 15.869% 4.312 9.394%

100. Jungang (267.8-270.4) S 2,533               34 4.576 8.569% 3.793 5.432%

119. TongyoungDaejeon (127.6-131.8) E 2,645               37 5.835 12.446% 4.321 7.587%

123. Pyungtaek Jaecheon (48.9-52.1) E 2,514               31 8.502 21.042% 5.732 13.341%

Average 5.927 13.397% 4.232 8.529%

Selected link FBPR1 FBPR3
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6.3. Application to transport planning 

This section presents the quantitative difference of estimated travel time between existing Korean 

VDFs and FMODEL3-1-3 (hereinafter named “FModel” in this chapter) selected in this study 

when the models are applied to various links. In addition to travel time estimation, this section 

examines how the developed model changes the result of traffic assignment and the benefit 

estimation in transport appraisal when they are applied to a prospective motorway project plan as 

link-cost functions.  

6.3.1. Impacts on travel time estimation  

The specifications of FModel and two Korean VDFs can be seen from Table 6-7. Specifically, two 

Korean VDFs are suggested as the reference models, one of which is widely used for Korean traffic 

assignment developed by KDI (2015) and the other was developed based on the empirical data by 

KOTI (2009)18. The specifications of those models can be illustrated as equations (from Equation 

6-2 to Equation 6-4). 

Table 6-7 Three models for application 

 
Note. KDI (2015) recommends FFS as 95.2kph and road capacity as 3,572vph. 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑑𝑑𝑒𝑒𝐹𝐹 (𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎/𝑘𝑘𝑎𝑎) =  𝐸𝐸𝑥𝑥𝑎𝑎(3.38 + 4.97 ∗ 10−5 ∗ 𝑇𝑇𝑇𝑇 + 2.42 ∗

10−8 ∗ 𝑇𝑇𝑇𝑇2 + 8.91 ∗ 10−5 ∗ 𝑇𝑇𝑅𝑅 + 3.16 ∗ 10−3 ∗ 𝑅𝑅𝑎𝑎𝑎𝑎𝐸𝐸 + 4.87 ∗ 10−3 ∗

𝑇𝑇𝑉𝑉𝐿𝐿𝐿𝐿) 

Equation 6-2 

𝑇𝑇𝑇𝑇𝐾𝐾𝐿𝐿𝐾𝐾 (𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎/𝑘𝑘𝑎𝑎)

=  
1

95.2
∗ 3600 ∗ �1 + 0.55 ∗ � 

𝑇𝑇𝑇𝑇
𝑅𝑅𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦

�
2.09

� 
Equation 6-3 

𝑇𝑇𝑇𝑇𝐾𝐾𝐾𝐾𝑇𝑇𝐾𝐾 (𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎/𝑘𝑘𝑎𝑎)

=  
1

117
∗ 3600 ∗ �1 + 0.611 ∗ � 

𝑇𝑇𝑇𝑇
𝑅𝑅𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦

�
2.772

� 
Equation 6-4 

                                                      
18 The model by KOTI (2009) is also added in this section because the model by KDI (2015) would 
underestimate FFS (95.2kph) for motorways too much. 

Models Type FFS Road capacity

Fmodel - 122.6kph 4.97E-05 2.42E-08 8.91E-05 3.16E-03 4.87E-03 Not used
 (estimated) (TF) (TF2) (TR) (RISE) (FALL)

KDI (2015) BPR function 90-105kph 0.55 2.09 3,400-4,354vph
(predetermined) (α) (β) (predetermined)

KOTI (2009) BPR function 117kph 0.611 2.772 4,000-4,400vph
(predetermined) (α) (β) (predetermined)

Coefficients
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Figure 6-4 shows three curves of travel time (seconds/km) estimated by those models 

corresponding traffic flows. The intercept and coefficients used for the curve fittings are the same 

as illustrated in Table 6-7. All geometric variables for FModel were assumed to be zero for 

comparison with the KDI (2015) and KOTI (2009) models. The FFS and road capacity values and 

for the KDI (2015) model are assumed to be 95.2kph and 3,572vph, which are the recommended 

values in KDI (2015); and both values for the KOTI (2009) model are to be 117kph and 4,400vph, 

which are suggested as basic values in KOTI (2009). Overall, the estimated travel time by FModel 

in this study falls between the model by KDI (2015) and the model by KOTI (2009) except for 

those in low trip demand, which are lower than those by the KOTI (2009) model. In particular, the 

FFTT of the KDI (2015) model, which is illustrated as the intercept of the curve, is much higher 

than that derived from this study and that in the KOTI (2009) model.  

Figure 6-4 Curves of FModel and Korean VDFs 

 

Furthermore, the models’ curves shift or bend depending on link geometric features or different 

road capacity. When geometric features are reflected in FModel, its curve shifts up or down as 

shown in Figure 6-5 where the geometric features are 627.78m/km for TR, 6.51m/km for RISE and 

-5.70m/km for FALL19. In comparison, the curves of the two Korean VDFs bend upwards when 

applying the road capacity values of 3,400vph and 4,000vph. This study adopted both values for 

representing road capacity reduced by link geometry because they are suggested as the lowest 

limits of road capacity in both models. 

                                                      
19 The geometric features for this application are the average values of 72 cases in this study 
(Section 3.5.2).  
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Figure 6-5 Curve shift by different link geometry and road capacity 

 

Lastly, these different specifications between models can result in lower or higher travel time 

estimation. In order to confirm this difference, this study applied the three models to travel time 

estimation on three hypothetical links having different geometry as illustrated in Table 6-8. It was 

assumed that the three links have varying future O-D trip demand with the different mean and 

standard deviation following the normal distribution. Each trip demand on each link was generated 

as hourly random numbers for 30 days. When each hourly trip demand is allocated to each link, the 

travel time of each vehicle was calculated using the three models (Appendix A.5.5). The total 

estimated travel time taken by all vehicles can be calculated by multiplying the estimated travel 

time and hourly trip demand on each link and then adding them together. Table 6-9 and Figure 6-6 

show the difference in the estimated total travel time on each link as per the three different models. 

Compared to FModel, the KDI (2015) model predicts travel time which is higher by 18% and the 

KOTI (2009) model predicts a total travel time to be lower by 11%.  

To summarise, the three models shows different travel time estimation results. This result is very 

significant in traffic assignment in that link-cost functions in transport appraisal estimate travel 

time not only for planned projects but also for existing transport links. When it is assumed that the 

link cost functions of other transport links are not changed and that there are no motorways nearby, 

the benefit in a planned motorway project is estimated as greater by FModel than the KDI (2015) 

model. However, the result could be reversed. The higher estimated travel time on existing 

motorways as with the KDI (2015) model could exaggerate the benefits of new transport projects 

(e.g. new motorways, high-speed railways, arterial roads) which compete with existing motorways. 

Hence, the longer travel time estimation on existing motorways could result in the unnecessary 

provision of new transport links because of the exaggerated benefit estimation in for example travel 

time savings. 
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Table 6-8 Three hypothetical links with different geometric features 

 
Note 1. N (M, σ2) represents the normal distribution with the mean of M and the standard deviation 

of σ for 30 days. 

2. Both road capacities of 3,400vph and 4,000vph for LINK1 and LINK2 were selected as the 

lowest values in each model for representing link geometry reducing road capacity. 

Table 6-9 Sum of estimated travel times on three links for 30 days by both models 

 
Note: Underlined values are percentage changes with FModel 

Figure 6-6 Comparison of total travel time on three links 

 

LINK1 LINK2 LINK3
Hourly TF (Random values) N (1,000, 200^2) N (1,500, 400^2) N (2,000, 600^2)
TR 627.78 800 0
RISE 6.51 20 0

FALL -5.70 0 0

Capacity (vph) for KDI (2015) 3,400 3,400 3,572
Capacity (vph) for KOTI (2009) 4,000 4,000 4,400

FModel KDI (2015) KOTI (2009)
LINK1 6,755 8,035 6,332

19% -6%

LINK2 11,820 12,912 9,873

9% -16%
LINK3 15,572 19,220 14,177

23% -9%
Sum 34,148 40,167 30,383

18% -11%

Total Estimated Travel Time (vehicles*hours/km)
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6.3.2. Application to traffic assignment 

This study investigated two applications from the perspective of transport economics: the 

relationship between trip demand and link-cost function, and the impact on traffic assignment of 

the developed travel time estimation model. The first application reflects real life better than the 

second one in that trip demand is treated as elastic with regards the total cost of a route. On the 

other hand, the latter application assumes that the total trip demand is constant over the analysed 

network, which is in line with the static traffic assignment process.  

In the first application, various estimated link costs in microeconomics result in different economic 

equilibria (Figure 6-7). In order to simplify the analysis, it was assumed that there were no 

alternative links or that alternative links have higher cost than the analysed motorway link. If trip 

demand is only dependent on journey time in the link, the equilibrium point between trip demand 

and journey time changes based on different link cost functions. In Figure 6-7, whilst the 

equilibrium point can be determined as B from the current Korean link cost function (KDI, 2015), 

the point moves to C based on FModel. On the other hand, trip demand derived from the KOTI 

(2009) model is higher than that from FModel. Therefore, it can be said that FModel determined 

trip demand between the KDI (2015) and the KOTI (2009) model. In particular, it allocates more 

trip demand on planned and existing Korean motorways links than KDI (2015) model, but less trip 

demand than the KOTI (2009) one. Without motorways nearby, the feasibility (e.g. benefit-cost 

ratio) of new motorway projects by FModel would be estimated as higher than by the KDI (2015) 

model. Consequently, the feasibility analysis could cause the different result.  

Figure 6-7 Change in an economic equilibrium from the supply-demand relationship 
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In the second application, the travel time estimation models were applied to quantitative transport 

appraisal to find how the result of transport appraisal changes depending on the models20. Figure 

6-8 shows an example of a hypothetical motorway construction plan that bypasses an existing city 

road. As the city expands, the government is planning to construct a new motorway bypassing the 

city in order to resolve frequent congestion on the three routes and to prepare for growing trip 

demand. It is assumed that the new motorway shares only the trip demand of the city road.  

Figure 6-8 Example of a local network for application to transport appraisal 

 
Prior to the construction of the motorway, the government implements transport appraisal as an 

important decision-making process. Figure 6-9 illustrates four travel time estimation model curves 

including the travel time estimation model for the city road (hereinafter named “Model_City”). 

Model_City is assumed as BPR function with FFS=80.7kph, road capacity=2,376vph, α=0.72 and 

β=2.14 (Equation 6-5), which is illustrated as ‘BPR type 16’ in Table 2-5. The link geometric 

features and road capacity for the three models’ specifications are assumed to be the same as 

‘LINK1’ in Table 6-8.  

𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑑𝑑𝑒𝑒𝐹𝐹_𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 (𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎/𝑘𝑘𝑎𝑎)

=  
1

80.7
∗ 3600 ∗ �1 + 0.72 ∗ � 

𝑇𝑇𝑇𝑇
2,376

�
2.14

� 
Equation 6-5 

This application assumes that the total trip demand over the entire network is constant. When 

applying O-D trip demand of 3,000vph to the above-mentioned local network, the Wardrop 

(1952)’s first principle can find the equilibrium points between the analysed motorway and the city 

road by using the three models as shown in Figure 6-9. Since the principle assumes that all vehicles 

have the same travel time between their origin and destinations (Section 2.2.2), the travel time by 

the trip demand allocated to the motorway is equal to the travel time by the trip demand allocated 

to the city road. In order to find the trip demand that makes travel time equal, ‘(3,000-TF)’ needs to 

be applied instead of TF in Equation 6-5 because the sum of trip demand using the motorway and 

                                                      
20 Although the models are not applied to the nationwide network, but the result of traffic 
assignment at the local network level could be applicable at a national level. 
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city road is 3,000vph. The curve of Model_City can be rotated as the solid line in Figure 6-9 and as 

such the equilibrium points can be calculated as shown in Table 6-10.  

Different equilibrium points in the three models change consumer surplus (Figure 6-9), which is 

closely related to the benefit estimation in transport appraisal (Section 2.2.1). Whilst the total 

vehicle travel time is represented as ODEI before the construction of the new motorway, it changes 

into OCFI after sharing some of the trip demand with the constructed motorway by estimating 

travel time with the KDI (2015) model. In this application, the consumer surplus becomes CDEF. 

In comparison, when applying the other two models to the calculation, the consumer surplus 

increases to BDEG for FModel and ADEH for KOTI the (2009) model.  

Figure 6-9 Change in consumer surplus depending on three models  

 

Table 6-10 Equilibrium points between motorway and city road   

 
Note: ‘Denotation’ represents the intersection points described in Figure 6-9 

 Trip demand
(vph) 

 Motorway
(vph) 

 City road
(vph) 

 Estimated Travel time
(minutes)  Denotation 

FModel 3,000                  1,426            1,574       11.6                                        'K'

KDI (2015) 3,000                  1,039            1,961       13.2                                        'J'

KOTI (2009) 3,000                  1,661            1,339       10.8                                        'L'
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Based on this finding, the hypothetical random samples of 30 hourly trip demand following the 

normal distribution with the mean of 2,500vph and the standard deviation of 500vph were allocated 

to the local network (Figure 6-8) based on the Wardrop (1952)’s first principle. Table 6-11 

summarises the result of traffic assignment and its application to the benefit estimation of vehicle 

travel time saving in transport appraisal (see Appendix A.5.6). As link cost functions estimate 

travel time as lower on the motorway as with the KOTI (2009) model, more trip demand is diverted 

into the planned motorway and as such the benefit of time saving in transport appraisal increases. 

This result implies that lower travel time estimation attracts more trip demand than comparatively 

higher travel time. Therefore, FModel in this study could attract trip demand to motorways more 

than KDI (2015)’s model, which is widely used in Korean traffic assignment, and less than the 

KOTI (2009) model.  

In summary, a link-cost function, which is a travel time estimation model in this study, affects the 

result of traffic assignment to a significant degree. First of all, it plays a crucial role in determining 

trip demand on each link, which is a direct influential factor for the calculation of travel time 

savings benefit in transport appraisal. In addition, trip demand assigned over the entire network as 

well as its speed are the basis for the estimation of other benefits such as vehicle operating cost 

savings and environmental improvement such as noise, air quality and greenhouse gas emissions 

(Appendix A.2.2 and A.3.3) 

Table 6-11 Result of traffic assignment by three models 

 
Note 1. TD is the assigned trip demand and TT is the total vehicle travel time. 

2. Total trip demand of 73,984vph is randomly produced by the mean of 2,500vph and the standard 

deviation of 500vph with the assumption of normal distribution. 

3. ‘Comparison’ represents the percentage change with the benefit by FModel. 

  

Do-nothing FModel KDI (2015) KOTI (2009)

Sum of TD_Route3 73,984 43,117 56,269 37,629

Sum of TD_Bypass - 30,867 17,714 36,355

Total demand 73,984 73,984 73,984 73,984

TT_Route3 (veh*hours) 1,411,798 482,363 723,783 378,493

TT_Bypass (veh*hours) - 349,870 233,111 388,034

Total vehicle travel time (veh*hours) 1,411,798 832,232 956,894 766,526

Benefit (time savings: hours) - 579,566 454,905 645,272

Comparison - - -22% 11%
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6.4. Findings 

This chapter has explored the application of the developed model to a real world situation. 

Although the developed travel time estimation models can be used in various areas21, but this study 

has focused on its use for traffic assignment and further transport appraisal. Prior to its application 

to a real world situation, this chapter suggested the most appropriate model in terms of statistical 

significance and practical applicability. Furthermore, this study demonstrated the application of the 

selected model to transport planning including traffic assignment, which is one for the motivations 

of this study.  

In Section 6.2, in order to decide on the most appropriate model, this study investigated the 

statistical criteria after the validation of models by the 10-fold cross-validation method. In 

particular, from among the linear estimation models, the GLS estimation models are evaluated as 

statistically better based on the penalized-likelihood criteria including AIC and BIC. In addition, 

when considering the applicability to reality, this section demonstrated that the uncertainty of road 

capacity causes the error propagation in travel time estimation and that the time-series data has low 

utilisation in traffic assignment. Therefore, this study recommended FModel, which reflects the 

diversity of link attributes, as the most appropriate model in practice.  

In Section 6.3, this study showed quantitatively how the selected model affects transport planning 

compared to existing models. FModel estimates lower travel time as compared with the Korean 

BPR function (KDI, 2015). On the other hand, the model estimates travel time as higher than the 

KOTI (2009) model. When applying the three models to travel time estimation with randomly 

produced trip demand, whilst FModel estimated the total vehicle travel time as lower than the KDI 

(2015) model and higher than the KOTI (2009) model. Furthermore, it was demonstrated that the 

model developed in this study can affect the results of transport appraisal. When the randomly 

produced trip demand was assigned to the hypothetical network plan, three models predicted 

different equilibrium points on each link and as such they caused various levels of consumer 

surplus, which is closely related to benefit estimation in transport appraisal. When hypothetical trip 

demand pairs are allocated to a hypothetical local network, FModel estimates the total travel time 

savings as higher than the KDI(2015) model by 22% and lower than the KOTI(2009) by 11%. It 

can be concluded that the adoption of FModel would result in a significant change in Korean traffic 

assignment and the transport appraisal process. 

                                                      
21 The applied areas of travel time estimation models can be other transport planning activities such 
as traffic demand management and periodic evaluation of link efficiency and the provision of 
journey time guidance.  
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Chapter 7. Conclusion 

7.1. Main conclusions 

From a microeconomic perspective based on the demand-supply principle, this study started by 

recognising that there are problems in the transportation investment appraisal process, which are 

common to many countries. Transportation investment appraisals (e.g. ex ante CBA) aiming at 

future predictions may involve a variety of errors (Mackie and Preston, 1998). This study focused 

on one of the reasons for the errors in traffic assignment, which is one of the traffic demand 

forecasting steps. In static traffic assignment, which is mainly used for allocating O-D trip demand 

to the relatively wide network over a long term period, VDFs play a role as link-cost functions in 

calculating the performance of links. Therefore, the detailed investigation of VDF structures 

became a key issue for this study.  

Literature reviews showed that VDFs as travel time estimation models commonly include road 

capacity and free-flow speed. However, many studies on VDFs used different values for road 

capacity and free-flow speed for customising the parameter of VDFs. This study paid attention to 

whether the parameters with the two variables in VDFs can reflect the geometric features of links 

even though the manuals in many countries defined the values based on the geometric features of a 

link (USHCM, 2010; MLTM, 2013). In other words, it was examined whether geometric features 

are able to play a major role in travel time estimation models by replacing road capacity and free-

flow speed. 

As mentioned in Chapter 3, this study adopted three different statistical estimation methods, two of 

which are linear (OLS and GLS) and the other nonlinear (NLS), in order to analyse statistically the 

dataset observed from the 72 motorway sections for one month. Each estimation method 

considered the relationship between travel time and traffic flow with and without geometric 

variables, as well as identifying many factors that could affect travel time. In addition, the 

developed models were statistically verified to identify their feasibility and were compared with 

each other to assess their accuracy. In order to conclude this study, the research gaps presented in 

this study (Section 2.6) are recalled as follows; 

(1) Uncertainty of FFTT and road capacity in VDFs 

(2) Identification of influential factors on travel time (spatiotemporal data analysis) 

(3) Significance of link geometric variables in VDFs  

(4) Suggestion of new feasible travel time estimation models   
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7.1.1. Uncertainty of FFTT and road capacity in existing VDF approaches 

The first conclusion is that neither road capacity nor free-flow travel time are appropriate variables 

in travel time estimation models. One of the focuses in the literature review is that road capacity 

and free-flow speed cannot be pre-determined and included in VDFs because there was no unified 

concept or measurement method. Many studies have applied the method to the VDF customising 

process without analysing the statistical impacts of both values (Kalaee, 2010; Huntsinger and 

Rouphail, 2011; Kim et al., 2014; Kucharski and Drabicki, 2017). There has been little critical 

perspective on how to measure road capacity and free-flow speed in VDFs, or how much the two 

values would affect travel time prediction. In this study, the quantitative analysis confirmed the 

hypothesis that road capacity and free-flow speed are not suitable for travel time estimation 

modelling and demonstrated how big an impact the predetermination of road capacity and free-

flow travel time have on the models and their prediction. 

The initial analysis found that road capacity and free-flow travel time could not be fixed at a 

specific value. Road capacity was derived as different values such as the maximum; 10th largest; 

and breakdown traffic flow as well as free-flow speed from the different locations of six inductive 

loop detectors. Values of road capacity and free-flow speed were defined by measuring the discrete 

change in traffic flows at each detection point, but they could not represent the analysed sections 

very well. When road capacity and free-flow speed (travel time) with their uncertainty are included 

in the VDF, it was identified that the uncertainty can be propagated into travel time estimation. In 

the initial analysis, it was found that the change in free-flow travel time and road capacity greatly 

influenced the coefficient estimations in the existing BPR function. In particular, the 

predetermination of free-flow travel time resulted in a reduction in the accuracy of the models.  

In Chapter 4 and Chapter 5, the sensitivity analysis was implemented by defining the values of road 

capacity ranging from 80% to 120% of nominal road capacity in the NLS estimation. In the 

sensitivity analysis, free-flow travel time can be derived statistically without predetermination in 

the NLS estimation, so it can be concluded that free-flow travel time does not need to be fixed as a 

specific value before modelling. With regard to the impact by road capacity, the sensitivity analysis 

confirmed that the change in road capacity does not affect the accuracy of the model, but it does 

affect the coefficients of the model. The different values of road capacity do not increase RMSE or 

MAPE and do not change the other coefficients including those of geometric variables. The only 

change is the ‘a’ coefficient (‘α’ in BPR function) that is proportional to the value of road capacity. 

If road capacity is used in travel time estimation models such as existing BPR functions, this 

correlation between ‘a’ coefficient and road capacity implies that the coefficient needs to be 

suggested by combining with the recommended values of road capacity in practice.   
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In addition, in Chapter 6, it was investigated whether the error between the true and fitted values of 

travel time significantly increases when an NLS estimation model is applied to sections where the 

actual road capacity is different from the road capacity predetermined for the BPR model 

estimation. A model by the NLS estimation method with the one-day dataset was derived after 

fixing the road capacity as 3,572vph for Korean motorways. The average of RMSE and MAPE in 

the NLS estimation model without geometric features are 5.9 and 13.4% respectively. In one case, 

RMSE and MAPE are recorded as 8.5 and 21.0%.  

In summary, it can be shown that the pre-determination of road capacity can cause inappropriate 

coefficient estimations and/or the error propagation to the links with various geometric features. As 

a result, the road capacity in VDFs could cause unreasonable route selections by predicting the 

costs of the future links differently from what drivers will experience or receive through real-time 

information systems in the future. Therefore, this study can conclude that the predetermination of 

road capacity in travel time estimation causes the error in travel time estimation and hence potential 

inaccuracy in traffic assignment as shown in Section 6.3. 

  

7.1.2. Identification of factors affecting travel time 

The second conclusion in this study is that the influential factors on travel time were identified by 

the panel data across space (cross-sections) and time. Most previous studies on VDF modelling 

commonly measured road capacity and free-flow speed by incorporating the characteristics of the 

analysed sections first, and then they customised existing models (e.g. the BPR function) by using 

observed data for a few sections and for a relatively short time. By contrast, this study examined 

various types of factors that could influence travel time estimation models by analysing 72 sections 

for one month (over 147,000 samples). FE modelling using LSDV in Chapter 4 statistically 

identified cross-sectional and time-related fixed effects, which can be influential factors that affect 

travel time estimation models.  

The six entities of links, routes, brightness, date, day, and weather into what all the samples are 

classified, had a major impact on the determination of the accuracy of models and the coefficients 

of independent variables. Namely, from FE modelling it can be said that the panel data from 72 

sections for one month have many unobserved fixed effects. In particular, it is noteworthy that the 

adjusted R2s as a coefficient of overall model determination increase from 2.5% to 59.4% and 

68.2% in pooled OLS linear modelling; FE modelling within the entity of links; and the entity of 

both links and date respectively. By contrast, adjusted R2s by FE modelling through setting the 

other entities of routes, brightness, date, day and weather range from 9.8% to 26.6%. Therefore, it 

can be concluded that of all the entities analysed, the entity of links has the unobserved fixed 
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effects that most affect travel time estimation. The result of FE modelling motivated this study 

again because geometric features make up a large part of link characteristics.  

 

7.1.3. Significance of link geometry for travel time estimation  

The third conclusion in this study is that geometric features can play a major role in VDF as 

separated independent variables. Prior to travel time estimation modelling, the initial case study 

(Section 3.2) illustrates that the selected tunnel motorway section has smaller road capacity than 

that in KHCM (MLTM, 2013). Road capacity in the initial case study was defined differently as the 

maximum, the 10th largest traffic flow and breakdown traffic flow. The smaller values of road 

capacity indicate that traffic characteristics in the tunnel section are affected by link geometric 

features, including the tunnel environment. In other words, this indicates that tunnel sections form 

virtual bottlenecks without a change in the number or width of lanes and those bottlenecks would 

affect travel time estimation and traffic demand forecasting in these sections.  

The OLS linear estimation and the NLS estimation methods in this study examined the change in 

the accuracy of models and the coefficients of the models when geometric features are considered 

in travel time estimation modelling. Since this study focuses on the travel time estimation of link 

intervals rather than points, all variables in the analysed models should reflect the change of traffic 

data and geometric features in the selected cases (links). For example, the dependent variable is the 

inverse of mean speed between starting and ending points in each selected case, which is equivalent 

to the travel time per distance. In addition, geometric feature sets of 72 sections were quantified 

from the road design drawings. The independent variables of geometric features in this study are 

TR (sum of tunnel lengths per distance), RISE (sum of rises per distance), FALL (sum of falls per 

distance) and BEND (sum of bendiness per unit distance). The model accuracy and the change in 

coefficients of independent variables were scrutinised by implementing stepwise selection 

methods, considering interaction effects and applying transformed functions to models in the 

regression analysis. A linear function for the geometric predictors in addition to a quadratic 

function for the predictors of TF in the OLS linear estimation was examined, and likewise, a linear 

function in addition to the existing BPR function in the NLS estimation was also investigated for 

the comparison.  

Chapter 4 showed the significance of geometric features in travel time estimation models based on 

one month of data processing. As a result of the OLS linear estimation, it was found that the 

adjusted R-squared increases from 2.5% to 8.6% by the inclusion of geometric variables in the 

model. The result would not be negligible when considering large unobserved effects that could 

affect travel time significantly in FE modelling. When the same dataset is applied to the NLS 
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estimation by iterative calculations, RMSE, which can be used for measuring the accuracy of the 

NLS estimation, improved from 4.490 to 4.350 after inputting geometric predictors to the model. In 

addition, the coefficients of all geometric variables in both estimation results are statistically 

significant at the confidence level of 99%. 

Chapter 5 identified the impact of the geometric features based on OLS linear and NLS estimations 

of a one-day dataset. The one-day observations naturally eliminated some of the effects including 

weather, day of week and brightness from the one-month dataset. Moreover, the dataset must be 

ideal for the regression analysis because the values of traffic flow are well distributed on the 

measured day (24th of September 2018). When comparing the models with and without geometric 

features in the OLS linear estimation, the adjusted R-squared increases from 33.7% to 42.2%. 

Likewise, the NLS estimation confirmed that the accuracy of a model can be improved by adding 

geometric features to the model by reducing RMSE from 3.601 to 3.360. In addition, whilst the 

coefficients of the three geometric variables of TR, RISE and FALL in both estimations are 

statistically significant at the confidence level of 99%, the coefficient of BEND does not have high 

statistical significance (p-value = 0.513). 

In summary, both the results of OLS and NLS estimations demonstrate that geometric features 

affect the travel time estimation considerably based on modelling by one-day and one-month 

datasets. However, applying the BEND variable to the travel time estimation models requires more 

careful consideration. 

 

7.1.4. Suggestion of new travel time estimation models 

The final conclusion in this study is that new types of travel time estimation models can replace the 

current VDFs. This conclusion is the comprehensive result of this study which combines the 

previous three conclusions. Developing feasible models that could be used in practice required 

testing strict statistical assumptions that previous studies did not consider to any great extent. The 

one-day dataset was used for modelling in order to minimise impacts on travel time of factors other 

than geometric features. OLS, GLS and NLS estimation methods were implemented for model 

development, and the models developed by each method were compared by statistical measures for 

the optimal model selection. The detailed procedure of model development and its achievements 

are as follows. 

Firstly, the base function for linear estimation was chosen as the quadratic function from the initial 

analysis that modelled the relationship between the travel time and the traffic flow of one section. 

The function satisfies the basic condition that link-cost functions should be convex in traffic 
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assignment. In addition, the function was expected to have advantages in that it does not require 

road capacity and free-flow travel time unlike the existing VDFs as highlighted in the previous 

section. On the other hand, the feasible models should include geometric features in order to 

replace the role of road capacity and free-flow travel time. 

Secondly, the OLS estimation models were developed by adding geometric variables to the base 

function without road capacity, but two statistical violations were observed in the models. After 

selecting various combinations of variables and changing the model by log transformation, the log-

linear transformed model with the dependent variables of Inv_SPD and the independent variables 

of TF, TF2, TR, RISE, and FALL were found to have the best performance. In order for the 

developed model to be significant in the OLS estimation, the models must satisfy the statistical 

assumptions. The models were statistically tested to examine whether they met the assumptions, for 

example by residual plot observations. However, the models developed by the OLS estimation 

were found to violate homoscedasticity and non-autocorrelation assumptions. 

Thirdly, the GLS estimation modelling was introduced to deal with the two violations in the OLS 

estimation, heteroscedasticity and serial correlation. The GLS estimation for dealing with 

heteroscedasticity is equivalent to the WLS estimation with different variance and covariance 

elements of zero in the variance-covariance matrix. In order to treat the heteroscedasticity, variance 

elements in the variance-covariance matrix of errors were assumed based on various structures 

provided in the software package of “R” and then the best variance structure was chosen through 

ANOVA and comparison of AIC and BIC measures. As a result of the estimation, the variance 

structure with constant variance on each link (different variance between links) showed the highest 

accuracy (lowest AIC and BIC) of the models. In addition, in order to treat the serial correlation, 

the correlation between covariance elements in the variance-covariance matrix was assumed in the 

GLS estimation based on AR and ARMA models in “R”. Time-series analysis suggested that the 

second-order autoregressive (AR (2)) model would be the most appropriate of different serial-

correlation structures through ANOVA. The GLS estimation model derived by combining both the 

stratified variance structure and AR (2) model showed the most statistical significance with the 

lowest AIC and BIC measures maximising log-likelihood.  

Fourthly, the NLS estimation developed feasible models by adding geometric variables as a linear 

function for generalising the BPR function. The developed models show better accuracy by smaller 

RMSE and MAPE than the existing BPR function without geometric variables. The coefficients of 

the TR, RISE, and FALL variables, except for BEND, were also statistically significant. In 

addition, the newly developed NLS estimation model has less error propagation than the existing 

BPR function (model) without geometric variables when both models are applied to the sections 

with different road capacity. 
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Finally, this study selected an alternative model by comparing accuracy measures and cross-

validation results derived from five representative models by OLS, GLS, and NLS estimations. The 

analysed models’ spatial transferability was verified through 10-fold cross-validation. The cross-

validation results confirmed that the other four models have similar overall accuracy measures to 

the nonlinear estimation method without link geometric features, which is the current approach of 

the BPR function. However, as concluded in Section 7.1.1, since NLS estimation models contain 

the uncertainty of road capacity, the models derived by OLS and GLS estimations would be the 

better alternatives. AIC and BIC measures were used to compare the models derived by linear 

(OLS and GLS) estimation based on maximising log-likelihood estimation, and RMSE and MAPE 

were used for comprehensive comparison of the models derived from all three estimation methods. 

As a result, the GLS estimation model with both link-stratified variance structure and AR (2) time-

series correlation structure was evaluated as the best model statistically. However, it is questionable 

whether the model is practical to use in traffic assignment, especially for static traffic assignment. 

It is not realistic to survey O-D trip demand every 15 minutes, which is necessary for use of the 

GLS estimation model with AR (2) in traffic assignment. Therefore, the model that deals with the 

heterogeneity of links can be an alternative model to current VDFs.  

In conclusion, this study suggests the alternative travel time estimation models that have traffic 

flow and measurable geometric features as explanatory variables based on the statistically detailed 

investigation of the accuracy and the significance of coefficients in the estimated models. The 

alternative models can explain the relationship between travel time and road environment in a more 

generalised way than current VDFs. 
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7.2. Contributions of the thesis 

This thesis developed the feasible travel time estimation models that can improve travel time 

prediction during traffic assignment and that can also increase the reliability of transport appraisal. 

From both academic and practical perspectives, this section emphasises the significance of the 

estimated models by suggesting their key implications are as follows. 

Consideration of space-mean values  

The estimated models can be used as ‘link’ cost functions in traffic assignment. In other words, the 

estimated models must represent the information of links. This study considered the role and 

principle of link cost functions while collecting the data for model estimations carefully. Many 

previous transportation studies collected the instantaneous traffic data observed from points. By 

contrast, this study used the space-mean speed from DSRC and the ratio of the link attributes 

(tunnel length, elevation differences and bendiness) to the total length of each link as variables. It 

can be expected that this consideration can serve the purpose of a link cost function more 

effectively than the current studies.  

Replacement of FFTT and road capacity in the linear estimation models 

This study started from the hypothesis that the predetermination of FFTT and road capacity would 

adversely affect travel time prediction on the links with different geometry. This was confirmed in 

this thesis. The linear estimation models that are suggested as alternatives to existing VDFs are 

expected to reduce the uncertainty of both values by including the various measurement methods. 

In light of the existing HCM that road capacity is determined by the geometric features, instead of 

including road capacity as an intermediate variable in the models, the linear models includes the 

features directly as independent variables. By minimising the unnecessary assumptions (e.g. the 

predetermination of road capacity) in the regression analysis, the estimated models have higher 

statistical significance than the existing models. 

The applicability of existing VDFs 

Although road capacity is inappropriate for estimating travel time, which is one of the main 

conclusions in this study, it is difficult to assert that existing VDFs are not useful for all links in 

traffic assignment. This study recommends that the existing VDFs can be used only for basic 

segments where the change in geometric features is not drastic. In addition, using the existing 

VDFs by changing the road capacities presented in manuals needs careful consideration because 

this study demonstrated that a different selection from the road capacity predetermined in the BPR 

function would cause large errors in travel time estimation. This is in line with the finding that road 

capacity has a proportional relationship with one of the parameters in the BPR function.  
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Generalised linear estimation modelling 

The estimated models not only focused on the best fitting of the observed data, but also on the 

statistical justification. This study suggests how to deal with the violations of the statistical 

assumptions in OLS linear estimation. It was found that traffic data with 15-minute intervals were 

serially correlated and that the data from 72 different links were not homogeneous. The statistically 

feasible linearised models are discovered after identifying the violations and assuming different 

variance and covariance structures of errors. Even though the GLS linear estimation model 

considering serial correlation would not be practical in traffic assignment, it can imply that the 

serial correlation can affect traffic data analysis. Therefore, of the two models from the GLS linear 

estimation, the one by dealing with the heteroscedasticity can be used practically in traffic 

assignment, whilst the other by dealing with the serial correlation can be academically meaningful.  
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7.3. Limitation and future work 

In spite of the contributions suggested in the previous section, this thesis has some limitations with 

regard to the data specification used in modelling and the assumption for modelling. This section 

discusses the limitations of the thesis and their probable solutions in future work.  

Consideration of the variable of heavy vehicle percentage 

The first limitation of this thesis is that it does not consider the important variable of heavy vehicle 

percentage or traffic composition due to the difficulty in data acquisition22. As mentioned in the 

thesis, current VDFs commonly include road capacity that varies depending on the heavy vehicle 

percentage. In other words, because of the interaction between vehicles, the heavy vehicle 

percentage would affect the traffic characteristics most in modest traffic flows with a small number 

of lanes. Therefore, the variable needs to be included in travel time estimation models in the future. 

Future work is needed to reflect the value of the heavy vehicle percentage in the estimated models. 

The prerequisite to do so is to observe the heavy vehicle percentage every 15 minutes. As 

mentioned in Section 3.4, automatic vehicle identification (AVI) in ITS is difficult to use for data 

collection due to the sparse installation intervals even though AVI can be an easy way to classify 

vehicle types. Dual inductive loop detectors, which are not installed on Korean motorways, can be 

the alternative for classifying the vehicle types by identifying the length between axes 

(Cheevarunothai et al., 2006). The last available option would be the field survey or the data 

collection from a microsimulation package23. After data collection, it is necessary to consider 

modelling through the interaction with the variable of traffic flow or piecewise modelling. 

Definition of trip demand in congested situations 

The second limitation of this thesis is that the estimated models would not explain the 

oversaturated travel time well depending on trip demand in congested situations. This thesis filtered 

the data of congestion in modelling by defining it as the data with a speed below 60kph. The data 

analysis means that the models estimated from the data in steady states and near congested states 

would also explain congested states that cannot be identified by the empirical data measurement 

because link cost functions in static traffic assignment do not represent spillback or gridlock 

(Section 2.2.3). For clarifying travel time estimation models in congested states, it would be 

necessary to define trip demand by connecting measurable traffic data with the congested traffic 

                                                      
22 This study attempts to minimise the impact of the heavy vehicle percentage by selecting a 
national holiday for the data analysis when the traffic flow of heavy vehicles is usually low.  
23 Some transportation studies collect or validate the data from a microsimulation package, but it 
would not be recommended in the empirical data analysis because the microsimulation result is 
also based on algorithms or models.  
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flow. Queue length and the difference between incoming and outgoing traffic flows would be 

influential factors that determine trip demand on a link. However, there would be little consensus 

of trip demand derivation from traffic data in the field. Although Huntsinger and Rouphail (2011) 

predicted trip demand of a motorway link from occupancy rates and queue length at inductive loop 

detectors, it is based on the formula for oversaturated signalised intersections given by May (1990). 

In addition, the data of occupancy rates cannot be used for model estimations because of its low 

reliability (Section A.4.1) in Korean ITS. 

Future work can be done in order to find how trip demand can be derived from the traffic flow data. 

Whilst the incoming traffic flow upstream of a link is similar to that of outgoing traffic flow 

downstream in steady states, it is known that the incoming flow exceeds the outgoing flow once the 

link is congested. As mentioned in Section 2.2.3, since static traffic assignment does not allow 

spillback effects in which traffic speed does not increase despite a decrease in traffic flow, it 

introduces trip demand instead of traffic flow in link cost functions. Namely, although trip demand 

over maximum traffic flow is a virtual concept in traffic assignment, it is definitely related to traffic 

flow and its cumulated rate in congested states. Therefore, it is necessary to clarify the relationship 

between the cumulated traffic flow in the upstream of a link and trip demand on the link. The 

change rate in the cumulated traffic flow would also be one of the considerations for defining trip 

demand. The measurement of cumulated traffic flow and its rate requires more accurate 

observation of queue length and its change, which cannot be done by inductive loop detectors in 

this study. After clarifying the definition of trip demand in travel time estimation models, it needs 

to be considered whether to divide the models into two regimes such as piecewise regression 

analysis because congested traffic characteristic could be based on the different relationships to 

those examined in this thesis.  

Modelling for various road types with the number of lanes 

The last limitation of this thesis is that the model estimation was implemented only for 2-lane 

motorways. This thesis confines modelling to 2-lane motorways due to the data accessibility and it 

assumes that the developed methodology can be applied to modelling for more diverse road types. 

However, it is necessary to generalise the developed methodology more. New base functions or 

different statistical methods might be necessary for modelling in the future. In addition, new 

variables that could affect travel time on a link need to be included.  

Therefore, further research needs to be attempted to apply the established methodology to many 

types of roads. Whilst the current Korean BPR function suggests separate models that have 

different parameters with FFS and road capacity depending on the number of lanes even within the 

same type of roads, it is necessary to consider integrating the models by taking into account the 

number of lanes as a variable. Moreover, the additional variables for each road type would need to 
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be included in the estimated models. For example, the intersection density and its signal interval in 

urban roads can be important variables.  

In conclusion, this study suggests a new approach to travel time estimation through the case study 

of Korean motorways. Although the current VDFs are kept simple by defining road capacity and 

free-flow speed, the possibility of model generalisation is limited by the assumption that all link 

attributes are included in the two values. Therefore, this thesis can have significance and value in 

that it proposes extensible models to be developed in the future by encompassing road types and 

their attributes.
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A.1. Korean motorways 

A.1.1. Status of motorways in South Korea 

Korean government set the frame of the national arterial roads first in the 1990s, which consists of 

seven vertical axes and nine horizontal axes (7×9) (MOLIT, 2016b). Afterward, the frame was 

revised to 7×9+4R which had been combined with the arterial frame in the capital and metropolitan 

areas (MLTM, 2011a). All motorways (6,415km) are included in the frame and other arterial roads 

consist of national highways (Table A-1). It was investigated that roads accounted for 81.4% of 

passenger transportation by the measurement of million·passenger·kms/year and 71.1% of freight 

transportation by the measurement of million·tonne·kms/year in 2008 (MLTM, 2011c). In addition, 

it is worth noting that traffic volume of motorways was around 4 times higher than that of national 

highways between 2011 and 2015 based on the total vehicle kilometres (Table A-2). 

Table A-1 Korean arterial road network  

(Unit: km, as of 2015)  

 
Source: Updated from MLTM (2011a) 

Table A-2 Comparison with traffic volume between Korean motorways and highways 

 
Source: MOLIT (2016a) 

Plan Operation Construction Design Future
Total 7,266 4,271 743 846 1,406

Motorway_Subtotal 6,415 4,193 694 846 682
HIghway_Subtotal 850 78 49 0 723

Subtotal 3,606 2,367 132 463 644
Motorway 3,277 2,348 132 463 334
Highway 329 19 310
Subtotal 3,066 1,715 446 226 679

Motorway 2,587 1,686 409 226 265
Highway 479 29 37 414
Subtotal 594 189 165 157 83

Motorway 551 159 153 157 83
Highway 43 30 12

Circulation

Vertical
Axis

Horizontal
Axis

Road type Length (km) AADT (veh/day) VKT (K·veh·km) VKT per length (K·veh)
National Motorway 4,149                         48,505                      201,247                    48.5
National Highway 12,651                      11,991                      151,708                    12.0

National Motorway 4,124                         46,403                      191,358                    46.4
National Highway 12,653                      11,587                      146,617                    11.6

National Motorway 4,114                         15,236                      186,112                    45.2
National Highway 12,648                      11,471                      145,080                    11.5

National Motorway 4,044                         43,689                      176,682                    43.7
National Highway 12,635                      11,176                      141,203                    11.2

National Motorway 3,912                         44,276                      173,186                    44.3
National Highway 12,823                      11,499                      147,465                    11.5

2015

2014

2013

2012

2011
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Figure A-1 Korean motorway frame  

Source: (MLTM, 2011a)  
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A.1.2. Design criteria for motorways in South Korea 

Table A-3 Minimum width of lane by road types and design speed in Korea 

 
Source: MOLIT (2015) 

Table A-4 Minimum central barrier width by road types in Korea 

 
Source: MOLIT (2015) 

Table A-5 Right clearance by road types and design speed in Korea 

 
Source: MOLIT (2015) 

Table A-6 Left clearance by road types and design speeds in Korea 

 
Source: MOLIT (2015) 
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Table A-7 Maximum degree of vertical slope by road types and design speed in Korea 

 
Source: MOLIT (2015) 

Table A-8 Radius of the horizontal curve by design speed and super-elevation in Korea 

 
Source: MOLIT (2015) 
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A.2. Cost-Benefit Analysis (CBA) in Transportation  

CBA would be firstly used in the US in the 1930s and developed as one of decision making 

processes for budget investment in the US in 1950s and the UK in 1960s. Afterward, it has been 

spread to many developed and developing countries. The early CBA did not appraise public 

projects in terms of regulation but afterward it began to be recognised as a regulatory way (Pearce, 

1971; Price, 1999). CBA has a basic concept that a project could be determined if the total benefit 

by them would exceed the total cost. It is widely used in the decision process of personal affairs, 

corporate investment and governmental budget allocation. In governmental affairs, it would be 

used to justify a governmental intervention in an incomplete market (Boardman et al., 2013).  

CBA is mainly divided into four types, which are ex ante CBA, ex post-CBA, in medias res CBA 

and the comparison between ex ante CBA and one of ex post and in medias res CBA. Each type is 

determined depending on the point when the analysis is implemented. The first three CBAs are 

conducted respectively prior to, after and in the middle of projects respectively. Therefore, the most 

useful CBA at least in governmental affairs could be ex ante CBA because the other CBAs would 

be used after launching projects which are mostly irreversible (Boardman et al., 2013). 

CBA could be divided into several phases (Hanley and Spash, 1993; Boardman et al., 2013). To 

summarize, they could be composed of establishing alternatives, cost and benefit identification, 

monetization of value including discounting, comparison through sensitivity analysis, and lastly 

conclusion.  

 

A.2.1. CBA in Many Countries 

Hayashi and Morisugi (2000) compared the differences of transportation projects appraisal between 

five international countries, which are UK, France, Japan, USA and Germany. Although it seems to 

be necessary to be compared based on up-to-date data of each country, it would be significant in 

the respect that the comparison explained its own basic appraisal direction well.  

The overall planning and investment process of transportation 

National governments in most countries would intervene the decision-making process of 

transportation planning and investment by local governments (authorities or agencies) regardless of 

the operational responsibility of each infrastructure. Therefore, the transportation projects appraisal 

such as CBA by the national government seems to have an important role in a planning and 

investment phase. The five countries investigated by Hayashi and Morisugi (2000) clearly used 

CBA to decide the priority of projects, and the results of CBA were sometimes complemented by 
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other appraisal methods such as Multi-Criteria Analysis (MCA). Besides, although benefit factors 

such as travel time savings, vehicle operating cost savings, accident cost reduction and 

environmental factors seem to be very common, they have developed their own additional benefit 

factors such as regional development and defined the values of factors by reflecting their social 

circumstances. It would be noteworthy that they sought improvements by developing new 

approaches for overcoming the limitation of CBA, as well as by considering and evaluating new 

benefit factors. With regard to social discounting rate and project life period, they are variable from 

3% to 8% and from 20 years to 60 years respectively.  

The benefit factors in transportation projects appraisal 

According to Hayashi and Morisugi (2000), the five countries defined the values of benefit factors 

differently. For example, for the value of time, the UK, the USA and Germany defined it by 

combining the purpose of working and non-working travels, but Japan and France did not estimate 

the value dependant on the purpose of work. Instead, Japan did the value of holiday higher than 

that of a weekday. Moreover, when calculating benefits after defining the value of time, four 

countries other than Germany have adjusted the uniform hourly value of time, but Germany has 

considered more detailed benefit of time savings based on different values at each time interval. 

Almost all countries using CBA would reflect the benefit of safety discreetly and there would not 

be distinctive characteristics in the method to measure the value of safety, which includes using 

insurance statistics or willingness to pay. However, the values of human life in each country are 

very variable, which has the range from 0.27million dollar in Japan to 2 million dollars in the USA 

(Hayashi and Morisugi, 2000). France, Japan and Germany considered environmental impacts in 

CBA whatever range they have or however values of them are high, but the UK and the USA did 

not even if they could be considered in another process such as NATA (Hayashi and Morisugi, 

2000). Afterward, the UK and the USA included environmental factors in CBA (MLTM, 2011b; 

DfT, 2018). Regional development impacts would be recognised significantly in every country, but 

no country did include it as monetary factors in CBA because of the difficulties in measurement or 

a double counting problem. Instead, Germany include the monetised values related to employment 

and income changes. 
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A.2.2. CBA Benefit Estimation in the UK 

Transport investment appraisal in the UK 

As mentioned in Section A.2.1, many developed countries have their own process of CBA and 

commonly estimate the impacts by the intervention of a transportation project. In this section, it is 

necessary to find how to measure the costs and benefits by the intervention. In particular, focusing 

on the benefits of CBA is important in this study because this study aims to reappraise benefits. Of 

many countries’ decision-making processes, the recent UK CBA was examined because it has a 

long history and a well-established system.  

The UK government publishes Web-based Transport Analysis Guidance (WebTAG) that has been 

updated periodically. WebTAG includes the detailed process for transport investment appraisals 

such as methodology, software, modelling and policies. WebTAG introduces not only the 

measurement for CBA but also the expanded impacts estimation by the intervention 

comprehensively as the senior responsible officer, the technical project manager, the appraisal 

practitioner, and the modelling practitioner respectively. Figure A-2 shows the overall appraisal 

outputs that could be organised by many reports and worksheets.  

In addition, “Transport Analysis Guidance for the Technical Project Manager” in WebTAG 

suggests the detailed appraisal process by dividing the process into three stages. It deals with CBA 

as one of the processes in the further appraisal at the second stage (Figure A-3). Lastly, many units 

in “Guidance for the appraisal practitioner” give advice on the overall process of CBA as well as 

the appraisal of many impacts such as economic, environmental, social and distributional impacts.  

CBA in WebTAG 

When focusing on “TAG Unit A1.1 Cost-Benefit Analysis”, which is the part of “Guidance for the 

appraisal practitioner”, the unit contains the contents about many basic factors for CBA that is 

originally based on “The Green Book” (HM Treasury, 2003) (Table A-9). All of the benefits and 

costs for 60 years or more of the appraisal period including investment period should be discounted 

to the value of the base year, which is currently 2010 in the UK, by using the discount rate 

suggested in WebTAG.  

Transport appraisal results can be shown through many tables including the Analysis of Monetised 

Costs and Benefits (AMCB), the Public Accounts (PA) table, the Transport Economic Efficiency 

(TEE) table, and the Appraisal Summary Table (AST). The AMCB table would be the most crucial 

report for reporting CBA results of them. It summarises lists that can be estimated as monetary 

values and concludes the overall outputs representing Net Present Value (NPV) and Benefit to Cost 

Ratio (BCR).  
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Figure A-2 Appraisal tools and guidance for five types of business cases (UK) 

 
Source: TAG for the senior responsible officer and the technical project manager (DfT, 2018) 

Figure A-3 Further appraisal process for the technical project manager (UK) 

 
Source: TAG for the technical project manager (DfT, 2018) 

https://www.gov.uk/government/publications/tag-guidance-for-the-senior-responsible-officer-may-2018
https://www.gov.uk/government/publications/tag-guidance-for-the-senior-responsible-officer-may-2018
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Table A-9 Main contents of UK CBA in WebTAG (DfT, 2018) 

 
Note: the subscriptions of ‘by’ and ‘oy’ are the base year (currently 2010 in WebTAG) and the 

opening year of a scheme respectively 

Table A-10 AMCB table (UK) 

 
Source: “Appraisal tables” in WebTAG (DfT, 2018) 

In addition, it would be necessary to examine the principle of benefit quantification and valuation 

so that benefits in this study should be reappraised with sufficient grounds from the existent CBA 

Comparison Without vs With Scheme

Appraisal Period 60 years after scheme opening

Discount rate (    )
3.5% (0-30 years from current year)
3.0% (31-75 years from current year)

Present Value of 
Benefit (PVB)

Present Value of 
Cost (PVC)

Outputs
Benefit-Cost Ratio (BCR)
Net Present Value (NPV)
NPV/capital cost

Reporting results

Public Account (PA) table
Transport Economic Efficiency (TEE) table
Analysis of Monetised Costs and Benefits (AMCB) table
Appraisal Summary Table (AST)

𝑃𝑃𝑃𝑃𝑚𝑚𝑏𝐶𝐶 =  
𝑚𝑚𝐹𝐹𝐶𝐶

∏ (1 + 𝑎𝑎𝑖𝑖)
𝐹𝐹𝐶𝐶
𝑖𝑖=𝑏𝐶𝐶

+ … +
𝑚𝑚𝑎𝑎𝑦𝑦+59

∏ (1 + 𝑎𝑎𝑚𝑚)
𝑎𝑎𝑦𝑦+59
𝑚𝑚=𝐶𝐶𝑦𝑦

𝑃𝑃𝑃𝑃𝐶𝐶𝑏𝐶𝐶 =  
𝐶𝐶𝑏𝐶𝐶

∏ (1 + 𝑎𝑎𝑖𝑖)
𝑏𝐶𝐶
𝑖𝑖=𝑏𝐶𝐶

+  … +
𝐶𝐶𝑏𝐶𝐶+𝑎𝑎𝑦𝑦+59

∏ (1 + 𝑎𝑎𝑚𝑚)
𝑏𝐶𝐶+𝑎𝑎𝑦𝑦+59
𝑚𝑚=𝐶𝐶𝑦𝑦

𝑎𝑎𝑚𝑚

  Noise (12)

  Local Air Quality (13)

  Greenhouse Gases (14)

  Journey Quality (15)

  Physical Activity (16)

  Accidents (17)

  Economic Efficiency: Consumer Users (Commuting) (1a)

  Economic Efficiency: Consumer Users (Other) (1b)

  Economic Efficiency: Business Users and Providers (5)

  Wider Public Finances (Indirect Taxation Revenues)
- (11) - sign changed from PA 
table, as PA table represents 
costs, not benefits

  Present Value of Benefits (see notes) (PVB)
(PVB) = (12) + (13) + (14) + 
(15) + (16) + (17) + (1a) + (1b) 
+ (5) - (11)

  Broad Transport Budget (10)

  Present Value of Costs (see notes)  (PVC) (PVC) = (10)

  OVERALL IMPACTS

  Net Present Value  (NPV)   NPV=PVB-PVC

  Benefit to Cost Ratio (BCR)   BCR=PVB/PVC

Note :  This table includes costs and benefits w hich are regularly or occasionally presented in monetised form in 
transport appraisals, together w ith some w here monetisation is in prospect. There may also be other signif icant costs 
and benefits, some of w hich cannot be presented in monetised form.  Where this is the case, the analysis presented 
above does NOT provide a good measure of value for money and should not be used as the sole basis for decisions.  
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result. Benefit factors for CBA, which would be listed in AMCB table (Table A-10), are noise, 

local air quality, greenhouse gases, journey quality, physical activity, accidents, economic 

efficiency and wider public finances.  

Economic efficiency and wider public finances 

“TAG unit A1.3 user and provider impacts” in WebTAG classifies the benefits about economic 

efficiency into values of travel time savings (VTTS), vehicle operating costs (VOC), reliability, 

impacts on transport providers and impacts on indirect tax revenue. In particular, the impacts by 

VTTS and VOC are described in detail because they would occupy a great part of the whole 

benefit. Both impacts are recorded in the TEE table and they are also recorded in the AMCB and 

AST table. At the same time, user charge and costs during construction and maintenance would be 

considered. These four impacts are divided by beneficiaries, which are non-business users (for 

commuting and other) and business users. In addition, impacts on private sector provider and other 

business would be predicted. Lastly, the change in indirect taxation revenue of the government by 

fuel costs, fare and charges and non-fuel operating costs would be reflected in the PA table and be 

recorded in the AMCB and AST table.  

Another essential step for appraising these impacts is the valuation of the benefits. “TAG unit A1.3 

user and provider impacts” in WebTAG suggests the valuation technique for VTTS and VOC of 

the economic efficiency benefits as mentioned above. Table A-11 shows the methodology of 

converting the impacts of VTTS and VOC to monetary values. The valuation of VTTS would be 

suggested by willingness to pay (WTP) and cost saving approach (CSA), which are classified into 

two main purposes of business and non-business. In addition, the valuation of VOC would be based 

on the statistical analysis dependent on the average speed about each vehicle type. The unit of 

VTTS is expressed in money (£) per hour and that of VOC is in money (pence) per km.  

Environmental factors 

“TAG UNIT A3 Environmental Impact Appraisal” in WebTAG defines the process appraising the 

impacts quantitatively and qualitatively, which are noise, air pollution and greenhouse gases, 

landscape, townscape, biodiversity, heritage and the water environment (DfT, 2018). It classifies 

them into two main groups, one of which is dependent by the traffic flow data and the other one is 

dependent by environmental changes in the area surrounded by a project. In particular, the three 

impacts, which are noise, air pollution and greenhouse gases, could be emphasised in CBA because 

they can be estimated quantitatively and the monetary valuation technique of them would be 

established well. Table A-12 summarises the core contents about the impacts appraisal including 

quantification and valuation.  

 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/603254/webtag-tag-unit-a1-3-user-and-provider-impacts-march-2017.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/603254/webtag-tag-unit-a1-3-user-and-provider-impacts-march-2017.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/603254/webtag-tag-unit-a1-3-user-and-provider-impacts-march-2017.pdf
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Table A-11 Valuation of VTTS and VOC in UK  

 
Source: Adapted from “TAG unit A1.3 user and provider impacts” in WebTAG (DfT, 2018) 

Guideline or Document Methodology of Valuation Marginal monetary values

Values of 
working time 
per person

ITS Leeds (2013) 'Valuation of Travel Time Savings 
for Business Travellers: Main Report', Prepared 
for the Department for Transport
TAG Unit M4 – Forecasting and Uncertainty
TAG Data Book Table A1.3.1

Businesses excluding professional and freight 
drivers: Willingness-To-Pay (WTP) based on 
stated preference evidence

Professional and freight drivers: Cost Saving 
Approach (CSA)

Continuous function for car and rail employer's 
business only: 

, where U, Xmid, k are suggested parameters and D 
is travel distance(independent variable) 

Values of other workind time by modes such as 
goods vehicle, taxi, underground are suggested 
in TAG Data Book

Values of 
non-working 
time per person

ITS Leeds (2015) and Accent for DfT:  ‘Provision of 
market research for value of travel time savings 
and Reliability: Phase 2 Report’.
TAG Data Book Table A1.3.1

WTP by using national average values (e.g. 
income)

Value of perceived cost (market price, 2010)
Commuting: 9.95 £/hour 
Other: 4.54 £/hour

Fuel operating 
costs

HMT supplementary Green Book guidance
National Atmospheric Emissions Inventory (NAEI)

Fuel consumption function : 
L = (a + b·v + c·v2 + d·v3) / v 
, where v is speed and a,b,c,d are parameters

The parameters for the function are the same 
with those in NAEI

Vehicles proportion, fuel efficiency 
improvement and fuel prices in the future are 
considered

The fuel cost function (same as fuel consumption 
function) is suggested in TAG Data Book:
L = (a + b·v + c·v2 + d·v3) / v 
, where L= fuel costs (pence/km),
v = average speed (km/h), and 
a, b, c, d are parameters by vehicle categories

Non-fuel 
operating costs

EEA Division of DoT (1990-91) ‘Review of Vehicle 
Operating Costs in COBA’
DfT (2001) ‘Transport Economics Note’

Costs are almost constant over the forecast 
period, but slight changes in each year are 
suggested in TAG Data Book

Non-fuel operating costs function
C = a1 + b1/V
where, C is cost (pence/km),  V is speed (km/h), 
and a1, b1 are parameters by vehicle types (b1 is 
only for working vehicles)

Impact

VOC

VTTS

𝑃𝑃𝑇𝑇𝑇𝑇𝑎𝑎 =
𝑈

1 +  𝑎𝑎
𝑥𝑥𝑚𝑖𝑖𝑑−𝐿𝐿

𝑘𝑘

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/603254/webtag-tag-unit-a1-3-user-and-provider-impacts-march-2017.pdf
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Table A-12 Impacts appraisal on noise, air quality and greenhouse gases in UK 

Source:  Adapted from “TAG UNIT A3 Environmental Impact Appraisal” in WebTAG (DfT, 

2018) 

 

A.2.3. CBA limitation or difficulties  

Issues about the selection of benefit and cost factors 

When considering benefits and costs in CBA, the selection of them is a very important phase that 

could depend on the result of CBA. According to who are the main agencies of CBA, the range of 

benefits and costs could be different. Local authorities want to consider the benefits only for their 

Guideline or Document Quantification or Estimation Marginal monetary values

Noise and Vibration (DMRB 11.3.7)
Calculation of Road Traffic Noise (DoT, 1988) 
Environmental noise: Valuing impacts on: 
sleep disturbance, annoyance, hypertension, 
productivity and quiet (Defra, 2014)
TAG Data Book Table A3.1

Noise level prediction considering a 
distance, layout, traffic flow, etc.
Number of noise exposed people prediction 
(average household has 2.3 persons)

Defra’s noise modelling tool (dose-response 
functions) 
Risks: sleep disturbance, amenity, AMI,  
stroke, dementia
Noise threshold for valuation: 45dB to 81dB   

Local Air Quality
PM10 (Particulate 
matter less than 
10μm aerodynamic 
diameter) 
NO2 (Nitrogen 
dioxide)

Local air quality for PM10, NO2

Band division: 50 m, 50-100m, 100-150m, 150-
200m from link centres
Calculation of annual mean PM10, NO2: at 
20m, 70m, 115m, 175m from each link centre
Calculation of the number of properties 
exposed on PM10, NO2

Regional Air 
Pollution
oxides of nitrogen 
(NOx) and carbon 
dioxide (CO2) 

Impact assessment at a national level by 
using simplified traffic model (e.g. COBA and 
TUBA)

The Climate Change Act 2008
“Carbon budgets” every five years
Air Quality (DMRB 11.3.1)
TAG Data Book Tables A1.3.8, A1.3.9, A1.3.10, 
A1.3.11, A3.3, A3.4

Fuel consumption prediction by vehicle 
types and conversion to CO2e emissions
Separation of the traded sector (e.g. 
emission by electric vehicles) to the non-
traded sector (e.g. emissions by petrol, 
diesel consumption)

Valuation for the non-trade sector: MAC 
approach per kg·CO2e tonne published by 
Department for Energy and Climate Change 
(DECC) 
Valuation for the trade sector: reflection in 
the purchase price

Air Quality

Air Quality (DMRB 11.3.1)
Highways Agency’s Interim Advice Note 
(IAN) 170/12
Group on Costs and Benefits (Air Quality)
(IGCB(A))
HMT supplementary Green Book guidance
TAG Data Book Table A3.2

Noise

Greenhouse Gases

Impact

Valuation through damage cost and marginal 
abatement cost (MAC) approach
PM10: damage cost

NO2: damage cost + MAC about emissions 

exceeding  EU NO2 annual limit value

𝐿𝐿𝐴𝐴𝑒𝑒𝑞,16ℎ =  𝐿𝐿𝐴𝐴10,18ℎ − 2𝑑𝑑𝑚𝑚 𝐿𝐿𝐴𝐴𝑒𝑒𝑞,16ℎ
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residents, not ones for adjacent or global area residents (Boardman et al., 2013). Likewise, local 

authorities who are given subsidies by the central government tend to want to consider only their 

own costs that exclude subsidies even if a guideline or manual in the central government seems to 

control the misbehaviour when allocating budgets. There have been also many critical opinions that 

CBA only emphasised on the economic values (Price, 1999). 

In addition, although the current benefit and cost factors in CBA could be said to be defined 

extensively, there are many opposite views that crucial factors should be included in CBA. Those 

that give fewer impacts on human beings do not tend to be considered. Environmental effects could 

be one of the representative examples. From the point of view of politicians, some factors which 

have a negative impact on their voters would sometimes be ignored. There could be CBAs which 

do not include benefit and cost factors because the demonstration about cause-and-effect 

relationships would be obscure and the indicators of factors could not be established easily 

(Boardman et al., 2013). 

Issues about the quantification of benefit and cost factors 

Boardman et al. (2013) stated that the quantification of benefit and cost factors would be very 

difficult; especially in the CBAs of unusual, complex and opinions-divided projects. They also 

asserted that opponents to CBA such as environmentalists should change their perspectives because 

rationality could not be based on emotional or ethical reasons. If benefit and cost factors could be 

identified but could not be quantified, they could not but be excluded in CBA. 

Although those factors passed two phases, which are identification and quantification, there would 

be another important monetization of value left to include benefits and costs in CBA. It is known 

that some agencies deny using CBA because the monetization of environmental and other social 

effects is not clear (Boardman et al., 2013). The value of money for each benefit or cost factor in 

many countries is calculated based on investigation such as statistics or surveys for willingness to 

pay, but is sometimes debatable because life values and environmental effects could not be 

converted to money simply through statistics or surveys. In the case of the environmental benefit, 

monetary values were not established until 1995 (Price, 1999). Nevertheless, it is necessary to 

monetise the identified values in order to include them in current CBAs. It would originate from 

the principle that benefits should match with costs; that is, inputs as a monetary value. 

Issues about inaccuracy of traffic demand forecasts  

Flyvbjerg et al. (2005) pointed out the inaccuracy of traffic demand forecasts by illustrating 210 

transportation projects in 14 countries, which include 183 road and 10 rail projects. Although the 

trip demand for road projects seems to be forecasted more accurately than that of rail projects, over 

half of the road projects had over ±20% error between the actual and forecasted demand. With 
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regard to underestimation of traffic demand forecasts, it could cause unintended traffic congestion 

before the project life period assumed in CBA. However, a bigger problem could be an 

overestimation of traffic demand forecasts because it causes negative recognition about 

transportation investment and public criticism about wrong budget allocation in the general trend 

that welfare budget needs to increase more and more. According to Korean National Assembly 

(2017), it is examined that actual traffic of 23 motorway road projects newly constructed after 2000 

recorded only 60% of the forecasted traffic.   



 

 

  230  

 

A.3. CBA in Korea 

A.3.1. History and significance of CBA in Korean transportation projects 

CBA in National Finance Act (Republic of Korea, 2016b) 

CBA is used for the preliminary feasibility assessment in National Finance Act (2016), which was 

introduced first in 1999. CBA in National Finance Act (2016) is now applied to all projects which 

are invested by national budget and whose total costs are over 50B won (45M $). The projects 

consist of not only ones by the national government but also ones by local governments. In the case 

of the projects by local governments, CBA would be implemented about only the projects that 

satisfy both conditions which are that total cost of the project is over 50B won and that the subsidy 

for it by the national government is over 30B won. According to KDI (2008a), transportation 

projects occupy around 70% of 372 projects from 1999 to 2008, which includes 165 road, 74 

railroad and 23 port projects (Table A-13). The result of CBA in this system is directly connected 

to the budget allocation, it has seemed to be recognised the most important compared to other 

results of CBAs.  

Table A-13 Preliminary feasibility assessment by project types in Korea 

(Unit: case) 

Year Road Railroad Port Culture &  
Tourism 

Water 
Resources Others Total 

1999 11 2 1 3 1 1 19 

2000 11 7 5 2 1 4 30 

2001 20 14 1 5 0 1 41 

2002 9 8 2 2 5 4 30 

2003 11 7 3 5 5 2 33 

2004 24 13 1 2 3 12 55 

2005 11 6 2 1 3 7 30 

2006 27 11 3 6 1 4 52 

2007 30 4 1 1 1 8 45 

2008 1 2 4 3 2 15 37 

        Source : KDI (2008a) 

Note: Others could include many projects such as welfare, R&D, IT  
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CBA in National Transport System Efficiency Act (Republic of Korea, 2017) 

National Transport System Efficiency Act (2017) is prescribing using CBA as a mandatory 

requirement of transportation agencies and planners, which is called “appraisal of investment about 

the development of public transportation infrastructure”. Korean Ministry of Land, Infrastructure 

and Transport (MLTM) stipulated the act first in 1999, but it was not mandatory at that time. After 

2013, it has been mandatory about the projects whose total costs are over 30B won (27M $) 

implemented by public agencies or public-private partnership. 

CBA in Construction Technology Promotion Act (Republic of Korea, 2016a)  

Construction Technology Promotion Act, which was called “Construction Technology 

Management Act” until 2014, seems to introduce CBA as a form of feasibility investigation in 

2000. The act prescribes procedures of construction projects, so CBA seemed to be recognised as 

one of those procedures. The projects which are dependent on this act are those which total cost is 

over 50B won (45M $) same as those in CBA for preliminary feasibility studies in National 

Finance Act (2016). Although the CBA was stipulated to be implemented several years before 

major budget allocations, it did not play an important role in Korea because it could not affect 

budget allocations in actual cases. Therefore, CBA by the agencies of projects in the act would 

have lost its prestige increasingly because they intend to overestimate the benefits of projects and 

to enhance the feasibilities of projects.  

Ex-post CBA in Construction Technology Promotion Act (Republic of Korea, 2016a) 

The abovementioned CBAs are Ex-ante feasibility analyses, but there is Ex-post CBA in Korea. 

Construction Technology Promotion Act also prescribes Ex-post CBA, as well as Ex-ante CBA. 

All agencies that completed projects whose total costs are over 30B won (27M $) should 

implement post evaluation as a form of Ex-post CBA within 5 years after completion of each 

project. The post evaluation includes the comparison between Ex-ante CBA and Ex-post CBA. 

However, Ex-post CBA would not be concrete because it does not include evaluation of benefits 

which are analysed in the Ex-ante CBA other than traffic demand forecast, even if it compares total 

costs and examines the advocacy of residents and the satisfaction level of users such as the changes 

of population, employment, Gross Regional Domestic Product (GRDP) and land price.  

 

A.3.2. The procedure of Korean CBA 

The feasibility analysis in Korea is the system that examines the justification of large projects and 

has the purpose of enhancing the governmental finance efficiency through the careful launch of 

new large-scale projects by mainly using CBA. The guideline for feasibility analysis has the 
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contents that consist of an introduction, the fundamental data analysis, cost forecast, traffic demand 

forecast, benefit calculation, economic analysis, financial analysis including public-private 

partnership, policy analysis and overall estimation (KDI, 2008b).  

Fundamental data analysis 

It has the important process such as reviewing the relation with a higher ranked plan and setting the 

alternatives. The alternatives include routes, the scale of the project and construction plan, as well 

as diverse scenarios determined by nearby development plans (KDI, 2008b).  

Prediction of the cost of road projects 

Planners should consider detailed cost or the average cost of the construction. It is mainly based on 

the past data of actual cases and it is predicted proportional to the width of lanes in the case of other 

road types. It can be predicted after reflecting the uniqueness of the project if reasonable data 

would be suggested (KDI, 2008b). The cost of projects could be predicted more accurately than the 

benefit because it is based on the past accumulated data of construction projects and it does not 

seem to be important because it would be finally determined by passing several stages such as bids 

as a principle of competition, which mostly resulted in the cost reduction. 

Economic impact analysis 

All benefits and costs should be discounted to the present value by using discount rate in the 

process of economic analysis because they happen at different periods. The total period of analysis 

is normally 30 years, and the Benefit-Cost (BC) ratio, Net Present Value (NPV) and Internal Rate 

of Return (IRR) are derived (KDI, 2008b).  

Financial analysis  

This stage includes public-private partnership, mainly in the case which has over 1 of BC ratio. 

Although the result of financial analysis does not meet the profit rate which private sectors require, 

the financial feasibility would be sometimes attained through the public budget support (KDI, 

2008b).  

Overall estimation 

The overall estimation is completed after adding economic analysis to policy analysis, which is 

composed of the balanced development between regions, the policy consistency and drive, the risk 

factors of a project and other unique factors of a project. They are quantified by using the method 

of Analytic Hierarchy Process (AHP), where decision makers participate (KDI, 2008b).  
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A.3.3. The benefit factors in Korean CBA 

In this section, the benefit factors, which are used in CBA for Korean Preliminary Feasibility 

Analysis by National Finance Act, will be examined. Korean preliminary feasibility analysis seems 

to be recognised as the most important method of all CBAs in Korea because it has an essential role 

in budget allocation. The benefit factors in Korean CBA could be classified into two groups: direct 

and indirect. In road project analysis, the direct benefits include vehicle operating cost savings, 

travel time savings, accident cost savings, increased pleasure, improvements in punctuality, 

improvements in reliability. The first three benefit factors are quantified and reflected in CBA, but 

others are hardly being considered in CBA because they could not be quantified. The indirect 

benefits include environmental impacts (pollution and noise) cost savings, regional development, 

expansion of markets, regeneration in regional industrial structures. The only first benefit factor is 

quantified and reflected in CBA, but others are not. 

Vehicle Operating Costs (VOC) 

VOC consists of fuel consumption, engine oil, tyres abrasion, maintenance and depreciation in 

Korean CBA. Fuel consumption, which is the largest percentage of VOC, is calculated related to 

vehicles’ velocities. The methodology for calculating the current fuel consumption was based on 

the research “Establishment of road projects investment analysis method” by Korea Research 

Institute for Human Settlements (Krihs) in 1999. Fuel consumption changes dependant on vehicle 

types and speeds are examined by selecting representative vehicle types and testing to drive. The 

price was converted into that at the time of 2007. The distinguishing thing is that the fuel  

Figure A-4 Overall vehicle operating costs (KRW/km) in Korea 

                                                                                                              (Price in 2007) 

Source: KDI (2008b) 

Passenger cars
Mini buses
Big buses
Light goods trucks
Medium goods trucks
Large goods trucks

Vehicle’s speed (km/h)
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 consumption of passenger cars is only based on petrol in Korea. Other costs other than fuel 

consumption are based on the research by Weille (1966) and Krihs (1999). Each cost is monetised 

per a distance (km) and suggested as tables by vehicles’ speed, not equations. VOC has the lowest 

value at the speed of 90km/h for passenger cars, 120km/h for minibuses, 70km/h for big buses, 

60km/h for light and medium goods trucks, and 50km/h for heavy goods trucks (Figure A-4). 

Travel time savings  

Travel time savings in Korean CBA are directly related to the purposes passing roads affected by a 

project. In general, most countries divide the value of time into many categories such as working 

and non-working purposes. When calculating the working value of time in Korean CBA, wages 

and other relevant expenses that are paid for each group of employees from the viewpoint of 

employers could be considered, so the value of time is usually higher than the level of wage in each 

group. In the case of the non-working value of time, the value in Korean CBA was examined by the 

method of Stated Preference (SP). The ratio of non-working value to working value is suggested by 

32.7% for car passengers and 16.3%24 for bus passengers (KDI, 2008b). Another element for 

predicting travel time savings is the ratio of working travelling volume to non-working travelling 

volume in the trip assignment. The ratio was suggested differently dependant on analysed regions 

from the fifth edition of guideline of Korean CBA (KDI, 2008b). The regions are classified into six 

areas and the guideline suggests seven ratios including the travelling volume through the entire area 

(Table A-14).  

Table A-14 Average value of time per vehicle (entire area) in Korea 

(Price in 2007) 

 

Source: KDI (2008b) 

Traffic accidents reduction benefit 

Korea has had more vehicles as the economy has grown steadily in recent decades. The traffic 

accidents have increased proportional to the rise of registered vehicles even if the recent statistics 

                                                      
24 The percentage means the ratio of non-working value in bus passengers to working value in car 
passengers. 

Working Non-working Working Non-working Working Non-working
Person 0.44 1.11 2.35 7.63 1.00 0.00

VOT (KRW/person) 18,626 6,091
10,228 (driver)

18,626 (passenger)
3,036 16,571  - 

VOT (KRW/veh·hr) 8,245 6,744 35,401 23,161 16,571 2,341
Average VOT(KRW/veh) 14,990 58,561 16,571

BusesPassenger cars Goods vehicles
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shows that the number of death persons per vehicle tends to decrease continuously. Therefore, the 

traffic accidents reduction benefit is included naturally in Korean CBA similarly with other 

countries. The guideline states that the accident costs in Korean CBA include costs for medical 

treatment, the loss of production by the victims of accidents, physical and mental damage, and 

administrative fees by the police and insurance company, as well as so-called cost for mitigating 

PGS (Pain, Grief and Suffering). The accident rates due to road types, which are motorway, 

national highway, provincial road, metropolitan road and county road above suggested, are 

considered by “The Statistics of Road Accidents” of the Korean Police Agency (2008) and the cost 

of each accident is calculated by “The Analysis and Assessment of Road Traffic Accidents” of the 

Korean Road Transportation Safety Corporation. For example, the cost for each death by a traffic 

accident is suggested as 527.4 million KRW, the cost for each injury is as 21.6 million KRW, the 

cost for each number of accidents is as 41.6 million KRW.  

Environmental costs reduction benefit 

Environmental costs by transportation projects in Korean CBA are defined as atmospheric 

pollution and damages by noises. Other impacts such as ecological damage are considered in the 

process of Environmental Impact Assessment (EIA) by environmental agencies. Atmospheric 

pollutants arise from vehicles’ emissions, which include CO, CO2, HC, NOX and PM, and noises 

are mainly caused by vehicles. They are dependent on elements such as a vehicle’s types, fuel 

types, speed, and road conditions in Korean CBA. Korean CBA guideline stipulates 

abovementioned five pollutant emissions per distance (km) with the speed of each vehicle’s type 

and the amount of cost for each pollutant as a table (Table A-15). 

Table A-15. Cost of reducing atmospheric pollutants in Korea 

 
Source: KDI (2008b)  

Pollutant Type CO HC NOx PM CO2
Cost (KRW/kg) 7,877 9,155 9,477 30,941 42.4
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A.4. Initial case study 

A.4.1. Case selection and Data collection 

Initial case selection: ‘Songsan (E) Tunnel’ section in “Seoul-Chuncheon Motorway” 

The motorway route selected for an initial study is Seoul-Chuncheon Motorway (Figure A-5), 

which was constructed in 2009 by a public-private partnership. Seoul is the capital city of Korea 

and Chuncheon is one of the main cities in Gangwon Province, which is the eastern area of Korea. 

As Gangwon Province has many attractive places for tourists, a lot of traffic passing through this 

route aims for the tourism and congestion would tend to happen on weekends or holidays. The total 

length of the motorway is 61.4km and there are nine interchanges including the starting and ending 

points. This road has 41 tunnels and 103 bridges because it penetrates mountainous terrain. The 

Average Daily Traffic (ADT) is 40,046 veh/day as of 2016, which is the traffic volume 

corresponding to four lanes by 12-hour observation. The enforcement speed limit of this route is 

100kph. The number of lanes in this motorway is eight from the starting point to 1.9km, six from 

1.9km to 14.9km, and four from 14.9km to the ending point (61.4km). The recent heavy vehicle 

percentage of this motorway is 18.1% measured from Road Traffic Survey (2016). 

Figure A-5 Initial case location 

 
Source: Google map 

Data collection from inductive loop detectors 

The data for the initial case study was collected from inductive loop detectors (ILDs) in Korean 

ITS. The six detectors collected traffic information about all vehicles passing through 1.84km 

section of this case. Two of the detectors are located before the tunnel entrance respectively with 

840m and 310m, and others of them are located in the tunnel with the approximate interval of 
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300m. According to Korean Express Corporation (KEC), the ILDs are installed in all sections of 

the motorway with the average distance of 1.8km between devices and the minimum distance is 

2km. The distance decreases to 1km for the section of LOS D or E and to 0.5km for that of LOS F. 

Another notable thing is that ILDs are installed with at least 400m interval in recently constructed 

tunnel sections. Korean ITS produces the traffic data every 5 minute and store it to the central 

server for 5 years. Therefore, a recently constructed tunnel section makes the precise analysis 

possible because ILDs with closer intervals enable to record the spatial change in the traffic data 

more precisely. In addition, in the initial data analysis travel time can be calculated from the 

measured vehicle’s speed at each detector and the distance between detectors.  

Figure A-6. Design Map of the initial case 

 

The traffic information mainly produced by an inductive loop includes time, location (ID), traffic 

volume, average speed and occupancy rate. As mentioned above, five-minute traffic data is stored 

in ITS main servers for five years without the consideration of vehicle’s types even though the 

traffic data is measured every minute. The occupancy rate is made by recognising existing time on 

a loop, but the accreditation for the occupancy is not established in Korea and the accuracy would 

not be guaranteed. Therefore, it was not used in this study. The data with zero traffic flow for five 
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minutes and the data with errors during measurement, which is stored as “-1” in the data set, are 

excluded in this analysis. 

5-min average speed, which could be the most important data in the initial study, is stored through 

three steps (Figure A-7). Firstly, the speed measured with traffic volume per each lane is 

transformed into the arithmetical traffic-weighted average speed for 30 seconds. In this process, the 

average speed for the previous 30 seconds is weighted by 30% for calculating the current 30-

second average speed. In other words, the current 30-second average speed is reflected only by 

70% in calculating the 30-second average speed because the drastic change of speed could give 

confusion to drivers according to KEC. Secondly, 1-minute average speed is simply stored by 

calculating the average of two series of 30-second average speed without the consideration of 

traffic volume. Lastly, 5-minute speed is calculated from the arithmetical average of 1-min average 

speed weighted by 1-minute traffic volume.  

Figure A-7 Example of speed calculation from ILD 

 

Travel time estimation depending traffic flow 

Travel time is calculated by dividing the distance between one ILD and another detector into the 5-

min average speed. If the variation of speeds in the section between detectors were measured, the 
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travel time could be estimated more accurately. However, speed and traffic flow respectively in this 

study was regarded as a constant value between two detectors because this study is using the values 

on each detector location and does not recognise the variation between them. Even though travel 

time could be calculated more accurately by the car-following model (Wilson, 2008; Wilson and 

Ward, 2011), the model would not be applied to this study. It is because their study was based on 

the 1-min average speed with the average distance of 100m in M42 motorway, UK, but the data 

used in this study was stored every five minutes and the minimum distance between detectors is 

300m. Besides, they suggested that the model is suitable for platoon flow, but this study aims to 

find unstable traffic pattern in unusual geometry. Therefore, this study assumes that traffic speed is 

constant between detectors. 

In the process of calculating travel time in the selected sections of this study, the scope of the area 

that each detector could influence was defined as a half of distance between the previous detector 

and the next detector. For the example of Figure A-8, the total travel time of all vehicles passing 

before and after Detector 1 was calculated by dividing the influenced distance (D1 = d0 + d1) into 

the measured average speed (S1) and multiplying the passing traffic flow (𝑃𝑃1) in Equation A-1. 

Then, all the series of total travel time on each location should be added for the selected cases 

(Equation A-3). It is necessary that the total travel time should be divided by the average of the 

series of traffic flow passing all the detectors in each selected case because VDFs are focusing on 

each vehicle’s travel time (Equation A-4) and it could be generalised like Equation A-5. 

Figure A-8 Calculation of travel time in a section 

 

𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎 𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 1 =  
𝑃𝑃1𝐷𝐷1
𝑎𝑎1

 Equation A-1 

𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎 𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 2 =  
𝑃𝑃2𝐷𝐷2
𝑎𝑎2

 Equation A-2 

𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎 𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 1, 2 =  
𝑃𝑃1𝐷𝐷1
𝑎𝑎1

+  
𝑃𝑃2𝐷𝐷2
𝑎𝑎2

 Equation A-3 

𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎 𝑑𝑑1 + 𝑑𝑑2 = �
𝑃𝑃1𝑑𝑑1
𝑎𝑎1

+  
𝑃𝑃2𝑑𝑑2
𝑎𝑎2

�
𝑃𝑃1 + 𝑃𝑃2

2
�  Equation A-4 

Detector 1 Detector 2 Detector 3

S1 S2

Detector 0 Detector 4

D1 D2 D3

d0 d0 d1 d1 d2 d2 d3 d3
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where 𝑃𝑃1 and  𝑃𝑃2 are the traffic flow on detector 1 and 2; 𝐷𝐷1 and 𝐷𝐷2 are the influenced distance on 

detector 1 and 2; and 𝑎𝑎1 and 𝑎𝑎2 are the average speed on detector 1, 2.  

𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎 𝑡𝑡ℎ𝑎𝑎 𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 = �
𝑃𝑃𝑖𝑖𝑑𝑑𝑖𝑖
𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∑ 𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑎𝑎

�  Equation A-5 

Since the collected data from Korean ITS was classified by date and location, the travel time on 

each location was calculated from the average speed and then the travel time passing the section 

was derived by adding up the series of travel time of all locations. Table A-16 shows the range of 

each detector’s influenced distance and locational travel time was calculated through dividing the 

influenced distance by the measured average speed on each detector. Even though the distance 

between the first detector and the last detector is 1.84km, the distance with consideration of the 

influenced distance by detectors becomes 2.88km.  

Table A-16 Influenced distance by each detector in the initial case 

 

 

A.4.2. Measurement of Traffic data in the intial case study  

Plot observation for 45 days 

Prior to the long period analysis, the data from 5th of October to 18th of November in 2016 (45 

days) was examined initially in this study to find the change of traffic characteristics in a tunnel 

section because 1-year data analysis tends to show more aggregated plots in graphs. Traffic 

observation in autumn can be reliable and little affected by the external environment such as 

weather condition. The number of data rows on each location is 12,787 except for measurement 

errors from the total measurable time intervals of 12,960 (= 45 days * 24 hours * 12 intervals 

(60min/5min)). The scatter plots between the traffic volume and speed on six locations for 45 days 

were drawn. The plots shows the pattern of the traditional traffic theory models (Figure A-9). They 

Distance to previous detector (km) Distance to the next detector (km) Influenced distance (km)
ID No. 29 0.38 0.53 0.455
ID No. 30 0.53 0.34 0.435
ID No. 31 0.34 0.3 0.320
ID No. 32 0.3 0.3 0.300
ID No. 33 0.3 0.37 0.335
ID No. 34 0.37 1.7 1.035

2.880SUM
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also present the overall change of traffic characteristics in the tunnel section such as the free flow 

speed, maximum traffic volume and breakdown effect more or less. 

Figure A-9 Volume-speed relationship for 45 days in the initial case 

 

Measurement of free-flow speed 

USHCM (2010) defines free-flow speed as “the mean speed of passenger cars under low to 

moderate flow rates that can be accommodated on a uniform roadway under prevailing roadway 

and traffic conditions”. In addition, it also suggests that free-flow speed for a motorway could be 

measured as a mean speed when the traffic volume is below 1,300 passenger cars per hour per lane 

(pcphpl). This means that the mean of speeds corresponding to the traffic below 2,600 passenger 

cars per hour (pcph) for two lanes becomes the free-flow speed. However, it could not be applied to 

this study because the level of traffic volume would already cause the congestion. Instead, Kalaee 

(2010) measured the free-flow speed as the mean of speeds corresponding to each traffic volume 

under 360vph. Similarly, this assumption applied to the initial case study. 
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FFS on each ILD for one year in this study was measured as showed in Table A-17. The free-flow 

speed decreases from 106.0kph at ID No. 29 to 98.6kph at ID No. 34 and the minimum free-flow 

speed is recorded as 95.4kph just after the tunnel entrance (ID No. 31). This result would be 

understandable because most vehicles tend to decelerate as they approach the tunnel entrance. The 

free-flow speed increases in the middle of the tunnel and stayed steadily towards the end of the 

tunnel. This behaviour seems to result from vehicle’s movements to adapt the tunnel environment. 

Table A-17. Observation of free-flow speed on ILDs in the initial case 

 

Measurement of road capacity 

The actual road capacity for the initial case was measured from the collected dataset. MLTM 

(2013) and USHCM (2010) theoretically define that the road capacity is the maximum traffic 

volume of passenger cars per hour from 15-minute observation in a representative section. In 

addition to the maximum traffic volume, 10th largest traffic volume and the average of top 1% 

values were also extracted from the dataset because the maximum traffic flow can be accidental 

measurement.  

In order to compare the derived values with the theoretical road capacity, it is necessary to get the 

information of heavy vehicle percentage. Road Traffic Survey (2016), which is annually conducted 

from the sample data in one autumn day, suggested Seoul-Chuncheon Motorway’s heavy vehicle 

percentage of 18.1%. According to MLTM (2013), the theoretical road capacity of this study case, 

whose characteristics for calculating the road capacity are 120kph design speed, 2 lanes to each 

direction, 3.5m lane width, 1.0m left clearance, 2.0m right clearance, 18.1% heavy vehicle 

percentage and hilly terrain, is calculated as 3,310vph.  

The highest maximum traffic volume based on 15-min observation for one year in the initial 

section would be the closest definition with the road capacity of USHCM (2000). The maximum 

traffic volume in the selected case is 2,948vph at ID No. 30 (Table A-17). All of the maximum, the 

10th largest traffic volume and the average of top 1% values tend to drop at ID No. 31 near the 

entrance of the tunnel (Table A-18). Compared with the value at ID No. 30, the value of each 

location becomes lower by 2.6%-6.8%. 

ILD ID No. Free-flow Speed (kph) Distance from the tunnel
29 106.0 840m (before)
30 103.1 310m (before)
31 95.4 30m (after)
32 98.5 330m (after)
33 99.2 630m (after)
34 98.6 1,000m (after)
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Table A-18 Measurement of road capacity on ILD locations in the initial case study 

 
Note 1. Shadow area indicates locations inside the tunnel. 

2. Underline values are the percentage changes with the value of No. 30 

Measurement of breakdown traffic volume 

A breakdown, as well as free-flow speed and road capacity, is an important consideration in the 

initial case study because traffic flow occurring breakdown can replace road capacity (Dong and 

Mahmassani, 2009; Kalaee, 2010). Brilon et al. (2005) defined that a breakdown happens with the 

significant speed drop of most vehicles that causes from smooth to congested traffic flow and they 

mentioned that it could differ dependent on each driving environment. In addition, they described 

the motorway breakdown dynamics as a transition during breakdown and recovery in congested 

and uncongested situations (Figure A-10). 

Figure A-10 Breakdown Dynamics during breakdown and recovery (German motorway) 

Source: Brilon et al. (2005) 

ID No. Max. traffic flow (TF) 10th largest TF Avg. of top 1%
Theoretical 

road capacity
29 2,872                                  2,772                     2,542                     

-2.6% -3.5% -3.5%

30 2,948                                  2,872                     2,635                     

31 2,836                                  2,768                     2,541                     

-3.8% -3.6% -3.6%

32 2,872                                  2,748                     2,534                     

-2.6% -4.3% -3.8%

33 2,748                                  2,704                     2,501                     

-6.8% -5.8% -5.1%

34 2,820                                  2,748                     2,536                     

-4.3% -4.3% -3.7%

3,310
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Recalling the scatter plots for 45 days, the breakdown effect in the tunnel can be explained in 

Figure A-11. Every location seems to have the breakdown effect even though the frequency and the 

difference would be varied with each other. As can be seen from Figure A-11, the gaps of data 

points on each location between an uncongested and a congested situation are different; especially 

the gap inside the tunnel (e.g. ID No. 34) becomes smaller compared with that outside the tunnel 

(ID No. 30). Likewise, as the data is measured at the end of the tunnel (ID No. 34), the breakdown 

effect seems to be more unclear. On the other hand, the speed plots in congestion, which could be 

calculated in Figure A-11 as an approximate average from 20 to 40kph, are rarely dense at ID No. 

34 (at the end of the tunnel) and it could be related with this breakdown effect and the virtual 

bottleneck point.  

Figure A-11 Breakdown effect for 45 days in the initial case 

 

In order to confirm breakdown effects in detail, time-series data that shows fluid, congested and 

discharging process was extracted (Figure A-12). The breakdown happening at each detector was 

investigated on Saturday in 15th of October 2016. The speed drop at a breakdown point was 

observed after the fluent state, and the traffic volume around this point peaked at the maximum on 
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the day. The congestion for over six hours at this location was also observed with the speed of 

around 20kph after a breakdown around 8.30am at ID No. 30. Although the overall congestion 

process at ID No. 32 and 33 would be similar with those at ID No. 30 and 31, the breakdown 

effects at those points were observed more unclear. In other words, the difference of speed between 

the fluid and congested state at ID No. 32 and 33 was smaller. Another important traffic 

characteristic is that as vehicles are moving away from the tunnel entrance, the overall average 

speed in a congested state increases. The overall speed in a congested state is higher with over 

40kph at ID No. 33 than that with over 20kph at ID No. 30. These overall characteristics at 

breakdown points could also explain the existence of the virtual bottleneck in the tunnel like the 

measurement of road capacity.  

Figure A-12 Congestion process from ILD No.30 to No.33 in the initial case study 
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Breakdown points could be defined differently dependent on the criteria such as countries or road 

types, but the common traffic characteristics at the point of breakdown would be three (Brilon et 

al., 2005; Dong and Mahmassani, 2009; Kalaee, 2010). One is a considerable speed drop, another 

is a lower threshold speed compared with a free-flow speed, and the other is the duration below the 

threshold speed. However, these three characteristics do not seem to be suggested as similar values 

in those studies. Brilon et al. (2005) suggested that the threshold speed at the breakdown point 

would be 70kph in German motorway conditions and other considerations were implemented by 

using “Product Limit Method”. On the other hand, as mentioned in Section 2.4.2, Kalaee (2010) 

adopted the threshold speed of 55mph (88kph) and the speed drop of 10mph between consecutive 

time intervals in a US highway, which has free flow speed of 65mph.  

In order to find the traffic volume at breakdown points in this case, 5-min average speed data for 

one year was examined because the breakdown point analysis should focus more on instantaneous 

traffic changes than on aggregated ones such as 15-min average speed change. The values from 5-

min observation are necessary to be aggregated into 15-min traffic flow through the sum of three 

nearby values including breakdown points in order to compare with the maximum traffic flow 

measured above. The combinations of the low threshold speed of 70kph and 80kph; the 

considerable speed drop of 10kph and 16kph; and the duration time of 15 minutes were applied for 

this study based on the previous studies (Table A-19). To avoid finding too small traffic volume, 

the lowest traffic volume at a breakdown was limited to 1,500vph.  

Table A-19 Various criteria for finding breakdown points 

 

Table A-20 to Table A-23 show different traffic flow at breakdown points according to the given 

conditions (Table A-19). The key findings from the different conditions can be summarised as 

follows. Firstly, traffic flow at breakdown points is not always same as the maximum traffic flow. 

Secondly, if threshold speed or speed drop is set as a comparatively high value (e.g. 80kph > 

70kph, 16kph > 10kph), traffic flow at breakdown points cannot be captured well and as such the 

number of breakdown points becomes smaller than other conditions. Lastly, maximum traffic flow 

and 10th largest traffic flow at breakdown points are the largest at ID No.30 as well as the number 

of breakdown points in most conditions except for condition 4 (Table A-23), which has lower 

conditions of threshold speed and speed drop (70kph and 10kph). This finding is in line with the 

measurement of maximum traffic flow. Although the conditions for finding breakdown points are 

Condition 1 2 3 4

Threshold low speed 80kph 70kph 80kph 70kph

Speed drop 16kph 16kph 10kph 10kph
Duration 15minutes 15minutes 15minutes 15minutes



  

 

247 

  

stochastic like the definition of road capacity, it can be concluded that a tunnel entrance plays a role 

on a virtual bottleneck. 

Table A-20 Finding traffic flow at breakdown points with Condition 1 

 

Table A-21 Finding traffic flow at breakdown points with Condition 2 

 

Table A-22 Finding traffic flow at breakdown points with Condition 3 

 

Table A-23 Finding traffic flow at breakdown points with Condition 4 

  

ID No.
Max. traffic flow 

(TF, vph)
Max. TF at BPs

10th largest TF 
at BPs

The number 
of BPs

29 2,872                           2,484                 1,960                 14
30 2,948                           2,880                 2,704                 96
31 2,836                           2,724                 2,332                 31
32 2,872                           2,548                 2,292                 36
33 2,748                           2,428                 2,132                 45
34 2,820                           2,308                 1,852                 21

ID No.
Max. traffic flow 

(TF, vph)
Max. TF at BPs

10th largest TF 
at BPs

The number 
of BPs

29 2,872                           2,720                 2,548                 40
30 2,948                           2,948                 2,704                 104
31 2,836                           2,836                 2,632                 84
32 2,872                           2,732                 2,536                 82
33 2,748                           2,620                 2,372                 59
34 2,820                           2,612                 2,296                 25

ID No.
Max. traffic flow 

(TF, vph)
Max. TF at BPs

10th largest TF 
at BPs

The number 
of BPs

29 2,872                           2,720                 2,364                 33
30 2,948                           2,880                 2,704                 106
31 2,836                           2,724                 2,500                 69
32 2,872                           2,572                 2,384                 94
33 2,748                           2,492                 2,304                 117
34 2,820                           2,412                 2,296                 64

ID No.
Max. traffic flow 

(TF, vph)
Max. TF at BPs

10th largest TF 
at BPs

The number 
of BPs

29 2,872                           2,720                 2,588                 52
30 2,948                           2,948                 2,704                 108
31 2,836                           2,836                 2,644                 105
32 2,872                           2,732                 2,568                 109
33 2,748                           2,620                 2,520                 105
34 2,820                           2,688                 2,436                 57
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A.5. Statistical results 

A.5.1. FE modelling  

(1) FE Model including geometric variables with the entity of link  
#Model including geometric features with link dummies  
 
MODEL_Geometry_LinkDummy<-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 + mydf$TR + my
df$RISE + mydf$FALL + mydf$BEND + as.factor(mydf$Link)) 
summary(MODEL_Geometry_LinkDummy) 
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(2) FE Model with the entities of link and date 
#Model with date and link dummies 
MODEL1_3<-lm(mydf$Inv_SPD ~ mydf$TF + mydf$TF2 +  
as.factor(mydf$Date) + as.factor(mydf$Link)) 
summary(MODEL1_3) 

##                                
## Call: 
## lm(formula = mydf$Inv_SPD ~ mydf$TF + mydf$TF2 +  
as.factor(mydf$Date) + as.factor(mydf$Link)) 
##  
## Residuals: 

##      Min       1Q   Median       3Q      Max  
## -11.4554  -1.6166  -0.2194   1.2662  24.0820  

##  
## Coefficients: 
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A.5.2. OLS estimation on one-day dataset 

(1) OLS estimation between DV and TF  
# OLS model without geometric variables 
FMODEL1 <- lm(Inv_SPD ~ TF + TF2, data = Data_1day) 
summary(FMODEL1) 
##  
 
## Call: 
## lm(formula = Inv_SPD ~ TF + TF2, data = Data_1day) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -7.2108 -2.4999 -0.6767  2.1666 21.2738  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 3.154e+01  2.859e-01 110.289  < 2e-16 *** 
## TF          1.563e-03  4.443e-04   3.517 0.000441 *** 
## TF2         8.946e-07  1.550e-07   5.773 8.47e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.602 on 3479 degrees of freedom 
## Multiple R-squared:  0.3371, Adjusted R-squared:  0.3367  
## F-statistic: 884.7 on 2 and 3479 DF,  p-value: < 2.2e-16 

(2) OLS estimation with TF and geometric independent variables  
# OLS model with all geometric variables 
FMODEL2 <-lm(Inv_SPD ~ TFc + TFc2 + TR + RISE + FALL + BEND, data = Data_1da
y) 
summary(FMODEL2) 
##  
## Call: 
## lm(formula = Inv_SPD ~ TFc + TFc2 + TR + RISE + FALL + BEND,  
##     data = Data_1day) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -7.9302 -2.2311 -0.5076  1.8017 20.0884  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  2.914e+01  5.178e-01  56.269  < 2e-16 *** 
## TF           1.020e-03  4.167e-04   2.448   0.0144 *** 
## TF2          1.114e-06  1.453e-07   7.663 2.33e-14 *** 
## TR           4.555e-03  4.631e-04   9.836  < 2e-16 *** 
## RISE         8.112e-02  1.241e-02   6.539 7.10e-11 *** 
## FALL         1.256e-01  1.425e-02   8.813  < 2e-16 *** 
## BEND        -7.181e-03  1.104e-02  -0.651    0.515     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.362 on 3475 degrees of freedom 
## Multiple R-squared:  0.4231, Adjusted R-squared:  0.4222  
## F-statistic: 424.8 on 6 and 3475 DF,  p-value: < 2.2e-16 
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A.5.3. Box-Cox test for selecting log-linear versus linear-linear form 

# Box-Cox test for log transformation 
b <- boxcox(Inv_SPD ~ TF + TF2 + TR + RISE+ FALL  , data = Data_1day) 
qqPlot(rstandard(FMODEL3)) 
qqPlot(rstandard(FMODEL3-1)) 

 

(1) q-q plot observation of the linear-linear model 

  

(2) q-q plot observation of the log-linear model 
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A.5.4. Coding for 10-fold cross validation  

#Definition of road capacity 
Data_1day$capacity <-2404 
 
# 10 fold cross-validation 
'%ni%' <- Negate('%in%') 
 
fold_num <- 10 
Tunnel <- levels(Data_1day$name) 
Tunnel_len <- length(Tunnel) 
fold_len <- floor(Tunnel_len/fold_num) 
Tunnel_remain <- Tunnel 
 
Data_1day$fold <- 0 
 
for(i in 1:(fold_num-1)){ 
 sam <- sample(Tunnel_remain, fold_len) 
 Data_1day[Data_1day$name %in% sam,]$fold <- i 
 Tunnel_remain <- Tunnel_remain[Tunnel_remain %ni% sam] 
} 
 
Data_1day[Data_1day$name %in% Tunnel_remain,]$fold <- 10 
Tunnel_remain 
 
RMSE_k_fold_mat <- matrix(0,ncol=5,nrow=fold_num) 
MAPE_k_fold_mat <- matrix(0,ncol=5,nrow=fold_num) 
 
for(i in 1:fold_num){ 
 Trainset <- Data_1day[Data_1day$fold %ni% i,] 
 Testset <- Data_1day[Data_1day$fold %in% i,] 
 Test.true <- Testset$Inv_SPD 
 
 ### OLS Estimation ### 
 FMODEL3-1 <- lm(log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL, data
 = Trainset) 
 
 ### GLS Estimation by dealing with heteroscedasticity### 
 FMODEL3-1-3 <- gls(log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL, w
eights= varIdent(form = ~ 1|Link), data = Trainset, method="ML") 
 
 
 ### GLS Estimation by dealing with both heteroscedasticity and s
erial correlation### 
 FMODEL3-1-17 <- gls(log(Inv_SPD) ~ TF + TF2 + TR + RISE + FALL, 
weights= varIdent(form = ~ 1|Link), correlation=corARMA(form = ~1|Link, p=2,q
=0), data = Trainset, method="ML") 
  
 ### NLS Estimation with geometry ### 
 FBPR3 <- nls(Inv_SPD ~ FFTT*(1+a*(TF/capacity)^b) + c*TR + d*RIS
E + e*FALL, start = list(FFTT=36, a =0.15, b =4, c=0, d=0, e=0), data= Trains
et, trace = TRUE)    
  
 ### NLS Estimation without geometry ### 
 FBPR1 <- nls(Inv_SPD ~ FFTT*(1+a*(TF/capacity)^b), start = list
(FFTT=36, a =0.15, b =4), data= Trainset, trace = TRUE)    
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 OLS.pred  <- exp(predict(FMODEL3-1,Testset)) 
 GLS1.pred <- exp(predict(FMODEL3-1-3,Testset)) 
 GLS2.pred <- exp(predict(FMODEL3-1-17,Testset)) 
 NLS1.pred <- predict(FBPR3,Testset) 
 NLS2.pred <- predict(FBPR1,Testset) 
  
 RMSE_k_fold_mat[i,1] <- RMSE(OLS.pred,Test.true) 
 RMSE_k_fold_mat[i,2] <- RMSE(GLS1.pred,Test.true) 
 RMSE_k_fold_mat[i,3] <- RMSE(GLS2.pred,Test.true) 
 RMSE_k_fold_mat[i,4] <- RMSE(NLS1.pred,Test.true) 
 RMSE_k_fold_mat[i,5] <- RMSE(NLS2.pred,Test.true) 
  
 MAPE_k_fold_mat[i,1] <- MAPE(OLS.pred,Test.true) 
 MAPE_k_fold_mat[i,2] <- MAPE(GLS1.pred,Test.true) 
 MAPE_k_fold_mat[i,3] <- MAPE(GLS2.pred,Test.true) 
 MAPE_k_fold_mat[i,4] <- MAPE(NLS1.pred,Test.true) 
 MAPE_k_fold_mat[i,5] <- MAPE(NLS2.pred,Test.true) 
} 
 
colnames(RMSE_k_fold_mat) <- c("FMODEL3-1","FMODEL3-1-3"," FMODEL3-1-13","
FBPR3","FBPR1") 
colnames(MAPE_k_fold_mat) <- c("FMODEL3-1","FMODEL3-1-3"," FMODEL3-1-13","
FBPR3","FBPR1") 
 
RMSE_k_fold_mat ; MAPE_k_fold_mat 
 
Average_RMSE <- apply(RMSE_k_fold_mat,2,mean) 
Average_MAPE <- apply(MAPE_k_fold_mat,2,mean) 
sd_RMSE <- apply(RMSE_k_fold_mat,2,sd) 
sd_MAPE <- apply(MAPE_k_fold_mat,2,sd) 
 
Average_RMSE 
sd_RMSE 
 
Average_MAPE 
sd_MAPE 
 
write.csv(RMSE_k_fold_mat, file = "RMSE_mat_final2.csv") 
write.csv(MAPE_k_fold_mat, file = "MAPE_mat_final2.csv") 
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A.5.5. Estimated travel time on three links by three models (part of result) 

 

 

Demand
_LINK1

Demand
_LINK2

Demand
_LINK3

TT_FModel
_LINK1

TT_KDI_
LINK1

TT_KOTI
_LINK1

TT_FModel
_LINK2

TT_KDI_
LINK2

TT_KOTI
_LINK2

TT_FModel
_LINK3

TT_KDI_
LINK3

TT_KOTI
_LINK3

1,343     1,855     2,223     34.41 40.80 31.68 36.73 43.68 33.00 38.79 46.38 34.46
1,203     995         2,322     33.88 40.19 31.44 33.17 39.41 31.17 39.41 47.19 34.93

825         1,772     2,226     32.64 38.89 31.01 36.31 43.14 32.74 38.81 46.39 34.47
926         1,609     2,089     32.95 39.19 31.09 35.54 42.17 32.28 38.00 45.33 33.87

1,116     899         1,989     33.57 39.84 31.32 32.86 39.11 31.07 37.44 44.60 33.48
557         2,030     2,138     31.92 38.29 30.85 37.67 44.90 33.64 38.28 45.70 34.08

1,014     1,373     1,463     33.23 39.47 31.19 34.53 40.94 31.74 34.90 41.38 31.93
650         2,200     1,521     32.16 38.47 30.89 38.65 46.19 34.35 35.15 41.69 32.06

1,278     1,917     1,610     34.16 40.51 31.56 37.05 44.09 33.22 35.55 42.17 32.28
825         1,643     1,414     32.64 38.89 31.01 35.70 42.36 32.36 34.70 41.14 31.82

1,221     813         2,264     33.95 40.26 31.47 32.60 38.86 31.00 39.04 46.71 34.65
1,014     1,220     2,907     33.23 39.47 31.19 33.95 40.26 31.47 43.69 52.81 38.53

996         1,438     2,367     33.17 39.41 31.17 34.80 41.26 31.87 39.70 47.57 35.16
818         1,823     2,015     32.62 38.88 31.00 36.56 43.47 32.90 37.58 44.79 33.58
964         1,719     1,827     33.06 39.31 31.13 36.06 42.82 32.58 36.58 43.49 32.91

1,037     1,480     1,909     33.30 39.55 31.21 34.97 41.47 31.96 37.01 44.04 33.19
797         1,005     2,241     32.56 38.82 30.98 33.20 39.44 31.18 38.90 46.52 34.54

1,394     2,164     1,746     34.62 41.04 31.78 38.44 45.90 34.19 36.18 42.98 32.66
1,470     1,524     2,235     34.93 41.42 31.94 35.16 41.70 32.07 38.87 46.47 34.52

607         1,039     2,709     32.05 38.38 30.87 33.31 39.56 31.22 42.12 50.76 37.15
1,057     2,097     1,753     33.37 39.63 31.24 38.04 45.39 33.91 36.22 43.03 32.68

937         736         1,410     32.98 39.22 31.11 32.39 38.66 30.94 34.68 41.12 31.81
1,025     1,864     2,122     33.26 39.51 31.20 36.78 43.74 33.03 38.19 45.58 34.01
1,298     1,710     1,362     34.24 40.59 31.60 36.01 42.76 32.55 34.49 40.89 31.72
1,061     1,727     2,631     33.38 39.64 31.24 36.09 42.87 32.60 41.53 49.99 36.66

771         2,039     1,743     32.49 38.75 30.97 37.71 44.96 33.67 36.17 42.96 32.65
937         2,354     2,320     32.98 39.22 31.11 39.61 47.46 35.09 39.39 47.17 34.92

1,224     930         2,463     33.96 40.28 31.48 32.96 39.20 31.10 40.34 48.41 35.67
1,252     1,439     1,275     34.06 40.39 31.52 34.80 41.26 31.87 34.15 40.49 31.56
1,085     1,833     2,567     33.46 39.73 31.27 36.62 43.53 32.93 41.06 49.37 36.27
1,028     1,328     2,462     33.27 39.52 31.20 34.35 40.73 31.65 40.33 48.41 35.66

862         1,468     2,003     32.75 39.00 31.04 34.92 41.41 31.94 37.52 44.70 33.53
953         1,735     1,530     33.03 39.27 31.12 36.13 42.91 32.63 35.19 41.73 32.08

1,455     1,777     3,146     34.87 41.34 31.91 36.34 43.18 32.75 45.79 55.50 40.43
924         1,463     2,514     32.94 39.18 31.09 34.90 41.39 31.93 40.69 48.88 35.96

1,238     1,312     1,180     34.01 40.33 31.50 34.29 40.66 31.62 33.80 40.09 31.41
979         908         2,205     33.11 39.36 31.15 32.89 39.13 31.08 38.68 46.23 34.37

1,111     2,086     1,768     33.56 39.82 31.31 37.98 45.30 33.86 36.29 43.12 32.73
1,042     1,606     2,345     33.32 39.57 31.22 35.53 42.15 32.27 39.56 47.38 35.05
1,147     1,419     2,253     33.68 39.96 31.36 34.72 41.16 31.83 38.98 46.62 34.60
1,178     1,625     1,354     33.79 40.08 31.40 35.61 42.26 32.32 34.46 40.85 31.70
1,016     1,425     537         33.23 39.48 31.19 34.74 41.19 31.84 31.87 38.25 30.84
1,258     1,507     2,449     34.09 40.42 31.53 35.09 41.61 32.03 40.24 48.29 35.59

868         1,654     1,365     32.77 39.02 31.04 35.75 42.43 32.39 34.50 40.90 31.72
1,029     1,961     2,012     33.28 39.53 31.21 37.28 44.40 33.37 37.57 44.77 33.57
1,381     1,779     2,678     34.57 40.98 31.76 36.35 43.19 32.76 41.88 50.44 36.95
1,227     2,406     1,903     33.97 40.28 31.48 39.96 47.91 35.36 36.98 44.00 33.17
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A.5.6. Application to traffic assignment by three models  

 O-D  TF_City 
 TT_City
(veh*hours) 

 TF_City  TF_Bypass 
 TT_City
(veh*hours) 

 TT_Bypass
(veh*hours) 

 TF_City  TF_Bypass 
 TT_City
(veh*hours) 

 TT_Bypass
(veh*hours) 

3,411                      3,411               99,217            2,053          1,357               27,972            18,492            1,688          1,723               20,277            20,696            
2,948                      2,948               64,761            1,952          996                  25,640            13,089            1,557          1,390               17,947            16,023            
2,007                      2,007               26,265            1,835          171                  23,158            2,161               1,318          689                  14,159            7,396               
2,860                      2,860               59,625            1,935          925                  25,274            12,085            1,534          1,327               17,542            15,176            
3,050                      3,050               71,285            1,972          1,078               26,099            14,269            1,586          1,465               18,434            17,028            
2,293                      2,293               34,641            1,854          439                  23,552            5,575               1,387          907                  15,185            9,928               
2,072                      2,072               27,990            1,838          234                  23,217            2,959               1,333          739                  14,385            7,972               
1,246                      1,246               12,439            1,246          -                        13,132            -                   1,160          86                     11,956            890                  
2,725                      2,725               52,417            1,911          813                  24,758            10,535            1,497          1,227               16,937            13,885            
1,983                      1,983               25,677            1,834          149                  23,142            1,875               1,313          670                  14,079            7,192               
2,149                      2,149               30,129            1,843          306                  23,310            3,872               1,352          797                  14,654            8,643               
3,415                      3,415               99,606            2,054          1,361               27,997            18,544            1,689          1,726               20,300            20,742            
2,281                      2,281               34,246            1,853          428                  23,529            5,436               1,384          898                  15,141            9,822               
1,951                      1,951               24,889            1,834          117                  23,123            1,478               1,305          646                  13,971            6,911               
3,356                      3,356               94,451            2,040          1,316               27,664            17,844            1,672          1,684               19,985            20,127            
2,906                      2,906               62,274            1,944          963                  25,463            12,612            1,546          1,360               17,753            15,620            
1,857                      1,857               22,728            1,832          25                     23,096            309                  1,284          573                  13,665            6,096               
2,047                      2,047               27,320            1,837          210                  23,193            2,656               1,328          720                  14,298            7,752               
1,945                      1,945               24,751            1,833          112                  23,120            1,408               1,304          641                  13,952            6,861               
1,848                      1,848               22,547            1,832          16                     23,095            206                  1,282          566                  13,639            6,025               
2,384                      2,384               37,793            1,864          520                  23,747            6,625               1,409          974                  15,531            10,740            
2,962                      2,962               65,626            1,954          1,008               25,701            13,251            1,561          1,401               18,013            16,161            
3,045                      3,045               70,934            1,971          1,074               26,075            14,208            1,584          1,461               18,409            16,976            
2,186                      2,186               31,230            1,845          341                  23,364            4,313               1,360          825                  14,788            8,972               
1,719                      1,719               19,897            1,719          -                        20,866            -                   1,254          465                  13,238            4,914               
2,162                      2,162               30,507            1,844          318                  23,328            4,025               1,355          807                  14,700            8,757               
3,277                      3,277               87,892            2,022          1,255               27,232            16,910            1,650          1,628               19,570            19,311            
2,169                      2,169               30,713            1,844          325                  23,338            4,108               1,356          812                  14,725            8,819               
2,934                      2,934               63,925            1,949          985                  25,581            12,931            1,554          1,380               17,882            15,889            
2,795                      2,795               56,026            1,923          871                  25,017            11,334            1,516          1,279               17,246            14,548            

Sum of Total TT 73,984            1,411,798      56,269        17,714            723,783          233,111          43,117       30,867            482,363          349,870          
Benefit (Time savings) -                        454,905          579,566          
Percentage change of benefit 22%

 O-D  TF_City 
 TT_City
(veh*hours) 

 TF_City  TF_Bypass 
 TT_City
(veh*hours) 

 TT_Bypass
(veh*hours) 

 TF_City  TF_Bypass 
 TT_City
(veh*hours) 

 TT_Bypass
(veh*hours) 

3,411                      3,411               99,217            1,443          1,967               16,070            21,903            1,688          1,723               20,277            20,696            
2,948                      2,948               64,761            1,327          1,621               13,513            17,455            1,557          1,390               17,947            16,023            
2,007                      2,007               26,265            1,172          835                  11,504            8,627               1,318          689                  14,159            7,396               
2,860                      2,860               59,625            1,308          1,553               13,247            16,632            1,534          1,327               17,542            15,176            
3,050                      3,050               71,285            1,351          1,699               13,844            18,424            1,586          1,465               18,434            17,028            
2,293                      2,293               34,641            1,206          1,088               11,920            11,340            1,387          907                  15,185            9,928               
2,072                      2,072               27,990            1,179          894                  11,584            9,255               1,333          739                  14,385            7,972               
1,246                      1,246               12,439            1,140          106                  11,117            1,089               1,160          86                     11,956            890                  
2,725                      2,725               52,417            1,279          1,445               12,868            15,363            1,497          1,227               16,937            13,885            
1,983                      1,983               25,677            1,170          813                  11,477            8,402               1,313          670                  14,079            7,192               
2,149                      2,149               30,129            1,187          962                  11,689            9,979               1,352          797                  14,654            8,643               
3,415                      3,415               99,606            1,445          1,971               15,207            21,946            1,689          1,726               20,300            20,742            
2,281                      2,281               34,246            1,204          1,077               11,899            11,228            1,384          898                  15,141            9,822               
1,951                      1,951               24,889            1,167          784                  11,442            8,093               1,305          646                  13,971            6,911               
3,356                      3,356               94,451            1,429          1,928               14,967            21,368            1,672          1,684               19,985            20,127            
2,906                      2,906               62,274            1,318          1,589               13,385            17,064            1,546          1,360               17,753            15,620            
1,857                      1,857               22,728            1,160          697                  11,352            7,185               1,284          573                  13,665            6,096               
2,047                      2,047               27,320            1,176          871                  11,552            9,016               1,328          720                  14,298            7,752               
1,945                      1,945               24,751            1,167          779                  11,436            8,037               1,304          641                  13,952            6,861               
1,848                      1,848               22,547            1,159          689                  11,345            7,104               1,282          566                  13,639            6,025               
2,384                      2,384               37,793            1,219          1,165               12,086            12,185            1,409          974                  15,531            10,740            
2,962                      2,962               65,626            1,330          1,632               13,557            17,588            1,561          1,401               18,013            16,161            
3,045                      3,045               70,934            1,350          1,695               13,826            18,373            1,584          1,461               18,409            16,976            
2,186                      2,186               31,230            1,192          994                  11,744            10,330            1,360          825                  14,788            8,972               
1,719                      1,719               19,897            1,151          568                  11,250            5,842               1,254          465                  13,238            4,914               
2,162                      2,162               30,507            1,189          973                  11,708            10,101            1,355          807                  14,700            8,757               
3,277                      3,277               87,892            1,408          1,870               14,657            20,598            1,650          1,628               19,570            19,311            
2,169                      2,169               30,713            1,189          979                  11,718            10,167            1,356          812                  14,725            8,819               
2,934                      2,934               63,925            1,324          1,610               13,470            17,325            1,554          1,380               17,882            15,889            
2,795                      2,795               56,026            1,294          1,501               13,059            16,017            1,516          1,279               17,246            14,548            

Sum of Total TT 73,984            1,411,798      37,629        36,355            378,493          388,034          43,117       30,867            482,363          349,870          
Benefit (Time savings) -                        645,272          579,566          
Percentage change of benefit -11%

DoNotthing KDI (2015) FModel

DoNotthing KOTI (2009) FMode
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