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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

SCHOOL OF ENGINEERING

Doctor of Philosophy

THE MODEL, DESIGN, AND MANAGEMENT OF RENEWABLE ENERGY

HARVESTING SYSTEMS FOR MARITIME ROBOTS

by Yu Cao

Renewable energy harvesting systems could provide sustainable power to supply mobile robots

for fully autonomous operation. However, the lack of model theory and design technique in

current research limit the renewable energy system to the stationary application only. This

thesis proposes a methodology to model, design and manage the power system for maritime

robots.

A novel non-stationary model including both global and local motion are developed for renewable

energy harvesting systems. This offers a new methodology to simulate the power system with a

spatial-temporal power generation and demand load model.

The model is utilised by a data-driven approach to design a reliable and economic renewable

energy system configuration under the size constraint. This design method is based on the

optimisation approach to size the configuration of renewable energy devices.

Furthermore, a learning-based power management strategy was proposed to improve the long

term robustness of the power system. Variation and uncertainty in the renewable energy resource

are mitigated by learning to plan the power usage from experience.

The non-stationary renewable energy harvesting model shows both global and local motion of

the robot influence the power generation and demand load. To match the power generation and

demand load of the robot, the size of the renewable energy harvester and storage device has

to be optimally designed under strict size constraints. Design optimisation result demonstrated

the optimality and feasibility of the proposed renewable energy harvesting system configuration

method. For the long-term performance, the learning-based power management strategy out-

performs all benchmarking strategies in providing a guaranteed minimum level of power supply.

Research results show the renewable energy could provide sustainable power supply to the robot.

These methods and techniques provide a foundation to the model, design and management of

renewable energy harvesting systems for mobile maritime robots.
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Chapter 1

Introduction

1.1 Motivation and background

Recent advances in computer vision, wireless communication, sensor technology, and artificial

intelligence have led to many breakthroughs in robotic systems. The robots’ capabilities have

evolved rapidly to achieve many challenging tasks such as exploring the unknown area (Fig-

ure 1.1a) transporting customer from place to place (Figure 1.1b). The power supply of the

robot, however, still relies on finite energy sources such as the battery or fossil fuel. Robots

need to stop regularly to charge the battery or refuel the tank that the range and duration is

restraint. Due to the nature of finite energy sources, the autonomy of the robot is limited by

the capacity of the energy sources. This poses a great challenge to field robot that operated far

from the reach of human operators.

The focus has been given to sustainable energy sources to overcome the energy supply issue for

long term autonomy. The renewable energy harvesting system (REHS) is a promising solution

that could collect the energy from the environment to provide a sustainable power supply. Some

of them are shown in Figure 1.1c :The Facebook Aquila drone ([24]) is a long-endurance high

latitude unmanned aerial vehicle that using solar power to stay in the air to delivery internet

connection to the ground. The Saildrone [63], an autonomous ship (Figure 1.1d) harnessing the

wind and solar energy to collect data from the ocean.

The key advantage of using renewable energy harvesting system as the power supply is its

sustainability. Energy sustainability ensures the uninterrupted power to the mobile robot and

environmental sustainability eliminates greenhouse gas emission. Furthermore, the cost saving

in labour cost associated with routine battery exchange or fuel refill could be saved. Ultimately,

the renewable energy harvesting system could enable application in sustainable transportation (

e.g. in [77, 52]), real-time environmental monitoring ( e.g in [59, 43, 15]) and aerial intelligence

sensing ( e.g in [13, 66]).

While the potential benefits of renewable energy to robots are clear, the scarcity in REHS

research for mobile robots limits the wider adoption. Current research on REHS is limited to

stationary applications such as off-grid power supply system and wireless sensor network (WSN)

1
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that operating at the same location after the deployment. The application-based and domain-

specific REHS model theory and design techniques lack the understanding of moving systems.

(a) Spot mini legged robot (b) Waymo self-driving car

(c) Facebook Aquila connectivity
drone

(d) Saildrone autonomous sailing
boat

Photo credits: (a) Boston Dynamics, accessed at: bostondynamics.com/spot-mini
(b) Waymo/Beebom, accessed at: beebom.com/uber-alphabet-waymo-cars/
(c) Facebook research/IEEE spectrum, accessed at: spectrum.ieee.org/tech-talk/

telecom/internet/facebook-pulls-out-of-secret-spaceport-internet-drone-tests
(d) Saildrone/NOAA, accessed at: pmel.noaa.gov/ocs/saildrone

Figure 1.1: The trends in cleaner and more capable robots

REHS consists of one or more energy harvester(s), storage devices and control unit. Energy

harvester(s) harness power from renewable energy resources and the storage devices reserve

excessive energy for any future shortage. Power system model including the generation and

demand on stationary applications is an established area of research. On the contrary, there

is little research on the power system model on a mobile robot. As the robot travels, how the

motion in global and local scale would influence the power system is still unknown. The motion

of the robot has not to be included in any of the existing stationary models. A moving REHS

model is necessary to estimate the power conversion and demand load of the mobile robot.

Off-grid power supply and wireless sensor network (WSN) are the most successful applications

in current REHS research. The off-grid power systems harvest renewable energy to supply

sustainable energy for the rural area. Off-grid application such as Siddaiah and Saini ([86]) and

Singh and Fernandez([88]) match the power conversion and the demand load with an appropriate

size of energy harvesters and capacity of storage devices. Mobile robots, on the other hand, have

a strict size constraint on the size of energy harvesters and storage devices due to the space

limitation. Most common design methods for off-grid application do not apply to the REHS
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design problem on the mobile robot as space is always limited on board. WSN is low power

sensor nodes powered by renewable energy harvesting system. As a miniature sensor node, the

WSN is also suffering the limited space issue. Since it is possible to increase the size of energy

harvesting devices, the WSN have to dynamically adjust its power consumption level depending

on the energy availability. Chauhan and Saini([21]) and Wang et al.([102])’s work on the REHS

design for WSN is an example in space-limited design. However, the main challenge of the

mobile robot is that the robot has to maintain a minimal level of power supply for the safety-

related systems. The requirement on the power system is similar to off-grid application but

the constraint is close to WSN. How to deal with this design challenge with conflicting design

objectives have to be addressed to plan the REHS configuration for the mobile robot.

REHS reliability is often subject to highly variable renewable energy resources. Conventional

REHS has to rely on a dynamic power management strategy for operational reliability. The power

management strategies for off-grid power supply such as Riffonneau et al.([81]) and Tazvinga

et al.([94]) are developed for system without size constraint. While power management strategies

for WSN e.g. Kansal et al. ([44]) and Dargie([26]) allow an adjustable duty cycle as low as zero

during the operation. Despite those efforts, the performance of those management strategies

cannot guarantee any reliability performance of the mobile robot from their assumptions.

1.2 Research scope

This research focuses on the reliable power supply for fully autonomous maritime robots. To be

more specific, the main area of interests is the method and the technique in the model, design

and management of power system on maritime robots.

Firstly, the research on the renewable energy system is limited to the energy harvesting in the

form of electrical power. There are multiple ways for the mobile robot to harness the energy

from renewable resource e.g. directly use mechanical power. However, the robot always requires

electricity to control and navigate itself. Regardless of how the energy is used, harvest electricity

from renewable resources is necessary for the robot.

Secondly, the hybrid power system is the focus of the research. Maritime robots are limited in

space and both wind and solar resources are widely avaliable on the sea. The hybridisation could

potentially increase the overall energy density for a higher electrical power generation. Moreover,

the complementarity in between multiple resources could also be exploited for a better power

supply reliability.

Last but not the least, the life-cycle reliability of hybrid renewable energy system is considered

in this study. Power supply reliability are curical to the safe operation of fully autonomous

maritime robots. Hence, the power system performance include not only the design of renewable

energy harvesting system but also during the operation of maritime robots.
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1.3 Aim and objectives

The aim of this research is to develop the methodology to design the renewable energy harversting

system for fully autonomous maritime robots.

Despite the benefits in utilising REHS on maritime robots, current research reveals little about

the REHS on mobile robots. The research aim above raises the following core research objectives:

• To review the literature concerning the stationary REHS applications and find the gap in

conventional model, design and management methods.

• To develop a power system model including both global and local motion of the mobile

robot.

• To establish a design method to optimally size the REHS configuration for reliability and

economic performance under size constraint.

• To access the power management strategy for a guaranteed minimal level of power supply

during the operation.

Each research objective is associated the previous one so they have to be answered in order.

Research objectives are intended to contribute the understanding of REHS on mobile system

and provide recommendation in the model, design and management of REHS. The result will

ultimately improve the power supply quality for the maritime robot.

1.4 Thesis outline

The thesis is organised in seven chapters. Figure 1.2 outlines the general structure of the thesis

as a component chart. This chapter overviews the background and objective in the research.

Chapter 2 provides a critical assessment on the current research related to the REHS. The

assessment includes both state-of-art model, design and management methods in stationary

REHS and the application of renewable energy system on mobile robots.

Based on gap in the research, the method and the technique for the REHS model, design and

operation will be presented from Chapter 3 to Chapter 5. Chapter 3 (shown in green) proposed

a novel moving REHS model method with both global and local motion of the robot. The power

system is numerically simulated by a data-driven approach. With the help of the moving REHS

model and simulation approach, the influence of the global and local motion of the mobile robot

on the power system is also discussed.

Chapter 4 (shown in blue) presents methods for designing a reliable and cost-effective REHS

under the size constraint. Specific design objectives and constraints are first presented in the

chapter. This chapter then explains how to form the design challenge as an optimisation problem.

The formulation of the optimisation problem as well as the solving algorithm is presented in

detail.
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Load demands:

Hotel: PH

Propulsion: PP

Operation Parameters:

Design optimisation: Power generations:

Wind:

Solar:

PgPd

Offline Long-Term Capacity Planning

Optimisation objectives

Design constrains

Optimisation algorithm

Online Runtime Dynamic Power Management

Battery model

Controller

Observation

B

Wind Turbine

Solar Panel

System Load

PP + PH

Technology Parameters:

Wind: Cp(λ)

Solar: ηpv

Battery: ηin, ηout

Waypoint: pi = [lat, lon]

Route: ri = [p1, p2, · · · , pn]

Resource Data:

Wind: Speed, Direction

Solar: Irrdiance

Environmental: Temperature

Action

REHS configuration

Pwind

Psolar

Pwind

Psolar

Model and simulation Design and optimisation Management and control

Chapter 3 Chapter 4 Chapter 5

Environment

πθ
∇θJ(πθ)

Moving REHS model Constraint REHS design Learning based power management

Figure 1.2: Outline of the thesis

Chapter 5 (shown in yellow) introduces the power management strategy for operational relia-

bility. The power management strategy employs a learning-based method to plan power usage

for mobile robots. In this chapter, the background of the strategy learning method is first intro-

duced. Later on, the power management strategy is compared with benchmarking algorithms.

The result is discussed to show the possible benefit of using a learning-based strategy for long

term reliability performance.

Chapter 6 demonstrated all proposed methods for reliable REHS in a single case. An autonomous

surface vehicle power system design case is studied in this chapter. The case illustrated the

challenges in model, design and manage REHS on a mobile robot, and more importantly, showed

the improvement with regards to a real-world use case.

Chapter 7 summarised the findings and recommendation in the research. The future work is also

recommended at the end of this chapter.





Chapter 2

Literature review

2.1 REHS model

The literature on the modelling of the REHS has paid particular attention to the power generation

on stationary off-grid power systems where the system remains at the same location during the

operation. A considerable amount of literature on REHS has been published on the off-grid

power system (for example [113, 86, 88]), wireless sensor network (for example [72, 95, 96]) and

self-powered condition monitoring applications (for example [42, 7, 18, 65]).

There is no consensus on the term to describe the robotics system powered by the renewable

energy in the literature. The renewable robot is a well self-explanatory term for the robot.

Lamarca et al. ([49]) discussed the potential of using renewable energy directly from the deploy-

ment environment. In this study, the author concludes the energy harvesting techniques are only

capable of providing power to wireless sensor application. Iqbal and Khan ([40]) reviewed the

potential in using renewable energy for the power supply to the mobile robot in Pakistan. The

conclusion of this study, however, is that renewable energy can serve as a preferred choice for

autonomous robot power.

Those studies have contradicting conclusions but none of them has a quantitative assessment

on the actual power generation. Both Lamarca et al. ([49]) and Iqbal and Khan ([40]) estimate

the energy generation potential without include the harvesting efficiency and the motion of the

robot. What remains unclear is how those factors would impact their conclusion.

Pudney and Howlett ([77])’s work on the solar-powered race car optimised the speed of the

vehicle depends on the solar radiation. This work recognises the importance of the global and

local motion on the critical speed of the vehicle. However, there is no further discussion on how

to model the global and local motion in this work.

Crimmins et al. ([25]) introduce the solar-powered autonomous underwater vehicles for long

endurance survey. A solar panel was installed on the vehicle to extend the duration of the

robot. The vehicle surface to recharge during the day and submerge to operate during the night.

Crimmins et al. conclude the vehicle is suitable for long-term oceanographic survey with a 7.5

7
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hours trial result. The method to estimate the power system model for long-term operation is

not clear.

Glykas et al. ([33])’s work on greenhouse emission reduction by integrating renewable energy

is focused on ocean surface vehicles. A simplified temperature model is used to evaluate the

potential energy-saving based on a rough global region classification. The ocean has been divided

as 6 horizontal zones depending on its latitude. This work recognised the difference in solar

radiation because of the global motion.

Joshi et al. ([43]) propose another solar-powered autonomous underwater vehicle concept for

ocean exploration. In this design, the variation of the solar spectrum and solar cell response is

modelled. This result from the model reported the solar incidence angle has an impact on the

total harvested energy. The geometry of the solar panel is considered in this model, making it

possible to include local motion in the REHS model. Global motion of the vehicle that influences

the power generation from resources side is not discussed in this paper.

Bowker et al. ([15]) explore the possibility of harvesting wave energy for the propulsion system.

In this work, a pair of wave energy harvesting devices were installed on an autonomous surface

vehicle. The wave motion is captured by the flappy foil energy harvesting devices. The wave

energy was captured as kinetic energy to directly propel the vehicle in the ocean. This mechanism

could potentially be used to generate electricity from the wave, however, the power system model

is not provided. Chao ([19]) use the ocean thermal energy to power the underwater float. The

principle in ocean thermal energy harvest is to exploit the temperature difference between water

columns. Sensors powered by the ocean thermal energy converter is supposed to deploy at a

specific site. None of the global and local motion is included in the power generation model.

Colas et al. ([24]) model solar panel local motion when estimating the power generation. The

normal vectors of the solar panel are recorded and the solar incidence angle is calculated. Local

motion in solar power generation is included in the power system model. However, the aeroplane

is not designed for long-distance travel and there is no global motion factor in the model.

Table 2.1 summarised researches on the renewable robots in the source of energy, application

and purpose of the power supply. Besides, whether the global or local motion is included in the

model is also presented in this table.

Table 2.1: REHS model literature

Source of energy Application & Purpose Global Local

Pudney and Howlett ([77]) Solar Land vehicle; propulsion - -
Crimmins et al. ([25]) Solar Underwater vehicle; not specified - -
Glykas et al. ([33]) Solar Ocean vehicle; fuel saving yes -
Khare and Singh ([46]) Solar & wave Ocean vehicle; fuel saving - -
Joshi et al. ([43]) Solar Underwater vehicle; not specified - yes
Bowker et al. ([15]) Wave Ocean vehicle; propulsion - -
Lemaire et al. ([51]) Wind Ocean vehilce; propulsion - -
Chao ([19]) Thermal Underwater float; sensors - -
Colas et al. ([24]) Solar Aerial vehicle; all systems - yes

Table 2.2 further summarised REHS models found in those applications. None of them considered

both global and local motion when estimating the power generation.
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Table 2.2: REHS model literature classification

Local motion
Global motion

not considered considered

not considered Crimmins et al. ([25]),Khare
and Singh ([46]),

Glykas et al. ([33])

Pudney and Howlett ([77]),
Chao ([19])
Bowker et al. ([15]), Colas et
al. ([24])

considered Joshi et al. ([43]) this work

On the application side, there is no general REHS model established the relationship between

the power generation and both motions. A moving REHS model could help to understand the

power generation under both global and local motion. Whilst current research on REHS model

is missing from the application side, there are many pieces of literature available on the power

generation.

RHES models are implemented in software for the design and optimisation. Common software

packages are reviewed in Table 2.2. As it is shown in the table, most of the software packages

are able to model the hybrid system consists of PV, wind and storage. Different packages are

featured in various use cases, e.g. TRNSYS is famous for the trainsit modelling capability.

However, all packages are focused on the statinoary applications such as stand alone or small

grid.

Table 2.3: REHS software comparison

Software Models Feature Applications Developer
HOMER PV, wind,

harvesters,
biomass, fuel
cell, hydro,
storage

Easy to use
GUI

stand alone,
small grid

National
Renewable
Energy Labo-
ratory

RETScreen PV, wind, hy-
dro, strorage

Excel based
interface

stand alone Ministry
of Natural
Resources

iHOGA PV, wind, hy-
dro, fuel cell,
harvester,
storage

Hybrid opti-
misation

stand alone,
small grid

University of
Zaragoza

TRNSYS Thermal, PV,
wind, storage

Transite state
modelling

stand alone,
thermal de-
sign

University of
Wisconsin and
University of
Colorado

Dymola PV, wind,
harvesters,
fuel cells,
storage

General
purpose simu-
lation

stand alone,
small grid

Dassault
Systmes

Popular software packages are not applicable to the moving system that the model assumptions

are based on the stationary cases that the system stays at the operation site. This motivate us

to develop a custom simulation and optimisation package for the mobile robots.
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This thesis focus on the wind and solar energy due to its general availability. Wind and solar

energy are the most common resources that are accessible to the aerial, maritime and land robots.

The domain-specific resource, however, can be integrated into the model given there is a way to

estimate the power generation under both global and local motion.

2.1.1 Solar power system

The solar power system for stationary applications is a well-established area of research. The

power generation mechanism (e.g [55, 70]), energy harvesting devices modelling (e.g [20, 89, 84]),

energy harvesting control strategy (e.g [108, 62, 57, 58]), solar (e.g. [54, 29, 74, 61, 106, 10]) and

solar radiation data acquisition (e.g. [2, 34, 80, 50]) can be found in many literatures.
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Figure 2.1: Global annual averaged solar radiation (data source NASA SSE)

The global solar power resource is unevenly distributed. Figure 2.1 shows the global yearly

averaged solar radiation. From the resource side, the global motion would have an impact on

power generation. In the literature, global horizontal irradiance (GHI) is the most common used

to measure the solar resource. The global horizontal irradiance on a flat surface is:

Ig = Ib + Id cos(θz) (2.1)

where Ig is GHI, Ib is direct normal irradiance (DHI), Id is the diffused horizontal irradiance

(DNI), and θz is zenith angle.

When sunlight strikes through the atmosphere of the planet, part of light directly incident on the

surface of the earth as direct radiation [shown in Figure 2.2 (a)]. The rest of sunlight scattered

by molecules and particles in the atmosphere as diffuse radiation. The direct part is direct

normal irradiance (DNI) and the rest is diffused horizontal irradiance (DHI).

The total solar radiation on the panel consists of three parts [shown in Figure 2.2 (b)]. Total

solar radiation on the panel depends on the solar irradiance on the earth surface as well as the

geometry of the panel. Total solar radiation (also known as POA irradiance) Gg is:

Gg = Gb +Gd +Gr (2.2)
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Cloud and particles

Beam radiation

Diffuse radiation

Panel

(a) Components of solar radiation

North

Up
Diffuse radiation

Direct radiation

Reflected radiation

αs
Surface azimuth

βs

Horizontal tilt

(b) Solar radiation on tilt surface

Figure 2.2: Different components on tilt solar panel

where Gg is global radiation, Gb is beam radiation, Gd is diffuse radiation, Gr is reflected

radiation, all unit in W/m2.

Beam component depends on the solar angle θs between the panel and the Sun:

Gb = Ib cos(θs) (2.3)

Diffused radiation on solar panel according to Liu and Jordan ([54]) model is:

Gd = Id
1 + cos(βs)

2
(2.4)

where βs is the horizontal tilt shown in Figure 2.2(B).

Reflected radiation on solar panel is:

Gr = Ibρ ·
1− cos(βs)

2
(2.5)

where ρ is reflectivity index. Values on common surface are shown in Table 2.4.

Table 2.4: Typical reflectivity index [98]

Surface Typical albedo
Fresh asphalt 0.04
Open ocean 0.06
Worn asphalt 0.12
Conifer forest(Summer) 0.08 0.09 to 0.15
Deciduous trees 0.15 to 0.18
Bare soil 0.17
Green grass 0.25
Desert sand 0.40
New concrete 0.55
Ocean ice 0.5 to 0.7
Fresh snow 0.80 to 0.90

The local motion would have an impact on the power generation because of the change in solar

panel geometry. Current literature does not include the local motion in the total solar radiation

on the solar panel.

The solar power generation model suggested by Huld et al. ([39]) estimate power production

from solar panel depends on the intensity of solar radiation, the efficiency of solar panel and the
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temperature.

P (Gg, T ) = PSTC ·
Gg
GSTC

· ηs(G′, T ′) (2.6)

where Gg is global radiation on solar panel, T is module operating temperature of solar panel.

G′ ≡ Gg/GSTC and T ′ ≡ T/TSTC are normalized solar radiation and operation temperature,

GSTC = 1000W/m2, TSTC = 25◦C is solar radiation and module operating temperature under

STC (Standard Test Condition), solar module ηs is module efficiency in the model depends both

total solar radiation and operating temperature.

Many different solar cells are operating under the same principle – photovoltaic effect. As light

from the sun hit the surface of solar panel, it excites an electron into a higher-energy state, an

electric potential is then produced by the separation of charges. During the energy conversion,

only photons at a suitable energy level can be effectively absorbed and converted into electricity.

Not all energy from the light can be fully turned into electrical energy, photons with energy

much greater than the bandgap is wasted. Similarly, Photons with energy less than the bandgap

energy passing through the semiconductor as if it were transparent.

Typical commercial products have a solar module efficiency around 21.5 % Green et al. ([35]),

research solar panel in the laboratory is reportedly as high as 43 %. Those efficiencies are tested

under Standard Test Condition (STC): irradiance of GSTC = 1000W/m2, spectral distribution

through airmass 1.5 and module temperature at TSTC = 25◦C. Actual energy conversion of

the solar panel is determined by the solar irradiance, spectral distribution, temperature and

geometry of solar panel.

Solar irradiance data is often presented as global solar radiation on a flat surface. The solar

irradiance components have to be decomposed from GHI to estimate the total radiation on the

panel.

In Liu and Jordan ([54])’s early work, the decomposition is based on the clearness index. Clear-

ness index is defined as:

kt =
Ib

I0 cos Θz
(2.7)

where Ib is beam radiation, I0 is extraterrestrial radiation at a constant of 1367 W/m2, Θz is

the zenith angle.

Diffuse fraction kd = Id/Ig is correlated with kt using measurements from 98 sites in U.S. and

Canada: kd = f(kt). A similar study was done by Erbs et al. ([29]) developed relationship

between diffuse fraction kd from hourly, daily and monthly-averaged global radiation.

Iqbal ([41]) use two parameters, including clearness index kt and solar elevation α (shown in

Figure 3.6), as predictors in this model to predict hourly diffuse solar radiation from measured

global radiation. Skartveit and Olseth ([90]) employed the same two parameters approach in their

correlation and then later they further included a new parameter hour-to-hour variability index

in their model ([91]). Reindl et al. ([79]) taken two more parameters ambient temperature and

relative humidity to the clearness index and solar elevation. The full diffuse fraction correlation

reduced the residual error by 14% compares to a clearness only index, 9% compares to clearness

and solar altitude indices. The hourly diffuse fraction kd was not only the function of clearness

index kt. Maxwell ([61])’s quasi-physical model converting hourly global horizontal to direct
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normal radiation by the exponential model. Perez et al. ([74]) improves Maxwell ([61]) model by

introducing the hour-to-hour variability index and use surface temperature and relative humidity

in this quasi-physical model. Boland et al. ([10]) take another approach, using apparent solar time

as a predictor. A new model was purposed by Ridley et al. ([80]) based on logistic function. This

model is developed with a new statistical approach by Bayesian inference Lauret et al. ([50]). This

model is named as BRL-model (Boland-Ridley-Lauret-Model) with clearness index kt, apparent

solar time (AST), solar elevation α, daily clearness index Kt and persistence index. These works

have established the relationship between solar geometry and the total solar radiation on the

panel.

As it is shown in Figure 2.3, there are two missing links in the current researcher. The influence

of global motion on the resource and the local motion on total solar radiation is unclear. The

global motion needs to be integrated into the solar radiation model that difference in a solar

resource is missing in the model. Solar geometry model also has to include the local motion

when estimating the total solar radiation on the panel.

Sun

Panel

Power

Solar panel model

Solar radiation model

Local motion

Global motion Operation
Location

Solar geometry model

?

?

Figure 2.3: Research gap in solar power model

2.1.2 Wind power system

Wind power is another source of renewable energy commonly used by the REHS. Previous

research on the wind power model have been focused on the wind power generation potential

assessment (e.g [3, 78, 82] ), wind power harvester design and control (e.g [64, 92, 14, 83, 68,

1]), and wind resource forecasting (e.g [87, 6, 69, 103]). Most of these studies were carried out

for stationary applications.

Similar to the solar energy harvesting potential, the wind power resource is also highly variable

globally (shown in Figure 2.4). The annual averaged wind speed distribution shows the energy

harvesting potential.

For long-distance travel, the global wind energy distribution would have an impact on the power

generation. However, most related research in this area only estimates the wind power generation

for stationary applications. Archer and Jacobson ([3]) evaluated the global wind power generation

potential from surface station measurements. The global power generation potential is calculated
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Figure 2.4: Global annual averaged wind speed (data source SSE)

from a number of ground measurements. Wind turbine model used in this evaluation is the

stationary model. Lu et al. ([56]) derived the global wind-generated electricity potential through

meteorological assimilation data. Stationary wind turbine model was used with those data.

Zheng and Pan ([112]) assessed the global wind energy resource on the ocean. The global ocean

wind energy generation potential is analysed by a stationary wind turbine model.

In those literature, the wind power generation model is often modelled as a piecewise function

Equation 2.8.

P (u) =





0 u ≤ vcut−in

1
2ρCp(λ)Au3 vcut−in ≤ u ≤ vrated

1
2ρCp(λ)Av3

rated vrated ≤ u ≤ vcut−off

0 u > vcut−off

(2.8)

where u is wind speed, vcut−in is cut-in wind speed, vrated is rated wind speed, and vcut−off is

cut-off wind speed. Cp is power coefficient (where typical values can be found in Figure 2.5) that

depends on the shape of wind turbine and tip speed ratio λ.

This stationary model reflected the operation characteristic of a stationary wind turbine. When

the wind speed is lower than the cut-in speed, there isn’t enough momentum from the wind to

overcome the inertia of the rotor to produce any electricity. As the wind speed goes higher, the

power generation from wind turbine follows the cubic rule. When the turbine operates at wind

speed higher than rated speed, the power generation is limited to the rated level with active

control. If the wind speed exceeds the cut-off speed, the wind turbine will stop to prevent itself

from over speeding.

For a stationary turbine, there is no local motion that the base would move, so the wind speed

u is the same as the true wind speed. However, the wind power generation on a moving system,

in the case when wind speed experienced by the turbine is different from true wind speed, is still

unclear.

More pieces of literature can be found on the application of wind energy on moving systems.

Those studies evaluated the benefit of using wind energy for several moving systems.
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Figure 2.5: Power coefficient of different types of turbine [98]

Chen et al. ([23]) developed a small (30 cm rotor diameter) horizontal-axis wind turbine for an

automobile. In this paper, the author claimed that the moving automobile is suitable for the

turbine installation for two reasons. Firstly, the wind on a moving vehicle has a higher speed

and more stable than natural wind. Secondly, the turbine can avoid or minimise the additional

aerodynamic drag when installing at a proper location. However, the author hasn’t provided

any detail on how to reduce drag while generating power. Furthermore, how much power would

be lost due to the aerodynamic drag of the wind turbine is not considered by the authors.

Traut et al. ([97]) studied the direct use of wind energy in the form of kinetic energy capture. It

compares the potential energy saving from a kite and a Flettner rotor. Traut et al. considered the

additional drag of the wind turbine. The net power saves also discount the additional drag that

depends on the wind velocity. The paper concludes that power saving depends on the course of

the ship and true wind velocity. For the moving wind power system model, if a similar approach

vt
vt

vs

Figure 2.6: Wind turbine on moving system
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is taken, the power generation would also depend on the course of the robot and the true wind

velocity.

Viola et al. ([99]) also studied the potential of using wind energy to reduce the emission of

merchant ships. In this study, wind energy is directly harvested as the kinetic energy to propel

the vehicle. The saving on the propulsion depending on the wind direction as well.

Due to the lack of moving wind turbine model, this research will investigate the wind power

generation under both local and global motion. This will help us to estimate the power generation

when the robot is moving.

2.1.3 Battery model

The battery system is the energy storage device in the REHS. It stores excessive energy if the

generated power is unused. When there is a power generation shortage, the battery can discharge

to make up the difference. As one of the key components in REHS, the battery help mitigate

the variability and intermittency of renewable energy resources. The battery’s normal operation

is important to the reliability of the power system.

In most REHS literature, the battery system is modelled as a non-ideal energy storage model

with charge and discharge efficiency. The energy remains in the battery is indicated by the state

of charge (SOC). SOC of the battery can not fall under a certain level to prevent the battery

from over discharging. The minimal level of energy has to remain in the battery is called the

depth of discharge (DOD).

During the long period of travel, the battery may be subject to the different working condition

compared to stationary application. The vibration and stress impact due to local motion has

been studied and tested in various literatures. The lithium-ion battery vibration test Brand et al.

([16]) shows there is no failure in all tested cases. Durability test conducted by Hooper et al.

([38]) shows there is no statistically significant electro-mechanical degradation when subject to

10 years of representative vibration. From that research, the impact of local motion considered

to be minimal that which be neglected in the battery model.

Temperature difference due to long-distance travel may also have an impact on battery per-

formance. Gao et al. ([31]) analyse the temperature effect on the lithium-ion battery by the

simulation model. The comparison between datasheet values shows a significant drop in battery

voltage at the extremely cold environment (-10 to -20 ◦C which is considered as below averaged

operating temperature for the robot). The temperature effect can be modelled as charge and

discharge inefficiency at a low temperature similar to Bhuiyan and Ali Asgar ([9]).

Another factor to consider is the battery capacity will degrade over time. Erdinc et al. ([30])

reported how the charge cycles would affect the battery capacity. It has been showed that the

lithium-ion battery capacity has a 5% reduce after 100 charges and 18 % lost after 600 charges.

The battery model needs to correct the capacity for the operation depending on the charge

cycles. Research on high current discharge of the lithium-ion battery [101] shows the voltage

drops much quciker than the lower current. In order to the maintian the best performance of

the battery, the discharge rate of battery also have to be carefully consider to extend the life.
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Global and local motion only had an indirect impact on the battery. The battery system would

operate in a similar manner on renewable robots according to the above findings.

2.1.4 Demand load

The demand load is the total electrical power consumption required by the mobile robot. The

REHS provide power supply to support the operation of the robot. To design a REHS an

understanding of the demand load is required.

In mobile robot power system design (e.g in [105, 60]), the demand load is modelled as propulsion

and hotel load. The propulsion load is the total energy consumption used to drive the robot.

Hotel load is the demand on all peripheral systems such as navigation system, communication

system and sensory payloads. This classification is proposed for finite energy sources powered

robots, such as battery, fuel or biomass.

Most of the papers on stationary REHS uses a fixed representative load profile as load demand

in the model. In Borowy and Salameh’s work([12]), they design an REHS using a typical house

energy consumption load profile. Yang et al. ([109]) design a hybrid power system for telecom-

munication relay station with constant demand load. Koutroulis et al. ([48]) propose a design

strategy of a stand-alone REHS to a residential household. In their model, the load demand was

derived from daily power consumption. The shortcoming of using daily load profile in a moving

system is the demand load of the renewable robot is not only temporal but spatial dependent.

According to the classification of the propulsion and demand load, all power consumed is hotel

load.

Demand load of small stationary REHS systems such as wireless sensor network are often mod-

elled as variable power consumption. This is due to the power generation on these devices are

limited by space. To cope with the intermittent power generation, the demand load has to dy-

namically adjusted according to energy availability. Kansal et al. ([44]) modelled the demand

load as a controllable power consumption managed by the REHS. Torah et al. ([96]) self-powered

autonomous wireless sensor node also models the demand load as a controllable variable. Park

et al. ([73]) uses the REHS in structural health monitoring sensor networks. Power consumption

of a wireless sensor network is modelled as a dynamic demand load.

Renewable robot’s demand load is similar but different from stationary applications. It has a size

constraint similar to the small stationary application while the power system has to provide a

minimal level of supply for the safe operation. Renewable robots have a power supply reliability

requirement as well as limited by the space on board.

To date, there is demand load model include both variable and constant components. However,

a demand load model with a continous changing operation location is not avaliable. Such a

demand load model would be useful to guarantee a minimal level of power supply and to adjust

the power supply according to the energy availability.
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2.2 REHS capacity planning

There are multiple objectives when designing REHS for renewable robots. Optimisation based

design methods are often used to find the best trade-off in between those objectives and help to

plan the capacity of the REHS. Two most common objectives are optimised in the design stage.

The reliability of the power system and the economic performance of the REHS. Reliability of

the power system is often indexed as the ratio of time that demand load is not supplied by the

power generation. Economic performance can be the device cost or averaged cost of the energy.

There are many optimisation based design methods in the literature that been used to plan

the capacity of the REHS. Borowy and Salameh ([12]) design an REHS with hybrid wind and

solar sources for house electricity supply. An optimisation method is used to find the most cost-

effective configuration with a constraint on reliability. The reliability was measured by lost power

supply probability (LPSP), the fraction of time that the power system failed to supply sufficient

power to the demand load. The optimisation algorithm is an iterative search method. The

optimal capacity by incrementally searching on the battery and the numbers of photovoltaic

(PV) modules. Koutroulis et al. ([48]) plan the capacity of wind and solar hybrid renewable

energy system. The design has multiple objectives to achieve at the same time. The total

capital cost and maintenance cost are both optimised. A heuristic search algorithm called a

genetic algorithm (GA) was used in the optimisation process. Yang et al. ([109]) optimise an

REHS for telecommunication system using a similar model. The design goal is to minimise the

levelised cost of energy with a constraint on LPSP. An iterative search method was used to find

the best configuration for the REHS. They further developed their model in [110] and use GA to

optimise both levelised energy cost and lost power supply probability. Belfkira et al. ([8]) design

the stand-alone hybrid renewable energy system for rural energy supply. They use a global search

optimisation algorithm called DIRECT to find the configuration with minimal energy cost. This

method is a heuristic search based on REHS reliability and cost. Wang et al. ([102]) present

their work on the community based smart grid with a design goal to minimise the use of grid

power and energy cost. They modelled the grid and solve the design problem by a mixed-integer

linear programming method. Singh and Fernandez ([88]) use another heuristic search algorithm

to optimally plan the capacity of the REHS. The optimisation algorithm Cuckoo Search mimics

breeding behaviour. The design objectives are reliability, total system cost and energy cost.

Table 2.5: Overview on REHS capacity planning literatures

Application Constraint Objective(s) Optimisation algorithm

[12] house electricity LPSP minimise device cost incremental search
[37] not specified LPSP - neural network
[48] commercial use LPSP minimise device capital GA

and maintenance cost
[109] telecommunication LPSP minimise energy cost iterative search
[110] telecommunication LPSP minimise energy cost GA

replacement cost
maintenance cost

[8] not specified LPSP minimise energy cost heuristic search
[102] smart grid LPSP minimise energy cost linear programming (LP)

power ramping
[88] rural area LPSP minimise device cost cuckoo search

and energy cost
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Table 2.5 summarised research in the application, design constraint, design objective and opti-

misation algorithm.

In those discussions, the REHS were all designed for stationary applications. Design objectives

are different from application to application. A common goal to optimise is the device capital

cost of REHS. Averaged energy cost is also a typical objective in those applications.

Design objectives in stationary REHS are similar but different from mobile robots’. Most station-

ary REHS capacity planning optimises the system configuration for a minimised cost of energy.

The goal is to design the REHS for the lowest levelised energy cost under reliability constraint.

While the goal of having REHS on the mobile robot is not only energy itself but also to use the

energy to support reliable long-term operation.

It is not uncommon to have both size and reliability constraint for REHS with conventional

power supply backup. However, when both size and reliability are both included as optimisation

constraints, the REHS may fail to meet some of the requirement. If the REHS capacity designed

by the optimisation algorithm failed to meet the reliability requirement. The renewable robot will

lose power supply since there are no conventional power sources to access during the operation.

If the design failed to meet the size constraint, the REHS won’t able to be installed on the

renewable robot.

The REHS capacity has to be planned under both size constraint and reliability requirements.

A further review on optimisations algorithm will show how to deal with those requirements.

2.2.1 Optimisation algorithms

The REHS capacity planning often involved with the optimisation on several conflicting objec-

tives. This section will review optimisation algorithms on various applications. The optimisation

algorithms in REHS capacity planning have been listed in Table 2.6. The design constraint, num-

ber of objectives, type of optimisation and related applications have been listed in the table.

Table 2.6: Review on the optimisation algorithms in capacity planning

Constraint Objectives Optimisation type Applications

Classical methods
Linear Programming X single local [76]
Non-linear Programming X single local [111, 4]

Heuristic methods
Genetic Algorithm X multiple global [48, 110]
Particle Swarm Optimisation X multiple global [104, 85, 47]
Simulated Annealing X multiple global [28, 45]
Harmony Search X multiple global [5, 22, 32]

Other methods
Neural Network × single - [37]
Iterative Search X single local [12, 109]

Linear programming (LP) form the optimisation problem as a set of linear equality constraints

(shown in Equation 2.9). The goal of the optimisation is to maximise (or minimise) the cost of

the system. Cost of the REHS is modelled as a linear function to the design variables.
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max cTx

s.t Ax ≤ b
x ≥ 0

(2.9)

where x is design variables, c is cost vector and A is constraint matrix. LP optimisation is

commonly solved by simplex and interior-point methods. Privitera et al. ([76]) consider REHS

capacity planning in building applications as an LP optimisation problem. LP can design the

configuration with a minimised capital cost. However, no reliability constraint has been included

in the study. This is partly because the reliability of the REHS is usually not a linear function to

the capacity of RHES. In Yang et al.’s study [110] on multi-objective REHS design confirm the

reliability constraint LPSP is non-linear in regards to REHS design variables. LP optimisation

algorithms cannot handle the reliability constraint under the linear model assumption.

Non-linear programming (NLP) solve this problem by extending the constraint from linear to

non-linear equations. The general form of an NLP optimisation problem is shown in Equa-

tion 2.10.

min f(x)

s.t g(x) ≤ 0

h(x) = 0

(2.10)

where x is design variable, f is a non-linear cost (also called fitness) on the design, g and h are

inequality and equality non-linear constraints. The goal of NLP optimisation is the same as LP –

minimise (or maximise) the fitness of the REHS design. El-Zeftawy et al. ([111]) and Ashok ([4])

did similar work in using NLP to optimise the REHS capacity. They defined the cost of energy

as the objective and LPSP as the constraint. The REHS capacity is optimised to minimise the

energy cost under reliability constraint. The optimal solution from NLP optimisation is chosen

as the REHS capacity. NLP and LP are local optimisation algorithm. Optimisation result

depends on the initial condition and may not be the global optimum if there is a local minimum

(or maximum). Both LP and NLP are single objective optimisation algorithms. If there are

more than one goals, multiple optimisation objectives have to be weighed and mixed as a single

objective.

Another way to solve this problem is to use a multiple objectives optimisation algorithm. The

multi-objective optimisation (MOO) problem involves multiple goals and the general form is

shown in Equation 2.11.

min [f1(x), f2(x), · · · , fn(x)]

s.t x ∈ X
(2.11)

Genetic Algorithm (GA) is one of the most commonly used multiple objectives optimisation

algorithms. This algorithm can natively handle the many design objectives at the same time. GA
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algorithm imitates the biological natural selection process. Each REHS is a candidate solution

in the optimisation problem. A population of candidates represent the possible REHS solution.

During each generation, a portion of candidates will be selected to breed a new generation based

on their fitness. A new generation is produced after genetic crossover and mutation. As the

population will keep evolving, the remained candidates are the best among all objectives. Those

candidates formed the Pareto front – best objective against another objective.

Compared to single objective NLP optimisation, the MOO problem minimise several objectives

at the same time. For the REHS optimisation, it means the optimisation algorithms can natively

handle multiple objectives in the capacity planning e.g. minimise the cost of energy and minimise

the maintenance cost at the same time.

Koutroulis et al. ([48]) and Yang et al. ([110]) plan the REHS capacity with GA optimisation.

There are multiple objectives in their REHS capacity planning: the maintenance cost, the cost

of energy and minimise the capital cost of devices. The GA method helped to find the best

configuration among these objectives. Similar work have also been presented by Wang and

Singh ([104]), Sharafi and ELMekkawy ([85]) and Khare et al. ([47]).

The relationship between each objective was also acquired from the Pareto front. These optimal

configurations x are shown as black box in Figure 2.7. The outcome of GA is not a specific

REHS configuration x but configurations that best on both objectives.

f1

f2

Figure 2.7: Pareto Front of multiple objectives optimisation

Similar heuristic-based algorithms such as Particle Swarm Optimisation (PSO), Simulated An-

nealing (SA) and Harmony Search (HS) are also found. Those algorithms are natively designed

for the single objectives of optimisation problems. However, through the mixture of multiple

objectives, those algorithms are able to solve the MOO problem in the following way:

min f(x) = w1f1(x) + w2f2(x) + · · ·wnfn(x)

s.t g(x) ≤ 0

h(x) = 0

(2.12)

where w1, w2, · · · , wn are the weights on each objectives.
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The result of this optimisation method is the optimal REHS configuration of x. Compared to

Evolution Algorithms that natively handle multiple objectives at the same time, those algorithms

present a single REHS configuration.

For the REHS capacity planning, both classes of optimisation algorithms are useful for the design.

The Pareto front on multiple objectives is important to understand the relationship between each

design goals. Pareto front based optimisation methods can be first used to explore the design

space. If there are REHS configurations that meet the reliability and economic performance

requirements, the mixed objectives optimisation method can then be employed to find the best

among them.

2.2.2 Model data

The REHS capacity planning is formed as multiple objectives optimisation problem. To solve

the multiple objectives optimisation problems, the reliability and economic performance of the

REHS has to be simulated using representative data. Data on the power generation, demand

load and economic factor have to be collected for the power system simulation.

On the power generation side, both solar and wind power generation requires data for the

simulation. The simulation-based REHS capacity planning has commonly been found in the

literature on the stationary REHS design. Simulation of the power system usually requires

hourly data on the solar radiation, wind speed and temperature.

A global solar radiation database released by the World Radiation Monitoring Center [71] Base-

line Surface Radiation Network (BSRN) is often used as the data source of global solar radiation.

This network consists of 76 stations around the world that report the solar radiation on various

parameters. Research on the REHS capacity collects the data from the nearest weather station

to simulate the solar power generation. If there is no observation close to the design location,

synthetic generated solar radiation data is also found in simulation. Graham and Hollands ([34])

developed a method to generate synthetic hourly solar radiation data globally.

In order to estimate the power generation of the panel, the solar radiation component is required

on a specific time at a given location s. Measurement-based method and model-based method

are two common ways to estimate solar radiation components. Measurement-based method use

land [34] or satellite [27] radiation observation to quantify the total solar radiation. Model-based

method regards the solar radiation as the Auto Regressive Moving Averaged (ARMA) process

or Markov Chain Model (MCM), estimate solar radiation using a stochastic model. Land-based

observation on solar radiation using a pyranometer sensor, it usually located at sites across the

field. It provides global horizontal radiation with high precision (less than 2% uncertainty in

hourly average, less than 1% uncertainty in daily average measurement) but also limited by

its geospatial coverage across the world, especially over the oceans. Satellite-based observation

has much greater spatial coverage over the land-based observation. Satellite estimates based

on a physical model to derive downward solar irradiance at the surface of the Earth. Satellite

computes the downward solar irradiance at the top of the atmosphere and subtracts the reflected

energy measured by the satellite.
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On the demand load side, the power system simulation also needs data support. For example,

the power consumption of the renewable robot will depend on the change of wind direction and

speed. Most studies in the field of renewable energy have only focused on the data collection on

a single operation location. Data collection for the demand load simulation has to be solved for

the REHS modelling and optimisation.

The challenge of power system simulation on the renewable robot is its spatial-temporal nature.

To simulate the power generation and demand load, the renewable energy resources data has to

cover a large area at sufficient resolution.

Data-driven simulation method could solve this problem by retrieving and processing renewable

energy resources data in the simulation. Satellite-based observation at high spatial coverage is

used in data-driven method to correct the weather model-based numerical simulation, giving a

higher data resolution. The effect of cloud coverage, time, latitude are included in the solar

radiation data. This dataset is often available for earth science purpose most notable is re-

leased by NASA Global Modeling and Assimilation Office – Modern-Era Retrospective analysis

for Research and Application, Version 2 (MERRA-2) and European Centre for Medium-Range

Weather Forecast (ECMWF) – Copernicus Atmosphere Monitoring Service (CAMS).

Compared to a measurement-based method and the model-based method, the data-driven ap-

proach has higher spatial resolution and better temporal coverage. More importantly, it also

provides us with information on the temperature which is important to model the efficiency of

the solar panel model.

2.3 REHS power management

During the operation of the REHS, the power generation from renewable energy resources may

vary from the design scenario. The role of the power management system is to dynamically

adjust the demand load according to the energy availability. The power management system

decides the best use the energy after it been harvested. An overly aggressive power management

strategy may increase the short-term performance of the power system but damage the long-term

power supply stability. At the same time, a too conservative power management strategy may

result in a waste of energy. The power management system has to achieve the balance between

the performance and robustness during the operation.

Research on the REHS power management has been mostly restricted to stationary applications.

Although extensive research has been carried out for stationary applications, no single study

exists on the long-term performance for renewable robots.

2.3.1 Reactive method

Reactive power management strategies are the simplest way to plan energy usage. The power

management system reacts to the change in the power generation and/or the demand load.

Reactive power management strategies do only plan the power usage depends on observations

of current states. No prediction method is used when scheduling the power usage. States of the

power system may include one or more of the followings:
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• Power generation

• Demand load

• Energy in the battery

Generation absolute follow (GAF) strategy reacts to the power generation only and it will con-

sume all the energy it generated by following the power generation. It is a naive power manage-

ment strategy that does not need any management over the excessive energy.

Glykas et al. ([33]) presents a cost-benefit analysis on solar power installation on merchant marine

vessels. In this study, GAF was used in the model, the power generated from the solar resource

is assumed to be supplied to the marine vessel directly. The power generated by the solar panels

on the marine vessel is much less than the total power consumption. The goal of the renewable

energy power system installation is to try to mitigate the greenhouse gas emission for the vehicle.

For this application, the GAF strategy simply follows the power generation. The advantage is

that without the storage the loss on the charge and discharge would be minimal. This improves

the energy conversion efficiency between the power generation and actual supply.

Hagerman ([36]) designed a wave recharging station for an autonomous underwater vehicle. In

order to maximize energy harvesting, the power generation from wave energy was stored in the

battery. The power management strategy for the recharging station is GAF between wave energy

and the battery.

The downside of the GAF strategy is renewable resource variance affects the stability of the

power supply. GAF strategy will pass on variance on renewable energy from the resource side

to the demand load. This will introduce the problem for renewable energy such as the loss of

power supply. For the renewable robot, the GAF strategy would not be the ideal candidate due

to the reliability issue. The GAF strategy is more suitable for systems with conventional power

supply as a backup.

Demand load follow (DLF) strategy plan the power usage according to the demand load. The

native DLF strategy always plans power usage as demand load requested. In Borowy and

Salameh ([11])’s REHS design, the power management system follows the native DLF strategy.

The load of the REHS is hourly household electricity demand. REHS configuration is designed to

supply electricity for the typical load condition. Native DLF is computationally inexpensive that

is suitable for the simulation-based optimisation. The drawback of native DLF is the strategy

does not include the energy buffer while planning the power usage. A better power management

shall able to adjust the power supply depends on the energy left in the battery.

A strategy extends the native DLF strategy to include the battery and power generation for

the planning. The extended DLF strategy found in [100]’s work on the wind, PV and fuel cell

stand alone system. The battery model is integrated as part of the model to plan the power

usage under SOC constraint. The extended DLF strategy compares the power generation and

the demand load. When the power generation is higher than the demand load and the battery

is not fully charged, power will be supplied to the REHS and excessive power would be used to

charge the battery. When the power generation is lower than the demand load and the battery

SOC does not fall under the DOD, power will be supplied to the REHS by discharging from the

battery.
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The drawback of reactive power management strategies is that they make no attempt to dynam-

ically adjust the demand load. The main weakness of the GAF strategy is that future reliability

is not provided. DLF strategy on the other hand reserve energy for future use but do not adjust

demand load.

Extended DLF strategy shares the simplicity with the native DLF strategy but includes more

information. The battery energy level and the power generation are considered while planning the

power usage. Reactive power management strategies are found common in off-grid applications

that demand load is not adjustable. For example, the off-grid power supply to 4G mobile station

requires the system online at 24/7. Also due to its simplicity, the extended DLF strategy is often

used as a baseline algorithm in the optimisation and management.

2.3.2 Prediction based method

Prediction based power management strategies plan the power usage and adjust the demand

load accordingly. These strategies do not only plan but also change the demand load based on

energy availability.

Kansal et al. ([44]) argue that the worst-case design scenario, developing REHS with minimum

energy output at any time is greater than the maximum demand load, is high cost and may

not be feasible for space constraint applications. This argument also holds for the renewable

robot with limited space. Kansal et al. proposed a dynamic prediction based power management

strategy for the sensor networks. This strategy uses a prediction model based on an exponentially

weighted moving average (EWMA) filter. The power management system dynamically adjusts

the demand load depends on current and future energy availability.

The sensor network adjusts power consumption by turning on and off regularly. The total fraction

of time the system turned on is the duty cycle of the power system. Although this prediction

based method achieved a higher energy conversion efficiency and higher online time compared

to DLF strategy in this study, the minimal power supply is zero in between each cycle. For a

renewable robot, a zero watt power supply will result in a totally lost control.

Piorno et al. ([75]) employed a similar prediction and management scheme to plan the demand

load. The prediction model used in this strategy is the weather conditioned moving average

(WCMA). This model takes both current and past days weather condition and reduces the

prediction error on solar energy. Moser et al. ([67]) use linear programming technique with

predicted power generation for short term power management. However, the same problem is

that the minimum power supply is zero if the management strategy is used.

Prediction based power management strategies are limited to sensor network applications where

the reduction of the demand load have no detrimental influence on the sensor. In order to

minimise the risk of completely lost control on the demand load, a minimal level of the power

supply is required. Prediction based power management strategies have seen great success in a

wireless sensor network. The completely lost on the power supply cast doubt in using prediction-

based method for renewable robots.



26 Chapter 2 Literature review

2.3.3 Learning based strategy

Learning-based power management strategies take a different approach to plan the demand load.

The strategy learns to plan power usage from previous experience.

Tan et al. ([93]) present the adaptive power management using reinforcement learning strat-

egy. This is an online learning algorithm that learns the optimal decision from history and

improves itself against changes in the environment. The power system was modelled as a black

box environment with states that can be observed by the power management system. The power

management system makes a decision on power usage based on those observations. For each de-

cision the power management strategy made, the environment gives feedback. Positive feedback,

which usually called reward, encourage the action on the system. On the contrary, negative

feedback will penalise a bad decision made by the power management strategy. The power sys-

tem learns to maximise the total reward and improve the power management quality in terms

of robustness and performance. Result of [93] shows that the learning-based power management

system achieved a 24 % reduction in the power consumption compared to conventional strategy.

Lin et al. ([53]) propose a model-free learning-based power management strategy for an electrical

vehicle. The optimal power management policy is derived from the action and the received

reward. Actions with higher reward will be chosen more frequently while those result in a penalty

will be avoided. The reward of each action depends on the quality of the control decisions. In

this work, the goal is to maximise the battery efficiency of the electric vehicle. For each action,

the less fuel it consumes, the higher the reward will be given. Since the power management

reinforces the possibility of taking actions to maximise the reward, the strategy is called the

reinforcement learning-based power management method.

Wu et al. ([107]) take a similar approach to plan power usage through learning. A machine

learning approach, deep Q learning, is adopted for the energy management system. The deep

Q learning is a learning-by-doing online power management strategy based on the power system

model. This strategy achieved a better fuel economy under unknown demand load conditions.

Learning-based power management is attractive to the renewable robot that needs to minimise

the risk of the lost power supply under a hard size constraint. Compare to reactive and predictive

power management strategies, it is possible to customise the goal of power management for

a minimal level power supply for the robot. The power supply to the safety-critical load is

important to the reliable operation of the vehicle.

However, there is currently no literature on the long-term performance on the learning-based

power system management strategy. The long-term uncertainty and variance of the renewable

energy resource have to be included while developing the power management strategy for the

renewable robot. Meanwhile, the ability to learn and adapt to the change in the power generation

and demand load is critical to the safety and performance of the renewable robot.

2.4 Summary

In this section, the research related to the REHS for renewable robots have been reviewed. It

has been found that current research on REHS is limited to stationary applications and REHS
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application on mobile robot is still domain-specific. As has been reviewed in this chapter, there

is no general method or technique available to REHS on mobile robots. For the purpose of

a reliable power supply for the robot’s fully autonomous operation, the literature review has

identified the key research gaps in the model, design and management of REHS.

The following research questions are raised from the study:

• The lack of fundamental understanding on how the mobile robot’s motion would influence

the power system on both demand load and power generation.

• The scarcity in the design methodology for an reliable and cost-effective REHS configura-

tion under the size constraint.

• The need of power management strategy for long-term reliability performance.

A fundamental understanding of the motion’s impact on the moving REHS would contribute

to the model of the power system. Based on the power system model, the REHS configuration

design method is helpful to study the relationship between the design objectives and constraints.

Furthermore, the design methodology is also a tool to size the REHS for reliable and cost-effective

performance. Power management is required to plan the power usage during the operation. The

above research gaps in different areas but all contribute to the reliable REHS. Method and

technique to address these research gaps will be presented from the next chapter.





Chapter 3

Moving REHS model

This chapter presents the moving REHS model for the mobile robot. The model includes the

power generation, demand load and energy storage models. As a moving REHS, the model

include the global and local motion of the robot. Power generation models of the most common

availability renewable energy resources – solar and wind – are first introduced. A generic energy

storage model is presented after the demand load model. An assessment will be given to show

how global and local motions would impact the power system.

As it has been mentioned in the research objective, the moving REHS model is the foundation of

the system. The analytical moving REHS model itself would also have to provide an insight on

the performance of power system. Later in this chapter, the data-driven simulation approach is

also demonstrated to show how to assess numerically the performance of REHS when it subject

to both global and local motion.

3.1 Solar power system model

The local motion of the renewable robot is the locomotion in its reference coordinate system.

When the renewable robot experiences a local motion, the solar panel will move along with the

robot. The solar angle between the panel and the sun changes when there is a local motion.

Total solar radiation received is determined by the solar resource as well as the solar angle. The

local motion has an impact on the solar angle hence influence the total power generation.

Global motion of the renewable robot is due to long-distance travel. This would influence the

power generation from the resource side. Global solar radiation is unevenly distributed that

long-distance travel will have an impact on the resource.

The moving REHS model has to include both local and global motions in solar power generation.

In this section, how these two factors influence the solar power generation will be explored.

29
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3.1.1 Local motion on the solar panel

As it has reviewed in Section 2.1, the total radiation on a stationary solar panel consists of beam

(direct) radiation, diffused radiation and reflected radiation.

Gg = Gb +Gd +Gr

= Ib cos(θs) + Id
1 + cos(βs)

2
+ Ibρ ·

1− cos(βs)

2

(3.1)

where θs is the solar angle, βs is the surface tilt on the solar panel.

Figure 3.1 shows related solar geometry of a solar panel on a renewable robot. Solar angle θs is

the angle between the direction of the sun and the normal of the solar panel. Surface tilt βs is

the angle between the panel and the horizontal surface of the earth. When the renewable robot

undergoes a local motion, it will influence both on solar angle and surface tilt angle. Because the

total radiation on the solar panel is determined by both solar angle and the surface tilt angle,

the local motion changes to the total solar radiation.

North

Up

Direction of sun

αs
Surface azimuth

βs

Horizontal tilt

θs

Solar angle

Normal of solar panel

S

n

Figure 3.1: Direct radiation of solar panel

The vectorial representation on the normal of solar panel and direction of the sun is used. S is

solar vector defined as a vector point from the robot on the earth to the sun, and n panel vector

is defined as the normal of the solar panel. Solar angle θs by vector notation in this case is:

cos(θs) =
S · n

‖S‖×‖n‖ (3.2)

The base of those vectors is indicated by its underscore. For example, Searth means solar vector

in earth coordinate.

To include the local motion of the renewable robot in the power generation model, both vectors

have to be found in the local reference coordinate. The first step is to find the solar vector in

orbit reference system. In this system, the Earth orbits about the Sun in an almost circular

trajectory at a period of one year (shown in Figure 3.2). The Earth also rotates about itself with

rotation axis by a fixed angle of 23.45◦ to the normal of the orbit plane.



Chapter 3 Moving REHS model 31

Sept. 21

June 21

Dec 21

Mar 21

23.45◦ N

Sorb

Sorb

Figure 3.2: Orbit of the Earth around the sun

The solar vector in orbit reference system (Sorb) is a vector point from the centre of the Earth

to the Sun. When the Earth orbits around the Sun, the apparent path of the Sun’s motion on

the celestial sphere as seen from Earth is called the ecliptic plane. This plane is circumvented

by a grey line shown in Figure 3.2 which is called the ecliptic. Ecliptic is tilted at an angle of

ε ≈ 23.45◦ to the celestial equator plane shown as light blue region in Figure 3.3.

In Figure 3.3, ε is Earth tilt angle, λe is ecliptic longitude. During the year, the ecliptic longitude

varies from 0 to 2π, at λe = 0 the Sun is straight over Equator (Spring Equinox), when λe = π/2

the Sun reach 23.45◦ north at Summer Solstice, and at λe = π it is Autumnal equinox the Sun

point directly over the Equator and finally when λe = 3π/2 the sun will be directly overhead at

latitude of 23.45◦ south (Winter Solstice). By the definition, the solar vector in orbit reference

system (orb) is:

Sorb =
[
cosλe sinλe 0

]T
(3.3)

The solar vector is now in the orbit reference system. In this reference system, the Earth itself

is regarded as a point mass which makes it difficult to include the motion of the robot in the

model. Solar vector has to be converted into an earth fixed coordinate system for modelling the

local motion.

The earth centred earth fixed (ECEF) coordinate system has an origin centred at the earth. In

the ECEF system, xOy forms a plane that passes the equator of the earth. Meanwhile, the sun

will always orbit on the ecliptic regardless of the change in the coordinate reference system.

The geometry relationship between the orbit reference system and ECEF coordinate system is

by rotating clockwise at an angle of ε about xorb. Such a transformation can be represented as

a matrix multiplication:

Secef = Recef
orb Sorb (3.4)
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Sorb

ε

λe

ecliptic

celestial
equator

xorb, xecef

yorb

zorb

zecef

yecef

Figure 3.3: Geometry relationship between orbit to earth centred earth fixed coordinate

The rotation matrix Recef
orb transform the solar vector in orbit (orb) reference system to (ecef) in

Euclidean space. In a simple 2D scenario shown in Figure 3.4, a vector (x, y) is in both xOy and

x′Oy′ reference system. The only difference of two reference system is the new x′Oy′ is rotated

counter-clockwise by an angle of θ. In the new reference system the coordinate of the vector can

be found using trigonometry (x cos θ − y sin θ, x sin θ + y cos θ).

(x cos θ − y sin θ, x sin θ + y cos θ)θ

x

y

(x, y)→ (x′, y′)

x′

y′

Figure 3.4: Rotation matrix in 2D Euclidean space

If use (x′, y′) to represent the new coordinate, such operation can be written in matrix form as:

[
x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
(3.5)
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The first part of the formula is the rotation matrix, it transforms the base of the vector between

two reference systems.

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(3.6)

The rotation matrix Rnew
old is from old frame xOy to new frame x′Oy′. The direction of rotation

follows the right-hand rule. In this case, the rotation is positive when a vector turns counter-

clockwise. For a negative rotation angle, the rotation matrix is:

R(−θ) =

[
cos θ sin θ

− sin θ cos θ

]
(3.7)

The extension from 2D to 3D is straightforward, a rotation of a vector (x, y) by an angle of θ

about z axis will only change coordinate in x−y. The rotation matrix will keep all z dimensions

the same as the vector turn around z axis and the multiplication matrix is:

Rz(θ) =




cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


 (3.8)

For three axes in a 3D Cartesian coordinate system, Rx(θ), Ry(θ) and Rz(θ) represent the

counter-clockwise rotation about each axis at angle θ. Equation 3.8, 3.9, and 3.10 are three

main basic rotation matrices that will be most frequently used.

Ry(θ) =




cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)


 (3.9)

Rx(θ) =




1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)


 (3.10)

The rotation matrix Recef
orb from orbit reference system to the ECEF system could be found using

the rotation matrix. The transformation is a counter-clockwise rotation about x axis by ecliptic

angle of ε.

Recef
orb (ε) = Rx(ε) (3.11)

The solar vector in earth centre earth fixed system can be found by matrix multiplication:

Secef = Recef
orb Sorb

=




1 0 0

0 cos ε − sin ε

0 sin ε cos ε



[
cosλe sinλe 0

]T

=
[
cos(λe) sin(λe) cos(ε) sin(λe) sin(ε)

]T

(3.12)
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As is have been mentioned, the solar vector Sorb in orbit is defined by ecliptic longitude λe.

Ecliptic longitude as it shown in Figure 3.3 is the angle between xorb and direction of sun. This

can be regarded as an unit vector on xorb axis was rotated about zorb by λe and the result

Sorb = Rz(λe)
[
1 0 0

]T

=




cos(λe) − sin(λe) 0

sin(λe) cos(λe) 0

0 0 1







1

0

0




=
[
cosλe sinλe 0

]T

(3.13)

matches the definition given before.

The solar vector in the ECEF system is one step closer to the moving solar panel.

Secef =
[
cos(λe) sin(λe) cos(ε) sin(λe) sin(ε)

]T
(3.14)

The ECEF can then be transformed into a NEU frame such that the global position can be

expressed using latitude and longitude. The coordinate is fixed at a single point on the earth

with reference in the east, north and up direction.

Secef
ε

xecef

yecef

zecef

δ
ω

φ

N

E

U

Figure 3.5: Rotation matrix from earth centred to east-north-up

For an arbitrary point on the earth, the location can be determined by the latitude φ and the

hour angle ω in the ECEF global coordinate system. As the ENU revolves with the self-rotation

of the earth (shown Figure 3.5) the hour angle ω is

ω = (hour− 12) · π/6 (3.15)
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where hour is apparent solar time (AST) at that location.

Relationship between the ECEF system and ENU system have shown in Figure 3.5. There are

two steps in the transformation from ECEF to ENU. First, a clockwise rotation over east-axis by

an angle π/2−φ to align the up-axis with the x-axis. This transformation using matrix notation

is Rx[−(π/2− φ)]. Then a clockwise rotation over the z-axis by and angle π/2 + ω to align the

east-axis with the x-axis. This transform matrix is Rz[−(π/2 +ω)]. The transformation matrix

is a combination of them.

Renu
ecef = Rx[−(π/2− φ)]Rz[−(π/2 + ω)]

=




1 0 0

0 sin(φ) cos(φ)

0 − cos(φ) sin(φ)






− sin(ω) cos(ω) 0

− cos(ω) − sin(ω) 0

0 0 1




=




− sin(ω) cos(ω) 0

− cos(ω) sin(φ) − sin(φ) sin(ω) cos(φ)

cos(φ) cos(ω) cos(φ) sin(ω) sin(φ)




(3.16)

Solar vector in ENU reference Senu system can be found by repeatedly apply the transformation

from Sorb :

Senu = Renu
ecefR

ecef
orb Sorb

=




sin(λe) cos(ω) cos(ε)− cos(λe) sin(ω)

sin(λe)[sin(ε) cos(φ)− sin(ω) cos(ε) sin(φ)]− cos(λe) cos(ω) sin(φ)

cos(λe) cos(ω) cos(φ) + sin(λe)[sin(ω) cos(ε) cos(φ) + sin(ε) sin(φ)]




(3.17)

Notice that Earth rotation tilt angle ε is a constant value at 23.45◦. It is possible to introduce

an intermediate variable δ to simplify solar vector in ENU coordinate system.

sin δ = sinλe sin ε (3.18)

The solar vector in the ENU coordinate system can be rewritten as:

Senu =




− cos(δ) sin(ω)

sin(δ) cos(φ)− cos(δ) cos(ω) sin(φ)

cos(δ) cos(ω) cos(φ) + sin(δ) sin(φ)


 (3.19)

It is possible to further simplify the solar using more intermediate variables. The solar vector in

ENU reference system can be further simplified using a pair of variables α elevation angle and

azimuth angle A.

Azimuth angle A is defined as the clockwise angle between the north and the projection line

of the sun, elevation angle α is the angle between the sun and the ground. According to the
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Figure 3.6: Azimuth angle and elevation angle defined in ENU

definition of azimuth angle and elevation angle, the solar vector in ENU is:

Senu = Rz(−A)Rx(α)
[
0 1 0

]T

=




cos(A) sin(A) 0

− sin(A) cos(A) 0

0 0 1







1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)







0

1

0




=
[
cos(α) sin(A) cos(α) cos(A) sin(α)

]T

(3.20)

The solar vector has been derived using rotation matrix multiplication in the ENU frame. With

a different number of intermediate variables, the solar vector can be expressed in the following

equivalent ways.

Senu =




cos(α) sin(A)

cos(α) cos(A)

sin(α)




=




− cos(δ) sin(ω)

sin(δ) cos(φ)− cos(δ) cos(ω) sin(φ)

cos(δ) cos(ω) cos(φ) + sin(δ) sin(φ)




=




sin(λe) cos(ω) cos(ε)− cos(λe) sin(ω)

sin(λe)[sin(ε) cos(φ)− sin(ω) cos(ε) sin(φ)]− cos(λe) cos(ω) sin(φ)

cos(λe) cos(ω) cos(φ) + sin(λe)[sin(ω) cos(ε) cos(φ) + sin(ε) sin(φ)]




(3.21)

Next step is to find the direction of solar panel on renewable robots in ENU system. For a

stationary flat panel on the even surface, the normal vector of solar panel in the ENU coordinate

system is an upward unit vector:

nenu

[
0 0 1

]T
(3.22)
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If the solar panel has a surface tilt, the direction of the solar vector would change accordingly.

The surface rotates around up axis is surface azimuth, it is defined as the clockwise angle between

north as αs. Horizontal tilt βs is the clockwise angle between north-east plane.

North

Up

αs
Surface azimuth

βs

Horizontal tilt
East

Figure 3.7: Rotation of solar panel norm vector

Using matrix notation, such rotation can be represented as two transformations. First, the solar

vector is rotating counter-clockwise about the east axis (equivalent to x-axis) by an angle of βs.

Then a clockwise rotation about up axis (equivalent to z-axis) by an angle of αs.

Rx(βs)Rz(−αs) (3.23)

The pre-tilted panel vector on stationary robots is then,

nenu = Rx(βs)Ry(−αs)
[
0 0 1

]T

=




sin(αs) sin(βs)

cos(αs) sinβs)

cos(βs)




(3.24)

Solar angle according to Equation 3.2 in ENU system is,

cos(θs) =
Senu · nenu

‖Senu‖×‖nenu‖
(3.25)

notice that Senu and nenu are all unit vectors, Equation 3.25 is equivalent to:

cos(θs) = Senu · nenu (3.26)
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With intermediate variable defined in ENU system, the inner product of solar vector and panel

vector give the solar angle on a pre-tilted panel on stationary robots:

cos(θs) = Senu · nenu

=




cos(α) sin(A)

cos(α) cos(A)

sin(α)


 ·




sin(αs) sin(βs)

cos(αs) sinβs)

cos(βs)




= cos(α) cos(A) cos (αs) sin (βs) + cos(α) sin(A) sin (αs) sin (βs)

+ sin(α) cos (βs)

= cos(α) sin (βs) cos (A− αs) + sin(α) cos (βs)

(3.27)

For the moving robot undergoes a roll-pitch-yaw motion, the panel on the robot will experience

the same motion. The local motion can be also be represented as several rotations transform.

The effect of the motion of the robot in the ENU coordinate system on the normal of the solar

panel is:

n
′

enu = Rx(p)Ry(q)Rz(r)nenu (3.28)

where p is roll angle, q is pitch angle, r is yaw angle.

The solar angle on tilt moving surface of the solar panel is:

cos(θs) = Senu · n
′

enu

= Senu ·Rx(p)Ry(q)Rz(r)nenu

=




cos(α) sin(A)

cos(α) cos(A)

sin(α)


 ·




1 0 0

0 cos(p) − sin(p)

0 sin(p) cos(p)







cos(q) 0 sin(q)

0 1 0

− sin(q) 0 cos(q)







cos(r) − sin(r) 0

sin(r) cos(r) 0

0 0 1







sin(αs) sin(βs)

cos(αs) sinβs)

cos(βs)




= a cos(α) sin(A) + b cos(α) cos(A) + c sin(α)

(3.29)

where a, b, c are:

a = − cos(q) sin(r) cos (αs) sin (βs) + cos(q) cos(r) sin (αs) sin (βs) + sin(q) cos (βs)

b = cos (αs) sin (βs) (cos(p) cos(r)− sin(p) sin(q) sin(r)) + sin (αs) sin (βs) (sin(p) sin(q) cos(r)

+ cos(p) sin(r)) + sin(p)(− cos(q)) cos (βs)

c = cos (αs) sin (βs) (cos(p) sin(q) sin(r) + sin(p) cos(r)) + sin (αs) sin (βs) (sin(p) sin(r)

− cos(p) sin(q) cos(r)) + cos(p) cos(q) cos (βs)

In Equation 3.29, it can be found that solar angle depends on two factors: solar geometry and

panel geometry. Solar geometry is influenced by the solar position which is determined by the

location and the time of the robot. Panel geometry is a combination of solar panel pre-tilt and

local motion of the robots.

The same treatment can be applied to a surface tilt angle to study the influence of the local

motion to the diffused and reflected radiation on the panel. The surface tilt angle using vectorial

representation is the angle between the norm of the panel and the up direction of the earth plane
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[0, 0, 1]T . Another symbol Bs is employed here to differentiate surface tilt to the pre-tilt βs of a

stationary panel. Therefore, the surface tilt angle is:

cos(Bs) =
[
0 0 1

]T
· n′

enu

= sin (βs) (cos(p) sin(q) sin (r − αs) + sin(p) cos (r − αs)) + cos(p) cos(q) cos (βs)

(3.30)

In Equation 3.30, it can be found that both solar panel pre-tilt (αs, βs) and local motion have

an influence on the surface tilt angle.

In summary, the total solar radiation on the pre-tilt moving panel on the renewable robot is:

Gg = Gb +Gd +Gr

= Ib cos(θs) + Id
1 + cos(Bs)

2
+ Ibρ ·

1− cos(Bs)

2

(3.31)

where θs is the solar angle, Bs is the moving surface tilt of the solar panel,

cos(θs) = a cos(α) sin(A) + b cos(α) cos(A) + c sin(α) (3.32)

and

cos(Bs) = sin (βs) (cos(p) sin(q) sin (r − αs) + sin(p) cos (r − αs)) + cos(p) cos(q) cos (βs) .

(3.33)

Equation 3.31 presents the total solar radiation on a pre-tilted moving panel at any moment

with a given rotation angle. Renewable robots often experience a periodic local pitch, roll or

yaw motion. It is useful to find the averaged solar radiation instead of the instantaneous one.

The averaged solar angle is defined as:

cos(θ̄s) =
1

V

∫∫∫

V

cos(θs)dp dq dr (3.34)

The integral part of the averaged solar angle has a closed-form.

∫∫∫

V

cos(θs)dp dq dr = p cos(α) sin(A) sin(q) cos(r) cos (αs) sin (βs)

+ p cos(α) sin(A) sin(q) sin(r) sin (αs) sin (βs)

+ cos(α) cos(A) (q sin(p) sin (βs) sin (r − αs) + r cos(p) sin(q) cos (βs))

+ cos(q) (cos(α) (cos(A) cos(p) sin (βs) cos (r − αs)− pr sin(A) cos (βs))

+ sin(α) sin(p) sin (βs) cos (r − αs))
+ r sin(α) sin(p) sin(q) cos (βs)− q sin(α) cos(p) sin(r) cos (αs) sin (βs)

+ q sin(α) cos(p) cos(r) sin (αs) sin (βs)

(3.35)
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For a flat panel on renewable robot(αs = βs = 0), the integral part can be further simplified

into:

(3.36)
∫∫∫

cos(θs)dp dq dr

= −pr cos(α) sin(A) cos(q) + r cos(α) cos(A) cos(p) sin(q) + r sin(α) sin(p) sin(q)

If the robot experience a linear periodical motion with amplitude p0 in pitch, q0 in roll and r0

in yaw the averaged solar angle is

cos(θ̄s) =
1

2p0 · 2q0 · 2r0

∫ r0

−r0

∫ q0

−q0

∫ p0

−p0
cos(θs)dp dq dr

=
8 · r0 · sin(α) sin(p0) sin(q0)

2p0 · 2q0 · 2r0

=
sin(α) sin(p0) sin(q0)

p0 · q0

(3.37)

Equation 3.37 can be rearranged into

cos(θ̄s) =
sin(p0) sin(q0)

p0 · q0︸ ︷︷ ︸
local motion

· sin(α)︸ ︷︷ ︸
solar geometry

(3.38)

where the first part accounts for the local motion and the second part depends on the solar

geometry.

This section has present the total solar radiation on a pre-tilted moving panel as well as the

averaged solar angle of a non-tilted moving panel under periodical motion. The influence of

global motion in the solar radiation will be discussed in the next section.

3.1.2 Global motion on the solar panel

As the renewable robot undergoes a global motion, its location also changes. For every location

s on the earth surface, the total solar radiation consists of the beam and diffused components.

Ig(s) = Ib(s) + Id(s) cos[θz(s)] (3.39)

where Ib(s) is beam radiation (DHI) at location s and Id(s) is diffused radiation (DNI) at location

s.

The total solar radiation on the panel when global motion is included

Gg(s) = Ib(s) cos(θs) + Id(s)
1 + cos(Bs)

2
+ Ib(s)ρ ·

1− cos(Bs)

2
. (3.40)
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Global motion of the renewable robot influence the total solar radiation on the panel. During

long-distance travel, the geographical distribution of the solar energy resource also needs to be

considered in the power generation model. In practice, surface solar radiation is commonly pre-

sented by global horizontal irradiance (GHI). The beam and diffused components are decomposed

from the GHI using the diffused fraction.

Id(s) = Ig(s) · kd(s) (3.41)

where kd(s) is diffused fraction of the global solar radiation.

BRL solar radiation model correlates the diffused fraction to multiple parameters including, the

clearness index kt (hourly) and Kt (daily), apparent solar time and

kd(s) =
1

1 + exp(α0 + α1kt + β1AST + β2α+ β3KT + β4ψ)
(3.42)

where kt(s) = Ig(s)/1367 is clearness index, AST is apparent solar time, α is the solar angle,

KT is daily clearness index, ψ is the lag factor that

ψ =





kt−1 + kt+1

2
sunrise < t < sunset

kt+1 t = sunrise

kt−1 t = sunset

(3.43)

Parameters of α0 to β4 are taken from [50], where α0 = −5.32, α1 = 7.28, β1 = −0.03, β2 =

−0.0047, β3 = 1.72, β4 = 1.08.

The global motion of the renewable robot can then be integrated into the solar power generation

model at given location s. Solar power generation on the panel is

P [Gg(s), T (s)] = PSTC ·
Gg(s)

GSTC
· ηs(G′, T ′)As (3.44)

where G′ and T ′ are normalized solar radiation and temperature G′ = Gg/GSTC and T ′ = TSTC,

PSTC is unit area rated power at standard test condition (STC) measured under STC solar

radiation GSTC = 1000W/m2 and STC temperature TSTC = 25◦C, As is area of solar panel, Gg

is global solar radiation on the panel and T is PV module temperature. Solar panel efficiency

ηs is dependent on G′ and T ′

ηs(G
′, T ′) = 1 + k1 lnG′ + k2(lnG′)2 + T ′(k3 + k4 lnG′ + k5(lnG′)2) + k6T

′2 (3.45)

k1 to k6 are parameters taken from [39].

Solar power generation under both global and local motion is

P [Gg(s), T (s)] =
PSTC

GSTC
·Gg(s) · ηs(G′, T ′)As (3.46)
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where

Gg(s) = Ib(s) cos(θs) + Id(s)
1 + cos(Bs)

2
+ Ib(s)ρ ·

1− cos(Bs)

2
. (3.47)

3.1.3 Assessment

Equation 3.29 states the instantaneous solar angle for a panel under pitch, roll, and yaw motion

(p, q, r correspondingly) is:

cos(θs) = a cos(α) sin(A) + b cos(α) cos(A) + c sin(α)

where a, b, c are:

a = − cos(q) sin(r) cos (αs) sin (βs) + cos(q) cos(r) sin (αs) sin (βs) + sin(q) cos (βs)

b = cos (αs) sin (βs) (cos(p) cos(r)− sin(p) sin(q) sin(r)) + sin (αs) sin (βs) (sin(p) sin(q) cos(r)

+ cos(p) sin(r)) + sin(p)(− cos(q)) cos (βs)

c = cos (αs) sin (βs) (cos(p) sin(q) sin(r) + sin(p) cos(r)) + sin (αs) sin (βs) (sin(p) sin(r)

− cos(p) sin(q) cos(r)) + cos(p) cos(q) cos (βs)

For a flat solar panel without pre-tilt, αs = βs = 0 so a, b, c can be simplified into

a = sin q

b = − cos q sin p

c = cos p cos q

(3.48)

Solar angle for a flat panel on the renewable robot is then:

cos(θs) = sin(q) cos(α) sin(A)− cos(q) sin(p) cos(α) cos(A) + cos(p) cos(q) sin(α) (3.49)

This equation is a function of solar elevation angle, azimuth angle, pith motion, roll motion but

not yaw motion. That is, the yaw motion (about the north axis in the ENU coordinate system)

does not influence the solar angle.

This can be confirmed with the numerical simulation at solar elevation angle π/3 and solar

azimuth angle π/3. The result is shown in Figure 3.8.

The red dot in the figure shows the solar angle without any local motion p, q, r = 0. Solar angle

response differently on independent local pitch, roll and yaw motions. For pitch motion, there

is a 35 % decrease in the direct solar radiation on the solar panel at 0.5 rad. A 40 % decrease

on the instantaneous direct radiation on the panel can also be found at -0.5 rad roll angle. The

yaw motion, however, does not change the solar angle at all.

Averaged solar angle Equation 3.37 of flat panel under periodic motion states that

cos(θ̄s) =
sin(p0) sin(q0)

p0 · q0
· sin(α) (3.50)
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Figure 3.8: The influence of local motion on flat solar panel direct radiation

When there is coupling between pitch and roll motion, the averaged solar angle is depending on

the amplitude of the motion. Figure 3.9 shows the reduction on the direct solar radiation due

to the coupled pitch and roll motion.
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Figure 3.9: The influence of local motion on flat solar panel power radiation

The red dot shown at the bottom left of the figure is the stationary state of the panel without

any pitch and roll motions. For a coupled pitch and roll motion at 0.5 rad, there is approximately

10 % reduce on the direct solar radiation on the panel. A larger local motion will introduce a

greater reduction on the direct solar radiation on the panel, hence decrease the power generation

from direct radiation part.

The total radiation on a flat solar panel under periodical pitch, roll and yaw motions is:
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Gg = Gb +Gd +Gr

= Ib(s) cos(θs) + Id(s)
1 + cos(Bs)

2
+ Ib(s)ρ ·

1− cos(Bs)

2

(3.51)

The surface tilt of the flat panel would also decrease, resulting in a lower power generation from

diffused radiation.

cos(Bs) = cos(p) cos(q).

Direct and diffused radiations are major components in the total solar radiation on the panel.

Even there is an increase in the reflected solar radiation, the total power generation will be lower

due to the periodic motion.

Two numerical simulations have been done to study the influence of local motion on solar ra-

diation. The first case is clear sky situation that beam radiation Ib = 900W/m2 and diffuse

radiation Id = 100W/m2. Assuming the same solar elevation with azimuth angle and surface

albedo at 0.06, the total radiation in response to an individual motion angles are:

It can be confirmed that the total radiation on the solar panel is influenced by different radiation

components. Pitch and roll motions change the total solar radiation on the panel. Yaw motion

has no effect on the total solar radiation because both solar angles the surface tilt angle remain

the same. Each component of the radiation response to the pitch and roll motion differently.

Diffused radiation component is symmetric about the stationary point due to the isotropic sky

model assumption. Direct radiation is skewed to one direction because of the solar geometry in

this example.

Compare to the stationary case (shown as a red dot), the total radiation is decreased by 18 %

at extreme pitch angle at 0.5 rad, decreased by 38 % at extreme roll angle at −0.5 rad. Only 6

% of the variance was found in the diffused radiation component due to local motion. Reflected

radiation only accounts for 2 % in total radiation and doesn’t have significantly influence the

total radiation.

As have been mentioned before, the local motion has an influence on the power generation by

the effect the direct radiation on the panel. The cosine of solar angle when it is stationary at

an elevation angle π/3 and azimuth angle π/3 is 0.87 (shown as a red dot in the figure). If the

renewable robot pitch from −π/3 to π/3, the direct radiation on the panel would be reduced by

28%. If the renewable robot roll from π/3 to −π/3 the direct solar radiation on the panel would

be reduced by 39 %.

The second case is cloudy sky with beam radiation Ib = 100W/m2 and diffuse radiation Id =

300W/m2. The total radiation in response to the individual motion of mobile robots is shown

in Figure 3.11.

As for total radiation, in this case, diffused solar radiation is the major component. The variance

in the total radiation is less than that in the clear sky case. This is because the diffused component
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Figure 3.10: The influence of local motion radiation parts – clear sky

is not as sensitive to the pitch and roll motion. Periodic pitch and roll motions has less influence

on the total solar power generation in the cloudy sky situation.

Global motion of the renewable robot affects the power generation from the resource side. The

difference in the global solar radiation distribution is a dominant factor in the change of total

solar power generation while the robot undergoes a global motion. Several aspects are known to

be associated with solar radiation distribution. The total solar power generation is associated

with the route of the renewable robot and the impact of global motion has to be analysed on a

case by case basis. The location, time, cloud coverage and terrain have played a vital role in the

local solar radiation. Many of the factors are included in the data-driven simulation that the

variability of solar radiation distribution is accounted for by actual solar radiation data.
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Figure 3.11: The influence of local motion radiation parts – cloudy sky

3.2 Wind power system model

The wind turbine is another common renewable energy harvesting device that is also subjects to

the local and global motion of the robot. For the wind turbine installed on the robot, the wind

power model has to include the motion to estimate the wind power generation. In this section,

the influence of both local and global motions will be first presented. The wind power generation

model for moving REHS will then be introduced.

3.2.1 Local motion on the wind turbine

The power generation of the wind turbine is determined by the apparent wind velocity on the

moving renewable robots. As it is shown in Figure 3.12, apparent wind velocity v experienced

by the wind turbine is:

v = vt − vs (3.52)



Chapter 3 Moving REHS model 47

where vt is true wind velocity when static observed, vs is the velocity of the robot.

vs

vt

v

−vs
θw

F

Figure 3.12: Top view of wind turbine on a mobile robot

The motion of the robot creates a virtual wind as if there is a wind blow toward the turbine.

The virtual wind vs has the same magnitude but the opposite direction. Wind triangle shows

that the apparent wind is the true wind velocity plus the virtual wind −vs.

When the mobile robots experience a local motion, the apparent wind velocity will be influenced

as well. Because the translation motion of the mobile robots has been included in vs, the rotation

is the factor that needs to be explored here. Assuming the mobile robots is having pitch, roll

and yaw motion about their axis, the rotation transformation matrix is then:

R(p, q, r) = Rx(p)Ry(q)Rz(r) (3.53)

The rotation of the platform will transform the robots velocity as:

v′s = Rx(p)Ry(q)Rz(r)vs

= R(p, q, r)vs
(3.54)

During a period of time, the wind velocity can be assumed as constant.

v′ = vt − v′s (3.55)

The wind resistance on the wind turbine when subject to local rotation is then:

F′ =
1

2
ρCT (λ)Aw||v′||v′ (3.56)

It can be seen that the local motion would have influence on the wind resistance. The true

wind velocity can be written as vt = [vte, vtn, vtu] and the robot velocity can be written as

vs = [vse, vsn, vsu] to quantify the influence of local motion. The robot velocity under local
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rotation motion is:

v′s = R(p, q, r)vs

=




vse cos(q) cos(r)− vsn cos(q) sin(r) + vsu sin(q)

vse(sin(p) sin(q) cos(r) + cos(p) sin(r)) + vsn(cos(p) cos(r)− sin(p) sin(q) sin(r))− vsu sin(p) cos(q)

vse(sin(p) sin(r)− cos(p) sin(q) cos(r)) + vsn(cos(p) sin(q) sin(r) + sin(p) cos(r)) + vsu cos(p) cos(q)




T

(3.57)

The new apparent wind velocity when the robot is moving is:

v′ = vt −R(p, q, r)vs

=




−vse cos(q) cos(r) + vsn cos(q) sin(r)− vsu sin(q) + vte

−vse(sin(p) sin(q) cos(r) + cos(p) sin(r))− vsn(cos(p) cos(r)− sin(p) sin(q) sin(r)) + vsu sin(p) cos(q) + vtn

−vse(sin(p) sin(r)− cos(p) sin(q) cos(r))− vsn(cos(p) sin(q) sin(r) + sin(p) cos(r))− vsu cos(p) cos(q) + vtu




T

(3.58)

The local motion of the robot would result in a change of apparent wind velocity: its magnitude

is closely related to the power generation from the turbine and the direction will affect the

direction of the wind resistance. From power generation point of view, the averaged norm of the

wind velocity is useful to estimate the power generation of the wind turbine while it undergoes

a local motion.

||v̄′||= 1

Volume of V

∫∫∫

V

||v′||dp dq dr (3.59)

The square of an integral part is

∫∫∫

V

||v||2dp dq dr = [p(qrvte + rvsu cos(q)− sin(q)(vsn cos(r) + vse sin(r)))]2

+ [−pqrvtn + q sin(p)(vsn sin(r)− vse cos(r)) + cos(p)(vsn cos(q) cos(r)+

rvsu sin(q) + vse cos(q) sin(r))]2 + [pqrvtu + q cos(p)(vsn sin(r)− vse cos(r))−
sin(p)(vsn cos(q) cos(r) + rvsu sin(q) + vse cos(q) sin(r))]2

(3.60)

the average norm of apparent wind velocity is

||v̄′||=
√

1

2p0 · 2q0 · 2r0

∫ r0

−r0

∫ q0

−q0

∫ p0

−p0
||v||2dp dq dr (3.61)

Similarly, the averaged wind velocity in the vector can also be found using

v̄′ =
1

Volume of V

∫∫∫

V

vdp dq dr (3.62)



Chapter 3 Moving REHS model 49

for the robot undergoes a periodic linear location motion, the averaged apparent wind

v̄′ =
1

2p0 · 2q0 · 2r0

∫ r0

−r0

∫ q0

−q0

∫ p0

−p0
v′dp dq dr

=




q0r0vte − vse sin (q0) sin (r0)

q0r0
p0r0vtn − vsn sin (p0) sin (r0)

p0r0
p0q0vtu − vsu sin (p0) sin (q0)

p0q0




T

(3.63)

which can be decomposed into three parts:

v̄′ =
1

2p0 · 2q0 · 2r0

∫ r0

−r0

∫ q0

−q0

∫ p0

−p0
v′dp dq dr

=



vte

vtn

vtu




T

Wind resource

−




sin(q0) sin(r0)

q0r0
sin(p0) sin(r0)

p0r0
sin(p0) sin(q0)

p0q0




T

Local rotation

·
[
vse vsn vsu

]

Global translation

(3.64)

The first part is due to the difference in wind resource. Wind distribution is globally unevenly

distributed, and it will mostly be influenced by global motion.

The second part is associated with the local motion of the robot. A small periodic local rotation

at small p0, q0, r0 does not significantly change the apparent wind velocity. The local rotation

is negligible at small pitch-roll-yaw amplitude e.g. the term sin(q0) sin(r0)/q0r0 is close to one

when both q0 and r0 are small.

However, a large local rotation could have a dominant influence on the apparent wind velocity.

The wind turbine may not be suitable for those robots with large local rotation. As the net

power generation analysis will show the robot move faster than the wind speed does not have

any net gain in power generation. Wind turbine can’t respond quick enough to align itself to

the wind direction to maximise the power generation.

The last part related to the factor of the robot’s global speed. Its impact on the power generation

will be examined in the next section.

3.2.2 Global motion on the wind turbine

The wind turbine is assumed yaw aligned and the net power generation is modelled as a piecewise

function. Net wind power generation from the turbine is
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Pt(v) =





0 v < vcut−in

1
2ρCp(λ)v3Aw vcut−in ≤ v ≤ vrated

1
2ρCp(λ)v3

ratedAw vrated ≤ v ≤ vcut−off

0 v > vcut−off

(3.65)

where ρ is density of the air, Aw is wind swept area of the turbine, v is wind speed of apparent

wind v = ||vapparent||, Cp(λ) is the power coefficient that is function of tip speed ratio λ = ωR/v

and ω is the angular velocity of the wind turbine, R is radius of the turbine.

At low wind speed, the wind turbine does not generate any electricity because the moment

create by the turbine blade rotation is too low to overcome the inertia and the friction. The

minimum wind speed is the cut-in speed of the wind turbine. As the wind speed goes higher, the

wind turbine will start to harness electric power from the wind. When the wind speeds further

increases, the power generation stays the same the turbine controller will reduce the angular

velocity to protect the generator. This is rated speed of wind turbine that limits its maximum

power supply. If the wind speed is even higher, the wind turbine will brake to protect the wind

turbine elements. This is the maximum wind speed of the wind turbine. In this case, there will

be no power generation from the wind turbine.

Equation 3.64 shows that the global motion has contributed to the change in the apparent wind

velocity from the resource side. Apparent wind velocity is a confounding factor in the net wind

power generation. Robot’s motion in the global reference framework also leads to the alternation

in the wind power generation. When the wind turbine generating power from its rotation, there

is also a wind resistance introduced by the wind.

As Figure 3.12 shows wind resistance is collinear with the direction of the apparent wind. Wind

resistance for a stationary turbine is counterbalanced by its base. For renewable robot undergoes

a global motion, the resistance has to be balanced by the propulsion system to keep the speed

of the robot. The power discount due to wind resistance F at speed vs is

Pd = −F · vs/ηp

= −Fvs
ηp

cos(θw)
(3.66)

where θs is wind angle as it shown in Figure 3.12, ηp is propulsion efficiency.

Wind resistance on the turbine depends on the turbine characteristic and the apparent wind

velocity:

F =
1

2
ρCT (λ)Aw||v||v (3.67)

where ρ is density of the air, CT (λ) is thrust coefficient, λ is tip speed ratio, Aw is wind turbine

swept area, v is apparent wind speed. The direction of axial force is in align with the direction

of apparent wind.
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It is surprising that the power discount is not always negative that the robot has to consume

energy to balance the resistance. At certain wind angle, the power discount can be positive that

save the propulsion power for the robot.

For example, if the wind angle is 0 then the apparent wind is collinear with robot velocity. The

discount power Pd help to reduce propulsion power consumption. Another example is at a wind

angle of π, the apparent wind is the opposite of the mobile velocity. The discount power will

increase the propulsion power consumption due to wind resistance.

The total discounted power generation Pw from a wind turbine is

Pw = Pt(v)− Pd(v,vs) (3.68)

where Pt is net power generation, Pd is power generation discount, v is apparent wind and vs is

robot velocity.

Power discount due to the global motion of the renewable robot is another factor to consider in

the wind power model. The complex interaction between the wind and the robot is simplified as

a discounted power model. It is clear that for renewable robot with a much higher global speed

than the true wind vs >> vt, the apparent wind is dominant by the virtual wind generated by

its motion. The actual discounted power generation needs to be further studied to understand

the net gain of installing a wind turbine on those robots.

When the thrust coefficient and power coefficient of the turbine is not provided by the manufac-

turer, the momentum theory is used to figure out those coefficients in Equation 3.68.

v1A1

v2A2

v3A3

p+2 p−2p1 p3

Figure 3.13: Idealised wind turbine

The momentum theory abstract the wind turbine as an actuator disc shown as a blue disk in

Figure 3.13. The flow is assumed to be incompressible, steady, ideal fluid and the actuator disc

extracts energy from the flow. Velocity and pressure at upstream location, near actuator disc

and at far end is v1, p1, v2, p2 and v3, p3 correspondingly.

The actuator disc creates a discontinuity before and after the flow, the change of momentum is

the source for the power generation. The change of momentum can be found using the pressure
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drop between pressure before disc p+
2 and after disc p−2 . According to Bernoulli’s equation, the

pressure before and after rotation disc are:

p1 +
1

2
ρv2

1 = p+
2 +

1

2
ρv2

2 (3.69)

p−2 +
1

2
ρv2

2 = p3 +
1

2
ρv2

3 (3.70)

since the upstream location and the far end are distant from the rotation disc, pressure at those

two places is the same as the atmosphere pressure p1 = p3. The pressure drop before and after

the disc is then

∆p = p+
2 − p−2 (3.71)

Subtract Equation 3.69 and Equation 3.70, the pressure drop is then

∆p =
1

2
ρ(v2

1 − v2
3) (3.72)

Also the conservative of mass tell us

∆p = ρv2(v1 − v3) (3.73)

from Equation 3.72 and Equation 3.73, the velocity at disc is then

v2 =
v1 + v3

2
(3.74)

however, we only know the relationship between v2 and the average of v1 and v3, the axial

induction factor a can be defined as

a =
v1 − v
v1

(3.75)

wind speed at rotation disc is then

v2 = (1− a)v1 (3.76)

The thrust acting on the disc is

T = ∆pA2 (3.77)

and the power extracted from the wind is

P = Tv2

= ∆pA2v2

(3.78)

with axial induction factor a the thrust and extracted power is then

T = 2ρA2v
2
1a(1− a) (3.79)

P = 2ρA2v
3
1a(1− a)2 (3.80)

notice that v1 is wind speed of upstream and A2 is swept area of wind turbine. If we let v = v2

and Aw = A, the thrust coefficient and power coefficient are

CT = T/
1

2
ρAv2 = 4a(1− a) (3.81)

CP = P/
1

2
ρAv3 = 4a(1− a)2 (3.82)
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Figure 3.14: Power and thrust coefficient of idealised turbine

The thrust coefficient and power extraction coefficient as a function of the axial induction factor

is shown in Figure 3.14.

The power coefficient is lower than the thrust coefficient at the same axial induction factor.

Maximum power coefficient 16/27 is found at axial induction factor a = 1/3. The maximum

power coefficient is also known as the Betz limit of the wind turbine. No wind turbine can

capture more kinetic energy from the wind higher than this limit. The thrust coefficient of the

wind turbine has a maximum when a = 1/2.

3.2.3 Assessment

The discounted wind power generation due to local and global motion of the renewable robot is

Pw = Pt(v
′) + Pd(v

′,vs)

=
1

2
ρCpAw||v′||3+

F · vs
ηp

=
1

2
ρCpAw||v′||3+

1

2ηp
ρCtAw||v

′ ||v′ · vs

(3.83)

where v′ is apparent wind velocity under local motion. The averaged apparent wind under small

periodic local rotation amplitude is

v̄′ =
1

2p0 · 2q0 · 2r0

∫ r0

−r0

∫ q0

−q0

∫ p0

−p0
v′dp dq dr

≈
[
vte vtn vtu

]T
− I

[
vse vsn vsu

]T

= vt − vs

(3.84)
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Compare the net wind turbine power generation Pt and the wind resistance discount Pd

Pt
Pd

=
ρCpAw||v′||3

ρCtAw||v′ ||v′ · vs/ηp

= ηp
Cp
Ct
· ||v

′ ||2
v′ · vs

(3.85)

for an idealised wind turbine, both power and thrust coefficient can be written as function of

axial induction factor a:

Pt
Pd

= ηp
4a(1− a)2

4a(1− a)
· ||v

′ ||2
v′ · vs

= ηp(1− a)
||v′ ||2
v′ · vs

= ηp(1− a)
||vt − vs||2

(vt − vs) · vs
.

(3.86)

Commonly, the propulsion efficiency ηp is smaller than 1 and the ratio between power and thrust

coefficient is less than 1 when the turbine is rotating. The relative speed and direction between

true wind and robot will determine if there is a net gain to install a wind turbine.

0

π
2

π

3π
2

vs vt

Figure 3.15: Relative wind angle on moving robot

Assume the true wind is angled θ from the north, the vector

vt =
[
vw sin(θ) −vw cos(θ) 0

]T
(3.87)

represents the true wind vw.

The net to discount power ratio can be demonstrated in three examples. A renewable robot

moving northward at a global speed of 3 m/s. True wind at a lower (1 m/s), the same (3 m/s)

and a higher (10 m/s) speed is coming from various angles (shown in Figure 3.15). The swept

area of the wind turbine is 1m2.

Lower wind speed
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For true wind speed of 1 m/s, the cut-in speed of the wind turbine is temporally neglected to

study the power generation potential at low wind speed. The discounted power generation on

various true wind angle is shown in Figure 3.16.
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Figure 3.16: Discount wind power generation when vt < vs

The result seems counter intuitive that the discounted power generation is negative. Figure 3.16

shows the net wind power generation and resistance discount at two induction factor a = 1/3

and a = 1/2. Net wind power generation in both cases is positive on all wind angle. However,

the resistance discount is higher than the net wind power generation. When the wind resistance

is included, the renewable robot consumes more energy in propulsion than the wind turbine

generated. This situation is worst in headwind condition where the wind comes from the north.

Same wind speed

At true wind speed of 3 m/s, the discounted power generation is shown in Figure 3.17.
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Figure 3.17: Discount wind power generation when vt = vs

A wind turbine generates more power from a higher true wind speed but also suffer from a larger

resistance. In the headwind condition, the resistance discount is slightly larger than the net

power generation. Discounted power generation in both cases is negative due to the resistance.

At wind angle π, the true wind has the same speed and direction as the robot. Apparent is

cancelled out and there is no wind power generation and resistance discount.
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Higher wind speed

At higher true wind speed of 10 m/s, the discounted power supply at two axial induction factor

is shown in Figure 3.18.
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Figure 3.18: Discount wind power generation when vt > vs

Discounted power generation on both axial induction factors is positive. Net power generation

can compensate for the wind resistance discounted due to the wind drag. Power generation curve

shows the resistance discount is positive between true wind angle 3π/4 to π at a = 1/3. The

apparent wind is in the range is in the direction of robot forward velocity. Propulsion power is

saved as the resistance of the wind could help to drive the robot.

However, this is a virtual power that the resistance contribution to the propulsion only save

power but does not generate any actual power. This explains why the wind turbine has a higher

discounted power generation when the axial induction factor is maximised for thrust a = 1/2

compared to a = 1/3 between true wind 3π/4 to π. When resistance discount is larger, the

potential power saving to the robot propulsion will be greater as well.

In the power system model, the electrical power generation of the wind turbine would always

be the net power generation and the potential energy-saving or additional resistance spending

is discounted in the propulsion system. This is not a limitation but rather an advantage of this

model. The actual benefit of installing a wind turbine can be evaluated without a propulsion

model in great detail.

In summary, the global and local motions all have their influence on the wind power generation.

The local motion changes the local wind speed due to its rotation. Such impact is minimal when

the amplitude of the local rotation is small. For robots with large local motion, the change rate

of the wind speed also depends on the speed of the robot.

Global motion, on the other hand, has an impact on the wind speed from the resource side.

Another important factor is the global motion requires the robot to balance the resistance of the

wind turbine while keeping the speed and direction of the robot. This will introduce additional

resistance spending or potential energy saving based on the direction and relative speed of the

wind.
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3.3 Demand load model

Demand load is the total energy consumption of the renewable robot. The operation of the

robot requires an electrical power supply to the navigation and control, communication, sensor

and propulsion systems. In this section, the demand load model of the renewable robot will be

introduced.

A novel demand load model will be presented in this section. The conventional propulsion and

hotel load based method is a convenient way to estimate the total power consumption based on

the role of the robot. A novel critical and performance load based method introduce the concept

of safety level in the power consumption model.

3.3.1 Propulsion and hotel load

Propulsion and hotel load classification is the classical power consumption model. The propulsion

load is the power consumed to drive the renewable robot. At the speed of v, the propulsion load

of the robot is:

Pprop = RT · vs/ηp (3.88)

where RT is the propulsion resistance of the robot and ηp is electric propulsion efficiency. The

model of propulsion resistance is domain-specific to each type of robots that depends on the

propulsion mechanism, actuator characteristic and electric driving system.

If the wind turbine is used, the propulsion power discount would also need to be included.

Additional resistance that balanced by the propulsion system is

Pd =
1

2ηp
ρCtAw||v||v · vs (3.89)

where ρ is density of the air, Ct is thrust coefficient, Aw is wind turbine swept area, and v is

apparent wind.

The wind power discount would spend or save energy for the propulsion system depending on

the relative speed and direction of the wind. However, the minimal propulsion power after

discount shouldn’t smaller than zero if there are no regenerative devices in the system. The

total discounted propulsion power consumption if the wind turbine is installed is:

max{RT · vs/ηp − Pd, 0} (3.90)

The hotel load is the total power consumption of all other systems than the propulsion system.

These systems support the navigation, control and sensory functionality of the renewable robot.

and operate on their own duty cycle.

pi = pi,min + (pi,norm − pi,min)di (3.91)
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where pi,min is stand-by power consumption at idle state, pi,norm is power consumption at norm

operating state, di ∈ [0, 1] is duty cycle.

Hotel load of all sub-systems is:

Photel =

j∑

i=0

pi

= p1,min + (p1,norm − p1,min)d1 + · · ·+ pj,min + (pj,norm − pj,min)dj

= pmin + (pnorm − pmin)d

(3.92)

where pmin = [p1,min, p2,min, · · · , pj,min] is the minimal power consumption of each subsystem,

pnorm = [p1,norm, p2,norm, ·, pj,norm] and d = [d1, d2, · · · , dj ] are normal power consumption and

duty cycle of each sub-system.

Let

P =

[
pmin

pnorm

]
(3.93)

and

D =
[
I− d d

]
(3.94)

the hotel load of renewable robot is

Photel = P ·D. (3.95)

Demand load of a renewable robot consists of both propulsion and hotel load.

Pl = Pprop + Photel

= max{RT · vs/ηp − Pd, 0}+ P ·D
(3.96)

3.3.2 Critical and performance-related load

Critical and performance load method model the power consumption as critical and performance-

related parts:

Pl = Pc + Pp (3.97)

where Pc is critical load and Pp is performance-related load.

The critical load is the minimal level of power supply for the safe operation of the renewable

robot. Depending on the type of robot, this may include the safe-critical electronic devices and

the propulsion power to manoeuvre the robot.
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The critical load consists of safe-critical electronic devices that are always on. These devices are

on the full duty cycle

Photel,c = Pc,hotelDc,hotel

= Pc

[
I− d d

]

=

[
pmin,c

pnorm,c

] [
0 I

]

= pnorm,c

(3.98)

Critical load for safe manoeuvre requires a minimum speed of vc,

Pprop,c = RT · vc/ηp (3.99)

where η is the propulsion efficiency.

The performance-related load

Photel,p = PpDp (3.100)

where Dp is adjustable performance related load duty cycle.

Performance-related load also include the increase in the speed of the robot.

Pprop,p = RT · vs/ηp (3.101)

where vs is the speed of robot.

Total demand load of a renewable robot consists of critical load and performance-related load:

Pl = Pc + Pp

= [RT · vc + pnorm,c] + [RT · vs + PpDp]
(3.102)

If the wind turbine is installed, the discounted total demand load is

Pl = Pc + Pp

= max{RT · vc +RT · vs − Pd, 0}+ pnorm,c + PpDp

(3.103)

An relationship between two models can be found in Figure 3.19.

Conventional hotel and propulsion load model is a deterministic model that can be quickly

estimated. This model is widely used for the initial design of the REHS as it is computationally

inexpensive to optimise the configuration. Critical load model is a dynamic model that the

selection of the duty cycle and robot speed depends on the power generation that is highly

variable in nature. The critical load model is powerful to design a safe management strategy

after an REHS configuration is found. The critical load is the minimal level of power supply

to guarantee for the robot. While the performance-related is adjustable according to energy

availability.
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Figure 3.19: The relationship between demand load components

3.4 Battery and control model

Battery and control module is at the centre of the REHS connecting the power generation and

demand load. As it is shown in Figure 3.20, the battery and control model integrates a finite

state machine based battery energy model and a power management unit.

BatteryPower
management

P (t)

Pl(t)

U(t) S(t)Power
generator

Demand
load

Figure 3.20: The power flow in battery model (dashed part as model)

The power generated from renewable energy harvesting devices P (t) is the input and actual

supplied power S(t) is the output of the system. When generated power is received by the

battery system, the power management system decides on the planned power usage U(t) based

on the power generation, the demand load requirement Pl(t) and optionally the state of the

battery. The battery energy model then calculates the power supply depending on the energy

availability and planned energy usage.

The battery energy model is a finite state machine with three states: charge, discharge and

floating. The state is determined by the relationship between power generation P (t) and planned

power usage U(t). The state transfer is shown in Figure 3.21.

When the power generation is greater than the planned power usage, if the battery isn’t full the

excessive power will be stored in the battery, otherwise, it will enter floating model that excessive

energy will be wasted. When the power generation is less than the planned power usage, if the

battery has energy storage higher than the depth of discharge, the battery will discharge to meet

the difference between the user demand and the power generation. The battery will not discharge

if the battery after discharge will be lower than the depth of discharge. This is to protect the



Chapter 3 Moving REHS model 61
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Figure 3.21: Finite state battery model

battery from being over-discharged. In each state, the remaining energy in the battery can be

calculated from the power generation, planned power usage and the battery self-discharge rate.

E(t+ ∆T ) =





E(t)(1− σ) + ηin[P (t)− U(t)] ·∆T charge

E(t)(1− σ) + [U(t)−P (t)]
ηout

·∆T discharge

E(t)(1− σ) floating

(3.104)

where E(t) is energy remains in the battery, P (t) is renewable power generation, U(t) is load

demand, σ is self-discharge rate of batteries, ∆T is time step in the simulation. ηin is battery

charging efficiency, ηout is battery discharge efficiency. The state of charge SOC for a battery

at capacity B is often used to indicate the level of charge of the battery. SOC(t) = E(t)/B

Using the concept of actual power supply S(t),

S(t) =





U(t) P (t) ≥ U(t)

U(t) P (t) < U(t) and E(t) ≥ (1−DOD) ·B
0 P (t) < U(t) and E(t) < (1−DOD) ·B

(3.105)

where DOD is depth of discharge. A naive power management strategy can simply plan the

power usage as the demand load requirement U(t) = Pl(t). At the time when the power gener-

ation is greater than the planned power usage, the power requirement can be then met by the

system. In the case when power generation is less than the demand load requirement and the

energy in the battery is higher than the lowest capacity defined by the depth of discharge, the

planned power usage can still be satisfied through battery discharge. The lost power supply will

happen if the power generation is less than the planned power usage and the battery could not

make up the difference. Such an event will cause an operational problem for the mobile robot

e.g, performance degradation, service discontinuity and even the loss of autonomy.

The power supply S(t) could bypass the battery storage and directly reach the demand load. It

is also reasonable to discharge the battery to supply power while the generation is in a shortage.

However, in the case when the battery is undercharged, the battery system would not be able
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to supply any power to the system. This is a lost power supply event and the total fraction of

time that power supply is lost is defined as lost power supply probability (LPSP).

LPSP = P[S(t) < Pl(t)]

=
1

Tt

Tt∑

t=0

[S(t) < Pl(t)]
(3.106)

In the system capacity planning of REHS, one of the objectives is to design a system at lower

lost power supply probability. This is often involved with the selection of appropriate renewable

energy generator and the capacity of the battery. A battery with small capacity couldn’t store

enough energy that can be used in the future. The battery that is too big will increase the cost

and the size of the renewable energy system which is not ideal for a mobile robot with limited

space. How to find a good trade-off between LPSP, size, and cost of the battery system is the

topic that will be discussed in the next chapter.

3.5 Moving REHS simulation

The reliability and economy performance of the power system can be simulated by the moving

REHS model. In the previous section, the impact of global and local motions of renewable

robot has been analysed. The moving REHS simulation needs to consider both factors for the

optimisation process.

During the renewable robots’ long-term operation, it will travel a long-distance to finish its duty.

The locations that the robot have to visit can be defined as the route.

R := [s1, s2, · · · , sn] (3.107)

where s1 to sn are way points.

Knowing only the route is not enough to simulate moving REHS because both location and the

time matters to REHS operation. For example, the solar power generation Ps = Ps(s, t, As) does

not only depending on the area of solar panel As, but also influenced both by s, which is the

location of the renewable robot, and t that is the time at that location.

It is not uncommon to find the typical working scenario that renewable robots have to reach

each waypoint timely. In the design stage, the route can be planned as a mission that includes

the arrival time of each waypoint. The concept called the mission of the renewable robot:

M := [(s1, t1), (s2, t2), · · · , (sn, tn)] (3.108)

where t1 to tn are the planned arrival time for each corresponding way points.
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3.5.1 Power generation simulation

During the mission, for the configuration with solar panel area As and wind turbine size Aw,

the total power generation from both sources is:

P = Ps(s, t, As) + Pw(s, t, Aw) (3.109)

where Ps is solar power generation and Pw is wind power generation.

For the solar panel at the area of As, the power generation is:

Ps = Ps[G(s, t), T (s, t), As]

= PSTC ·
Gg(s, t)

GSTC
· ηs(G,T )As

(3.110)

where G is global horizontal irradiance (GHI), Gg is the total solar radiation incident on the

panel and T is ambient temperature, PSTC and GSTC are rated power and solar radiation at

standard test condition (STC) correspondingly.

Total solar radiation incident on the panel is Gg calculated by

Gg(s, t) = Ib(s, t) cos(Θ̄s) + Id(s, t)
1 + cos(B̄s)

2
+ Ib(s, t)ρ ·

1− cos(B̄s)

2
(3.111)

where B̄s is averaged solar angle considering the local motion of the renewable robot, Ib is beam

radiation, Id is diffused radiation, ρ is surface albedo.

Beam and diffused solar radiation are decomposed from the GHI. First the clearness index kt is

calculated as:

kt(s, t) =
Ig(s, t)

TOA(s, t) cos[θz(s, t)]
(3.112)

where Ig is GHI, TOA is the extraterrestrial global irradiance, θz(s, t) is zenith angle of the solar

panel.

Diffused fraction kd = Id(s, t)/Ig(s, t) then can be estimated from the clearness index kt. The

beam and direct radiation on the moving solar panel is then:

Ib(s, t) = Ig(s, t) · kd (3.113)

and

Id(s, t) = Ig(s, t) · (1− kd). (3.114)

For wind turbines at a size of Aw, the power generations are:

Pt(v) =
1

2
ρwCp(λ)v3(s, t) (3.115)

where ρw is the density of the air, Cp is wind turbine coefficient, v is apparent wind speed.
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Wind turbine resistance has to be account as propulsion load.

Pd(v,vs) =
1

2ηp
ρwCt(λ)Awv2(s, t)vs(s, t) (3.116)

where Ct the thrust coefficient of the wind turbine, ηp is electrical to propulsion efficiency, and

vs is the velocity of renewable robot.

The velocity of the renewable robot can be inferred from the mission M, the renewable robot

velocity between i-th leg of the waypoint is:

vi =
si+1 − si
ti+1 − ti

, ∀(si, ti) ∈M (3.117)

The apparent wind velocity could be calculated from robot velocity and true wind velocity:

v = vt − vs (3.118)

In this simulation, the spatial-temporal data on wind and solar energy resources are required.

For the solar power generation simulation, the temperature T (s, t), GHI Ig(s, t) and TOA(s, t)

are needed. The influence of local motion is included in the averaged solar angle on the moving

panel. True wind velocity data vt is necessary to simulate the wind power generation. Local

motion effect in wind power generation is considered as a power generation discount. Those

spatial-temporal wind and solar resources data also take the global motion into account.

3.5.2 Demand load simulation

Demand load is modelled by the propulsion and hotel classification at the design stage.

Pl = Pprop(s, t) + Photel(D) (3.119)

where v is the speed of the renewable robot and D is the design duty cycle.

For a renewable robot, the propulsion power can be estimated from the resistance and the speed

of the robot v inferred from the mission M.

vi =
si+1 − si
ti+1 − ti

, ∀(si, ti) ∈M (3.120)

Spatial-temporal demand load of the renewable robot is

Pl = Pprop(s, t) + Photel(D)

= RT (s, t) · vi/ηp + PD(s, t)
(3.121)
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where P is minimal and normal power consumption of the hotel load devices, D(s, t) is an

realisation of the duty cycle

D(s, t) ∼ N (µ,Σ) (3.122)

where µ = DT and Σ is covariance matrix of hotel load.

The demand load could also be modelled as critical and performance-related parts

Pl = Pc + Pp

= [RT · vc + pnorm,c] + [RT · vs + PpDp]
(3.123)

Compare to the critical and performance load model, the duty cycle of the performance-related

load has to be dynamically determined by the energy availability. It is more computationally

inexpensive to simulate the demand load with a semi-deterministic demand load model. Due to

this reason, in the design stage, the demand load is modelled after propulsion and hotel loads.

The critical and performance load model is used in the power management system where the

renewable robot plan power usage.

3.5.3 Battery and control simulation

For the mission, M, both power generation and demand load could be estimated on a given

configuration As and Aw. The battery energy simulation is now at the centre of the REHS. On

one hand, it receives the power generated from renewable energy sources. On the other hand,

the battery system plans the use of energy and dispatch it to the demand load. Many important

design objectives can be quantitatively assessed by simulating the battery system e.g. the power

supply reliability and the capital cost of the renewable energy devices.

The power generation P (s, t) and demand load profile Pl(s, t) will increase monotonically on

time t. This allows the simulation on the battery system on every time steps.

BatteryP (t)

Pl(t)

U(t) S(t)Power
generator

Demand
load

Figure 3.22: REHS battery energy simulation

The battery system is shown as dashed area in Figure 3.22. The power generated from renewable

sources received by the battery system and it plans the power usage U(t) internally. In the design

of REHS, a simple demand load follow (DLF) power strategy was applied. This strategy simply

plans the power usage U(t) the same as demand load Pl(t).
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The actual power supply S(t) depends on the energy left in the battery and the power generation

at that time. The rule to determine the power supply S(t) was modelled as a finite state machine

in section 3.4. For a given capacity of the battery B, both energy in the battery E(t) and

the actual power supply S(t) could be simulated. Battery and control simulation is shown in

algorithm 1.

foreach t in Tt do

if U(t) ≤ P(t) ;

then

S(t) = U(t);

Battery charge P (t)− U(t);

else

if E(t) ≥ (1− SOC) ·B then

Battery discharge U(t)− P (t);

S(t) = U(t)

else

S(t) = 0 ;

Battery charge P (t);

end

end

end
Algorithm 1: Battery finite state machine

Power supply reliability

As a result of the simulation, the fraction of time that demand load is not supplied can be

measured.

LPSP = P[S(t) < Pl(t)]

=
1

Tt

Tt∑

t=0

[S(t)− Pl(t) < 0]

This index is called lost power supply probability (LPSP) and often used to represent the relia-

bility of the power supply. In the REHS design, one of the goals is to minimise the LPSP.

REHS capital cost

Another goal in the REHS design is to find an economic configuration. The capital cost of REHS

can be modelled as:

C = cw ·Aw + cs ·As + cb ·B (3.124)

where cw is unit price cost of wind turbine, cs is unit price cost of solar panel and cb is unit price

cost of battery.
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3.6 Summary

In this chapter, the REHS model for mobile robots have been introduced. This novel moving

REHS model is developed to include the motion of the robot in the power system. The motion

of the robot is decomposed into global and local components. Each component has shown an

influence on both power generation and demand load in the power system. An assessment on

the solar and wind power generation shows some quite surprising result.

First of all, the global motion of the robot is found to influence the power generation from the

resources side. As the renewable energy resource is unevenly distributed both temporally and

spatially, the power generation from wind and solar resources changes as the robot moves. Since

the time and location of robot both determine the power generation, the power system have to

include the global motion in the model.

Secondly, the local motion impact the solar and wind power generation differently. Solar power

generation is subject to the change in the solar angle between the panel and the sun. The solar

angle would change as the orientation of the panel move. As a result, the total solar radiation

on the panel as the irradiance components change with the solar angle. For a solar panel with

a flat initial installation orientation, the yaw motion of the robot has no influence on its power

generation. However, the pitch and roll motion of the robot would increase or decrease the power

generation depending on the solar position and the amplitude of the motion. Further assessment

on the solar power generation under the local motion shows how periodical pitch and roll motion

would impact the power generation. When the solar panel is subject to an periodic pitch and roll

motion around 23 degrees, there will 10 percent loss in the solar power generation on average.

A larger motion amplitude would result a higher loss in solar power generation. Instantaneous

power generation may reduce by 39 % on a clear day and 13 % on a cloudy day.

The local motion on the wind power generation study yields a more surprising result. Depending

on the wind direction, the net wind power generation may be negative due to the wind turbine

resistance. The wind resistance of the turbine has to be counterbalanced to keep the location

and the speed of the robot. This would require the propulsion system to fight against the wind

resistance. If the direction of wind is the opposite to the velocity of the robot, additional power

is consumed in propulsion system. However, wind in the same direction to the robot’s velocity

could also save some propulsion power to increase the net power generation. The assessment

shows that due to the local motion of the robot, the wind power generation is subject to both

wind and robot velocity. For robot’s applications with a speed much higher than the wind speed,

there is no benefit in using wind turbine at all. To take the most advantages of the wind power,

the speed and the direction of robot are important.

Demand load model, on the other hand, is also found influenced by the robot’s global and local

motions. Comparing to the propulsion load, the hotel load of the mobile robot is less sensitive to

the motion of the robot. This is due to the hotel load of the robot are mostly electronic devices

for the control, communication and sensory systems. Power consumption of these systems are

largely determined by the duty cycle.

There are many factors that influence the propulsion load of the mobile robot e.g. type of robot,

propulsion mechanism and efficiency. Moving REHS model includes a generic propulsion load

in the power system. While the propulsion power is subject to the change in environment, the



68 Chapter 3 Moving REHS model

motion of the robot also would impact the propulsion load. However, because the propulsion

system is specific to the robot, the motion influence has to be accounted on an application basis.

In general, the moving REHS model includes the motion of the robot in the power system. This

model itself provides an insight on the moving REHS. A data-driven simulation approach is also

developed for a numerical study on the power system. Data-driven approach using the historical

meteorological data to simulate the performance of the REHS. This is a foundation to the model

and the design of REHS in next chapter.



Chapter 4

REHS configuration design

In this chapter, the REHS configuration design methods are presented. The first method is

the design feasibility exploration that investigates the best possible reliability and economic

performance of the REHS under the size constraint. As a design exploration method, it also

shows the relationship between the design objectives and the constraint. From the information

given by the design feasibility exploration, it can be decided whether it is possible to design the

REHS for a required performance level.

The second method is the optimal REHS configuration optimisation that recommend a design

with the best compromise between the cost and reliability of the system. Together with the

design exploration, the REHS configuration design method will allow the power system design

for a size constraint moving system.

In the REHS configuration design, the objective of the cost is to reduce the device capital.

A more cost-effective REHS configuration improve the economic performance of the renewable

robot. Two methods that will presented in this chapter are complimentary to each other. The

feasibility, optimality and the long term performance of the design optimisation method will also

be studied in several design cases.

4.1 REHS configuration design problem formulation

4.1.1 Design objectives and constraints

In the REHS configuration design, the most important factors to consider are the cost and the

reliability of the system. For a given mission, those two design objectives are determined by the

REHS configuration. An REHS configuration consists of the area of solar panel As, swept area

of wind turbine Aw and capacity of the battery B.

Reliability of the REHS has to be simulated from a given mission. For a mission, M, the power

generation and the demand load can be estimated using the moving REHS model and data-driven

simulation approach. By comparing the power generation and demand load, the reliability index

LPSP is available to the optimisation.

69
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LPSP = P[S(t) < Pl(t)]

=
1

Tt

Tt∑

t=0

[S(t)− Pl(t) < 0]
(4.1)

In the REHS configuration, the design objective on the reliability is to optimise the LPSP to

an expected level. For example, fully autonomous operation of the renewable robot requires the

power system to support the demand load during the whole mission. The reliability requirement,

in this case, is a zero LPSP for the mission.

Cost of the REHS C is a function of the size of solar panel, wind turbine and capacity of the

battery. The capital cost of renewable energy devices instead of maintenance cost is selected

because the renewable robot is supposed to operate fully autonomous during the mission. The

capital cost of the REHS is

C = cw ·Aw + cs ·As + cb ·B (4.2)

where cw is unit cost of wind turbine, cs is unit price cost of solar panel and cb is unit price cost

of battery.

Constraints on the REHS configuration are the size limits of each renewable energy harvesting

devices (include energy storage devices). The size constraint on those devices is due to the

limited space on the renewable robot.

0 ≤ Aw ≤ Āw
0 ≤ As ≤ Ās
0 ≤ B ≤ B̄

(4.3)

where Āw is the maximum swept area of the wind turbine, Ās is maximum size of solar panel,

and B̄ is the maximum capacity of the battery.

The size limits are hard constraints that violating REHS configurations can not physically in-

stalled on the robot. Given the size constraint, there are two classes of the optimisation problem

to be solved to find a suitable REHS configuration.

The problem is the feasibility problem that searches the design space to find whether it reaches

the design goal under the size constraint. On top of that, the second class of the problem is an

optimisation problem in selecting the best configuration among a set of configurations satisfied

the design goal. Two classes of optimisation problem will be introduced in the next section.

4.1.2 Design feasibility problem

In the REHS configuration design, the power system is expected to reach a certain level of

reliability and cost performance. However, the capital cost of the REHS (C) and the LPSP are



Chapter 4 REHS configuration design 71

competing objectives in the REHS configuration design. An increase in reliability performance

will also increase the device cost. REHS configuration has to compromise between the cost and

the reliability to reach design objectives. Furthermore, hard constraints on the size of RHES is

a crucial limiting factor to a feasible REHS configuration design.

In order to find the feasible reliability and cost performance that is achievable under the size

constraint, a constraint multiple objectives optimisation methods are employed. Both reliability

and cost of the REHS configuration are optimised against each other.

minimize
Aw,As,B

f1 = C(Aw, As, B)

f2 = LPSP (Aw, As, B)

subject to 0 ≤ Aw ≤ Āw
0 ≤ As ≤ Ās
0 ≤ B ≤ B̄

(4.4)

where C is device cost function, LPSP is lost power supply probability.

Result of the multiple objectives optimisations is REHS configuration Pareto front solutions that

no objective could be further improved without sacrificing another objective. One extreme case

is the most cost-effective REHS configuration at the minimal f1. This solution will suggest a

zero cost REHS configuration by not using any REHS devices at all. Due to the design trade-off

between cost and reliability, the reliability index is also expected to be high for this configuration.

Compare to the most-effective configuration, the design feasibility problem more interested in

finding a more reliable REHS configuration. The most reliable REHS configuration has a minimal

f2 in Pareto front solutions.

LPSPmin = min f2 (4.5)

The feasibility problem address the fundamental REHS configuration planning challenge that

whether is possible to design a system to reach the reliability goal.

min f2 = LPSPmin ≤ LPSPgoal (4.6)

Among a set of REHS configurations, REHS configurations with a LPSPmin = 0 are particularly

attractive to the renewable robot. At zero LPSP, the REHS configuration can fully support the

renewable robot’s autonomous operation.

If the lowest LPSP is higher than zero, LPSPmin > 0 there is a risk that the renewable robot

may lose power supply during the mission. It has to rely on a backup energy source at the time

when it lost the power supply.

As a multiple objectives design optimisation problem, the design feasibility problem also presents

the relationship between the cost and the reliability. An example is shown in Figure 4.1.

In this example, the minimal LPSP of the REHS configuration under the size constraint is

pointed by the red arrow. The lowest LPSP suggests the most reliable REHS configuration in
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Figure 4.1: Example on design feasibility problem

the design space. Relationship between the LPSP and the device capital cost is outlined by the

Pareto front configurations. An optimisation algorithm for the multiple objectives optimisation

will be introduced in section 4.2.

4.1.3 Optimal configuration design

The result of design feasibility problem is a set of REHS configurations under the size constraint.

The renewable robot cannot use all of them as the REHS configuration design for the power

system. However, the renewable robot has select one design from all feasible solutions as the

REHS configuration.

Design feasibility exploration does not suggest a single REHS configuration because both objec-

tives are equally important according to the multiple objectives of optimisation principles.

Selecting one configuration is a compromise between the cost and reliability of the power system.

The goal of the optimal configuration design is to pick a configuration with the best compromise

in those two objectives. Since the objective is to balance the cost and reliability factor, the

fitness function could be written as:

C(Aw, As, B) + λ · LPSP (Aw, As, B) (4.7)

where C is device capital cost of the RHES and LPSP is the lost power supply problem. λ is a

positive lagrangian multiplier of the LPSP that weight the importance of reliability performance.

In this fitness function, there are multiple objectives to be minimised. Compared to the multiple

objectives optimisation, these objectives are mixed as a single objective to find the optimal

configuration. Similar to design feasibility exploration, the optimal configuration design problem

also has to limit the size of REHS devices. The design problem when formed as the optimisation

problem is shown in Equation 4.8.
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minimize
Aw,As,B

C(Aw, As, B) + λ · LPSP (Aw, As, B)

subject to 0 ≤ Aw ≤ Āw
0 ≤ As ≤ Ās
0 ≤ B ≤ B̄

(4.8)

where Āw, Ās, and B̄ are limits on the size of wind turbine, area of solar panel and capacity of

battery.

The result of the optimisation is the best REHS configuration with a balanced cost and reliability.

It suggests a single REHS configuration under the hard size constraint. REHS configuration with

balanced performance has the lowest fitness C + λ · LPSP in the design space. In the optimal

configuration design, the importance of economic and reliability performance is based on the

Lagrangian multiplier λ. A smaller λ weights the cost more in the objective function. On the

other hand, a larger λ increases the reliability factor in the design objective. Consequently, the

economic and reliability performance of the optimal REHS configuration is depending on the

weight of λ.

For a reliable fully autonomous operation of the renewable robot, the REHS configuration with a

zero LPSP is necessary. However, whether it is possible to achieve such power supply reliability

performance is also determined by the size limits on the RHES devices. A larger weight on

the LPSP itself does not always guarantee a reliable REHS configuration at zero LPSP. This is

due to the size limits, the maximum power generation and storage are restricted by the energy

generator and capacity of the battery.

Luckily, if the result from the design feasibility exploration shows there is a configuration achieved

a zero LPSP, the optimal configuration design approach should able to guarantee the reliability

performance with a significantly large lagrangian multiplier. This is because the optimal algo-

rithm has to minimise the total fitness and a large part of it is reliability. For this reason, to find

the REHS configuration with minimal fitness, a more expensive but reliable design will have a

lower objective compared to a cheaper but less reliable design. Albeit the Lagrangian multiplier

λ is large, whenever the design feasibility exploration suggests there is a configuration has a zero

LPSP, the minimal value of the λ ·LPSP is also zero. In other words, the optimal design is the

compromise of cost to the power supply reliability.

4.2 Optimisation algorithms

4.2.1 Design feasibility problem

Design feasibility problem has to optimise multiple objectives at the same time. Multiple objec-

tives optimisation method is mainly solved by heuristic approaches. Unlike the gradient based

optimisation methods, the meta heuristic algorithms are able to optimise the problem without be-

gin trapped in local optima. Common meta heuristic algorithms including simulated annealing,

genetic algorithms, differential evolution, ant conlony optimisation, bee algorithms, harymony

search, cuckoo search etc.
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Those algorithms are insipred by many different natural processes such as the cuckoo search

minimic the breed strategy of the bird. A well-known heuristic-based multiple objectives op-

timisation algorithm NSGA-II is adapted to solve this design problem. There are high quality

implementation with parallel optimisation support thanks to the popularity. In this work, the

NSGA-II is selected as the optimisation algorithm to solve the multiple objectives optimisation

problem.

minimize
Aw,As,B

f1 = C(Aw, As, B)

f2 = LPSP (Aw, As, B)

subject to 0 ≤ Aw ≤ Āw
0 ≤ As ≤ Ās
0 ≤ B ≤ B̄

(4.9)

A shortcoming of NSGA-II is the algorithm cannot handle the optimisation constraint natively.

Two common ways to include the size constraint of REHS on renewable robots are adding a

penalty in the objective function or using a modified Pareto-dominance approach to incorporate

constraint violations. The first method is employed in the design feasibility exploration. In

the optimisation process, the reliability objective is 1 if any REHS device exceeds the hard size

constraint.

The size constraint on the RHES devices turn the multiple objective optimisation problem Equa-

tion 4.9 into Equation 4.10. Hard constraint on the size is included as a penalty if any of the

REHS devices violates the size limit. As a penalty, the LPSP of any RHES configuration that

violates the size constraint will be set as 1.

minimize
Aw,As,B

f1 = C(Aw, As, B)

f2 =





LPSP (Aw, As, B)

Aw 6 Āw and

As 6 Ās and

B 6 B̄

1

Aw > Āw or

As > Ās or

B > B̄

(4.10)

Figure 4.2 shows the optimisation process flow diagram. The optimisation process consists

of an optimisation loop and a simulation loop. On the left-hand side, the simulation loop is

represented by the grey shaded blocks. These blocks are part of the data-driven simulation loop

that estimates the economic and reliability performance of every REHS configurations. Outside

the simulation loop, the optimisation loop is in charge of searching feasible REHS configurations

through the NSGA-II algorithm.

The optimization process is based on the data-driven simulation-based approach to estimate a

given REHS configuration’s cost and LPSP. At the same time, each REHS configuration’s output

dictates how to select the next generation. Constrained multiple objectives optimisation process

is summarised as follows:
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Figure 4.2: Constrained multiple objectives optimisation algorithm flow chart

1. Generate random population within the size constraint, a population is group of solutions

consists of REHS configuration Aw, As, B.

2. Evaluate the fitness f1 and f2 of all populations. This is done through the following steps:

(a) Download and process meteorological data on solar radiation, wind velocity and tem-

perature.

(b) Calculate power generation from the wind turbine on configuration Aw using moving

REHS model.

(c) Calculate power generation from a solar panel on configuration As using moving REHS

model.

(d) Estimate demand load on the mission.

(e) Discount the wind resistance from the propulsion demand load.

(f) Simulate the power system with battery and control model on configuration B.

3. Combine population of parents and offspring to form a new population.

4. Select population size based on ranking and crowding distance.
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5. Check if the termination condition is reached? (Maximum number of iteration reached or

converged to accuracy). Go to step 7. If not continue to step 6.

6. Select the best individuals, crossover and mutation. Continue to step 2.

7. Save the population and output the configuration

Optimisation loop 2-6 continues to search the REHS configurations in the design space. Two

objectives f1 and f2 are found using a data-driven simulation method on moving REHS model.

A more detailed description of the power system simulation for the renewable robot is described

in section 3.5.

The selection of the individuals is based on the non-dominated raking and crowding distance

of the population. Non-dominant raking sorts the REHS configuration in two objectives by de-

creasingly rank the population on one of the objectives. The maxima of the sorted configuration

against another objective are the non-dominated front of the problem. Crowding distance es-

timates the density of the solutions, defined as the average distance between two neighbouring

solutions. This selection mechanism maintains the diversity of the non-dominated front of the

population.

Mutation and crossover mimic the nature breed process. A crossover is a genetic operator to

combine an individual from parental (previous generation) population. There is also a chance for

the individual to mutate before they added to the population. While keeping the elite individual

in the populations, the crossover and mutation offer a chance to explore new individuals that is

potentially better than its ancestors.

The result of the optimisation is the Pareto front REHS configurations under the size constraints.

These solutions represent the best achievable reliability against the best REHS capital cost. As

the solutions violate the size constraint have removed from the Pareto front, the optimisation

outcome also shows the best reliability performance under the size constraint.

Pseudocode of the constraint multiple objectives optimisation algorithms is shown in Algo-

rithm 2. The input of the algorithm includes the mission of the robot, designed duty cycle

and motion estimation. The optimisation also requires the size limits on the wind turbine, so-

lar panel and the battery. Optimisation parameters are the unit size cost of renewable energy
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devices.

Input: Mission M, Duty cycle D, motion estimation

Limits: Size limits Āw, Ās, B̄

Parameters: Unit cost of the REHS devices cw, cs, cb

Output: Pareto front solutions of Aw, As, B

foreach (s, t) in M do

v ←M(s, t);

Calculate Pprop and Photel;

Pl(s, t) = Pprop(s, t, v) + Photel(D)

end

Initialise a group of population;

while N < max generations do

foreach (s, t) in M do

Simulate Ps and Pw on As, Aw;

P (s, t) = Ps + Pw;

Simulate S(t) from P (s, t), Pl(s, t) and B;

Combine population of parents and offspring to form new population;

Select population size based on ranking and crowding distance;

end

LPSP = P(S(t) < Pl(t)), estimate cost C;

if g convergence within ε then

Found Pareto front, save the population As, Aw, B;

break;

end

end

Output saved population as Pareto front;
Algorithm 2: Multiple objectives REHS optimisation algorithm

Due to the size constraint on the REHS devices, the Pareto front solutions may not be able

to fully support the demand load. The minimal LPSP achieved by all possible configuration is

greater than zero in this case. This suggests the change of mission and/or decrease the demand

load of the renewable robot.

Constraint multiple objectives optimisation suggests a set of REHS configurations that have

the best economic and reliability performance. The outcome of constraint multiple objectives

optimisation does not only reveal the relationship between those two objectives but also indicate

the best possible reliability performance. When the minimal LPSP is zero, it suggests there is

at least one configuration met the demand load requirement. That is, the robot could be purely

powered by renewable energy on this mission.

Multiple RHES configurations suggested by the optimisation outcome is valuable to the designer.

In practice, we often need a single REHS configuration to deploy renewable energy devices on the

renewable robot. In order to find the optimal REHS configuration for the mission, the constraint

mixed objectives optimisation method will be presented.
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4.2.2 Optimal configuration design

The optimal configuration design problem is to find one REHS configuration with the best

compromise between the cost and reliability performance. A flow chart in Figure 4.3 shows

the optimisation algorithm. Data-driven simulation-based moving REHS model in the left-hand

blocks evaluate the reliability and cost performance of each configuration. The main optimisation

starts from the particle swarm optimisation parameter initialisation and population generation.

Each particle in the swarm is a possible REHS configuration. The configuration [Aw, As, B]

determines its position p in the design space. For each particle, the initial position p(0) =

[Aw, As, B] is randomly generated within the size limits.

Figure 4.3: Optimisation algorithm flow chart

When a group of particles are ready for the optimisation, the iteration could start by evaluating

the fitness of the particle. The REHS configuration will keep updating until it reaches the

termination criteria.

1. Evaluate the fitness f = C+λ ·LPSP of all particles on their own configuration Aw, As, B.

This is done through the following sub-steps:

(a) Download and process meteorological data on solar radiation, wind velocity and tem-

perature.

(b) Calculate power generation from the wind turbine on configuration Aw

(c) Calculate power generation from a solar panel on configuration As
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(d) Estimate demand load on the mission

(e) Discount the wind energy on the propulsion power

(f) Simulate the power system with battery and control model on configuration B

(g) Find the objective function from the simulation

2. Update the history of each particle and the global best-performed particle.

3. Check if the termination condition is reached?(Maximum number of iteration reached or

converged to accuracy) Save the global best performed when the termination critical is

met. If not continue to next step.

4. Update the particle’s position and velocity and go to step 1.

This optimisation algorithm takes advantage of swarm intelligence to find the globally optimal

configuration if there is a sufficient number of iterations. On every generation, the best-performed

particle’s position is updated as the global best location pg,best. The particle will move around to

search the design space to find this location according to its own best historical location pp,best

and the global best location pg,best. From generation k to next-generation k+1, the velocity can

be updated based on the position of these particles.

v(k) = v(k − 1) + c1 · r1[pg,best − p(k − 1)] + c2 · r2[pp,best − p(k − 1)] (4.11)

where c1 and c2 are global and local update rate and r1 and r2 are two random numbers to allow

a random walk. Next location of the particle is:

p(k + 1) = p(k) + v(k). (4.12)

Figure 4.4 illustrated the position update process of a swarm of particles in the design space.

Figure 4.4: Example on the move of particles: the x, y, z axes represents the size of solar
panel, wind turbine and battery capacity respectively
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The position update also takes the size constraint into account. A minmax function is applied

to guaranteed the position of the particle is always within the design space e.g. for p(k) =

[Aw(k), As(k), B(k)]

p(k + 1) = [Aw(k + 1), As(k + 1), B(k + 1)]

=




min[Āw,max(0, Aw(k) + v1(k))]

min[Ās,max(0, As(k) + v2(k))]

min[B̄,max(0, B(k) + v3(k))]




T

(4.13)

where vi(k) is the component of the velocity.

Pseudocode of the optimisation algorithm is listed in Algorithm 3. Inputs for the optimisation

algorithm are the mission of the robot, designed duty cycle and the motion estimation of the

robot. The optimisation also requires the information of the size limits on the REHS devices.

Parameters including unit size cost of the wind turbine, solar panel and battery are necessary for

the capital cost estimation. Lagrangian λ is also needed to weight the importance of reliability.

The output of the optimisation is the best REHS configuration combining the cost and reliability

factors.

Input: Mission M, Duty cycle D, motion estimation

Limits: Size limits Āw, Ās, B̄

Parameters: Unit cost of the REHS devices cw, cs, cb, λ

Output: Best REHS configuration Aw, As, B

foreach (s, t) in M do

v ←M(s, t);

Calculate Pprop and Photel;

Pl(s, t) = Pprop(s, t, v) + Photel(D)

end

Initialise p(0) = [As, Aw, B] under constraint;

while N < max generations do

foreach (s, t) in M do

Simulate Ps and Pw on As, Aw;

P (s, t) = Ps + Pw;

Simulate S(t) from P (s, t), Pl(s, t) and B;

end

LPSP = P(S(t) < Pl(t)), estimate cost C;

g = C + λ · LPSP ;

if g convergence within ε then

Found best configuration, save As, Aw, B;

else

Update the velocity of the particle v(k);

Update the position of the particle p(k + 1) under constraints;

end

end
Algorithm 3: Optimal REHS configuration design algorithm
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4.3 Results

4.3.1 Test case

A renewable robot power system design case will test the performance of the proposed REHS

design methods. The robot is a maritime renewable robot planning for a long-term oceanographic

survey mission. The design goal of the REHS is to fully power the robot from renewable energy

resources for fully autonomous operation at the sea. In the case test, the design method has

to figure out whether it is possible to fully power the robot with renewable energy or not.

Furthermore, if the REHS can fully support the robot, the optimal REHS configuration has to

be given by the optimisation algorithm under the size constraint.

The maritime robot is an autonomous surface vehicle (ASV) that equipped with an autopilot sys-

tem, sensor payload and electrical propulsion system. This robot has both hotel and propulsion

that has to be supplied by the REHS. Basic dimensions of the robot is listed in Table 4.1.

Table 4.1: Basic dimension

Dimensions Symbol Value
Length L 5.72
Draught T 0.25
Beam B 0.76
Slenderness coefficient Csl 6.99
Prismatic coefficient CP 0.613

To estimate the propulsion power of the vehicle, a ship resistance program was used. This

program estimates the ship resistance from the dimension of the vehicle. Propulsion load of the

vehicle is estimated by the ship resistance program. The detail on those parameters is available

in section A.3. The total electrical power consumption on propulsion depends on the speed of

the robot as well as the resistance.

Pprop = RT · V/ηp

=
1

2ηp
[(1 + cw)(CF + CR) + CA]ρwSV

3
(4.14)

where V is the water speed of the vehicle, water speed is the relative speed to the water including

the ocean current, ηp is electrical to mechanical power transmission efficiency, CF is frictional

resistance coefficient, CR is residual resistance coefficient, CA is added resistance coefficient and

S is surface area of the robot. Note the water speed V is relative to the moving water to account

for the ocean current influence on the resistance.

Hotel load of the ASV is listed in Table 4.2. The navigation computer and necessary sensors are

critical hotel load that has to be always turned on. Payload sensors and the data transmission

system are operating in their duty cycle.

Wind and solar hybrid renewable energy resources are available on the ocean surface. A wind

generator and a solar panel are used to harvest energy from those resources. However, due to

the size limitation on the ASV, the maximum area of each energy harvesting device is restricted.

The largest area of solar panel, wind turbine and the battery capacity are listed in Table 4.3.
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Table 4.2: Hotel load on the renewable robot

Components Power usage Critical load Duty cycle
Navigation computer 5 W Yes 1
Camera 650 mW Yes 1
Global Positioning System (GPS) 50 to 800 mW Yes 1
Inertial Measurement Unit (IMU) 40 to 700 mW Yes 1
Integrated radio transmitter 0.5 to 20 W No 0.2
Temperature sensor 40 to 50 mW No 0.9
Wind sensor 0.4 to 1.2 W No 0.5
Salinity sensor 40 to 100 mW No 0.9

Table 4.3: Size constraint on the REHS device

Constraints Value Unit
Solar panel area 3.36 m2

Wind turbine area 0.65 m2

Battery capacity 27398 Wh

The mission of the robot is scientific data collection in the ocean. Power supply from renewable

energy resource is heavily depending on the mission. Part of the demand load is also influenced

by the mission due to the ocean current is varied from place to place. A fundamental challenge for

the design algorithm is to determine if it is feasible to design an REHS for the robot’s autonomous

operation. Eight different missions are included as test cases, the route and start-end points are

shown in the following figures.
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Figure 4.5: Mission 1
Australia - Chile
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Figure 4.6: Mission 2
Solomon Islands - Canada
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Figure 4.7: Mission 3
Kuril Islands - Mexico
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Figure 4.8: Mission 4
Newfoundland - Mauritania
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Figure 4.9: Mission 5
West France - Brazil
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Figure 4.10: Mission 6
Loop in North Atlantic Ocean
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Figure 4.11: Mission 7
Middle East - US
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Figure 4.12: Mission 8
UK - Dominican Republic

Economic and local motion parameters of the robot are listed in the Table 4.4. The unit cost

of renewable energy generators and energy storage device are economic parameters. The local

motion of the robot is estimated by the pitch and roll motion amplitude.

Table 4.4: Economic parameters and local motion in the optimisation

Parameter Meaning Value Unit
cw Wind turbine unit cost 3000 £/m2

cs Solar panel unit cost 210 £/m2

cb Battery 1 £/Wh
p0 Amplitude of pitch motion 0.1 rad
q0 Amplitude of roll motion 0.1 rad

Parameters on the renewable energy generator including the efficiency of wind and solar energy

harvesting devices, battery charge and discharge efficiency, propulsion system efficiency are listed

in section A.4. For each mission, the start time and the averaged global speed are the same.

Mission can start from any time on the ocean. However, due to the data availability and the

start date was set to 1st of January 2014 for the best simulation data coverage. Also the speed of

the vehicle has to below the average wind speed for the wind turbine to generate energy. For this

purpose, the average voyage speed was set to 2 km/h to compare the design result on various

missions. All missions are starting at 1st of January 2014 and the averaged global speed of the

robot is 2 km/h.

4.3.2 Design feasibility result

As the first step in the REHS configuration, the design feasibility result presents the best possible

economic and reliability performance on a given mission. In the design feasibility exploration,
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the REHS design problem is formulated as a multiple objectives optimisation problems that

device capital cost and LPSP are minimised at the same time.

minimize
Aw,As,B

f1 = C(Aw, As, B)

f2 =





LPSP (Aw, As, B)

Aw 6 Āw and

As 6 Ās and

B 6 B̄

1

Aw > Āw or

As > Ās or

B > B̄

(4.15)

Result of the design feasibility exploration is the Pareto front solutions to the optimisation

problem shown above. As the size constraint is included in the reliability objective as a penalty

to any violations, the smallest LPSP in the non-dominant solutions is also the best possible

LPSP of the mission.
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Figure 4.13: Mission 1
Australia - Chile
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Figure 4.14: Mission 1 design explo-
ration

Mission 1 started from the east coast of Australia and ended up at the west coast of Chile.

Design exploration shows there is at least one configuration achieved a zero LPSP during the

mission.

Results of other mission are listed in the following figures.
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Figure 4.15: Mission 2
Solomon Islands - Canada
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Figure 4.16: Mission 2 design explo-
ration
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Figure 4.17: Mission 3
Kuril Islands - Mexico
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Figure 4.18: Mission 3 design explo-
ration
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Figure 4.19: Mission 4
Newfoundland - Mauritania
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Figure 4.20: Mission 4 design explo-
ration
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Figure 4.21: Mission 5
West France - Brazil
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Figure 4.22: Mission 5 design explo-
ration
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Figure 4.23: Mission 6
Loop in North Atlantic Ocean
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Figure 4.24: Mission 6 design explo-
ration
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Figure 4.25: Mission 7
Middle East - US
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Figure 4.26: Mission 7 design explo-
ration
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Figure 4.27: Mission 8
UK - Dominican Republic
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Figure 4.28: Mission 8 design explo-
ration

The best possible LPSP of each mission are varied depends on the route. Mission 1 and 3 have

a zero LPSP according to the design feasibility exploration result. It is possible to fully power

the robot from solar and wind renewable energy resources on these missions. However for other

missions, the design exploration suggests a non-zero LPSP there will be a chance that power

supply might be lost during the operation. There are multiple reasons for the loss of power

supply for that mission.

First of all, renewable energy resources have a limited energy density per unit area. Mean unit

area power generation from wind and solar energy devices are listed in Table 4.5.
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Table 4.5: Averaged energy density on missions

Mission 1 Mission 2 Mission 3 Mission 4

Solar power W/m2 22.4 21.7 24.1 17.1
Wind power W/m2 42.8 27.4 36.4 37.9

Mission 5 Mission 6 Mission 7 Mission 8

Solar power W/m2 21.3 5.9 29.8 16.6
Wind power W/m2 33.7 92.3 7.9 36.3

Averaged solar power generation range from 5.4 W/m2 to 29.8 W/m2. Compared to the solar

panel’s rated power density (section A.4) at 140 W/m2, the capacity factor is between 3 % to

21 %. Low energy density poses a challenge to generate enough electricity for a renewable robot.

Secondly, the size limitation on the REHS devices further restricted the maximum power gener-

ation and the capacity of the energy storage device. At a low energy density, the robot requires

larger energy harvesting devices for sufficient power supply. However, the maximum size of the

energy harvesting device is limited due to space restriction. Under the size constriant shown in

Table 4.3, the maximum power generation from each resources is listed in Table 4.6.

Table 4.6: Averaged maximum power generation

Mission 1 Mission 2 Mission 3 Mission 4

Solar power (W) 72.26 72.91 80.97 57.45
Wind power (W) 27.82 17.81 23.66 24.63
Total power (W) 100.08 90.72 104 .63 82.09

Mission 5 Mission 6 Mission 7 Mission 8

Solar power (W) 71.57 19.82 100.12 55.77
Wind power (W) 21.90 59.99 5.13 23.60
Total power (W) 93.47 79.81 105.26 79.37

Total averaged maximum power generation under the size limit is from 79.37 W to 105.26 W.

Low energy density and the size restriction limit the total power generation from solar and wind

resources. Mission 8 has the highest LPSP due to its lowest total averaged maximum power

generation.

Lastly, the distribution of renewable energy resources is uneven both temporally and spatially.

Solar energy, for example, has no power generation during the night. The solar resource is also

more abundant in lower latitude regions near the equator. As the robot travel across the ocean,

the power generation is intermittent because of the spatial-temporal variance and uncertainty.

At the time when the energy storage cannot compensate for the power supply intermittency,

there will be a power supply lost.

4.3.3 Optimal configuration result

Result of design feasibility exploration shown that there are two missions have a zero LPSP.

It is possible to power the renewable robot for fully autonomous operation on those missions.
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However, the design feasibility result does not suggest a specific REHS configuration for the

renewable robot. The optimal REHS configuration algorithm can find a design for the best

compromise between the cost and reliability. Besides, if the REHS design exploration shows

there is configuration achieved no power supply lost, the optimal REHS design could guarantee

the reliability performance and the economic performance at the same time.

minimize
Aw,As,B

f = C(Aw, As, B) + λ · LPSP (Aw, As, B)

subject to 0 ≤ Aw ≤ Āw
0 ≤ As ≤ Ās
0 ≤ B ≤ B̄

(4.16)

The lagrangian λ selected in the optimisation is listed in section A.4. A relatively large lagrangian

1 × 106 prioritise the reliability over the cost performance. Optimisation result is shown in

Table 4.7.
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Figure 4.29: Mission 1

Result Limit

Solar panel size 3.26 m2 3.36 m2

Wind turbine size 0.58 m2 0.65 m2

Battery capacity 2723 Wh 27398 Wh

Table 4.7: Mission 1 optimal configuration

The performance of the REHS configuration can be verified by simulating the power system.

Power generation, supply and battery SOC on this mission is shown in Figure 4.30.
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Figure 4.30: Power generation, supply and battery SOC on Mission 1

Power generation is the total power generation from renewable resources. The power manage-

ment plans the power supply based on the demand load and the battery remaining energy. In

Figure 4.30, the unmet power is the difference between the power supply and the demand load.

Unmet power occurs when the demand load is not fulfilled by the power supply. As it can be

shown in the figure, there is no unmet power event for the suggested REHS configuration.

Mission 3 also has a zero LPSP according to the design exploration. This result guarantees the

REHS optimal design can find a configuration to achieve a full power supply to the robot. The

optimisation result of the REHS optimal configuration design is listed in Table 4.8.
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Figure 4.31: Mission 3

Result Limit

Solar panel size 3.19 m2 3.36 m2

Wind turbine size 0.65 m2 0.65 m2

Battery capacity 1140 Wh 27398 Wh

Table 4.8: Mission 3 optimal configuration

Power generation, supply, battery SOC and unmet power are shown in Figure 4.32. The config-

uration suggested by the optimal REHS configuration design algorithm also shows that there is

no unmet power supply during the mission.
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Figure 4.32: Power generation, supply and battery SOC on Mission 1

Those two results show that the proposed optimal REHS configuration design algorithm is able

to find a reliable design for the robot. Furthermore, those designs are also the most economic

configuration that achieved zero LPSP.

As it is shown in Figure 4.33 and Figure 4.34, mixed objective decreases as the optimisation loop

iterates. The objective function C + λ · LPSP is converged after 10000 number of iterations on

both missions.
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Figure 4.33: Fitness Convergence on
Mission 1
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Figure 4.34: Fitness Convergence on
Mission 3

The initial fitness of randomly selected configurations is high because of a relatively large λ

overweight the capital cost even at a small LPSP. As the optimisation goes on, the particles

are moving towards the position with a lower LPSP to minimise the objective function. After

several iterations, the optimisation algorithm found a REHS configuration that achieves a zero



90 Chapter 4 REHS configuration design

LPSP. Objective function from that point on has no contribution from the LPSP. In order to

further decrease fitness, the optimisation algorithm chooses a more economic configuration that

has a zero LPSP. After a number of iterations, the objective function converged as the cost of

the REHS configuration is minimised.

Design exploration also suggested there is no feasible REHS configuration under the size con-

straint for other missions to achieve a zero LPSP. Optimal REHS configuration algorithm could

not design the power system for a guaranteed power supply reliability for those missions. How-

ever, the algorithm is still able to find the best trade-off between the cost and reliability under

the hard size constraint. Design result is shown in Table 4.9. The REHS configuration has a

solar panel at its maximum possible size.
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Figure 4.35: Mission 4

Result Limit

Solar panel size 3.36 m2 3.36 m2

Wind turbine size 0.59 m2 0.65 m2

Battery capacity 13123 Wh 27398 Wh

Table 4.9: Mission 4 optimal configuration

Power system history shown in Figure 4.36 has unmet power supply. When the battery is about

to drop below its DOD, the robot lost power supply due to the shortage in power generation.
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Figure 4.36: Power generation, supply and battery SOC on Mission 4
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Figure 4.37: Fitness Convergence on Mission 4
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Fitness convergence plot Figure 4.37 shows the optimisation process for non-zero LPSP mission.

Due to the limitation on the size constraint, renewable energy density and the variance in the

power generation, there is no configuration that can guarantee a zero LPSP. The REHS optimal

configuration design algorithm, in this case, degrading into an algorithm compromising between

cost and reliability.

4.3.4 Long-term performance result

The design feasibility exploration and the optimal configuration method can design an REHS

with guaranteed cost and reliable performance for a mission. However, the actual mission of the

robot cannot be fully known before the deployment. In the design stage, the REHS configuration

is designed against the estimation of the mission. The most common approach is to use historical

data to represent a future operation scenario. Therefore, the performance of the robot relies on

how the historical data matches the actual operation scenario. How the REHS configuration

would perform in the future, especially in a longer-term is important to robot’s safe operation.

However, future operation data such as solar radiation, temperature, and wind speed is not

known. Since there is no data available on the future, the long-term performance study is done

by the historical simulation. The REHS configuration in this work use historical data for the

simulation to evaluate the long term performance . The renewable robot with the same REHS

configuration is going to run on the same route and speed. To evaluate how year to year variance

in the power generation and demand load might impact the reliability of the robot, the robot’s

journey is starting on the same day in the year. For example, the REHS configuration on mission

1 was started at January 1st 2014, the historical simulation in 2013 should begin with January

1st 2013.

Among eight missions, the optimal design algorithm suggests that there are two mission have an

REHS configuration achieved a zero LPSP. For these configurations, if the mission started not

from that specific year, the performance may differ from the design scenario. The data-driven

simulation will run on the same configuration with the actual meteorological data on historical

years.

Table 4.10: Performance of the optimal configuration in Misison 1

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

LPSP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
Solar W 74.68 81.52 77.72 81.76 80.15 79.83 79.74 79.57 80.11 77.79
Wind W 27.71 26.39 27.64 39.54 32.99 27.77 28.19 34.28 28.83 26.63
Load W 24.05 22.85 21.68 23.70 22.55 22.33 24.20 24.96 22.51 22.94

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

LPSP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Solar W 79.38 77.98 79.40 79.45 78.47 82.15 80.22 79.11 78.16 73.81
Wind W 27.11 26.18 27.52 31.22 25.60 31.06 31.68 30.14 31.40 26.74
Load W 23.40 22.12 24.14 23.59 22.18 22.79 22.56 22.63 23.67 22.76

Historical performance of the REHS configuration suggested by the optimisation algorithm on

mission is listed in Table 4.10. The LPSP, averaged solar power generation, wind power genera-

tion and demand load are listed.
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It is expected that the LPSP of mission 1 in the long term performance at 2014 is zero. On the

other years, the power generation and demand load are on average with that in 2014. In the last

20 years, the LPSP stay as low as zero except the year of 2002.

Power generation and unmet power supply at the design year 2014 is shown in Figure 4.38.
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Figure 4.38: Mission 1 SOC and solar/wind power generation at 2014 (24 hours averaged)

For the same configuration operating in 2002, the power generation and unmet supply are shown

in Figure 4.39. There is unmet power generation in early March 2002 that result in a lost power

supply.
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Figure 4.39: Mission 1 SOC and solar/wind power generation at 2002 (24 hours averaged)

Compare to the same period in 2014 (Figure 4.40), the power generation in early 2002 is lower

in early March. What makes is worse is the demand load in 2002 is also higher than in 2014. As

the demand load increases, the REHS discharge the battery to supply the power. However, the

battery stops to discharge to prevent the SOC from falling below the DOD.

Demand load in the year 2002 in higher in the early March due to the difference in the propulsion

power. Figure 4.41 compares the propulsion load during the same period in the year of 2014 and

2002. The propulsion load in 2002 is higher than that in 2014. In the long term performance

study, the averaged speed is the same on different years. To keep the speed of the robot, the

REHS has to supply enough power to the propulsion system. Propulsion system needs electrical

power to drive the robot under the water and wind resistance. Water resistance including the

ocean current account for the propulsion load in relative to the water. Water resistance in 2014

and 2002 are similar. However, the wind direction in 2002 is most opposed to the robot’s moving

direction in early March.
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Figure 4.40: Mission 1 demand load comparison between 2014 and 2002 (24 hours averaged)

March 01 March 10 March 20 March 30
0

20

40

60

80

100

120

140

P
ro

p
u

ls
io

n
lo

ad
W

2014

2002

Figure 4.41: Mission 1 propulsion load comparison between 2014 and 2002 (24 hours aver-
aged)

The difference in the propulsion load increases the total demand load. Power generation at the

same time can not keep up with the demand load. The variance in renewable energy resource

and demand load is the main cause of the loss of power supply.

Table 4.11: Performance of the optimal configuration in Misison 3

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

LPSP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000
Solar W 84.10 83.43 79.62 84.23 83.71 86.02 85.32 82.42 84.95 81.95
Wind W 31.89 35.08 35.45 37.99 31.08 37.34 34.30 34.72 34.87 42.53
Load W 18.74 18.19 20.91 18.86 18.48 20.38 20.86 23.90 26.30 20.82

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

LPSP 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000
Solar W 82.44 84.97 85.50 83.41 82.20 81.90 82.02 85.13 86.22 80.70
Wind W 41.65 38.42 36.65 35.12 33.50 35.82 38.50 35.00 34.65 37.44
Load W 20.24 20.20 21.35 21.52 22.61 24.49 19.99 21.85 22.18 19.20

Mission 3 also shows a zero LPSP in the optimal configuration design. In the long term perfor-

mance evaluation, the year 2003 and 2010 both have a chance to lost the power supply. Averaged

demand load on those years are higher than the design scenario (shown in Table 4.11).

Propulsion load in 2003 and 2010 account for the major difference in the demand load. Albeit

the power generation are similar in those years, the demand load variance leads to reliability

performance degradation.
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Figure 4.42: Mission 3 multiple years propulsion load comparison

In general, the long term performance result shows the optimal result has an expected reliability

performance on the design mission. However, there is no guarantee on the long term because of

the variance and uncertainty in both demand load and power generation. One way to improve

the reliability performance of the REHS for the future is to use the exact demand load and

power generation for the mission. In reality, it is hard to acquire exact information in the future.

Another way to improve reliability performance is to adjust the demand load according to the

power generation. The loss of power supply happens when the power generation or the demand

load deviate too much from the design scenario. Such improvement requires a dynamic power

management strategy to plan power usage during the operation.

4.4 Summary

In this chapter, the REHS configuration to explore and optimal design the power system have

been proposed. The former problem is solved as multiple objectives optimisation methods and

the later one is solved by the constraint mixed objectives optimisation method. The result has

shown that both methods helped the design of REHS configuration on a size constraint renewable

robot. REHS configuration exploration can determine the best possible reliability and economic

performance of the renewable robot under the hard size constraint. If there is a configuration that

can achieve a zero LPSP for the mission, the REHS configuration design exploration algorithm

could find such design.

Furthermore, the mixed multiple objectives optimisation algorithm will find the optimal REHS

configuration in terms of the cost and reliability with the LPSP guarantee by the REHS config-

uration exploration. For renewable robot limited by the size on the REHS devices, the design

exploration could also suggest a minimal LPSP. Even the configuration might achieve a fully

autonomous power supply from a renewable resource, the mixed objectives optimisation method

would able to find the best combination of cost and reliability.

On the other hand, if there is no configuration can achieve a zero LPSP due to the size constriant.

The mixed multiple objectives optimisation would suggest the configuration with a compromise

between cost and reliability. The trade-off in the optimal configuration is also available as a

Pareto front of the problem.
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The long term reliability test was carried out using historical data-driven simulation. Compare

the reliability performance in the last 20 years, there are some cases that REHS configuration

is not able to achieve a zero LPSP. However, in most cases, the REHS configuration suggested

by the mixed objectives optimisation algorithm keeps a reliable performance level with no lost

power supply. The variance and uncertainty in both demand load and power generation are

problematic to the safe operation of the power system. To mitigate the influence of the variance

and uncertainty, the data-driven design could use more accurate estimation on the future mission.

Another way to improve reliability performance is to dynamically manage the power usage

depends on the power generation and demand load. In particular, adjust the demand load while

it deviates from the design scenario to keep a continuous, reliable power supply.





Chapter 5

Learning based power

management

This chapter presents the work on the power management strategy for the mobile robot in a

long term situation. At the time when the power generation or demand load deviate from the

design scenario, the power management system has to dynamically plan the power usage.

A learning-based power management method is proposed in this chapter. The strategy learn to

improve the long term power reliability through self-supervision on historical operation data.

A brief introduction to the learning method will be first presented. The learning power man-

agement strategy is then followed by its implementation. The performance of the algorithm is

compared against the state-of-art strategies later in the chapter.

5.1 Reinforcement learning background

5.1.1 Problem formulation

Reinforcement learning refers to the method that explores and learn the strategy to maximise

the objective in a particular situation. Reinforcement learning is a type of unsupervised machine

learning algorithm that learns how to behave in the environment by performing actions.

Thanks to the learning capability, the reinforcement learning approach is attractive to the power

mangement problem that the optimal control strategy can be generalised from the experience.

It is also possible to transfer the experience that learnt from similar environment to a new

robot as a initial power management strategy. The main advantage of reinforcement learning

based strategy could help the robot learn to manage the power usage without demonstration.

Further more, the data-driven simulation and design fit well with the reinforcement learning

framework. The robot could learn from history data in the simulated environment and transfer

those knowledge into the real hardware.

The general structure of the reinforcement learning problem is shown in Figure 5.5.

97
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Environment

Agent

State st

Reward rt

Action at

Figure 5.1: Reinforcement learning general structure

The agent is the reinforcement learning algorithm itself and the environment represent the control

object. The state s describes current information on the control object and the action a is the

steps taken by the agent. An agent can interact with the environment by taking an action based

upon the observation on the state. For an agent, it follows its own strategy to interact with the

environment. The strategy that maps the state to the action is called policy π:

a ∼ π(·|s) (5.1)

The action taken by the agent will change the state of the environment and the environment

also react to the action by giving a reward r to the agent. The goal in the reinforcement learning

problem is to find the policy that can maximise the total reward.

maxR(t) =

T∑

t=0

r(t) (5.2)

The interaction between the agent and the environment is shown in Figure 5.2. From the initial

state s0, the agent takes an action a0 by follow the policy π. At the next step, the state of

environmental changes due to the action. Meanwhile, a reward is given to the agent based on

the state of the environment.

s0

a0

s1
r0

τ = (s0, a0, s1, a1, · · ·)

Figure 5.2: State action trajectory
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State transition between each action is stochastic, e.g. after the action a0 has taken, there are

two possible outcomes of the same action. The next stage in the trajectory not only depends

on the action but also the state transition probability. This helps the reinforcement learning

strategy to take into account the uncertainty in the environment.

st+1 ∼ P (·|st, at) (5.3)

An agent continues to interact with the environment and forms a trajectory that consists of the

state, the action and the reward.

τ = (s0, a0, r0, s1, a1, r1 · · ·) (5.4)

On this trajectory, the total return is the sum of all reward in history.

R(τ) =

T∑

t=0

rt (5.5)

Consider the conditional probability for begin on the trajectory τ ,

P (τ |π) =

T∑

t=0

P (st+1|st, at)π(at|st) (5.6)

the averaged expected return on all possible trajectories is

J(π) =

∫

τ

P (τ |π)R(τ) (5.7)

The goal in reinforcement learning is to find the policy π to maximise the expected reward of J .

π∗ = arg max
π

J(π) (5.8)

5.1.2 Exploration and exploitation strategy

As a class of unsupervised machine learning method, the reinforcement learning algorithm finds

the optimal policy by an exploration and exploitation strategy. The agent explores the environ-

ment to gather more information by taking possible actions.

A stochastic policy can choose random actions to explore in the environment.

a ∼ π(·|s) (5.9)

Once the agent starts to explore the environment, the information on future expected reward

can be collected.
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The value function estimates the expected return on the trajectory that starts in state s for

always following the policy π.

V π(s) = Eτ∼π[R(τ)|st = s] (5.10)

The action-value function estimates the expected return on the trajectory that starts in state s,

take arbitrary action a and then follow the policy π.

Qπ(s, a) = Eτ∼π[R(τ)|st = s, at = a] (5.11)

An advantage function describes how much better (or worse) if a specific action a was taken at

state s overtaking action follow π thereafter.

Aπ(s, a) = Qπ(s, a)− V π(s) (5.12)

When there is enough information gathered from the environment, the best overall decision can

be made.

5.1.3 Deep neural network reinforcement learning

The policy is a function which can be approximated by a parametrised neural network

at ∼ πθ(·|st) (5.13)

A neural network represents by a group of nodes, each node has have one or more input(s) and

output(s). Nodes are connected with the others to form a layered network. For each node, the

output of one layer is the input for the next layer. The output is determined by the weight and

bias in the network. Such operation is shown in Figure 5.3, when there are inputs for the node, it

first computes the summed value on the weight and bias. Then an activation function applied to

the summed value. The summed value then become the input of the next layer. In the example

shown in Figure 5.3, the node a3 is part of neural network belongs to the second layer. After

receives inputs from node a1 and a2, with weights x13 and x23, bias b3, the node compute its

internal summed value annotated by a dot. The summed value is then applied to the activation

function, a class of function add non-linearity to the neural network, to output the final value

x36 to the node in the next layer. A neural network is parametrised via weights and biases.

The goal of reinforcement learning is to maximise the averaged expected return on all possible

trajectory. For a policy parametrised by a neural network, this goal is to find the parameters in

the neural network.

θ∗ = arg max
θ
J(πθ) (5.14)

The averaged expected return for the parametrised policy neural net πθ according to Equation 5.7

is

J(πθ) =

∫

τ∼πθ
P (τ |θ)R(τ) (5.15)

where P (τ |θ) is conditional probability for on begin trajectory τ
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a1

a2

a3

a4

a5

a6 a3

x13

x23

x13

x23

w13

w23

∑+b3
g(·)x36

· = x13 ∗ w13 + x23 ∗ w23 + b3
x36 = g(·)

input(s) output(s)

θ = [w13, w23, b3, · · ·]

Figure 5.3: Concept of a parametrised neural network

P (τ |θ) =
∑

t=0

P (st+1|st, at)πθ(at|st) (5.16)

and R(τ) is the total return. The expectation on the averaged return on parametrised neural

network πθ is

J(πθ) = Eτ∼πθR(τ) (5.17)

It is possible to increase the expected averaged return by update the parameter using its gradient.

The gradient of the expected averaged return with regard to the parameters is:

∇θJ(πθ) =∇θEτ∼πθR(τ) (5.18)

= ∇θ
∫

τ

P (τ |θ)R(τ) (5.19)

=

∫

τ

∇θP (τ |θ)R(τ) (5.20)

=

∫

τ

P (τ |θ∇θ logP (τ |θ)R(τ) (5.21)

= Eτ∼πθ [∇θ logP (τ |θ)R(τ)] (5.22)

Notice the logarithm probability on a trajectory is

logP (τ |θ) =

T∑

t=0

(logP (st+1|st,at) + log πθ(at|st)) (5.23)

so the gradient is

∇θ logP (τ |θ) =

T∑

t=0

(∇θ logP (st+1|st,at) +∇θ log πθ(at|st)) (5.24)
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where the gradient on the logarithm probability on the state transition between current state

and next state is independent to the parameters of the policy (the parameter in the agent’s

policy neural network has no influence on the dynamics of the environment). The first term in

a gradient of the logarithm probability of a trajectory is zero

∇logP (τ |θ) =

T∑

t=0

∇θ log πθ(at|st) (5.25)

replace that in Equation 5.18, the gradient on the expected averaged return is then

∇θJ(πθ) = Eτ∼πθ [
T∑

t=0

∇θ log πθ(at|st)R(τ)]. (5.26)

When the gradient of the policy parameter on the expected averaged return is known, a neural

network can be trained as a policy to maximise the total reward.

In the training process, it is common to estimate the gradient of the policy using the advantage

function. Recall advantage function Aπ(st, at) = Qπ(st, at) − V π(st) describe how better or

worse for taking action at on state st over only simply follow policy π. It can be proven that

using the advantage function can reduce the variance without change the expectation.

∇θJ(πθ) = Eτ∼πθ [
T∑

t=0

∇θ log πθ(at|st)R(τ)] (5.27)

= Eτ∼πθ [
T∑

t=0

∇θ log πθ(at|st)Aπθ (s, t)] (5.28)

As trajectory follows a policy π, at the time t the action-value function on the state s and action

a, the expected return is

Qπ(s, a) = Eτ∼π[R(τ)|st = s, at = a] (5.29)

= Eπ[Gt|st = s, at = a] (5.30)

5.2 Deep reinforcement learning power management strat-

egy

5.2.1 Power management objectives

Power management system dynamically plans the power usage for the robot. The goal of the

management is to provide reliable and efficient power supply to the renewable robot. The reliable

power supply requires the power management to always plan and supply power at least for all

critical load. When there is sufficient power, power management also needs to effectively plan

the usage to improve the performance of the robot.
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The REHS configuration design method in the last chapter suggests an optimal size of renewable

energy system devices for a given mission. The configuration is found using multiple objectives

optimisation methods by matching the demand load and power generation shown in Figure 5.4.

In a longer-term, the reliability performance of the optimal REHS configuration may deteriorate

due to the uncertainty and variance in both demand load Pl(t) and power generation P (t).

BatteryPower
management

P (t)

Pl(t)

U(t) S(t)Power
generator

Demand
load

Reward: r(t)

Figure 5.4: Power management in the REHS model

For the renewable robot, power management can reduce the demand load in the event of power

generation shortage. However, the reliable operation of the robot needs a minimal level of power

supply for the mission-critical systems. The reliability of these robots is no longer the LPSP

that indexed as the fraction of time that a specific demand load cannot be met. Instead, the

reliability performance of the demand load controllable renewable robot is the fraction of time

that the power system failed to supply even critical load. Power management in the REHS has

to work together with the power generator(s), the battery and the demand load to ensure the

long-term reliability.

At the same time, the efficiency of the power system is also important to the performance of

the robot. The power management strategy shouldn’t either be too aggressive that scarifies

long-term reliability for short-term performance or too conservative that only provide critical

load and the overall performance is degraded. An ideal power management system shall plan

the power usage between the conservative and aggressive strategy.

Reliability and performance are the two main objectives in the power management system.

Reliability is the fraction of time that at least critical load is supplied. Performance is the power

conversion efficiency between generation and demand load.

During the operation, the power management system has to plan the power usage U(t) depends

on the energy availability in the battery, current power generation and the demand load. Per-

formance of the power management strategy is determined by the actual power supplied to the

demand load. For every usage decisions made by the power management system, the demand

load also has feedback on the reward for begin able to supply power S(t).

The power management system can be modelled as an agent that interacts with the environment

which consists of the power generator(s), battery and the demand load. The agent has to make

its own decision on how to plan the power usage and taking that as the action. The action
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will change the state of the environment. In this problem, the state includes the following

observations:

• The total power generation P (t) from renewable resources

• The critical load demand Pc(t) from demand load

• The performance-related load demand Pp(t)

• Remaining energy in the battery E(t).

Environment

Agent

State st := [P (t), Pc(t), Pp(t), E(t)]

Reward rt

Action at := U(t)

Figure 5.5: Reinforcement learning power management

Meanwhile, the environment also gives additional feedback on the action by reward a value rt

depends on the actual power supply S(t). For the supplied power S(t) the reward is

rt =




rc + min

{
β[S(t)− Pc(t)], ra

}
S(t) ≥ Pc(t)

rp S(t) < Pc(t)
(5.31)

where rc is a reward for supplying critical load. If there is more power supplied to the robot,

the additional power could improve the performance of the robot and get an additional reward

at the ratio of β. The additional reward is capped at ra. The reward function penalises the

power management system on rp (as a negative value) for not be able to supply. The goal in the

reinforcement learning-based power management strategy is to maximise the total reward.

The action taken by the agent is the planned power usage U(t). To achieve a reliable and efficient

power supply, the agent could learn the power generation pattern, adjust the demand load or

trade short-term benefit for long-term stability. However, the learning-based method does not

directly use any of this strategy to plan the action. Instead, the action shall be learned from the

reward and the state from the environment. The reward will encourage the policy to take action

that is beneficial to the robot long-term power supply stability. Meanwhile, the learning-based

power management system reinforces the strategy to take action for better long-term power

supply stability.
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5.2.2 Learning algorithm

In the deep reinforcement learning power management problem, the strategy is parametrised as

a neural network. The power management system has to learn the strategy from the interaction

between the environment. Random weights are first initialised as parameters in the neural

networks to form a policy network. This network follows a stochastic policy that acts randomly

on the policy π with parameters θ. Reward on the policy can get from the environment as a

feedback and more importantly the gradient on how to improve the total expected return on the

parameters can also be estimated from those interactions.

The gradient on the parameters in the policy θ has previously derived as:

∇θJ(πθ) = Eτ∼πθ [
T∑

t=0

∇θ log πθ(at|st)Aπθ (s, a)] (5.32)

Parameters in the policy network can then be updated to improve the performance in the total

expected return. In each iteration, parameters in the policy network updated on learning rate

α:

θk+1 = θk + α∇θJ(πθk) (5.33)

The policy can learn to improve its own power management strategy through the learning process

shown in Figure 5.6. As the policy continues to explore the action and update its own weights,

the power management strategy can adapt to the power management problem through iterations

of learning.

Environment

πθ

∇θJ(πθ)

θk+1 = θk + α∇θJ(πθk)

Figure 5.6: Parametrised neural network and training process

The pseudo-code of the learning algorithm is listed in Algorithm 4. This learning algorithm

requires data in power generation, demand load and the REHS configuration. The result of

the training is the power management policy π that maximise the total expected reward. As

the reward encourages the power management strategy to provide reliable power supply for safe

operation and to improve the power use efficiency for better service quality, the policy with a

higher total expected reward is equivalent to a more reliable and efficient power management



106 Chapter 5 Learning based power management

strategy.

Data: Power generation, demand load and REHS configuration

Result: Power management policy π

Initialise policy parameters θ0 and value function parameters φ0;

Initialise state at start time t = 0;

while k < max episodes do

foreach t in T do

while i < sample numbers do

Select action a by run on latest policy π on parameter θ;

Use the selected action to plan the power usage U(t) = a ;

Receive reward rt from the REHS simulation ;

Collect trajectory τi = (s0, a0, r0, s1, a1, r1, · · ·);
Continute record trajectory until end t = T (when the robot reach the end);

Reset the time to the strat and save τi to sampled trajectories collection Dk;

end

Compute the future expected reward Gt;

Compute advantage function based on value function Aπθk ;

Estimate the policy gradient gk =
1

|Dk|
∑
τ∈Dk

∑T
t=0∇θ log πθ(at|st)Aπθ ;

Update policy θk+1 = θk + αgk;

Update value function by regression fit

φk+1 = arg min
φ

1

|Dk|T
∑

τ∈Dk

T∑

t=0

(Vφ(st)−Gt)2

via gradient descent.

end

end
Algorithm 4: Power management policy training algorithm

Power management learning algorithm is shown in Algorithm 4 started with parameters initial-

isation on policy and value function. Both policy and value function is approximated as a deep

neural network that consists of several layers of nodes.

In the beginning, the stochastic power management policy randomly selects the action based on

its own policy. The environment responds to the action on changing the states and also give a

reward to the action. As more random actions are taken, the trajectory on the state, action and

reward can be collected. A collection of trajectories Dk could represent the averaged performance

of the policy on the stochastic parameters θ.

Once the agent starts to interact with the environment, the actual reward rt is given for each

action. The future expected reward Gt can be computed based on the actual reward. The future

expected reward estimates the total reward on state s by follow policy π from time t and onward.

Gt =

T∑

t=t

γrt (5.34)
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where γ ∈ (0, 1] is discount factor to weight the future reward. A small discount factor in the

policy values a more recent reward.

Similarly, the advantage function Aπθk can also be computed based on value function and the

collection of the trajectories Dk. The gradient on the parameters θ can then be estimated from

the advantage function. Parameters in the policy network are updated on the gradient to increase

the total expected return.

The last step is to update the value function with the future expected reward Gt as it cannot be

explicitly acquired from the environment. In the next time step, the learning process continues

with the updated policy.

5.3 Algorithm implementation

The learning algorithm is implemented as an agent in the dynamic power management envi-

ronment. Dynamic power management has the same structure as the REHS model except the

power management strategy is replaced by a neural network-based policy.

BatteryP (t)

Pl(t)

U(t) S(t)Power
generator

Demand
load

Reward: r(t)

πθ
E(t)

Figure 5.7: Parametrised neural network and learning process

The same power generator, battery and demand load model is used in the dynamic power

management environment. Power generation is stimulated by the power generator model that

includes both global and local motion of the renewable robot. Battery model with charge and

discharge inefficiency takes the self-discharge and DOD into consideration. Demand load are

modelled as critical load and performance-related depends on its role in the robot.

A random policy is initialised at the beginning to explore possible actions in the dynamic power

management environment. Four states including the power generation, demand load (both

critical and performance-related load) and the energy in the battery can be observed by the

power management system. Power management system as an agent shall take one action that

plans the power usage for the REHS. This action will send as a command to the battery and

the actual power supply will depend on the power generation and energy level in the battery.

The dynamic power management environment provides an API that compatible with OpenAI

Gym [17] style. The power management policy can learn to maximise the total expected return

through the training algorithm presented in Algorithm 4. After enough information has been

collected, the policy would reinforce itself to take more actions that have a higher reward. More

detailed implementation and the code can be found in appendix 2.
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The algorithm is also implemented for both training and execution mode. In the training mode,

the power management system learns to plan power usage in the simulation environment. The

outcome of the training is the policy in the power management system. The execution mode

follows the policy and plans the power usage for the renewable robot.

5.4 Method evaluation

To evaluate the performance of the learning based power management strategy, an experiment

on renewable robot is done. A renewable robot is out for a long-term mission with the route

shown below.

0°W 60°E 120°E 180°120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N

Start
End

Figure 5.8: Mission in methodology evaluation

The optimal configuration for this route using the meteorological data in 2014 is listed below.

Table 5.1: REHS design result

Constraints Design Unit
Solar panel area 3.32 m2

Wind turbine area 0.63 m2

Battery capacity 1382 Wh

The learning-based power management system needs to learn how to plan the power usage for

long-term reliable and efficient power supply. In order to encourage the power management

strategy to continuously provide sufficient power supply to the robot, a constant value 20 is

given when the power supplied is higher than or equal to the demand. An additional reward

that capped at the same value discourage the short term greedy planning on the power supply. A

relatively large penalty 500, 25 times of the fixed reward, is given when the power management

system failed to provide the critical demand load.

Value is the reward function used for the training is an example:
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rt =





20 + min
{

0.1[S(t)− Pc(t)], 20
}

S(t) ≥ Pc(t)
−500 S(t) < Pc(t)

(5.35)

In practise, the weights in the rewards have to be tuned for a balance between the performance

and robustness. Four baseline algorithms and five performance matrices are included to evaluate

the performance of the learning-based power management strategy.

5.4.1 Baseline algorithms and performance matrices

Demand Load Follow (DLF) strategy

DLF is a demand load side power management strategy that plans the power usage exactly as

the renewable robot request. This management strategy will try its best to supply the power to

the robot based on energy availability.

U(t) = Pl(t) (5.36)

DLF is a passive strategy does not adjust the planned usage based on energy availability.

Generation Absolute Follow (GAF) strategy

GAF is a resource sidetracking power management strategy that always plans power usage as

the same as the power generation. The power management strategy simply consumes all energy

when it harvested.

U(t) = P (t) (5.37)

GAF is also a passive strategy that does not adjust the planned power usage.

Exponential Weighted Moving Averaged (EWMA) strategy

EWMA is a predictive power management strategy that uses historical information to plan the

demand load in the future. As a predictive power management method, there are two steps

to plan power usage. The exponentially weighted moving average on the power generation is

estimated first.

P̄ (t) = αP (t) + (1− α)P̄t−1 (5.38)

where α is weight between 0 and 1, a higher weight would discount older observation quicker.

P̄ (t) start with P (0) at the very beginning.

The demand load is then planned as the exponentially weighted moving average on the power

generation.

U(t) = P̄ (t) (5.39)

Global Finite Horizontal (GFH) strategy
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GFH power management strategy plan the power usage with prior global knowledge on the power

generation and the battery size. GFH plans power usage to maximise the total power supply

without depleting the battery.

maximise
U(t)

Tt∑

t=1

S(t)

subject to 0 ≤ U(t) ≤ P (t) + E(t)

E(t) ≥ (1−DOD) ·B

(5.40)

Performance matrices

Five performance matrices are selected to compare the performance of the learning-based power

management strategy. Performance matrices are:

• Pc: Critical load offline ratio

The fraction of time that the power supply cannot provide at least a critical load.

• η: Energy conversion efficiency

The ratio between total supplied power to the total generated power.

• minS(t): Minimal power supply

• S̄(t): Averaged power supply

• σ[S(t)]: Standard deviation on power supply

Other performance matrices include the reward for the power supply is also assessed in the study.

• r̄t: Averaged reward

• R: Total return

5.4.2 Training result

Figure 5.9 show the training process when the power management system learns to plan power

usage. As shown, the power management system continuously increases its averaged total return

during the training process. According to the final reward after 1000 epochs, the total reward is

close to 1.2× 105.

The resulting power management strategy achieved an average reward at around 25. This means

the learning-based power management strategy, on an average, not only supplied the critical

load but also some performance-related load to the renewable robot. Simulation result from

the execution mode confirms the ability of this learning-based power management strategy. In

Figure 5.10, the power generation, power supply and battery SOC are shown in the upper part

of the figure. Critical load unmet – the difference between the power supply and the critical load

– is shown in the lower part of the figure.
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Figure 5.9: Averaged return during the training process
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Figure 5.10: RL power management SOC, generation, planned and unmet (24 hours aver-
aged)

What stands out in the unmet part is that there is no loss in power supply to the critical load.

RL strategy maintains the reliability to support the critical load during the long-term mission.

The SOC of the battery indicates its energy level is always above the DOD in the mission.

The RL strategy also outperforms to the DLF strategy in the actual power supply. Figure 5.11

compares the supplied power to the renewable robot according to each power management strat-

egy. According to the RL power management strategy, the actual power supplied to the renewable

has a higher mean value than the DLF strategy.

RL strategy achieved this by learning from the experience in the dynamic power management

environment. For the same REHS configuration, the learning-based power management improved

the efficiency whilst maintained the reliability in the critical load power supply.
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Figure 5.11: RL and DLF actual power supply

5.4.3 Benchmark result

Performance of the RL strategy will be further compared against our baseline algorithms in this

section. All five power management strategies are simulated in the dynamic power management

system using the same RHES configuration. Each power management strategy plans the power

usage based on the same power generation and load demand (including critical and performance-

related load). Power generation, planned power usage, battery SOC and critical load unmet of

other power management strategies are shown from Figure 5.12 to Figure 5.15. The behaviour

of each power management strategies as well as its performance will be explained.
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Figure 5.12: GAF power management SOC, generation, planned and unmet (24 hours aver-
aged)

The GAF strategy plans power using the same as the power generation. This power management

strategy does not take into account other factors such as the demand load or battery energy.

The power generated from the renewable resource is consumed immediately so there is no energy

saved to the battery.

In Figure 5.12, planned power overlapped with the power generation according to the power

management strategy. The SOC dropped to zero after two months due to the battery self-

discharge. After the battery is fully depleted, the power system would fail to supply at least a

critical load to the renewable robot if there is a shortage in power generation. This will undermine

the power supply reliability that the critical load can not be guaranteed. The renewable robot

will experience a power loss in safety-related critical load.
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However, the GAF strategy has an advantage in power conversion efficiency. As all power is

consumed right after its generation, the theoretical power conversion efficiency between genera-

tion and supply is 93 per cent (due to DC-DC loss). It is a strength for space-limited renewable

energy applications which safety is not influenced by the loss of power supply. For renewable

robots, the excessive use of generated power would harm the safety of the robot in the long-term

operation.
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Figure 5.13: DLF power management SOC, generation, planned and unmet (24 hours aver-
aged)

The DLF strategy plans the same power usage as the demand load. Demand load of the renewable

robot consists of the critical load and performance-related load at the rated duty cycle. In

Figure 5.13, the simulation result shows there is no critical load unmet during the operation. The

energy level in the battery stays over 80 % on the 24 hours averaged SOC. As the default power

management strategy, the DLF does benefit from the REHS configuration that optimised for this

specific operating condition. The DLF strategy compromises the power conversion efficiency for

the reliability in supplying demand load to the renewable robot. If the renewable robot operates

in the same condition as the design scenario, the DLF will able to provide uninterrupted power

supply to all demand load. In this case, critical load as a part of demand load shall be supplied

by the REHS.

As discussed before, the disadvantage of DLF strategy is the robustness when the operation

condition is different from that in the design scenario. This section, however, only discusses the

behaviour and performance of each strategy on the design scenario. Multiple year robustness

and performance of each management strategy will be discussed in the next section.
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Figure 5.14: EWMA power management SOC, generation, planned and unmet (24 hours
averaged)
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The EWMA strategy plans power usage based on power generation observations. This strategy

predicts the future power generation as an exponentially weighted moving average of the past

observations and allocates the power usage from the prediction. The power usage will only

increase or decrease depending on the expected power generation. Demand load of the renewable

robot is not considered when planning the power usage for the future.

Planned power usage, battery SOC and critical load unmet of EWMA strategy can be seen

in Figure 5.14. The EWMA strategy predicts the future power generation on a short time

horizon and plans the power usage accordingly. This power management strategy was designed

to maintain the short-term power supply by adjusting the power usage depending on recent

observations. Long-term power supply stability is not guaranteed by the power management

strategy because neither demand load nor future variance in power generation is considered.
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Figure 5.15: GFH power management SOC, generation, planned and unmet (24 hours aver-
aged)

The GFH strategy further considers the constraint in the battery while planning the power usage.

The power usage is planned to maximise the total power supply without leaving the battery

energy level drops below than DOD. This power management strategy is a global optimisation

based approach that the future power generation is known while planning the power usage.

However, the demand load of the renewable robot is not included when plan power usage.

Result of the GFH strategy is shown in Figure 5.15, the power usage is planned on the finite

horizon on future power generation. Compare to EWMA and GAF strategy, GFH has fewer

instances in the critical load unmet. This power management strategy also keeps the battery

level over the minimum DOD during the operation.

Performance matrices of these power management strategies, including the learning-based, are

listed in Table 5.2. The performance of each power management strategy is compared with the

reliability and efficiency indexes.

Among five power management strategies, DLF and RL have the best performance in terms of

critical load off-line ratio. Both control strategies achieved zero critical load off-line time. GFH

strategy has a critical load offline ratio at 0.028. EWMA then followed by the GAF have a

critical load offline ratio higher than 10 %. GAF strategy that excessively uses the harvested

power has the highest critical load offline ratio.

The GAF strategy has the highest energy conversion ratio at around 93 % that all power collected

by the REHS is used by the renewable robot while considering the DC to DC conversion efficiency.
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Table 5.2: Performance of learning based power management system on the design mission

GAF DLF EWMA GFH RL

Pc 0.178 0.000 0.129 0.028 0.000
η% 93 15.46 55.85 58.60 47.93
minS(t) 0.00 7.56 0.58 0.00 6.74
S̄(t) 100.56 16.73 60.39 63.46 51.84
σ[S(t)] 104.39 9.87 49.38 21.92 18.07
r̄t -64.50 20.55 -42.30 10.45 24.06
R -303446.2 96679.0 -199008.6 49158.2 113174.0

GFH is second to the GAF in energy conversion ratio as the goal of this strategy is to maximise

the total power supply without fully depleting the battery. EWMA is close to the GFH with

roughly 60 % of energy conversion ratio. Learning-based strategy RL is in between DLF and

DWMA, it has a nearly 50% of energy conversion ratio. DLF is the most conservative power

management strategy with the lowest energy conversion ratio.

Table 5.2 also listed the minimal, averaged and the standard deviation on the actual power

supply five power management strategies. GAF and GFH have the lowest minimal power supply

to the renewable robot. At a time when there is no power generation, the GAF can’t supply any

power to the renewable robot. Due to this, the minimal power supply is zero. GFH also has a

minimal power supply at zero when there is a decrease in the power generation. GFH strategy

is aimed to maximise the total power supply to the robot however it doesn’t guarantee the

minimum level of power supply. EWMA performed slightly better than those two strategies by

plan the power usage through the prediction on future power generation. The moving averaged

approach to plan the power usage by smoothed out the variance in the power generation. RL

and DLF are the top two strategies in the minimal power supply. Since the DLF strategy has a

goal to supply-demand load all the time, the minimal power supply of the DLF is the same the

minimal demand load.

Compare to RL strategy that guarantees the minimal critical load, the DLF has a higher minimal

level of power supply. Mean power supply of these power supply strategies shows a similar trend

as the power conversion efficiency. The DLF has the lowest and the GAF has the highest standard

deviation in power supply.

This shows a clear trade-off between the reliability and efficiency of those power management

strategies. Any power management strategy shall trade part of the efficiency for the reliability

during the operation. GAF prioritise the power conversion efficiency over the critical load relia-

bility. This strategy is often used in stationary applications with limited space where efficiency

is the key objective. The state of art power management strategies on space limited stationary

applications has to focus on the power conversion efficiency to maximise the performance of

the system. RL balance the reliability and efficiency to achieve the performance goal on space

limited renewable robots.

5.4.4 Multiple years robustness result

The robustness performance of five power management strategies for multiple years are also

studied. In this study, the performance of different power strategies is simulated on multiple
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years with the same REHS configuration. For the same configuration, the power generation and

the demand load (including the critical and performance-related) are different from year to year.

Each power management strategy shall plan the power usage in the same dynamic simulation

environment.

In this simulation, it could still observer the power generation on every time step. The DLF

strategy responses to the demand load and it receives that on every time step in the simulation.

The EWMA strategy predicts and plans the power usage.

Power generation on each time step is known to the EWMA management strategy. As the GFH

strategy requires the prior knowledge of power generation, the global power generation is given

this strategy. The RL strategy relies on the policy that is trained by the meteorological data in

the design year (2014). Observations on the demand load, power generation and energy in the

battery are available to the RL strategy on every time step.

The performance matrices of all five power management strategies are listed in Table A.1. Mul-

tiyear critical load reliability performance reflects the robustness of each power management

strategy. Reliability performance of five power management strategies ranked similarly to the

single year simulation. The GAF strategy has the highest overall critical load unmet ratio over

20 years of simulation. The EWMA strategy has the second-highest overall critical load unmet

ratio in the simulation.

Top three power management strategies (RL, DLF, and GFH) are further compared in Fig-

ure 5.16. It can be seen that the RL strategy has a zero critical load offline ratio on all studied

years.

DLF strategy also managed to stay at zero except in the year 2002. GFH has the highest critical

load offline ratio that critical load unmet is close to 0.03 on an average.
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Figure 5.16: Multiple years critical load offline ratio

The RL strategy outperforms the DLF strategy in critical load reliability.
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Planned power usage of these two strategies in 2002 are compared in Figure 5.17. The renewable

robot lost critical power supply in early March of 2002 when using DLF strategy. At the same

time, the RL strategy already decreased the power usage and only plan the critical load when

there is a shortage of power generation. The battery is fully charged before the increase in critical

load. According to RL strategy, all performance-related load has to be turned off to prioritise

the power supply to the critical load.
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Figure 5.17: RL and DLF planned power usage in 2002

The limitation of DLF strategy is it can’t adjust the power usage for the robust power supply.

Such power management strategy is too conservative when the battery is full and too aggressive

when power generation is low. When the battery is full, the extra generated power cannot be

consumed by increasing the demand load.

On the contrary, when power generation is low, the DLF strategy cannot adjust the power

usage. RL strategy can adapt to the changes in the power generation and compromise short-

term performance for long-term power supply stability. The critical load was guaranteed by the

RL strategy in the 20 years simulation period.
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Figure 5.18: Multiple years power conversion efficiency
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The RL strategy also has a higher power conversion ratio compared to the DLF strategy. The

power conversion efficiency of DLF, RL, and GFH strategies are shown in Figure 5.18.

Power usage planned by the GFH strategy yields the highest power conversion ratio among all

three strategies. This is because the GFH strategy is designed to maximise the supplied power

to the renewable robot. However, the higher power conversion ratio is achieved at the cost of

critical load unmet as shown before.

RL strategy performed better than DLF in the power conversion efficiency. The planned power

usage in Figure 5.17 shows the difference between these two strategies. When the critical load is

met by the generation, the RL strategy could increase the demand load for performance-related

load.

This results in a higher energy conversion ratio on the same configuration. A higher energy

conversion ratio can improve the performance of the renewable robot.

The study shows the RL strategy could provide a guaranteed power supply to the critical load

and improve the performance of renewable robot when it possible. From the experience gained

from the training only on the design scenario, the resulting power management strategy excels

other state-of-art power management strategies. The efficiency of the power supply is improved

without any compromise on the safety of the renewable robot.

5.5 Summary

In this chapter, the background, implementation and result of the learning based power manage-

ment strategy were presented. The power management strategy is developed for the long term

reliability performance of the renewable robot. REHS is subject to the uncertainty and variance

in the renewable energy resource, the reliability achieved at the design stage may be guaranteed

during the operation.

The situation is common for REHS design that the system has to designed beforehand and the

actual operation condition may varies. In order to cope with this challenge, the learning based

power management strategy learn the pattern in the power generation and demand load using

historical data. It improves the management performance through reinforcement learning that

reward the control decision that guarantee a minimal level of power supply and provide more

power to performance-related load.

The experiment result shows that the power management strategy could learn to plan the power

usage from the power system. Even better, the learned control strategy is applicable to robot’s

mission in other year. A benchmark result shows that even the energy conversion efficiency is

not as high as the best conventional method, the minimal level of power supply is guaranteed in

a long term simulation.
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Case study

In this chapter, the case study will demonstrate the feasibility of the theoretical model and

method. The model, optimisation and management methods proposed in this thesis will be

applied to a single problem to show how our goal to provide reliable, cost-effectively power

supply solution to a mobile robot.

6.1 Problem formulation

In this example, the power system design and management of an autonomous surface vehicle

(ASV) sailing across the ocean was considered. The route of the vehicle is shown in Figure 6.1.

At the averaged cruising speed 3 km/h, the whole journey takes about five months to finish.

The year 2014 was used as the typical meteorological year for the design. Started from 1 st of

January 2014, the ASV is expected to arrive at its destination on May 2014.
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Figure 6.1: Route in the case study East China Sea to Hawaii
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The ASV is a catamaran design that has two demihulls connected by a beam (as shown in

Figure 6.2). Deck area in between two demihulls can be used to install the solar panel and a

wind turbine. Battery and control unit is installed inside the hull of the ASV.

2.1 m

0.8m

Figure 6.2: Catamaran ASV

Table 6.1 listed the basic dimension of this vehicle. This beam of the vehicle is 0.8 metres in

total and the beam of each demihull is 0.32 metres.

Table 6.1: Basic dimensions

Dimensions Value Unit
Length 2.10 metres
Draught 0.16 metres
Beam 0.80 (0.32 demihulls) metres
Slenderness coefficient 13.1 -
Prismatic coefficient 0.693 -

Limited space on the ASV constraint the maximum size of REHS devices. Table 6.2 listed the

constraint on the three main REHS devices.

Table 6.2: Limitations on the REHS size

Constraints Value Unit
Solar panel area 1.60 m2

Wind turbine area 0.50 m2

Battery capacity 4000 Wh

In this journey, the REHS based power system provides electrical supply to both hotel and

propulsion load. The core hotel load including navigation and control system, communication

system and sensory system. Hotel load of the ASV are listed in Table 6.3. The critical hotel
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load has to be always powered for the safe operation of the vehicle. At the same time, the REHS

power system shall supply sufficient power for the mobile robot’s propulsion system. Propulsion

load is also a critical load as the delay of arrival would result in a missing observation.

Table 6.3: Propulsion load on the autonomous surface vehicle

Components Power usage Critical load Duty cycle
Navigation computer 5 W Yes 1
Camera 650 mW Yes 1
Global Positioning System (GPS) 50 to 800 mW Yes 1
Inertial Measurement Unit (IMU) 40 to 700 mW Yes 1
Integrated radio transmitter 0.5 to 20 W No 0.2
Temperature sensor 40 to 50 mW No 0.9
Wind sensor 0.4 to 1.2 W No 0.5
Salinity sensor 40 to 100 mW No 0.9

Table 6.4 listed the economic and operational parameters of the vehicle. Unit cost of renewable

energy devices are collected from market data. The unit price of the wind turbine is 320 per

squared metre swept area. The unit cost of the solar panel is 210 per squared metre. The battery

has a unit price at 1 per Wh.

The solar panel is installed on the flat surface on the deck so the yaw motion of the ASV does

not influence the solar power generation. Pitch and roll motion are assumed as a periodic linear

motion at maximum amplitude of 0.1 and 0.2 rads correspondingly.

Table 6.4: Economic and operational parameters

Parameter Meaning Value
cw Wind turbine unit cost 3000
cs Solar panel unit cost 210
cb Battery 1
p0 Amplitude of pitch motion 0.1 rad
q0 Amplitude of roll motion 0.2 rad

In this case study, both the REHS configuration and the power management strategy has to be

designed for the renewable robot’s long-term safe operation. The power system configuration

first has to be optimised with an objective in providing reliable and cost-effective power supply

under the size constraint. Based on the design outcome, a robust power management strategy

also need to be designed for multiple year long-term power supply stability.

6.2 Power system simulation

On the averaged cruising speed at 3 km/h, the location and the local time of the ASV is calculated

and shown in Table 6.5. This mission is around 9400 km long and it will take 3168 hours for the

ASV to reach the destination. In this long-distance voyage, the global motion influence power

generation due to variance in renewable resources. The moving REHS model simulates the global

motion of renewable robot using a data-driven approach. Following this approach, the power

generation is simulated from the nearest hindcast meteorological data to its location.
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Table 6.5: Voyage information of the vehicle

GMT Latitude Longitude Local time

2014-01-01 00:00:00 29.390872 124.842009 2014-01-01 08:00:00
2014-01-07 06:00:00 27.145370 128.670991 2014-01-07 15:00:00
2014-01-13 12:00:00 24.797757 132.416632 2014-01-13 21:00:00
2014-01-19 18:00:00 23.468335 136.358345 2014-01-20 03:00:00
2014-01-26 00:00:00 22.653696 140.367331 2014-01-26 09:00:00
2014-02-01 06:00:00 21.953204 144.379733 2014-02-01 16:00:00
2014-02-07 12:00:00 21.232669 148.382074 2014-02-07 22:00:00
2014-02-13 18:00:00 20.830241 152.397732 2014-02-14 04:00:00
2014-02-20 00:00:00 20.307651 156.415401 2014-02-20 10:00:00
2014-02-26 06:00:00 19.953760 160.458388 2014-02-26 17:00:00
2014-03-04 12:00:00 19.750092 164.501185 2014-03-04 23:00:00
2014-03-10 18:00:00 19.708186 168.546170 2014-03-11 05:00:00
2014-03-17 00:00:00 19.600020 172.583333 2014-03-17 12:00:00
2014-03-23 06:00:00 19.607256 176.633514 2014-03-23 18:00:00
2014-03-29 12:00:00 19.601453 -179.319578 2014-03-29 00:00:00
2014-04-04 18:00:00 19.595342 -175.279192 2014-04-04 06:00:00
2014-04-11 00:00:00 17.536351 -171.786419 2014-04-10 13:00:00
2014-04-17 06:00:00 14.821195 -168.910037 2014-04-16 19:00:00
2014-04-23 12:00:00 11.969277 -166.234065 2014-04-23 01:00:00
2014-04-29 18:00:00 12.728521 -162.330064 2014-04-29 07:00:00
2014-05-06 00:00:00 14.637577 -158.756459 2014-05-05 13:00:00
2014-05-12 06:00:00 17.678960 -155.979834 2014-05-11 20:00:00

Solar radiation and temperature data are collected for the solar power generation simulation. In

this mission, the global direct solar radiation (SWGDN) and the global clear sky solar radiation

(SWTDN) are retrieved from MEERA-2 database. Time indexed solar radiation on this mission is

shown in Figure 6.3.
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Figure 6.3: Solar radiation trend (W/m2) 24 hours averaged

Global direct solar radiation (SWGDN) follows the general trend of global clear sky solar radiation

(SWTDN) as it is shown in Figure 6.3. But due to the changing weather condition on the sea, the

direct solar radiation on each day is varying. A more detailed heatmap in Figure 6.4 shows the

distribution of the solar power within the day. In this figure, the horizontal axis represents each

day of travel and the vertical axis is the UTC hour on that day. The continued shift in the peak

solar radiation time is due to the change of local timezone. The highest solar radiation often

found in local noon time while there is no power can be generated during the night.
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Figure 6.4: Global direct solar radiation heatmap (W/m2)

The ambient temperature of the renewable robot is also collected to take account its influence on

the power conversion efficiency. The ambient temperature on this route is shown in Figure 6.5.

Since the route started from January from the northern hemisphere, there is an increase in the

temperature as the ASV sails into the Pacific ocean.
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Figure 6.5: Ambient temperature on the mission

Solar power generation could be simulated from the solar radiation and the temperature on the

mission. The first step in the simulation is to decompose the solar radiation component into

direct and diffused irradiance. Figure 6.6 shows the clearness and diffuse index of the solar

radiation component.
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Figure 6.6: Clearness and diffuse index in the mission
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Local motion including the pitch and roll are integrated into the solar power model when the

solar radiation component is decomposed. Using the temperature-dependent power conversion

efficiency model Equation 3.44, the per-unit size solar power generation is simulated.
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Figure 6.7: Solar power generation in mission

Wind power generation is dependent on both wind direction and wind speed. Considering the

cruising speed of ASV, the wind observed on the renewable robot is the apparent wind. The

speed of the true and apparent wind is shown in Figure 6.8.
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Figure 6.8: Wind speed in mission (12 Hours averaged)

The local motion of renewable robot has an impact on the wind power generation in both wind

direction and speed. The direction of the true and apparent wind is shown in Figure 6.9.
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Figure 6.9: Wind direction in mission
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Compare to the change in the wind speed, there is less change in the apparent wind direction

because the true wind speed is higher than the cruising speed most of the time. Raw power

generation on the apparent wind and the wind resistance discount are shown in Figure 6.10.

The raw power generation is the total electrical power generation from the turbine on cruising

speed (GPS speed). Depends on the wind direction, the propulsion system may have to consume

electric energy to maintain the speed. Using the moving wind turbine model, the net power

generation and the wind resistance discount are shown in Figure 6.10.
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Figure 6.10: Wind power generation on the route

A positive wind resistance discount would require the propulsion system to increase the power

to counterbalance it. A negative wind resistance discount can potentially save power for the

propulsion system. The minimal propulsion power consumption is zero if the vehicle can be

driven by the wind completely.

Demand load of the renewable robot includes the hotel and propulsion load. In this case, the

ASV also has to arrive each waypoint on time to collect data. The critical load would include

part of the hotel load as shown in Table 6.3 and the propulsion load. The performance-related

load consists of power consumption of all variable duty cycle components.

Propulsion load of the renewable robot is the total electrical power consumption. The propulsion

is estimated by the water speed which is calculated from the vehicle speed and current speed. The

water speed of the vehicle when considering the ocean surface current is shown in Figure 6.11.
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Figure 6.11: Water speed of the vehicle (in relative to the moving current)

The propulsion power consumption of the vehicle can be estimated. In this mission, the propul-

sion power of the robot on the water speed is shown in Figure 6.12.
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Figure 6.12: Propulsion load at water speed

Wind resistance discount also needs to be included in the propulsion load. Figure 6.13 shows

the propulsion load when consider the wind resistance discount.
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Figure 6.13: Propulsion load including resistance discount at water speed

Hotel load is estimated using the model from Equation 3.92 and the result is shown in Figure 6.14.
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Figure 6.14: Hotel load on route

Part of the hotel load is critical to the safe operation of the renewable robot. This part of the

hotel load, as well as the propulsion load, are the critical load has to be supplied by the REHS.

Power generation and demand load of the renewable robot now have been estimated in the

mission. This simulation considers both global and local motion of the renewable robot during

the operation.
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6.3 System configuration optimisation

To design the REHS for a reliable and cost-effective power supply to the robot under the size

constraints, the REHS configuration has to be optimised for this mission. Design variables

including the size of the REHS devices: the size of wind turbine Aw, area of solar panel As and

capacity of the battery B. Two main objectives in the optimisation are to design the REHS

configuration at higher energy supply reliability and lower device capital cost. Energy supply

reliability is indexed by the LPSP as the fraction of time that demand load is not supplied.

LPSP = P[S(t) < Pl(t)] (6.1)

where Pl(t) is demand load, S(t) is actual power supply.

Device capital C is the total cost of the REHS devices:

C = cwAw + csAs + cbB (6.2)

where cw, cs, cb are unit price cost of wind, solar and battery system with value specified in

Table 6.4.

In the REHS configuration design, the aim is to minimise both LPSP and device capital cost.

Multiple objectives optimisation has been done to study the relationship between two objectives

without considering the size constraint of REHS devices.
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Figure 6.15: Multiple objectives optimisation

Figure 6.15 is the Pareto front of REHS cost compared against LPSP. It can be seen that the

cost and reliability are two competing objectives. A more reliable REHS is more expensive in

the capital cost. In order to design a reliable, cost-effective REHS under the size constraint,

the mixed objectives optimisation method is used. The design method is formed as a constraint
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optimisation problem shown in Equation 6.3.

minimize
Aw,As,B

C(Aw, As, B) + λ · LPSP (Aw, As, B)

subject to 0 ≤ Aw ≤ Āw
0 ≤ As ≤ Ās
0 ≤ B ≤ B̄

(6.3)

where C is cost of renewable energy devices, LPSP is lost power supply probability, LPSP

weight ratio λ = 1 · 107 is picked to minimise the LPSP. Aw, As, B are design parameters on the

size of wind turbine, area of solar panel, and battery capacity correspondingly, Āw, Ās, B̄ are

limits on each REHS devices.
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Figure 6.16: Population evolution during the optimisation, x, y, z axes are size of solar panel,
wind turbine and battery capacity

The optimisation process is illustrated in Figure 6.16. At the beginning of the optimisation, a

group of particles will be randomly generated within the constraint of all design parameters.
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Each particle is a possible configuration on the size of the wind turbine, solar panel and bat-

tery capacity (Aw, As, B). Generation 0 in Figure 6.16 shows a population of 100 particles are

randomly generated under the constraint.

On every generation, the mixed objective function is evaluated through the data-driven sim-

ulation on different REHS configuration. Among all the particles, the configuration with the

highest fitness is the global best. For each particle, the best performance it has been achieved

is the personal best. Mixed objectives optimisation method (Algorithm 3) update the location

and velocity of each particle. Each particle continues to evolve depending on the global best and

personal best. When the averaged personal best converge into the global best, the global best

configuration is found.
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Figure 6.17: Convergence on the objective function

Figure 6.17 shows the convergence in the global and personal best after 100 generations. It

suggested an REHS configuration with the size of the wind turbine, area of solar panel and

capacity of battery listed in Table 6.6. Compare with the limit on the size of REHS devices, the

configuration is a feasible design for the surface vehicle.

Table 6.6: Optimisation result

Constraints Result Unit Limit
Solar panel area 1.21 m2 1.60
Wind turbine area 0.45 m2 0.50
Battery capacity 753 Wh 4000

Power system simulation result on this configuration is shown in Figure 6.18. In this mission, the

REHS harvest energy from both wind and solar resources to supply power to the renewable robot.

The difference between the demand load and the power supply is unmet power shown below.

Unmet power in this mission using the configuration designed by the optimisation method is

zero. The optimisation algorithm can effectively find the configuration with higher power supply

availability with LPSP at zero.
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Figure 6.18: Power generation and supply to the system

Due to the discounted cost on the LPSP in the mixed objectives fitness function is zero, the

resulting REHS is also a cost-effective configuration to achieve long-term power supply reliabil-

ity. This can be also confirmed by the convergence in the global and personal best during the

optimisation.

6.4 Robust management strategy learning

The robustness of the configuration is simulated using the same REHS configuration on different

meteorological years. Since the REHS configuration is optimised for the mission started in

2014, the design scenario stays at zero LPSP. The 20 years long power simulation shows such

configuration could maintain the zero LPSP in most years. However, in the year of 2003, the

REHS configuration failed to supply enough power to the renewable robot on some occasion,

resulting in a small LPSP in the last 20 years.

The variance in the power generation and the demand load challenges the long-term power supply

robustness. Power generation from wind and solar resource on the same route but a different

meteorological year has been shown in Figure 6.19.

When there is a change in the power generation or demand load, the default demand load follow

(DLF) strategy can’t adjust the power usage for long-term power supply reliability. The lost

in the power supply would delay the journey of ASV or even threaten the safe operation of

the vehicle. In order to tackle this problem, the learning-based power management strategy is

trained for the ASV’s long-term operation. This strategy uses the meteorological data and the

model of the REHS as an input to train a reinforcement learning agent. The trained agent could

learn to plan the power usage based on the observation in power generation, demand load and

battery energy level.

In the dynamic power management environment, the power management strategy is trained

using Algorithm 4. The reward function on the power supply is Equation 6.4.

r(t) =





20 + min[0.1[S(t)− Pc(t)], 20] S(t) ≥ Pc(t)
−500 S(t) < Pc(t)

(6.4)

where Pc(t) is the critical load and S(t) is the REHS power supply.
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Figure 6.19: Multiple year power generation using the designed configuration

The reward function will give a fixed reward to the power management strategy for critical

load. If the power management strategy fail to supply power at least for critical load, a negative

penalty will be applied. The further reward can be claimed if the extra power is supplied for the

performance-related load. However, the maximum extra reward is capped at the same as the

critical load to avoid excessive use of energy in purist of extra reward.
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Figure 6.20: Averaged total reward during the training

Power management strategy training uses the renewable energy resource data and the system

configuration on the year of 2014. The averaged total reward in the learning process has been

shown in Figure 6.20. As the agent interacts with the environment, the total reward gradually

increased from negative to a positive value and the steady-state is found after 200 training

epochs.

The learnt power management strategy at 1000 epochs are used to post simulate the performance

on the design scenario. REHS simulation result in using the learning-based power management
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strategy on the design year 2014 is shown in Figure 6.21.
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Figure 6.21: Power management result on reinforcement learning method

Both strategies managed to plan the power usage for a reliable long-term power supply in the

design scenario. Compare to the DLF strategy, the RL strategy is more aggressive when there is

abundant power generation. The state of discharge also shows the RL strategy discharge deeper

than the DLF for a better power management efficiency.

The learnt power management strategy could not only plan the power usage for the year of 2014

but also improve the power supply quality on the mission on the year of 2003. Power management

trained by the meteorological data from the mission 2014 is simulated with the mission started

in 2003 using the exact same configuration. Simulation result including the power generation,

load demand and the critical load unmet are shown in Figure 6.23.
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Figure 6.22: Power management result on reinforcement learning method

What stands out in is the power management strategy is able to plan the power usage for

a reliable power supply despite relying on a highly variable renewable energy resource. The

trained power management strategy guaranteed the minimal power supply to the critical load

during the mission by reinforcement learning. This power management strategy recognise the

type of demand load and prioritise critical load. Critical load unmet ratio shows that the DLF

has a chance to lost the critical power supply while RL strategy maintained a zero in the last 20

years.

RL based power management strategy maintains the zero critical loads unmet ratio in the last 20

years. The power usage planed by the DLF and RL are simulated and presented in Figure 6.23

and Figure 6.24.
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Figure 6.23: Power management result on reinforcement learning (RL) method

Figure 6.23 shows the power system simulation result in 2003. While the DLF strategy (shown

in Figure 6.24) has a loss in the critical load supply in the year of 2003 if the same configuration

is used. This long-term robustness in power management guarantees the safe operation of the

renewable robot when the power generation or the demand load deviates from the initial design

scenario. Power management learnt to plan the power usage from the training data from the

design scenario and adjust the performance-related and critical load for the best compromise

between reliability and power conversion efficiency.
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Figure 6.24: Power management result on demand load follow (DLF) method

On the other hand, the DLF simply follows the demand load to plan the power usage as the full

propulsion load and the hotel load. When there is a shortage in the power generation, the DLF

strategy does not change the plan. In early January, the lost power supply happened soon after

the demand load increase due to the changing wind direction increases the power generation. RL

strategy solves the 10 to 25 watts power supply shortage by reducing the performance-related

load beforehand. Such a strategy helped the robot to maintain the power supply on critical load

for the safe operation.

GAF aggressively use the power generated in time so the averaged power supply is the highest

among all methods. The drawback on this method is that the requirement from the demand load

side is neglected so the critical load can’t be supplied when the power generation isn’t sufficient.

As a result, the total reward is worst in all methods.

Exponentially weighted moving averaged (EWMA) method does not perform well on the power

management problem compare to the RL method. EWMA is a resource side power management

strategy, it plans the usage of the power system with the knowledge on the power generation.
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Figure 6.25: Power management result on generation absolute follow (GAF) method
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Figure 6.26: Power management result on EWMA method

The unmet power supply and SOC illustrated in Figure 6.26 shows the method can’t mitigate

the fluctuation in power generation and response to the changes in renewable energy resources

from year to year.
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Figure 6.27: Power management result on global finite horizon (GFH) method

Global finite horizon (GFH) optimal power management strategy plans the power usage with

prior global knowledge on renewable energy resources. The aim of such design is to maximise

the total energy usage while maintaining the energy in the battery above minimal level. Similar

to EWMA, GFH is also a resource side power management strategy that plans on the power

generation based on power generation. What makes it different is this method also work on the

battery energy level. One disadvantage of GFH is the idea of maximising the total output during

the journey would aggressive plan the power usage for the robot. It achieves a higher averaged

power supply level on the cost of failure to supply critical load.
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Table 6.7: Power management baseline comparison

GAF DLF EWMA GFH RL

Total reward -139359 58033 10189 12258 84571
Critical load unmet 0.209 0.001 0.145 0.015 0.000
Averaged reward -81.30 19.81 -50.29 17.37 26.78
Minimum power supply 0.00 0.00 0.43 0.00 22.03
Averaged power supply 51.90 17.40 40.58 42.30 33.45
Std on power supply 109.97 6.34 51.10 18.34 17.71

A summary on the power supply quality is listed in Table 6.7. The total reward, time on the

ratio of critical load unmet, averaged reward, minimum power supply, averaged power supply

and standard deviation on the power supply of different approaches are presented.

Compared with other baseline power management strategies including DLF, GAF, EWMA and

GFH, the RL based power management system achieved the best compromise between the energy

conversion efficiency and the long-term power supply reliability. The averaged power supply plan

by the power management strategy lower than the other but the critical load can be met.

The resulting power management strategy could be saved as a neural network model for the

micro-controller of the renewable robot to plan power usage in the future. Up to this point, a

complete design including the REHS configuration and the long-term robust power management

strategy have been prepared for the renewable robot’s operation. The unified simulation, design

and management approach taken in this case study shows the method could help to plan the

best capacity of the REHS and maintain the long-term power supply reliability for the robot

despite relying on highly variable renewable energy resources.





Chapter 7

Conclusions and

recommendations

7.1 Conclusions

The purpose of this study was to develop a methodology to design the renewable energy harvest-

ing system for maritime mobile robots. This dissertation contributes to the area of the energy

autonomy for maritime robotics systems. Specifically, it introduces a novel model, design and

management methods to the hybrid renewable energy system for self-sustained robots. The pri-

mary objective of this dissertation is to develop a general methodology to support the operation

of renewable energy powered robots in the whole life cycle. Three parts of work were carried out

on the major challenges in using renewable energy system on a moving system:

• Power system simulation with the inclusion of global and local motion of the robot.

• System configuration design optimisation under a size constraint.

• Dynamic power management strategy for a guaranteed critical power supply.

The results of this study indicate that both global and local motion has an impact on the power

generation and demand load of renewable robots. Global motion has a significant influence

the power generation from the renewable resource side and the demand load on the propulsion

load. As the robot travels, the uncertainty and variance in the renewable resources exhibit both

temporally and spatially. The local motion of the robot also affects the power generation and

demand load. Solar power generation on the robot degraded when there is a large periodic roll

and pitch motion. For a small local motion, less than 5% of reduction in solar power generation

is found on a flat solar panel. Wind power generation has to include energy consumption that

counterbalances the wind turbine added resistance. The wind power generation could be negative

if the speed of the robot is much higher than the wind. It is not feasible to install a wind turbine

on the robot that cruising speed is higher than the wind speed. The data-driven simulation

method takes both global and local motion of the renewable robot into account. Simulation

on the power generation, demand load and the battery system is able to suggest the potential
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reliability and economic performance of the robot at a given mission. The performance of the

robot heavily depends on the mission and the configuration of the REHS.

• Global motion influence the power generation from the resource side.

• Global motion also influences the demand load on the propulsion part.

• Solar power generation is sensitive to the local motion.

– The pitch and roll motion has an impact on the power generation.

– A larger amplitude of the motion will introduce a greater reduction in solar power

generation.

• Wind power generation is sensitive to the wind speed as well as the direction.

– Wind from the opposite direction of the robot will require additional power to coun-

terbalance the wind resistance.

– Wind from the same direction of the robot could save propulsion power.

– Robot with cruising speed higher than the wind speed does not benefit from harvesting

wind energy at all as the resistance discount is higher than the harvested power,

• Solar and wind resources have limited energy density compared to conventional stored

energy solutions but its advantage in its sustainability.

• Data-driven simulation is able to include all these factors in the power system simulation

on a renewable robot.

REHS on the renewable robot has a hard size constraint on the devices. Limited space on

the renewable robot is the key challenge to the reliability of the power supply. The hybrid

configuration that uses multiple resources at the same time could help to increase total energy

density. However, the maximum power generation is limited by the size of the wind turbine

and solar panel. Under the size constraint, the multiple objectives optimisation can find the

best reliability and economic performance of the REHS for the robot using the data-driven

simulation. The REHS design optimisation suggests a configuration with a tradeoff between

cost and reliability. If there is a configuration achieved zero lost power during the mission, the

mixed objectives optimisation method could further improve the economic performance of the

configuration at the given mission. Multiple design cases show that the configuration is optimally

designed for both reliability and economic performance under the size constraint.

• Power generation on the REHS is limited by the energy density and the devices size con-

straint.

• Hybrid system increases the space utility by harvesting multiple resources together.

• Under the size constraint, the multiple objectives optimisation could find the best reliability

and economic performance of the REHS on a given mission.

• If the optimisation result suggests there is no configuration achieved a zero LPSP, the mul-

tiple objectives optimisation method suggest the configuration with the tradeoff between

cost and reliability.
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• If the optimisation result suggests there is a configuration achieved a zero LPSP, the mixed

objectives optimisation method could further improve the economic performance without

scarifying the reliability performance.

Despite the effort in modelling the global and local motion in the power system, the uncertainty

in the power generation and demand load still pose a huge challenge to the long term reliability.

Long term reliability performance study shows the optimal configuration designed for a specific

mission has a risk in the lost power supply for another mission. Conventional power management

strategies struggle to adjust the power supply for a guaranteed minimum level of power supply.

The learning-based power management strategy solves this challenge by exploiting the historical

pattern for the future operation scenario.

• For the renewable robot depends on the function of the demand load. There is a critical

load that always to be supplied and performance-related load that improve the service

quality if additional power is supplied.

• The power management for the renewable is to minimise the risk of loss of critical load

whenever is possible.

• Conventional power management strategies are limited by some of the assumptions on the

REHS:

– The Demand Load Follow (DLF) strategy is ideal for the renewable energy system

without size constraint that the power generator can always be designed to match the

demand load.

– The Generation Absolute Follow (GAF) strategy is suitable for the applications with

limited power generation and no minimal power supply level requirement.

– The Exponential Weighted Moving Averaging (EWMA) strategy assumes a repeated

temporal pattern in the power generation while the spatial-temporal nature of the

renewable robot makes it hard to find such a pattern.

– The Global Finite Horizon (GFH) optimal strategy assumes a full knowledge into the

future which is not usually available for the power management system before the

deployment of the robot.

• Learning-based power management could incrementally learn the power generation, de-

mand load and battery energy pattern on a given mission.

• The learnt power management strategy outperform four baseline strategies in terms of the

least critical load unmet ratio.

In general, the research shows that renewable energy is capable of supporting the power system

of the robot for a fully autonomous operation if there are sufficient renewable resources. Since

the power generation is influenced by both global and local motion of the robot, the mission is

the key factor to determine whether it is possible to fully supply the power to the robot. On the

demand load side, propulsion load is also subject to the spatial-temporal operation condition

such as wind, wave and current. The renewable energy power system has to match the demand

load and the power generation under the strict size constraint. It is not always possible to
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design configuration for a reliable power supply. However, if there is a configuration could fully

support the robot from renewable resources, the economic performance can also be expected.

The renewable robot with a guaranteed reliability and cost performance for a given mission is

well sought after among all the feasible designs.

The proposed REHS design method could find such a configuration for the renewable robot. Two

steps optimisation firstly search the design space for the best possible reliability performance and

then optimise the cost at the same time. Resulting configuration is the best REHS design for

a given mission. The challenge is that the mission is spatial-temporal dependent. Reliability

performance does not guarantee the future will exhibit the same pattern in power generation and

demand load. When any of them is different from the design scenario, the power management

strategy shall dynamically plan the power usage according to energy availability. This can be

done on the renewable robot because the demand load consist of a critical and performance-

related load. In the worst case, the performance-related can be reduced to save energy for the

future critical load. Learning-based power management strategy plans the power usage based on

the type of demand load using historical data. The power management strategy improves the

reliability performance to guarantee a minimal power supply for the critical load.

7.2 Further work suggestions

This work can only be viewed as the beginning of the studies on the REHS for robots. Many new

areas and research questions await to be explored, and some points worth to further investigate.

Future work along these ideas will deepen the understanding of REHS on the moving system.

In Chapter 3, the moving REHS model addressed the issue of power system simulation under

global and local motion. This power generator model was obtained from the two most common

renewable energy resources – wind and solar energy. Additional renewable energy resource

could be added as the harvesting source for more power generations. Besides, due to the long

term historical data on the renewable energy generators, the degradation of those generators is

neglected in the model. A future long term experiment on the power generator performance

would help the model to better account the change in power conversion efficiency.

Renewable energy system configuration design in Chapter 4 is focused on the power system

itself. Hence, the key design variables are the size of renewable energy devices. The mission of

the robot plays a significant role in the reliability performance as both power generation and

demand load are determined by location and time of the robot. An optimisation on the mission

for the robot could improve the performance of the power system through route planning. One

possible improvement to use optimisation based method to decide the best start time and cruising

speed to minimise the risk of lost power supply. Another direction is to optimise the route to

take advantage of environmental factors such as wind and ocean current.

Concerning the power management strategy proposed in Chapter 5, the control algorithm is an

inference neural network model that pre-trained from historical data. The strategy was learnt

offline due to the limit of power consumption on the embedded system. In the future, such

a strategy could be learnt offline first and update in situ. The online learning would allow
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the power management strategy to adopt the change in power generation and/or demand load

autonomously.

The renewable energy system has already been used for many robotics application to partially

support the energy demand. With further improvement in the power generators efficiency, mis-

sion planning strategy and the online learning power management strategy, the fully autonomous

robot is expected to extend its duration and ultimately achieve an unlimited operation in the

field.

7.3 Major contribution

Chapter 3 present the moving renewable energy power system model and the data-driven sim-

ulation method. As part of the development, the model method laid the foundation in the

non-stationary renewable energy system. It is important to acknowledge that much of the

motivation for the work is for the robotics applications. However, it is equally important to

understand many of the results and methods are not limited to the robots. The first result is

surprising: due to the local motion, the wind turbine may consume rather than generate energy

for specific wind directions. The local motion would also reduce the power generation on the

solar panel if there is a large-amplitude pitch and roll motion. Non-stationary power system

simulation includes both factors as none of the existing model considered them.

This foundation is complemented by the REHS configuration design under a size constraint.

Chapter 4 contributes to the design optimisation methods for the renewable energy powered

robot based on the non-stationary model. While there is a method to deal with the design

challenge for stationary application, a concrete design method to explore and optimise the non-

stationary application with strict size constraint is still missing. As part of the study, the

trade-offs and design considerations are presented. The two steps exploration and optimisation

method offers a novel design technique to find a cost-effective and reliable REHS configuration.

The proposed design optimisation method is able to the suggest the most economic configuration

for a given reliability requirement. Moreover, the optimality, feasibility and long-term robustness

were evaluated for the first time using historical data. Both optimality and feasibility have been

confirmed in the design case but the 20 years long data-driven simulation is disappointing that

the configuration would suffer a reliability issue in a longer-term.

As a response to this issue, Chapter 5 focuses on the power management strategy for the long

term power supply reliability. Since the robot has both critical load that always have to be

supplied and performance-related load that can be adjusted, the power management strategy

could dynamically plan the power usage to avoid a complete loss of power supply. However,

conventional power management strategies are unable to prioritise the supply of energy depends

on the type of load. Using the learning-based strategy with a reward to encourage a minimal

level power supply to the critical load, the proposed power management strategy could improve

its performance through unsupervised learning from historical data. The result shows the long-

term performance in supplying a minimal level power system can be achieved at a cost of slightly

lower power conversion efficiency.
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As a final remark, the major contribution of the work is derived from the sustainability in

the renewable energy systems. Power supply from a renewable energy system on space limited

system subject to global and local motion is the main challenge to its reliability and economic

performance. This dissertation provides insight on key aspects of the system model, presents a

better understanding of configuration design and introduces a novel management strategy for

long term operation. The whole life cycle from the simulation to the design and the operation

is enabled by the methods with the supporting open source software implementations.



Appendix A

Additional material

A.1 Solar model derivation and Mathematica notebook

Solar angle using 3 factors solar vectors:

cos(Θs) = Senu · nenu (A.1)

With 3 factors solar vector, solar angle on a tilt surface of solar panel is:

cos(Θs) = Senu · nenu

=




− cos(δ) sin(ω)

sin(δ) cos(φ)− cos(δ) cos(ω) sin(φ)

cos(δ) cos(ω) cos(φ) + sin(δ) sin(φ)


 ·




sin(αs) sin(βs)

cos(αs) sinβs)

cos(βs)




= − cos(δ) sin(ω) sin (αs) sin (βs)− cos(δ) cos(ω) sin(φ) cos (αs) sin (βs)

+ sin(δ) cos(φ) cos (αs) sin (βs) + cos(δ) cos(ω) cos(φ) cos (βs)

+ sin(δ) sin(φ) cos (βs)

(A.2)

Norm vector of tilt surface on moving system:

n
′

enu = Rx(p)Ry(q)Rz(r)nenu (A.3)

Full rotation matrix Rx(p)Ry(q)Rz(r) in east-north-up reference system is:

[
cos(q) cos(r) − cos(q) sin(r) sin(q)

cos(r) sin(p) sin(q)+cos(p) sin(r) cos(p) cos(r)−sin(p) sin(q) sin(r) − cos(q) sin(p)
sin(p) sin(r)−cos(p) cos(r) sin(q) cos(r) sin(p)+cos(p) sin(q) sin(r) cos(p) cos(q)

]
(A.4)
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n
′

enu = Rx(p)Ry(q)Rz(r)nenu

=

[
cos(q) cos(r) − cos(q) sin(r) sin(q)

cos(r) sin(p) sin(q)+cos(p) sin(r) cos(p) cos(r)−sin(p) sin(q) sin(r) − cos(q) sin(p)
sin(p) sin(r)−cos(p) cos(r) sin(q) cos(r) sin(p)+cos(p) sin(q) sin(r) cos(p) cos(q)

]

·
[

sin(αs) sin(βs)
cos(αs) sin βs)

cos(βs)

]
(A.5)

let

n
′

enu =
[
a b c

]T
(A.6)

then

a = − cos(q) sin(r) cos (αs) sin (βs) + cos(q) cos(r) sin (αs) sin (βs) + sin(q) cos (βs)

b = cos (αs) sin (βs) (cos(p) cos(r)− sin(p) sin(q) sin(r)) + sin (αs) sin (βs) (sin(p) sin(q) cos(r)

+ cos(p) sin(r)) + sin(p)(− cos(q)) cos (βs)

c = cos (αs) sin (βs) (cos(p) sin(q) sin(r) + sin(p) cos(r)) + sin (αs) sin (βs) (sin(p) sin(r)

− cos(p) sin(q) cos(r)) + cos(p) cos(q) cos (βs)

Solar angle on a moving tilt surface is:

cos(Θs) = Senu · n
′

enu (A.7)

With 2 factors solar vector, solar angle is:

cos(Θs) = Senu · n
′

enu

=




cos(α) sin(A)

cos(α) cos(A)

sin(α)


 ·



a

b

c




= a cos(α) sin(A) + b cos(α) cos(A) + c sin(α)

(A.8)



Purpose of this notebook:

Solar geometry is important for the estimation of power production using photovoltaic technology. 

The derivation of the geometric relationship need to deal with different notation at different reference 

framework. This is a non-trivial work and the common derivation are prone to sign issue and lead to a 

wrong result. Also, different literature tends to use different notation system that may not consistent at 

all. This notebook present a way to deal with this issue by mathematical vector analysis tool and 

computer science technique in functional programming and symbolic computation.

Solar geometry:

Our planet Earth orbit around the Sun in a slightly elliptical pattern during the year. 

Orbit frame to earth fixed frame

In the solar system, we can regard the elliptical orbit as a circle. At any time in the year, there is always 

a horizontal plane (the one other than the gray) shown in the figure always facing toward the sun. It is 

easy to use just a single arrow point from the center of Earth to the Sun at unit length. 
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In orbit frame (x’y’z’), the ecliptic longitude λ varies between 0 to 360 degrees. 

Ecliptic longitude give us some insight about the solar radiation on the Earth but it is too general to let 

us know any information about the the exactly position of solar if we stand on the Earth. This is 

because it is a orbit reference system. To what we usually know on Earth, longitude, latitude, we need 

to convert those system into our known coordinate system. First step is to convert orbit frame into a 

earth centered earth fixed system. (ECEF)

The virtual plane that always face to sun is ecliptic, on earth we use celestial equator as the center 

plane. This could be treat as a virtual rotation between ecliptic plane and celestial plane. The rotation 

is pretty straightforward, grab the plane rotation along x axis by ϵ and now we are getting more with 

this summer and winter planet. In this process, the relative direction between Earth and Sun haven’t 
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change at all. It is the reference coordinate system that changed to celestial equator to let us better 

understand what happened in this system. In new system (x,y,z), the direction vector stayed 

unchanged, but the coordinate is not the same anymore. How this conversion happens? The rotation 

matrix tells how to coordinate changes from one to another system. If it rotate around x-axis by θ then 

the new coordinate is

Rotation matrix and notations

RotationMatrix[θ, {1, 0, 0}] // MatrixForm

1 0 0
0 Cos[θ] -Sin[θ]
0 Sin[θ] Cos[θ]

Rx = RotationMatrix[#, {1, 0, 0}] &

Ry = RotationMatrix[#, {0, 1, 0}] &

Rz = RotationMatrix[#, {0, 0, 1}] &

RotationMatrix[#1, {1, 0, 0}] &

RotationMatrix[#1, {0, 1, 0}] &

RotationMatrix[#1, {0, 0, 1}] &

Rz[λ] // MatrixForm

Cos[λ] -Sin[λ] 0
Sin[λ] Cos[λ] 0

0 0 1

S_orbit = Rz[#].{1, 0, 0} &

Rz[#1].{1, 0, 0} &

R_orbit_ECEF = Rx[#] &

Rx[#1] &

Solar vector in different reference systems

S_orbit @λ
{Cos[λ], Sin[λ], 0}

◼ λ: ecliptic longitude

S_orbit_ECEF = R_orbit_ECEF[ϵ].S_orbit @λ
{Cos[λ], Cos[ϵ] Sin[λ], Sin[ϵ] Sin[λ]}

◼ ϵ: axial tilt 23°26′13.2″

solar_geometry_acc.nb     3
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Print[MatrixForm[ R_orbit_ECEF@ ϵ], " x ", S_orbit @λ]
1 0 0

0 Cos[ϵ] -Sin[ϵ]
0 Sin[ϵ] Cos[ϵ]

x Cos[λ], Sin[λ], 0

S_ECEF = Rz[#1].Ry[-#2].{1, 0, 0} &

Rz[#1].Ry[-#2].{1, 0, 0} &

R_ECEF_ENU = Rx @ -Pi  2 - #1. Rz@-Pi  2 + #2 &

Rx-
π

2
- #1 .Rz-

π

2
+ #2  &

Ref at http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
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 Rz@-Pi  2 + ω // MatrixForm

-Sin[ω] Cos[ω] 0
-Cos[ω] -Sin[ω] 0

0 0 1

R_ECEF_ENU[ ϕ, ω] // MatrixForm

-Sin[ω] Cos[ω] 0
-Cos[ω] Sin[ϕ] -Sin[ϕ] Sin[ω] Cos[ϕ]
Cos[ϕ] Cos[ω] Cos[ϕ] Sin[ω] Sin[ϕ]

◼ ϕ: longitude 

◼ ω: hour angle

S_ECEF_rotate = Ry[-#].{1, 0, 0} &

Ry[-#1].{1, 0, 0} &

S_ENU_4 = R_ECEF_ENU[ ϕ, ω].R_orbit_ECEF[ϵ].S_orbit @λ
Cos[ϵ] Cos[ω] Sin[λ] - Cos[λ] Sin[ω],
-Cos[λ] Cos[ω] Sin[ϕ] + Sin[λ] Cos[ϕ] Sin[ϵ] - Cos[ϵ] Sin[ϕ] Sin[ω],
Cos[λ] Cos[ϕ] Cos[ω] + Sin[λ] Sin[ϵ] Sin[ϕ] + Cos[ϵ] Cos[ϕ] Sin[ω]

S_ENU_4 // MatrixForm

Cos[ϵ] Cos[ω] Sin[λ] - Cos[λ] Sin[ω]
-Cos[λ] Cos[ω] Sin[ϕ] + Sin[λ] Cos[ϕ] Sin[ϵ] - Cos[ϵ] Sin[ϕ] Sin[ω]
Cos[λ] Cos[ϕ] Cos[ω] + Sin[λ] Sin[ϵ] Sin[ϕ] + Cos[ϵ] Cos[ϕ] Sin[ω]

S_ENU_3 = R_ECEF_ENU[ϕ, ω].S_ECEF_rotate[δ]
{-Cos[δ] Sin[ω], Cos[ϕ] Sin[δ] - Cos[δ] Cos[ω] Sin[ϕ],
Cos[δ] Cos[ϕ] Cos[ω] + Sin[δ] Sin[ϕ]}

n_NEU = Rz[-#1].Rx[-#2].Ry[#3].{0, 0, 1} &

Rz[-#1].Rx[-#2].Ry[#3].{0, 0, 1} &
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

◼ αs : surface azimuth

◼ βs : horizontal tilt

◼ γs :  vertical tilt

n_NEU[αs, βs, γs]
{Cos[γs] Sin[αs] Sin[βs] + Cos[αs] Sin[γs],
Cos[αs] Cos[γs] Sin[βs] - Sin[αs] Sin[γs], Cos[βs] Cos[γs]}

n_NEU[αs, βs, 0]

{Sin[αs] Sin[βs], Cos[αs] Sin[βs], Cos[βs]}

Rx[α] // MatrixForm

1 0 0
0 Cos[α] -Sin[α]
0 Sin[α] Cos[α]

n_NEU[αs, βs, 0].S_ENU_4 // Expand

Cos[λ] Cos[ϕ] Cos[ω] Cos[βs] + Cos[βs] Sin[ϵ] Sin[λ] Sin[ϕ] +

Cos[ϵ] Cos[ϕ] Cos[βs] Sin[λ] Sin[ω] + Cos[ϕ] Cos[αs] Sin[ϵ] Sin[λ] Sin[βs] -

Cos[λ] Cos[ω] Cos[αs] Sin[ϕ] Sin[βs] - Cos[ϵ] Cos[αs] Sin[λ] Sin[ϕ] Sin[ω] Sin[βs] +

Cos[ϵ] Cos[ω] Sin[λ] Sin[αs] Sin[βs] - Cos[λ] Sin[ω] Sin[αs] Sin[βs]

n_NEU[αs, βs, 0].S_ENU_4 // FullSimplify

Cos[βs] Cos[λ] Cos[ϕ] Cos[ω] + Sin[λ] Sin[ϵ] Sin[ϕ] + Cos[ϵ] Cos[ϕ] Sin[ω] +

Cos[αs] Cos[ϕ] Sin[ϵ] Sin[λ] - Sin[ϕ] Cos[λ] Cos[ω] + Cos[ϵ] Sin[λ] Sin[ω] Sin[βs] +

Cos[ϵ] Cos[ω] Sin[λ] - Cos[λ] Sin[ω] Sin[αs] Sin[βs]
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n_NEU[αs, βs, 0].S_ENU_3 // Expand

Cos[δ] Cos[ϕ] Cos[ω] Cos[βs] + Cos[βs] Sin[δ] Sin[ϕ] + Cos[ϕ] Cos[αs] Sin[δ] Sin[βs] -

Cos[δ] Cos[ω] Cos[αs] Sin[ϕ] Sin[βs] - Cos[δ] Sin[ω] Sin[αs] Sin[βs]

n_NEU[αs, βs, 0].S_ENU_3 // FullSimplify

Cos[βs] Cos[δ] Cos[ϕ] Cos[ω] + Sin[δ] Sin[ϕ] +

Cos[αs] Cos[ϕ] Sin[δ] - Cos[δ] Cos[ω] Sin[ϕ] Sin[βs] - Cos[δ] Sin[ω] Sin[αs] Sin[βs]

A : Azimuth angle

α : Elevation angle

S_ENU_2 = Rz[-A].Rx[α].{0, 1, 0}

{Cos[α] Sin[A], Cos[A] Cos[α], Sin[α]}

n_NEU[αs, βs, 0].S_ENU_2 // Expand

Cos[βs] Sin[α] + Cos[A] Cos[α] Cos[αs] Sin[βs] + Cos[α] Sin[A] Sin[αs] Sin[βs]

n_NEU[αs, βs, 0].S_ENU_2 // FullSimplify

Cos[βs] Sin[α] + Cos[α] Cos[A - αs] Sin[βs]

Rx[p].Ry[q].Rz[r].n_NEU[αs, βs, 0] // MatrixForm

Cos[βs] Sin[q]-Cos[q] Cos[αs] Sin[r] Sin[βs]+Cos[q] Cos[r] Sin[αs] Sin[βs]
-Cos[q] Cos[βs] Sin[p]+Cos[αs] Cos[p] Cos[r]-Sin[p] Sin[q] Sin[r] Sin[βs]+Cos[r] Sin[p] Sin[q]+Cos[p] Sin[r] Sin[αs] Sin[βs]
Cos[p] Cos[q] Cos[βs]+Cos[αs] Cos[r] Sin[p]+Cos[p] Sin[q] Sin[r] Sin[βs]+-Cos[p] Cos[r] Sin[q]+Sin[p] Sin[r] Sin[αs] Sin[βs]
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Rx[p].Ry[q].Rz[r].n_NEU[αs, βs, 0] // MatrixForm /. {αs → 0, βs → 0}

Sin[q]
-Cos[q] Sin[p]
Cos[p] Cos[q]

Rx[p].Ry[q].Rz[r].n_NEU[αs, βs, 0] .S_rotate_ENU

Cos[βs] Sin[q] - Cos[q] Cos[αs] Sin[r] Sin[βs] + Cos[q] Cos[r] Sin[αs] Sin[βs],
-Cos[q] Cos[βs] Sin[p] + Cos[αs] Cos[p] Cos[r] - Sin[p] Sin[q] Sin[r] Sin[βs] +

Cos[r] Sin[p] Sin[q] + Cos[p] Sin[r] Sin[αs] Sin[βs],
Cos[p] Cos[q] Cos[βs] + Cos[αs] Cos[r] Sin[p] + Cos[p] Sin[q] Sin[r] Sin[βs] +

-Cos[p] Cos[r] Sin[q] + Sin[p] Sin[r] Sin[αs] Sin[βs].S_rotate_ENU

solarangle = Rx[p].Ry[q].Rz[r].n_NEU[αs, βs, 0].S_ENU_2

Cos[α] Sin[A]
Cos[βs] Sin[q] - Cos[q] Cos[αs] Sin[r] Sin[βs] + Cos[q] Cos[r] Sin[αs] Sin[βs] +

Cos[A] Cos[α] -Cos[q] Cos[βs] Sin[p] + Cos[αs] Cos[p] Cos[r] - Sin[p] Sin[q] Sin[r]
Sin[βs] + Cos[r] Sin[p] Sin[q] + Cos[p] Sin[r] Sin[αs] Sin[βs] +

Sin[α] Cos[p] Cos[q] Cos[βs] + Cos[αs] Cos[r] Sin[p] + Cos[p] Sin[q] Sin[r] Sin[βs] +

-Cos[p] Cos[r] Sin[q] + Sin[p] Sin[r] Sin[αs] Sin[βs]

LaTeXFonts[fsize_: 16] := {LabelStyle → {FontFamily → "CMU Serif", FontSize → fsize}};

Yaw response

yaw_response = ListLinePlot
Tabler, solarangle /. A → Pi  3, α → Pi  3, p → 0, q → 0, βs → 0, αs → 0,
r, -π  6, π  6, 0.01, Frame → True,

FrameLabel → {"Yaw angle (rad)", "Solar angle cos(Θs)"}, LaTeXFonts[]
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Pitch response

pitch_response = ListLinePlot
Tablep, solarangle /. A → Pi  3, α → Pi  3, r → 0, q → 0, βs → 0, αs → 0,
p, -π  6, π  6, 0.01, Frame → True,

FrameLabel → {"Pitch angle (rad)", "Solar angle cos(Θs)"}, LaTeXFonts[]
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Roll response

roll_response = ListLinePlot
Tableq, solarangle /. A → Pi  3, α → Pi  3, p → 0, r → 0, βs → 0, αs → 0,
q, -π  6, π  6, 0.01, Frame → True,

FrameLabel → {"Roll angle (rad)", "Solar angle cos(Θs)"}, LaTeXFonts[]
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Averaged solar angle

   solarangle ⅆp ⅆq ⅆr
r Cos[βs] Sin[p] Sin[q] Sin[α] +

p Cos[r] Cos[α] Cos[αs] Sin[A] Sin[q] Sin[βs] - q Cos[p] Cos[αs] Sin[r] Sin[α] Sin[βs] +

p Cos[α] Sin[A] Sin[q] Sin[r] Sin[αs] Sin[βs] + q Cos[p] Cos[r] Sin[α] Sin[αs] Sin[βs] +

Cos[A] Cos[α] r Cos[p] Cos[βs] Sin[q] + q Sin[p] Sin[r - αs] Sin[βs] +

Cos[q] Cos[r - αs] Sin[p] Sin[α] Sin[βs] +

Cos[α] -p r Cos[βs] Sin[A] + Cos[A] Cos[p] Cos[r - αs] Sin[βs]

solarangle_on_flatplane =    solarangle ⅆp ⅆq ⅆr /. {αs → 0, βs → 0}

-p r Cos[q] Cos[α] Sin[A] + r Cos[A] Cos[p] Cos[α] Sin[q] + r Sin[p] Sin[q] Sin[α]

1

2 p0 2 q0 2 r0

-r0

r0


-q0

q0


-p0

p0

solarangle ⅆp ⅆq ⅆr /. {αs → 0, βs → 0}

Sin[α] Sin[p0] Sin[q0]

p0 q0

10     solar_geometry_acc.nb
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A.2 Solar power generation model validation with UK rooftop

database

In order to validate the spatial-temporal solar panel model with real solar power system. The

solar power model is used to estimate the power generation of rooftop panels across the UK.

Solar power generation data is collected from Sheffield microgen user contributed solar power

generation data. Location of each solar panel sites are shown in Figure A.1.

Figure A.1: Location of rooftop solar panels in the dataset

There are 49 microgen user contributions provided in the dataset at the year of 2014. Regional

weather data is downloaded first from MERRA-2 database as in Example 3.4. In the dataset, so-

lar panel azimuth, elevation, capacity and the panel technology could be found. The solar power

generation data is recorded as aggregated power generation in watts at half hour interval. Since

the MERRA-2 dataset only provides on hour resolution at best, we compare hourly correlation

on the power generation between the dataset values and model estimated values.

After the regional solar radiation data and temperature data are retrieved from the MERRA-

2 database, the same power generation estimation program is then running on each location

without the non-stationary modeling option turns on. The outcome, solar power generation on

titled solar panel, is compared with the database data. Pearson’s r correlation test was then

done between those two power generation data.

Among all site, there are 35 sites show a correlation coefficient larger than 0.85 that indicate a

good agreement between our model and the dataset. Those sites are shown as green icon on the

map. Nine sites have correlation coefficient between 0.8 and 0.85 that are shown as yellow icon

on the map. Six sites with correlation coefficient less than 0.8 are shown on the map as red icon.

The source of error and uncertainty may come from the different sources.
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Figure A.2: Result of the validation

A.3 Autonomous surface vehicle propulsion power estima-

tion validation

For surface vehicle, the power is mainly consumed to overcome the resistance in the ocean. The

total resistance RT of a ship is:

RT =
1

2
CT ρSV

2 (A.9)

where CT total resistance coefficient, S is wet surface area of the vehicle, V is the speed of the

vehicle. The surface area of the vehicle can be estimate from

S = 1.025(1.7 · Lpp · T +
∆

T
) (A.10)

The total resistance coefficient Ct consists by three components

Ct = CF + CR + CA (A.11)

including frictional resistance CF , residual resistance CR, air resistance CA. Among all resistance

components, frictional and residual resistance are due to water resistance and air added resistance

is due to aerodynamic drag.

• Frictional resistance CF coefficient according to ITTC formula is:

CF =
0.075

(log(Rn)− 2)2
(A.12)

where Rn is Reynolds number

Rn = V · L
ν

(A.13)
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here ν is kinematic viscosity of water.

• Residual resistance CR can be found using Harvald method.

CR = CR(Csl, Cp, F r) (A.14)

where Froude number Fr = V√
gL

, slenderness coefficient Csl = L
∆1/3 , prismatic coefficient

Cp = ∆
L·Am . The lookup table can be found in Appendix 1.

• Air resistance CA can be assume to be fixed at value of 0.001 to account additional resis-

tance due to wind.

• In practise, the influence of the wave is often model as an additional resistance on water

resistance as (1 + cw)(CF +CR), where cw is wave added resistance ratio that depends on

the sea state.

The Harvald regression method is used to estimate the residual resistance of ocean going vehicle.

Figure A.3: Harvald CR diagram at 4.5 slenderness

-------------------------------

C_sl C_p Fr C_R

-------------------------------

4.50000 0.50000 0.27912 1.92515

4.50000 0.55000 0.34661 4.97065

4.50000 0.60000 0.33538 4.40411

4.50000 0.65000 0.29721 4.98323
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4.50000 0.70000 0.28664 5.22884

4.50000 0.75000 0.27594 5.81920

4.50000 0.80000 0.26326 6.31877

4.50000 0.50000 0.28600 2.14415

4.50000 0.55000 0.35149 5.36743

4.50000 0.60000 0.34774 4.80721

4.50000 0.65000 0.30270 5.47029

4.50000 0.70000 0.28981 5.72569

4.50000 0.75000 0.27883 6.28109

4.50000 0.80000 0.26658 6.80620

4.50000 0.50000 0.29114 2.35961

..... continue

-------------------------------

Propulsion power can then be estimated from all resistance components:

Pprop = RT · V/ηp

=
1

2ηp
[(1 + cw)(CF + CR) + CA]ρwSV

3
(A.15)

where ηp is electrical to mechanical power transmission efficiency. The vehicle speed V is relative

to the water.

Validation data was taken from towing tank experiment https://www.iihr.uiowa.edu/wp-content/

uploads/2013/06/TR421.pdf.
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Figure A.4: Resistance estimation method validation

A.4 Full list of parameters and hyper-parameters

source:

solar:

brl_parameters:

a0: -5.32

a1: 7.28

b1: -0.03

https://www.iihr.uiowa.edu/wp-content/uploads/2013/06/TR421.pdf
https://www.iihr.uiowa.edu/wp-content/uploads/2013/06/TR421.pdf
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b2: -0.0047

b3: 1.72

b4: 1.08

load:

prop_load:

sea_margin: 0.2

prop_eff: 0.7

temperature: 25

transducer:

solar:

tilt: 0

azim: 0

tacking: 0

loss: 0.1

sationary: False

pitch: 0.1

roll: 0.2

stationary: False

tech: ’csi ’ # Crystalline Silicon

power_density: 140 # From data mining

eff:

k_1 : -0.017162

k_2 : -0.040289

k_3 : -0.004681

k_4 : 0.000148

k_5 : 0.000169

k_6 : 0.000005

wind:

power_coef: 0.3

v_in: 2

v_rate: 15

v_off: 45

thrust_coef: 0.6

simulation:

battery:

eta_in: 0.9

eta_out: 0.8

DOD: 0.5

sigma: 0.005

B0: 1

SED: 500

coupling: 0.05

optimization:

cost:

solar: 210

wind: 320

battery: 1

lpsp: 1000000

constraints:

water_plane_coff: 0.88

volume_factor: 0.1

turbine_diameter_ratio: 1.2

solar_area: 1.60

wind_area: 0.502

battery_capacity: 5000

safe_factor: 0.6

method:

pso:

population: 100

generation: 200

omega: 0.7298

eta1: 2.05 #

eta2: 2.05
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max_vel: 0.5

variant: 5

neighb_type: 2

neighb_param: 4

nsga:

cr: 0.95 # crossover probability

eta_c: 10 # Distribution index for crossover

m: 0.01 # Mutation probability

eta_m: 50 # Distribution index for Mutation
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Table A.1: Multiple year robustness study

P η minS(t) S̄(t) σ[S(t)] r̄t R

1994 GAF 0.216 100.000 0.000 97.360 105.204 -85.100 -400311.874
DLF 0.000 18.413 7.568 17.927 8.556 20.553 96679.024
EWMA 0.167 60.058 0.508 58.473 49.697 -61.934 -291336.575
GFH 0.027 62.746 0.000 61.090 22.570 10.980 51647.691
RL 0.000 47.930 17.357 46.674 18.540 23.427 110178.935

1995 GAF 0.243 100.000 0.000 92.881 101.599 -99.258 -466911.505
DLF 0.000 20.102 7.628 18.671 9.673 20.553 96679.024
EWMA 0.194 60.062 0.414 55.786 47.573 -76.257 -358711.985
GFH 0.027 63.141 0.000 58.646 18.602 10.769 50656.190
RL 0.000 48.352 22.432 44.919 18.062 23.177 109003.496

1996 GAF 0.218 100.000 0.000 98.610 107.442 -86.021 -404644.579
DLF 0.000 19.107 7.628 18.841 10.598 20.553 96679.024
EWMA 0.171 60.069 0.706 59.234 49.964 -64.223 -302105.577
GFH 0.029 62.584 0.000 61.715 19.004 9.737 45802.372
RL 0.000 46.558 22.733 45.921 20.038 23.261 109394.229

1997 GAF 0.262 100.000 0.000 96.594 105.729 -108.989 -512683.935
DLF 0.000 17.942 7.568 17.331 6.853 20.553 96679.024
EWMA 0.185 60.081 0.567 58.034 49.911 -71.409 -335909.932
GFH 0.031 62.667 0.000 60.533 22.940 8.883 41787.698
RL 0.000 48.457 13.328 46.817 17.537 23.501 110525.805

1998 GAF 0.128 100.000 0.000 106.709 108.269 -38.330 -180304.129
DLF 0.000 13.848 7.628 14.778 6.553 20.553 96679.024
EWMA 0.095 60.051 0.851 64.081 50.653 -23.955 -112683.234
GFH 0.028 62.904 0.000 67.125 21.611 11.332 53306.415
RL 0.000 43.484 22.532 46.412 18.915 23.716 111536.718

1999 GAF 0.212 100.000 0.000 101.602 107.392 -82.476 -387965.258
DLF 0.000 16.851 7.669 17.121 8.033 20.553 96679.024
EWMA 0.159 60.015 0.235 60.976 50.535 -57.508 -270519.022
GFH 0.030 62.913 0.000 63.920 23.449 9.798 46088.158
RL 0.000 46.087 11.671 46.835 18.714 23.524 110633.483

2000 GAF 0.212 100.000 0.000 97.420 106.179 -82.517 -388158.614
DLF 0.000 17.491 7.568 17.040 8.529 20.553 96679.024
EWMA 0.149 60.069 0.626 58.519 49.588 -52.874 -248720.208
GFH 0.031 62.636 0.000 61.020 19.659 8.961 42150.678
RL 0.000 47.680 14.657 46.460 18.272 23.495 110496.709

2001 GAF 0.178 100.000 0.000 95.743 104.638 -65.308 -307206.659
DLF 0.000 17.888 7.568 17.126 9.568 20.553 96679.024
EWMA 0.133 60.055 1.155 57.498 48.320 -44.471 -209191.202
GFH 0.031 62.803 0.000 60.130 16.435 8.867 41710.550
RL 0.000 46.712 23.059 44.733 18.706 23.314 109643.959

2002 GAF 0.158 100.000 0.000 102.935 106.865 -54.095 -254464.768
DLF 0.003 17.483 0.000 17.997 12.095 18.782 88350.482
EWMA 0.123 60.063 0.881 61.826 49.922 -38.928 -183116.364
GFH 0.034 63.090 0.000 64.942 19.177 7.587 35688.297
RL 0.000 48.530 25.787 49.965 19.159 23.720 111552.876

2003 GAF 0.215 100.000 0.000 98.961 107.833 -84.429 -397156.322
DLF 0.000 17.939 7.568 17.753 9.763 20.553 96679.024
EWMA 0.156 60.028 0.965 59.404 50.547 -56.507 -265809.041
GFH 0.028 62.812 0.000 62.159 22.654 10.662 50156.282
RL 0.000 50.838 26.812 50.320 17.418 23.810 111977.828

2004 GAF 0.212 100.000 0.000 96.111 103.753 -82.638 -388728.613
DLF 0.000 18.514 7.568 17.794 8.601 20.553 96679.024
EWMA 0.152 60.064 1.221 57.728 48.048 -54.366 -255737.394
GFH 0.025 62.938 0.000 60.490 16.721 11.707 55070.018
RL 0.000 49.285 23.233 47.379 17.447 23.511 110574.400

2005 GAF 0.239 100.000 0.000 98.506 106.295 -96.755 -455133.526
DLF 0.000 19.431 7.568 19.141 9.338 20.553 96679.024
EWMA 0.183 60.055 0.687 59.157 49.792 -70.327 -330818.834
GFH 0.024 62.936 0.000 61.996 21.181 12.603 59286.099
RL 0.000 48.517 24.209 47.802 17.807 23.419 110139.427

2006 GAF 0.255 100.000 0.000 95.168 104.818 -105.352 -495576.202
DLF 0.000 19.048 7.739 18.127 9.084 20.553 96679.024
EWMA 0.188 60.082 0.367 57.178 49.095 -73.313 -344865.239
GFH 0.029 62.612 0.000 59.587 19.436 9.706 45658.602
RL 0.000 47.998 22.844 45.688 18.470 23.309 109622.988

2007 GAF 0.219 100.000 0.000 95.935 105.188 -86.714 -407902.860
DLF 0.000 18.034 7.628 17.301 9.616 20.553 96679.024
EWMA 0.155 60.051 0.605 57.609 48.896 -56.073 -263766.558
GFH 0.031 62.699 0.000 60.150 18.509 8.967 42179.295
RL 0.000 46.486 6.880 44.606 19.563 23.284 109503.954

2008 GAF 0.245 100.000 0.000 98.776 108.307 -99.944 -470134.572
DLF 0.000 18.104 7.723 17.882 9.642 20.553 96679.024
EWMA 0.179 60.070 0.582 59.334 51.206 -68.210 -320861.719
GFH 0.036 62.546 0.000 61.781 23.282 6.314 29703.308
RL 0.000 54.452 9.056 53.797 16.523 24.145 113552.737

2009 GAF 0.196 100.000 0.000 96.118 103.774 -74.877 -352222.386
DLF 0.000 19.234 7.568 18.487 10.095 20.553 96679.024
EWMA 0.146 60.053 1.284 57.722 47.988 -51.341 -241509.376
GFH 0.035 62.438 0.000 60.014 16.183 6.731 31661.721
RL 0.000 48.114 24.064 46.256 18.149 23.330 109719.622

2010 GAF 0.180 100.000 0.000 100.846 107.175 -65.813 -309583.792
DLF 0.000 16.223 7.568 16.360 8.404 20.553 96679.024
EWMA 0.121 60.033 1.459 60.541 49.559 -37.834 -177970.571
GFH 0.029 62.627 0.000 63.157 18.359 10.349 48682.478
RL 0.000 45.720 23.713 46.116 19.216 23.529 110655.404

2011 GAF 0.195 100.000 0.000 100.239 107.258 -73.893 -347591.669
DLF 0.000 16.463 7.628 16.502 9.065 20.553 96679.024
EWMA 0.137 60.060 0.716 60.204 49.890 -46.156 -217115.674
GFH 0.028 62.732 0.000 62.882 18.631 10.859 51082.389
RL 0.000 50.193 25.009 50.323 17.620 23.935 112566.882

2012 GAF 0.209 100.000 0.000 98.905 105.263 -81.332 -382587.662
DLF 0.000 17.766 7.568 17.572 9.411 20.553 96679.024
EWMA 0.155 60.037 0.504 59.379 48.771 -55.918 -263038.826
GFH 0.032 62.721 0.000 62.034 18.423 8.459 39793.194
RL 0.000 48.744 14.743 48.221 17.460 23.618 111074.500

2013 GAF 0.197 100.000 0.000 97.095 106.033 -74.951 -352571.381
DLF 0.000 17.441 7.568 16.934 8.284 20.553 96679.024
EWMA 0.153 60.052 0.296 58.308 49.963 -54.555 -256624.434
GFH 0.029 62.679 0.000 60.858 22.312 9.731 45774.406
RL 0.000 48.126 14.469 46.738 18.222 23.533 110677.462

2014 GAF 0.178 100.000 0.000 100.566 104.399 -64.508 -303446.267
DLF 0.000 16.639 7.568 16.733 9.873 20.553 96679.024
EWMA 0.129 60.056 0.586 60.396 49.389 -42.306 -199008.602
GFH 0.028 63.106 0.000 63.463 21.920 10.450 49158.285
RL 0.000 51.530 6.814 51.833 18.008 24.063 113168.728
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Code and other contributions

Many software packages have been developed and used during the research. The author values

reproducible open research in spirit of open source software. All software packages are freely

avaliable via GitHub. Software version, at the time when thesis complied, is also specified in the

following list.

• D3HRE at version 43417b5, Dynamic Data Driven Hybrid Renewable Energy design frame-

work, is developed by the author and open-sourced under GPL license. github.com/

tsaoyu/D3HRE/

• PyResis at version c53f835, Python Ship Resistance and Propulsion estimation package is

developed by the author and open-sourced under MIT license. github.com/MaritimeRenewable/

PyResis/

• RLenergy at version b4a087d, Reinforcement Learning power management simulation en-

vironment is developed by the author and open-sourced under MIT license. github.com/

tsaoyu/RLenergy/

• PyVisilibity at version 88fa4d1, general purpose visibility computation software pack-

age, has major contribution from the author and open-sourced by its contributor under

LGPL license. github.com/tsaoyu/PyVisiLibity/

Small contributions have been made to improve the simulation, optimisation and management

of renewable energy systems.

• GSEE at version 088fe12, Global Solar Energy Estimator, has contribution from the author

and open-sourced by its contributor under BSD license. github.com/MaritimeRenewable/

gsee

• Synthetic solar at version 942aa63, Synthetic solar radiation sequences generator, has

contribution from the author and open-sourced by its contributor under GPL license.

github.com/MaritimeRenewable/synthetic_solar

• pvlib developed at Sandia National Laboratories
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https://github.com/tsaoyu/D3HRE/commit/43417b5a2613feaab1aed72e1c2c1d4f5c028216
github.com/tsaoyu/D3HRE/
github.com/tsaoyu/D3HRE/
https://github.com/MaritimeRenewable/PyResis/commit/c53f83598c8760d532c44036ea3ecd0c84eada95
github.com/MaritimeRenewable/PyResis/
github.com/MaritimeRenewable/PyResis/
https://github.com/tsaoyu/RLenergy/commit/b4a087d07e246e19dc8b2093d0af906692a57eb7
github.com/tsaoyu/RLenergy/
github.com/tsaoyu/RLenergy/
https://github.com/tsaoyu/PyVisiLibity/commit/88fa4d155ba2f357993d1ca2c81e759637ad4709
github.com/tsaoyu/PyVisiLibity/
https://github.com/MaritimeRenewable/gsee/commit/088fe12701817607ead6a31516cd028cff9d05c1
github.com/MaritimeRenewable/gsee
github.com/MaritimeRenewable/gsee
https://github.com/MaritimeRenewable/synthetic_solar/commit/942aa6311190420c1f9bb93250031d2670b80970
github.com/MaritimeRenewable/synthetic_solar
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