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Abstract

Spatial units typically vary over many of their characteristics, introducing potential un-

observed heterogeneity which invalidates commonly used homoskedasticity conditions.

In the presence of unobserved heteroskedasticity, methods based on the quasi-likelihood

function generally produce inconsistent estimates of both the spatial parameter and the

coefficients of the exogenous regressors. A robust generalized method of moments esti-

mator as well as a modified likelihood method have been proposed in the literature to

address this issue. The present paper constructs an alternative indirect inference ap-

proach which relies on a simple ordinary least squares procedure as its starting point.

Heteroskedasticity is accommodated by utilizing a new version of continuous updating

that is applied within the indirect inference procedure to take account of the parametriza-

tion of the variance-covariance matrix of the disturbances. Finite sample performance of

the new estimator is assessed in a Monte Carlo study. The approach is implemented in an

empirical application to house price data in the Boston area, where it is found that spatial

effects in house price determination are much more significant under robustification to

heterogeneity in the equation errors.
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1 Introduction

In recent years spatial models have stimulated growing interest and application in various

areas in economics. Economic data frequently exhibit strong spatial patterns that need to be

accounted for in applied research. Common examples include real estate pricing data, R&D

spillover effects, crime rates, unemployment rates, regional economic growth patterns, and

environmental characteristics in urban, suburban and rural areas. Econometric modeling of

such phenomena now makes extensive use of formulations that accommodate spatial depen-

dence through autoregressive specifications know as spatial autoregressions (SARs hereafter).

SAR models, like vector autoregressions, have the great advantage of simplicity and ready

implementation. These models have been found to flexibly describe many different networks

of spatial interactions by appropriate ex-ante specification of weighting matrices that em-

body dependencies considered to be of primary relevance in specific empirical applications.

Weight matrices may incorporate notions of ‘economic distance’ that include geographic and

economic proximity as well as many other socio-economic characteristics.

For SAR models with homoskedastic innovations a wide range of estimation procedures are

available, ranging from maximum likelihood/quasi maximum likelihood (ML/QML) methods

(e.g. Lee (2004)), to two-stage least squares (2SLS) (e.g. Kelejian and Prucha (1998))

and generalized method of moments (GMM) (e.g. Kelejian and Prucha (1999)). However,

data recorded across space are frequently heterogeneously distributed, due to such elements

as aggregation of ‘rate variables’, social interactions, preferences, as well as variation in

demographic characteristics like income or size across different regions. Examples in the

recent empirical literature stress the importance of capturing the inherent heterogeneity in

spatial units in modeling and estimation. Inter alia, we cite intermarriage decisions across

US states (Bisin et al. (2004)), house selling prices (Harrison and Rubinfeld (1978), LeSage

(1999)) and crime rates and social interactions across contiguous US states (Glaeser et al.

(1996)), where these effects are important. Thus, spatial units typically vary over many

observed and unobserved characteristics, leading to potentially heterogeneous innovations

in regressions that may introduce bias and invalidate the aforementioned commonly used

procedures

More specifically, although ML/QML methods provide an obvious general approach to

2



parameter estimation (Lee (2004)), in the presence of unobserved heterogeneity they produce

inconsistent estimates (e.g. Lin and Lee (2010)). This lack of robustness to heteroskedasticity

is possibly the main shortcoming of ML/QML methods for spatial data. On the other hand,

methods based on 2SLS/GMM enjoy robustness towards unknown heteroskedasticity in the

disturbances. The simple 2SLS estimator introduced by Kelejian and Prucha (1998) and

developed further by Lee (2003), Lee (2007)), would produce consistent estimates in case of

heteroskedastic disturbances, even though their usual asymptotic distribution would not be

correct. Along these lines, Kelejian and Prucha (2007) suggest a HAC procedure to consis-

tently estimate the variance matrix of 2SLS-type estimators that is robust to departures from

spherical disturbances. The main drawbacks of 2SLS estimators are lack of optimality and

the fact that they fail if there are no exogenous regressors in the model (as well as in cases

where the weight matrix is row normalized and the only exogenous regressor in the model

is an intercept). More recently, Lin and Lee (2010) propose a robust generalized method of

moments estimator which delivers consistent estimation of the parameters of SAR models

with heterokedastic errors, while Kelejian and Prucha (2010) consider a robust GMM with

a particular focus on the SARAR(1,1) model structure1 with heteroskedastic disturbances.

The approach developed in Kelejian and Prucha (2010) has been generalized to accommo-

date higher-order spatial lags in Badinger and Egger (2011). An interesting analysis of the

finite sample performance of 2SLS/GMM estimators in the presence of heteroskedasticity and

possibly a spatial lag in the disturbances is reported in Arraiz et al. (2010). More recently,

Liu and Yang (2015) propose a modified QLE/MLE estimator (MQML) that restores con-

sistency by adjusting the score function for the spatial parameter to accommodate general

forms of heteroskedasticity. Also, Jin and Lee (2019) Jin and Lee (2019) develop a general-

ized empirical likelihood method to estimate SARAR models that is robust to heteroskedastic

errors.

A separate remark is needed for simple ordinary least squares (OLS) estimation of the

parameters of a SAR model with exogenous regressors, which is known to be consistent under

certain restrictive assumptions on the limit behaviour of the spatial design, as discussed in

Lee (2002). OLS may enjoy some robustness to unknown heteroskedasticity in the distur-

1SARAR denotes ‘spatial autoregression with spatial autoregressive disturbances’.

3



bances, but again this is only achieved under highly restrictive weight matrix specifications,

which may not be pertinent to empirical situations of interest. As a practical example, OLS

would not be consistent when the network structure is defined according to a contiguity cri-

terion where the number of neighbours of a given spatial unit remains fixed as the sample

size grows, even in the simpler setting of homoskedastic disturbances. In general, the neces-

sary restrictions on the limit behaviour of the weight structures that ensure consistency are

difficult to verify in practical situations, making OLS estimation a questionable choice for

practitioners.

The present paper develops a new method of robust estimation for the SAR model with

unknown heteroskedasticity that is based on a continuously updated version of the indirect

inference (II) estimator of Kyriacou et al. (2017), KPR henceforth). The II estimator in

KPR was designed to modify (inconsistent) OLS estimation of a pure SAR model (that is,

SAR without exogenous regressors) with homoskedastic innovations, leading to consistent,

asymptotically normal estimates that enjoy good finite sample properties. In that case, the

II procedure converts an inconsistent OLS estimator into a consistent one.

We propose a similar enhancement in the case of a SAR model with exogenous regressors

(SARX, in the sequel) and heterogeneous spatial errors. The key idea in this approach is to

accommodate more realistic error structures by parametrizing the variance-covariance struc-

ture in terms of unknown parameters of interest within the indirect inference mechanism via

a suitable, feasible, binding function. The idea relates to the ‘continuous-updating’ GMM

estimator considered in Hansen et al. (1996)2, where the covariance matrix is continuously al-

tered as the parameter vector in question is updated sequentially in the minimization routine.

The proposed continuously updated indirect inference (CUII) estimator is computationally

straightforward and can flexibly allow for various forms of unknown heteroskedasticity and

realistic spatial weights schemes that are relevant to empirical work. We then show that our

new CUII estimator is consistent and asymptotically normal, while simulation and empirical

results confirm its satisfactory finite sample properties under general spatial designs and het-

eroskedasticity structures. In particular, the simulations show that the new CUII estimator

offers a substantial improvement over standard 2SLS and robust GMM as it does not rely on

2See Durbin (1988) for an early version of the idea of continuous updating in the context of efficiently
estimating structural equation models by iterative instrumental variable methods.
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the construction of optimal instruments and, even more importantly, on the joint relevance of

such instruments. In independent recent work that appeared after our paper was completed,

Bao et al. (2020) extended results in KPR to SARX models with heteroskedastic error terms,

and suggested an indirect inference-type transformation that produces results comparable to

our findings reported in Sections 3 and 4.Bao et al. (2020) adopted a different parametrization

of the (non-constant) variance-covariance matrix of the disturbances, resulting in a different

asymptotic variance for their estimator.

The rest of the paper is organized as follows. Section 2 introduces the SARX model and

its underlying assumptions. The bias of the QMLE under heteroskedasticity is explored in a

working example by using the bias expansion of Bao (2013). We show that the QMLE can be

severely biased when the spatial weights deviate from a Toeplitz network structure, such as

block diagonal or circulant. The CUII procedure based on OLS is introduced in Section 3 and

its limit behaviour is explored in Section 4. Section 5 presents some special cases of the general

SAR model, while in Section 6 we construct a Moran I test for lack of spatially correlated

disturbances. Section 7 reports simulations comparing the finite sample performance of the

CUII estimator to existing methods. An empirical comparison of estimation methods for

inference on the spatial parameter in the context of house price data in the Boston area

is given in Section 8. Conclusions are in Section 9, proofs are in the Appendix, and a

Supplementary Document provides additional technical material and simulation results.

In the sequel, λ0, β0 and σ2
0 denote true values of these parameters while λ, β and σ2

denote admissible values. We use Aij and Ai to signify the (i, j)-th element and the transpose

of the i−th row of the generic matrix A. We use ||.|| and ||.||∞ to denote the spectral norm

and uniform absolute row sum norm, respectively, and K > 0 represents an arbitrary finite,

positive constant. For any function v(x) we define v(r)(x) : dvr(x)/dxr, and an ∼ n for any

sequence an indicates an/n→ K as n→∞. Also, ηi(A), i = 1, ...., q denote the eigenvalues

of a generic real q × q matrix A, while η̄(A) = max
i=1,....q

{|ηi(A)|} and η(A) = min
i=1,....,q

{|ηi(A)|}.
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2 The SARX model with unknown heteroskedasticity

Our focus is the linear SARX model

yn = λ0Wnyn +Xnβ0 + εn, (2.1)

where n denotes sample size, yn is an n-vector of observations, Xn is an n × k matrix of

observations of exogenous regressors and ε is a vector of disturbances. We denote by Wn the

given n× n matrix of spatial weights, while λ0 and β0 are, respectively, the unknown scalar

spatial autoregressive coefficient and a k -vector of coefficients of the exogenous variables.

The pure SAR model (with no exogenous regressors) is a special case of (2.1) with β0 = 0.

In what follows, we assume the presence of exogenous regressors and rule out the possibility

of β0 = 0. Henceforth, we drop the subscript n even though quantities generally denote

triangular arrays, i.e. y = yn, X = Xn, W = Wn and ε = εn.3

Under standard stability conditions, the model in (2.1) can be re-written in reduced form

as

y = S−1(λ0)Xβ0 + S−1(λ0)ε (2.2)

where S = S(λ0) = In − λ0W . Allowing for unanticipated heteroskedasticity in (2.1), we

impose the following condition.

Assumption 1 For all n and for i = 1, . . . , n, the {εi} are a set of independent random

variables, with mean 0 and unknown variances σ2
i > 0. In addition, for some δ > 0,

sup
0<i≤n

E|εi|2+δ ≤ K.

Let E(εε′) = Ω0 > 0. As is common practice in the spatial literature, restrictions on the

parameter space and the asymptotic behaviour of W are imposed to ensure existence of the

reduced form SARX in (2.2) and to establish the limit theory. We therefore impose the

following additional conditions.

3The subscript n is retained only when we want to particularly stress the importance of some sequential
dependence on sample size.
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Assumption 2 λ0 ∈ Λ, where Λ is a closed subset in (−1, 1).

Assumption 3

(i) For all n, Wii = 0 for i = 1, ...., n.

(ii) For all n, ||W || ≤ 1.

(iii) For all sufficiently large n, ||W ||∞ + ||W ′||∞ ≤ K.

(iv) For all sufficiently large n, uniformly in i, j = 1, ..., n, Wij = O(1/h), where h = hn is

bounded away from zero for all n and h/n→ 0 as n→∞.

Assumptions 2 and 3(ii) guarantee that S−1(λ) exists for all λ ∈ Λ and is non singular. It is

well documented (e.g. Kyriacou et al. (2017);Kelejian and Prucha (2010)) that the restriction

on the parameter space given in Assumption 2 and a condition on the spectral norm such

as the one given in Assumption 3(ii) are not strictly necessary to develop asymptotic theory.

However, these conditions (or similar ones) are required to ensure existence of the reduced

form in (2.2), measurability of the dependent variable and existence of the likelihood function.

Assumption 4 For all sufficiently large n, sup
λ∈Λ
||S−1(λ)||∞ + ||S−1(λ)′||∞ < K.

We also impose conditions on existence of limits and no collinearity for large n. Let MX =

I −X(X ′X)−1X ′ and set G = G(λ0) = WS−1(λ0).

Assumption 5 All elements of the n×k matrix X are uniformly bounded for all n, and, for

all sufficiently large n,

η

(
(X,G′Xβ0)′(X,G′Xβ0)

n

)
> 0. (2.3)

The last condition rules out cases where the columns of G and X are perfectly collinear, for

all sufficiently large n.

Standard ML/QML-based estimation methods generally lead to inconsistent estimates unless

the εi’s are homoskedastic (e.g., Lin and Lee (2010)). To illustrate, define the concentrated

pseudo-log-likelihood function in this case

l(λ) = K − 1

2
ln(y′S(λ)′MXS(λ)y) +

1

n
ln|S(λ)| (2.4)
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and let

λ̂QML = argmax
λ∈Λ

l(λ). (2.5)

Write l(i)(λ0) = ∂il(λ)
∂λi
|λ0 for i > 0. A necessary condition for consistency of λ̂QML is

plim
n→∞

1

n
l(1)(λ0) = 0. (2.6)

This condition is satisfied under standard SARX assumptions when disturbances are ho-

moskedastic (Lee (2004)), but it is generally violated under Assumption 1. Specifically, Lin

and Lee (2010) show that a sufficient condition for (2.6), and hence for consistency of λ̂QML,

is

1

n

n∑
i=1

(
Gii −

1

n
trG

)σ2
i −

1

n

n∑
j=1

σ2
j

→ 0, (2.7)

as n → ∞, where Gii is the i’th diagonal element of G. The condition in (2.7) is trivially

satisfied for any form of heteroskedasticity when almost all the elements of G are equal.

However, unless the weight matrix is restricted to have a circulant or block diagonal structure

(such as in Case (1991)) or some other very specific structure which ensures that Gii for

i = 1, . . . , n are equal, general results about consistency of λ̂QML cannot be obtained when

σ2
i is not constant across i.

For further illustration consider the simple and typical (e.g. Harvey (1976)) form of

multiplicative heteroskedasticity given by

Ω0(γ) = σ2



ez1γ 0 0 . . . 0

0 ez2γ 0 . . . 0
...

...
. . .

...
...

0 0 . . . 0 eznγ


(2.8)

for unknown scalar parameters γ and σ2 and an n-vector of observables z = (z1, . . . , zn)′. Set
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σ2 = 1 without loss of generality. For Ω0(γ) defined as in (2.8), the LHS of (2.7) becomes

∞∑
t=0

γt

t!

1

n

n∑
i=1

(
Gii −

1

n
trG

)zti − 1

n

n∑
j=1

ztj

 (2.9)

The latter expression confirms that, even in presence of a very simple form of heteroskedas-

ticity such as that in (2.8), the condition displayed in (2.7) is difficult to check for general

W and z1, . . . , zn. Of course, under the extreme condition that the sample covariance be-

tween the diagonal elements of G and zt is zero for each t for n → ∞, then condition (2.7)

holds. But if instead that sample covariance is constant and non-zero across t (at least for

sufficiently large n) the LHS of (2.7) becomes K(eγ − 1), which vanishes only when γ → 0.

Simple calculations confirm that (2.9) is nonzero for other cases. For instance, if {Gii, zi}

are stationary and ergodic over i with mean {µG, µz} and if zi has finite moment generating

function, then

∞∑
t=0

γt

t!

1

n

n∑
i=1

(
Gii −

1

n
trG

)zti − 1

n

n∑
j=1

ztj

→a.s. E ((Gii − µG)eγzi) , (2.10)

which is non zero whenever the covariance is E ((Gii − µG)eγzi) is non zero.

We next examine the bias of λ̂QML under error heterogeneity as in Assumption 1. Start-

ing from the results in Bao (2013), we may compute the bias of λ̂QML given the error variance

matrix Ω0(γ) in (2.8). For illustration, we limit our analysis to the Gaussian case, although

more general results can be obtained at the expense of extra computation. Explicit calcula-

tions of the bias terms are reported in Section S.1 of the Online Supplement, and we only

report here the plots of the bias functions as γ varies, i.e. of B(γ, λ0) for different values of

λ0 and for four different choices4 of W against γ ∈ [−10, 10] at n = 200.

[Figure 1 about here]

The elements of the vector (z1, . . . , zn)′ are generated once from a uniform distribution

with support [0, 4] and kept fixed across γ as well as across different scenarios. For each

4Figure S1 of the Online Supplement depicts the structure of the four choices of weight matrices used in
this paper, to illustrate the degree of sparseness and/or symmetry in each design.
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choice of W , the spatial parameter ranges from λ0 = −0.8, 0, 0.4, 0.8. The plot depicted on

the top left of Figure 1 reports B(γ, λ0) when W is chosen as a block diagonal matrix (Case

(1991)). Specifically, this first choice of W is defined as

Wn = Ir ⊗Bm, Bm =
1

m− 1
(lml

′
m − Im), (2.11)

where Is is the s×s identity matrix, lm is an m-vector of 1’s, and ⊗ is the Kronecker product.

It is easy to verify that the Gii for i = 1, . . . , n are constant across i for W in (2.11). Similarly,

the plot in the top right of Figure 1 reports B(γ, λ0) when W is chosen as a circulant with

two neighbours behind and two ahead. As expected, for both these choices of W the bias

function is zero for all values of λ0 as γ varies. The plot depicted in bottom left of Figure

1 is the bias function when W is randomly generated as a symmetric n × n matrix of zeros

and ones, where the number of ‘ones’ is restricted at 20% of the total number of elements in

W . This choice of W is generated once for any given n and kept fixed across different γ and

λ. Similarly, the plot in the bottom right of Figure 1 displays B(γ, λ0) for W based on an

exponential distance decay, with wij = exp(−|`i− `j |)1(|`i− `j | < log n) where `i is the i−th

location along the interval [0, n], which is randomly generated from a uniform distribution

with support [0, n]. Again, we generate one W for each sample size and we keep it fixed across

scenarios. In the sequel, we refer to these matrices as ‘random’ and ‘exponential’. Both these

cases are then rescaled by their respective spectral norm. These examples of W tend to be

more relevant to empirical work than other choices such as (2.11) or circulant matrices, as

they mimic contiguity-based weight matrices. Under Assumption 1 and with either ‘random’

or ‘exponential’ cases of W , the ML/QML is not expected to return consistent estimators for

a general heteroskedastic design as Gii for i = 1, . . . , n vary across i.

Figures shown in the bottom panel of Figure 1 confirm that the finite sample bias persists

even for a moderately-sized sample of n = 200 and its magnitude varies with λ0 (e.g. the

bias is in general larger in absolute value for a large negative λ0). Also, the bias tend to be

generally more severe for ‘exponential’ W , as shown in the plot in the bottom right of Figure

1. As expected, the leading terms of B(γ, λ0) (reported explicitly in the Supplementary

material) vanish for λ0 = 0 and for γ = 0 (although, even if they are not displayed in Figure
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1, terms that vanish as n → ∞ may persist in finite samples and contribute to the overall

bias of λ̂QML).

3 Continuously Updated Indirect Inference based on OLS es-

timates

As discussed above, in the presence of unknown heteroskedasticity the standard ML/QML

methods are in general biased and inconsistent. On the other hand, the OLS estimators of

the unknown parameters in (2.1) can be consistent even under Assumption 1, as long as some

stringent conditions on the asymptotic behaviour of W are satisfied. Specifically, as shown

in Lee (2002), the OLS estimator of λ0 is consistent but does not have a standard normal

limiting distribution if h defined in Assumption 3(iv) satisfies

1

h
+

h√
n
→ 0 as n→∞, (3.1)

and it is consistent and asymptotically normal if

1

h
+

√
n

h
→ 0 as n→∞. (3.2)

For instance, OLS estimation of (2.1) will lead to inconsistent estimates in situations whereby

the spatial weights are generated via a contiguity criterion (e.g. country borders) and the

number of neighbours of a given unit (country in this case) needs to remain constant as the

sample size increases, regardless of whether homoskedasticity in the disturbances holds or

not.

The limit conditions (3.1) and (3.2) are hardly verifiable in practical situations as only

a finite set of observations is available in most circumstances and we are typically agnostic

about the limit behaviour of h. Hence, OLS estimation is commonly and justifiably ignored

in practice. But OLS can be used as a building block for a modified estimator with improved

finite sample and asymptotic properties as we now show. OLS has the advantage of compu-

tational simplicity but the methodology we describe can in principle be extended to QML

or other implicitly defined estimators, at the expense of some additional computational and
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algebraic costs.

Using (2.1) we can ‘concentrate β out’, leading to

β̂(λ) = (X
′
X)−1X

′
S(λ)y, (3.3)

and then focus on estimation of λ0. The OLS estimator of λ in (2.1), denoted by λ̂, is defined

as:

λ̂ =
y
′
W
′
MXy

y′W ′MXWy
. (3.4)

Similar to the discussion in KPR, we can obtain a formal expansion for the expected value

of the latter ratio based on Lieberman (1994)’s result as

E(λ̂) =
E(y′W ′MXy)

E(y′W ′MXWy)
+O

(
1

n

)
. (3.5)

Let Q(λ) = MXG(λ), P (λ) = Q(λ)′S−1(λ), Q = Q(λ0) and P = P (λ0). By standard algebra

E(λ̂) =
tr(PΩ0) + β′0X

′PXβ0

tr(Q′QΩ0) + β′0X
′Q′QXβ0

+O

(
1

n

)
. (3.6)

Following the formal expansion in (3.6), we define the binding function τn(λ) as

τn(λ,Ωλ, β̂(λ)) = τn(λ) =
tr(P (λ)Ωλ) + β̂(λ)′X ′P (λ)Xβ̂(λ)

tr(Q(λ)′Q(λ)Ωλ) + β̂(λ)′X ′Q(λ)′Q(λ)Xβ̂(λ)
+Op

(
1

n

)
, (3.7)

and its approximate counterpart (which will be used for practical implementation) as

τ∗n(λ,Ωλ, β̂(λ)) = τ∗n(λ) =
tr(P (λ)Ωλ) + β̂(λ)′X ′P (λ)Xβ̂(λ)

tr(Q(λ)′Q(λ)Ωλ) + β̂(λ)′X ′Q(λ)′Q(λ)Xβ̂(λ)
, (3.8)

with β̂(λ) defined according to (3.3), and

Ωλ = diag(ε(λ)ε(λ)′), ε(λ) = (y − λWy −Xβ̂(λ)), (3.9)

where diag(A) for a generic n × n matrix A returns the n × n diagonal matrix containing

only the main diagonal of A and with other entries zero.5

5We outline that our definition of the binding function is different from Bao et al. (2020), as both numerator
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The methodology we now propose is a continuously updated version of indirect inference

in which estimates of the error variances that affect bias and the binding function are con-

tinuously updated within the indirect inference procedure. The resulting estimator is defined

as the extremum estimator that satisfies

λ̂CUII = argmin
λ ∈ Λ

{λ̂− τ∗n(λ,Ωλ, β̂(λ))}2, (3.10)

which we call the continuously updated indirect inference (CUII) estimator, λ̂CUII , of λ.

A detailed discussion on the robustness advantages of using τ∗n(.) rather than its standard

simulated version (e.g. Gouriéroux et al. (1995)) is contained in KPR. In this setting, the

II approach of simulating pseudo-data to construct the binding function would be more

restrictive as it would require considerably more structure compared to standard estimation

problems under homoskedasticity. In particular, the specific form of heteroskedasticity, in

addition to distributional assumptions, would be needed to employ the standard simulation

approach.

From substantial numerical work the objective function in (3.10) is found to be continuous

and strictly convex for all values of the parameter space, so that the optimization problem

appears to be standard. Since smoothness and monotonicity conditions on τn(λ) are required

to establish the limit theory, we introduce the following condition.

Assumption 6

(i) For all n, τn(λ) is continuously differentiable and strictly increasing for all λ ∈ Λ with

probability one.

(ii) plim
n→∞

τ
(1)
n (λ0) exists and it is positive.

As discussed in KPR, the latter is employed as a high-level condition because the deriva-

tion of more primitive assumptions involving general choices of W is not feasible. KPR

verified a condition similar to Assumption 6 for a class of W with Toeplitz structures (e.g.

circulant and block diagonal structures). However, as is common practice in the simulation-

based techniques literature, when W has a more general unspecified structure practitioners

and denominator are parametrized as a function of λ.
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have to rely on numerical methods to verify conditions such as Assumption 6. We stress that

τn(·) does not depend on nuisance parameters and so verification can be achieved numerically

in finite samples for any given sample and choice of W in a straightforward manner. In Sec-

tion 7 and 8 we reports plots of τ∗n(·) for λ ∈ Λ for the choices of W adopted in the simulations

and few pseudo-dataset (yi, x
′
i)
′, i = 1, . . . , n, and for our empirical setting, respectively.

Under Assumption 6, we have the inverse function representation of the CUII estimator

λ̂CUII = τ∗−1
n (λ̂). (3.11)

4 Limit Theory

This section derives the asymptotic properties of the estimator (3.10) for model (2.1) when

the case β0 = 0 is ruled out a priori. From (3.7) and (3.8) we consider the centering random

sequence

τn(λ0) =
tr(PΩλ0)/n+ β̂(λ0)′X ′PXβ̂(λ0)/n

tr(Q′QΩλ0)/n+ β̂(λ0)′X ′Q′QXβ̂(λ0)/n
+O

(
1

n

)
, (4.1)

where

β̂(λ0) = β0 + (X ′X)−1X ′ε, (4.2)

ε(λ0) = MXε, (4.3)

so that Ωλ0 = diag(MXεε
′MX). Define

Vn =
4

n

 β′0X
′PMXΩ0MXP

′Xβ0 β′0X
′PMXΩ0MXQ

′QXβ0

β′0X
′Q′QMXΩ0MXP

′Xβ0 β′0X
′Q′QMXΩ0MXQ

′QXβ0


+

4

n

∑
i

∑
j<i

σ2
i σ

2
j

 (P+P ′)2ij
4

(P+P ′)ij(Q′Q)ij
2

(P+P ′)ij(Q′Q)ij
2 (Q′Q)2

ij

 . (4.4)

In order to assure the existence of limits of each of the suitably standardized components

that appear in (4.4), we impose the following conditions.
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Assumption 7 As n→∞, the following limits exist:

ā = ā(λ0) = lim
n→∞

1

n
tr(PΩ0), b̄ = b̄(λ0) = lim

n→∞

1

n
β′0X

′PXβ0,

c̄ = c̄(λ0) = lim
n→∞

1

n
tr(Q′QΩ0), d̄ = d̄(λ0) = lim

n→∞

1

n
β′0X

′Q′QXβ0, (4.5)

ā(1) = ā(1)(λ0) = lim
n→∞

1

n

(
tr(G′PΩ0 + PGΩ0)− 2tr (Pdiag(GΩ0))

)
,

b̄(1) = b̄(1)(λ0) = lim
n→∞

1

n

(
β′0X

′(G′P + PG)Xβ0 − 2β′0X
′P (I −MX)GXβ0

)
,

c̄(1) = c̄(1)(λ0) = lim
n→∞

2

n

(
tr(G′Q′QΩ0)− tr(Q′Qdiag(GΩ0))

)
,

d̄(1) = d̄(1)(λ0) = lim
n→∞

2

n
(β′0X

′G′Q′QXβ0 − β′0X ′Q′Q(I −MX)G′Xβ0), lim
n→∞

Vn. (4.6)

Positive definiteness of Vn in (4.4) in the limit is ensured under Assumption 5 since both

terms in (4.4) are positive semidefinite for each n and Assumption 5 establishes strict positive

definiteness in the limit for the dominant first term.

Standard calculations give

τ̄ (1) = τ̄ (1)(λ0) = plim
n→∞

τ (1)
n (λ0) =

ā(1) + b̄(1)

c̄+ d̄
− (c̄(1) + d̄(1))(ā+ b̄)

(c̄+ d̄)2
, (4.7)

whose existence and positivity is assured by Assumptions 6 and 7. By virtue of the delta

method
√
n(λ̂− τn(λ0)) = f ′nUn + op (1) , (4.8)

where

Un =
1√
n

 ε′Pε− tr(PΩλ0) + 2β′0X
′PMXε

ε′Q′Qε− tr(Q′QΩλ0) + 2β′0X
′Q′QMXε

 , (4.9)

and

f ′n =

((
1

n
y′W ′MXWy

)−1

,

(
1

n
y′W ′MXWy

)−2( 1

n
y′W ′MXy

))
. (4.10)

We derive

f̄ = plim
n→∞

fn =
((
c̄+ d̄

)−1
,
(
c̄+ d̄

)−2 (
ā+ b̄

))′
, (4.11)

which is defined in terms of limits that appear in τ̄ (1). In particular, existence and positivity
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of τ̄ (1) in (4.7) ensure that the common factor 1/(c̄+ d̄) 6= 0. Thus, existence and non-nullity

of f̄ is assured under Assumptions 6(ii) and 7.

With these results in hand, we obtain the following limit theory.

Theorem 1

(a) Under (2.1) with β0 6= 0 and Assumptions 1-5, 6(i) and 7,

√
n(λ̂− τn(λ0))→

d
N (0, f̄ ′ lim

n→∞
Vnf̄). (4.12)

(b) Under (2.1) with β0 6= 0 and Assumptions 1-7

√
n(λ̂CUII − λ0)→

d
N
(
0, v2

CUII

)
, (4.13)

where v2
CUII = f̄ ′ lim

n→∞
Vnf̄/

(
τ̄ (1)

)2
exists and is non zero under Assumptions 2, 3(ii)

and 5-7.

Let v̂2
CUII be the estimated version of v2

CUII , obtained by replacing the unknown λ0 and β0

by λ̂CUII and β̂CUII , respectively, Ω0 by Ω̂ = diag(ε̂ε̂′) where ε̂ = MXS(λ̂CUII)y, and σ2
i by

ε̂2i , for i = 1, . . . , n.

Theorem 2 Let Assumption 1 hold, with δ = 2. Under Assumptions 2-7, as n→∞

v̂2
CUII − v2

CUII →p 0. (4.14)

Estimation of β0 in 2.1 under Assumption 1 and exogeneity of X causes less difficulty than

estimation of λ0 as simple OLS regression produces consistent estimates under general limit

behaviour of W . Nonetheless, from (3.3) we can deduce consistency of β̂CUII and its asymp-

totic normality by using the following representation of the scaled estimation error

√
n(β̂CUII − β0) =

(
1

n
X ′X

)−1 1√
n
X ′ε−

(
1

n
X ′X

)−1 1

n
X ′GXβ0

√
n(λ̂CUII − λ0) + op(1),

(4.15)
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where
√
n(λ̂CUII − λ0) =

1

τ
(1)
n (λ0)

√
n(λ̂− τn(λ0)) + op(1). (4.16)

From (4.8), (4.9) and (4.10)
√
n(β̂CUII − β0) = ζ ′nRn, (4.17)

where

Rn =
1√
n


X ′ε

ε′Pε− tr(PΩλ0) + 2β′0X
′PMXε

ε′Q′Qε− tr(Q′QΩλ0) + 2β′0X
′Q′QMXε

 (4.18)

and

ζn =

((
1

n
X ′X

)−1

, −
(

1

n
X ′X

)−1 1

n
X ′GXβ0τ

(1)
n (λ0)−1f ′n

)′
(4.19)

Defining

ζ̄ = plim
n→∞

ζn, (4.20)

and

Tn =
1

n


X ′X X ′Ω0MX(P + P ′)Xβ0 2X ′Ω0MXQ

′QXβ0

β′0X
′(P + P ′)MXΩ0X 4β′0X

′PMXΩ0MXP
′Xβ0 4β′0X

′PMXΩ0MXQ
′QXβ0

2β′0X
′Q′QMXΩ0X 4β′0X

′Q′QMXΩ0MXP
′Xβ0 4β′0X

′Q′QMXΩ0MXQ
′QXβ0



+
4

n

∑
i

∑
j<i

σ2
i σ

2
j


0(k×k) 0(k×1) 0(k×1)

0(1×k)
(P+P ′)2ij

4
(P+P ′)ij(Q′Q)ij

2

0(1×k)
(P+P ′)ij(Q′Q)ij

2 (Q′Q)2
ij

 , (4.21)

we deduce the following result.

Corollary 1 Under (2.1) with β0 6= 0, under Assumptions 1-7

√
n(β̂CUII − β0)→

d
N (0, ζ̄ ′ lim

n→∞
Tnζ̄), (4.22)

as n→∞.

The variance matrix ζ̄ ′ lim
n→∞

Tnζ̄ in (4.22) is non-singular under Assumptions 5-7. The proof

of Corollary 1 follows in a similar way to that of part (a) of Theorem 1 and is omitted.
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A special remark is needed to clarify the extent of the CUII transformation in case OLS

is consistent and/or consistent and asymptotically normal, i.e. under (3.1) and (3.2). The

RHS of (3.6) can be equivalently expressed as6

E(λ̂) = λ0 +
tr(G′MXΩ0)

β′0X
′G′MXGXβ0 + tr(G′MXGΩ0)

+O

(
1

n

)
(4.23)

so that, after straightforward manipulation if 1/h→ 0,

τn(λ) =λ+
tr(G′(λ)MXΩλ)

β̂(λ)′X ′G′(λ)MXG(λ)Xβ̂(λ)

(
1− tr(G′(λ)MXG(λ)Ωλ)

β̂(λ)′X ′G′(λ)MXG(λ)Xβ̂(λ)
+Op

(
1

h2

))

+Op

(
1

n

)
(4.24)

Thus, under (3.1), the CUII transformation removes the finite sample bias up to order 1/n

and restores asymptotic normality, while its scope is limited to removing finite sample bias

of order 1/h if (3.2) holds. We note that when h→∞,

√
n(λ̂− τn(λ0)) =

1√
n
f ′n

ε′G′MXε− tr(G′MXΩλ0) + β′0X
′G′MXε

ε′Q′Qε− tr(Q′QΩλ0) + 2β′0X
′Q′QMXε


=

1√
n
f ′n

 β′0X
′G′MXε

2β′0X
′Q′QMXε

+ op(1), (4.25)

fn =

((
1

n
y′W ′MXWy

)−1

;

(
1

n
y′W ′MXWy

)−2( 1

n
y′W ′MXε

))′
(4.26)

so that

f̄ =
((
d̄
)−1

; 0
)′

(4.27)

as y′W ′MXε/n = op(1). Therefore, since from (4.24) τ̄(λ0) = 1 under either (3.1) or (3.2),

v2
CUII = lim

n→∞

β′0X
′G′MXΩ0MXGXβ0/n

(β′0X
′G′MXGXβ0/n)2

, (4.28)

which is equivalent to the asymptotic variance of
√
n(λ̂ − λ0) under (3.2). The latter, in

6In the general expression (3.6) λ0 was not factored out to simplify the algebra in the proof of Theorem 1.
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turn, is equivalent to the asymptotic variance of the ML estimator of λ under normality of

the errors for Ω0 = σ2I (e.g. Lee (2004)).

5 Two special cases: pure SAR and local-to-pure SAR

The framework discussed in Sections 3 and 4 is not directly applicable to the pure SAR model

y = λ0Wy + ε, (5.1)

which is the special case of (2.1) with β = 0 ex ante and no exogenous inputs in the fitted

regression. Limit theory for estimates of λ in (5.1) cannot generally be deduced as a special

case of that developed for estimates of λ in (2.1), as the rate of convergence can be slower

than the standard
√
n (e.g., Lee (2004)). Also, OLS estimation of λ in (5.1) is inconsistent

unless λ = 0 (Lee (2002)). KPR developed an II transformation of the OLS estimator of λ in

(5.1) under homoskedastic errors, to restore its consistency and asymptotic normality. In this

section we extend that work to accommodate unknown heteroskedasticity in the disturbances

along the lines of Sections 3 and 4.

The OLS estimator for λ in (5.1) is defined as

λ̂ =
y′W ′y

y′W ′Wy
, (5.2)

with expected value

E(λ̂) =
tr(PΩ0)

tr(G′GΩ0)
+O

(
h

n

)
, (5.3)

where P (λ) = G′(λ)S−1(λ) and P = P (λ0). Similar to Section 3, we define

τn(λ) = τ(λ) =
tr(P (λ)Ωλ)

tr(G′(λ)G(λ)Ωλ)
+Op

(
h

n

)
(5.4)

and its operational version

τ∗n(λ) = τ(λ) =
tr(P (λ)Ωλ)

tr(G′(λ)G(λ)Ωλ)
, (5.5)

with Ω(λ) = diag(ε(λ)ε(λ)′) and ε(λ) = S(λ)y. Under Assumption 6 with τn(·) defined
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according to (5.4), we define again λ̂CUII = τ−1
n (λ̂).

In the sequel, we adopt the same notation of Section 4 and define

τn(λ0) =
h
n tr(PΩλ0)

h
n tr(G

′GΩλ0)
+Op

(
h

n

)
with Ωλ0 = diag(εε′), (5.6)

and

τ̄ (1) = τ̄ (1)(λ0) = plim
n→∞

τ (1)
n (λ0) =

ā(1)

c̄
− c̄(1)ā

c̄2
, (5.7)

with ā, c̄, ā(1), c̄(1) defined in (4.5) and (4.6) with Q = G in the present case. Existence and

positivity of the limit in (5.7) are guaranteed by Assumptions 6 and 7 with Q = G.

As Vn in (4.4) would be singular in the limit in case of model (5.1), we re-define the main

quantities appearing in Section 4 as

√
n

h
(λ̂− τn(λ0)) = f ′nUn + op (1) , (5.8)

where

Un =

√
h

n

 ε′Pε− tr(PΩλ0)

ε′G′Gε− tr(G′GΩλ0)

 , (5.9)

fn =

((
h

n
y′W ′Wy

)−1

,

(
h

n
y′W ′Wy

)−2(h
n
y′W ′y

))′
, (5.10)

f̄ = plim fn
n→∞

=
(

(hc̄)−1 , (hc̄)−2 (hā)
)′
, (5.11)

and

Vn =
4h

n

∑
i

∑
j<i

σ2
i σ

2
j

 (P+P ′)2ij
4

(P+P ′)ij(G′G)ij
2

(P+P ′)ij(G′G)ij
2 (G′G)2

ij

 , (5.12)

where existence and non singularity is again assured under Assumptions 6 and 7. With these

reductions for the present case and analogous to Theorem 1 we obtain the following limit

theory.

Theorem 3

(a) Under (5.1), Assumptions 1-4, 6(i) and 7 with τn(·) and Vn defined according to (5.4)
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and (5.12), respectively,

√
n

h
(λ̂− τn(λ0))→

d
N (0, f̄ ′ lim

n→∞
Vnf̄). (5.13)

(b) Under (5.1), Assumptions 1-4, 6 and 7 with τn(·) and Vn defined according to (5.4) and

(5.12), respectively, √
n

h
(λ̂CUII − λ0)→

d
N
(
0, v2

CUII

)
, (5.14)

where v2
CUII = f̄ ′ lim

n→∞
Vnf̄/

(
τ̄ (1)

)2
exists and is non zero under Assumptions 2, 3(ii)

and 5-7.

A sketch of the proof of Theorem 3 is reported in the Appendix, although it follows with

minor modifications from that of Theorem 1.

Another version of (2.1) is the SARX model with a local-to-zero coefficient vector

β0 = βn,0 =
δ√
n

(5.15)

with unknown localized coefficient vector δ 6= 0. This model is a spatial autoregression with

exogenous regressors of marginal relevance, as measured by βn,0 which captures decreasing

relevance as the sample size increases. As with the notation defined in Section 3, we have

P (λ) = Q′(λ)S−1(λ) and Q(λ) = MXG(λ). Under Assumptions 2-4, and according to the

same argument discussed in (3.6), the expected value of λ̂ can be written as

E(λ̂) =
tr(PΩ0) + β′0X

′PXβ0

tr(Q′QΩ0) + β′0X
′Q′QXβ0

+O

(
1

n

)
=

=
tr(PΩ0)

tr(Q′QΩ0)

(
1 +

1

n

δ′X ′PXδ

tr(PΩ0)

)(
1− 1

n

δ′X ′Q′QXδ

tr(Q′QΩ0)

)
+O

(
1

n

)
=

tr(PΩ0)

tr(Q′QΩ0)
+O

(
h

n

)
, (5.16)

so that the binding function τn(·) can be defined as

τn(λ) = τ(λ) =
tr(P (λ)Ωλ)

tr(Q′(λ)Q(λ)Ωλ)
+Op

(
h

n

)
(5.17)
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with Ωλ = diag(MXS(λ)yy′S(λ)MX).

Proceeding as in Section 4, we obtain

√
n

h
(λ̂− τn(λ0)) = f ′nUn + op (1) , (5.18)

where

Un =

√
h

n

 ε′Pε− tr(PΩλ0)

ε′Q′Qε− tr(Q′QΩλ0)

 , with Ωλ0 = diag(MXεε
′MX), (5.19)

fn =

((
h

n
y′W ′MXWy

)−1

,

(
h

n
y′W ′MXWy

)−2(h
n
y′W ′MXy

))′
, (5.20)

and

f̄ = plim
n→∞

fn =
(

(hc̄)−1 , (hc̄)−2 (hā)
)′
. (5.21)

The equality in (5.18) follows trivially since

√
h

n
(y′W ′MXy − tr(PΩλ0)) =

√
h

n

(
ε′Pε− tr(PΩλ0) + β′0X

′PXβ0 + 2β′0X
′Pε
)

=

√
h

n
(ε′Pε− tr(PΩλ0)) + op(1), (5.22)

and √
h

n
(y′W ′MXWy − tr(Q′QΩλ0)) =

√
h

n
(ε′Q′Qε− tr(Q′QΩλ0)) + op(1), (5.23)

under (5.15). Setting

Vn =
4h

n

∑
i

∑
j<i

σ2
i σ

2
j

 (P+P ′)2ij
4

(P+P ′)ij(Q′Q)ij
2

(P+P ′)ij(Q′Q)ij
2 (Q′Q)2

ij

 . (5.24)

we deduce the following limit theory for this local to pure SAR case.

Theorem 4

(a) Under (2.1) with β0 = βn,0 as in (5.15), Assumptions 1-4, 6(i) and 7 with τn(·) and Vn
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defined according to (5.17) and (5.24), respectively,

√
n

h
(λ̂− τn(λ0))→

d
N (0, f̄ ′ lim

n→∞
Vnf̄). (5.25)

(b) Under (2.1) with β0 = βn,0 as in (5.15), Assumptions 1-4, 6 and 7 with τn(·) and Vn

defined according to (5.17) and (5.24), respectively,

√
n

h
(λ̂CUII − λ0)→

d
N
(
0, v2

CUII

)
, (5.26)

where v2
CUII = f̄ ′ lim

n→∞
Vnf̄/

(
τ̄ (1)

)2
exists and is non zero under Assumptions 2, 3(ii)

and 5-7.

A sketch of the proof of Theorem 4 is reported in the Appendix. A remark on the specific

order O(n−1/2) of the shrinking sequence in (5.15) is needed here. Theorem 4 above would

hold with essentially no modification in case β0,n = δ/αn, where αn represents a generic

positive sequence such that
√
n/αn = o(1) as n→∞. In case

βn,0 = β0 =
δ√
h
, (5.27)

which corresponds either to a sequence of non-shrinking parameters (in case h is a bounded

sequence), or to a shrinking sequence that converges to zero at a rate slower than
√
n, since

h/n = o(1) from Assumption 3(iv), the limit theory outlined in Section 4 would apply with

virtually no modification after adjusting the normalizing sequences. In particular, Theorem

1 would hold with
√
n replaced by

√
n/h, and Vn and f̄ replaced by hVn and

f̄ =
((
hc̄+ hd̄

)−1
;
(
hc̄+ hd̄

)−2 (
hā+ hb̄

))′
, (5.28)

respectively.
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6 Spatially correlated disturbances: a discussion

The framework derived in Sections 3 and 4 could in principle be extended to more general

settings such as higher order SAR models or a SAR model with spatially correlated errors.

These extensions would be achieved by adding one (or more) II conditions to match other

quantities via suitable binding functions, as opposed to just the first moment as in Section

3. However, such developments come at the cost of additional high-level assumptions that

assure the existence of a unique solution. We stress that the present high-level Assumption

6 has the crucial advantage of not depending on nuisance parameters, and thus can be easily

checked on a case-by-case basis. This advantage would be lost in more complicated models.

We focus in this section on a heuristic discussion of a CUII-based Moran test for lack of

spatially correlated errors by using the approach of Kelejian and Prucha (2001) or Robinson

(2008). We consider the following model with SAR errors

y = λ0Wy +Xβ0 + u, with u = ρ0Du+ ε, (6.1)

where D is a weight matrix satisfying Assumptions 3 and 4, and the error vector ε satisfies

Assumption 1.

The null hypothesis to be tested is H0 : E(uu′) = Ω0, i.e. ρ0 = 0, against the alternative

hypothesis H1 : E(uu′) 6= Ω0. We can construct a test for H0 based on the vector of residuals

û under H0. Thus, from Kelejian and Prucha (2001) or Robinson (2008), we use a suitably

studentized quadratic form û′Dû (or its square) to construct a Moran-type of statistic to

test H0. This testing framework in the presence of heteroskedasticity has been discussed by

Kelejian and Prucha (2001), using IV estimates to construct û. However, their test cannot

accommodate the case β0 = 0 ex ante, and it would perform poorly in case the regressors

are increasingly irrelevant (e.g. in case of weak instruments). The derivation of a CLT for

û′Wû/
√
n when the residuals û are obtained by CUII estimation is much more complex than

the analysis of Kelejian and Prucha (2001), as CUII estimates are not simple linear functions

of the disturbances.

Under H0, û = u(λ̂CUII) = MXS(λ̂CUII)y, where λ̂CUII is the restricted estimate of λ in
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(6.1), and thus

1√
n
u(λ̂CUII)

′Du(λ̂CUII) =
1√
n
u(λ0)′Du(λ0)− 1

n
u(λ0)′(D +D′)MXWy

√
n(λ̂CUII − λ0) + op(1)

=
1√
n
ε′MXDMXε−

an

τ
(1)
n

f ′n
1√
n
Un + op(1)

=

(
1 an

τ
(1)
n

f ′n

)
1√
n


ε′MXDMXε

ε′Pε− tr(PΩλ0) + 2β′0X
′PMXε

ε′Q′Qε− tr(Q′QΩλ0) + 2β′0X
′Q′QMXε

+ op(1), (6.2)

where

an =
1

n
ε′MX(D +D′)MXWS−1ε =

1

n
ε′MX(D +D′)MXGε. (6.3)

From the second line on the RHS of (6.2), it is easy to show that the first term is Op(1/
√
h)

while the second is Op(1/h). Therefore, the argument that follows only holds when h is a

bounded sequence (i.e., the setting considered by Kelejian and Prucha (2001), Kelejian and

Prucha (2010) and Lin and Lee (2010)). A brief remark is made on the case of divergent h

at the end of this section but a thorough analysis in that case is beyond the scope of the

present work. We modify Assumption 3 as follows.

Assumption 3′

(i) For all n, Wii = 0 and Dii = 0 for i = 1, ...., n.

(ii) For all n, ||W || ≤ 1 and ||D|| ≤ 1.

(iii) For all sufficiently large n, ||W ||∞ + ||W ′||∞ ≤ K and ||D||∞ + ||D′||∞ ≤ K.

(iv) For all sufficiently large n, uniformly in i, j = 1, ..., n, Wij = O(1/h), and Dij = O(1/h)

where h = hn is bounded away from zero for all n and it is bounded as n→∞.
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Let T = MXDMX ,

Ṽn =
4

n


0 0 0

0 β′0X
′PMXΩ0MXP

′Xβ0 β′0X
′PMXΩ0MXQ

′QXβ0

0 β′0X
′Q′QMXΩ0MXP

′Xβ0 β′0X
′Q′QMXΩ0MXQ

′QXβ0



+
4

n

∑
i

∑
j<i

σ2
i σ

2
j


(T+T ′)2ij

4
(T+T ′)ij(P+P ′)ij

4
(T+T ′)ij(Q′Q)ij

2

(T+T ′)ij(P+P ′)ij
4

(P+P ′)2ij
4

(P+P ′)ij(Q′Q)ij
2

(T+T ′)ij(Q′Q)ij
2

(P+P ′)ij(Q′Q)ij
2 (Q′Q)2

ij

 . (6.4)

and modify Assumption 7 as follows.

Assumption 7′ lim
n→∞

Ṽn exists and is non-singular.

We deduce

Theorem 5 Let Assumptions 1, 2, 3’, 4-6 and 7’ hold. Then as n→∞

1√
n
u(λ̂CUII)

′Du(λ̂CUII)
d→ N (0, ṽ2), (6.5)

where

lim
n→∞

(
1 an

τ
(1)
n

f ′n

)
Ṽn

(
1 an

τ
(1)
n

f ′n

)′
. (6.6)

A sketch of the proof of Theorem 5 is given in the Appendix. A consistent estimator, ˆ̃v2,

of ṽ2 can be obtained as in Theorem 2 by replacing unknowns with suitable estimates, viz.,

Ω0 by Ω̂ = diag(ε̂ε̂′) where ε̂ = MXS(λ̂CUII)y, and σ2
i by ε̂2i , for i = 1, ....., n. Thereupon a

Moran-type test statistic for H0 can be constructed as

(u(λ̂CUII)
′Du(λ̂CUII))

2

nˆ̃v2
, (6.7)

which has a χ2 with one degree of freedom limit distribution.

The case of divergent h requires a different normalization rate, as Ṽ would be singular
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for divergent h, and it is not pursued here. In such case

√
h

n
u(λ̂CUII)

′Du(λ̂CUII) =

√
h

n
ε′MXDMXε+Op

(
1√
h

)
. (6.8)

7 Simulations

We report the results of a set of Monte Carlo experiments to compare the finite sample

performance of the CUII estimators with the standard QML (Lee (2004)) and 2SLS estimators

(Kelejian and Prucha (1998)), as well as the robust GMM (RGMM, henceforth) procedure of

Lin and Lee (2010) and the modified QML (MQML, henceforth) estimator of Liu and Yang

(2015).

We consider different heteroskedastic and spatial weight scenarios. Throughout, the num-

ber of exogenous regressors is set at k = 3, with the first regressor being an n× 1 column of

ones and other two being randomly drawn from two independent uniform distributions on the

support [0, 1], and kept fixed across replications. In each scenario, we set β0 = (0.2, 0.1,−0.3),

and consider four different values of λ0, i.e. λ0 = −0.5, 0.3, 0.5, 0.8. We generate εi, for

i = 1, . . . , n, as

εi = σiζi, (7.1)

with ζi ∼ i.i.d.t(5), i.e. the ζis are generated from a t− distribution with 5 degrees of freedom.

Two mechanisms for the scale parameter σi are used: (i) direct construction using the formula

σi = c
di∑n

j=1 dj/n
, (7.2)

where the constant c is set to unity and di denotes the number of neighbours of unit i, such

that, for each generic W , di = card(j : wij 6= 0, i 6= j) and card(·) denotes cardinality; or the

σi are drawn randomly from a χ2 distribution with 5 degrees of freedom (χ2(5)). With both

methods, the σi are kept fixed across simulations and across different parameter scenarios.

The heteroskedasticity design in (7.2) is in line with the simulation work in Kelejian and

Prucha (2010) and Arraiz et al. (2010) and is motivated by situations in which heteroskedas-

ticity arises as units across different regions may have different numbers of neighbours.
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We consider two different choices for W , already partially introduced in Section 2 and

reported here for convenience7. The first, which is denoted ‘random’ in the Tables and in the

discussion that follows in this section, is randomly generated as an n× n symmetric matrix

of zeros and ones and then re-scaled so that each row sums to unity, with the number of

‘ones’ restricted to 10% of the total entries in W . This choice is empirically motivated as it

mimics a fairly dense contiguity matrix. The second choice, denoted ‘exponential’, is based

on an exponential-decay notion of distance, again randomly generated. More specifically, we

construct an n× 1 vector of locations by generating n random numbers from a uniform dis-

tribution on support [0, n]. We then define wij = exp (−|Li − Lj |)1(|Li−Lj | < log(n)). The

resulting matrix is then normalized by its spectral norm8. Both choices of W are generated

once for each sample size and are kept fixed across different scenarios and across the 1000

Monte Carlo replications. We stress that for both choices of W the QML is not expected to

return consistent estimators in the presence of unknown heteroskedasticity, as the condition

in (2.7) is not met.

Before reporting and discussing the simulation results, we numerically confirm Assump-

tion 6 for a given set of regressors X and a realization of the disturbances for each of the

aforementioned scenarios. Figure 2 shows the approximate binding function, τ∗(λ,Ωλ, β̂(λ))

in (3.8), for one single set of observations X (k = 3) and y generated for β0 = (0.2, 0.1,−0.3)

and λ = 0.3. The plots depicted in Figure 2 correspond to all four configurations of het-

eroskedasticity/weighting structures previously discussed. For each case, Assumption 6 is

evidently satisfied as the approximate binding function is strictly monotonic for all λ ∈ Λ.

As expected, Assumption 6 may be violated in the vicinity of λ = 1, but this ‘unit root’ case

is excluded as is customary in the SAR literature.

[Figure 2 about here]

In each table we report bias and mean square error (MSE) for the CUII, QML, MQML,

2SLS and RGMM procedures for n = 30, 50, 100, 200. The RGMM estimator corresponds

to what Lin and Lee (2010) denote as optimal RGMM, and is constructed using the same

7Figure S1 in the Online Supplement gives graphical illustrations of these spatial matrix designs.
8Here and in the sequel, we define ‘sparseness’ as the ratio between non-zero elements to total number of

elements. The sparseness of the exponential distance W matrix decreases with n and it amounts to 19% for
n = 30, 14.96% for n = 50, 9.02% for n = 100 and 5.08% for n = 200.
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algorithm described in Lin and Lee (2010). The 2SLS estimates are derived by the standard

Kelejian and Prucha (1998) approach, i.e. using the linearly independent columns of [WX,X]

as instruments for [Wy,X], even though similar results are obtained when using the linearly

independent columns of [WX,W 2X,X], or the so-called optimal instruments [G(λ̃)Xβ̃,X]

with (λ̃, β̃′)′ being preliminary estimates (Lee (2003)). Tables 1 and 2 report results for

‘random’ W and σi in (7.1) generated as (7.2) and as χ2(5), respectively. Tables 3 and 4

report corresponding results for ‘exponential’ W .

[Tables 1-4 about here]

Across all scenarios, the QML estimator of λ does not display a severe bias overall, but

for the case of ‘random’ W the bias does not seem to vanish as n increases. On the other

hand, the MQML of Liu and Yang (2015) enjoys excellent finite sample performance and is

considered our best benchmark. For ‘random’ W , in terms of bias magnitude, MQML seems

to slightly outperform CUII in case the heteroskedasticity is generated as in (7.2), whereas

the opposite holds for σis generated as χ2(5). For ‘exponential’ W , in most cases CUII

seems to slightly outperform MQML in terms of bias, a feature which is notable especially

at λ = 0.5. In general, the MSE of MQML is slightly smaller than that of CUII, even though

the difference becomes progressively smaller as n increases. On the other hand, CUII appears

to be nearly insensitive to the starting initialization used in the optimization routine when

compared to the MQML.

It has been well documented in the spatial literature that 2SLS is not efficient compared

to other methods, and indeed our 2SLS estimates across Tables 1-4 reveal particularly poor

performance, having large biases and even larger MSE. Finally, the RGMM performance

has a mixed pattern of performance, depending on the value of λ0 and the choice of σi.

For both ‘random’ and ‘exponential’ W , when the σi’s are generated as (7.2), the finite

sample performance of RGMM is satisfactory for larger sample sizes, although both bias

and MSE are particularly poor for λ0 = −0.5 in the ‘random’ case. Also, for ‘random’ W ,

RGMM displays a large MSE for all sample sizes when λ0 = 0.8, even though the bias is not

particularly severe. The performance of the RGMM in terms of bias and MSE improves for

both ‘random’ and ‘exponential’ cases when the σi’s are generated from χ2(5), even though
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it still remains substantially inferior to that of both CUII and MQML.

The performance of 2SLS and particularly that of RGMM seems to be heavily influenced

by sparsity in W . The results in Tables 1 and 2 correspond to a choice of W with 10%

‘ones’ for each sample size. In the Supplementary material we report the equivalent of Tables

1 and 2 for a choice of W with 20% ‘ones’, which leads to a denser contiguity-like matrix.

As expected, the MSEs reported in Tables S1 and S2 are systematically higher than their

counterparts in Tables 1 and 2, and the performance of 2SLS and, especially, of RGMM,

deteriorates even more clearly in terms of MSE as sparseness in W declines.

In addition to the degree of sparsity of W , the poor performance of 2SLS and RGMM ob-

served in Tables 1-4 might also depend on the particular simulation design, which corresponds

to rather weak relevance in the instruments. In Tables S3 and S4 in the Supplementary ma-

terial we report results derived for β0 = (2, 1.5,−1) and the two columns of X, other than

that corresponding to the intercept, being randomly drawn from two independent uniform

distributions on the support [0, 4] . We only focus on the choice of ‘exponential’ W , but the

same pattern holds for ‘random’ W . In Tables S3 and S4 we also report bias and MSE for

a continuously updated version of RGMM (denoted by CUGMM henceforth), obtained by

using the same set of optimal instruments of Lin and Lee (2010), but by parametrizing the

optimal choice of the weight matrix in terms of unknown parameters in the same spirit of

Hansen et al. (1996).9 Results displayed in Table S3 show that all estimators enjoy a very

satisfactory performance, with CUII and CUGMM often outperforming RGMM and MQML

in terms of both bias and MSE. In Table S4, instead, CUII often tends to outperform both

RGMM and CUGMM in terms of MSE, even though occasionally it has slightly larger bias.

The performance of MQML is excellent overall and sometimes even superior to that of CUII.

In sum, the finite-sample properties of all the estimators remain very satisfactory for the

design adopted in Tables S3 and S4. In particular, we notice that 2SLS performs very well,

unlike in Tables 1-4 and S1-S2. This might have been expected, given the strong instrument

relevance and the simple closed-form of 2SLS.

We also explore robustness of CUII vs competitor estimators in case of model misspecifi-

cation. Tables S5 and S6 given in the Supplementary Material report results for CUII, QML,

9We omit the comparison with CUGMM for the simulation setup adopted in Tables 1-4, as its performance
appears similar to, if not worse than, that of RGMM.
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MQML and RGMM when the true data generating process is a pure SAR, while the esti-

mated model is a SARX with intercept and one exogenous regressor which is drawn from a

uniform distribution on the support [0, 1]. Tables S5 and S6 displays results for ‘exponential’

W , with σi generated as in (7.2) and from χ2(5), respectively. Comparison with 2SLS is not

possible here, as the standard instruments would be irrelevant. From Tables S5 and S6, as

expected, RGMM has an erratic pattern, which becomes extremely poor for positive λ. This

is due to irrelevance of instruments used to construct RGMM. The pattern of CUII, with

respect to MQML, across sample sizes and different values of λ, follows that of Tables 3 and

4, confirming robustness of CUII in case the practitioner is agnostic about the relevance of

regressors.

8 Empirical Illustration

In this section we report an empirical application of the CUII estimator and compare results

to those obtained by the competitor methods QML, RGMM and MQML. This application

provides an illustration of the new method in a practical setting. The application is comple-

mented by a further simulation that is matched to the empirical data and is therefore more

realistic than standard Monte Carlo designs.

Specifically, we use the Boston house price data (Harrison and Rubinfeld (1978)) and its

‘corrected’ version (Gilley and Pace (1996))10, which also includes information on LON (tract

point longitudes in decimal degrees and LAT (tract point latitudes in decimal degrees) for

the 506 census tracts in the Boston Standard Metropolitan Area during the early 1970s. The

locations of the 506 census tracts are depicted in the figure below.
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10Data and codes are available from the authors upon request.
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The main variable of interest is log(MEDV ), which is the logarithm of the median price

(in thousands of dollars) for owner-occupied houses. The dataset contains additional infor-

mation about the following environmental and socio-economic variables11:

crim per capita crime rate by town;

zn proportion of residential land zoned for lots over 25,000 sq.ft;

indus proportion of non-retail business acres per town;

chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise);

nox nitrogen oxides concentration (parts per 10 million);

rm average number of rooms per dwelling;

age proportion of owner-occupied units built prior to 1940;

dis weighted mean of distances to five Boston employment centres;

rad index of accessibility to radial highways;

tax full-value property-tax rate per 10, 000$;

ptratio pupil-teacher ratio by town;

black 1000 ∗ (Bk − 0.63)2, where Bk is the proportion of blacks by town;

lstat lower status of the population (percent).

In the spirit of Simlai (2014), we estimate parameters of the model

log(MEDV )i = α+ λ
∑
i 6=j

wijln(MEDV )j + x
′
iβ + εi i = 1, ...., 506, (8.1)

where the covariate vector xi contains rm2
i , agei, log(dis)i, log(rad)i, taxi, ptratioi, blacki,

log(stat)i, crimi, zni, indusi, chasi, nox
2
i . When λ = 0 ex-ante, the model simplifies to the

hedonic price model. Since the main scope of this paper is robust estimation and inference on

λ, this illustration focuses on the spatial network effect in model (8.1) and thus on estimation

and significance of λ, rather than the covariate coefficient vector β. We recall that estimation

of β in the general model (2.1) and in the specific model (8.1) poses fewer consistency and

efficiency issues compared to inference on λ.

We conjecture that several measure of proximity might play a role in the house price

determination process of MEDVi, as both economic distance and geographical distance seem

11For additional information about the dataset, we refer to Simlai (2014) and Harrison and Rubinfeld (1978)
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relevant. Accordingly we design five different choices of weight matrix W , which are denoted

respectively as W geo, W exp,geo, W geo,0.9, W tax and W school. The first three choices for W

in (8.1) reflect geographical proximity and rely on the geo-distance between tracts i and j

(denoted as geoij in the sequel) computed using the Haversine formula. The matrices W geo,

W exp,geo and W geo,0.9 are then constructed as

• W geo: wij = 1/geoij ;

• W geo,exp: wij = exp (−|geoij |)1(|geoij | < log(n));

• W geo,0.9: wij = 1(|geoij | < D∗), where we set D∗ = 2.5 km to obtain a matrix

sparseness12 of approximately 9%.

The remaining two choices of W are defined in terms of various economic distances.

W tax contains the inverse of pairwise distances between census tracts, where proximity is

defined according to how similar their respective full-property tax rates are. Specifically

wtaxij = 1/|taxi − taxj | if taxi 6= taxj , and wtaxij = 1 if taxi = taxj . Heuristically, we

expect house prices to be affected more from the house prices of neighbouring properties,

where ‘neighbour’ is now defined as being of similar status, which in turn is proxied by the

property tax rate. Similarly, we define W school based on the observable ptratio, which it is

known to reflect the quality of schools in each census tract. Again, two census tracts with

similar ptratio are expected to be similar in terms of their socio-economic status. We define

wschoolij = 1/|ptratioi − ptratioj |, as long as ptratioi 6= ptratioj , and wschoolij = 1 in case

ptratioi = ptratioj . For all choices of W we set wii = 0 and we normalize the matrices so

that elements of each row sum to 1. Figures S2-S6 in the Supplementary material depict

the 3D plots for W geo, W geo,exp, W geo,0.9, W tax and W school, respectively. These plots offer

an intuitive illustration on the spatial structure, the respective level of sparsity, and the

respective decay rates of the weights, especially in view of the three non-sparse structures

W geo, W tax and W school, for which the sparseness amounts to approximately 100%, but have

decaying weights.

12We remind the reader that we are calculating ‘sparseness’ as the ratio of number of non-zero elements
over the total number of elements.
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Figure S7 in the Supplementary material displays the approximate binding functions for

all the choices of the weight matrices for λ in (−1, 1). Thus, Assumption 6 is satisfied for the

present setup, confirming that CUII is well defined.

In Table 5 we report estimates and t-ratios for the parameter λ obtained by QML, CUII,

RGMM and MQML. The estimates of λ do not vary much across QML, CUII, MQML and

RGMM. But a major difference between the methods shows up in the significance of the

spatial effects. The methods CUII and MQML return similar results with highly significant

t-statistics in all scenarios, with t-statistics substantially larger by an order of magnitude than

those of the other methods. The effects of robustification to heterogeneity in the equation

errors is therefore materially important in hypothesis testing. The CPU times (in seconds)

are also displayed for each estimation method13. These values reveal that the CUII is com-

putationally inexpensive, a feature which is robust across all choices of weight matrices as

shown by the average CPU time (across all W choices), whilst the RGMM appears to be

the most computationally expensive method. While the MQML has a further computational

advantage over CUII for the majority of W choices, its CPU time appears to be sensitive to

the choice of W .

The t-statistics obtained by QML are unreliable because the QML standard errors are

not robust to heteroskedasticity of the errors, but the corresponding figures are reported in

the tables for completeness. Finally, the t−ratios obtained by RGMM are not significant for

the weighting structures W tax and W geo, a result that contrasts sharply with those obtained

by CUII and MQML.

13This has been calculated using the cputime command in Matlab
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QML CUII RGMM MQML

W geo λ 0.0367 0.0381 0.0380 0.0379

t-ratio 1.1990 16.3998 1.1213 2.7596

CPU times 4.32 2.52 452.22 1.24

W exp,geo λ 0.0241 0.0246 0.0247 0.0247

t-ratio 1.8542 19.8468 2.1385 17.6448

CPU times 3.71 4.3 342.64 1.36

W geo,0.9 λ 0.0130 0.0131 0.0127 0.0132

t-ratio 2.4790 44.7070 3.0448 72.5195

CPU times 4.87 4.15 150.7 1.27

W tax λ 0.0217 0.0230 0.0143 0.0235

t-ratio 1.2368 12.3797 1.0886 12.7909

CPU times 4.48 3.60 378.06 12.79

W school λ -0.0269 -0.0268 -0.0271 -0.0268

t-ratio -2.9089 -91.3553 -2.3550 -17.9526

CPU times 3.75 2.89 52.29 1.29

average CPU times 4.226 3.492 275.18 3.59

Table 5: Estimates and t-statistic of λ in (8.1) computed by QML, CUII, RGMM and MQML

for different choices of weighting structures. CPU times measured in seconds.

In order to assess the accuracy, and hence the reliability of point estimates and t-statistics

displayed in Table 5, we mimic the empirical illustration in a Monte Carlo exercise by means

of B bootstrap samples constructed from the point estimates in Table 5 and using a wild

bootstrap variant to generate simulation errors from the actual residuals. Specifically, we de-

note by ε̂N , for N = QML,CUII,RGMM,MQML, the vector of residuals based on figures

in Table 5, and we generate a n × B matrix of i.i.d random variables from the Rademacher

distribution, with typical element indicated by rij for i = 1, . . . n and j = 1, . . . , B. For each
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estimator N and each choice of W we then generate B sets of pseudo-data vectors as

y∗N,j = S−1(λ̂N )
(
Xβ̂N + u∗N,j

)
, j = 1, . . . , B, (8.2)

with each component of u∗N,j being constructed as u∗N,ij = (n/(n−k))1/2ε̂N,irij (k = 14), and

we calculate the corresponding B estimators λ̂∗N,j , for j = 1, ...., B, so that a measure of bias

and MSE can be computed as

BiasN =
1

B

B∑
j=1

λ̂∗N,j − λ̂N , MSEN = Bias2
N +

1

B

B∑
j=1

λ̂∗N,j − 1

B

B∑
j=1

λ̂∗N,j

2

. (8.3)

Results of this bootstrap exercise are reported in Table 6. For ease of interpretation, given

the small magnitude of λ̂N for N = QML,CUII,RGMM,MQML, in Table 6 we report

scaled quantities, i.e. BiasN/λ̂N and MSEN/λ̂
2
N .

QML CUII RGMM MQML

W geo BiasN/λ̂N -0.0007 0.0646 0.0546 0.0691

MSEN/λ̂
2
N 0.9204 0.8136 0.7645 0.9678

W exp,geo BiasN/λ̂N -0.2344 -0.0095 -0.0220 -0.0386

MSEN/λ̂
2
N 0.1452 0.0618 0.0642 0.1647

W geo,0.9 BiasN/λ̂N 0.0465 0.0525 0.0554 0.0523

MSEN/λ̂
2
N 0.1277 0.1268 0.1313 0.1259

W tax BiasN/λ̂N -0.0967 -0.0382 -0.0610 -0.0359

MSEN/λ̂
2
N 0.4461 0.3658 0.9324 0.3888

W school BiasN/λ̂N -0.0154 -0.0199 -0.0176 -0.0201

MSEN/λ̂
2
N 0.1817 0.1732 0.1816 0.1840

Table 6: Bias and MSE for N = QML,CUII,RGMM,MQML computed from B = 100

bootstrap samples for various choices of weighting structures.

Results in Table 6 show that λ̂CUII generally has similar performance in terms of bias
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and MSE as its robust counterparts RGMM and MQML and improved performance in some

cases, notably for W exp,geo. Again, QML is not expected to be consistent in these scenarios,

although its bias appears to be substantially larger than that of other estimators only for

W exp,geo. More importantly, the clear advantage in terms of efficiency of λ̂CUII and λ̂MQML

over λ̂RGMM outlined in Table 5 for W tax, is confirmed by the simulation exercise reported in

Table 6. However, this small simulation exercise reveals that results obtained when proximity

is defined as W geo are very erratic, and thus practitioners should treat estimates and tests

reported in the first line of Table 5 as not particularly reliable. This behaviour is probably

due to the very dense structure of this choice of weighting structure. Results for W geo,0.9 and

W school reported in Table 6 partially confirms those in Table 5, as MSECUII and MSEMQML

are lower than MSERGMM , but the comparative advantage in terms of MSE does not fully

match the considerable difference in their t-statistic values reported in Table 5.

While the main goal of this empirical exercise is to illustrate the implementation of the

CUII method in relation to other spatial econometric methods, the results do reveal some

interesting features concerning the various channels of spatial correlation in the context of

house price determination. In particular, it seems worthy of mention that spatial effects that

are present when the network structure is defined in terms of W tax or W school continue to

persist when the individual levels of tax and ptratio are included among regressors, revealing

a genuinely significant impact. It is also worth pointing out that the spatial effects induced

by W tax and W school differ in sign and thus their interpretation as positive or negative spatial

spillovers differ, an empirical feature that might usefully be explored in subsequent research.

9 Concluding Remarks

Unobserved heteroskedasticity in the disturbances is a frequent occurrence in spatial models

due to sample unit heterogeneity across their many individual features, including respective

unit size. The new estimation method introduced in this paper directly addresses such het-

erogeneity, relying on an indirect inference transformation of standard OLS estimation that

parametrizes the error covariance matrix in terms of the unknown spatial parameter. The

procedure follows in the spirit of continuously updated estimators in the broader economet-
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ric literature such as GMM. The resulting CUII estimator is consistent and asymptotically

normal under some standard model and regularity conditions combined with an additional

binding function condition that can be numerically verified in practical work.

The finite sample performance of the CUII estimator is found in simulations to be very

satisfactory when compared to other robust methods such as the GMM robust procedures

of Lin and Lee (2010) and Kelejian and Prucha (2010) or the modified QMLE procedure of

Liu and Yang (2015). Implementation of CUII is straightforward and the optimization rou-

tine to derive the estimator appears to converge quickly even when an artificially dense W

matrix is designed. The finite sample performance of CUII appears to retain some degree of

robustness even in presence of model misspecification. A simple empirical illustration based

on Boston house price data reveals that a major advantage of accommodating heterogeneity

in system disturbances lies in hypothesis testing, where significance tests are found to differ

considerably across estimation methods, with CUII giving much higher levels of significance

to spatial effects across many different choices of the house price network structure.
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Appendix

Proof of Theorem 1.

Proof of part (i) Let ψij and ψ̃ij be the 2 × 1 vectors defined as ψij = ( ψ1ij ψ2ij )′ =

( (P + P ′)ij/2 (Q′Q)ij )′ and ψ̃ij = ( ψ̃1ij ψ̃2ij )′ = ( (MXP
′)ij (MXQ

′Q)ij )′, respec-

tively. Let Ω̃ = diag(εε′) and Ωλ0 = diag(MXεε
′MX), consonant with the notation of Section
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4. We first show

Un =
1√
n

 ε′Pε− tr(PΩλ0) + 2β′0X
′PMXε

ε′Q′Qε− tr(Q′QΩλ0) + 2β′0X
′Q′QMXε


=

1√
n

 ε′Pε− tr(P Ω̃) + 2β′0X
′PMXε

ε′Q′Qε− tr(Q′QΩ̃) + 2β′0X
′Q′QMXε

+ op(1). (A.1)

Thus, we need to show

1√
n

n∑
i=1

ψii,s(εi(λ0)2 − ε2i ) = op(1), s = 1, 2 (A.2)

where εi(λ0) = εi −
∑n

i Bijεj , Bij = X ′i(X
′X)−1Xj .

We have

1√
n

∑
i

ψii,s(εi(λ0)2 − ε2i ) =
1√
n

∑
i

ψii,s
∑
j

∑
t

εjεtBijBit −
2√
n

∑
i

ψii,sεi
∑
j

Bijεj

=
1√
n

∑
i

ψii,s
∑
j

ε2jB
2
ij +

1√
n

∑
i

ψii,s
∑
j

∑
t6=j

εjεtBijBit

− 2√
n

∑
i

ψii,sε
2
iBii −

2√
n

∑
i

ψii,sεi
∑
j 6=i

Bijεj . (A.3)

The modulus of the first term in (A.3) has expectation bounded by

C√
n

∑
i

|ψii,s|
∑
j

B2
ij ≤

C√
nh

∑
i

∑
j

B2
ij =

C√
nh
tr(X(X ′X)−1X ′) = o(1), (A.4)

as ψii,s = O(1/h) under Assumptions 3 and 4. Similarly, the modulus of the third term has

expectation bounded by

C√
n

∑
i

|ψii,s|Bii ≤
C√
nh

∑
i

Bii = o(1). (A.5)
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The second term is (A.3) has mean zero and variance bounded by

C

n

∑
i

∑
v

∑
j

∑
t6=j
|ψii,s||ψvv,s||BijBitBvtBvj | ≤

C

n

∑
i

∑
v

∑
j

∑
t

|ψii,s||ψvv,s||BijBitBvtBvj |

≤ C

nh2

∑
i

∑
v

∑
j

∑
t

|BijBit|(B2
vt +B2

vj) ≤
C

nh2
sup
i

∑
j

|Bij |sup
t

∑
i

|Bit|
∑
v

∑
t

B2
vt

+
C

nh2
sup
j

∑
i

|Bij |sup
i

∑
t

|Bit|
∑
v

∑
j

B2
vj ≤

C

nh2
, (A.6)

under Assumptions 3-5. Similarly, the fourth term in (A.3) has mean zero and variance

bounded by

C

n

∑
i

∑
j 6=i

ψ2
ii,sB

2
ij +

C

n

∑
i

∑
j 6=i

ψii,sψjj,sBijBji ≤
C

nh2

∑
i

∑
j

B2
ij ≤

C

nh2
. (A.7)

Then (A.2) holds by the Markov inequality.

The remainder of the proof of part (i) and the proof of part (ii) are similar to the proofs

in KPR (2017) and are reported in the Supplementary material. �

Proof of Theorem 2.

Let ε̂ = MXS(λ̂CUII)y and Ω̂ = diag(ε̂ε̂′). We need to show, as n→∞ and t, s = 1, 2, that

1

n

∑
i

∑
j<i

(
ε̂2i ε̂

2
j ψ̂sijψ̂tij − σ2

i σ
2
jψsijψtij

)
= op(1), (A.8)

1

n

(
tr(Ω̂Â)− tr(Ω0A)

)
= op(1), (A.9)

and
1

n

(
β̂′CUIIX

′ ˆ̃Ψ′sΩ̂
ˆ̃ΨtXβ̂CUII − β′0X ′Ψ̃′sΩ0Ψ̃tXβ0

)
= op(1), (A.10)

where, consonant with the notation defined at the beginning of the proof of Theorem 1,

ψij = ( ψ1ij ψ2ij )′ = ( (P + P ′)ij/2 (Q′Q)ij )′, Ψ̃1 = MXP , Ψ̃2 = MXQ
′Q, and ψ̂sij ,

ˆ̃Ψt

for s, t = 1, 2 are obtained by replacing the unknown λ0 by its estimate λ̂CUII . Also, Â is

the estimated version of a generic matrix A = A(λ0) whose elements are uniformly bounded

by 1/h and such that ||A(λ)||∞+ ||A(λ)′||∞ < C uniformly over λ. Convergence of the other

terms appearing in v2
CUII is trivial, as it only relies on consistency of λ̂CUII and β̂CUII .
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We provide a proof of (A.8), while the proofs of (A.9) and (A.10) are omitted as they

follow very similar arguments to those applied to show (A.8) and (A.2) at the beginning of

the proof of Theorem 1. In order to prove (A.8), we need to show

1

n

∑
i

∑
j<i

(ε2i ε
2
j − σ2

i σ
2
j )ψsijψtij = op(1), (A.11)

1

n

∑
i

∑
j<i

(ε̂2i ε̂
2
j − ε2i ε2j )ψsijψtij = op(1), (A.12)

and
1

n

∑
i

∑
j<i

ε̂2i ε̂
2
j (ψ̂sijψ̂tij − ψsijψtij) = op(1). (A.13)

The rest of the proof is technical and the details are reported in the Supplementary material.

�

Proof of Theorem 3

The details of the proof are virtually identical to that of Theorem 1 once we adjust for the

correct normalization rate. Following the same notation adopted in the proof of Theorem 1,

let ψij be the 2×1 vectors defined as ψij = ( ψ1ij ψ2ij )′ = ( (P + P ′)ij/2 (G′G)ij )′, and

ui = ( u1i u2i )′ = 2εi
∑
j<i

ψijεj , (A.14)

so that
√
n/hUn =

∑n
i=1 ui + op(1), according to (5.9). Also, let

A =V ar

(
n∑
i=1

ui

)
= 4

n∑
i=1

∑
j<i

σ2
i σ

2
jψijψ

′
ij , (A.15)

such that hA/n → limn→∞ Vn as n → ∞, where Vn is defined in (5.12). The rest of the

proofs follows in a similar way to the proof of Theorem 1 with minor modifications. �

Proof of Theorem 4

The details of the proof are again identical to that of Theorem 1 once we adjust for the correct

41



normalization rate. Unlike the proof of Theorem 3, before proceeding we need to show

Un =

√
h

n

 ε′Pε− tr(PΩλ0)

ε′Q′Qε− tr(Q′QΩλ0)


=

√
h

n

 ε′Pε− tr(P Ω̃)+

ε′Q′Qε− tr(Q′QΩ̃)

+ op(1), (A.16)

where, consonant with the notation defined in the proof of Theorem 1, Ω̃ = diag(εε′) and

Ωλ0 = diag(MXεε
′MX). The proof is identical to that reported in (A.2)-(A.7) after replacing

the rate 1/
√
n with

√
h/n. The rest of the proof then follows as in Theorem 3, with Vn and

f̄ defined in (5.24) and (5.21). �

Proof of Theorem 5

The proof again follows that of Theorem 1 after redefining ψij and ψ̃ij to be the 3 × 1

vectors ψij = ( ψ1ij ψ2ij ψ3ij )′ = ( (T + T ′)ij/2 (P + P ′)ij/2 (Q′Q)ij )′ and ψ̃ij =

( ψ̃1ij ψ̃2ij ψ̃3ij )′ = ( 0 (MXP
′)ij (MXQ

′Q)ij )′. �
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Tables and Figures

n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0745 0.1950 -0.0376 0.1264 -0.0144 0.0634 -0.0080 0.0560

0.3 0.0100 0.1581 0.0260 0.1173 0.0224 0.0800 0.0030 0.0618

0.5 0.0527 0.1653 0.0692 0.1191 0.0180 0.0751 0.0190 0.0609

0.8 0.0793 0.1663 0.0738 0.1058 0.0777 0.0847 0.0329 0.0608

QML bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0577 0.0803 -0.0031 0.0728 -0.0356 0.0506 -0.0393 0.0504

0.3 -0.0858 0.0971 -0.0936 0.0805 -0.0797 0.0635 -0.0813 0.0539

0.5 -0.1374 0.1013 -0.1049 0.0763 -0.1078 0.0571 -0.0950 0.0484

0.8 -0.1267 0.0816 -0.1410 0.0702 -0.1326 0.0480 -0.1545 0.0498

MQML bias MSE bias MSE bias MSE bias MSE

−0.5 0.0358 0.0868 0.0181 0.0834 0.0060 0.0537 0.0002 0.0521

0.3 -0.0331 0.0957 -0.0124 0.0817 -0.0015 0.0652 -0.0068 0.0564

0.5 -0.0407 0.0872 -0.0025 0.0756 -0.0230 0.0557 -0.0015 0.0516

0.8 -0.0427 0.0751 -0.0231 0.0759 -0.0031 0.0513 -0.0083 0.0486

2SLS bias MSE bias MSE bias MSE bias MSE

−0.5 -0.7459 2.3226 -0.4963 3.3981 -0.5898 4.4274 -0.5110 7.5457

0.3 -0.0329 2.5238 0.0149 4.3781 0.0645 4.5001 0.1618 8.4440

0.5 0.1809 3.1665 0.2530 2.9833 0.1343 2.5633 0.1618 5.0755

0.8 0.3151 2.6836 0.1274 2.1983 0.2108 1.6882 0.2041 2.4499

RGMM bias MSE bias MSE bias MSE bias MSE

−0.5 -0.3074 0.6961 -0.1230 0.4128 -0.0629 0.0760 -0.0536 0.0645

0.3 -0.0291 0.4907 -0.0289 0.2695 -0.0416 0.1224 -0.0557 0.0816

0.5 0.0149 0.4958 0.0141 0.2493 -0.0319 0.2660 -0.0668 0.1370

0.8 0.1151 0.5264 0.0721 0.4906 0.0339 0.5678 -0.0326 0.5065

Table 1: Bias & MSE of CUII, ML, MQML, 2SLS and RGMM estimators for ‘random’ W

using 1000 Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and

σi is defined as in (7.2). 43



n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0360 0.1262 -0.0158 0.0590 0.0111 0.0589 -0.0006 0.0521

0.3 0.0132 0.1204 0.0066 0.0733 0.0036 0.0596 -0.0098 0.0523

0.5 0.0003 0.1128 0.0089 0.0649 0.0040 0.0691 -0.0037 0.0580

0.8 0.0691 0.1203 0.0136 0.0766 0.0357 0.0742 0.0197 0.0588

QML bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0169 0.0733 -0.0301 0.0440 -0.0110 0.0487 -0.0278 0.0480

0.3 -0.0728 0.0833 -0.0810 0.0606 -0.0751 0.0500 -0.0827 0.0491

0.5 -0.1527 0.0947 -0.0801 0.0534 -0.1069 0.0555 -0.1051 0.0501

0.8 -0.0985 0.0626 -0.0950 0.0445 -0.1418 0.0498 -0.1542 0.0511

MQML bias MSE bias MSE bias MSE bias MSE

−0.5 0.0374 0.0813 0.0216 0.0488 0.0295 0.0528 0.0072 0.0499

0.3 -0.0175 0.0837 -0.0020 0.0588 -0.0047 0.0513 -0.0121 0.0547

0.5 -0.0300 0.0772 -0.0145 0.0521 -0.0204 0.0538 -0.0143 0.0520

0.8 -0.0316 0.0640 0.0006 0.0530 -0.0191 0.0466 -0.0036 0.0490

2SLS bias MSE bias MSE bias MSE bias MSE

−0.5 -0.5405 2.8543 -0.4837 1.8426 -0.6045 3.5927 -0.7222 11.3494

0.3 -0.2197 1.8963 -0.2851 2.0994 -0.2312 5.9163 -0.1206 11.8204

0.5 -0.2943 1.5970 -0.2300 1.6587 -0.0086 5.1936 0.0365 7.5799

0.8 0.1399 1.4416 0.0665 0.7330 0.1751 1.6407 0.2028 3.4770

RGMM bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1668 0.4255 -0.0858 0.1015 -0.0485 0.0813 -0.0423 0.0582

0.3 -0.0492 0.2873 -0.0647 0.1140 -0.0705 0.0872 -0.0703 0.0652

0.5 -0.0662 0.2928 -0.0464 0.1381 -0.0720 0.2267 -0.1203 0.1795

0.8 0.0492 0.3546 -0.0134 0.1806 -0.0658 0.3921 -0.0725 0.7230

Table 2: Bias & MSE of CUII, ML, MQML, 2SLS and RGMM estimators for ‘random’ W

using 1000 Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and

σi ∼ χ2(5).
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1506 0.3090 -0.0951 0.1605 -0.0358 0.0656 -0.0137 0.0661

0.3 -0.0838 0.1811 -0.0529 0.1022 -0.0179 0.0424 -0.0142 0.0450

0.5 -0.0404 0.1688 -0.0268 0.0980 -0.0719 0.0394 -0.0043 0.0437

0.8 0.0122 0.0741 0.0237 0.0532 0.0111 0.0268 -0.0119 0.0448

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1088 0.1617 -0.0859 0.1155 -0.0251 0.0561 -0.0382 0.0678

0.3 -0.2065 0.1516 -0.1254 0.0868 -0.0660 0.0378 -0.0470 0.0406

0.5 -0.1772 0.1282 -0.1228 0.0769 -0.0719 0.0309 -0.0520 0.0340

0.8 -0.1279 0.0636 -0.1033 0.0394 -0.0694 0.0187 -0.0564 0.0229

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0531 0.1884 -0.0553 0.1261 -0.0238 0.0616 -0.0082 0.0646

0.3 -0.1020 0.1276 -0.0734 0.0810 -0.0287 0.0374 -0.0243 0.0390

0.5 -0.1010 0.1097 -0.0750 0.0677 -0.0245 0.0277 -0.0321 0.0319

0.8 -0.0401 0.0977 -0.0300 0.0462 -0.0187 0.0155 -0.0400 0.0216

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.7895 3.0953 1.1721 4.9663 1.3151 6.2323 1.5788 6.2859

0.3 0.6586 1.4838 0.7798 1.2917 0.9263 1.8396 1.0740 2.2559

0.5 0.5258 1.2483 0.6827 1.6504 0.7489 1.1029 0.8554 1.5950

0.8 0.3057 0.2669 0.2789 0.2419 0.3758 0.3419 0.4689 0.6066

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0967 0.5008 -0.0479 0.1979 -0.0075 0.0868 0.0239 0.0813

0.3 0.0034 0.3632 0.0713 0.2917 0.0343 0.1076 0.0495 0.0985

0.5 0.1273 0.4544 0.0778 0.2578 0.0849 0.1758 0.0723 0.1372

0.8 0.1046 0.1596 0.1164 0.1352 0.0903 0.0982 0.0761 0.1027

Table 3: Bias & MSE of CUII, ML, MQML, 2SLS and RGMM estimators for ‘Exponential’

W using 1000 Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5)

and σi is defined as in (7.2). .
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0990 0.2383 -0.0666 0.1576 -0.0388 0.0696 -0.0374 0.0703

0.3 -0.0406 0.1812 -0.0459 0.0958 -0.0209 0.0381 -0.0184 0.0530

0.5 -0.0364 0.1810 -0.0014 0.0891 -0.0094 0.0395 -0.0051 0.0454

0.8 0.0251 0.0667 0.0337 0.0616 -0.0002 0.0258 -0.0121 0.0421

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1076 0.1653 -0.0686 0.1134 -0.0618 0.696 -0.0589 0.0717

0.3 0.1540 0.1300 -0.1210 0.0892 -0.0566 0.0381 -0.0594 0.0473

0.5 -0.1808 0.1365 -0.0956 0.0631 -0.0551 0.0345 -0.0487 0.0376

0.8 -0.1032 0.0531 -0.1072 0.0394 -0.0508 0.0165 -0.0625 0.0225

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0385 0.1705 -0.0285 0.1219 -0.0269 0.0649 -0.0299 0.0670

0.3 -0.0854 0.1182 -0.0665 0.0737 -0.0293 0.0351 -0.0288 0.0467

0.5 -0.1048 0.1136 -0.0579 0.0551 -0.0319 0.0306 -0.0314 0.0356

0.8 -0.0473 0.0759 -0.0511 0.0315 -0.0265 0.0154 -0.0227 0.0210

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.6186 5.2417 1.3742 5.0555 1.1728 4.5728 1.6285 5.6988

0.3 0.8710 1.9714 0.7492 1.0895 0.8836 1.4099 1.0015 2.8367

0.5 0.6006 0.9648 0.7298 0.9990 0.6812 0.9991 0.8861 1.7479

0.8 0.2798 0.2063 0.3322 0.3881 0.3538 0.2985 0.4931 0.7864

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1083 0.3466 -0.0179 0.1787 -0.0152 0.0952 0.0078 0.0871

0.3 0.0617 0.4151 0.0801 0.2614 0.0382 0.0787 0.0528 0.1089

0.5 0.0935 0.3829 0.1226 0.2545 0.1044 0.1706 0.0653 0.1084

0.8 0.1404 0.1590 0.1238 0.1797 0.1127 0.1202 0.0946 0.0970

Table 4: Bias & MSE of CUII, ML, MQML, IV and RGMM estimators for ‘Exponential’ W

using 1000 Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and

σi ∼ χ2(5).
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Figure 1: B(γ) for various weight matrix designs at n = 200. Top: (L) block diagonal, (R)

circulant, two ahead-two behind; Bottom: (L) ‘exponential’, (R) ‘random’.
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Figure 2: Plots of τ∗n(λ) in (3.8) at λ0 = 0.3 with β0 = (0.2; 0.1;−0.3) and ζi ∼ iid t(5) for

n = 100. Top: (L) ‘Random’ W & σi ∼ χ2(5), (R) ‘Exponential’ W & σi ∼ χ2(5); Bottom:

(L) ‘Random’ W & σi defined as in (7.2), (R) ‘Exponential’ W & σi defined as in (7.2) .
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