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Sub-wavelength electromagnetic field localization has been central in photonic research in8

the last decade, allowing to enhance sensing capabilities 1 as well as increasing the coupling9

between photons and material excitations 2, 3. The strong and ultrastrong light-matter cou-10

pling regime in the THz range with split-ring resonators coupled to magnetoplasmons has11

been widely investigated, achieving successive world-records for the largest light-matter cou-12

pling ever achieved 4–7. Ever shrinking resonators have allowed to approach the regime of13

few electrons strong coupling 8–10, in which single-dipole properties can be modified by the14

vacuum field 11. Here we demonstrate, theoretically and experimentally, the existence of a15

limit to the possibility of arbitrarily increasing electromagnetic confinement in polaritonic16

systems. Strongly sub-wavelength fields can excite a continuum of high-momenta propaga-17

tive magnetoplasmons. This leads to peculiar nonlocal polaritonic effects, as certain polari-18

tonic features disappear and the system enters in the regime of discrete-to-continuum strong19

coupling12–14.20
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Nanophotonic structures confine electromagnetic radiation below the Abbe diffraction limit21

by storing part of the electromagnetic energy into kinetic energy of moving charges 1. Primar-22

ily relying on metals as charge reservoirs, plasmonics has mainly targeted the visible portion of23

the electromagnetic spectrum. The possibility to extend the plasmonic excitation to low frequen-24

cies (Mid-IR and THz)15–17 employing semiconductors and two-dimensional systems with tunable25

plasma frequency through carrier concentration has allowed extreme electromagnetic field con-26

finements in nanostructures 18. In parallel, ultrastrong light-matter coupling 2, 3 has gained recently27

a lot of attention due to the possibility of observing new quantum phenomena as squeezed vac-28

uum 19 and long-sought superradiant quantum phase transition 20 . Several recent experiments29

have also allowed to access and measure these squeezed states and their correlation properties21, 22.30

Ultrastrong coupling (USC) takes place when the vacuum Rabi frequency (ΩR), measuring the31

resonant half-splitting between the lower and upper polariton branches, becomes a considerable32

fraction (customarily above 10%) of the frequency of the uncoupled systems (ω0). Semiconductor33

platforms allow a high degree of control and flexibility and have proven very successful for the34

study of this physics19, 23, 24. Multiple efforts have been made to scale down the size of photonic35

resonators 9, 25. This scaling aims to increase the light-matter coupling and reach the regime of few36

electrons strong coupling in molecular 26 and solid-state devices 27 , where nonlinearities become37

important and individual electronic degrees of freedom can be manipulated 11, 28.38

Landau polaritons 4, 29 are an experimental platform for light-matter coupling where magne-39

toplasmons, that are collective electronic excitations, play the role of matter (ultra)-strongly cou-40

pled to the near field of electronic (LC) metamaterial photonic resonators. They have been demon-41
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strated in electron and hole gases 30 confined in semiconductor heterostructures. The strongest42

achieved couplings (ΩR

ω0
> 1.4) make use of metallic split-ring resonators that are able to confine43

the mm-wave radiation in extremely sub-wavelength volumes 5. Reducing the capacitor gap in44

the LC circuit that constitutes the meta-atom has been shown to dramatically enhance the THz45

fields both for split-ring resonators 31 and non-resonant structures32, 33. Obtaining the same field46

enhancement in cavities loaded with active material (i.e., semiconductor quantum wells) requires47

nevertheless a careful analysis of the different components involved. An important question arises:48

What are the physical limitations to reducing the cavity volume and subsequent increase of the49

light-matter coupling? In this work we demonstrate how polaritonic nonlocal effects, consisting50

in the generation of high-momenta magnetoplasmons by the sub-wavelength resonator, effectively51

limit the achievable field confinement, and thus the resonant polaritonic splitting. Our theory shows52

that discrete-to-discrete models underlying the polaritonic framework are not valid anymore below53

a threshold gap size, as the increased momentum uncertainty due to the spatial electromagnetic54

confinement couples the discrete cavity mode to a continuum of high-momenta magnetoplasmons.55

The system then converts to a discrete-to-continuum light-matter coupling model, whose non-56

perturbative physics has just recently started to be investigated 12–14, 34. Experiments and finite57

element simulations support this picture, demonstrating multiple novel nonlocal polaritonic fea-58

tures, predicted by the theory. In particular a reduction of the capacitor gap leads to a progressive59

disappearance of the upper polariton branch and a vanishing contrast below a threshold magnetic60

field for the lower branch.61
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Polaritonic Nonlocality62

Below critical lengthscales, the propagative nature of charge excitations in nanophotonic devices63

cannot be neglected anymore, leading to the emergence of nonlocal effects, as demonstrated in64

both plasmonic 35 and phononic 36 systems. In such a regime the nanoscopic features confining65

the charge distribution, acting as a grating, allow the electromagnetic field to couple with high-66

momenta matter resonances. These modes can act as loss channels and reduce the field confine-67

ment by smearing the distribution of surface charges, thus ultimately limiting the achievable field68

enhancement.69

In polaritonic systems a different route toward nanoscopic confinement is to use the electro-70

magnetic field itself to define the coupled region out of an extended electronic system, as in metal71

nanogap resonators fabricated on the top of a two-dimensional electron gas (2DEG) 8. Beyond72

the comparative ease of designing and tuning electromagnetic nanoresonators, this procedure also73

tends to maximise the modal overlap between light and matter modes, having contributed to mul-74

tiple world-records in the achieved coupling strength 4–6. In resonator-defined systems nonlocal75

effects are also eventually bound to play a role. Tightly bound electromagnetic modes have in76

fact ill-defined momenta, making the standard momentum-space Hopfield approach inapplicable.77

In non-dispersive systems strong light-matter coupling can still be studied using real-space ap-78

proaches 37, but when the dispersion becomes non-negligible we are obliged to take into account79

the coupling of the electromagentic field to a continuum of high-momenta propagative electronic80

modes.81
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We developed a polaritonic theory able to study nonlocal effects in an extended electronic82

system coupled to a photonic nanoresonator, allowing us to understand their impact on the precise83

engineering of light-matter coupling at the nanoscale. The optical response of a 2DEG in the84

absence of applied magnetic field can be described in terms of 2D plasma waves indexed by their85

in-plane momenta k. Their dispersion, shown in the top row of Fig. 1, reads86

ωP (k) =

√
ke2ρ2DEG

2m∗ε0εr
, (1)

where ρ2DEG is the 2DEG density, m∗ the electron effective mass, and εr the background effective87

dielectric function 38. A perpendicular magnetic field B with cyclotron frequency ωc will dress88

the plasma waves, leading to field-dependent 2D magnetoplasmon resonances whose local non-89

retarded frequency is ω̄P (k) =
√
ωP (k)2 + ω2

c
39. Note that in this paper the bar over a frequency90

will be consistently used to indicate magnetically shifted frequency values.91

The sub-wavelength nanoresonator breaks the in-plane traslational invariance and the in-92

plane wavevector k is thus not a conserved quantity in the light-matter interaction. The photon93

with frequency ω0 can thus couple with the continuum of plasma waves occupying the spectral94

region ω > ωc. The strength of the interaction between the photon and plasma waves of fre-95

quency ωP (k) is given by the coupling density g(ωP (k)), proportional to the 2D Fourier transform96

of the electromagnetic field profile in the 2DEG plane. If the smallest geometric feature of the97

electromagnetic field is of order d, its Fourier transform will have non-vanishing components up98

to a wavevector value kd of order 1
d
. The photon will thus couple with plasma waves having, for99

B = 0, maximal frequency ωd = ωP (kd). This can be interpreted as a diffraction effect, in which100

the near-field of the photonic resonator diffracts in the far-field of the plasma waves.101
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Figure 1: Impact of nonlocality in nanoplasmonics. Top row: Dispersion of the bare 2D plasma

resonance (i.e., in the absence of the photonic resonator) as a function of the in-plane wavevector.

A resonator with features of width d couples with plasma waves with in-plane wavevector up to the

value kd, corresponding to the frequency range shaded, going from 0 to a maximal frequency ωd at

B = 0. The horizontal dashed line marks the frequency of the cold cavity, with no 2DEG coupled

to the plasmons. Bottom row: Polaritonic resonances, obtained from the coupling between the free

plasmonic and photonic modes depicted in the top row, as a function of the cyclotron frequency.

The shaded regions between the cyclotron transition ωc (red dashed line) and the magnetically-

shifted edge of the continuum ω̄d =
√
ω2
d + ω2

c (orange dashed line) highlight the continuum

of possible magnetoplasmonic energies to which the photonic resonator (dashed black line) can

couple. The lower polariton merges into the continuum at the critical cyclotron frequency ω̌c. The

insets in the top row show a scheme of the nanogap resonator. The position of the 2DEG is marked

in red, and the three columns are relative to different nanogap sizes, decreasing toward the right.
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The eigenequation of our system can be put in the form

ω2 − ω2
0 = ω0 [∆(ω) + iΓ(ω)] , (2)

where ∆(ω) and Γ(ω) are real functions whose expression can be found in the Methods section.102

The function Γ(ω) is different from zero only in the region ωc ≤ ω ≤ ω̄d, shaded in the second row103

of Fig. 1. In this spectral interval the frequency of the polaritonic resonances becomes complex, as104

the continuum of plasma waves irreversibly absorbs photons even neglecting intrinsic plasmonic105

and photonic losses. The physics is akin to the one found in Landau damping 40, where in our case106

energy is dissipated generating plasma waves and not free electron-hole pairs.107

While in a standard Landau polariton model 7 the two polaritonic branches exist for any108

value of the magnetic field, when ωd becomes non-negligible the extreme photonic confinement109

can dramatically change the nature of the light-matter system as the narrow polaritonic resonances110

broaden and vanish into the continuum region. An analysis of the solutions of Eq. 2 shows the111

existence of a critical cyclotron frequency ω̌c such that a narrow lower polariton exists only for112

ωc > ω̌c. A narrow upper polariton instead exists if ω0 > ω̄d, implying that the upper polariton113

region is outside of the continuum, or if the coupling g(ω) is large enough to push the discrete114

resonance out of the continuum, analogously to the case studied in Ref. 13 for the lower edge of115

the ionization continuum.116

The physics described is sketched in Fig. 1. In the left column (ωd, ω̌c ≈ 0) the two polari-117

tonic resonances are visible for most values of B, while in the central one (ωd < ω0) the upper118

polariton is still present but the lower polariton disappears for ωc < ω̌c. For even smaller nanores-119
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onators (ωd > ω0) also the upper polariton disappears, as shown in the right column.120

Experimental Results121

We now proceed to the experimental study where we measure a 2DEG coupled to a metasurface of

complementary split-ring resonators (cSRR)s in a series of samples where we vary the central gap

width d, from 4 µm down to 250 nm (complete sample layout in Supplementary Info: “Supporting

experimental measurements” and Fig. S1). A scanning electron microscope (SEM) picture of one

unit cell of the metasurface is shown in Fig. 2a. The electric field polarization direction used in

the experiments to excite the LC mode of the resonator is perpendicular to the gap of the resonator

(red arrow in Fig. 2b).

In the cold cavity case (no 2DEG present), the electric field of the cSRRs’ fundamental mode

is concentrated in the central gap for any value of the gap d and its modal volume will scale as

V = LGap× d×Leff , where Leff is the effective penetration depth of the fringing field inside the

substrate (Fig. 2c). Note that, as the central gap acts as a capacitor in the LC split-ring circuit, it

directly affects the resonant frequency of the resonator ω0 = 2πfLC = 2π√
LC

. In order to allow for a

meaningful comparison between different samples we thus re-scaled the resonators in order to keep

a fixed cSRR frequency at fLC = 500GHz. Only the electrons within a cavity effective surface S

of order LGap× d will couple to the strong TE electric field of the resonator’s LC mode, leading to

a total effective electron number N2DEG = ρ2DEGS. The vacuum Rabi frequency ΩR ∝
√

N2DEG

V
,

quantifying resonant coupling of a discrete photonic mode to a single magnetoplasmon resonance,
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Figure 2: Cavity and electric field parameters (a) A SEM image of a unit cell (white dashed

line square) containing a cSRR with 250 nm gap showing different resonator parameters including

gap size d. (b,c) Cold cavity electric field distribution for the electric field polarization direction

perpendicular to the gap (red arrow), simulated by CST, for cSRRs resonating at 500 GHz in two

different views: Top view (b) and AA’ view or yz plane (c). You can find Leff in panel (c). (b) and

(c) have the same colorbar.
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can then be explicitly written as

ΩR =

√
e2ρ2DEG

4m∗ε0εrLeff
. (3)

Although the explicit dependence of the coupling upon the gap width d cancels in Eq. 3,122

Leff changes due to the reduced d dimension. This dependency is borne out by our finite ele-123

ment electromagnetic simulations for the cold cavity case, where there is no 2DEG underneath the124

metallic surface, showing a more confined and enhanced electric field in a narrower gap (Fig. S4125

in Supplementary info). Reducing the gap size d is thus expected to increase the coupling ΩR for126

a fixed cavity frequency 6.127

The sample transmission is measured using THz time-domain spectroscopy (TDS) at tem-128

perature T = 2.7 K as a function of an external out of plane magnetic field swept between 0 and129

4 T. In the top row of Fig. 3a we report the experimental results. The colormap corresponding130

to d = 4 µm gap size (ω0 � ωd) shows an anti-crossing of the first cavity mode with the linear131

cyclotron transition dispersion at an out plane magnetic field B ≈ 1.2T. The solid black lines show132

the lower polariton and upper polariton branches fitted to the extracted maximum of transmission133

using our theory in the discrete-to-discrete regime, equivalent to the standard Hopfield model 4, 7.134

For the resonator with d=750 nm (ω0 > ωd) we observe a broadening of the UP branch but we can135

still extract the maximum of the transmission at each magnetic field. We plot the the normalized136

coupling ratio ΩR

ω0
extracted from a theoretical fit of the data for d > 750nm, where the nonlocal137

effects discussed above are not relevant and the system is well described by a standard single mode138

Hopfield model (Fig. 3b). In such a regime we can extract a 1√
d

dependence of the normalized139
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Figure 3: Theoretical vs. Experimental results (a) Top row: transmission of cSRRs coupled to

Landau level transition in 2DEG vs. magnetic field for four different gap sizes d. Bottom row: the

calculated scattered Field for a gap feature size of d, same as gap sizes in experiment result. The

black solid lines are fitted LP and UP. The black arrows show an additional feature corresponds

to f = 1.6 × ωc/2π. The regions between the cyclotron transition ωc (red dashed line) and the

magnetically-shifted continuum edge ω̄d (orange dashed line) are similar to shaded regions on the

bottom row of Fig. 1, showing the region of continuum magnetoplasmon energies. The slight

changes in linewidth of the LP at its asymptotic limit are below the accuracy of our measurement

setup and do not have a physical interpretation. (b) Normalized coupling vs. d. Dashed brown line

indicates the predicted dependence of Ω
ω

on 1√
d
. The red region corresponds to gap values < 600

nm where the large broadening of the upper branch does not allow a measurement of the coupling.

(c) Sections (offset for clarity) of the color plots at zero magnetic field for experimental result and

theoretical calculation in panel (a). The progressive upper branch broadening is evident.
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coupling over the gap width (dashed brown line). For 500 nm (ω0 ≈ ωd) and especially for 250 nm140

(ω0 < ωd) gap sizes the upper branch does not display a clear maximum anymore and the signal is141

broadened over a frequency range of over 200 GHz. Our optical measurements probe the photonic142

part of the polaritonic excitations, which for the lower branch naturally vanishes when B → 0.143

This effect makes it difficult to highlight the lower polariton disappearance at finite values of the144

magnetic field predicted by our theory. Inspection of 3a nevertheless shown a clear reduction of145

the lower branch visibility range for the smallest gap.146

In order to better compare to experimental results, Fig. 3a (bottom row) plots theoretical cal-147

culation results obtained including losses affecting both the photonic and magnetoplasmon fields.148

As detailed in the Methods section, this has been accomplished extending the dissipative diago-149

nalization procedure for cavity quantum electrodynamics (CQED) from Ref. 12. The cyclotron150

transition ωc (red dashed line) and the magnetically-shifted continuum edge ω̄d =
√
ω2
d + ω2

c (or-151

ange dashed line) bound the region of continuum magnetoplasmon energies shaded in Fig. 1 and152

they visualize the loss channel leading the broadening of the upper polariton branch in our trans-153

mission data.154

The enhanced transmission visible at higher frequencies in the experimental data is due to the sec-155

ond mode of the cSRRs lying close to 1THz. This mode is not strongly confined in the gap and it is156

not relevant for the nonlocal physics of the system. It has thus not been included in the theoretical157

modeling. To clearly illustrate the upper polariton broadening, sections of all four color plots for158

both experimental and theoretical results in Fig. 3a at zero magnetic field are plotted in Fig. 3c.159

The progressive broadening of the upper polariton branch is manifest. The clear blue shift of the160
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upper polariton from 4 µm to 750 nm gap at zero magnetic field is related to the opening of the161

polariton gap 24, another indication of larger coupling strength in cSRRs with small slits 6.162

The experimental transmission measurements display also linear dispersions appearing for163

the smallest gaps (indicated by black arrows in Fig. 3a). Such linear dispersions correspond to164

optical transitions at multiples of the cyclotron frequency. In a two dimensional electron gas the165

cyclotron resonance frequency should not depend on the carrier density as the radiation couples166

only to the center-of-mass motion of the electron system. This very general result, known as167

Kohn’s theorem 41, is strictly valid for parabolic bands and translationally invariant systems. Here168

we observe indeed a breaking of such theorem due to the presence of a spatially modulated charge169

density (the magnetoplasmon) that leads to a breaking of the translational invariance. The lack of170

translational invariance leads to a relaxation of the optical selection rules between Landau levels171

allowing the observation of transitions at multiples of the cyclotron frequency. Such effect has been172

already observed experimentally in the case of magnetoplasmons coupled to cyclotron resonance173

42 38 but never in the context of Landau polaritons, where the momentum matching element is part174

of an optical cavity. In this case the observed effect is again arising due to the diffraction emerging175

with the introduction of very narrow resonator gaps.176

3D finite element electromagnetic simulations177

In order to quantitatively confirm the theoretical predictions using the detailed cSRR geometry and178

visualize the nonlocal coupling to 2D magnetoplasmon modes, we recurred to finite element elec-179
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tromagnetic simulation (CST Microwave Studio) in which the 2DEG is modeled as a gyrotropic180

material. No “effective medium” is adopted, i.e., the dimensions of the different components in-181

cluding the thickness of the quantum well layer (10 nm) are kept as in reality. The 2DEG electron182

density used in the simulation is calibrated by matching the cyclotron absorption strength with183

measurements performed on the bare (no cavity) heterostructure used in the experiment. A full184

description of the model and the employed parameters can be found in supplementary document185

(“Supporting numerical simulations” and Fig. S5).186

A set of simulation of the Landau polariton dispersion for the metallic metasurface with a187

gap of 250 nm deposited on 2DEG as a function of magnetic field is reported in Fig. 4a. In this188

simulation, magnetic field is swept in the rangeB ∈ [0, 4] T, and can be directly compared with the189

corresponding experimental plot of Fig. 3a. As visible, the finite element simulation reproduces190

very well the broadening of the upper polariton branch. It is interesting to inspect the electric191

field distribution at the anti-crossing (white dashed line in Fig. 4a). As visible from Fig. 4d the192

upper branch, expected to sit in the magnetoplasmon continuum, is completely dominated by the193

propagative plasmonic behavior and the corresponding peak is largely broadened. Conversely,194

the lower branch (Fig. 4c) displays the electric field intensity all concentrated in the gap. More195

simulation data on broadening of UP and partially disappearance of the LP can be found in the196

Supplementary info (Fig. S6-S9).197
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Figure 4: Finite element simulation for cSRR with 250nm gap on 2DEG (a) Simulation of the

Landau polariton dispersion as a function of magnetic field. The broadening and loss of contrast

of the upper branch is evident in (b), section of the color plot of panel (a) at the anti-crossing field

B = 1T. In panels (c) and (d) we report the electric field distributions for UP and LP. The field

distribution in (c) for LP shows a pronounced electric field concentration in the 250 nm gap and a

corresponding narrow spectral distribution. On the other side, panel (d) clearly demonstrates the

excitation of plasmonic standing waves and the corresponding peak in the frequency spectrum is

broad.

15



Conclusions198

In conclusion, we theoretically investigated the emergence of nonlocality in polaritonics. Contrary199

to nonlocality in plasmonic 35 and phononic 36 systems, caused by tight charge confinement, here200

nonlocal effects are driven by the confinement of the resonator’s electromagnetic field coupling to a201

continuum of propagating magnetoplasma excitations. We experimentally observed such a physics202

using Landau polaritons at sub-THz frequencies employing nanometer-sized resonators. First, we203

show that when nonlocal effects are not relevant (gap size d > 750 nm) the normalized coupling204

ratio between light and matter scales as 1√
d
, increasing by about 50% from d = 4µm to 750 nm,205

and reaching 37% for a single quantum well due to the strong field enhancement. For smaller206

gap values, nonlocal effects become dominant and the system is not anymore well described by207

a standard Hopfield model. As predicted by our multimode dissipative bosonic Hamiltonian we208

observe a broadening of the upper polariton branch and the partial disappearance on the lower one.209

Finite element electromagnetic simulations confirm this interpretation. The presence of highly210

localized electric fields is as well testified by the presence of features related to breaking of Kohn’s211

theorem. Our findings set quantitative limits to the miniaturization of polaritonic devices, and to212

the enhancement of polariton gaps, as well as open new possibilities in the study of discrete-to-213

continuum strongly coupled systems 12–14.214
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Methods215

Theoretical description of light-matter coupling. We model the magnetoplasmonic excitations216

coupled to a single photonic mode using a generalisation of the multimode Hamiltonian developed217

in Ref. 13
218

H = h̄ω̃0a
†a+

∑
k

h̄ω̄P (k) b†kbk + ih̄ΩR

∑
k

√
ω̄P (k)

ω̃0

[
a† + a

] [
Ξkbk − Ξ∗kb

†
k

]
, (4)

where a is the annihilation operator for a resonator photon and bk annihilates a magnetoplasma219

wave with in-plane wavevector k = (kx, ky) and bare (ωc = 0) frequency ωP (k). The second-220

quantised operators obey bosonic commutation relations
[
a, a†

]
= 1 and

[
bk, b

†
k′

]
= δk,k′ , where221

the δ is a Kronecker symbol. The Heisenberg equations generated by Eq. 4 are linear in the222

creation and annihilation operators, and such a quantum theory is thus equivalent to a semiclassical223

dielectric approach when the system is excited with classical light as in our experiments. The224

quantum approach is nevertheless able to model also purely quantum results, when the polaritons225

are excited with non-classical light 43. As better detailed in the Supplementary info, the photonic226

frequency ω̃0 includes the renormalisation due to the diamagnetic A2 term in the Hamiltonian,227

while ω̄P (k) is the magnetoplasmon frequency. In Eq. 4 the vacuum Rabi Frequency ΩR is given228

by Eq. 3 and Ξk is the 2D Fourier transform of the resonator field in the 2DEG plane. The explicit229

derivation of these quantities can be found in the Supplementary info. Note that the Hamiltonian230

in Eq. 4 is not in the usual form found in polaritonic problems, where a dispersionless matter231

excitation (e.g., TO phonons in bulk) couples to a dispersive electromagnetic mode. In such a232

case both light and matter have in-fact the same spatial symmetry, and momentum conservation233
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enforces a one-to-one coupling between light and matter modes. The model in Eq. 4 describes234

instead a one-to-many coupling, formally more similar to models used to describe losses in an235

open quantum system. In the continuum regime the Hamiltonian in Eq. 4 can be rewritten236

H = h̄ω̃0a
†a+

∫ ∞
0

dω h̄ω̄ b(ω)†b(ω) + ih̄

∫ ∞
0

dω

√
ω̄

ω̃0

[
a† + a

] [
g(ω)b(ω)− g(ω)∗b(ω)†

]
,

(5)

with
[
b(ω), b(ω′)†

]
= δ(ω − ω′), and the δ is now the Dirac function. The secular equation of the

Hamiltonian in Eq. 5 is shown in Eq. 2, with

∆(ω) =
4ω2

ω0

P

∫ ∞
0

dω′
|g(ω′)|2

ω2 − ω′2 − ω2
c

, (6)

Γ(ω) =
2πω2

ω0

|g(
√
ω2 − ω2

c )|2√
ω2 − ω2

c

Θ(ω − ωc), (7)

where P is the principal part and Θ(ω) the Heaviside function. The minimal cyclotron frequency237

required for the existence of the lower polaritons ω̌c can be obtained by writing Eq. 2 for ω = ωc,238

and solving for the critical value of the cyclotron frequency for which the lower polariton merges239

into the continuum240

ω̌c = ω0

[
1 + 4P

∫∞
0
dω′ |g(ω

′)|2
ω′2

]− 1
2
. (8)

Analytical conditions for the existence of the upper polariton could be analogously determined, al-241

though they are of limited interest being strongly dependent on the details of the specific resonator242

geometry. This asymmetry between the two polariton branches is due to the fact that the lower243

bound of the continuum, ωc, marks the existence of the plasma waves, while the upper bound, ωd,244

is more fuzzy, depending on the Fourier transform of the field profile, which doesn’t necessarily245

presents a well-defined sharp cutoff in k space.246
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Theoretical description of the open system In order to better predict experimental features due247

to nonlocal nanopolaritonic effects, we need to consider the impact of intrinsic polariton losses,248

due to the finite lifetime of both the cavity photon and the magnetoplasmon. We used to this aim the249

approach initially introduced by Huttner and Barnett to quantise the electromagnetic field in bulk250

dissipative dielectrics 44 and recently extended to the CQED case with both material and photonic251

losses 12. This approach allows us to to write the system Hamiltonian in terms of a continuum of252

broadened photonic and magnetoplasmonic modes, with annihilation operators A(ω) and B(ω),253

Htot =

∫ ∞
0

h̄ωA†(ω)A(ω) +

∫ ∞
0

h̄ωB†(ω)B(ω) (9)

+h̄

∫ ∞
0

dω

∫ ∞
0

dω′
[
ζ(ω)A†(ω) + ζ∗(ω)A(ω)

]
×
[
θ(ω′)B†(ω′) + θ∗(ω′)B(ω′)

]
,

satisfying bosonic commutation relations
[
A(ω), A(ω′)†

]
=
[
B(ω), B(ω′)†

]
= δ(ω − ω′). In254

the Hamiltonian above the function ζ(ω) contains the information about the photonic losses, and255

θ(ω) contains a convolution integral between the resonant coupling density g(ω) and a function256

describing the frequency-dependent matter losses.257

The Hamiltonian in Eq. 9 is then diagonalised by introducing operators for two orthogonal258

polariton branches j = ±, obeying Bosonic commutation relations [Pj(ω), Pj′(ω
′)] = δ(ω −259

ω′)δj,j′ , which we write in terms of the bare broadened fields260

Pj(ω) =

∫ ∞
0

dω′
[
xj(ω, ω

′)A(ω′) + zj(ω, ω
′)A†(ω′) + yj(ω, ω

′)B(ω′) + wj(ω, ω
′)B†(ω′)

]
. (10)

The frequency dependent Hopfield coefficients (xj, zj, yj, wj) can then be found by solving the261

equations of motion ωPj(ω) = 1
h̄

[Pj(ω), Htot].262
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As shown in Ref. 12 such a description is defined modulo a real function of ω, fixing the263

basis used to specify the two degenerate modes P±(ω). The two polaritonic operators are thus not264

individually identifiable with the two polaritonic branches, and the observable results have to be265

calculated from the gauge-invariant bare electromagnetic mode266

(a+ a†) =

∫ ∞
0

dω
∑
j=±

Mj(ω)
[
Pj(ω) + P †j (ω)

]
, (11)

with Mj the electric component of the polaritonic field obtained inverting the Hopfield transfor-267

mation.268

Numerical results are obtained assuming that the only relevant scattering feature is across269

the x axis, and it couples the photon resonator with plasma waves with wavevector up to the value270

kd = 1
d
. We can then write Ξk = Θ(kd − |kx|)δky ,0, with Θ the Heaviside function, leading to a271

resonant coupling density of the form272

g(ω) = ΩR

√
2ω

πω2
d

Θ(ωd − ω). (12)

Sample fabrication, measurement setup, and simulated structure in CST This part is available273

in Supplementary info.274

Data Availability Statement The numerical simulation and measurement data that support the plots within275

this paper are available from the corresponding author upon reasonable request.276

Code availability statement The codes used in the theory part of this study are available from the corre-277

sponding author upon reasonable request.278
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