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Abstract

Incessant antigenic evolution enables the persistence and spread of influenza virus in the

human population. As the principal target of the immune response, the hemagglutinin (HA)

surface antigen on influenza viruses continuously acquires and replaces N-linked glycosyla-

tion sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan

antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more

extensively glycosylated and contains under-processed oligomannose-type clusters on its

dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influ-

enza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on

their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass

spectrometric approaches, we find that two N-glycosylation sites close to the receptor bind-

ing site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized

by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the

other emerged during virus evolution. These two N-glycosylation sites have also become

crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the

glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as

broad neutralizers to target human enveloped viruses.

Author summary

The isolation of broadly neutralizing antibodies from HIV-1 patients has provided valu-

able insights on the design of HIV-1 vaccines. Among them, one group consisting of anti-

carbohydrate antibodies target N-glycans that compose the glycan shield on the Envelope

surface glycoprotein (Env) of HIV-1. Similar to HIV-1, human H3N2 influenza viruses
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are highly glycosylated due to the accumulation of N-glycosylation sites over the past 50

years of natural evolution. Here, we demonstrate that an anti-HIV-1 antibody, namely

2G12, can neutralize human H3N2 viruses from the past 35 years. Comprehensive analy-

ses by mass spectrometry and negative-stain electron microscopy reveal that oligoman-

nose on two N-glycosylation sites near the receptor binding site are the targets of 2G12.

Of note, the distance and disposition between the two glycans are the same as the equiva-

lent oligomannose cluster on HIV-1 Env. Furthermore, mutational study shows that these

two N-glycosylation sites are both required for survival of the recent H3N2 strains. Our

data suggest that 2G12 can broadly neutralize non-HIV-1 human viruses by targeting oli-

gomannose sugars, if of sufficient density and disposition on the viral surface. Since many

viral surface antigens are highly glycosylated, it is worth evaluating 2G12-like antibodies

as potential general therapeutics for human viral pathogens.

Introduction

The discovery of broadly neutralizing antibodies (bnAbs) from infected HIV-1 patients has

contributed to design and development of HIV-1 vaccine candidates and therapies [1–7].

Many of these antibodies have demonstrated remarkable potency and breadth against diversi-

fied HIV-1 strains and subtypes [8,9]. One unusual class is anti-carbohydrate antibodies that

exclusively target the glycan shield on the HIV-1 envelope glycoprotein (Env) [8–10].

Although the glycan shield of HIV-1 Env acts as a protective barrier that prevents or hinders

recognition of the immunogenic protein surface of HIV-1 Env by the humoral immune sys-

tem, the overly dense glycan shield on HIV-1 compared to host proteins results in the glycans

themselves now being targeted by antibodies [1,3,4,11,12]. Such anti-carbohydrate antibodies

have been very rarely seen against other viral pathogens [13,14].

HIV-1 is not the only heavily glycosylated viral pathogen. Since causing the 1968 pandemic,

human seasonal H3N2 influenza viruses have gradually become more highly glycosylated due

to the accumulation of N-glycosylation sites on its major surface antigen, hemagglutinin (HA)

[15–17]. These newly acquired N-glycosylation sites are mainly located on the receptor bind-

ing domain (RBD) of the HA globular head, which contains the major antigenic sites

[15,16,18,19]. N-linked glycans can help mask or redefine epitopes and lead to antigenic drift

[20]. The relentless antigenic drift of both glycan and protein components in the HA necessi-

tates annual updates of the seasonal influenza vaccine. Previous studies have nevertheless indi-

cated that accumulation of less processed oligomannose glycans on the HA could be a target

for mannose binding lectin, thereby facilitating virus inhibition both in vitro and in vivo [21–

24].

These glycan modifications therefore raised the question whether anti-carbohydrate anti-

bodies could now neutralize human seasonal H3N2 influenza viruses. Anti-carbohydrate anti-

body, 2G12, was one of the first handful of neutralizing antibodies to be discovered against

HIV-1 and was isolated from pooled sera of HIV-1 patients [1,2]. 2G12 neutralizes HIV-1 by

binding to a cluster of high-mannose glycans (mannose patch) on gp120 of Env around a site

that is now known as the N332/ V3 base epitope [12,25,26]. 2G12 is extremely unusual in that

it forms a domain-swapped dimer between the heavy chain variable regions of its two Fab

arms and can, therefore, bind to the Manα1-2Man disaccharide at the tips of up to four differ-

ent high mannose glycans on the gp120 surface without any observable contacts to amino

acids [11,27,28]. In this study, we demonstrate that 2G12 has the ability to neutralize human

seasonal H3N2 viruses over the last three decades and investigate the mechanism of
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neutralization by structure biology, mass spectrometry, and evolutionary analyses of N-linked

glycans on viral and recombinant HA proteins. A conserved and a newly acquired high man-

nose N-linked glycosylation site nearby the HA receptor binding site (RBS) both contribute to

this broad neutralizing activity of 2G12 on influenza virus.

Results

N-glycosylation sites accumulate on human H3N2 HA during natural

evolution

The HA glycoprotein is formed by three homoprotomers, which are each composed of HA1

and HA2 from cleavage of HA0 by host cell proteases [29]. We analyzed the evolution of glyco-

sylation sites on the HA since the emergence of the H3N2 1968 pandemic (Fig 1A). The num-

ber of N-glycosylation sites per HA protomer was six (five conserved and one non-conserved)

when A/Hong Kong/1/1968 (HK68) first appeared in the human population in the 1968

H3N2 pandemic. Non-conserved N-glycosylation sites have since then accumulated from one

to seven during five decades of H3N2 virus evolution (Fig 1A). Thus, the increased number

and density of glycans on the HA during natural evolution from the 1968 pandemic suggests

that high mannose glycans may be present on the HA.

2G12 broadly neutralizes human H3N2 viruses from the past thirty years

To test our hypothesis that human H3N2 viruses have acquired sufficient high mannose gly-

cans to be a target for 2G12, we tested the neutralization activity of 2G12 on a panel of human

H3N2 strains spanning from 1968 to 2016. 2G12 was able to neutralize most strains in the

panel except for early isolates, such as HK68 and Bk79 (Fig 1B). The IC50’s were around 50–

150 μg/ml and 2G12 was less potent compared to the broad stem neutralizer CR9114 by five to

ten-fold, whereas the anti-malarial IgG311 showed no neutralizing activity against these

viruses (S1 Fig) [30,31]. We also tested two strains from clinical isolates and found that they

were also sensitive to neutralization by 2G12 (Fig 1C). To explore whether other anti-carbohy-

drate antibodies behaved similarly as 2G12, we further examined seven antibodies from HIV-1

infected individuals that involve binding of oligomannose (S1 Table) [12,32–37]. However,

unlike 2G12, which recognizes only carbohydrate, these antibodies also interact with amino

acids on HIV-1 Env. It was therefore perhaps not surprising that none of these antibodies

exhibited neutralizing activity against H3N2 viruses (S2 Fig).

Oligomannose-type glycans are enriched on the HA head in more recent

H3N2 viruses

We then profiled the glycoforms present on the HAs of different H3N2 viruses. Site-specific

glycan compositions were delineated by liquid chromatography-mass spectrometry (LC-MS)

of glycopeptides from recombinant HAs expressed in Expi293F cells (Fig 2A). HA samples

were proteolytically digested using trypsin, chymotrypsin and GluC, and the resulting glyco-

peptides were analyzed by LC-MS. Five out of six glycosylation sites on HK68 displayed signif-

icant populations of both high mannose- and complex-type glycans, except for N38, which

was fully complex. Interestingly, glycosylation sites on subsequent H3N2 strains diverged to

either predominantly high mannose- or complex-type sites. These experimentally observed

glycans were used to model fully glycosylated models of recombinant HAs of HK68 and Vic11

using crystal structures and glycan compositions revealed by the mass spectrometric analysis

(Fig 2B). Increased occlusion of the HA protein surface by glycans has emerged since 1968,
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especially in the immunogenic globular head, with a cluster of high mannose glycans appear-

ing at N165 and N246 in the HA head (Fig 2B).

We also sought to quantitatively assess the total compositions of the glycan structures dis-

played on H3N2 HAs. Enzymatically released glycans were fluorescently labelled and subjected

to hydrophilic interaction chromatography-ultra-performance liquid chromatography (HILI-

C-UPLC) analysis (S3 Fig). Treatment with endoglycosidase H (Endo H) revealed the presence

of under-processed oligomannose-type glycans across all the glycan sites. This analysis

Fig 1. Evolution of N-glycosylation sites on H3 HA and broad neutralization of human H3N2 viruses from

around 1990 by anti-glycan antibody 2G12. (A) The number of non-conserved N-glycosylation sites on HA has

evolved from one in 1968 to seven in 2019 on HA1 as shown in the stack chart. Ten glycan sites are cumulatively

involved, where some are retained and others substituted from 1968 to 2019. The six completely conserved N-

glycosylation sites in human H3N2 viruses (N8, N22, N38, N165, N285 in HA1, and N154 in HA2, which corresponds

to N483 in HA0) are shown in white. (B) Neutralization activity of 2G12 IgG with different H3N2 strains was

measured by a cell viability assay at four different antibody concentrations. The OD490 value is proportion to the cell

density. Dashed line represents the OD490 for cell only control with no virus. (C) Neutralization activity of 2G12 IgG

against two clinical isolates. The IC50 values of 2G12 IgG to A/TW/82486/2014 and A/TW/87302/2016 are 151 and

69 μg/ml, respectively. The error bars on each value are the standard deviation of three technical triplicates.

https://doi.org/10.1371/journal.ppat.1009407.g001
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confirmed the abundance of trimmed high mannose glycans on HK68 HA, while more recent

strains display the Man8/9GlcNAc2 2G12 epitope. In order to ensure that the recombinant

HAs recapitulate the glycans found on virally derived HAs, site-specific glycan analysis was

also performed on HAs from HK68 and Vic11 viruses, grown in MDCK-SIAT1 cells, which

represent 2G12-insensitive and 2G12-sensitive strains, respectively (S4 Fig). The site-specific

Fig 2. Site-specific N-linked glycosylation of H3N2 HA glycoproteins and models of fully glycosylated HK68 and

Vic11 HAs. (A) Recombinant H3N2 HA glycoproteins were proteolytically digested and analyzed by LC-MS. Each

graph summarizes the quantitative mass spectrometric analysis of the glycan populations at each individual N-linked

glycosylation site, which are simplified into glycan categories. These categories are colored according to glycan

compositions as per the key. The oligomannose-type glycoforms (M9 to M5; Man9GlcNAc2 to Man5GlcNAc2) are

indicated in shades of green, hybrid-type glycans in dashed light pink, and complex-type glycans in pink. Glycosylation

sites that are not present on individual HAs are shaded in grey, and sites where the glycosylation site is encoded, but

glycan compositions could not be determined, are labelled as not determined (N.D.). (B) Experimentally observed

glycans shown in Fig 2A are modelled onto the prefusion structure of trimeric HA from HK68 (PDB ID: 4FNK) [89]

and Vic11 (PDB ID 4O5N) [15]. Glycans are colored according to the oligomannose-type glycan content as per the

key, with the protein surface shown in grey.

https://doi.org/10.1371/journal.ppat.1009407.g002
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glycan profiling from recombinant HAs corresponded well to the viral HAs. The high man-

nose glycans were particularly conserved between virus and recombinant material, with HAs

on HK68 predominantly exhibiting the lower order high mannose glycans (Man5-7GlcNAc2)

and HAs of Vic11 presenting predominantly larger Man9GlcNAc2 on N165 and N246.

N165 is critical for 2G12 neutralization

We then investigated the role of high mannose glycans in virus neutralization by 2G12. Many

of the N-glycosylation sites are near the RBS of HA. For example, six non-conserved (N63,

N122, N126, N133, N144, and N246) and one conserved (N165) N-glycosylation sites are less

than 30 Å from the RBS within each protomer (Fig 3A and 3B). Since the glycan composition

of the carbohydrate on N165 was determined to be high mannose here (Fig 2A) and in previ-

ous studies [38–40] and was located near the RBS, we investigated the role of N165 in 2G12

neutralization using human H3N2 influenza virus strains, A/Panama/2007/1999, which is

close to A/Moscow/10/1999, and A/Brisbane/10/2007. While 2G12 neutralized A/Panama/

2007/1999 and A/Brisbane/10/2007 with IC50 of 116 and 56 μg/ml, respectively, it could not

neutralize their N165A mutants, which abolished the N-glycosylation site at residue 165 (Fig

3C). Thus, these data indicated that N165 is important for 2G12 neutralization. However,

since N165 glycosylation site is conserved among all viruses in our H3N2 panel, it was not

immediately clear why 2G12 did not neutralize early strains, such as HK68 and Bk79, which

also contain the N165 glycosylation site, although the glycan composition does differ with

respect to number of mannose moieties.

N165 and N246 are both critical for 2G12 neutralization and virus fitness

It is noteworthy that, although 2G12 could neutralize H3N2 strains from 1986 onward in our

panel, Mos99 was a striking exception (Fig 1B). To understand why Mos99 was able to escape

from 2G12 neutralization, we also investigated a contemporaneous strain, Pan99, that could be

neutralized by 2G12 (Fig 3C). We then focused on residues within the receptor binding domain

(HA1 residues 117 to 265, H3 numbering) [41] that differ between Mos99 and Pan99. Eight differ-

ences are present within this region (S2 Table), including addition of two N-glycosylation sites at

N144 and N246. We then designed a deep mutational scanning experiment to identify the key res-

idues that differentiate 2G12-sensitivity between Pan99 and Mos99 (see Materials and Methods).

Briefly, we constructed a Pan99 viral mutant library containing all possible combinations of HA

mutations between Pan99 and Mos99 (S2 Table). The diversity of the viral mutant library was 28

or 256 variants. The viral mutant library was passaged with or without 2G12 selection. The fitness

of each variant in the mutant library was quantified and normalized to that of wild type, which

was set as 0. In this analysis, we only focused on variants that have relative fitness of>1. A number

of variants have a much higher relative fitness in the presence of 2G12 selection as compared to

without 2G12 selection (red, Fig 4A). These variants likely represent 2G12 escape. We also identi-

fied a number of variants where increased relative fitness was comparable with and without 2G12

selection (blue, Fig 4A). These variants were 2G12-sensitive. Sequence logo analysis indicated that

the only major difference between 2G12-escape variants and 2G12-sensitive variants was at resi-

due 246, where 2G12-escape variants all have K246, whereas the 2G12-sensitive variants have

N246 (Fig 4B). Overall, these data revealed that the new glycosylation site at N246 appeared to be

required for 2G12 neutralization in addition to the N165 glycosylation site.

The glycoform at N165 depends on the presence of N246

We next investigated the contribution of these two N-glycosylation sites for 2G12 specificity

and neutralization on another 2G12 sensitive virus. N165A, N246K, and N165A/N246K

PLOS PATHOGENS Anti-glycan antibody 2G12 neutralizes recent human H3N2 viruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009407 March 22, 2021 6 / 25

https://doi.org/10.1371/journal.ppat.1009407


Fig 3. Evolution and spatial distribution of N-glycosylation sites on H3 HA and 2G12 neutralization. (A) Front

and top views of N-glycosylation sites on A/Brisbane/10/07 (H3N2) HA (PDB 6AOV) [91]. Each N-glycosylation site is

shown only on protomer 1 in orange. Human receptor analogue, 6’-sialylated di-N-acetyllactosamine (6´-SLNLN), in

the receptor binding sites of protomers 1 and 2 of the trimer are in green. (B) The distance from Cα of the Asn in each

N-glycosylation site to the sialic acid of the sialoside receptor in the receptor binding domain (RBD) on the same

protomer (protomer 1), and the corresponding distance to the RBD of the neighboring promoter (protomer 2) among

conserved N-glycosylation sites (left panel) and non-conserved N-glycosylation sites (right panel). (C) In vitro
neutralization of wild type and N165A HA mutant Pan99 and Bris07 viruses by 2G12, CR9114, and IgG311. The IC50

of 400 μg/ml indicated that the antibody has no neutralizing activity against H3N2 viruses.

https://doi.org/10.1371/journal.ppat.1009407.g003
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double mutants of Pan99 and Bris07 HA were constructed. For Pan99, the virus titer decreased

by one to three-logs for N165A, N246K, and N165A/N246K double mutants compared to the

wild type, respectively (Fig 4C). For Bris07, the titer of N165A was reduced about one log com-

pared to the wild type and the N246K and the N165A/N246K double mutants could not be res-

cued (Fig 4C). These results were consistent with a previous study that showed that abolition

of N165 attenuates virulence [42]. These data, therefore, showed that N246 is critical for Pan99

and Bris07 fitness, but is apparently not required in the early strains since the N246 glycosyla-

tion site is not present on or before 1979. Since N246 is essential for Bris07, we further exam-

ined the glycoforms at residues 165 and 246 of the wild type and N165A of Bris07 to delineate

how they might functionally interact. LC-MS analysis revealed that wild type Bris07 presented

predominantly Man9GlcNAc2 on both N165 and N246, whereas the N165A phenotype pre-

sented mainly Man8GlcNAc2 on N246. Likewise, the N246K mutant resulted in Man8GlcNAc2

being predominantly displayed on N165 (Fig 5A). Compared to the glycan composition of the

wild type, the N165A mutation resulted in more changes in the glycoforms than the N246K

mutation, such as at N22, N38, N126, and N285 (S5 Fig). N165 is located in the HA trimer

interface [29], where its mutation may affect the stability and, hence, glycan processing of H3

HA trimers. This enhanced trimming of mannose residues, when glycan sites are knocked out,

reveals structural constraints on the glycan-processing enzymes by the neighboring glycan site

Fig 4. Virus escape mutants in a Pan99 library in the absence or presence of 2G12 and the fitness of N165/N246

mutations to Bris07 viruses. (A) The relative fitness of each of the 256 variants in the mutant library is shown. The x-

axis and y-axis represent the relative fitness without and with 2G12 selection, respectively. Each data point represents

one variant. The relative fitness of wild type is set as 0. Variants with a gain in relative fitness in the presence of 2G12

selection (escape mutants) are in red. Variants with a high fitness without 2G12 selection, which did not escape 2G12

are in blue. These two groups were selected for sequence logo analyses [81]. (B) Variants at specific sites (HA1 144,

145, 160, 172, 192, 196, 226, 246). The upper panel indicates residue combinations of wild-type variants with superior

fitness, whereas the bottom panel indicates sequence preferences of 2G12 escape mutants. (C) The fitness effect of

mutations N165A, N246K, and N165A/N246K on Pan99 and Bris07 HA were measured by median tissue culture

infectious dose (TCID50). Error bars represent standard deviation of quadruple measurements.

https://doi.org/10.1371/journal.ppat.1009407.g004
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Fig 5. Glycoforms at N165 and N246 and 2G12 binding mode to HA wildtype and glycan mutants. (A) Site-specific glycosylation

analysis of Bris07 HA glycan knockout mutants at N165 and N246 (left panel). Percentage differences in abundance of oligomannose-

type glycans between glycan knockout mutants and WT Bris07 HA is also illustrated with decreased and increased abundance colored

in red and blue (right panel), respectively. (B) Negative-stain electron microscopy (nsEM) images show the different modes of 2G12

recognition of Bris07 wild type (left panel) and N165A mutant (right panel) HA. Fab 2G12, as a domain-swapped dimer, and the HA

trimer are indicated by arrows. 2G12 Fab involved in binding to two N246 glycans, one N246 glycan, and one N165 and possibly one

N246 glycan are shown in green, purple, and yellow, respectively. Wild type and N165A HA are in white. (C) Front view of A/Brisbane/

10/07 (H3N2) HA trimer (PDB 6AOV, in grey) [91]. Man9GlcNAc2 on N165 and N246 were modelled onto Bris07 wild type HA with

Charmm-Gui [92]. 2G12 Fab dimer (PDB 6N2X, in cyan) [11] is shown bound to the lateral side (left panel) and apex of trimer in

parallel (middle panel) or tilted (right panel) binding mode from the nsEM data in Fig 5B. Man9GlcNAc2 on N165 and N246 are in

yellow and green, respectively. (D) Same as (C), but N165A is shown in magenta. N246 was modelled with Man8GlcNAc2. 2G12 is

shown bound to the apex of Bris07 N165A trimer as in the nsEM reconstruction. The Man8GlcNAc2 at N246 is in green.

https://doi.org/10.1371/journal.ppat.1009407.g005
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and consistent with similar mutational studies in HIV [27,43]. This glycan cluster is reminis-

cent of that found not only on HIV-1 Env, but also in the Lassa mammarenavirus glycoprotein

complex (LASV GPC) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike

protein [27,44,45]. Furthermore, all of the 2G12-sensitive strains presented mainly Man9-

GlcNAc2 with some Man8GlcNAc2 on both N165 and N246 (Figs 2A and S3). These data sug-

gested the presence of both N165 and N246 and particular high mannose glycoforms are

crucial for neutralization by 2G12.

Structural analysis of the 2G12 neutralization mechanism

We next investigated why 2G12 could neutralize wild type Bris07 but not its N165A mutant

using negative-stain electron microscopy (nsEM). The nsEM analysis demonstrated that one

to two 2G12 domain-swapped Fab dimers bound per wild-type HA trimer (Fig 5B). Notably,

two major binding modes for this interaction were visualized on the globular head of the HA:

one binding mode was to the apex on the HA trimer, whereas the other was to the lateral face

of the trimer next to the RBS (Fig 5B and 5C). Furthermore, two major poses of 2G12 were

found on the HA apex, with one being parallel to and the other tilted relative to the flat apex

surface (Fig 5C). In contrast, 2G12 bound only to the apex of the HA N165A mutant in the

parallel and slightly tilted binding modes (Fig 5B and 5D). As there was a visible gap between

2G12 and HA in the class averages (Fig 5B), 2G12 likely recognizes HA exclusively through

antibody-carbohydrate interactions without involving the protein component of HA. Accord-

ing to the binding behavior of 2G12 to Bris07 N165A and WT in nsEM, we performed further

biophysical analyses. Two apparent Kd’s could be calculated in a 2:1 hetero-ligand binding

model for both the 2G12-WT and 2G12-N165A interaction (S6 Fig). Both interactions can be

represented by one lower affinity interaction (Kd = 286/212 nM), while the other was higher

affinity at 40.9/43.5 nM for 2G12-WT and 2G12-N165A, respectively (S6 Fig). Combined with

the nsEM images, the additional binding mode of the 2G12-WT, when both N165 and N246

are present, seems to account for most of the neutralizing activity for 2G12. Scrutinization of

the spatial distribution of N165 and N246 on H3 HA trimer surface found that they are both

located on adjacent strands of an antiparallel β-sheet with a distance between their Cα’s of 4.6

Å (S7 Fig) within each HA protomer. Interestingly, the same secondary structural feature and

Cα distances were found for two of the N-glycosylation sites on HIV-1 Env (N295 and N332,

S7 Fig) that are involved in 2G12 recognition [1,11,46,47]. The distances between the ends of

the flexible Man9GlcNAc2 on N165 and N246 within the same protomer was about 26 Å to 29

Å (S8 Fig). In addition, on the apex of HA trimer, the distance of Man9GlcNAc2 on N246 of

one protomer to the next protomer was 14 Å (D1 to D1) and 44 Å (D3 to D3) (S8 Fig). Overall,

the distance between each Man9GlcNAc2 on N165 to N246 in the same protomer or from

Man9GlcNAc2 on N246 in different protomers matched the 2G12-Man9GlcNAc2 binding dis-

tances on gp120 [11]. Due to the flexible glycan interaction, the 2G12 domain-swapped Fab

particle densities did not converge and 3D reconstructions could not be obtained. We modeled

2G12 binding to the HA using 2G12 Fab with PDB (6N2X) and HA structures from the PDB

(6AOV) and fitted them into the different nsEM reconstructions derived from the class aver-

ages (Fig 5B). From this modeling study, we can conclude that the lateral binding pose involves

N165 and N246 on the same protomer (Fig 5C). This interaction is lost in the N165A mutant,

where binding is now only seen to the apex and mainly in the parallel pose (Fig 5B and 5D).

Thus, we surmise that 2G12 in this mode binds to the high mannose glycans at N246 in differ-

ent promoters of the trimer. The final pose is the more tilted apex orientation, where one or

two glycans at N246 are involved, perhaps in a different combination to the parallel pose. The

loss of 2G12 neutralization of N165A mutant HA suggests that the lateral interaction with
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both N165 and N246 is key for neutralization through blocking receptor binding compared to

the apex-only interaction, but this is still not completely answered and may also depend on the

exact glycoforms present at each site. In conclusion, during the natural evolution of human

H3N2 influenza viruses from 1968 to present, the conserved N165 and emergent N246 formed

a high-mannose cluster that conferred neutralizing activity of 2G12 on influenza virus.

Discussion

Addition, removal or substitution of N-glycosylation sites of the glycan shield are one of the

common strategies for RNA viruses to evade recognition by antibodies [20,48–50]. In this

study, we demonstrated that 2G12, despite being elicited as an anti-HIV antibody, also has the

ability to broadly neutralize human H3N2 influenza viruses that have evolved over the past

five decades. Through comprehensive and evolutionary trajectory-based site-specific glycopro-

teomics, mutagenesis, and nsEM imaging, we found that neutralization by 2G12 is achieved

through binding to two high mannose glycans present on N-glycosylation sites, N165 and

N246, that are proximal to the HA RBS. 2G12 then likely represents a neutralizing antibody

against human influenza viruses that only recognizes a glycan epitope on the HA. The emer-

gence of N246 around 1980 endowed H3N2 viruses with an oligomannose cluster at N246 and

N165 that can be recognized by 2G12. Escape mutants at these sites are then likely to have a

high fitness cost, since abolition of the conserved N165 decreases viral fitness as shown here

and in a previous study [42], and abolition of the N246 site could not be rescued in recent

viruses.

How similar are the glycosylation profiles of antigens derived from virus with soluble

recombinant proteins is one of the important issues for vaccine design [51–54]. For example,

some differences in the glycoforms of soluble and viral HIV-1 Env have been found that may

affect neutralization and elicitation of bnAbs [52, 53]. From our data on H3N2 influenza

viruses, the site-specific high mannose glycans are conserved between recombinant HA from

293F cells and viral HAs derived from MDCK-SIAT1 cells (Madin-Darby canine kidney cells

overexpressing the α-2,6-linked sialic acid receptor). This finding also implies that soluble

recombinant HA could be used as an immunogen to attempt to elicit anti-carbohydrate anti-

bodies. Although self-glycans are poorly immunogenic, if in high enough density on viral gly-

coproteins, they can become a focus of the immune response by antibodies that interact with

both glycan and protein [4,35,55,56]. Multivalent binding to the high mannose glycans con-

tributes to a potent IC50 of 2G12 against HIV-1. Notably, 2G12 exhibited neutralization (IC50

from 1 to 10 μg/ml) of sensitive HIV-1 viral strains through involvement of four major N-gly-

cosylation sites that constitute the high mannose patch [26,57]. In our study, 2G12 neutralized

sensitive H3N2 influenza strains only at sub-micromolar IC50 through targeting a mannose

cluster that is formed by only two N-glycosylation sites, and is less potent compared to bnAb

CR9114 by five to ten-fold. The 1 to 2-log difference seems to result from fewer high mannose

N-glycosylation sites within the HA trimer compared to HIV-1 Env. Incomplete neutralization

by 2G12 may be a consequence of other nearby N-glycosylation sites (N133, N285) that may

contain ligands for 2G12, which distract from its neutralizing ability, e.g. 2G12 binding to wild

type Bris07 HA has other minor poses that may include these glycans (Fig 5B). Heterogeneity

in the glycan composition can also result in incomplete neutralization, especially for 2G12 if

any complex glycans were present in addition to any heterogeneity in high mannose glycans.

In a previous study, at low concentration (0.5 mM) of Man7, Man8, and Man9, 2G12 binding

to gp120 was almost the same for Man9 and Man8 and less for Man7 (by ~20%) [58]. Incom-

plete neutralization is also found in several antibodies against HIV-1 possibly as a result of gly-

can heterogeneity [59–61].
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Since 2G12-like antibodies are not typically found to be induced by influenza virus HA, it

seems to indicate that the mannose cluster on the HA has not yet been a focus of immune

selection pressure. Many enveloped virus pathogens, such as Ebola virus, Hepatitis C virus,

Lassa fever virus and coronaviruses, including Severe acute respiratory syndrome coronavirus

2 (SARS CoV-2), are highly glycosylated and present oligomannose on their surface antigens

(Fig 6). [44,54,62,63].

Indeed, besides H3N2 HAs and HIV-1 Env, 2G12 has been purported to bind SARS-CoV-2

S by recognizing high mannose glycans on the S2 subunit [64]. Mannose clusters on surface

antigens can also be recognized or captured by various lectins, such as human mannose bind-

ing lectin (MBL) or DC-SIGN [65–67]. Similar to our finding of high mannose glycans near

the RBS on H3 HA, some high mannose glycans are also found near the RBS of the glycopro-

tein of Lassa virus [44,54]. Based on our findings, it is possible that other clusters of high man-

nose glycans present near the critical functional sites of highly glycosylated viruses could be a

target for 2G12. Furthermore, 2G12-like, Fab-dimerized glycan-reactive antibodies were

recently isolated from an HIV-1 naïve population with a precursor frequency of 1 in 340,000.

Such glycan-reactive antibodies were also found in rhesus macaques infected with simian-

human immunodeficiency virus (SHIV), and Fab-dimerized glycan-reactive antibody precur-

sors could be boosted through vaccination [68]. Thus, 2G12-like anti-carbohydrate antibodies

without a domain swap can indeed be elicited through vaccination. Here, we reveal that 2G12

Fig 6. Differential under-processing of glycan shields in different enveloped viruses. (A) From left to right, HK68

HA, Severe acute respiratory syndrome coronavirus (SARS-CoV) spike, SARS-CoV-2 spike, MERS-CoV spike, Vic11

HA, LASV GPC, HIV-1 Env (PDB ID: 4FNK, 5X58, 6VSB, 5X59, 4O5N, 5VK2, 5ACO, respectively) [15,38,93–96].

Glycans are colored according to site-specific oligomannose-type glycan content [44,45], as per the key. (B) Glycans

are colored according to Man8/9GlcNAc2 content (2G12 epitopes), as per the key.

https://doi.org/10.1371/journal.ppat.1009407.g006
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could neutralize human H3N2 viruses due to the emergence of an N246 glycosylation site

around 30–35 years ago during H3N2 evolution from the 1968 pandemic. As 2G12 also binds

to high mannose epitopes on HIV-1 Env, this raises the question whether such carbohydrates

could act as a universal epitope on enveloped RNA viruses. The ontogeny of 2G12 has not

been documented and most antibodies against viruses that have carbohydrate in their epitopes

to date have been found in patients with chronic HIV-1 infection. While 2G12-like Fab-dimer-

ized glycan antibodies and precursors have been discovered in HIV-1-naïve human subjects

[68], further vaccination studies would shed light on eliciting 2G12-like anti-carbohydrate

antibodies against highly glycosylated viruses.

Materials and methods

Sequence and structural analyses

A total of 55,135 human H3N2 HA protein sequences were obtained from Global Initiative on

Sharing All Influenza Data (GISAID) from 1968 to 2019 (https://www.gisaid.org/). Sequences

were aligned with MAFFT and cleaned [69]. Potential N-glycosylation sites (NXT/S, where X

cannot be proline) were extracted with Biopython module and a stack graph of N-glycosylation

sites on each HA among years was output in R [70]. To calculate the distance between each N-

glycosylation site and the RBS, PDB: 6AOV was used and the distance from the Cα of each

asparagine to the centroid of the sialic acid of the bound 6’-sialylated di-N-acetyllactosamine

(6´-SLNLN) in the RBS was measured in PyMOL [71].

Virus generation, passage and site-directed mutagenesis

To investigate the potency and breadth of anti-carbohydrate IgGs against human H3N2 influ-

enza viruses, a panel of 13 H3N2 strains (from 1968 to 2016, S3 Table) were generated, recov-

ered and titrated as in previous studies [39,72]. Briefly, these viruses were assembled on a

WSN background with the HA gene from each tested H3N2 strain, the HK68 NA gene, and

the remaining six gene segments from WSN. The eight genes were constructed in pHW2000

plasmids and transfected and recovered in a co-culture of 6:1 of human 293T cells and

MDCK-SIAT1 cells. The Pan99 and Bris07 HA (N165/N165A) were used to generate virions

for evaluation of the IC50 of 2G12, CR9114, and IgG311. To validate the neutralizing activity of

2G12 IgG on clinical strains, two strains A/Taiwan/82486/2014 and A/Taiwan/87302/2016,

from influenza surveillance were kindly provided by Taiwan Centers for Disease Control

[73,74]. To further understand which N-glycosylation site on HA conferred the neutralizing

activity for 2G12 IgG, three mutants (N165A, N246K, and N165A/N246K) of A/Panama2007/

1999 and A/Brisbane/10/2007 were generated using QuikChange XL Mutagenesis kit (Strata-

gene). All reverse genetics-derived and clinical strains were amplified in one passage in

MDCK-SIAT1 cells and the TCID50 was measured with the Reed and Muench method [75].

The TCID50s of Pan99 and Bris07 wild type, N165A, N246K, and N165A/N246K were plotted

with Prism 7.0 (Graphpad software).

IgG expression and purification

The heavy and light chains of each anti-carbohydrate antibody, one anti-influenza virus anti-

body (CR9114), and one anti-malarial antibody (IgG311) (S1 Table) were cloned into

phCMV3 vector which contained an N-terminal secreting signal peptide, and its C-terminus

was fused to human IgG1 CH1 to CH3 domains for the heavy chain. All IgG1 were expressed

in ExpiCHO expression system (Thermo Fisher Scientific) for two weeks to reach maximum

yield according to the manufacturer user’s guide. The supernatant was harvested and filtrated
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according to manufacturer’s manual and further purified by the 5 ml HiTrap Protein G HP

antibody purification columns. The elutes were neutralized with 0.1 M glycine buffer (pH 2.8),

buffer exchanged into 1× Dulbecco’s phosphate-buffered saline (DPBS) and concentrated with

Amicon Ultra-15 centrifugal filter (30-kDa cut-off) for microneutralization assay.

Microneutralization

Measurement of neutralizing ability of 2G12 and other seven anti-carbohydrate binding anti-

bodies was performed with microneutralization as described [76]. Briefly, around 5,000

MDCK-SIAT1 cells were plated in 96-well plates with 100 μl Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with 1× non-essential amino acids (NEAA), 1× penicillin-

streptomycin and 10% fetal bovine serum (FBS) and incubated overnight at 37˚C, 5% CO2

incubator. Cells were washed twice with DPBS. 100 TCID50 H3N2 viruses were co-incubated

with 200 μg/ml anti-carbohydrate IgG in 100 μl Opti-MEM diluent containing 0.8 μg/ml N-

tosyl-L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin. After a one-hour incuba-

tion at 37˚C, the mixture was transferred to the cell plate and incubated at 37˚C, 5% CO2 for

72 hr. Cell viability was measured using the CellTiter 96 AQueous One Solution cell prolifera-

tion assay (Promega) according to the manufacturer’s manual as in [76]. For 2G12, CR9114,

and IgG311 were further 2-fold serially diluted from 400 μg/ml to obtain the IC50 (50% maxi-

mal inhibitory concentration). For Bris07 WT, N165A and clinical strains, the IC50 was deter-

mined by enzyme-linked immunosorbent assay (ELISA) in triplicate [77]. The IC50 values

were calculated by four-parameter nonlinear fit model and plotted with Prism 7.0 (Graphpad

software).

Recombinant HA expression and purification

Preparation of recombinant HA for nsEM and mass spectrometry was as previously described

[78,79]. The HA ectodomain in H3 numbering (11 to 329 in HA1 and 1–176 in HA2, respec-

tively) was fused with an N-terminal secreting signal peptide and followed by a C-terminal

BirA biotinylation site, thrombin cleavage site, T4 trimerization domain, and Hisx6 tag in a

phCMV3 vector. Different HA plasmids were transfected into Expi293F cells to express soluble

recombinant HAs. Incubation conditions and harvest procedures were performed according

to manufacturer’s guide (Thermo Fisher Scientific). HA proteins generated from Expi293F

cells were purified by Ni Sepharose excel histidine-tagged protein purification resin (GE

Healthcare), buffer exchanged with 20 mM Tris-HCl pH 8.0 and 150 mM NaCl. All HAs were

treated with trypsin and purified by size exclusion chromatography (SEC) using a Hiload 16/

90 Superdex 200 column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM NaCl, and 0.02%

NaN3.

Construction of A/Panama/2007/1999 HA mutant library

The method of library preparation was as described previously [80]. Briefly, the A/Panama/

2007/1999 HA mutant library was generated by multiple overlapping PCR reactions (S4

Table). The short inserts with differences among the receptor binding domain (residue 117 to

265, in H3 numbering) of both Mos99 and Pan99 (256 combinations) on HA were amplified

and assembled at equal molar into final library insert. All library inserts and vectors were sub-

jected to PCR with BsmBI cutting sites at both the 5´ and 3´ ends. Primers are summarized in

S4 Table. Vectors and inserts were then digested by BsmBI (New England Biolabs) and ligated

using T4 DNA ligase (New England Biolabs). The ligated product was purified with NucleoS-

pin Gel and PCR Clean-up kit (Clontech Laboratories) and transformed into MAX Efficiency

DH10B cells (Thermo Fisher Scientific), plated and incubated at 30˚C overnight. About two
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million colonies were collected. The library plasmids were purified from the colonies with

NucleoBond Xtra Maxi Kit according to manufacturer’s manual (Clontech Laboratories).

Deep mutational scanning experiments

Virus mutant libraries were rescued in HEK 293T/MDCK-SIAT1 cells co-culture in a 6:1 ratio

in T75 flasks (Corning). Virus libraries were harvested at 3-day post transfection and titrated.

To test the fitness of viral mutant libraries at with or without 2G12 IgG, the viral libraries with

a multiplicity of infection (MOI) = 0.0005 were incubated with or without 400 μg/ml 2G12

IgG in 37˚C incubator for one hour. MDCK-SIAT1 cells in T75 flasks were washed twice with

PBS and infected with MOI of 0.0005 in Opti-MEM medium supplemented with 0.8 μg/ml

TPCK-treated trypsin for two hours. Infected cells were then washed twice with DPBS. Fresh

Opti-MEM medium supplemented with 0.8 μg/ml TPCK-treated trypsin with or without

400 μg/ml 2G12 IgG was added to the cells. Supernatants were harvested at 24 hours post-

infection. Two replicates were performed for both transfection and virus infection indepen-

dently. Viral RNA was then extracted from the viral culture with QIAamp Viral RNA Mini Kit

(Qiagen). The extracted RNA was then reverse transcribed into cDNA by Superscript III

reverse transcriptase (Thermo Fisher Scientific). The cDNA was then amplified by PCR to add

part of the adapter sequence and barcoding sequences required for Illumina next-generation

sequencing (NGS) (A/Panama/2007/1999 HA mutant library). Illumina next-generation

sequencing was performed with the MiSeq PE300 system at The Scripps Research Institute.

Sequencing data analysis

Sequences handling from next-generation sequencing libraries were described as previously

[80]. A paired-end read was filtered and removed if the corresponding forward and reverse

reads did not match the residues designed or were low-quality reads. Mutants were counted by

comparing every paired-end read to the wild type reference. Relative fitness was calculated for

each mutant [76] and by the following formula:

Relative fitness ¼ Log
10

ðNumbersmutant;post� selection þ 1Þ=ðNumbersmutant;input þ 1Þ

ðNumbersWT;post� selection þ 1Þ=ðNumbersWT;input þ 1Þ

For a given mutant, Numbersmutant,post-selection represents the number of paired-end reads

in post-selection mutant library, whereas Numbersmutant,post-selection represents the number of

paired-end reads in the input plasmid library. NumbersWT,post-selection and NumbersWT,input

represent the number of paired-end reads that corresponds to wild types in the post-selection

mutant library and input plasmid mutant library, respectively. A pseudonumber is added to all

count items to prevent the denominator being zero. Both high fitness of 2G12 sensitive and

resistant variants were selected for sequence logo analyses [81]. Custom python scripts for

deep mutational scanning data analysis have been deposited to https://github.com/

wchnicholas/Pan99_2G12_escape.

Fab generation and negative-stain electron microscopy

2G12 Fab was generated from IgG with IdeS (Genovis) digestion in buffer containing 100 mM

Bis-Tris pH 6.5, 150 mM NaCl. The reaction was incubated at 37˚C for 2 hours followed by

SEC by Hiload 16/90 Superdex 200 column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM

NaCl. To form immune complexes, HA and 2G12, as a domain-swapped Fab dimer, were

incubated at a 1:3 ratio of HA to 2G12 for 2 hours at room temperature. To prepare negative-

stain EM grids, immune complexes at ~30 μg/ml were deposited onto glow-discharged
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carbon-coated 400 mesh copper grids (Electron Microscopy Sciences, EMS) and stained with

2% w/v uranyl formate. Grids were imaged on a 200kV Tecnai T20 transmission electron

microscope (FEI) with an Eagle CCD 4k camera (FEI) at 62,000x nominal magnification.

Micrographs were collected using Leginon [82], particles were picked and extracted using

Appion [83], and particles were categorized into reference-free 2D class averages using Relion

[84,85]. We were unable, however, to get convergence to achieve higher resolution 3D recon-

structions. The putative binding interactions between 2G12 Fab and N165 and N246 of wild

type Bris07 HA, N246 of Bris07 N165A HA were fitted based on the negative-stain EM and the

binding features of 2G12 to oligomannose identified in a previous HIV-1 structural study [11].

Biolayer interferometry binding assay

The binding affinity of 2G12 IgG to H3 HAs was measured by biolayer interferometry (BLI)

with Octet RED96 system (ForteBio) according to a previous study [86]. Briefly, His-tagged

trimeric recombinant HA of Bris07 WT and N165A (50 μg/ml) prepared in 1× kinetics buffer

(0.01% BSA and 0.002% Tween 20 in 1× PBS) was loaded onto Ni-NTA biosensors. Sensors

without loading were used as the baseline for background subtraction. Briefly, the assay con-

sisted of five steps: (1) baseline: 60 secs with 1× kinetics buffer; (2) loading HA0 for 3 mins; (3)

repeat step (1); (4) association: 2 mins with 2G12 IgG; and (5) dissociation: 2 mins with 1×
kinetics buffer. Kd, Data were fitted with 2:1 hetero-ligand binding mode for both Bris07 WT

and Bris07 N165A to determine Kd.

Purification of H3N2 influenza viruses

Viruses were purified as described previously [87]. Briefly, A/Hong Kong/1/1968 and A/Victo-

ria/361/2011 viruses were grown in MDCK-SIAT1 cells in 25 ml of Opti-MEM with 0.8 μg/ml

TPCK-treated trypsin in T175 flasks in 37˚C, 5% CO2 incubator. Supernatant was harvested

after 48–72 hrs and centrifuged at 2000 rpm for 15 mins at 4˚C and filtered with a 0.45 μm vac-

uum filter. Following filtration, around 200 ml medium was transferred to six 38.5 ml, thin-

wall ultracentrifugation tubes (Beckman Coulter). The viral particles were pelleted down with

SW28 swinging-bucket rotor at 18,000 rpm for 3 hrs at 4˚C. The supernatants were aspirated,

and the pellets were then resuspended in 1 ml of DPBS. 30 μl of the concentrated viruses with-

out reduction was used for SDS-PAGE analyses. The gels were stained with instantBlue (Expe-

deon), and the band corresponding to molecular weight for HA0 was sliced and shipped for

gel extraction, protease digestion, and glycoproteomic analyses.

Release and labelling of N-linked glycans

Excised HA gel bands were washed alternately with acetonitrile and water before drying in a

vacuum centrifuge. The bands were rehydrated with 100 μl of water and incubated with

PNGase F at 37˚C overnight. Aliquots of released N-linked glycans were also fluorescently

labelled with procainamide, by adding 100 μl of labelling mixture (110 mg/ml procainamide

and 60 mg/ml sodium cyanoborohydrate in 70% DMSO and 30% glacial acetic acid) and incu-

bating for 4h at 65˚C. Procainamide labelled glycans were purified using Spe-ed Amide 2 col-

umns (Applied Separations).

Glycan analysis by HILIC-UPLC

Labelled glycans were analyzed using a 2.1 mm x 150 mm Acquity BEH Glycan column

(Waters) on an Acquity H-Class UPLC instrument (Waters), with fluorescence measurements

occurring at λex = 310 nm and λem = 370 nm. The following gradient was used: time (t) = 0:
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22% A, 78% B (flow rate = 0.5 ml/min); t = 38.5: 44.1% A, 55.9% B (0.5 ml/min); t = 39.5: 100%

A, 0% B (0.25 ml/min); t = 44.5: 100% A, 0% B (0.25 ml/min); t = 46.5: 22% A, 78% B (0.5 ml/

min), where solvent A was 50 mM ammonium formate (pH 4.4) and B was acetonitrile. Quan-

tification of oligomannose-type glycans was achieved by digestion of fluorescently labelled gly-

cans with Endo H, and clean-up using a PVDF protein-binding membrane (Millipore).

Empower 3 software (Waters) was used for data processing.

Mass spectrometry of glycopeptides

Aliquots of 30–50 μg of recombinant HA proteins were denatured, reduced and alkylated as

described previously [54]. For gel bands of virally derived HA, reduction and alkylation was

performed according the protocol described by Shevchenko et al. [88]. Proteins were proteo-

lytically digested with trypsin, chymotrypsin, and Glu-C (Promega). Reaction mixtures were

lyophilized and peptides/glycopeptides were extracted using C18 Zip-tip (MerckMilipore)

cleanup. Samples were resuspended in 0.1% formic acid then analyzed by liquid chromatogra-

phy-mass spectrometry using an Easy-nLC 1200 system coupled to an Orbitrap Fusion mass

spectrometer (Thermo Fisher Scientific). Glycopeptides were separated using an EasySpray

PepMap RSLC C18 (75 μm × 75 cm) column with a 240-min linear solvent gradient of 0–32%

acetonitrile in 0.1% formic acid, followed by 35 min of 80% acetonitrile in 0.1% formic acid.

Mass spectrometry settings include an LC flow rate of 200 nL/min, spray voltage of 2.8 kV,

capillary temperature of 275˚C, and an HCD collision energy of 50%. Precursor and fragmen-

tation detection were performed using an Orbitrap at the following resolution: MS1 = 100,000

and MS2 = 30,000. The automatic gain control (AGC) targets were MS1 = 4e5 and MS2 = 5e4,

and injection times were MS1 = 50 and MS2 = 54. The following cleavage sites were used for

the respective proteases; trypsin = R/K, chymotrypsin = F/Y/W, Glu C = E/D. The number of

missed cleavages was set at 3. The following modifications were also included: Carbamido-

methyl (+57.021464, target = C, fine control = fixed), Oxidation (+15.994915, target = M, fine

control = variable rare 1), Glu to pyro-Glu (-18.010565, target = peptide N-term E, fine

control = variable rare 1), and Gln to pyro-Glu (-17.026549, target peptide N-term Q, fine

control = variable rare 1). Glycopeptide fragmentation data were extracted from raw files

using Byonic (Version 3.5.0) and Byologic (Version 3.5–15; Protein Metrics Inc.). Glycopep-

tide fragmentation data were manually evaluated with true-positive assignments given when

correct b- and y- fragments and oxonium ions corresponding to the peptide and glycan,

respectively, were observed. The precursor mass tolerance was set at 4 ppm for precursor ions

and 10 ppm for fragment ions. A 1% false discovery rate (FDR) was applied. The extracted ion

chromatographic areas for each true-positive glycopeptide, with the same amino-acid

sequence, were compared to determine the relative quantitation of glycoforms at each specific

N-linked glycan site.

Fully glycosylated models of HK68 and Vic11 H3N2 HAs were created using crystal struc-

tures (PDB ID: 4FNK and 4O5N) [15, 89]. The most dominant glycoform presented at each

site was modelled onto the N-linked carbohydrate sites in Coot [90].

Supporting information

S1 Table. Anti-carbohydrate HIV-1 antibodies analyzed in this study.

(DOCX)

S2 Table. Residue differences between Mos99 and Pan99 in the receptor binding domain.

(DOCX)
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S3 Table. Human H3N2 viruses analyzed in this study.

(DOCX)

S4 Table. Primer sets for construction of Pan99 N-glycosylation HA library.

(DOCX)

S1 Fig. Neutralizing activity of 2G12, CR9114, and IgG311 antibodies against human

H3N2 viruses. The 2G12 IgG only neutralized contemporary H3N2 influenza strains but not

early ones. The anti-influenza virus broadly neutralizing antibody, CR9114 IgG, neutralized

early and contemporary virus strains. The anti-malarial antibody, IgG311 showed no neutral-

izing activity against human H3N2 viruses. HK68, Bk79, SD93, Bris07, Vic11 were denoted by

empty circles, filled circles, empty squares, filled squares, and empty diamonds, respectively.

CR9114, 2G12, and IgG311 are represented in red, blue, and black. The IC50 > 400 μg/ml indi-

cates no neutralizing activity.

(TIF)

S2 Fig. Neutralizing activity of seven anti-carbohydrates antibodies against HIV-1 to

human H3N2 viruses. Seven anti-carbohydrate antibodies against HIV-1 do not neutralize

any H3N2 viruses at 200 μg/ml in a microneutralization assay. Dashed line represents the OD

for healthy cell controls with no virus.

(TIF)

S3 Fig. HILIC-UPLC N-linked glycan analysis. Chromatograms of fluorescently labelled N-

linked glycans on HAs from H3N2 strains: HK68, Leningrad86, Shangdong93, Wyoming03,

Perth09, Victoria11, and Michigan14. Note the dominant peak of Man5GlcNAc2 on HK68,

whereas the 2G12 sensitive strains have prominent Man8/9GlcNAc2 peaks.

(TIF)

S4 Fig. Site-specific N-linked glycosylation of viral and recombinant H3N2 HA glycopro-

teins. Viral and recombinant HAs from HK68 and Vic11 and their glycans analyzed by

LC-MS. Glycans are colored according to the key.

(TIF)

S5 Fig. Site-specific N-linked glycosylation of recombinant Bris07 wild type and N165A

HA glycoproteins. Each N-glycan of the HAs was analyzed by LC-MS. Glycans are colored

according to the key.

(TIF)

S6 Fig. Binding kinetics and affinity of 2G12 to recombinant Bris07 WT and Bris07

N165A HA proteins. The binding of 2G12 IgG against recombinant Bris07 WT and Bris07

N165A HA proteins was measured by biolayer interferometry (BLI). Blue lines indicate the

response curves and red dashed lines represent the fitting curve with 2:1 hetero-ligand binding

model for both Bris07 WT and Bris07 N165A. Binding kinetics were measured ranging from

2000 nM to 250 nM by 2-fold serial dilution. The dissociation constant (Koff1/ Koff2), associa-

tion constant (Kon1/ Kon2), equilibrium dissociation constant (Kd1/ Kd2), and R2 of the fitting

are summarized.

(TIF)

S7 Fig. The spatial distribution of N-glycosylation sites involved in 2G12 recognition on

HIV-1 Env trimer and influenza H3 hemagglutinin. (A) Front view of HIV-1 Env trimer

(PDB: 4ZMJ) [97]. Oligomannose on four N-glycosylation sites, N295 (red), N332 (marine),

N339 (yellow), and N392 (purple) are involved in 2G12 recognition [11,46]. (B) Close-up view

of N295 and N332 on HIV-1 Env. The distance between the Cα’s of N295 and N332 is 4.6Å
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(yellow dashed line). (C) Top view of influenza H3 hemagglutinin trimer (PDB: 6AOV) [91].

Oligomannose on two N-glycosylation sites, N165 (red) and N246 (marine), are involved in

recognition by 2G12. (D) Close-up view of H3 hemagglutinin trimer around N165 and N246.

The distance between Cα of N165 and N246 on adjacent strands of a beta-sheet is also 4.6Å
(yellow dashed line).

(TIF)

S8 Fig. Glyco-network of N165 and N246 on HA. Schematic of Man9GlcNAc2 (left panel).

The D1, D2, and D3 arms of Man9GlcNAc2 are in black, yellow, and purple, respectively, and

GlcNAc2 in green here and in the other panels. Top view of A/Brisbane/10/07 (H3N2) HA

(PDB 6AOV) [91]. Glycans on N165 and N246 were modelled with Man9GlcNAc2 by

Charmm-Gui [92] (middle panel). The location of N165 and N246 in each protomer is in red

and cyan, respectively. Distances between the D3 arm of N246 to the D1 and D3 arms of N165

are 26 Å and 29 Å, respectively in the same protomer. The right panel illustrates triangles

formed by D1 arms (black triangle) and D3 arms (purple triangle) of Man9GlcNAc2 on each

protomer of HA. The distances between the ends of D1 to D1, and D3 to D3 of two N246 on

different HA protomers are 14 Å and 44 Å, respectively.

(TIF)
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