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Abstract— An observer based adaptive detection methodology
(ADM) is proposed for estimating frequency and its rate of
change (RoCoF) of the voltage and/or current measurements
acquired from an instrument transformer. With guaranteed
convergence and stability, the proposed methodology
effectively neutralizes the effect of the measurement distortions
like harmonics, decaying DC components and outliers by
adding its counter negative. It is robust to noise statistics,
performs well while encountering step changes in
amplitude/phase and is demonstrably superior to its precursors
as established by test results. A benchmark IEEE NETS/NYPS
16 machine 68 bus power system has been used for
performance evaluation of robust ADM against its precursors
and scaled laboratory setup based on OP5600 multiprocessors
was used for establishing its real-time applicability.

Index Terms— Adaptive, Dynamic, Lyapunov, Frequency, rate
of change of frequency (RoCoF), Robust, Stability.

I. INTRODUCTION

REQUENCY and its rate of change are prime indicators

of stability and serve as inputs for protection/control
devices in a power system [1]-[2]. Therefore, swift and
accurate estimation of frequency and RoCoF is a
prerequisite to tackle potential power system instabilities
and avert possible malfunctioning of protective devices and
limiters [2]-[4]. However, large scale integration of
renewable energy sources impair the estimation of these
parameters due to their stochastic nature, inertia deficiency,
and high ramp rates [1]-[5]. Estimation accuracy is further
impaired by poor-fit signal models and non-ideal
characteristics of the measurement system (instrument
transformers and measurement chain) as it distorts the
measured signals to some degree [6]-[7]. Inadequate quality
of the estimated RoCoF has been identified as a cause
behind false tripping of Loss of mains (LOM) relays as
LOM relay uses estimated RoCoF as a protection metric [8]-
[10]. Likewise, effectiveness of the fast frequency control
(or protection) service relies on the accuracy of frequency
and RoCoF estimates utilized in the derivation of the
law/logic [11]-[14]. Stepped jump in the measurement
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signal parameters (amplitude/phase) can trigger or threaten
to trigger cascaded control and protection system actions
which can lead to generation loss and genuine problems in
frequency management. For example, a generation loss of
1200MW following a major fire incident in southern
California on August 10, 2016 was triggered by a stepped
phase jump which caused the estimated frequency to cross
the threshold [5]. It is therefore necessary to design a robust
paradigm to estimate frequency and RoCoF to achieve
desired levels of accuracy as specified by IEEE standards
[15]-[17] for all possible measurement distortions and
anomalies to enable timely action for events leading to
possible disconnection of supply.

Using a direct derivative to obtain frequency/RoCoF is
aggravated by the poor power quality waveforms obtained
from the instrument transformers. In this context, various
architectures for estimation of frequency and RoCoF have
been reported ([18]-[22] and references therein). The
frequency divider (intended for use in transient stability
analysis) is an approximate method for estimation of power
system frequency [23]. Network/machine impedances are
required in its implementation. Methods like notch filters
[19], discrete Fourier transform and its variants may not
perform well during transient conditions [20]. Likewise,
phase locked loops (PLLs) [20], Taylor-Kalman based
estimation algorithm and related methods suffer from signal
modelling  inaccuracies [20]-[21]. Moreover their
performance deteriorates due to fluctuations in the
measurement and may not produce accurate estimates.
However, its implementation requires prior information
about signal model. An efficient rudimentary method of
computing RoCoF from estimated frequency is the rolling
window methodology. In this methodology RoCoF is
computed by dividing the frequency deviation over the
window length by time duration of the window. Averaging
methods like this generally produce inaccurate estimates and
their performance is significantly affected by the selection
of window length [22]. Enhanced versions using
Interpolated discrete Fourier transform (IDFT) such as
generalized Taylor-weighted least squares based IDFT
(GTWLS-IDFT) [21], IDFT based Kalman filter (IDFT-KF)
[22] have been reported to be effective. However, their
performance is affected by sudden amplitude and phase
jumps, and decaying DC components (which are a
consequence of line/load/generation switching, tap changing
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of the transformers, stepped changes in power through
inductive components (overhead line, transformer), and
faults) [5], [10]. Moreover, their performance is affected by
distortions (not accounted for in the signal model) and noisy
measurements acquired from instrument transformers.

To address the aforementioned issues, a robust nonlinear
observer based adaptive detection methodology (ADM)
scheme is proposed. It ensures mitigation of heavy tailed
impulsive noise, effective neutralization of the harmonics,
outliers and DC components present in the measurements by
adding its counter negative. It waives off the requirement of
inverse of the transducer transfer function required to
eliminate distortion [6]-[7]. It performs well even when
measurement noise is quite high (3% to 15%). IEEE 16
machine 68 bus power system (Fig. 1, [24]) has been used
for performance evaluation of the methodology against its
contemporary methodologies and real-time tests (performed
on a laboratory setup of OP5600 Opal-RT multiprocessors)
of the case studies are presented to establish the applicability
of the method. It is well suited for the realization of a range
of control and protection applications [8]-[14], [25]-[29].

Fig. 1. IEEE NETS/NYPS 16 machine 68 bus system [24]

The contributions/advantages of this work are as follows:

e A Lyapunov criterion based robust ADM methodology
has been derived and used to estimate the frequency and
RoCoF from an analogue measurement without any prior
knowledge of the measurement signal model. Assumed
model of the signal accounts for distortions, harmonics
and DC components and as such the ADM estimator is
robust to measurement distortions.

e Robust ADM algorithm convergence is assured unlike
currently available state of the art methodologies in the
literature [18]-[22]. Convergence is corroborated by the
persistence-of-excitation (PE) condition.

e The proposed methodology gives accurate estimates of
frequency and RoCoF (with maximum percentage
estimation errors less than 0.5%) when measurement
noise (irrespective of its statistics) is high (2% to 15%).

e The ADM is robust to decaying DC outliers, stepped
changes in the amplitude/phase and harmonic
contamination in the measurements.

e The maximum and root mean square values of estimation
errors (i.e., maximum, root-mean-square of the frequency
error (FE) and maximum, root-mean-square of the RoCoF
error (RE)) with robust ADM scheme are consistently and

significantly lower than currently available methods in
literature for all case studies [18], [21]-[22].

e Opal-RT multiprocessors based scaled laboratory setup
has been used to validate the applicability of the
developed methodology in real-time (RT). Actual field
data was also used for performance evaluation.

The remainder of the paper is organized as follows:

Instrumentation system and signal model has been discussed
in section-I1, the robust observer methodology (robust ADM
algorithm) and its discrete implementation are discussed in
section-I11 and section-1V respectively. Detailed case studies
are presented in section-1V, real-time results in section-V
whereas the conclusions are presented in section-VII.
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Fig. 2. Schematic of the frequency/RoCoF estimation methodology from
analogue measurements.

Il. FIELD INSTRUMENTATION SYSTEM AND SIGNAL MODEL

Errors in the analogue measurements for frequency and
RoCoF estimation originate from an instrumentation system
(which includes instrument transformers, instrumentation
and control cables and associated burdens [30]) Fig. 2. In
some cases instrument transformer (IT) saturates due to
nonlinear characteristic of its core and it generates
harmonics on its own [31]. The saturation of ITs, length of
instrumentation cables and high burden resistance (Jonson
noise [30], [32]-[34]) contribute to the errors and have an
aggravating impact. Inaccurate frequency and RoCoF
estimates stem due to application/usage of poor fit signal
models as signal models used for frequency and RoCoF
estimation do not account for aforementioned measurement
distortions and anomalies and it can have potential practical
implications [35]. Prior knowledge of the transducer transfer
function inverse may be required to eliminate the distortion
in the acquired measurements. The signal model (1)
considered in this work is more generic and accounts for all
the distortions. Signal model and robust ADM observer
(discussed in next section) waives off the requirement of
transducer transfer function inverse (required to eliminate
the distortions [6]) from the estimation laws. Thus a generic
measurement from an IT at a power system bus is

represented mathematically as:
n

a(®) = Y @ @sin(@, O + $10)) + ance D% +1, (1)

)
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where, a;(t) is an amplitude, w;(t) the frequency in rad/s,
¢;(t) is a phase in rad, apc and Tp are the parameters of
DC component and 7. accounts for noise and related
distortions whereas n is the harmonic order. The amplitudes,
frequencies, phases and decaying DC component parameters
(apc and tp) are time evolving quantities.

I1l. RoBUST OBSERVER METHODOLOGY

The test system and the schematic of the methodology are
shown in Fig. 1 and Fig. 2 respectively. Analogue
measurements  acquired from the instrumentation
arrangement of the power system are processed by robust
ADM scheme (detailed below) to output the frequency and
RoCoF estimates. To derive the estimation laws, the
measurement equation (1) is expanded as (2).

n
a= Z agsin(w;t) + agicos(w;t) + apc (1 - é) + N,
i=1
= a(t) = 0TS + 17, 2
where,
S = [cos(w;t), sin(w;t) ... cos(wyt), sin(w,t), 1, (—t)]T,
0 = [ag; acy agz ey - sy Acn Apc aDCl]Tv as; = a;sing;,
A, = a;cos};, Apci = ApcTpe, i =1, ., N, W, = Nw,. O
is an unknown vector. Exponentially decaying DC term in
the signal model has been approximated by first order
Taylor’s series expansion in (2). Higher order terms of the
expansion are often significantly lower in magnitude. For
parameter estimation the unknown vector ‘©’ is required to
be estimated online. Hence,
a=0"s;a; = (@3 +ax)"% ¢ =cos ' (aq/a) ()
where, 8T = [ay; ¢y Agp Gy .. Ay Gen Apc Apcy]- @ IS the
estimated measurement whereas 4; is the estimated value of
a;. The analogue measurement a is observed through a
transduction circuit with transfer function G(s).
nz=G(s)-a=>2=G(s)-a 4)
= 72=G(s)-d =—G(s)OTS + G(s)n, (5)
where, d=a—4d,%Z=z—% and ® = ® — ©. The transfer
function G(s) is realizable and can be assumed as ‘proper
transfer function’ [36]-[37]. Time-domain representation of
the system (G(s) = C(sI — A)~B) is given by
& =Aa+B(-S"0 +7.) = Aa + BS (6)
7Z=~Ca @)
where,
§=-S"0+n, and a is an intermediate state vector.
Equations (6-7) relate the parameter estimation error ® with
7 through a. Therefore, Lyapunov function £(0,a) (8) is
constructed appropriately to derive the parameter update
law.

£(8,a) =2a"™Ma +58'T710 ®)
where, M is strictly positive and real (SPR) matrix and
ensures positive definiteness of £(0,a) and T =

diag(ycl Vs1Ve2Vs2 - ¥Yen Vsn VDC yDCl) is a gain matrix

with each element positive. Intermediate variable featuring
in the Lyapunov function (8) cannot be measured/generated
from (6) as & is unknown. To waive off the explicit
dependence of the parameter update laws upon intermediate
state variable vector ‘a’, the lemma 1 has been used.
Lemma 1 [36]-[37]: If the transfer function G(s) is real and
positive, then there exists a vector q, p > 0 and a matrix
M = MT > 0 which satisfies the following expressions.
MA+A™ = —pN —q"qand MB =CT 9)
where, matrix N = N'T > 0.
Using (9) the dependence of update law for estimation upon
intermediate state vector a can be waived off. Therefore,
L£(0,a) = -05a"q"qa — 0.5pa"N'a — 26 + o198
(10)
The value of “n” in the signal model (1) is chosen to be very
high such that the value of n. becomes significantly low. In
that case, 77, is extremely low. Therefore,
L£(0,a) ~ —0.5aTq"qa — 0.5pa"™Na — Z0TS + oTr-19
(11)
The parameter estimation law (12) ensures the negative
semi-definiteness (NSD) of the time-derivative of the
Lyapunov function candidate (13).
0=r%S =0 =T3S (12)
= £(6,a) = —0.5(a"q"qa) — 0.5p(a"Na) (13)
From (8-12), it can be deduced that £, @, Z, 8, ® € L, [35],
= 1im £(8 (8), a(t)) = Lo, < 0 (14)
Equation (14) means that the Lyapunov function converges
as it is a function of bounded variables, is positive definite
and has a NSD time derivative (provided (13) holds). The
individual update laws for the estimation of the signal
parameters are given below as deduced directly from
equation (12).
Q1 = YarZ sin(wit), Ay = ¥s1Z cos(wyt), -
C;icn = YenZ sin(wyt), asn = YsnZ cos(wyt), -
apc = ¥pcZ » dpci = —VpeiZt (15)
Where, Ye1 Vst Ye2 Vs2 - Yen Ysn VpC Vpe1 a@ré the estimation
gains for parameters @, Qg Gcp Asy - Aep Qsn Apc Apct
respectively.

Vector “S” should satisfy the persistence-of-excitation
(PE) condition to ensure swift convergence of parameter
estimates (Definition 4.3.1 in [36]). A piecewise continuous
function S: R* - R™ is persistently exciting in R™ if there

EEINT3

exist constants “p,”,
pol < lpg = ' [T S(OST (D) dt < pyl (16)
Assuming the presence of decaying DC components and
ignoring the permanent DC in the measurements, the PE
property (16-17) can be proven. For measurements acquired
from an instrument transformer, it is a realistic assumption

p,”, and “t,” such that

as DC component (apc(t) = aDCe‘Tﬁéf Vt,Tpc>0)isa
decaying exponential function.



As t increases, e"™¢t — 0 = apc(t) — 0. The decaying
exponential function (e"ﬁéf) has a stabilizing effect and the
terms corresponding to this DC component in ‘S’ can be
ignored in the derivation of PE condition.

In this context, “SS™” is a square matrix elements of
which come from sinusoidal functions given below:

sin(w;t) ,cos(w;t), sin?(w;t), cos?(w;t), -
sin(w;t)cos(w;t), cos(w]-t)sin(wit), sin(wjt)sin(wit)
cos(a)jt)cos(wit), i,j€[1,2,..,nlandi # j.
With 1, = 2mwi?, Ipg in (15) reduces to:

nwl‘l 0 0 (17)
(') 0 na)l_l

The ADM design methodology satisfies the PE condition
(16) with p; = mw;?! and 0 < py < wwi!. Moreover “S”
and its derivative being vectors with sinusoidal elements are
bounded i.e., S,S € L. Satisfying these conditions (PE
condition and S,$ € L), the exponential convergence of
the estimates is guaranteed. Therefore,

ae = yclsf =Ya ft{z sin(w,t)}dt (18)
as; = YSICf =Ys1 ft{i cos(w;t)}dt (19)
o 1/2 20

a; = (Vc21sf + yszlcf) (20)

b1 = sin™"(8s1/a;) (21)

It should be noted that equations (11-12) ensure the
convergence of other signal parameters (amplitude and
phase). The Frequency estimation law is derived by
minimizing the convex cost function (22) via steepest
descent method (Appendix-B.2 in [36]). The estimated
frequency (and RoCoF) converge to their respective true
(actual) values when tracking error € goes to zero i.e., € -
0 = &; - w]. wj is the actual value of w,. A convenient
way to ensure tracking error tends to zero is to adjust the
frequency estimate in the direction that minimizes a
quadratic cost function (22) of this tracking error via
steepest gradient approach (23) (section 1.2.6 in [36]). The
notion behind using square of the € (and not its absolute
value) as objective function is to improve the accuracy and
stabilization of the dynamic estimate trajectory.
J =0.5E?=0.5(a—a)? where, E=(@—a) (22)
L0y = —1,0J /0w, (23)
= ®; = —nL,EXP_{a ktcos(kw t) — dgktsin(kw,t)}
~ —NuZ 2reillaktcos(kw t) — g ktsin(kw t)}  (24)
where, n, = |G(s)In, = 12/€lnw = 102 = 16|€] and 1,
is the tunable learning rate. Since 7, and 7, are positive
constants therefore n,Z = n,,€. Equations (15-16) (PE
condition) and (11) ensure that the Lyapunov function (8)
will have NSD time derivative. Therefore, the estimated
parameters would eventually converge to their actual values
for a given value of estimator gain ' which is tuned to
ensure swift dynamic response of the parameter estimator.
Standard particle swarm optimization algorithm (PSO) [38]
was used to obtain the optimal value of the gain I' offline

with integral-square-error (ISE) as cost function to ensure
swift parameter convergence (Fig. 3) [38]. PSO generates a
high-quality solution with stable convergence characteristic
than other stochastic methods [39]. Likewise, it is a better
option compared to empirical approaches as has been
demonstrated in [38]-[39]. Traditional empirical methods
lack the capability of forcing the estimate to follow actual
time trajectory [39]. Therefore, ADM estimator gains were
tuned optimally via PSO under different simulated scenarios
(power system contingencies) to get an optimized value of
the gain T.

IV. RoBUST OBSERVER: DISCRETE TIME REALIZATION

To realize the ADM algorithm (15) and (24) using a
microcontroller or a digital signal processor (DSP), the
estimate is calculated based on the previous value and
sampled quantities as follows.

al = a5 + Tyy ez sin(i@f (k — DTy) (25)
ak = ak ! + TyyZ cos(iak (k — 1)Ty) (26)
apc = apc' + TsypcZk (27)

allgm = ﬁI’SE% — (k = DT¢ypeiZi (28)
ABY = O - BF = ~Tn0J, /0wy (29)
SO = BF & ~TnEz X (30)

™ {ak ik Tscos (ik®dYTS) — ak ik Tysin(ik®dYTs)}
~ RoCoF, = —(2m) " 1nkZ, x (31)
n{akikTcos (ik®¥Ty) — ak ik Tysin(ik®FTy)}
and
“frerr = fro = Ts(m) "0k z, x
n{akikTycos (ik®dYTS) — @k ik Tysin(ik®5Tg)}
where, T is sampling time. The laws (25-32) can be directly
derived from the discrete equivalents of (8) and (22) given
by equations (33) and (34) below respectively.
L(04,7) = 05(afMay ) + 0.5(6FT18,) (33)
Jx = 0.58% = 0.5(a;, — ay)? (34)
Like “I'”, the choice of 7% has to be appropriate. A smaller
value of n% may guarantee convergence but at a very slow
speed and estimate may not be acceptable. Too high n¥ is

the cause of algorithm divergence.

Parameter
Estimation o

(32)

Measurement (7(t) ADM
a(t ”
....... (_)> Tr%ﬁgﬂﬁt'on T Methodology

cT G(s) ~Offline Tuning
...... Particle Swarm
Optimization

Fig.3: Schematic of the gain tuning of ADM algorithm via offline PSO with
integral square error (I1SE) as fitness function.
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Fig. 4. RoCoF recording following the tripping of a 765kV line connecting
Bilaspur and Rajnandangaon (Courtesy: NRLDC-POSOCO India).
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TABLE I; ESTIMATION ERRORS : LATENCY= 100ms, 2% NOISE

Errors | PMU GTWLS | IDFT-KF ADM

Max (FE) (Hz) 0.1865 | 0.0776 0.0675 0.0255
RMSE (FE) (Hz) | 0.0584 | 0.0295 0.0142 0.0041
Max (RE) (Hz/s) 0.3776 | 0.2678 0.2311 0.1050
RMSE (RE) (Hz/s) | 0.1879 | 0.0648 0.0493 0.0215

TABLE II; ESTIMATION ERRORS: LATENCY= 100ms, 15% NOISE

Errors | PMU GTWLS | IDFT-KF ADM

Max (FE) (Hz) | 0.7528 | 0.5212 0.4550 | 0.0882
RMSE (FE) (Hz) | 0.1984 | 0.1295 0.0942 0.0241
Max (RE) (Hz/s) 0.6776 | 0.4678 0.4311 0.1551
RMSE (RE) (Hz/s) | 0.3879 | 0.1648 0.1493 0.0615

Theorem 1: If the frequency/RoCoF is updated using (31-
32), then estimated quantity tracks its actual time trajectory
and the estimation error decays at an exponential speed
provided adaptive gain n¥ satisfies (35) and 0 < 8, < 2.
ope BT _ 275 (35)
© (0&/057)? (0€1/ 00 Vax

Proof: With J, as Lyapunov function, and using (34), the

condition for nX = n2P* (35) can be proven (Appendix-A).
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Fig. 5. Gaussian Case: (a) Estimated frequency from the analogue voltage
at the terminals of the 13" generation unit of the test system (b) Estimated
RoCoF from the analogue voltage at the terminals of the 13" generation
unit of the test system (c) Performance comparison: Absolute value of the
error in the estimated frequency (Hz) (d) Performance comparison: squared
value of the error in the estimated RoCoF (Hz?2s™2).

V. CASE STUDY

The frequency and the RoCoF estimation via ADM was
illustrated by subjecting the benchmark 16 machine 68 bus
test system (Fig. 1) to a bolted 3-phase fault at bus 54 at t =
1s and subsequently clearing the fault at ¢t = 1.18s by
opening the faulted tie-line of the double circuit, to simulate
RoCoF events as high as 1Hz/s (like the one shown in
Fig.3 in an Indian power grid recorded at national load
dispatch centre following a line switching event of 765kV
Bilaspur-Rajnandangaon transmission line) and frequency
deviation as high as 0.5 Hz [15]-[16]. Case studies to test
the ADM algorithm effectiveness are discussed as follows.
a. Casel: Gaussian Noise
For instrument transformers the measurement error range is
given by 0.1% — 3% [40]-[41]. For this case study we have
assumed an intermediate value of 2%. For performance
evaluation the ‘simulated values’ of the frequency and the
RoCoF were obtained directly from first and second
derivative of the uncontaminated bus voltage (and/or
current) phasor angles of simulated IEEE 16 machine 68 bus
system. The simulated and the estimated frequency and
RoCoF (for above disturbance scenario) of V,; (terminal bus
voltage of 13™ machine) are plotted in Fig. 5 (a-b). wherein
the performance of the ADM method is compared to best
known state of the art frequency and RoCoF estimation
methods like PMU-algorithm [18], GTWLS-IDFT [21] and
IDFT-KF [22]. The sampling frequency, window length and
reporting rates of these algorithms are respectively chosen
as 40 kHz, 1200 and 100 frames per second [22], [42]. For
ADM the sampling rate was chosen as 24 samples per cycle
(1.2 kHz). The corresponding estimation errors (absolute
value of the frequency error (FE) in Hz and square of the
RoCoF error (RE) in (Hz?s™2)) have been plotted in Fig. 5
(c-d). Moreover, the maximum and the root mean square
errors (RMSE) of the FE and RE have been tabulated
(Table-1). As inferred from the figure (Fig. 5) and the Table-
I, the proposed ADM almost perfectly tracks the actual time
trajectories of the frequency and RoCoF and performs
significantly and consistently better than its precursors.
Estimation latency of 100ms was selected for each method
for performance comparison. To ascertain the comparative
robustness of the ADM methodology the measurements
were contaminated with noise levels as high as 15%.
Corresponding indices of frequency and RoCoF estimation
accuracy were tabulated in Table-1l. With ADM, the
estimation accuracy indices (maximum and RMSE values of
FE and RE) are significantly lower than the GTWLS and
IDFT-KF. The maximum percentage estimation errors in the
case of proposed ADM are less than 0.5%. The time instants
at which there is a crossover of the time trajectories of the
estimates with the actual trajectory of the frequency/RoCoF,
the errors are zero. As soon as the estimation and the actual
trajectories crossover, the estimation indices (absolute value
5



of the frequency error (FE) in Hz and square of the RoCoF
error (RE) in (Hz?s™%)) increase first and then decrease till
they approaches the next cross over point. Therefore trends
in these estimation indices appear periodical. Similar
periodical trends are observed in subsequent case studies
Fig. 6-8.
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Fig. 6. Non-Gaussian Case: (a) Estimated frequency from the analogue
voltage at the terminals of the 13" generation unit of the test system (b)
Estimated RoCoF from the analogue voltage at the terminals of the 13
generation unit of the test system (c) Performance comparison: Absolute
value of the error in the estimated frequency (Hz) (d) Performance
comparison: squared value of the error in the estimated RoCoF (Hz2s™2).

b. Case2: Non-Gaussian Noise and amplitude/phase steps

For the same scenario as in Case 1, the measurements were
assumed to be contaminated by 2% colored (non-Gaussian)
noise in this case study. Additionally, an amplitude step of
0.05 p.u. (5%) and a small phase step of 0.04 radians were
added to the measurements at t = 6s for 0.4s to test the
algorithm robustness against noise statistics and, stepped
amplitude and phase changes. The corresponding estimation
plots of frequency and RoCoF and errors for these quantities
of the generator bus voltage V;5 of the 13" unit of the test
system have been plotted in Fig. 6. Furthermore, as per the
RoCoF test recommendations [15]-[17], the ADM algorithm
and its precursors were tested exclusively for a large stepped

phase change (/8 radians) as well. The results have been
plotted in Fig. 7. The choice of sufficiently large ‘n’ [43]
and addition of counter negative of measurement distortions
enables the ADM to filter out biases and alleviate the effect
of noise. The ADM estimator is therefore by design robust
to noise statistics, changes in the amplitude/phase and large
phase steps of the measured analogue signal and it performs
better than its state of the art predecessors. Similar
inferences may be drawn from the test results presented in
Fig. 5-6 and table-1-11.
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Fig. 7. Phase step in V;3 of the 13™ generation unit of the test system at =
s : (a) Phase step in analogue voltage (b) Performance comparison:
Absolute value of the error in frequency estimation (Hz) (b) Performance
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TABLE IlI; ESTIMATION ERRORS: LATENCY= 100ms, 2% HARMONICS

Errors | PMU GTWLS | IDFT-KF ADM
Max (RE) (Hz/s) 1.1091 0.3519 0.7103 0.1642
RMSE (RE) (Hz/s) | 0.3799 0.1021 0.2671 0.0874

TABLE IV; FIELD DATA TEST: RECONSTRUCTION ERRORS

Reconstruction

PMU

GTWLS

IDFT-KF

ADM

Errors -

1.000

0.3686

0.3263

0.2231




TABLE V; FIELD DATA TEST: ESTIMATED ROCOF ERRORS
Maximum RoCoF Error (Hz/s)
GTWLS [21] IDFT-KF [22]
0.272 0.237

PMU Algo. [18]
0.388

ADM
0.115

TABLE VI; SUBOPTIMAL LEARNING RATE AND ESTIMATION ERROR

Nw/nPt 1 1.02 1.04 1.06
RMSE (FE) (Hz) 0.0041 | 0.0049 | 0.0063 | 0.0073
RMSE (RE) (Hz/s) 0.0215 | 0.0299 | 0.0411 | 0.0481
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0.15 T 7T
0.0208] ypcr, - 0.03
“on 025
E [~ 1
01 0.02 : 0.02
H N
I 0.05 ,‘ / . ) lo.01s 4
E ' 0015 2.33 2.34 2.35 2.36 2.37 0.01 AVAN
I M %23 24 25 26
S oph e h WAL A
& RoCoF (Field Data)

via Phadke's Algorithm [18]
viaGTWLS [21]
via IDFT-KF [22]
viaADM

ion of analegue signals from field data
1 15 2 2.5 3 35 4 4.5 5

Time (s)
Fig. 9. RoCoF Estimation: Field data case study.
0.015 =1 T T

o E FGposé —™10
5 oo ¢ ot
Q Ao
O 0.005 opt
4 i,

< o A ~ -

— 2 4 6 8 10 12 14 16 18 20-»Time(s)

Fig. 10. ADM: RoCoF estimation errors and sensitivity to gain n,,.

c. Case3: Harmonics and Decaying DC Components

For the same event as in Case 1, the input measurements
were contaminated by 3™ harmonics (2%) throughout.
Additionally, a decaying DC component was also added at
t=1s in this case study. Most of the estimation methods fail
due to signal modelling inaccuracies whereas ADM
produces a good estimate of RoCoF as has been shown in
Fig. 8. Corresponding accuracy indices of estimation
showing effectiveness the scheme have been tabulated
(Table-111).

d. Case4: Field Measurements

To validate the accuracy of frequency and RoCoF
estimation for an event or amalgam of events of significance
in an actual power system, field synchrophasor
measurements were used to construct the modulated
analogue inputs (36) via lookup table and sampler for the
estimation algorithm and subsequently contaminated by 2%
noise and used to estimate the frequency and RoCoF. The
outputs from the estimation algorithms were used to
reconstruct the analogue waveforms and normalized
reconstruction errors [43]-[44] were used as indices of

performance. For 200 Monte Carlo runs, the normalized
value of the indices have been tabulated (Table-1V).
Furthermore, estimated and recorded RoCoF have been
plotted in Fig. 9. whereas estimation index (maximum
RoCoF error (MRE)) has been tabulated (Table-1V). ADM
performs better than other methods (Fig. 9, Table-1V-V).
d

a(t) = a,sin (27rkTsf + nkZTSZd—];+ Hm) + 7. (36)

where, a,,, f, Z—’:, O, Tg, k and n. are respectively the

amplitude, frequency, RoCoF, phase, sampling time, sample
number and noise of the phasor from the synchrophasor.

Evaluation of design parameter 7,
If the values of the design parameter n,, is chosen either
high or low than its optimal value (n°P*) described by (35),
the estimation results are not good as has been shown in Fig.
10 for the same case study. It is therefore imperative to
design this parameter optimally such that it doesn’t violate
the design condition (35) and yield the best performance.
The optimal value 72"° is obtained by performing
exhaustive offline Monte-Carlo simulation runs at different
buses of the power system for a range of disturbance
scenarios using ISE as a performance index. For a given
noise level, a suboptimal value of the learning rate (slightly
higher than its optimal value) accelerates the
swiftness/convergence of the estimation process. However,
the corresponding root mean square error (RMSE) of the
estimation also increases with the suboptimal value of the
learning rate (Table-VI). While satisfying the design
condition (35) and using 7°‘ as an initial value, the
learning rate is made self-tuning (37).

Nk = B, Ts (0, /00%) 2 (37)
However the variation in nX should be limited within 5%
band (determined empirically) around n°P* i.e., 0.95p%"¢ <
nk < 1.05p2° for enhanced dynamic performance of the
estimator and to have an appropriate tradeoff between
swiftness and convergence of the estimates.

Moreover, the quality of the estimates and the
convergence rate do not depend on the location of the
estimator but on the frequency and noise in measurement,
which do not vary significantly for any given bus in the
system or with system size, as is clear from the final
estimation law equations (25-32). Therefore, the location of
estimator does not affect quality of the estimates.

e. Effect of Instrumentation Channel Parameter Variation

Variation of parameters (saturation factor, length of the
control cables, burden resistance etc.) in the measurement
chain impart distortion and have an adverse impact on the
quality of the measured data available for estimation [34]-
[35]. To study the impact on the accuracy of the estimates,
the saturation factor (SF) (Appendix-B) of the IT was varied
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over its range and its estimation accuracy indices were
plotted (Fig. 11.). These indices remain constant for each
scheme as long as SF is less than unity and increase
continuously as SF is increased beyond unity. However, the
impact is least in the case of an ADM based estimator (Fig.
11.). The impact of the variation in other parameters of the
instrumentation chain is similar.

025 0.06
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Fig. 11. Effect of instrumentation channel parameter variation (instrument
transformer saturation factor) on estimation accuracy (a) Performance
comparison: RMSE of the estimated RoCoF (Hz/s) with different
algorithms. (b) Performance comparison: RMSE of the estimated frequency
(Hz) with different algorithms.
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f.  Computational speed and viability

The ADM takes an average running time of 0.21ms per
iteration on a personal computer with i7-4970S CPU, 2GHz
processor and 8GB RAM. The average computation time
per iteration for IDFT-KF [22] and GTWLS [21] are 0.23ms
and 0.19ms respectively. Therefore, the computational
requirements of ADM can be easily met by an ordinary
microcontroller/DSP processor.
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Fig. 14. Real-time results: Case2: non-Gaussian Case a) Real-time
frequency estimation via ADM (b). Real-time RoCoF estimation via ADM.

VI. REAL-TIME IMPLEMENTATION/EVALUATION

A scaled laboratory setup has been used to demonstrate the
realization and real-time applicability of the ADM scheme.
Laboratory setup includes a windows-host command station
(to set up test scenarios: Fig. 12.), QNX platform based
Opal-RT multiprocessor as real-time station to emulate the
Power System and network dynamics and a Linux Redhat
OP5600 core implementing the ADM algorithm. The host
command station, RTS and Redhat core2 (implementing
ADM scheme) interact between themselves through
100Mbit/s ethernet connection. The RT-lab main control is
used to build real-time “C” code and to download and
execute this code on Xeon processor of RTS through
ethernet link. The same RT-lab main control is used to
generate code for the ADM estimator and to download it to
Redhat core2 for real-time execution through ethernet link.
The interface between the two multiprocessor cores is in
analogue domain through built-in DAC/ADC modules, so
that it is virtually impossible for the ADM estimator to
distinguish between the emulated plant and the actual plant.
RT1004 oscilloscopes were used to capture the test results
of the executed scenarios detailed in section-V (a-b) as
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shown in Fig 13 (a-b) (wherein measurements are
contaminated with 2% Gaussian noise) and Fig 14 (a-b)
(wherein measurements are contaminated with 2% non-
Gausssian noise). As inferred from the RT test case
scenarios, ADM is robust and can be implemented using any
processor with similar computational features as Op5600
Opal-RT processor.

VII. CONCLUSION

In this paper, a new nonlinear observer (called robust ADM)
based frequency and RoCoF estimator for power systems
has been proposed to achieve functionalities like robustness
to DC anomalies (stepped changes), distortions, harmonics
and noise statistics (Gaussian or non-Gaussian). The ADM
produces highly accurate estimates of frequency and RoCoF
for all grid conditions. The proposed estimator is stable and
the estimate convergence is guaranteed. It is therefore
suitable for robust estimation. As established via theory and
simulations, robust ADM performs better than state of the
art methods in the literature owing to its self-adaptation to
any changes in the measurement signal.

APPENDIX A

Proof: With J, as Lyapunov function, and using (34), the
condition for nk = n2"* given by the equation (35) can be

proven as detailed below [46].

“ Ik = Ei/2
Then, increment in J, i.e., AJy is given by
1
AJe = Jk+1 = Ik = 2 [5£+1 - 51%]

The error €4 is given by:
Epr1 = Ex + A&y = & + [0E, /00K AGY

Substituting €41 in AJy, we have
2

AE?
A(jk = SkAgk + T

1 &,
A |—X
259 [aaf”

A®¥ as obtained from (29-30) is given by:
ALY = —nETE[0E, /0]
Substituting A@¥ in AJk

~k agk
= A(jk = Aw1 W Ek +
1

&’
A(jk - r’wT Ek Ak gk anT gk aw
1

= AJk - _an Sk [ Ak] += ( w)szgk [ Ak]

= —o&;;
and hE o = [ag"]

(A1)

Let hy, = ,nz’, =& (h¥ax)?

=0= h%kni(Z - Tsn’,f,h%k)

hix
hlknw 2 - Tsnw (h )2
max

Since, hy, < hi‘nax, therefore

0= %hfanTs(Z Tone,) > 0 (A2)

From (A.1), (A.2) the condition guaranteeing asymptotic
stability (negative semi-definiteness of AJ,) is given as
20 <ny <2T5?

=0 <k < 2T (hE )2

BTt 2Tt

(A3)
(06, /005)2 ~ [061/00" Brgy

~0<nk=

where 0 < 8, < 2

APPENDIX B [30], [34]

Saturation factor (SF): In an instrument transformer the
ratio of secondary voltage (also called saturation voltage) Vg
to primary voltage (also known as excitation voltage) Vg is
called saturation factor (SF). When SF exceeds unity, it
indicates the core is saturated and the waveshape on the
secondary side is distorted and rich in harmonics.

Burden: Burden of an Instrument system is the rated Volt-
Ampere loading (modelled as impedance) which is
permissible without errors exceeding the limits for a
particular class (protection/ metering) of an instrumentation
chain.
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