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Abstract— An observer based adaptive detection methodology 

(ADM) is proposed for estimating frequency and its rate of 

change (RoCoF) of the voltage and/or current measurements 

acquired from an instrument transformer. With guaranteed 

convergence and stability, the proposed methodology 

effectively neutralizes the effect of the measurement distortions 

like harmonics, decaying DC components and outliers by 

adding its counter negative. It is robust to noise statistics, 

performs well while encountering step changes in 

amplitude/phase and is demonstrably superior to its precursors 

as established by test results. A benchmark IEEE NETS/NYPS 

16 machine 68 bus power system has been used for 

performance evaluation of robust ADM against its precursors 

and scaled laboratory setup based on OP5600 multiprocessors 

was used for establishing its real-time applicability. 

 

Index Terms— Adaptive, Dynamic, Lyapunov, Frequency, rate 

of change of frequency (RoCoF), Robust, Stability. 

I.  INTRODUCTION   

REQUENCY and its rate of change are prime indicators 

of stability and serve as inputs for protection/control 

devices in a power system [1]-[2]. Therefore, swift and 

accurate estimation of frequency and RoCoF is a 

prerequisite to tackle potential power system instabilities 

and avert possible malfunctioning of protective devices and 

limiters [2]-[4]. However, large scale integration of 

renewable energy sources impair the estimation of these 

parameters due to their stochastic nature, inertia deficiency, 

and high ramp rates [1]-[5]. Estimation accuracy is further 

impaired by poor-fit signal models and non-ideal 

characteristics of the measurement system (instrument 

transformers and measurement chain) as it distorts the 

measured signals to some degree [6]-[7]. Inadequate quality 

of the estimated RoCoF has been identified as a cause 

behind false tripping of Loss of mains (LOM) relays as 

LOM relay uses estimated RoCoF as a protection metric [8]-

[10]. Likewise, effectiveness of the fast frequency control 

(or protection) service relies on the accuracy of frequency 

and RoCoF estimates utilized in the derivation of the 

law/logic [11]-[14]. Stepped jump in the measurement 
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signal parameters (amplitude/phase) can trigger or threaten 

to trigger cascaded control and protection system actions 

which can lead to generation loss and genuine problems in 

frequency management. For example, a generation loss of 

1200MW following a major fire incident in southern 

California on August 10, 2016 was triggered by a stepped 

phase jump which caused the estimated frequency to cross 

the threshold [5]. It is therefore necessary to design a robust 

paradigm to estimate frequency and RoCoF to achieve 

desired levels of accuracy as specified by IEEE standards 

[15]-[17] for all possible measurement distortions and 

anomalies to enable timely action for events leading to 

possible disconnection of supply. 

Using a direct derivative to obtain frequency/RoCoF is 

aggravated by the poor power quality waveforms obtained 

from the instrument transformers. In this context, various 

architectures for estimation of frequency and RoCoF have 

been reported ([18]-[22] and references therein). The 

frequency divider (intended for use in transient stability 

analysis) is an approximate method for estimation of power 

system frequency [23]. Network/machine impedances are 

required in its implementation. Methods like notch filters 

[19], discrete Fourier transform and its variants may not 

perform well during transient conditions [20]. Likewise, 

phase locked loops (PLLs) [20], Taylor-Kalman based 

estimation algorithm and related methods suffer from signal 

modelling inaccuracies [20]-[21]. Moreover their 

performance deteriorates due to fluctuations in the 

measurement and may not produce accurate estimates. 

However, its implementation requires prior information 

about signal model. An efficient rudimentary method of 

computing RoCoF from estimated frequency is the rolling 

window methodology. In this methodology RoCoF is 

computed by dividing the frequency deviation over the 

window length by time duration of the window. Averaging 

methods like this generally produce inaccurate estimates and 

their performance is significantly affected by the selection 

of window length [22]. Enhanced versions using 

Interpolated discrete Fourier transform (IDFT) such as 

generalized Taylor-weighted least squares based IDFT 

(GTWLS-IDFT) [21], IDFT based Kalman filter (IDFT-KF) 

[22] have been reported to be effective. However, their 

performance is affected by sudden amplitude and phase 

jumps, and decaying DC components (which are a 

consequence of line/load/generation switching, tap changing 
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of the transformers, stepped changes in power through 

inductive components (overhead line, transformer), and 

faults) [5], [10].  Moreover, their performance is affected by 

distortions (not accounted for in the signal model) and noisy 

measurements acquired from instrument transformers.  

To address the aforementioned issues, a robust nonlinear 

observer based adaptive detection methodology (ADM) 

scheme is proposed. It ensures mitigation of heavy tailed 

impulsive noise, effective neutralization of the harmonics, 

outliers and DC components present in the measurements by 

adding its counter negative. It waives off the requirement of 

inverse of the transducer transfer function required to 

eliminate distortion [6]-[7]. It performs well even when 

measurement noise is quite high (3% to 15%). IEEE 16 

machine 68 bus power system (Fig. 1, [24]) has been used 

for performance evaluation of the methodology against its 

contemporary methodologies and real-time tests (performed 

on a laboratory setup of OP5600 Opal-RT multiprocessors) 

of the case studies are presented to establish the applicability 

of the method. It is well suited for the realization of a range 

of control and protection applications [8]-[14], [25]-[29]. 

 

 
Fig. 1. IEEE NETS/NYPS 16 machine 68 bus system [24]  

The contributions/advantages of this work are as follows: 

 A Lyapunov criterion based robust ADM methodology 

has been derived and used to estimate the frequency and 

RoCoF from an analogue measurement without any prior 

knowledge of the measurement signal model. Assumed 

model of the signal accounts for distortions, harmonics 

and DC components and as such the ADM estimator is 

robust to measurement distortions. 

 Robust ADM algorithm convergence is assured unlike 

currently available state of the art methodologies in the 

literature [18]-[22]. Convergence is corroborated by the 

persistence-of-excitation (PE) condition.  

 The proposed methodology gives accurate estimates of 

frequency and RoCoF (with maximum percentage 

estimation errors less than 0.5%) when measurement 

noise (irrespective of its statistics) is high (2% to 15%).  

 The ADM is robust to decaying DC outliers, stepped 

changes in the amplitude/phase and harmonic 

contamination in the measurements. 

 The maximum and root mean square values of estimation 

errors (i.e., maximum, root-mean-square of the frequency 

error (FE) and maximum, root-mean-square of the RoCoF 

error (RE)) with robust ADM scheme are consistently and 

significantly lower than currently available methods in 

literature for all case studies [18], [21]-[22]. 

 Opal-RT multiprocessors based scaled laboratory setup 

has been used to validate the applicability of the 

developed methodology in real-time (RT). Actual field 

data was also used for performance evaluation. 

The remainder of the paper is organized as follows: 

Instrumentation system and signal model has been discussed 

in section-II, the robust observer methodology (robust ADM 

algorithm) and its discrete implementation are discussed in 

section-III and section-IV respectively. Detailed case studies 

are presented in section-IV, real-time results in section-V 

whereas the conclusions are presented in section-VII. 

 
Fig. 2. Schematic of the frequency/RoCoF estimation methodology from 
analogue measurements.                

II.  FIELD INSTRUMENTATION SYSTEM AND SIGNAL MODEL   

Errors in the analogue measurements for frequency and 

RoCoF estimation originate from an instrumentation system 

(which includes instrument transformers, instrumentation 

and control cables and associated burdens [30]) Fig. 2. In 

some cases instrument transformer (IT) saturates due to 

nonlinear characteristic of its core and it generates 

harmonics on its own [31]. The saturation of ITs, length of 

instrumentation cables and high burden resistance (Jonson 

noise [30], [32]-[34]) contribute to the errors and have an 

aggravating impact. Inaccurate frequency and RoCoF 

estimates stem due to application/usage of poor fit signal 

models as signal models used for frequency and RoCoF 

estimation do not account for aforementioned measurement 

distortions and anomalies and it can have potential practical 

implications [35]. Prior knowledge of the transducer transfer 

function inverse may be required to eliminate the distortion 

in the acquired measurements. The signal model (1) 

considered in this work is more generic and accounts for all 

the distortions. Signal model and robust ADM observer 

(discussed in next section) waives off the requirement of 

transducer transfer function inverse (required to eliminate 

the distortions [6]) from the estimation laws. Thus a generic 

measurement from an IT at a power system bus is 

represented mathematically as: 

𝑎(𝑡) = ∑ 𝑎𝑖(𝑡)𝑠𝑖𝑛(𝜔𝑖(𝑡)𝑡 + 𝜙𝑖(𝑡)) + 𝑎DC𝑒
−

𝑡
𝜏DC + 𝜂𝜖

𝑛

𝑖=1

(𝑡) 

(1) 
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where, 𝑎𝑖(𝑡) is an amplitude, 𝜔𝑖(𝑡) the frequency in rad/s, 

𝜙𝑖(𝑡) is a phase in rad, 𝑎DC and 𝜏DC are the parameters of 

DC component and 𝜂𝜖 accounts for noise and related 

distortions whereas 𝑛 is the harmonic order. The amplitudes, 

frequencies, phases and decaying DC component parameters 

(𝑎DC and 𝜏DC) are time evolving quantities.  

III.  ROBUST OBSERVER METHODOLOGY 

The test system and the schematic of the methodology are 

shown in Fig. 1 and Fig. 2 respectively. Analogue 

measurements acquired from the instrumentation 

arrangement of the power system are processed by robust 

ADM scheme (detailed below) to output the frequency and 

RoCoF estimates. To derive the estimation laws, the 

measurement equation (1) is expanded as (2). 

𝑎 = ∑ 𝑎𝑐𝑖𝑠𝑖𝑛(𝜔𝑖𝑡) + 𝑎𝑠𝑖𝑐𝑜𝑠(𝜔𝑖𝑡) + 𝑎DC (1 −
𝑡

𝜏DC

) + 𝜂𝜖

𝑛

𝑖=1

 

⇒ 𝑎(𝑡) = ΘT𝕊 + 𝜂𝜖 (2) 

where, 

𝕊 = [𝑐𝑜𝑠(𝜔1𝑡), 𝑠𝑖𝑛(𝜔1𝑡) … 𝑐𝑜𝑠(𝜔𝑛𝑡), 𝑠𝑖𝑛(𝜔𝑛𝑡), 1, (−𝑡)]T, 

Θ = [𝑎𝑠1 𝑎𝑐1 𝑎𝑠2 𝑎𝑐2 … 𝑎𝑠𝑛 𝑎𝑐𝑛  𝑎DC 𝑎DC1]T, 𝑎𝑠𝑖 = 𝑎𝑖𝑠𝑖𝑛𝜙𝑖, 

𝑎𝑐𝑖 = 𝑎𝑖𝑐𝑜𝑠𝜙𝑖, 𝑎DC1 = 𝑎DC𝜏DC
−1, 𝑖 = 1, … , 𝑛, 𝜔𝑛 = 𝑛𝜔1. Θ 

is an unknown vector. Exponentially decaying DC term in 

the signal model has been approximated by first order 

Taylor’s series expansion in (2). Higher order terms of the 

expansion are often significantly lower in magnitude. For 

parameter estimation the unknown vector ‘Θ’ is required to 

be estimated online. Hence, 

𝑎̂ = Θ̂T𝕊 ; 𝑎̂𝑖 = (𝑎̂𝑠𝑖
2 + 𝑎̂𝑐𝑖

2 )1/2; 𝜙̂𝑖 = 𝑐𝑜𝑠−1(𝑎̂𝑐𝑖/𝑎̂𝑖)     (3) 

where, Θ̂T = [𝑎̂𝑠1 𝑎̂𝑐1 𝑎̂𝑠2 𝑎̂𝑐2 … 𝑎̂𝑠𝑛 𝑎̂𝑐𝑛 𝑎̂DC 𝑎DC1]. 𝑎̂ is the 

estimated measurement whereas 𝑎̂𝑖 is the estimated value of 

𝑎𝑖. The analogue measurement 𝑎 is observed through a 

transduction circuit with transfer function G(𝑠).  

∴ z = G(𝑠) ∙ 𝑎 ⇒ ẑ = G(𝑠) ∙ 𝑎̂     (4) 

⇒  z̃ = G(𝑠) ∙ 𝑎̃ = −G(𝑠)Θ̃T𝕊 + G(𝑠)𝜂𝜖   (5) 

where,  𝑎̃ = 𝑎 − 𝑎̂, z̃ = z − ẑ, and Θ̃ = Θ̂ − Θ. The transfer 

function G(𝑠) is realizable and can be assumed as ‘proper 

transfer function’ [36]-[37]. Time-domain representation of 

the system (G(𝑠) = C(𝑠I − A)−1B) is given by 

𝛼̇ = A𝛼 + B(−𝕊TΘ̃ + 𝜂𝜖) = A𝛼 + B𝛿    (6) 

 z̃ = C𝛼    (7) 

where, 

𝛿 = −𝕊TΘ̃ + 𝜂𝜖 and 𝛼 is an intermediate state vector. 

Equations (6-7) relate the parameter estimation error Θ̃  with 

z̃ through 𝛼. Therefore, Lyapunov function ℒ(Θ̃, 𝛼) (8) is 

constructed appropriately to derive the parameter update 

law. 

ℒ(Θ̃, 𝛼) =
1

2
𝛼Tℳ𝛼 +

1

2
Θ̃TΓ−1Θ̃   (8) 

where, ℳ is strictly positive and real (SPR) matrix and 

ensures positive definiteness of ℒ(Θ̃, 𝛼) and Γ =

diag(𝛾𝑐1 𝛾𝑠1 𝛾𝑐2 𝛾𝑠2 … 𝛾𝑐𝑛 𝛾𝑠𝑛 𝛾DC 𝛾DC1) is a gain matrix 

with each element positive. Intermediate variable featuring 

in the Lyapunov function (8) cannot be measured/generated 

from (6) as 𝛿 is unknown. To waive off the explicit 

dependence of the parameter update laws upon intermediate 

state variable vector ‘𝛼’, the lemma 1 has been used.  

Lemma 1 [36]-[37]: If the transfer function G(𝑠) is real and 

positive, then there exists a vector 𝒒, 𝜌 > 0 and a matrix 

ℳ = ℳT > 0 which satisfies the following expressions.  

ℳA + ATℳ = −𝜌𝒩  − 𝒒𝐓𝒒 and ℳB = CT  (9) 

where, matrix 𝒩 = 𝒩T > 0.  

Using (9) the dependence of update law for estimation upon 

intermediate state vector 𝛼 can be waived off. Therefore,  

ℒ̇(Θ̃, 𝛼) = −0.5𝛼T𝒒𝐓𝒒𝛼 − 0.5𝜌𝛼T𝒩𝛼 − z̃𝛿 + Θ̃TΓ−1Θ̇̃ 

 (10) 

The value of “𝑛” in the signal model (1) is chosen to be very 

high such that the value of 𝜂𝜖 becomes significantly low. In 

that case, z̃𝜂𝜖 is extremely low. Therefore,  

ℒ̇(Θ̃, 𝛼) ≈ −0.5𝛼T𝒒𝐓𝒒𝛼 − 0.5𝜌𝛼T𝒩𝛼 − z̃Θ̃T𝕊 + Θ̃TΓ−1Θ̇̃ 

 (11) 

The parameter estimation law (12) ensures the negative 

semi-definiteness (NSD) of the time-derivative of the 

Lyapunov function candidate (13).   

Θ̇̃ = Γz̃𝕊  ⇒ Θ̇̂ = Γz̃𝕊   (12) 

⇒ ℒ̇(Θ̃, 𝛼) = −0.5(𝛼T𝒒𝐓𝒒𝛼) − 0.5𝜌(𝛼T𝒩𝛼)   (13) 

From (8-12), it can be deduced that ℒ, 𝛼, z̃, Θ̃, Θ̂ ∈ 𝐋∞ [35],  

∴ lim
𝑡→∞

ℒ(Θ̃ (𝑡), 𝛼(𝑡)) = ℒ∞ < ∞   (14) 

Equation (14) means that the Lyapunov function converges 

as it is a function of bounded variables, is positive definite 

and has a NSD time derivative (provided (13) holds). The 

individual update laws for the estimation of the signal 

parameters are given below as deduced directly from 

equation (12).  

𝑎̇̂𝑐1 = 𝛾𝑐1z̃ 𝑠𝑖𝑛 (𝜔1𝑡), 𝑎̇̂𝑠1 = 𝛾𝑠1z̃ 𝑐𝑜𝑠 (𝜔1𝑡),  ⋯ 

𝑎̇̂𝑐𝑛 = 𝛾𝑐𝑛z̃ 𝑠𝑖𝑛 (𝜔𝑛𝑡), 𝑎̇̂𝑠𝑛 = 𝛾𝑠𝑛z̃ 𝑐𝑜𝑠 (𝜔𝑛𝑡),  ⋯ 

𝑎̇̂DC = 𝛾DCz̃  , 𝑎̇̂DC1 = −𝛾DC1z̃𝑡 (15) 

where, 𝛾𝑐1 𝛾𝑠1 𝛾𝑐2 𝛾𝑠2 … 𝛾𝑐𝑛 𝛾𝑠𝑛 𝛾DC 𝛾DC1 are the estimation 

gains for parameters 𝑎̂𝑐1 𝑎̂𝑠1 𝑎̂𝑐2 𝑎̂𝑠2 … 𝑎̂𝑐𝑛 𝑎̂𝑠𝑛 𝑎̂DC 𝑎DC1 

respectively. 

Vector “𝕊” should satisfy the persistence-of-excitation 

(PE) condition to ensure swift convergence of parameter 

estimates (Definition 4.3.1 in [36]). A piecewise continuous 

function 𝕊: ℜ+ → ℜ𝑛 is persistently exciting in ℜ𝑛 if there 

exist constants “𝜌0”, “𝜌1”, and “τ𝑥” such that 

𝜌0𝐼 ≤ IPE = τ𝑥
−1 ∫ 𝕊̅(τ)𝕊̅T(τ)

𝑡+τ𝑥

𝑡
dτ ≤ 𝜌1𝐼   (16) 

Assuming the presence of decaying DC components and 

ignoring the permanent DC in the measurements, the PE 

property (16-17) can be proven. For measurements acquired 

from an instrument transformer, it is a realistic assumption 

as DC component (𝑎𝐷𝐶(𝑡) = 𝑎DC𝑒−𝜏DC
−1 𝑡  ∀ 𝑡 , 𝜏DC > 0) is a 

decaying exponential function.  
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As 𝑡 increases, 𝑒−𝜏DC
−1 𝑡 → 0 ⇒ 𝑎𝐷𝐶(𝑡) → 0. The decaying 

exponential function (𝑒−𝜏DC
−1 𝑡) has a stabilizing effect and the 

terms corresponding to this DC component in ‘𝕊’ can be 

ignored in the derivation of PE condition. 

In this context, “𝕊𝕊T” is a square matrix elements of 

which come from sinusoidal functions given below: 

𝑠𝑖𝑛(𝜔𝑖𝑡) ,𝑐𝑜𝑠(𝜔𝑖𝑡), 𝑠𝑖𝑛2(𝜔𝑖𝑡), 𝑐𝑜𝑠2(𝜔𝑖𝑡), ⋯ 

𝑠𝑖𝑛(𝜔𝑖𝑡)𝑐𝑜𝑠(𝜔𝑖𝑡), 𝑐𝑜𝑠(𝜔𝑗𝑡)𝑠𝑖𝑛(𝜔𝑖𝑡), 𝑠𝑖𝑛(𝜔𝑗𝑡)𝑠𝑖𝑛(𝜔𝑖𝑡) ⋯ 

𝑐𝑜𝑠(𝜔𝑗𝑡)𝑐𝑜𝑠(𝜔𝑖𝑡), 𝑖, 𝑗 ∈ [1,2, … , 𝑛] and 𝑖 ≠ 𝑗. 

With τ𝑥 = 2𝜋𝜔1
−1, IPE in (15) reduces to: 

∴ IPE = [

𝜋𝜔1
−1

0
⋮
0

0
𝜋𝜔1

−1

⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

𝜋𝜔1
−1

] 

(17) 

The ADM design methodology satisfies the PE condition 

(16) with 𝜌1 ≥ 𝜋𝜔1
−1 and 0 < 𝜌0 ≤ 𝜋𝜔1

−1. Moreover “𝕊” 

and its derivative being vectors with sinusoidal elements are 

bounded i.e.,  𝕊 ,̇ 𝕊 ∈ 𝐋∞. Satisfying these conditions (PE 

condition and 𝕊, 𝕊̇  ∈ 𝐋∞), the exponential convergence of 

the estimates is guaranteed. Therefore, 

𝑎̂𝑐1 = 𝛾𝑐1S∫ = 𝛾𝑐1 ∫ {z̃ 𝑠𝑖𝑛 (𝜔1𝑡)}𝑑𝑡
𝑡

  (18) 

𝑎̂𝑠1 = 𝛾𝑠1C∫ = 𝛾𝑠1 ∫ {z̃ 𝑐𝑜𝑠 (𝜔1𝑡)}𝑑𝑡
𝑡

  (19) 

𝑎̂1 = (𝛾𝑐1
2 S∫

2 +  𝛾𝑠1
2 C∫

2 )
1/2

 
(20) 

𝜙̂1 = 𝑠𝑖𝑛−1(𝑎̂𝑠1/𝑎̂1) (21) 

It should be noted that equations (11-12) ensure the 

convergence of other signal parameters (amplitude and 

phase). The Frequency estimation law is derived by 

minimizing the convex cost function (22) via steepest 

descent method (Appendix-B.2 in [36]). The estimated 

frequency (and RoCoF) converge to their respective true 

(actual) values when tracking error ℰ goes to zero i.e., ℰ →
0 ⇒ 𝜔̂1 → 𝜔1

∗. 𝜔1
∗ is the actual value of 𝜔1. A convenient 

way to ensure tracking error tends to zero is to adjust the 

frequency estimate in the direction that minimizes a 

quadratic cost function (22) of this tracking error via 

steepest gradient approach (23) (section 1.2.6 in [36]).  The 

notion behind using square of the ℰ (and not its absolute 

value) as objective function is to improve the accuracy and 

stabilization of the dynamic estimate trajectory.  

𝒥 = 0.5ℰ2 = 0.5(𝑎̂ − 𝑎)2  where, ℰ = (𝑎̂ − 𝑎) (22) 

∴ ω̇̂1 = −𝜂𝜔
′ 𝜕𝒥/𝜕𝜔1   (23) 

⇒ ω̇̂1 = −𝜂𝜔
′ ℰ ∑ {𝑎̂𝑐𝑘𝑘𝑡𝑐𝑜𝑠(𝑘𝜔1𝑡) − 𝑎̂𝑠𝑘𝑘𝑡𝑠𝑖𝑛(𝑘𝜔1𝑡)}𝑛

𝑘=1    

≈ −𝜂𝜔z̃ ∑ {𝑎̂𝑐𝑘𝑘𝑡𝑐𝑜𝑠(𝑘𝜔1𝑡) − 𝑎̂𝑠𝑘𝑘𝑡𝑠𝑖𝑛(𝑘𝜔1𝑡)}𝑛
𝑘=1   (24) 

where, 𝜂𝜔
′ = |𝐺(𝑠)|𝜂𝜔 = |𝑧̃/𝜀|𝜂𝜔 ⇒ 𝜂𝜔|𝑧̃| = 𝜂𝜔

′ |ℰ| and 𝜂𝜔 

is the tunable learning rate. Since 𝜂𝜔 and 𝜂𝜔
′  are positive 

constants therefore   𝜂𝜔𝑧̃ ≈ 𝜂𝜔
′ ℰ. Equations (15-16) (PE 

condition) and (11) ensure that the Lyapunov function (8) 

will have NSD time derivative. Therefore, the estimated 

parameters would eventually converge to their actual values 

for a given value of estimator gain Γ which is tuned to 

ensure swift dynamic response of the parameter estimator. 

Standard particle swarm optimization algorithm (PSO) [38] 

was used to obtain the optimal value of the gain Γ offline 

with integral-square-error (ISE) as cost function to ensure 

swift parameter convergence (Fig. 3) [38]. PSO generates a 

high-quality solution with stable convergence characteristic 

than other stochastic methods [39]. Likewise, it is a better 

option compared to empirical approaches as has been 

demonstrated in [38]-[39]. Traditional empirical methods 

lack the capability of forcing the estimate to follow actual 

time trajectory [39]. Therefore, ADM estimator gains were 

tuned optimally via PSO under different simulated scenarios 

(power system contingencies) to get an optimized value of 

the gain Γ. 

IV.  ROBUST OBSERVER:  DISCRETE TIME REALIZATION 

To realize the ADM algorithm (15) and (24) using a 

microcontroller or a digital signal processor (DSP), the 

estimate is calculated based on the previous value and 

sampled quantities as follows. 

𝑎̂𝑐𝑖
𝑘 = 𝑎̂𝑐𝑖

𝑘−1 + Ts𝛾𝑐𝑖z̃𝑘 sin(𝑖ω̂1
𝑘(𝑘 − 1)Ts) (25) 

𝑎̂𝑠𝑖
𝑘 = 𝑎̂𝑠𝑖

𝑘−1 + Ts𝛾𝑠𝑖z̃𝑘 cos(𝑖ω̂1
𝑘(𝑘 − 1)Ts) (26) 

𝑎̂DC
𝑘 = 𝑎̂DC

𝑘−1 + Ts𝛾DCz̃𝑘 (27) 

𝑎̂DC1
𝑘 = 𝑎̂DC1

𝑘−1 − (𝑘 − 1)Ts
2𝛾DC1z̃𝑘 (28) 

Δω̂1
𝑘 = ω̂1

𝑘+1 − ω̂1
𝑘 ≈ −Ts𝜂𝜔

𝑘 𝜕𝒥𝑘/𝜕𝜔1
𝑘 (29) 

 ∴ ω̂1
𝑘+1 − ω̂1

𝑘 ≈ −Ts𝜂𝜔
𝑘 z̃𝑘 × (30) 

∑ {𝑎̂𝑐𝑖
𝑘 𝑖𝑘Ts𝑐𝑜𝑠(𝑖𝑘ω̂1

𝑘Ts) − 𝑎̂𝑠𝑖
𝑘 𝑖𝑘Ts𝑠𝑖𝑛(𝑖𝑘ω̂1

𝑘Ts)}𝑛
𝑖=1   

∴ RoCoF𝑘 = −(2π)−1𝜂𝜔
𝑘 z̃𝑘 × (31) 

            ∑ {𝑎̂𝑐𝑖
𝑘 𝑖𝑘Ts𝑐𝑜𝑠(𝑖𝑘ω̂1

𝑘Ts) − 𝑎̂𝑠𝑖
𝑘 𝑖𝑘Ts𝑠𝑖𝑛(𝑖𝑘ω̂1

𝑘Ts)}𝑛
𝑖=1  

and   

∴ 𝑓𝑘+1 = 𝑓𝑘 − Ts(2π)−1𝜂𝜔
𝑘 z̃𝑘 ×  (32) 

∑ {𝑎̂𝑐𝑖
𝑘 𝑖𝑘Ts𝑐𝑜𝑠(𝑖𝑘ω̂1

𝑘Ts) − 𝑎̂𝑠𝑖
𝑘 𝑖𝑘Ts𝑠𝑖𝑛(𝑖𝑘ω̂1

𝑘Ts)}𝑛
𝑖=1   

where, T𝑠 is sampling time. The laws (25-32) can be directly 

derived from the discrete equivalents of (8) and (22) given 

by equations (33) and (34) below respectively. 

ℒ𝑘(Θ̃𝑘 , 𝛾𝑘) = 0.5(𝛼𝑘
Tℳ𝛼𝑘) + 0.5(Θ̃𝑘

TΓ−1Θ̃𝑘) (33) 

𝒥𝑘 = 0.5ℰ𝑘
2 = 0.5(𝑎̂𝑘 − 𝑎𝑘)2 (34) 

Like “Γ”, the choice of 𝜂𝜔
𝑘  has to be appropriate. A smaller 

value of 𝜂𝜔
𝑘  may guarantee convergence but at a very slow 

speed and estimate may not be acceptable. Too high 𝜂𝜔
𝑘  is 

the cause of algorithm divergence. 

 
Fig.3: Schematic of the gain tuning of ADM algorithm via offline PSO with 

integral square error (ISE) as fitness function. 

 
Fig. 4. RoCoF recording following the tripping of a 765kV line connecting 
Bilaspur and Rajnandangaon (Courtesy: NRLDC-POSOCO India). 
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TABLE I; ESTIMATION ERRORS : LATENCY= 100𝑚𝑠, 2% NOISE 

Errors ↓ PMU GTWLS IDFT-KF ADM 

Max (FE)  (𝐻𝑧) 0.1865 0.0776 0.0675 0.0255 

RMSE (FE) (𝐻𝑧) 0.0584 0.0295 0.0142 0.0041 

Max (RE) (Hz/s) 0.3776 0.2678 0.2311 0.1050 

RMSE (RE) (Hz/s) 0.1879 0.0648 0.0493 0.0215 

TABLE II; ESTIMATION ERRORS: LATENCY= 100𝑚𝑠, 15%  NOISE 

Errors ↓ PMU GTWLS IDFT-KF ADM 

Max (FE)  (𝐻𝑧) 0.7528 0.5212 0.4550 0.0882 

RMSE (FE) (𝐻𝑧) 0.1984 0.1295 0.0942 0.0241 

Max (RE) (Hz/s) 0.6776 0.4678 0.4311 0.1551 

RMSE (RE) (Hz/s) 0.3879 0.1648 0.1493 0.0615 

Theorem 1: If the frequency/RoCoF is updated using (31-

32), then estimated quantity tracks its actual time trajectory  

and the estimation error decays at an exponential speed 

provided adaptive gain 𝜂𝜔
𝑘  satisfies (35) and 0 < 𝛽𝜔 < 2. 

0 < 𝜂𝜔
𝑜𝑝𝑡

=
𝛽𝜔Ts

−1

(𝜕ℰ𝑘/𝜕𝜔̂1
𝑘)2

<
2Ts

−1

      (𝜕ℰ𝑘/𝜕𝜔̂1
𝑘)𝑚𝑎𝑥

2
 

(35) 

Proof: With 𝒥𝑘 as Lyapunov function, and using (34), the 

condition for 𝜂𝜔
𝑘 = 𝜂𝜔

𝑜𝑝𝑡
 (35) can be proven (Appendix-A). 

 
Fig. 5. Gaussian Case: (a) Estimated frequency from the analogue voltage 

at the terminals of the 13th generation unit of the test system (b) Estimated 

RoCoF from the analogue voltage at the terminals of the 13th generation 

unit of the test system (c) Performance comparison: Absolute value of the 

error in the estimated frequency (Hz) (d) Performance comparison: squared 

value of the error in the estimated RoCoF (Hz2𝑠−2). 

V.  CASE STUDY  

The frequency and the RoCoF estimation via ADM was 

illustrated by subjecting the benchmark 16 machine 68 bus 

test system (Fig. 1) to a bolted 3-phase fault at bus 54 at 𝑡 =

1𝑠 and subsequently clearing the fault at 𝑡 = 1.18𝑠 by 

opening the faulted tie-line of the double circuit, to simulate 

RoCoF events as high as 1𝐻𝑧/𝑠 (like the one shown in 

Fig.3 in an Indian power grid recorded at national load 

dispatch centre following a line switching event of 765kV 

Bilaspur-Rajnandangaon transmission line) and frequency 

deviation as high as 0.5 𝐻𝑧 [15]-[16]. Case studies to test 

the ADM algorithm effectiveness are discussed as follows.  

a. Case1: Gaussian Noise 

For instrument transformers the measurement error range is 

given by 0.1% − 3% [40]-[41]. For this case study we have 

assumed an intermediate value of  2%.  For performance 

evaluation the ‘simulated values’ of the frequency and the 

RoCoF were obtained directly from first and second 

derivative of the uncontaminated bus voltage (and/or 

current) phasor angles of simulated IEEE 16 machine 68 bus 

system. The simulated and the estimated frequency and 

RoCoF (for above disturbance scenario) of V13 (terminal bus 

voltage of 13th machine) are plotted in Fig. 5 (a-b). wherein 

the performance of the ADM method is compared to best 

known state of the art frequency and RoCoF estimation 

methods like PMU-algorithm [18], GTWLS-IDFT [21] and 

IDFT-KF [22]. The sampling frequency, window length and 

reporting rates of these algorithms are respectively chosen 

as 40 kHz, 1200 and 100 frames per second [22], [42]. For 

ADM the sampling rate was chosen as 24 samples per cycle 

(1.2 kHz). The corresponding estimation errors (absolute 

value of the frequency error (FE) in 𝐻𝑧 and square of the 

RoCoF error (RE) in (𝐻𝑧2𝑠−2)) have been plotted in Fig. 5 

(c-d). Moreover, the maximum and the root mean square 

errors (RMSE) of the FE and RE have been tabulated 

(Table-I). As inferred from the figure (Fig. 5) and the Table-

I, the proposed ADM almost perfectly tracks the actual time 

trajectories of the frequency and RoCoF and performs 

significantly and consistently better than its precursors. 

Estimation latency of 100𝑚𝑠 was selected for each method 

for performance comparison. To ascertain the comparative 

robustness of the ADM methodology the measurements 

were contaminated with noise levels as high as 15%. 

Corresponding indices of frequency and RoCoF estimation 

accuracy were tabulated in Table-II. With ADM, the 

estimation accuracy indices (maximum and RMSE values of 

FE and RE) are significantly lower than the GTWLS and 

IDFT-KF. The maximum percentage estimation errors in the 

case of proposed ADM are less than 0.5%. The time instants 

at which there is a crossover of the time trajectories of the 

estimates with the actual trajectory of the frequency/RoCoF, 

the errors are zero. As soon as the estimation and the actual 

trajectories crossover, the estimation indices (absolute value 

PMU (Phadke)
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of the frequency error (FE) in 𝐻𝑧 and square of the RoCoF 

error (RE) in (𝐻𝑧2𝑠−2)) increase first and then decrease till 

they approaches the next cross over point. Therefore trends 

in these estimation indices appear periodical. Similar 

periodical trends are observed in subsequent case studies 

Fig. 6-8. 

 
Fig. 6. Non-Gaussian Case: (a) Estimated frequency from the analogue 

voltage at the terminals of the 13th generation unit of the test system (b) 

Estimated RoCoF from the analogue voltage at the terminals of the 13th 

generation unit of the test system (c) Performance comparison: Absolute 

value of the error in the estimated frequency (Hz) (d) Performance 

comparison: squared value of the error in the estimated RoCoF (Hz2𝑠−2). 

 

b. Case2: Non-Gaussian Noise and amplitude/phase steps 

For the same scenario as in Case 1, the measurements were 

assumed to be contaminated by 2% colored (non-Gaussian) 

noise in this case study. Additionally, an amplitude step of 

0.05 p.u. (5%) and a small phase step of 0.04 radians were 

added to the measurements at 𝑡 = 6𝑠 for 0.4𝑠 to test the 

algorithm robustness against noise statistics and, stepped 

amplitude and phase changes. The corresponding estimation 

plots of frequency and RoCoF and errors for these quantities 

of the generator bus voltage V13 of the 13th unit of the test 

system have been plotted in Fig. 6. Furthermore, as per the 

RoCoF test recommendations [15]-[17], the ADM algorithm 

and its precursors were tested exclusively for a large stepped 

phase change (𝜋/8 radians) as well. The results have been 

plotted in Fig. 7. The choice of sufficiently large ‘𝑛’ [43] 

and addition of counter negative of measurement distortions 

enables the ADM to filter out biases and alleviate the effect 

of noise. The ADM estimator is therefore by design robust 

to noise statistics, changes in the amplitude/phase and large 

phase steps of the measured analogue signal and it performs 

better than its state of the art predecessors. Similar 

inferences may be drawn from the test results presented in 

Fig. 5-6 and table-I-II.  

 

 
Fig. 7. Phase step in 𝐕𝟏𝟑 of the 13th generation unit of the test system at =

5𝑠 : (a) Phase step in analogue voltage (b) Performance comparison: 

Absolute value of the error in frequency estimation (Hz) (b) Performance 

comparison: squared value of the error in RoCoF estimation (Hz2𝑠−2). 

 
Fig. 8. Harmonic contamination Case: (a) Estimated RoCoF from the 

harmonically contaminated analogue voltage 𝐕𝟏𝟑 (b) Performance 

comparison: squared value of the error in RoCoF estimation (Hz2𝑠−2). 

TABLE III; ESTIMATION ERRORS: LATENCY= 100𝑚𝑠, 2%  HARMONICS 

Errors ↓ PMU GTWLS IDFT-KF ADM 

Max (RE) (Hz/s) 1.1091 0.3519 0.7103 0.1642 

RMSE (RE) (Hz/s) 0.3799 0.1021 0.2671 0.0874 

 

TABLE IV; FIELD DATA TEST: RECONSTRUCTION ERRORS  

Reconstruction 

Errors → 

PMU GTWLS IDFT-KF ADM 

1.000 0.3686 0.3263 0.2231 
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TABLE V; FIELD DATA TEST: ESTIMATED ROCOF ERRORS  

Maximum RoCoF Error (Hz/s) 

PMU Algo. [18] GTWLS [21] IDFT-KF [22] ADM 

0.388 0.272 0.237 0.115 

 

TABLE VI; SUBOPTIMAL LEARNING RATE AND ESTIMATION ERROR  

𝜂𝜔/𝜂𝜔
𝑜𝑝𝑡

 1 1.02 1.04 1.06 

RMSE (FE) (Hz) 0.0041 0.0049 0.0063 0.0073 

RMSE (RE) (Hz/s) 0.0215 0.0299 0.0411 0.0481 

 

 
Fig. 9. RoCoF Estimation: Field data case study. 

 
Fig. 10. ADM: RoCoF estimation errors and sensitivity to gain 𝜂𝜔. 

c. Case3: Harmonics and Decaying DC Components 

For the same event as in Case 1, the input measurements 

were contaminated by 3rd harmonics (2%) throughout. 

Additionally, a decaying DC component was also added at 

t=1s in this case study. Most of the estimation methods fail 

due to signal modelling inaccuracies whereas ADM 

produces a good estimate of RoCoF as has been shown in 

Fig. 8. Corresponding accuracy indices of estimation 

showing effectiveness the scheme have been tabulated 

(Table-III). 

d. Case4: Field Measurements  

To validate the accuracy of frequency and RoCoF 

estimation for an event or amalgam of events of significance 

in an actual power system, field synchrophasor 

measurements were used to construct the modulated 

analogue inputs (36) via lookup table and sampler for the 

estimation algorithm and subsequently contaminated by 2% 

noise and used to estimate the frequency and RoCoF. The 

outputs from the estimation algorithms were used to 

reconstruct the analogue waveforms and normalized 

reconstruction errors [43]-[44] were used as indices of 

performance. For 200 Monte Carlo runs, the normalized 

value of the indices have been tabulated (Table-IV). 

Furthermore, estimated and recorded RoCoF have been 

plotted in Fig. 9. whereas estimation index (maximum 

RoCoF error (MRE)) has been tabulated (Table-IV). ADM 

performs better than other methods (Fig. 9 , Table-IV-V).  

𝑎(𝑡) = 𝑎𝑚𝑠𝑖𝑛 (2𝜋𝑘𝑇𝑠𝑓 + 𝜋𝑘2𝑇𝑠
2

𝑑𝑓

𝑑𝑡
+ 𝜃𝑚) + 𝜂𝜖  (36) 

where, 𝑎𝑚, 𝑓, 
𝑑𝑓

𝑑𝑡
, 𝜃𝑚, 𝑇𝑠, 𝑘 and 𝜂𝜖 are respectively the 

amplitude, frequency, RoCoF, phase, sampling time, sample 

number and noise of the phasor from the synchrophasor. 

Evaluation of design parameter 𝜂𝜔 

If the values of the design parameter 𝜂𝜔 is chosen either 

high or low than its optimal value (𝜂𝜔
𝑜𝑝𝑡

) described by (35), 

the estimation results are not good as has been shown in Fig.  

10 for the same case study. It is therefore imperative to 

design this parameter optimally such that it doesn’t violate 

the design condition (35) and yield the best performance. 

The optimal value 𝜂𝜔
𝑜𝑝𝑡

 is obtained by performing 

exhaustive offline Monte-Carlo simulation runs at different 

buses of the power system for a range of disturbance 

scenarios using ISE as a performance index. For a given 

noise level, a suboptimal value of the learning rate (slightly 

higher than its optimal value) accelerates the 

swiftness/convergence of the estimation process. However, 

the corresponding root mean square error (RMSE) of the 

estimation also increases with the suboptimal value of the 

learning rate (Table-VI). While satisfying the design 

condition (35) and using  𝜂𝜔
𝑜𝑝𝑡

 as an initial value, the 

learning rate is made self-tuning (37).  

𝜂𝜔
𝑘 = 𝛽𝜔Ts

−1(𝜕ℰ𝑘/𝜕𝜔̂1
𝑘)−2 (37) 

However the variation in 𝜂𝜔
𝑘  should be limited within 5% 

band (determined empirically) around 𝜂𝜔
𝑜𝑝𝑡

 i.e.,  0.95𝜂𝜔
𝑜𝑝𝑡

≤

𝜂𝜔
𝑘 ≤ 1.05𝜂𝜔

𝑜𝑝𝑡
 for enhanced dynamic performance of the 

estimator and to have an appropriate tradeoff between 

swiftness and convergence of the estimates. 

Moreover, the quality of the estimates and the 

convergence rate do not depend on the location of the 

estimator but on the frequency and noise in measurement, 

which do not vary significantly for any given bus in the 

system or with system size, as is clear from the final 

estimation law equations (25-32). Therefore, the location of 

estimator does not affect quality of the estimates.  

e. Effect of Instrumentation Channel Parameter Variation   

Variation of parameters (saturation factor, length of the 

control cables, burden resistance etc.) in the measurement 

chain impart distortion and have an adverse impact on the 

quality of the measured data available for estimation [34]-

[35].  To study the impact on the accuracy of the estimates, 

the saturation factor (SF) (Appendix-B) of the IT was varied 
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over its range and its estimation accuracy indices were 

plotted (Fig. 11.). These indices remain constant for each 

scheme as long as SF is less than unity and increase 

continuously as SF is increased beyond unity. However, the 

impact is least in the case of an ADM based estimator (Fig. 

11.).  The impact of the variation in other parameters of the 

instrumentation chain is similar.  

 
Fig. 11. Effect of instrumentation channel parameter variation (instrument 

transformer saturation factor) on estimation accuracy (a) Performance 

comparison: RMSE of the estimated RoCoF (Hz/s) with different 

algorithms. (b) Performance comparison: RMSE of the estimated frequency 

(Hz) with different algorithms. 

 

 
Fig. 12. Real-time implementation: Schematic Diagram. 

 
Fig. 13. Real-time results: Case1: Gaussian Case (a) Real-time frequency 

estimation via ADM (b). Real-time RoCoF estimation via ADM 

f. Computational speed and viability   

The ADM takes an average running time of 0.21ms per 

iteration on a personal computer with 𝑖7-4970S CPU, 2GHz 

processor and 8GB RAM. The average computation time 

per iteration for IDFT-KF [22] and GTWLS [21] are 0.23ms 

and 0.19ms respectively. Therefore, the computational 

requirements of ADM can be easily met by an ordinary 

microcontroller/DSP processor.  

 
Fig. 14. Real-time results: Case2: non-Gaussian Case a) Real-time 

frequency estimation via ADM (b). Real-time RoCoF estimation via ADM. 

VI.  REAL-TIME IMPLEMENTATION/EVALUATION 

A scaled laboratory setup has been used to demonstrate the 

realization and real-time applicability of the ADM scheme. 

Laboratory setup includes a windows-host command station 

(to set up test scenarios: Fig. 12.), QNX platform based 

Opal-RT multiprocessor as real-time station to emulate the 

Power System and network dynamics and a Linux Redhat 

OP5600 core implementing the ADM algorithm. The host 

command station, RTS and Redhat core2 (implementing 

ADM scheme) interact between themselves through 

100Mbit/𝑠 ethernet connection. The RT-lab main control is 

used to build real-time “C” code and to download and 

execute this code on Xeon processor of RTS through 

ethernet link. The same RT-lab main control is used to 

generate code for the ADM estimator and to download it to 

Redhat core2 for real-time execution through ethernet link. 

The interface between the two multiprocessor cores is in 

analogue domain through built-in DAC/ADC modules, so 

that it is virtually impossible for the ADM estimator to 

distinguish between the emulated plant and  the actual plant. 

RT1004 oscilloscopes were used to capture the test results 

of the executed scenarios detailed in section-V (a-b) as 
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shown in Fig 13 (a-b) (wherein measurements are 

contaminated with 2% Gaussian noise) and Fig 14 (a-b) 

(wherein measurements are contaminated with 2% non-

Gausssian noise). As inferred from the RT test case 

scenarios, ADM is robust and can be implemented using any 

processor with similar computational features as Op5600 

Opal-RT processor.  

VII.  CONCLUSION 

In this paper, a new nonlinear observer (called robust ADM) 

based frequency and RoCoF estimator for power systems 

has been proposed to achieve functionalities like robustness 

to DC anomalies (stepped changes), distortions, harmonics 

and noise statistics (Gaussian or non-Gaussian). The ADM 

produces highly accurate estimates of frequency and RoCoF 

for all grid conditions. The proposed estimator is stable and 

the estimate convergence is guaranteed. It is therefore 

suitable for robust estimation. As established via theory and 

simulations, robust ADM performs better than state of the 

art methods in the literature owing to its self-adaptation to 

any changes in the measurement signal. 

APPENDIX A 

Proof: With 𝒥𝑘 as Lyapunov function, and using (34), the 

condition for 𝜂𝜔
𝑘 = 𝜂𝜔

𝑜𝑝𝑡
 given by the equation (35) can be 

proven as detailed below [46]. 

∵ 𝒥𝑘 = ℰ𝑘
2/2  

Then, increment in 𝒥𝑘 i.e., ∆𝒥𝑘 is given by 

∆𝒥𝑘 = 𝒥𝑘+1 − 𝒥𝑘 =
1

2
[ℰ𝑘+1

2 − ℰ𝑘
2] 

The error ℰ𝑘+1 is given by: 

ℰ𝑘+1 = ℰ𝑘 + ∆ℰ𝑘 = ℰ𝑘 + [𝜕ℰ𝑘/𝜕𝜔̂1
𝑘]𝑇∆𝜔̂1

𝑘 

Substituting ℰ𝑘+1 in ∆𝒥𝑘, we have  

∆𝒥𝑘 = ℰ𝑘Δℰ𝑘 +
Δℰ𝑘

2

2
 

⇒ ∆𝒥𝑘 = ∆𝜔̂1
𝑘 [

𝜕ℰ𝑘

𝜕𝜔̂1
𝑘] [ℰ𝑘 +

1

2
∆𝜔̂1

𝑘 [
𝜕ℰ𝑘

𝜕𝜔̂1
𝑘]] 

∆𝜔̂1
𝑘 as obtained from (29-30) is given by: 

∆𝜔̂1
𝑘 = −𝜂𝜔

𝑘 T𝑠ℰ𝑘[𝜕ℰ𝑘/𝜕𝜔̂1
𝑘] 

Substituting ∆𝜔̂1
𝑘 in ∆𝒥𝑘 . 

∴  ∆𝒥𝑘 = −𝜂𝜔
𝑘 T𝑠ℰ𝑘 [

𝜕ℰ𝑘

𝜕𝜔̂1
𝑘]

2

[ℰ𝑘 +
1

2
𝜂𝜔

𝑘 𝑇𝑠ℰ𝑘 [
𝜕ℰ𝑘

𝜕𝜔̂1
𝑘]

2

] 

⇒ ∆𝒥𝑘 = −𝜂𝜔
𝑘 T𝑠ℰ𝑘

2 [
𝜕ℰ𝑘

𝜕𝜔̂1
𝑘]

2

+
1

2
(𝜂𝜔

𝑘 )2T𝑠
2ℰ𝑘

2 [
𝜕ℰ𝑘

𝜕𝜔̂1
𝑘]

4

 

≡ −ϱℰ𝑘
2 (A.1) 

Let ℎ1𝑘 =
𝜕ℰ𝑘

𝜕𝜔̂1
𝑘 and ℎ𝑚𝑎𝑥

𝑘 = [
𝜕ℰ𝑘

𝜕𝜔̂1
𝑘]

𝑚𝑎𝑥
, 𝜂𝜔

′′ = 𝜂𝜔
𝑘  (ℎ𝑚𝑎𝑥

𝑘 )2 

⇒ 𝜚 =
1

2
ℎ1𝑘

2 𝜂𝜔
𝑘 (2 − Ts𝜂𝜔

𝑘 ℎ1𝑘
2 ) 

=
1

2
ℎ1𝑘

2 𝜂𝜔
𝑘 (2 − Ts𝜂𝜔

′′
ℎ1𝑘

2

(ℎ𝑚𝑎𝑥
𝑘 )2

) 

Since, ℎ1𝑘 < ℎ𝑚𝑎𝑥
𝑘 , therefore 

𝜚 ≥
1

2
ℎ1𝑘

2 𝜂𝜔
𝑘 Ts(2 − Ts𝜂𝜔

′′ ) > 0 
(A.2) 

From (A.1), (A.2) the condition guaranteeing asymptotic 

stability (negative semi-definiteness of ∆𝒥𝑘) is given as 

∴ 0 < 𝜂𝜔
′′ < 2Ts

−1 

⇒ 0 < 𝜂𝜔
𝑘 < 2Ts

−1(ℎ𝑚𝑎𝑥
𝑘 )−2 

∴ 0 < 𝜂𝜔
𝑘 =

𝛽𝜔Ts
−1

(𝜕ℰ𝑘/𝜕𝜔̂1
𝑘)2

<
2Ts

−1

[𝜕ℰ𝑘/𝜕𝜔̂1
𝑘]𝑚𝑎𝑥

2
 

(A.3) 

where 0 < 𝛽𝜔 < 2 

APPENDIX B [30], [34] 

Saturation factor (SF): In an instrument transformer the 

ratio of secondary voltage (also called saturation voltage) 𝐕𝐒 

to primary voltage (also known as excitation voltage) 𝐕𝐄 is 

called saturation factor (SF). When SF exceeds unity, it 

indicates the core is saturated and the waveshape on the 

secondary side is distorted and rich in harmonics. 

Burden: Burden of an Instrument system is the rated Volt-

Ampere loading (modelled as impedance) which is 

permissible without errors exceeding the limits for a 

particular class (protection/ metering) of an instrumentation 

chain. 
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