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Abstract

Behavior at the individual level in panels is often influenced by aspects of the system

in aggregate. In particular, the interaction between individual-specific explanatory variables

and an individual dependent variable may be affected by ‘global’ variables that are relevant

in decision making and shared communally by all individuals in the sample. To capture

such behavioral features, we employ a functional coefficient panel model in which certain

communal covariates may jointly influence panel interactions by means of their impact on

the model coefficients. Two classes of estimation procedures are proposed, one based on

cross section averaged data, the other on the full panel. The asymptotic properties of these

methods are obtained and compared, allowing for sequential and joint expansion of the

cross section and time series sample sizes. Limit theory for the associated fixed effects

estimators are derived and inferential procedures are developed to test hypotheses concerning

the functional coefficients. The finite sample performance of the proposed estimators and

tests are examined by simulation. An empirical illustration is provided in which the regional

sensitivity of housing rental prices to available job numbers is studied with national labor

force participation rate as the communal smoothing covariate. Strong evidence is found

supporting the functional coefficient specification with this country-wide smoothing variable.
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1 Introduction

Decisions taken at the individual consumer or firm level are frequently affected by prevailing

macroeconomic influences such as interest rates, inflation, and aggregate indices of consumer or

business sentiment. Likewise, changes in the labor market at the national level can play a role

in influencing the nature and intensity of the impact of local workforce changes on the demand

for local housing. Similarly, in spatial modeling it is often appropriate to model behavior at

individual locations partly in terms of aggregate influences. In modeling climatic change, for

instance, average temperature in any given spatial location needs to account for prevailing

aggregates such as greenhouse gas concentrations in the atmosphere because of the way such

gases are well-mixed in Earth’s atmosphere as a whole.

One mechanism by which such individual or local dependencies on aggregates may be mod-

eled in practical work is to use a panel framework in which the coefficients are functionally

determined by the relevant aggregate or ‘communal’ variables. This type of model is closely

related to a fixed effects functional coefficient panel data model of the following form

yit = αi + β(zit)
′xit + uit, i = 1, · · · , N ; t = 1, · · · , T ; (1.1)

where xit is a p-vector of regressors, zit is a q-vector of covariates that determine the (random)

coefficients β(zit) = (β1(zit), · · · , βp(zit))′, the αi are individual fixed effects, and the error uit

has zero mean and finite variance σ2u. In what follows, we will focus on the case where both xit

and zit are exogenous.1

Methods of econometric estimation and inference in model (1.1) are reviewed in Su and

Ullah (2011). Regarding estimation, the usual differencing method to eliminate fixed effects

can be extended to this functional coefficient model. But as indicated in Sun et al. (2009), this

approach leads to additive nonparametric components and therefore suffers from the problems of

estimating nonparametric additive models as well as the additional complexity of the presence of

common functional coefficients in the resulting additive nonparametric regression. Instead, Sun

et al. (2009) proposed a profile least squares approach in which the nonparametric component

β(·) is profiled out first. In later work Su and Ullah (2011) proposed an alternative profile

least squares method in which the fixed effects αi rather than β(·) are profiled out first. Both

approaches may be employed in the communal panel framework (1.2) that we consider in the

present paper. Rodriguez-Poo and Soberón (2015) presented an estimation procedure that

employs a within un-smoothed mean deviation transformation of (1.1). Recently, Feng et al.

(2017) considered varying-coefficient categorical panel data models where the zit are discrete

1When the exogeneity condition E(uit|xit) = 0 fails and there are endogenous regressors, model (1.1) has
been examined by Cai and Li (2008) but without fixed effects αi. These authors proposed a nonparametric GMM
estimation method. To our knowledge, models with endogenous covariates zit for which E(uit|zit) 6= 0 have so far
only been analyzed by Li and Sun (2019).
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covariates.

Our interest in this paper lies in a communal version of the model (1.1). Instead of using

individual specific variates zit as the smoothing covariate for the regression coefficients, our

framework employs smoothing covariates zt that are common to all individuals in the panel. This

formulation allows for global influences in determining the impact of the individual regressors

and intercept. More specifically, we consider the following model

yit = αi + β0(zt) + x′itβ(zt) + uit = αi + x′∗,itβ∗(zt) + uit, (1.2)

where x∗,it = (1, x′it)
′ and β∗(z) = (β0(z), β(z)′)′ is a (p+ 1)-vector of coefficients. We allow the

individual specific effects αi to be correlated with zt and/or xit with an unknown correlation

structure, so that (1.2) is treated as a fixed effects model. For identification, we assume that∑N
i=1 αi = 0.2 We include the intercept β0(zt) explicitly. Then (1.2) includes the model studied

by Lee and Robinson (2015). Thus, when there is no explanatory variable xit, (1.2) reduces to

the nonparametric panel data model with fixed effects of Lee and Robinson (2015). For the case

without the intercept β0(zt), analysis can be carried out in a similar fashion and the results are

collected together in the Online Supplement to this paper (Phillips and Wang, 2021).

As indicated at the outset, a primary motivation underlying the specification of (1.2) lies

in the fact that zt may represent global variables that are shared as common influences by

all individuals in the panel or all locations in the spatial model. For example, zt could be

some world-wide variables in a panel cross-country study or nation-wide variables in panel

cross-state or regional analyses. Similarly, zt may include certain global variables that are

relevant in determining station-level outcomes in a spatial model, as in a model of Earth’s

climate.3 The time-varying coefficient panel data model studied by Li et al. (2011) reflects

similar considerations in which the parameters may evolve over time. But instead of using

covariates such as zt to drive this evolution, the coefficients are assumed to be directly time-

varying. In a similar fashion the model employed in Robinson (2012) considers a nonparametric

trending regression where only an intercept function of time is included.

Our first contribution is to provide an analytic study of econometric estimation and inference

in the model (1.2). We consider two estimation approaches, explore their respective asymptotic

properties, and develop tests to assess constancy of the functional coefficients. One approach

uses a cross-section averaged version of (1.2) and the other works directly with the full panel

structure. Differences in the asymptotic behavior of the functional coefficient estimators, in-

2This is a standard assumption in the literature. A referee pointed out an alternative identification condition
Eβ0(zt) = 0 for all t. With this condition, estimation can be carried out in similar ways except that a demeaning
transformation is needed to ensure the estimator of β0(z) satisfies the zero expectation condition. The assumption∑N
i=1 αi = 0 has no meaningful impact on the test of intercept homogeneity, namely αi = α0 for all i where α0

is either given or an unknown constant that needs to be estimated.
3A spatial climate econometric model of this type was used as an empirical illustration in the original version

of this paper (Phillips and Wang, 2019) with global atmospheric CO2 equivalent as the communal variate.
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cluding convergence rates, of these approaches and their relation to the properties of an oracle

estimator are examined. The analysis contributes to multi-index limit theory by developing

sequential and joint limits as the sample sizes (N,T ) → ∞ in cases where there are different

convergence rates and potential degeneracies in the asymptotics. The latter present difficulties

that require new methods in developing a rigorous joint limit theory. A further contribution of

the paper is to provide limit theory for the associated fixed effects estimators, which is new to

the literature.

The limit theory is used to construct tests of parametric linear specification against the

semiparametric functional coefficient model. Numerical work is conducted to examine the finite

sample properties of the estimation and test procedures. A real data analysis is provided to

study the sensitivity of housing rental prices to labor market supply in the United Kingdom with

regional data. The national labor force participation rate is used as the smoothing communal

variate. Strong empirical evidence is found in this application to support a mediating impact

of the labor force participation rate on the relationship between regional housing rental prices

and regional job numbers. This functional coefficient specification with a communal smoothing

variable is also shown to provide improved within sample and one-period ahead forecasting

performance.

The remainder of the paper is organized as follows. Section 2 presents the two estimation

approaches and derives their asymptotic properties. Testing constancy of the functional co-

efficients is considered in Section 3. Simulations are conducted in Section 4 to examine the

finite sample performance of the two approaches and the test statistics. Section 5 is devoted

to the empirical analysis of housing rental prices sensitivity to the number of jobs available in

the region and the national level labor force participation rate. Section 6 concludes the paper.

The Online Supplement gives further results for the panel model (1.2) with fixed effects and

functional coefficients but without an intercept coefficient function.

2 Estimation and asymptotic theory

This section is devoted to the estimation of model (1.2) and the development of asymptotic

theory for the proposed estimation procedures. Before presenting these procedures, we discuss

the effects of the within and differencing transformations commonly employed to deal with the

fixed effects αi.

Taking a time series average of (1.2) gives

yiA = αi +
1

T

T∑
t=1

x′∗,itβ∗(zt) + uiA, i = 1, · · · , N, (2.1)

where yiA = T−1
∑T

t=1 yit, and uiA is defined analogously. The within transformation of (1.2)
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then yields the system

yit − yiA = x′∗,itβ∗(zt)−
1

T

T∑
s=1

x′∗,isβ∗(zs) + uit − uiA

=
T∑
s=1

δtsx
′
∗,isβ∗(zs) + uit − uiA, i = 1, · · · , N, t = 1, · · · , T, (2.2)

where δts = 1− 1/T if s = t and −1/T otherwise. The right-hand side of (2.2) involves a linear

combination of x′∗,isβ∗(zs) of quantities measured at all time periods including time t. Marginal

integration methods can be used to estimate β∗(·), as in the estimation of nonparametric additive

models.

An alternative way to remove fixed effects is to use first differences of (1.2) or to long-

difference by deducting the equation at time period 1. This approach again leads to a model

that contains a linear combination of x′∗,itβ∗(zt) at different times t.

Both transformation methods therefore suffer from difficulties similar to those that arise in

the estimation of nonparametric additive models. A further difficulty is that if xit contains a

time-invariant term whose coefficient has an additive constant, then first order differencing wipes

out the additive constant. In consequence, the coefficient cannot be consistently estimated; see

Sun et al. (2009) for more discussion.

In view of these difficulties, we adopt a profile method to remove the unknown fixed effects.

Profile least squares estimation procedures for model (1.1) were proposed by Sun et al. (2009)

and Su and Ullah (2011). These methods can be applied in our model (1.2). We adopt the

approach of Su and Ullah (2011), which profiles out the fixed effects first. In what follows, we

consider two types of local constant nonparametric estimates. A cross-section averaged profile

local constant (APLC) estimation method is considered in Section 2.1. Section 2.2 discusses the

profile local constant (PLC) approach.

2.1 APLC estimation

Averaging over i in (1.2) gives, using the setting ᾱ = 0 for identification,

yAt = β0(zt) + x′Atβ(zt) + uAt = x′∗,Atβ∗(zt) + uAt, t = 1, · · · , T. (2.3)

Let YA = (yA1, ..., yAT )′ be the T × 1 vector, and X∗A be the T × (p + 1) matrix obtained by

stacking the 1× (p+ 1) vector x′∗,At. Using the local level approach to estimate β∗(z) yields

β̂∗,APLC(z) = [(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)YA, (2.4)
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where KT (z) is a T × T diagonal matrix with t-th central element KtH = K(H−1(zt − z)) and

K(·) is a multivariate kernel function. For the diagonal bandwidth matrix H = diag(h1, · · · , hq),
define ||H|| =

√∑q
j=1 h

2
j and |H| = h1 · · ·hq. We adopt the product kernel K(v) =

∏q
j=1 k(vj),

with v = (v1, · · · , vq)′.
To establish the asymptotic properties of β̂∗,APLC(z), we employ the following conditions.

Assumption 1. The kernel function k(·) is a symmetric bounded probability function with

support [−1, 1],
∫
k(w)dw = 1, and

∫
wk(w)dw = 0. Denote

∫
w2k(w)dw = µ2,

∫
k2(w)dw = ν0

and
∫
w2k2(w)dw = ν2.

Assumption 2. (a) {(xi, ui), i ≥ 1} is a sequence of independent and identically distributed

(i.i.d.) variates over i, where xi = (xit, t ≥ 1) and ui = (uit, t ≥ 1). Further, for each

i ≥ 1, {(xit, zt, uit), t ≥ 1} is stationary and α-mixing with mixing coefficients αk satisfying

αk = O(k−τ ), where τ > λ+2
λ for some λ > 0, as in (b) and (c) below. Furthermore, uit is

independent of xit and zt for all i and t;

(b) Let E(xit|zt = z) = η(z) = η, E(xitx
′
it|zt = z) = Vxx(z) = Vxx, and Var(xit|zt = z) =

Σxx(z) = Σxx = Vxx − ηη′ be positive definite, so that the first and second order conditional

moments of xit given zt = z are independent of z. Furthermore, E(||xit||2(2+λ)) < C < ∞,

where || · || is Euclidean distance;

(c) The error process {uit} satisfies Euit = 0, Eu2it = σ2u < ∞, and E|uit|2+λ < ∞ for some

λ > 0;

(d) zt has bounded probability density fz(z) and fz(z) > 0. The functions fz(·) and β∗(·) have

bounded continuous derivatives to the second order.

Assumption 3. As T →∞, ||H|| → 0, T |H| → ∞, and NT |H| → ∞.

Remark 2.1. (i) The conditions on the kernel function k(·) in Assumption 1 are commonly

used for convenience in proofs and can be relaxed. For example, the compact support condition

can be replaced with some restrictions on the tail behavior of the kernel function, which can

be useful when small bandwidth choices are employed. The product kernel K(v) =
∏q
j=1 k(vj)

is standard in multivariate smoothing and satisfies
∫
vv′K(v)dv = µ2Iq,

∫
K2(v)dv = νq0 , and∫

vv′K2(v)dv = ν2Iq.

(ii) Assumption 2 (a) assumes {(xit, uit), i ≥ 1} is iid across section but allows for temporal

dependence under mixing conditions to facilitate the asymptotic theory. Similar assumptions

are used by Li et al. (2011). Endogeneity is ruled out in (a) for simplicity in the present study,

as in Sun et al. (2009), but may be accommodated using instrumental variable methods. The first

part of the present paper works under these assumptions. However, the case of nonstationary

regressors xit is relevant in many applications, including climate change studies of the type that
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were considered in the empirical work of the original version of the present paper (Phillips and

Wang, 2019). Such extensions obviously require some considerable modification to the conditions

and proofs. They are an important line of further research given the prevalence of nonstationarity

in many economic, financial and climate time series.

(iii) Assumption 2 (b) assumes that the first two conditional moments of xit given zt = z are

equivalent to unconditional moments, which obviously holds under independence of xit and zt.

This requirement is not crucial to our findings and can be relaxed at the cost of more complex

calculations and notation.4 In contrast to Li et al. (2011) we allow xit to have a non-zero mean

η in Assumption 2 (b). This extension has important consequences and is relevant in practical

work. In the asymptotic distributions presented below, we will see the role that a non-zero

(conditional) mean η plays. Denoting xit = x0it + η, where E(x0it|zt = z) = 0, model (1.2) can be

rewritten as yit = αi + β0(zt) + η′β(zt) + (x0it)
′β(zt) + uit, where β0(zt) + η′β(zt) ≡ β∗0(zt) is a

composite intercept. As shown later in Remark 2.7, the estimator of the composite intercept has

a faster convergence rate than that of other linear combinations of β∗(z). From this perspective,

Theorem 2.1 of Li et al. (2011) is nested as a special case of Theorem 2.2 below.

(iv) Assumption 2 (c) provides standard moment conditions on the equation error uit.

(v) Assumptions 2 (d) and 3 are standard regularity conditions on smoothness of the functional

coefficients, the density of zt, and the bandwidth and effective sample size T |H| → ∞ require-

ments that are used in kernel estimation.

The following result provides asymptotic theory for the estimator β̂∗,APLC(z) in various

settings depending on whether N is fixed or N →∞ and whether η = 0 or η 6= 0. In all cases, it

is presumed that T → ∞.5 Results with N → ∞ include both sequential limit (N,T )seq → ∞
theory, where T → ∞ followed by N → ∞, and joint limit (N,T ) → ∞ theory, where T,N

pass to infinity together. Joint limit theory is obtained by following the double indexed limit

theory in Phillips and Moon (1999, theorem 2) but our results provide an important extension

that covers cases of multiple convergence rates and possibly degenerate limit distributions. In

addition, a re-labeling technique is used when dealing with triple index sequences so that the

double index joint limit theory can be employed.

Theorem 2.1. Under Assumptions 1-3, as T →∞, we have:

4If the first and second moments of the regressor variables xit given zt = z depend on z, we need to replace
the occurrence of η with η(z), Vxx with Vxx(z) and Σxx with Σxx(z). Those adjustments will largely change the
notations in this paper. The transformation Cη introduced later in Theorem 2.2 will depend on the estimation
point z. Upon appropriate requirements on η(z), Vxx(z) and Σxx(z) and associated conditions that assure validity
of the limit theory arguments, our findings continue to hold. However, in the Supplement of this paper, relaxing
this assumption will cause further complication in the derivation of the asymptotics for fixed effects estimators.
Please refer to the comments on assumptions in the Supplement for more discussion.

5This condition precludes sequential limits in which (T,N)seq → ∞, i.e., N → ∞ first, followed by T → ∞.
In such cases, there is partial failure in identification. In particular, when N → ∞ and thus uAt →p 0, the model
(2.3) reduces to yt = β0(zt) + η′β(zt), where yAt →p yt, and only the composite parameter β0(z) + η′β(z) is
identified when η 6= 0.
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(a) if N is fixed (η may be zero or nonzero), then√
NT |H|(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N (0, νq0σ
2
uf
−1
z (z)V −1xx,η,N ), (2.5)

where

Vxx,η,N =

(
1 η′

η 1
NΣxx + ηη′

)
, (2.6)

and

B(z) = f−1z (z)µ2

q∑
s=1

h2s

[
∂fz(z)

∂zs

∂β∗(z)

∂zs
+

1

2

∂2β∗(z)

∂2zs
fz(z)

]
; (2.7)

(b) if (N,T )seq →∞ or (N,T )→∞ jointly with N
∑q

j=1 h
2
j → 0, then

(b1) if η = 0√
T |H|DN (β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N (0, νq0σ
2
uf
−1
z (z)(V ∗xx)−1), (2.8)

where

DN =

(√
N 0

0 Ip

)
, V ∗xx =

(
1 0

0 Vxx

)
;

(b2) if η 6= 0

√
T |H|(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N

(
0, νq0σ

2
uf
−1
z (z)

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

))
,

(2.9)

which is a degenerate normal distribution.

Remark 2.2. When N is fixed, it is apparent from the definition of Vxx,η,N in (2.6) and the

decomposition

Vxx,η,N =

(
1 η′

η 1
NΣxx + ηη′

)
=

(
0 0

0 1
NΣxx

)
+

(
1

η

)(
1 η′

)
(2.10)

that when the standardized variance matrix 1
NΣxx is small or when the mean η is large relative

to 1
NΣxx, the matrix Vxx,η,N is close to singular. In such cases, the average profile estimator

can be very inefficient, as reported in the simulation results of Section 4.
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Remark 2.3. In the case where N → ∞, the bandwidth condition N
∑q

j=1 h
2
j → 0 is imposed

to control randomness arising from the bias component so that standard limit theory is obtained.

In stationary FC regression, randomness that is contained in the conventional bias term is nor-

mally of smaller order than that contained in the typical ‘variance’ term involving the regression

error, as demonstrated in Phillips and Wang (2020). However, the cross-section averaged time

series FC regression (2.3) differs from stationary time series FC models by virtue of the effects

of averaging the regressors and errors while keeping the intercept unchanged. This difference

effectively magnifies the randomness arising from the approximation error of the intercept coef-

ficient β0(zt). In consequence, the divergence rate of the cross section sample size N needs to be

controlled in order to control the random bias contributed by estimation of β0(zt). More details

are available in the proof of Lemma E.4.

Remark 2.4. When η = 0 and N → ∞ either sequentially or jointly with T , it is clear from

the definition of DN and (2.8) that the convergence rate of β̂0,APLC(z) is
√
NT |H|, whereas the

convergence rate of β̂APLC(z) is
√
T |H|. When hs = O(h) for s = 1, ..., q, the optimal bandwidth

order is then given by h = O((NT )−1/(q+4)) for β̂0,APLC(z) and h = O(T−1/(q+4)) for β̂APLC(z).

Accordingly, a two step procedure may be considered as the mean squared error (MSE) of β0(z)

and β(z) cannot be minimized simultaneously. The idea is similar to that discussed in Cai et al.

(2009). But we do not pursue this direction further in the present paper. For the purpose of

simulation we use the order h = O(T−1/(q+4)) when implementing the APLC estimators in later

comparisons with our alternate approach.

Remark 2.5. The singularity of the limit distribution of
√
T |H|(β̂∗,APLC(z)−β∗(z)) in Theorem

2.1 (b2) arises from the singularity of Vxx,η,N as N →∞ and η 6= 0. Note that Vxx,η,N is the prob-

ability limit of the sample moment matrix 1
T |H|

∑
t x∗,AtKtHx

′
∗,At. As N → ∞, x∗,At

p−→ (1, η′)′

for all t. Thus, there is insufficient signal in the averaged data x∗,At asymptotically as N →∞
to ensure a positive definite limiting sample moment matrix.6 However, when η = 0, the stan-

dardized quantity
√
NxAt converges to a normally distributed random variable, which provides

sufficient variation for the sample moment matrix N
T |H|

∑
t xAtKtHx

′
At to be non-singular and the

standardized sample moment matrix 1
T |H|PN

∑
t x∗,AtKtHx

′
∗,AtPN , where PN = diag(1,

√
NIp),

converges to a non-singular matrix. Consequently, the convergence rate of the coefficient of xAt

is necessarily slower than that of the intercept coefficient by order
√
N . Correspondingly, the

variance of the limit distribution in the direction (1, η′) in Theorem 2.1 (b2) is zero, because the

convergence rate is faster in this direction. Specifically, transforming (2.9) in both the direction

(1, η′) and the orthogonal direction (−η, Ip) we have as (N,T )→∞
6Related consequences arise when N → ∞ before T → ∞, as discussed in footnote 5.
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√
T |H|

(
1 η′

−η Ip

)
(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N

(
0, νq0σ

2
uf
−1
z (z)

(
0 0

0 (Ip + ηη′)Σ−1xx (Ip + ηη′)

))
,

(2.11)

since (
1 η′

−η Ip

)(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

)(
1 −η′

η Ip

)
=

(
0 0

0 (Ip + ηη′)Σ−1xx (Ip + ηη′)

)
. (2.12)

Remark 2.6. Following Lee and Robinson (2015), we can consider the construction of an

improved APLC estimator. The current estimator assumes the identifying condition
∑N

i=1 αi =

0, which is arbitrary in terms of weighting the fixed effects. In general, we could require that

ω′α = 0, for some N × 1 weight vector ω, and consider choosing an optimal ω. In our current

design, we assume {uit} is iid across i, stationary across t and independent with {zt}. It is not

hard to verify that the optimal ω in this setting is simply 1
N 1N , which leads to the same identifying

condition
∑N

i=1 αi = 0 used here and, hence, the same estimator. But in the heteroskedastic

situation, for example where E(uitujt|zt = z) is a function of z, other choices may be optimal.

This research direction is not pursued in the present work because we consider in the following

section a preferred approach that is based on profiling with the full panel.

To develop a complete asymptotic theory in the degenerate case (Theorem 2.1 (b2)), we first

transform coordinates in the regression (2.3) as follows

yAt = (x′∗,AtCη)(C
−1
η β∗(zt)) + uAt ≡ (x′∗,AtCη)θ∗(zt) + uAt, (2.13)

where Cη =

(
1 −η′

η Ip

)
and θ∗(zt) = C−1η β∗(zt) is the transformed coefficient vector. Assum-

ing η is known, we can estimate θ∗(z) using standard local level nonparametric estimation in

(2.13) and denote the resulting estimator θ̂∗,APLC(z). This is entirely analogous to the estima-

tion of β∗(z) based on (2.3), and the asymptotics follow easily. Theorem 2.2 below gives the

asymptotic distribution of θ̂∗,APLC(z), whose proof follows as in Theorem 2.1 and is omitted.

In general, of course, η is unknown, in which case it may be estimated using the sample mean

η̂ = 1
NT

∑N
i=1

∑T
t=1 xit. Since η̂ = η+Op(1/

√
NT ) the results of the following theorem continue

to hold in the case of estimated η.

Theorem 2.2. Under Assumptions 1-3 and as (N,T )seq →∞ or (N,T )→∞ jointly√
T |H|DN (θ̂∗,APLC(z)− θ∗(z)− Bθ∗(z))

d−→ N (0, νq0σ
2
uf
−1
z (z)(Σxx,η)

−1), (2.14)
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where

Bθ∗(z) = f−1z (z)µ2

q∑
s=1

h2s

[
∂fz(z)

∂zs

∂θ∗(z)

∂zs
+

1

2

∂2θ∗(z)

∂2zs
fz(z)

]
, (2.15)

and

Σxx,η =

(
(1 + η′η)2 0

0 Σxx

)
. (2.16)

Equivalently,√
T |H|DNC

−1
η (β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N (0, νq0σ
2
uf
−1
z (z)(Σxx,η)

−1). (2.17)

Remark 2.7. Given the definition of DN , (2.17) implies that one linear combination of β̂∗,APLC(z)

is
√
NT |H| consistent while others are

√
T |H| consistent. More specifically, since

C−1η =

(
1

1+η′η
η′

1+η′η

− η
1+η′η (Ip + ηη′)−1

)
=:

(
c′η
C∗η

)
(2.18)

the following component limits hold when η 6= 0 and (N,T )→∞√
NT |H|

(
1 η′

)
(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N
(
0, νq0σ

2
uf
−1
z (z)

)
, (2.19)

√
T |H|[Ip + ηη′]−1

(
−η Ip

)
(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N
(
0, νq0σ

2
uf
−1
z (z)Σ−1xx

)
, (2.20)

and the limit distributions are independent. It follows that the linear combination c′ηβ̂∗,APLC(z) is√
NT |H| consistent, whereas the other linear combinations C∗η β̂∗,APLC(z) are

√
T |H| consistent.

Note that (1+η′η)c′ηβ̂∗,APLC(z) is precisely the estimator of the composite intercept β0(z)+η′β(z)

defined in Remark 2.1 (iii). This finding explains Theorem 2.1 of Li et al. (2011). Under the

assumption that η = 0, the composite intercept is just the usual intercept β0(z). This explains

why the estimator β̂0,APLC(z) of β0(z) has a faster convergence rate, as shown in Theorem 2.1

(b1). See also Remark 2.4.

2.2 Profile local constant estimation

As shown in Theorem 2.1 the estimator of the slope function β(z) converges at rate
√
T |H|.

We now propose another estimation procedure that returns a
√
NT |H| consistent estimator of

β(z).

In model (1.2), if the αi, i = 1, · · · , N were known, we could apply standard local level

11



estimation of β∗(z) giving the oracle estimator

β̂oracle∗,PLC(z) = [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)(Y −D∗α∗), (2.21)

where Y = (y11, · · · , y1T , · · · , yN1, · · · , yNT )′, D∗ = (−1N−1, IN−1)
′⊗ 1T is NT × (N − 1), α∗ =

(α2, · · · , αN )′, X∗ is NT×(p+1) by stacking the 1×(p+1) vector x′∗,it, and Kn(z) = IN⊗KT (z)

is an n× n diagonal matrix with n ≡ NT .

Let w∗(z) = [X ′∗Kn(z)X∗]
−1X ′∗Kn(z) be the (p + 1) × NT coefficient matrix in the oracle

estimator (2.21), which may then be written as β̂oracle∗,PLC(z) = w∗(z)(Y − D∗α∗). Using this

estimator in the model (1.2), gives the adjusted equation

yit = αi + x′∗,itw∗(zt)(Y −D∗α∗) + v∗,it, (2.22)

where v∗,it = yit − αi − x′∗,itw∗(zt)(Y −D∗α∗). To solve for α from (2.22), we first rewrite the

equation as

yit = αi + x′∗,itw∗(zt)(Y −D∗α∗) + v∗,it

= αi +

p+1∑
d=1

xit,d−1e
′
∗,dw∗(zt)(Y −D∗α∗) + v∗,it

= αi +

p+1∑
d=1

xit,d−1w∗,d(zt)(Y −D∗α∗) + v∗,it, (2.23)

where xit,0 ≡ 1, e∗,d is a (p + 1) × 1 vector with 1 in the d-th entry and 0 elsewhere, and

w∗,d(zt) = e′∗,dw∗(zt) is 1×NT . Arranging (2.23) in matrix observation form gives the system

Y −D∗α∗ =

p+1∑
d=1

xd−1 � [1N ⊗ w∗,d(Z)(Y −D∗α∗)] + V ∗

=

[
p+1∑
d=1

(xd−1 ⊗ 1′n)� (1N ⊗ w∗,d(Z))

]
(Y −D∗α∗) + V ∗

≡ Q∗1(Y −D∗α∗) + V ∗,

where xd = (x11,d, · · · , x1T,d, · · · , xN1,d, · · · , xNT,d)′, w∗,d(Z) = (w∗,d(z1)
′, · · · , w∗,d(zT )′)′ is T ×

NT , � denotes the Hadamard product, Q∗1 is defined by the matrix in square parentheses in the

final equation, and V ∗ = (v∗,11, ..., v∗,1T , ..., v∗,N1, ..., v∗,NT )′. Consequently, we have

(INT −Q∗1)Y = (INT −Q∗1)D∗α∗ + V ∗. (2.24)

12



Let M∗1 = INT −Q∗1 and M∗2 = M∗1D
∗. Then least squares regression on (2.24) gives

α̂∗PLC = [(M∗2 )′M∗2 ]−1(M∗2 )′M∗1Y, (2.25)

with the affix “PLC” standing for Profile Local Constant. Plugging the estimator α̂∗PLC into

the expression for β̂oracle∗,PLC(z), we get the PLC estimator of the coefficient function β∗(z)

β̂∗,PLC(z) = [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)(Y −D∗α̂∗PLC). (2.26)

In view of the identifying restriction which requires
∑N

j=1 αj = 0, α1 can be estimated by

α̂1,PLC = −1′N−1α̂
∗
PLC = −

∑N
j=2 α̂j,PLC . Denote α̂PLC = (α̂1,PLC , (α̂

∗
PLC)′)′.

The following assumption imposes a rate requirement on the bandwidth H in relation to the

time series sample size T . It is a useful technical condition in establishing limit theory for the

estimated fixed effects α̂PLC vector, as discussed in Remark 2.8(ii) below.

Assumption 4. As T →∞, (i) T |H|/ log2(T |H|)→∞, and (ii)
√

log2(T |H|)
|H| ||H||2 → 0, where

log2(·) := log log(·).

The following result gives the asymptotic distributions of the oracle and PLC estimators.

Theorem 2.3. Under Assumptions 1-3, as T →∞, we have:

(a) for the oracle estimator β̂oracle∗,PLC(z) (with N either fixed or passing to infinity via (N,T )seq →
∞ or (N,T )→∞),√

NT |H|(β̂oracle∗,PLC(z)− β∗(z)− B(z))
d−→ N (0, f−1z (z)σ2uν

q
0V
−1
xx,η), (2.27)

where B(z) is defined in (2.7), and

Vxx,η =

(
1 η′

η Vxx

)
;

(b) when Assumption 4 holds, we have for finite N ,

√
T (α̂PLC − α)

d−→ N
(

0, γ2u

[
IN −

1

N
1N1′N

])
, (2.28)

where γ2u is the long run variance of {uit} defined by γ2u =
∑∞

j=−∞ γu(j) with γu(j) =

E(u1tu1,t+j); when N →∞, we have

√
T (α̂j,PLC − αj)

d−→ N (0, γ2u), for j = 1, 2, ... (2.29)

13



with the property that
√
T (α̂j,PLC−αj) and

√
T (α̂`,PLC−α`) are asymptotically independent

for j 6= `;

(c) with Assumption 4(i) holding and N either fixed or passing to infinity, the feasible estimator

β̂∗,PLC(z) is asymptotically equivalent to the oracle estimator β̂oracle∗,PLC(z).

Remark 2.8. (Limit theory of α̂PLC) (i) Theorem 2.3 (b) provides limit theory for the es-

timator of the fixed effects for both fixed N and N → ∞ cases. Since our proposed estimation

method profiles out fixed effects first and the feasible estimator β̂∗,PLC(z) is a plug-in estimator,

we need to study the limit property of α̂∗PLC before examining the limit property of the feasible

estimator β̂∗,PLC(z). To the best of our knowledge, this is the first limit result regarding estima-

tors of fixed effects in this literature. In a more general setting with smoothing variable zit, Su

and Ullah (2011) profile out the fixed effects but do not provide limit theory for their estimators.

The other estimation approach is to profile out the functional coefficient estimator first. That

method has been adopted by Sun et al. (2009) in the functional coefficient panel data model with

smoothing variable zit and Li et al. (2011) in the time varying coefficient panel data model.

These papers provide limit theory for the functional coefficient estimators in those models with-

out considering estimators of the fixed effects. Asymptotic results for fixed effects estimation are

important in practice because of the distinguishing role that fixed effects play in determining the

dependent variable and because of their importance in forecasting, where limit theory facilitates

the construction of forecast intervals.

(ii) Assumption 4(ii) is imposed to control the bias influence on α̂∗PLC imported by the oracle

estimator β̂oracle∗,PLC(z) in fixed effects estimation. From the proof of the theorem (in particular,

(C.27) in the Appendix) we obtain the following representation of the estimation error

α̂∗PLC − α∗ = Op

(√
log2(T |H|)
T |H|

||H||2
)

+Op(1/
√
T ), (2.30)

where the first order of magnitude term, Op

(√
log2(T |H|)
T |H| ||H||

2
)

, originates in the bias term of

the oracle estimator β̂oracle∗,PLC(z), and the second order of magnitude term comes from the usual

variance term involving the equation errors {uit}. When the condition
√

log2(T |H|)
|H| ||H||2 →

0 holds, the bias influence from β̂oracle∗,PLC(z) is op(1/
√
T ) and can be neglected, leading to

√
T

consistency and limit theory for the fixed effects estimator α̂∗PLC that corresponds to oracle

efficient intercept estimation of α as if the functional coefficient β(·) were known. We remark

that the rate condition
√

log2(T |H|)
|H| ||H||2 =

√
log2(Th1···hq)

h1···hq (
∑q

s=1 h
2
s)

2 → 0 is achievable when

q ≤ 3. For example, by setting hs = O(h) for s = 1, ..., q, we have |H| = O(hq), ||H||2 = O(h2)

and
√

log2(T |H|)
|H| ||H||2 = O(

√
h4−q log2(Th

q)). Since T |H| = O(Thq) → ∞ and h → 0, we

have h4−q log2(Th
q) → 0 only when q ≤ 3. However, even without Assumption 4(ii) we still
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have α̂∗PLC − α∗ = op(1), so that α̂∗PLC remains consistent for α∗. Moreover, the asymptotic

equivalence between the feasible and oracle estimators of β(z) stated in Theorem 2.3 (c) continues

to hold. This is because the bias of α̂∗PLC arising from the oracle estimator (i.e., the first order

term in (2.30)) becomes smaller than the bias of the oracle estimator itself. Therefore the bias

of the feasible estimator is dominated by that of the oracle estimator and there is no need to

further control for the bias in α̂∗PLC .

(iii) When N is fixed, we have joint asymptotic normality for the components of α̂PLC . The

distribution on the right side of (2.28) is unsurprisingly degenerate since the covariance matrix

IN − 1
N 1N1′N is singular with 1′N (IN − 1

N 1N1′N )1N = 0 and α̂PLC is perfectly linearly self-related

by construction. The sub-vector estimator α̂∗PLC is also asymptotically normal and, as shown in

the proof, for fixed N

√
T (α̂∗PLC − α∗)

d−→ N (0, γ2u[IN−1 −N−11N−11′N−1]), (2.31)

but IN−1− 1
N 1N−11

′
N−1 is positive definite, with 1′N−1[IN−1−N−11N−11′N−1]1N−1 = 1− 1

N . In

fact, being the associated linear combination of α̂∗PLC , α̂1,PLC satisfies

√
T (α̂1,PLC − α1) = −1′N−1

√
T (α̂∗PLC − α∗)

d−→ N (0, γ2u1′N−1[IN−1 −N−11N−11′N−1]1N−1)
= N (0, γ2u(1− 1/N)). (2.32)

The proof of Theorem 2.3 further shows that when N is fixed,
√
T (α̂j,PLC − αj)

d−→ N (0, γ2u(1−
1/N)) holds uniformly over j = 1, ..., N and that

√
T (α̂j,PLC − αj) and

√
T (α̂`,PLC − α`) have

asymptotic covariance −γ2u/N for all j 6= `. These results together lead to (2.29) and asymptotic

independence of the components {α̂j,PLC} when N →∞. Importantly, as N →∞ the covariance

matrix IN − 1
N 1N1′N → I∞, which is the nonsingular identity matrix of infinite order.7 Thus,

the distinction between the properties of α̂PLC and α̂∗PLC disappears in the infinite dimensional

case. These asymptotics for the fixed effects estimator clearly rely on cross section independence

over i given in Assumption 2 (a). Allowing dependence over i produces additional technical

complications and is left for future study.

Remark 2.9. (Optimal bandwidth order) Suppose hs = O(h) for s = 1, ..., q. Based on the

limit theory given in (2.27), the optimal bandwidth order is h = O((NT )−1/(4+q)). This rate

may seem counterintuitive given that smoothing in the nonparametric estimate relates only to

{zt} over time series observations whereas the optimal order suggests a smaller bandwidth should

be used when N increases while T is fixed. The result is explained by the fact that we use the

series {zt} repeatedly in estimation with cross section data. For each i, we treat zit ≡ zt. From

7A nonsingular matrix of infinite order is a matrix of infinite order with both a left and right inverse and
whose inverse is unique (see, e.g., MacDuffee (2012)). I∞ is the identity matrix in an associative matrix algebra
of infinite order with itself the unique inverse.
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this point of view, the effective sample size is
√
NT |H|. But this conclusion is misleading and,

mistakenly, it may seem reasonable to let the bandwidth decrease as N increases. Care is needed

when N is large and T is moderate as the ‘optimal’ rate O((NT )−1/(q+4)) may lead to a very small

bandwidth. In such cases, increasing the cross section sample size N does not increase the density

of the fixed T sample observations {zt} in the sample space. In consequence, nonparametric

estimation of β∗(z) is more vulnerable to a weak signal and denominator singularity, viz., that

there is no observation point zt within the given bandwidth region for very small h. In practice,

we can impose some restrictions on the bandwidth to ensure that at least one or two points are

available in the selected bandwidth range. Or we can simply use a kernel with unbounded support

such as the Gaussian kernel to avoid this problem.

Remark 2.10. (N/T ratio) We emphasize that the limit theory obtained here requires T →∞,

T |H| → ∞ and T |H|/ log2(T |H|) → ∞. These asymptotics do not apply when T is fixed and

N goes to infinity.8 The failure is evident from the form of the (cross section averaged) kernel

density estimator 1
NT |H|

∑
i

∑
tK(H−1(zt − z)). When T is fixed, there are insufficient time

series observations to estimate the density of zt at an arbitrary point z in the support. For the

kernel density estimate to converge to the true density, we need the time series sample size T

and its effective sample size T |H| to pass to infinity (i.e., T → ∞ and T |H| → ∞) in which

case the estimate converges to fz(z). To fix ideas, assume that hs = O(h) for s = 1, ..., q

and the optimal bandwidth order h = O((NT )−1/(q+4)) is used. To ensure T |H|/ log2(T |H|) =

O(Thq/ log2(Th
q))→∞ in this case, we need T 4/N q →∞. When zt is univariate, this reduces

to N/T 4 → 0, which is unlikely to be demanding in practical work unless T is very small or N

is extremely large.

Remark 2.11. (Density estimation) Suppose zt is univariate. To estimate the density

fz(z), we recommend using the sample average 1
Th

∑
tK(h−1(zt − z)) with bandwidth order

h = O(T−1/5). This estimate is common across sections and no further information is available

in the cross section observations to raise efficiency.

Remark 2.12. (Asymptotically equivalent estimation of the composite intercept) For

the intercept functional coefficient β0(z), we have two estimators: β̂0,APLC(z) with asymptotics

given in (2.5) and β̂0,PLC(z) with asymptotics given in (2.27). Note that the (1,1)th entry of

V −1xx,η,N is 1 +Nη′Σ−1xx η, and the (1,1)th entry of V −1xx,η is 1 + η′Σ−1xx η. Thus these two estimators

are asymptotically equivalent when N = 1 or η = 0. This equivalence is confirmed in simulations.

We find that when η = 0, the APLC estimator has averaged MSE (AMSE) very close to the

PLC estimator. When N is relatively large, the discrepancy grows larger because of the bandwidth

problem. See the first comment in Section 4.1 for more discussion.

More generally, the PLC estimator and the APLC estimator of the composite intercept

β0(z) + η′β(z) are always asymptotically equivalent. This equivalence is demonstrated in the

8Different limit theory applies in such cases and the relevant asymptotics will be provided in a later study.
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following way. From (2.19), the APLC estimator of the composite intercept has asymptotic

variance 1
NT |H|ν

q
0σ

2
uf
−1
z (z). From (2.27), the (1,1)th entry of (1 η′)V −1xx,η(1 η′)′ is 1. So the

asymptotic variance of the PLC estimator of the composite intercept is also 1
NT |H|ν

q
0σ

2
uf
−1
z (z).

So these two estimates of the composite intercept β0(z) + η′β(z) are asymptotically equivalent.

We note that Lee and Robinson (2015) provided one type of estimator for the nonparametric

regression function in their model and this estimator corresponds to our APLC estimator. A

PLC-type estimator is also possible. But the two estimators are asymptotically equivalent. The

equivalence can be seen from the fact that the nonparametric conditional mean function of Lee

and Robinson (2015) corresponds to our intercept function β0(z) as there are no explanatory

variables xit in their model and we have demonstrated the asymptotic equivalence of APLC and

PLC estimation in this scenario.

3 Testing constancy of the functional coefficients

In practical work it is often useful to test specific parametric forms of functional coefficients.

Particularly important in this respect is inference regarding constancy of the regression coeffi-

cients. In the context of model (1.2) the relevant hypothesis concerning the functional coefficient

β∗(z) is whether this vector of coefficient functions can be treated as a constant vector. Tests of

such hypotheses can be constructed by examining the discrepancy between the nonparametric

estimate of β∗(z) and parametric estimate of β∗(z). In the present case it is advantageous to

use the PLC estimator because of its faster convergence rate. In what follows, we therefore use

β̂∗,PLC(z) as given in (2.26) to construct the test statistic.

3.1 Test statistic and limit distribution under the null

Under the null that H0 : β∗(z) = β∗ = const. a.s., the model (1.2) can be estimated by least

squares, giving the estimate β̂∗,OLS . A constancy test may then be constructed based on the

difference between the nonparametric estimate β̂∗,PLC(z) and the null-restricted estimate β̂∗,OLS

at a fixed number m of distinct points {z∗s}ms=1,
9 namely

Im =

m∑
s=1

[β̂∗,PLC(z∗s )− β̂∗,OLS ]′[β̂∗,PLC(z∗s )− β̂∗,OLS ]. (3.1)

By standard results in linear panel models with fixed effects and stationary data, we know that

β̂∗,OLS is
√
TN consistent, which is faster than the Op(

√
TN |H|) convergence rate of β̂∗,PLC(z).

9In practice, the percentiles of {zt}Tt=1 may be used to select these distinct points. For example, in the
illustrative simulation in Section 4, we consider m ∈ {3, 9, 20} and use the {i/(m + 1)}mi=1 percentiles of {zt} as
the m distinct points.
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Then under the null hypothesis and based on Theorem 2.3 (a) and (c) we have√
TN |H|(β̂∗,PLC(z)− β̂∗,OLS)

d−→ N (0,Ω(z)), (3.2)

where Ω(z) ≡ f−1z (z)σ2uν
q
0V
−1
xx,η.

Further, for any m distinct points {z∗s}ms=1 and with undersmoothing10 in the construction

of the nonparametric estimates β̂∗,PLC(z∗i ), we have

√
NT |H|


β̂∗,PLC(z∗1)− β∗(z∗1)

...

β̂∗,PLC(z∗m)− β∗(z∗m)

 d−→ N

0,


Ω(z∗1) · · · 0

... 0

0 · · · Ω(z∗m)


 . (3.3)

To show this result, it suffices to verify that the limit variance matrix is block diagonal, which can

be done in the standard manner by showing that |H|−1EK(H−1(zt−z∗1))K(H−1(zt−z∗2)) = o(1).

In view of (3.2), one can verify that (3.3) continues to hold under the null by replacing β∗(z
∗
s )

(s = 1, ...,m) with β̂∗,OLS . To obtain a suitable pivotal limit theory for the test statistic we

normalize the quantity Im as follows

I∗m = NT |H|
m∑
s=1

[β̂∗,PLC(z∗s )− β̂∗,OLS ]′Ω̂−1(z∗s )[β̂∗,PLC(z∗s )− β̂∗,OLS ], (3.4)

where Ω̂(z) is a consistent estimate of Ω(z). It is easy to see that I∗m
d−→ χ2

(p+1)m under the null,

where χ2
k denotes the χ2 distribution with k degrees of freedom.

Theorem 3.1. Under Assumptions 1-3, 4(i) and the null H0,we have I∗m
d−→ χ2

(p+1)m as T →∞.

In addition, when m is large we can construct a test statistic that is asymptotically standard

normal under the null. Denote δ(z) =
√
NT |H|Ω̂−1/2(z)(β̂∗,PLC(z)− β̂∗,OLS) and then δ(z)

d−→
N (0, Ip+1) as T → ∞, so that δ(z)′δ(z)

d−→ χ2
p+1. Consider the quantity I(m) = m−1I∗m =

m−1
∑m

s=1 δ(z
∗
s )′δ(z∗s ), where the {z∗s}ms=1 are m distinct points in the support of zt. Since

δ(z∗s )′δ(z∗s ) and δ(z∗t )′δ(z∗t ) are asymptotically independent for s 6= t, we can apply the Lindeberg

CLT to I(m), giving as m→∞,

√
m(I(m)− E(δ(zt)

′δ(zt)))
d−→ N (0,Var(δ(zt)′δ(zt))). (3.5)

Since δ(z)′δ(z)
d−→ χ2

p+1, we have E(δ(z)′δ(z))→ p+1 and Var(δ(z)′δ(z))→ 2(p+1) as NT →∞.

Then

J =

√
m

2(p+ 1)
[m−1I∗m − (p+ 1)]

d−→ N (0, 1), (3.6)

10Undersmoothing requires
√
NT |H|||H||2 → 0 as NT → ∞.
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as NT →∞ and m→∞, using sequential asymptotics where NT →∞ and |H| → 0 followed by

m→∞. It seems likely that the result holds under joint asymptotics, perhaps with an additional

condition controlling the expansion rate of m relative to T , but this is not investigated here.

3.2 Local asymptotic power

We consider the local alternative HL1 : β∗(z) = β∗ + ρng∗(z), where n ≡ NT , ρn is a sequence

of constants that goes to 0 as n → ∞, and g∗(z) = (g0(z), g(z)′)′ is a (p + 1) × 1 uniformly

bounded real vector function that satisfies the continuity condition in Assumption 2 (d). To

distinguish the alternative from the null we further require that P (g0(zt) = constant) < 1 and

P (g(zt) = constant) < 1, so that g∗(z) is not a constant function. This kind of local alternative is

commonly used in the study of nonparametric and semiparametric inference involving stationary

and nonstationary data; see, for example, Gao et al. (2009a), Gao et al. (2009b), Wang and

Phillips (2012), Chen et al. (2015).

The limit properties of the test statistic I∗m under HL1 are given in the following result.

Theorem 3.2. Under Assumptions 1-3, 4(i) and the local alternative HL1 , we have the following

limit behavior for fixed m as T →∞,

(a) if
√
n|H|ρn → 0, I∗m

d−→ χ2
(p+1)m;

(b) if
√
n|H|ρn = O(1), I∗m = Op(1) but no longer has an asymptotic χ2

(p+1)m distribution;

(c) if
√
n|H|ρn →∞, I∗m = Op(n|H|ρ2n)→∞.

Remark 3.1. (i) Test performance evidently depends on the local distance from the null, which

in turn depends on the rate ρn → 0. For ρn = O
(

1/
√
n|H|

)
tests based on I∗m have non-

trivial local asymptotic power and when ρn → 0 at a slower rate than O
(

1/
√
n|H|

)
the test is

consistent.

(ii) Similar results hold for the test statistic J . In particular, if
√
n|H|ρn → 0, we have J

d−→
N (0, 1) as (m,n)seq →∞. If

√
n|H|ρn = O(1), we have J = Op(

√
m). And if

√
n|H|ρn →∞,

we have J = Op(n|H|ρ2n/
√
m).

The analysis leading to Theorem 3.2 follows standard lines. Under HL1 , the properties of

β̂∗,OLS depend on ρn.11 There are two components, specifically

β̂∗,OLS − β∗ = Op(1/
√
n+ ρn). (3.7)

11More generally, and especially in nonlinear, nonstationary settings, the convergence rate of β̂∗,OLS can depend
on both ρn and the properties of the function g∗(z), as discussed in Wang and Phillips (2012). Here we only
discuss dependence on ρn.
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From the decomposition β̂∗,PLC(z) − β̂∗,OLS = β̂∗,PLC(z) − β∗(z) + β∗ − β̂∗,OLS + ρng∗(z) and

the fact that the nonparametric estimate β̂∗,PLC(z) is
√
NT |H| consistent under the alternative

with g∗(z) bounded, we have

β̂∗,PLC(z)− β̂∗,OLS = Op(ρn||H||2) +Op(1/
√
n|H|) +Op(1/

√
n+ ρn) +Op(ρn) = Op(ρn + 1/

√
n|H|),

(3.8)

giving √
n|H|(β̂∗,PLC(z)− β̂∗,OLS) = Op(

√
n|H|ρn) +Op(1), (3.9)

where the Op(1) term arises from the asymptotic normal distribution of β̂∗,PLC(z). The repre-

sentation (3.9) then reveals the asymptotic local power properties of the test.

(a) If
√
n|H|ρn → 0, (3.9) is dominated by the Op(1) term. Then the limit theory (3.2) continues

to hold. Consequently, I∗m remains asymptotically χ2
(p+1)m under the local alternative HL1

and the test has asymptotic power equal to size for such alternatives.

(b) If
√
n|H|ρn = O(1), then we have

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) = Op(1), but there is a

departure from normality that is of order Op(1). Then I∗m is still Op(1) but is no longer

χ2
(p+1)m distributed. In this case, the test has non-trivial local asymptotic power.

(c) If
√
n|H|ρn → ∞, then

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) → ∞ and I∗m → ∞. The I∗m test is

consistent in this case.

4 Simulations

This Section reports simulation results on the finite sample performance of the estimation pro-

cedures and tests considered in the previous two sections. Section 4.1 examines finite sample

performance of the two estimators proposed in Section 2 and Section 4.2 investigates inferential

performance of the tests in Section 3.

4.1 Estimation Accuracy

We use the following data generating mechanism

yit = αi + β0(zt) + xitβ1(zt) + uit,

xit = η + x0it, x0it = ρ1x
0
it−1 + ξit,

αi = c0x
0
iA + vi, i = 1, · · · , N − 1, αN = −

N−1∑
i=1

αi,
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where (uit, ξit, vi) is i.i.d. N (0, diag(1, 1+η2, 1)), zt is i.i.d. U(−1, 1). The functional coefficients

are β0(z) = 1 + z, β1(z) = 1 + z2. The parameter c0 controls the correlation between αi

and x0iA = T−1
∑T

t=1 x
0
it. We use c0 = 1 and ρ1 = 0.5. The bandwidth is determined by

h = σ̂z(NT )−1/5 for the PLC estimators and h = σ̂zT
−1/5 for the APLC estimators, where σ̂z

is the sample standard deviation of {zt}Tt=1. We use a Gaussian kernel to avoid the singularity

problem discussed in Remark 2.9.

The process {x0it} has zero mean and thus Exit = η. To avoid the near singularity of the

matrix Vxx,η,N defined in (2.6) which arises for large η (c.f., Remark 2.2 ), we let the variance of

ξit be 1+η2. We use the values η ∈ {0, 1, 5} under different combinations of (N,T ). To evaluate

estimation accuracy, we report the Averaged MSE, defined as

AMSE(β̂(z)) =
1

B

B∑
l=1

[
1

T

T∑
t=1

(β̂(l)(zt)− β(zt))
2

]
, (4.1)

where β̂(l)(z) denotes the estimate in the `-th replication. We use B = 400 and report the

criteria in Table 1 for β0(z) and in Table 2 for β1(z).

Our main findings are as follows:

(1) From Table 1, we see that for N = 5 and η = 0 the APLC and PLC estimators have very

close AMSEs. The correspondence is due to the fact that under this scenario the estimates

are asymptotically equivalent, as noted in Remark 2.12. When N = 50 and η = 0, the

discrepancies are mainly due to the large difference in their respective bandwidths (viz.,

h = O(T−1/5) for the APLC estimator and h = O((NT )−1/5) for the PLC estimator). As

noted in Remark 2.4, we are not using the optimal bandwidth order for the APLC estimator

β̂0,APLC(z). But when η 6= 0, the PLC estimate is more efficient that the APLC estimate,

as expected because the APLC estimator converges at the slower rate
√
T |H| indicated in

Theorem 2.1 (a), whereas the PLC estimator still converges at the rate
√
NT |H|.

(2) From Table 2, it is evident that the PLC estimates always outperform the APLC estimates

irrespective of whether η = 0 or η 6= 0. This outcome is well expected as the APLC estimator

of β1(z) is
√
T |H| consistent and the PLC estimator is

√
NT |H| consistent, consonant with

the findings presented in Theorem 2.1 (a) and Theorem 2.3 (a).

(3) The feasible PLC estimator performs almost as well as the oracle estimator in both Tables

1 and 2, especially when T is large. These results corroborate the asymptotic equivalence

of the estimators given in Theorem 2.3 (c).

(4) The AMSEs of the β0(z) estimates reported in Table 1 increase as η increases, whereas the

AMSEs of the β1(z) estimates in Table 2 decrease as η increases. This is also explained by

the asymptotic theory. For the APLC estimates, from Theorem 2.1 (a) it is easy to verify
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that the (1,1)th entry of V −1xx,η,N is an increasing function of η and the (2,2)th entry is a

decreasing function of η (note that Σxx = 4(1 + η2)/3 according to our simulation design).

For the PLC estimates, from Theorem 2.3 (a) it is apparent that the (1,1)th entry of V −1xx,η

is an increasing function of η and the (2,2)th entry is a decreasing function of η.

(5) Finally, as T increases, all the AMSEs decrease as expected. For the estimates that have√
NT |H| convergence rates (viz., the PLC estimates and the APLC estimate of β0(z) when

η = 0), the AMSEs also decrease as N increases. But for the
√
T |H| consistent estimates

(the APLC estimate of β0(z) with η 6= 0 and the APLC estimate of β1(z)), the AMSEs

increase as N increases.12 The heuristic explanation is that there is information loss from

cross section averaging in the first step of APLC estimation, see (2.3). When N increases,

the average xAt = N−1
∑N

i=1 xit converges to its mean η at which limit there is insufficient

signal variation (information) to jointly identify β0(z) and β(z). Correspondingly, as N rises

for any given T the estimation accuracy of the APLC procedure naturally deteriorates. An

exception occurs for the APLC estimator of β0(z) which has a
√
NT |H| convergence rate

when η = 0 because there is no intercept contamination from x′Atβ(zt) as there is when

η 6= 0. The phenomenon is related to the failure of the asymptotic theory when N → ∞
with T fixed, as discussed earlier in Remark 2.10.

4.2 Test performance

We next consider the finite sample performance of the test statistics defined in (3.4) and (3.6).

The DGP is the same as in Section 4.1 except that the functional coefficients are given as

β0(z) = 1 + ρnz, β1(z) = 1 + ρnz
2, (4.2)

where ρn satisfies
√
nhρn →∞ with n ≡ NT such that I∗m and J are both consistent tests (see

Theorem 3.2 and the following remarks). More specifically, we set ρn = O((nh)−1/4) = τn−3/16

since we adopt h = O(n−1/4) to achieve undersmoothing of the PLC estimator. Without loss of

generality, we set η = 1. We let m ∈ {3, 9, 20} to examine the impact of the number of distinct

points used in the test statistics and the {j/(m+ 1)}mj=1 percentiles of {zt} are used for the m

points. We let N ∈ {5, 20} and T ∈ {20, 50, 100}.
We first examine size performance of the tests I∗m and J . We set τ = 0. The rejection

rates with 5% nominal size are collected in Table 3 with 200 replications. The bandwidth is

determined by h = σ̂z ·n−1/4. Evidently, the two tests share similar performance. When N = 5,

they are undersized if m is small. As m increases, size also increases, especially for small T .

When m=20, the tests are slightly oversized when T is small. When N = 20, they are undersized

12Li et al. (2011) found a similar phenomenon for their
√
Th consistent estimator, although their reported

AMSEs appear not to be monotonically increasing as N increases.
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Figure 1: Rejection rates of the bootstrap procedure with 5% nominal size against the local
alternative HL1 : β0(z) = 1 + ρnz, β1(z) = 1 + ρnz

2 where ρn = τn−3/16.

for small m. For m=20, size is close to the nominal size. Overall, test size appears sensitive to

m and more sensitive in the case of small sample size.

To achieve better size control we adopt a bootstrap procedure. Details of the procedure are

provided in Appendix F.13 Within each replication, 200 bootstrap samples are used to generate

critical values. Since J is a monotone transformation of I∗m, the bootstrap rejection rates are

the same for these two tests. The two tests are therefore not distinguished in the bootstrap

setting. To examine the sensitivity to bandwidth, we consider the settings h = ch · σ̂z · n−1/4

with ch ∈ {0.5, 1.0, 1.5}. The results are collected in Table 4. Evidently, the bootstrap test size

is close to nominal for most parameter constellations and there is no clear dependence on m,

and size performance is very stable with respect to bandwidth. We therefore recommend using

the bootstrap procedure to help ensure size control in these tests in practical work.

To assess test power we let the localizing coefficient τ (recall that ρn = τn−3/16) in departures

from the null in (4.2) vary from 0.2 to 2 with a step length of 0.2. The rejection rates of the

test implemented using the bootstrap procedure with 5% nominal size are plotted in Figure 1

for (a) N = 5 and (b) N = 20. We show the results with m = 9 here as the test based on the

bootstrap procedure shows little sensitivity to m.

In Figure 1 the rejection rates show test size when τ = 0 and the results are close to the

nominal size (5%), as seen in Table 4. When the localizing coefficient τ increases, the rejection

rates are flat for small departures from the null but subsequently rise rapidly with τ . The power

curves also rise uniformly as T increases. Comparison of the results for N = 5 and N = 20

reveals that increasing N also improves power. These findings corroborate the results in Section

3.2 that the test is consistent for departures from the null of the form (4.2) with
√
nhρn →∞.

13A parametric bootstrap is used for simplicity.
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5 Empirical application

As an application of our methods we examine the relationship between housing rental prices

and the labor market in the United Kingdom. We use three observational data sets: the index

of the private housing rental prices (Pit, monthly), total workforce job numbers (Wit, quarterly

measure of the number of jobs) and the UK labor force participation rate (Rt, annually as

percentages of total population ages 15+). The rental prices and workforce jobs data record

time series in nine English regions (see the column names in Table 5), thereby leading to a

conventional panel dataset with time series observations over individual regions, whereas the

national labor force participation rate data varies only over time and is a communal variable.

The rental price data is available from the Office for National Statistics, the workforce jobs data

is collected from Nomis and the labor force participation rate is obtained from the World Bank.

To meet stationarity requirements in the model framework, the data are transformed. We

compute the 12-month percentage growth rate for housing rental prices in each of the English

regions. The data is transformed to quarterly by taking averages within each quarter and this

quarterly measure of housing rental price growth is denoted pit. For the workforce jobs data, we

compute the quarter-on-quarter percentage growth rate, which is denoted wit. The labor force

participation rate is found to be a unit root process with drift by standard ADF testing and first

differences are used to achieve stationarity.14 Quarterly readings are obtained by interpolation

and this time series is denoted rt. To ensure data availability for all series we use data over the

period 2006Q1 to 2018Q4 for the 9 English regions, giving a panel with N = 9 and T = 52. The

aggregated time series based on these transformed series are plotted in Figure 2.

Figure 2 shows that these three time series move in a closely related manner with wAt and

rt evidently acting as possible leading indicators for aggregate movements in pAt. To test this

role at the regional level we use the functional coefficient model specification

pit = αi + wi,t−k1β(rt−k2) + uit, (5.1)

which allows for potential lagged influences of the growth of the regional workforce wi,t−k1 on

current period regional house rental price growth pit. The functional coefficient β(rt−k2) in

(5.1) allows for the magnitude of the regional workforce influence on prices to be functionally

dependent on changes in the national labor force participation rate, thereby reflecting a potential

country-wide impact on the regional housing market. The specification allows both these effects

to operate with lags that are empirically determined. No functional coefficient intercept is

included in the specification (5.1) to achieve greater parsimony and because the individual fixed

14It is common for bounded series such as participation rates to display random wandering behavior and to
return a positive unit root test outcome. This regularly happens with economic share and exchange rate target
zone data as well as political approval ratings data (see, Phillips (2001) for some examples and discussion).
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Figure 2: Time series plots of region-averaged housing rental price growth rates (pAt =
1
N

∑N
i=1 pit, percentage; blue solid line), workforce jobs growth rate (wAt = 1

N

∑N
i=1wit, percent-

age; red dashed line) and first order differenced labor force participation rate rt (percentage;
black dotted line) ranging from 2006Q1 to 2018Q4.

effects capture regional differences well.15 No improvements to within sample fit or forecasting

performance were achieved with the inclusion of a functional coefficient communal intercept.

To determine the lag specifications (k1, k2) and bandwidth h in (5.1) cross validation is

employed. More specifically, for given lag choices 1 ≤ k1, k2 ≤ 4, the cross validation criteria

CV (h; k1, k2) is minimized with respect to h. The objective function is defined as CV (h; k1, k2) =
1
T

∑T
t=1

1
N

∑N
i=1(pit− p̂

(−t)
it (h; k1, k2))

2, where p̂
(−t)
it (h; k1, k2) denotes the fitted value of pit based

on model (5.1) using bandwidth h and lags (k1, k2) when the data point at time t is removed.

In this implementation the rule-of-thumb formula h = chσ̂rn
−1/5 is employed, where σ̂r is the

sample standard deviation of {rt}. Optimization is then conducted with respect to ch. We use

the range 0.2 ≤ ch ≤ 2.5 in a grid search (with step 0.1) to locate the optimal ch. Upon obtaining

the optimal ch = ch(k1, k2), conditional on the lags (k1, k2), the lags (k1, k2) are then chosen to

minimize the objective function CV (h; k1, k2). This procedure returns the values k1 = 3, k2 = 2

and ch = 0.7. With these lag and smoothing parameter choices, model (5.1) is finalized and

estimated.

The estimated functional coefficient β̂(·) obtained by PLC is shown in Figure 3 with point-

wise confidence bands computed using the asymptotic formula. We first note that β̂(·) is positive

throughout the support of rt and significantly so at the 95% level except for a small region around

15Asymptotic theory for the case of functional coefficient regression without a functional intercept coefficient
is provided in the Online Supplement to this paper (Phillips and Wang, 2021).
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Figure 3: Estimated functional coefficient curve (solid blue line) β(r) in the model (5.1) with lag
parameter settings k1 = 3, k2 = 2, bandwidth h = 0.7σ̂rn

−1/5 and 95% asymptotic confidence
bands (dashed blue lines).

rt = 0. This means that regional workforce growth exerts a positive force on housing rental price

growth, conforming to a significant demand side influence on the housing market. The curve β̂(·)
in the figure shows strong nonlinearity with a U-shaped form that suggests country-wide labor

force participation affects the sensitivity of housing rental price growth rate to the workforce jobs

growth rate. More specifically, when the labor force participation rate remains stable (with rt

around 0), the housing rental price growth seems less sensitive (via β̂(·)) to workforce jobs growth

than when the participation rate is rising or falling. Changes in the labor force participation

rate reflect ongoing macro influences on the stability of the labor market. The empirical results

plotted in Figure 3 indicate that the rental market for housing shows greater responsiveness

to demand, with the regional workforce serving as a proxy for house rental demand, when the

macro influences on the labor market are stronger.

To directly test whether this communal influence of the national labor market participation

rate on housing rental responsiveness to demand is significant, we test whether the functional

coefficient β(·) can be treated as constant. The test proposed in Section 3 is implemented with

the bootstrap procedure used for inference and with 20 evenly spaced points in the support of

rt. The results give a p-value of zero and constancy of β(·) is rejected.

To assess the within sample fitting performance of model (5.1), we plot the aggregated fitted

rental price growth, p̂At = 1
N

∑N
i=1 p̂it, in Figure 4. For comparison, we include the analogue

forecast, p̃At, which is obtained from the following fixed coefficient linear panel model

pit = αi + wi,t−k1β + vit. (5.2)

Estimation of this model (5.2) gives β̂ = 0.262 with the 95% confidence interval [0.204, 0.319].
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Figure 4: Time series plots of the aggregate housing rental price growth rate and model fitted
values: the true value pAt (solid blue line), the fitted value p̂At (dashed red line) based on the
functional coefficient model (5.1), and the fitted value p̃At (dotted black line) based on the fixed
coefficient linear panel model (5.2).

Noticeably, this confidence interval only covers a small part of the coefficient variation of β(·)
observed in Figure 3. From the fits shown in Figure 4, it is evident that the functional coefficient

model (5.1) assists in capturing some of the more substantial variations in the observed time

series pAt, especially the large drop in growth around 2010. The MSE for p̂At is 0.534, which is

7.3% lower than that for p̃At (0.576).

Next we compare the out-of-sample forecasting performance of the two models (5.1) and

(5.2). We consider one-quarter-ahead forecasts for the latest 5 years (2014-2018). For simplicity

and in keeping with the overall model estimates, we retain the fitted lag order (k1, k2) = (3, 2)

and use ch = 0.7.16 Table 5 summarizes the MSE improvement (in percentages) of model (5.1)

over model (5.2) in each year and for each region. Evidently, for most regions and most years,

model (5.1) has superior forecasting performance over (5.2). In terms of 5-year performance,

(5.1) outperforms (5.2) for 8 out of the 9 regions. In terms of the cross-region performance, (5.1)

gives improved forecasting performance over (5.2) in 4 out of 5 years. The overall improvement

for all the 9 regions and for the full 5 years is 27.19%.

6 Conclusions

Panel modeling of individual behavior and spatial modeling of physical phenomena often need

to account for the possible impact of macroeconomic and global influences on individual slope

and intercept coefficients. These effects can be captured in panel models by means of functional

16Other bandwidth choices involving constants ch ∈ {0.5, 1, 1.3, 1.5} led to similar forecast performance.
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coefficients in which the coefficients depend on observable communal covariates via smooth

functions.

The analysis of such functional coefficient panel models in the present paper reveals impor-

tant differences in convergence rates and asymptotic properties between two general classes of

estimators, one (APLC) relying on convenient cross section averaged data and the other (PLC)

based on the full panel sample. The differences especially highlight the effects of information

loss from cross section averaging on the performance of the APLC estimator that relies on av-

eraged data. When the cross section sample size N → ∞ and the mean of the explanatory

regressors is non-zero, it is apparent that there is insufficient signal variation in the regressors

to jointly identify the intercept and slope functions. When N and T both pass to infinity this

indeterminacy is mitigated and consistency holds but some linear combinations converge faster

than others, depending on the direction determined by the mean function. Use of the full panel

data in estimation avoids these difficulties and the corresponding PLC estimator has
√
NT |H|

convergence rate and oracle efficient properties, thereby making this method of estimation the

recommended procedure for practical work. The PLC estimators may also be used to construct

tests for constancy of the functional coefficients.

In developing the limit theory in this paper both sequential limit (N,T )seq → ∞ and joint

limit (N,T )→∞ approaches are used. The latter presents additional difficulty in cases where

singularities occur and new methods are employed in deriving joint limit results in those cases.

The asymptotic findings on the estimators are corroborated in finite sample performance in the

simulations and, with the use of a bootstrap procedure, the constancy tests are shown to have

good finite sample size and power performance. The empirical application of these methods to

the regional UK housing rental market shows that country-wide labor participation rates play

an active role in influencing the nature and intensity of the impact of regional workforce changes

on regional housing market prices, particularly during periods of rapid labor market changes.

The present work may be extended and applied in several directions. Nonparametric methods

of the type given here may be developed to generalize and test parametric applications, as in

Auerbach and Gorodnichenko (2012)17 analyzing the effect of recessions and expansions on

fiscal multipliers using a business cycle index, or in studying the impact of regulatory measures

and government policy on variables such as reproduction rates of infections during pandemics.

As already indicated, performance in functional coefficient estimation can be affected by the

use of very large cross section samples in relation to time series observations. The effects can

be exacerbated in the communal covariate case as consistent function estimation is reliant on

T → ∞ so that inconsistencies arise in fixed T cases, where the inconsistencies depend on the

time series trajectory of the realized sample and the nature of the kernel function. Functional

coefficient models with nonstationary, trending variables are also of great importance in empirical

work. The nonstationary covariate case is particularly relevant in some applications and involves

17We thank the Managing Editor, Serena Ng, for this reference.
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additional limit theory challenges (Wang and Phillips, 2009a,b). The authors plan to address

these and other issues such as the presence of endogenous covariates in subsequent work.

Appendix

We start with some notation. C is a positive constant that may take different values in different

places. For a column vector ξ, we use |ξ| = (ξ′ξ)1/2 for the L2 norm. For a diagonal matrix A =

diag(a1, · · · , ap), we use |A| = a1 · · · ap. The operator V ecDiag(B) takes the diagonal elements

of the square matrix B and stacks them as a column vector. According to the context, we use

:= and =: to signify definitional equality. For any random variables ξn and ηn, ξn ∼a ηnmeans

ξn and ηn are asymptotically equivalent, namely ξn = ηn{1 + op(1)}. All asymptotic results in

this paper assume that T → ∞ with N fixed or N,T → ∞ jointly. We use (N,T )seq → ∞ to

denote the sequential limit where T → ∞ followed by N → ∞ and (N,T ) → ∞ denotes joint

limits.

A Proof of Theorem 2.1

The functional coefficient model (2.3) involves time series of stationary (cross section averaged)

data. Some aspects of the proof therefore follow standard lines and the asymptotics presume that

T →∞. But important distinctions from existing theory occur in the case where N →∞. Both

sequential limit (N,T )seq →∞ and joint limit (N,T )→∞ are developed, relying on arguments

developed in Lemma E.2. For the joint limit theory, the CLT for double indexed processes in

Phillips and Moon (1999, theorem 2) is employed. Special arguments are needed in the case of

differing convergence rates and degenerate limit distributions. A re-ordering technique is needed

in some cases to ensure rigorous joint limit theory arguments.

First, we re-write model (2.3) in matrix form: YA = V ecDiag(X∗Aβ
M
∗ ) + UA, where βM∗ is a

(p+ 1)× T matrix with the t-th column being the (p+ 1)× 1 vector β∗(zt). Following (2.4) we

have

β̂∗,APLC(z)− β∗(z)
=[(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)YA − β∗(z)
=[(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)[V ecDiag(X∗Aβ

M
∗ )−X∗Aβ∗(z)] + [(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA.

(A.1)

Note that

(X∗A)′KT (z)[V ecDiag(X∗Aβ
M
∗ )−X∗Aβ∗(z)] =

∑
t

x∗,Atx
′
∗,At[β∗(zt)− β∗(z)]KtH

29



=
∑
t

x∗,Atx
′
∗,AtEξ∗βt +

∑
t

x∗,Atx
′
∗,Atη

∗
βt = (X∗A)′X∗AEξ∗βt +

∑
t

x∗,Atx
′
∗,Atη

∗
βt,

where ξ∗βt = [β∗(zt)− β∗(z)]KtH and η∗βt = ξ∗βt − Eξ∗βt. As a result,

β̂∗,APLC(z)− β∗(z)

= [(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt + [(X∗A)′KT (z)X∗A]−1
∑
t

x∗,Atx
′
∗,Atη

∗
βt

+ [(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA. (A.2)

To study the asymptotic distribution of β̂∗,APLC(z), we examine the limit behavior of the three

terms on the right side of (A.2).

The first term is analyzed in Lemma E.3, where it is shown that [(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt ∼a
B(z) in each of the cases considered, namely N fixed or N → ∞, with η = 0 or η 6= 0. Both

sequential limits (N,T )seq → ∞ and joint limits (N,T ) → ∞ are permitted. Lemma E.4 im-

plies that the second component on the right side of (A.2) is of smaller order than the third

term. Therefore, the second term can be ignored asymptotically and the limit distribution is

determined by the third term [(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA. Consequently, we can write

β̂∗,APLC(z)− β∗(z)− B(z) ∼a [(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA. (A.3)

It remains to analyze the right side of (A.3). The component (X∗A)′KT (z)X∗A is studied in

Lemma E.1 for each case and weak convergence of appropriately restandardized forms of the

component (X∗A)′KT (z)UA are analyzed in Lemma E.2. Those results cover the three cases of

fixed N , sequential asymptotics with (N,T )seq → ∞ and joint asymptotics with (N,T ) → ∞.

The following summary arguments bring the findings together here to establish the required

limit theory.

Part (a) N fixed:

Combining results (i) in Lemmas E.1 and E.2, we have when N is fixed,

√
NT |H|[(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA = [

1

T |H|
(X∗A)′KT (z)X∗A]−1

√
N√
T |H|

(X∗A)′KT (z)UA

d−→ N (0, νq0σ
2
uf
−1
z (z)V −1xx,η,N ). (A.4)

In consequence, we have√
NT |H|(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N (0, νq0σ
2
uf
−1
z (z)V −1xx,η,N ),

when N is fixed and T →∞. This gives the asymptotic distribution in part (a), namely (2.5).
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Part (b1) (N,T )seq →∞ or (N,T )→∞ and η = 0:

In this case as N →∞ with η = 0 we have√
T |H|DN [(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA

=

[
1

T |H|
PN (X∗A)′KT (z)X∗APN

]−1√ N

T |H|
PN (X∗A)′KT (z)UA

d−→ N (0, νq0σ
2
uf
−1
z (z)(V ∗xx)−1), (A.5)

following from the results given in Lemmas E.1(ii) and E.2(ii). Combining (A.5) with (A.3)

gives the limit theory in part (b1) of Theorem 2.1 for both the sequential limit (N,T )seq →∞
and joint limit (N,T )→∞.

Part (b2) (N,T )seq →∞ or (N,T )→∞ and η 6= 0:

For (N,T )seq → ∞ and η 6= 0, we can proceed from the result for fixed N that was es-

tablished in (A.4) and apply sequential limits as (N,T )seq → ∞. First we have V −1xx,η,N =

N

(
1/N + η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

)
and limN→∞N

−1V −1xx,η,N =

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

)
. Therefore, rescal-

ing by 1/
√
N and using (A.4) as N →∞ when η 6= 0 we have

√
T |H|[(X∗A)′KT (z)X∗A]−1(X∗A)′KT (z)UA

d−→ N

(
0, νq0σ

2
uf
−1
z (z)

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

))
, (A.6)

which is a degenerate limiting normal distribution. In view of (A.3), result (2.9) follows from

(A.6), establishing sequential convergence as (N,T )seq →∞.
Joint convergence as (N,T )→∞ requires a more subtle argument involving transformation

of the system to address the singularity of the limiting covariance matrix in (A.6). The rea-

son is that the signal matrix (X∗A)′KT (z)X∗A in the regression is asymptotically singular upon

standardization when (N,T )→∞. Indeed, as shown in Lemma E.1(iii), we have

1

T |H|
(X∗A)′KT (z)X∗A

p−→ fz(z)Vη = fz(z)

(
1 η′

η ηη′

)
, as(N,T )→∞, (A.7)

so that standard arguments using Slutsky’s theorem in conjunction with a triangular array CLT,

like those leading to (A.4), fail when (N,T ) → ∞ jointly, whereas the sequential argument

leading to a singular normal limit distribution as (N,T )seq →∞ is valid.

To establish joint asymptotics for β̂∗,APLC(z) as (N,T )→∞ when η 6= 0 we take account of

the singularity that arises in the limiting signal matrix (A.7) in the passage to joint asymptotics.

We proceed by using the limit theory established in the proof of Theorem 2.2 that applies to
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the transformed version (2.13) of the system involving θ∗(z) = C−1η β∗(z), where

Cη =

[
1 −η′

η Ip

]
and C−1η =

(
1

1+η′η
η′

1+η′η

− η
1+η′η (Ip + ηη′)−1

)
=

(
1

1+η′η [1 η′]

(Ip + ηη′)−1[−η Ip]

)
. (A.8)

In particular, from the results for the transformed system given in Theorem 2.2 and Remark

2.7, the following component limits hold as (N,T )→∞ when η 6= 0√
NT |H|

1 + η′η

(
1 η′

)
(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N
(

0,
νq0σ

2
uf
−1
z (z)

(1 + η′η)2

)
, (A.9)

√
T |H|[I + ηη′]−1

(
−η I

)
(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N
(
0, νq0σ

2
uf
−1
z (z)Σ−1xx

)
, (A.10)

where the limit distributions are independent. These results imply that, as (N,T )→∞,

√
T |H|

(
1

1+η′η
η′

1+η′η

−(Ip + ηη′)−1η (Ip + ηη′)−1

)
(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N

(
0, νq0σ

2
uf
−1
z (z)

(
0 0

0 Σ−1xx

))
,

(A.11)

from which it follows that

√
T |H|(β̂∗,APLC(z)− β∗(z)− B(z))

d−→ N

(
0, νq0σ

2
uf
−1
z (z)Cη

(
0 0

0 Σ−1xx

)
C ′η

)

= N

(
0, νq0σ

2
uf
−1
z (z)

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

))
, (A.12)

confirming that (A.6) holds jointly as (N,T )→∞. �

B Proof of Theorem 2.2

With DN = diag{
√
N, Ip} and D−1N = 1√

N
PN , where PN = diag{1,

√
NIp}, we have by trans-

formation of (A.3) and with θ∗(z) = C−1η β∗(z) and Bθ∗(z) = C−1η B(z)√
T |H|DN (θ̂∗,APLC(z)− θ∗(z)− Bθ∗(z)) =

√
T |H|DNC

−1
η (β̂∗,APLC(z)− β∗(z)− B(z))

∼a
√
T |H|DNC

−1
η

[
(X∗A)′KT (z)X∗A

]−1 [
(X∗A)′KT (z)UA

]
=
√
T |H|DN

[
C ′η(X

∗
A)′KT (z)X∗ACη

]−1 [
C ′η(X

∗
A)′KT (z)UA

]
=

[
1

T |H|
D−1N C ′η(X

∗
A)′KT (z)X∗ACηD

−1
N

]−1 [ 1√
T |H|

D−1N C ′η(X
∗
A)′KT (z)UA

]
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=

[
1

NT |H|
PNC

′
η(X

∗
A)′KT (z)X∗ACηPN

]−1 [ 1√
NT |H|

PNC
′
η(X

∗
A)′KT (z)UA

]

=

[
1

T |H|
PNC

′
η(X

∗
A)′KT (z)X∗ACηPN

]−1 [ √N√
T |H|

PNC
′
η(X

∗
A)′KT (z)UA

]
. (B.1)

We start with the signal matrix 1
T |H|PNC

′
η(X

∗
A)′KT (z)X∗ACηPN . We have

1

T |H|
PNC

′
η(X

∗
A)′KT (z)X∗ACηPN =

1

T |H|
PN

[
1 η′

−η Ip

]
(X∗A)′KT (z)X∗A

[
1 −η′

η Ip

]
PN .

Observe that x′∗,AtCη = (1, x′At)

[
1 −η′

η Ip

]
= (1 + x′Atη, x

′
At − η′) =:

(
1ηt, x

0′
At

)
, where x0At =

xAt − η = 1
N

∑N
i=1(xit − η) = 1

N

∑N
i=1 x

0
it. Then

1

T |H|
C ′η(X

∗
A)′KT (z)X∗ACη =

1

T |H|

[ ∑
tKtH12ηt

∑
tKtH1ηtx

0′
At∑

tKtH1ηtx
0
At

∑
tKtHx

0
Atx

0′
At

]
,

where 1ηt = 1 + x′Atη = 1 + η′η + (x0At)
′η with x0At = xAt − η. Then 1ηt →p 1 + η′η and√

Nx0At = 1√
N

∑N
i=1 x

0
it = ξNt →d ξt = N (0,Σxx) , where Σxx = E

(
x0itx

0′
it

)
. Just as in the proof

of Lemma E.1(ii) in the case η = 0, we now obtain the following limit result as N →∞

1

T |H|
PNC

′
η(X

∗
A)′KT (z)X∗ACηPN =

1

T |H|
PN

[ ∑
tKtH12ηt

∑
tKtH1ηtx

0′
At∑

tKtH1ηtx
0
At

∑
tKtHx

0
Atx

0′
At

]
PN

=

 1
T |H|

∑
tKtH12ηt

1
T |H|

∑
tKtH1ηt

(√
Nx0At

)′
1

T |H|
∑

tKtH1ηt

(√
Nx0At

)
1

T |H|
∑

tKtH

(√
Nx0At

)(√
Nx0At

)′


→p fz (z)

 (1 + η′η)2 1
T |H|

∑
tKtH1ηt

(√
Nx0At

)′
1

T |H|
∑

tKtH1ηt

(√
Nx0At

)
1

T |H|
∑

tKtH

(√
Nx0At

)(√
Nx0At

)′


→p fz (z)

[
(1 + η′η)2 0

0 Σxx

]
= fz (z) Σxx,η. (B.2)

Convergence of the (1, 1) element of (B.2) is straightforward, the off diagonal elements satisfy

1

T |H|
∑
t

KtH1ηt

(√
Nx0At

)
→p (1 + η′η)E (ξt) = 0,

and convergence of the (2, 2) block holds whenN →∞ just as the (2,2) block of 1
T |H|PN (X∗A)′KT (z)X∗APN

in Lemma E.1 (ii) with η = 0. Note that (B.2) holds under both sequential limit (N,T )seq →∞
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and joint limit (N,T )→∞ just as in Lemma E.1 (ii) with η = 0.

Next, consider the second member of (B.1)

√
N√
T |H|

PNC
′
η(X

∗
A)′KT (z)UA =

 1√
T |H|

∑
t 1ηtKtH

(√
NuAt

)
1√
T |H|

∑
t

(√
Nx0At

)
KtH

(√
NuAt

)


=

 1√
T |H|

∑
t(1 + η′η)KtH

(√
NuAt

)
+ 1√

T |H|

∑
t(x

0
At)
′ηKtH

(√
NuAt

)
1√
T |H|

∑
t

(
1√
N

∑
i x

0
it

)
KtH

(
1√
N

∑
j ujt

)


=

 1√
N

∑
i

1√
T |H|

∑
t(1 + η′η)KtHuit + 1

N
√
N

∑
i,j

1√
T |H|

∑
t(x

0
jt)
′ηKtHuit

1
N

∑
i

1√
T |H|

∑
t x

0
itKtHuit + 1

N

∑
i 6=j

1√
T |H|

∑
t x

0
itKtHujt

 . (B.3)

We first consider the sequential limit (N,T )seq → ∞. As T → ∞, we have 1√
T |H|

∑
t(1 +

η′η)KtHuit
d−→ N (0, fz(z)ν

q
0(1 + η′η)2σ2u) =: ξi and ξi are zero-mean independent random vari-

ables due to cross sectional independence. We then have 1√
N
ξi

d−→ N (0, fz(z)ν
q
0(1 + η′η)2σ2u) as

N →∞. Combining these results we have 1√
N

∑
i

1√
T |H|

∑
t(1+η′η)KtHuit

d−→ N (0, fz(z)ν
q
0(1+

η′η)2σ2u) as (N,T )seq → ∞. Similarly, for the other components in (B.3), we can show that as

(N,T )seq →∞

1

N
√
N

∑
i,j

1√
T |H|

∑
t

(x0jt)
′ηKtHuit = Op(1/

√
N) = op(1),

1

N

∑
i

1√
T |H|

∑
t

x0itKtHuit = Op(1/
√
N) = op(1),

and
1

N

∑
i 6=j

1√
T |H|

∑
t

x0itKtHujt
d−→ N (0, fz(z)ν

q
0Σxxσ

2
u).

It follows that

√
N√
T |H|

PNC
′
η(X

∗
A)′KT (z)UA

d−→ N (0, fz(z)ν
q
0σ

2
uΣxx,η). (B.4)

Combining this result with (B.2) and (B.1) we have the sequential limit theory√
T |H|DN (θ̂∗,APLC(z)− θ∗(z)− Bθ∗(z))

∼a
[

1

T |H|
PNC

′
η(X

∗
A)′KT (z)X∗ACηPN

]−1 [ √N√
T |H|

PC ′η(X
∗
A)′KT (z)UA

]
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→d [fz (z) Σxx,η]
−1N

(
0, fz (z) vq0σ

2
uΣxx,η

)
= N

(
0,
vq0σ

2
u

fz (z)
Σ−1xx,η

)
, (B.5)

as (N,T )seq →∞.
To show joint convergence as (N,T ) → ∞, we follow the same argument as in the proof

in Part (c) of Lemma E.2 because the components (up to some constant multipliers) in (B.3)

have been tackled there. More specifically, 1√
N

∑
i

1√
T |H|

∑
t(1 + η′η)KtHuit = (1 + η′η)S1NT .

Other components in (B.3) can be dealt with in the same way as S2NT . The required joint limit

theory therefore follows, showing that (B.5) holds as (N,T )→∞ jointly as well as sequentially.

The equivalent result for β̂∗,APLC in (2.17) and the component results given in (2.19) and (2.20)

follow immediately. �

C Proof of Theorem 2.3

Part (a) We first consider the oracle estimator β̂oracle∗,PLC . Model (1.2) can be rewritten in the

following matrix form

Y = D∗α∗ + V ecDiag(X∗(1
′
N ⊗ βM∗ )) + U, (C.1)

where X∗ is NT × (p + 1) by stacking the 1 × (p + 1) vector x′∗,it = [1, x′it], β
M
∗ is (p + 1) × T

with the t-th column being β∗(zt). Following (2.21) we have

β̂oracle∗,PLC(z)− β∗(z) = [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)(Y −D∗α∗)− β∗(z)

= [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)

[
V ecDiag(X∗(1

′
N ⊗ βM∗ ))−X∗β∗(z)

]
+ [X ′∗Kn(z)X∗]

−1X ′∗Kn(z)U.

(C.2)

Note that

X ′∗Kn(z)
[
V ecDiag(X∗(1

′
N ⊗ βM∗ ))−X∗β∗(z)

]
=
∑
i,t

x∗,itx
′
∗,it[β∗(zt)− β∗(z)]KtH

=
∑
i,t

x∗,itx
′
∗,itEξ∗βt +

∑
i,t

x∗,itx
′
∗,itη

∗
βt = X ′∗X∗Eξ∗βt +

∑
i,t

x∗,itx
′
∗,itη

∗
βt,

where ξ∗βt = [β∗(zt)− β∗(z)]KtH and η∗βt = ξ∗βt − Eξ∗βt. As a result,

β̂oracle∗,PLC(z)− β∗(z)

=[X ′∗Kn(z)X∗]
−1X ′∗X∗Eξ∗βt + [X ′∗Kn(z)X∗]

−1
∑
i,t

x∗,itx
′
∗,itη

∗
βt + [X ′∗Kn(z)X∗]

−1X ′∗Kn(z)U.

(C.3)
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Using Lemma E.7, we have [X ′∗Kn(z)X∗]
−1X ′∗X∗Eξ∗βt ∼a B(z). In view of Lemma E.8, the second

term in the RHS of (C.3) is dominated by the third term and can be ignored asymptotically. In

view of Lemmas E.5 and E.6, we obtain√
NT |H|[X ′∗Kn(z)X∗]

−1X ′∗Kn(z)U
d−→ N (0, f−1z (z)σ2uν

q
0V
−1
xx,η), (C.4)

which holds as T →∞ under fixed N , sequential convergence (N,T )seq →∞ and joint conver-

gence (N,T )→∞. The oracle estimator therefore has the following limit theory√
NT |H|(β̂oracle∗,PLC − β∗(z)− B(z))

d−→ N (0, f−1z (z)σ2uν
q
0V
−1
xx,η). (C.5)

Part (b) We first consider the estimator α̂∗PLC defined in (2.25). Based on (2.24) we have

α̂∗PLC − α∗ = [(M∗2 )′M∗2 ]−1(M∗2 )′V ∗,

where V ∗ = V ecDiag(X∗{1′N ⊗ [βM∗ − β̂
oracle,M
∗,PLC ]}) + U is NT × 1 with typical element v∗,it =

x′∗,it[β∗(zt)− β̂oracle∗,PLC(zt)] +uit, β
M
∗ is (p+ 1)×T with t-th column β∗(zt) and β̂oracle,M∗,PLC is defined

in the same way as βM∗ . Then we have

α̂∗PLC − α∗ = [(M∗2 )′M∗2 ]−1(M∗2 )′V ecDiag(X∗{1′N ⊗ [βM∗ − β̂
oracle,M
∗,PLC ]}) + [(M∗2 )′M∗2 ]−1(M∗2 )′U

=: [(M∗2 )′M∗2 ]−1(M∗2 )′W + [(M∗2 )′M∗2 ]−1(M∗2 )′U, (C.6)

where W = V ecDiag(X∗{1′N ⊗ [βM∗ − β̂
oracle,M
∗,PLC ]}) is NT ×1. Below we analyze the two terms in

(C.6). We will show the first term has smaller order than the second term and the asymptotic

distribution of α̂∗PLC − α∗ is therefore determined by the second term.

We start with an analysis of M∗2 = (INT −Q∗1)D∗. First consider the matrix Q∗1. We have

Q∗1 =

p+1∑
d=1

(xd−1 ⊗ 1′NT )� (1N ⊗ w∗,d(Z))

=



∑
d x11,d−1wd(z1)

...∑
d x1T,d−1wd(zT )

...∑
d xN1,d−1wd(z1)

...∑
d xNT,d−1wd(zT )


=



x′∗,11w∗(z1)
...

x′∗,1Tw∗(zT )
...

x′∗,N1w∗(z1)
...

x′∗,NTw∗(zT )


,

where w∗(zt) = [X ′∗Kn(zt)X∗]
−1X ′∗Kn(zt) is (p+ 1)×NT . Then each row x′∗,itw∗(zt) is 1×NT .
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For the matrix Q∗1D
∗, the typical row at the (j − 1)-th column is

qit,j−1 := x′∗,it[X
′
∗Kn(zt)X∗]

−1
T∑
s=1

(x∗,js − x∗,1s)K(H−1(zs − zt)) =: x′∗,itqt,j , (C.7)

for j = 2, · · · , N and qt,j is (p + 1) × 1. We now provide a uniform result regarding the order

of qt,j . We have shown 1
NT |H|X

′
∗Kn(z)X∗

p−→ fz(z)Vxx,η in Lemma E.5. Then X ′∗Kn(z)X∗ =

Op(NT |H|). Further, X ′∗Kn(zt)X∗ = Op(NT |H|) holds uniformly over t since the kernel func-

tion is bounded and the uniform convergence result supz∈Sn

∣∣∣ 1
NT |H|X

′
∗Kn(zt)X∗ − fz(z)Vxx,η

∣∣∣ =

op(1) holds over Sn = S∩[−cn, cn], where S is the support of zt and cn = O(nφ lnn) is a sequence

of nondecreasing positive numbers for any φ > 0 and n ≡ NT . Since E(x∗,js − x∗,1s) = 0, by

appealing to a law of iterated logarithm for kernel regression estimates and triangular arrays,

we have

lim sup
T→∞

±

√
2

T |H|
log2(T |H|)

1

T |H|

T∑
s=1

(x∗,js − x∗,1s)K(H−1(zs − zt)) ≤ C a.s.. (C.8)

where log2(·) = log log(·), and C is a constant that is independent of (j, t) by virtue of stationarity

over j, t and bounded density fz(·). Stute (1982), Hardle (1984) and Hall (1991) proved related

LIL results for kernel estimators based on iid data. More recent research by Huang et al. (2014)

established an LIL result of the form (C.8) for recursive kernel regression estimates with weakly

dependent sequences. We believe similar results can be expected to hold for standard kernel

regression estimates for weakly dependent sequences but have not been able to find a reference

to such a result in the literature.18 Then we have, uniformly for t = 1, ..., T and j = 2, ..., N ,

qt,j = Op

(√
T |H| log2(T |H|)

NT |H|

)
= Op

(
1

N

√
log2(T |H|)
T |H|

)
= op(1) (C.9)

because log2(T |H|)
T |H| → 0 as T |H| → ∞ from Assumption 4. Note that (C.9) holds for either fixed

N or N →∞.
18Hall (1991) and Hardle (1984) used a strong approximation for empirical processes of iid sequences to prove

an LIL for kernel density and kernel regression estimates. Recent work by Berkes et al. (2009) and Dedecker
et al. (2013) provides extensions of such strong approximations to stationary sequences under mixing conditions.
It seems that an LIL for kernel regression estimates with dependent data should be obtainable along similar lines
under suitable dependence and bandwidth conditions, although an explicit result does not appear to be available
presently in the literature.
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Denote qi·,j−1 = (qi1,j−1, qi2,j−1, · · · , qiT,j−1)′, which is a T × 1 vector. We write

M∗2 =


−1T − q1·,1 · · · −1T − q1·,N−1
1T − q2·,1 · · · −q2·,N−1

...
...

...

−qN ·,1 · · · 1T − qN ·,N−1

 , (C.10)

and consider the (N − 1)× (N − 1) matrix M∗′2 M
∗
2 . The diagonal (j − 1, j − 1)th (j = 2, .., N)

element is

T∑
t=1

(−1− q1t,j−1)2 +
T∑
t=1

(1− qjt,j−1)2 +
∑
i 6=1,j

T∑
t=1

(−qit,j−1)2

=2T + 2

T∑
t=1

q1t,j−1 − 2

T∑
t=1

qjt,j−1 +

N∑
i=1

T∑
t=1

q2it,j−1 (C.11)

=2T{1 + op(1)}. (C.12)

Below we show that (C.12) holds uniformly for j = 2, ..., N with either fixed N or N →∞, which

will hold if the final three terms of (C.11) are of order op(T ) uniformly for 2 ≤ j ≤ N . This is

achieved by noting that (C.9) holds uniformly over t = 1, ..., T and j = 2, ..., N . For example,

we have
∑N

i=1

∑T
t=1 q

2
it,j−1 =

∑N
i=1

∑T
t=1(x

′
∗,itqt,j)

2 = Op(
log2(T |H|)
N2T |H| )

∑N
i=1

∑T
t=1(x

′
∗,it1p+1)

2 =

Op(
log2(T |H|)
N2T |H| × NT ) = Op(T )Op(

log2(T |H|)
NT |H| ) = op(T ) since log2(T |H|)

T |H| → 0. For the non-diagonal

(j − 1, `− 1)th (j 6= `, j, ` = 2, ..., N) element of M∗′2 M
∗
2 , we have

T∑
t=1

(−1− q1t,j−1)(−1− q1t,`−1) +

T∑
t=1

(1− qjt,j−1)(−qjt,`−1) +

T∑
t=1

(−q`t,j−1)(1− q`t,`−1) +
∑
i6=1,j,`

T∑
t=1

(−qit,j−1)(−qit,`−1)

= T +

T∑
t=1

q1t,j−1 +

T∑
t=1

q1t,`−1 −
T∑
t=1

qjt,`−1 −
T∑
t=1

q`t,j−1 +

N∑
i=1

T∑
t=1

qit,j−1qit,`−1 (C.13)

= T{1 + op(1)}. (C.14)

Equation (C.14) holds because the final five terms in (C.13) are of order op(T ) and so (C.14) holds

uniformly for j, ` = 2, ..., N, j 6= ` with either fixed N or N → ∞. This can be verified in the same way

as the earlier proof for (C.11) and the details are omitted. Combining (C.12) and (C.14) we have, if N

is fixed,

1

T
M∗′2 M

∗
2

p−→ IN−1 + 1N−11′N−1. (C.15)

When N →∞, (C.15) continues to hold element wise, namely the diagonal elements of 1
TM

∗′
2 M

∗
2 converge

to 2 uniformly over the index j = 2, ..., N (see (C.12)) and the off-diagonal elements of 1
TM

∗′
2 M

∗
2 converge

to 1 uniformly over the indices j, ` = 2, ..., N, j 6= ` (see (C.14)).
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Next consider M∗′2 U , which is an (N − 1)× 1 vector, the (j − 1)-th element of which is

T∑
t=1

(−1− q1t,j−1)u1t +

T∑
t=1

(1− qjt,j−1)ujt +
∑
i6=1,j

T∑
t=1

(−qit,j−1)uit

= −
T∑
t=1

u1t +

T∑
t=1

ujt −
N∑
i=1

T∑
t=1

qit,j−1uit (C.16)

=

(
T∑
t=1

ujt −
T∑
t=1

u1t

)
{1 + op(1)}. (C.17)

Equation (C.17) holds because, as we now show, the third term of (C.16) is of order op(
√
T ) and is

therefore negligible compared to the first two terms. In particular, we have

N∑
i=1

T∑
t=1

qit,j−1uit = Op

(
1

N

√
log2(T |H|)
T |H|

) N∑
i=1

T∑
t=1

x′∗,it1p+1uit = Op

(
1

N

√
log2(T |H|)
T |H|

×
√
NT

)
(C.18)

= Op(
√
T )×Op

(√
log2(T |H|)
NT |H|

)
= op(

√
T ), (C.19)

since log2(T |H|)
T |H| → 0. The second equality in (C.18) holds because E(x′∗,it1p+1uit) = 0 and the sum∑N

i=1

∑T
t=1 x

′
∗,it1p+1uit = Op(

√
NT ) by virtue of standard central limit theory for independent and

stationary sequences, thereby contributing the final
√
NT factor in (C.18).

Returning to (C.17) and using the fact that uit is iid over i, we have 1√
T

∑T
t=1(ujt−u1t)

d−→ N (0, 2γ2u)

and the asymptotic covariance between 1√
T

∑T
t=1(ujt − u1t) and 1√

T

∑T
t=1(u`t − u1t) for j 6= ` is γ2u. It

follows that any linear combination of { 1√
T

∑T
t=1(ujt − u1t)}Nj=2 is asymptotically normal, which yields

joint asymptotic normality of 1√
T
M∗′2 U in view of (C.17). For fixed N , we therefore have

1√
T
M∗′2 U

d−→ N (0, γ2u(IN−1 + 1N−11′N−1)). (C.20)

When N →∞, (C.20) continues to hold element wise because (C.17) holds uniformly over j = 2, ..., N .

Combining (C.15) with (C.20), we have for fixed N

√
T [M∗′2 M

∗
2 ]−1M∗′2 U

d−→ N (0, γ2u(IN−1 + 1N−11′N−1)−1) = N
(

0, γ2u

(
IN−1 −

1N−11′N−1
N

))
. (C.21)

The limit theory (C.21) holds element wise uniformly over index j = 2, ..., N because (C.15) and (C.20)

both hold uniformly over all their indices. Moreover, as N →∞ distinct elements of (C.21) are asymp-

totically normal and independent each with variance γ2u.

Finally we look at the first term in (C.6). We only need to consider (M∗2 )′W . Note that the typical

row of W is x′∗,it[β∗(zt)− β̂oracle∗,PLC(zt)], then the (j − 1)-th row of (M∗2 )′W is

T∑
t=1

(−1− q1t,j−1)x′∗,1t[β∗(zt)− β̂oracle∗,PLC(zt)] +

T∑
t=1

(1− qjt,j−1)x′∗,jt[β∗(zt)− β̂oracle∗,PLC(zt)]
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+
∑
i6=1,j

T∑
t=1

(−qit,j−1)x′∗,it[β∗(zt)− β̂oracle∗,PLC(zt)]

=

T∑
t=1

(x′∗,jt − x′∗,1t)[β∗(zt)− β̂oracle∗,PLC(zt)]−
N∑
i=1

T∑
t=1

qit,j−1x
′
∗,it[β∗(zt)− β̂oracle∗,PLC(zt)]. (C.22)

Since E(x′∗,jt − x′∗,1t) = 0, we have T−1/2
∑T
t=1(x′∗,jt − x′∗,1t) = Op(1) uniformly for j = 2, ..., N in

view of stationarity over j. By a uniform convergence extension19 of the limit theory of the oracle

estimator supt≤T |β∗(zt)− β̂oracle∗,PLC(zt)| = op(1), the first term in (C.22) is of order op(
√
T ) uniformly for

j = 2, ..., N . Now consider the second term in (C.22), which we show is also op(
√
T ). In view of (C.9),

we have, uniformly over j = 2, ..., N

N∑
i=1

T∑
t=1

qit,j−1x
′
∗,it[β∗(zt)− β̂oracle∗,PLC(zt)] =

N∑
i=1

T∑
t=1

q′t,jx∗,itx
′
∗,it[β∗(zt)− β̂oracle∗,PLC(zt)]

= Op

(
1

N

√
log2(T |H|)
T |H|

)
N∑
i=1

T∑
t=1

1′p+1x∗,itx
′
∗,it[β∗(zt)− β̂oracle∗,PLC(zt)]. (C.23)

In view of (C.2), (C.4) and (C.5), we have β∗(zt)−β̂oracle∗,PLC(zt) = Op(||H||2+ 1√
NT |H|

) where the Op(||H||2)

component comes from the bias term and the Op(
1√

NT |H|
) component comes from the variance term of

[X ′∗Kn(zt)X∗]
−1X ′∗Kn(zt)U . Then

N∑
i=1

T∑
t=1

1′p+1x∗,itx
′
∗,it[β∗(zt)− β̂oracle∗,PLC(zt)] = Op(NT ||H||2) +Op

(√
N

|H|

)
(C.24)

where the order Op(NT ||H||2) element reflects the fact that the bias has non-zero mean, giving rise to

the additional factor NT , and the order Op

(√
N
|H|

)
component reflects the order of the variation term∑N

i=1

∑T
t=1 1′p+1x∗,itx

′
∗,it[X

′
∗Kn(zt)X∗]

−1X ′∗Kn(zt)U . To see this, we first note that this term has zero

mean due to the independence between {uit} and {(xit, zt)}. The variance of the component

T∑
t=1

1′p+1x∗,itx
′
∗,itf

−1
z (zt)X

′
∗Kn(zt)U =

T∑
t=1

1′p+1x∗,itx
′
∗,itf

−1
z (zt)

N∑
j=1

T∑
s=1

x∗,jsujsK(H−1(zs − zt))

is of order O(NT 2|H|), which can be verified in the same way as the standard result that the variance of

X ′∗Kn(z)U =
∑N
i=1

∑T
t=1 x∗,ituitK(H−1(zt − z) is of order O(NT |H|). It then follows that

T∑
t=1

1′p+1x∗,itx
′
∗,itf

−1
z (zt)X

′
∗Kn(zt)U = Op(T

√
N |H|),

19Under suitable conditions on smoothness, bounded densities, and mixing decay rate, uniform convergence
may be established using the results of Hansen (2008) for kernel regression with weakly dependent data.
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and therefore

N∑
i=1

T∑
t=1

1′p+1x∗,itx
′
∗,it[X

′
∗Kn(zt)X∗]

−1X ′∗Kn(zt)U = Op

(
N ×

T
√
N |H|

NT |H|

)
= Op

(√
N

|H|

)
. (C.25)

Combining (C.23) and (C.24) we have

N∑
i=1

T∑
t=1

qit,j−1x
′
∗,it[β∗(zt)− β̂oracle∗,PLC(zt)]

= Op

(
1

N

√
log2(T |H|)
T |H|

)[
Op(NT ||H||2) +Op(

√
N

|H|
)

]

= Op(
√
T )

[
Op(

√
log2(T |H|)
|H|

||H||2) +Op(

√
log2(T |H|)
TN |H|

1

T |H|
)

]

= Op

(√
T ·

√
log2(T |H|)
|H|

||H||2
)

+ op(
√
T ) (C.26)

where the first term in (C.26) comes from the bias of the oracle estimator β̂oracle∗,PLC(zt). Moreover, (C.26)

is true uniformly over j = 2, ..., N because (C.23) holds uniformly over j. Combining (C.15), (C.20),

(C.22) and (C.26) in (C.6), we have

α̂∗PLC − α∗ = Op

(√
log2(T |H|)
T |H|

||H||2
)

+Op(1/
√
T ) (C.27)

where the first order term Op(
√

log2(T |H|)
T |H| ||H||

2) represents bias and the second order term Op(1/
√
T )

represents variation. When q ≤ 3 we have
√

log2(T |H|)
|H| ||H||2 → 0 and then (C.26) has order op(

√
T ). It

follows that the second term in (C.22), and hence the first term in (C.6), is op(
√
T ).

Thus, the first term in (C.6) is negligible compared to the second term. In view of (C.21), we then

have for fixed N

√
T (α̂∗PLC − α∗)

d−→ N
(

0, γ2u

(
IN−1 −

1

N
1N−11′N−1

))
, (C.28)

and (C.28) holds element wise uniformly over j = 2, ..., N . It follows from (C.28) that for fixed N

1′N−1
√
T (α̂∗PLC − α∗)

d−→ N (0, γ2u1′N−1[IN−1 −
1

N
1N−11′N−1]1N−1) = N (0, γ2u(1− 1/N)). (C.29)

However, 1′N−1
√
T (α̂∗PLC − α∗) =

√
T
∑N
j=2(α̂j,PLC − αj) = −

√
T (α̂1,PLC − α1) and so when N is fixed

√
T (α̂1,PLC − α1)

d−→ N (0, γ2u(1− 1/N)). (C.30)
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The asymptotic covariance between
√
T (α̂1,PLC − α1) and

√
T (α̂j,PLC − αj) (j = 2, ..., N) is

AsymCov
(√

T (α̂1,PLC − α1),
√
T (α̂j,PLC − αj)

)
=−AsymCov

(
√
T

N∑
`=2

(α̂`,PLC − α`),
√
T (α̂j,PLC − αj)

)

=−AsymV ar
(√

T (α̂j,PLC − αj)
)
−AsymCov

√T∑
` 6=j

(α̂`,PLC − α`),
√
T (α̂j,PLC − αj)


=− γ2u(1− 1/N)− γ2u(−1/N) · (N − 2)

=− γ2u/N. (C.31)

Combining (C.28) with the asymptotics of α̂1,PLC , we deduce that for fixed N

√
T (α̂PLC − α)

d−→ N
(

0, γ2u

(
IN −

1

N
1N1′N

))
. (C.32)

Since (C.28) holds element wise uniformly over j = 2, ..., N and since (C.30) and (C.31) hold for α̂1,PLC ,

we deduce that (C.32) holds element wise uniformly over j = 1, ..., N . It follows that for each j = 1, ..., N

√
T (α̂j,PLC − αj)

d−→ N (0, γ2u) (C.33)

when N → ∞. And for j 6= `,
√
T (α̂j,PLC − αj) is asymptotically independent of

√
T (α̂`,PLC − α`)

because the covariance −γ2u/N goes to zero as N →∞.
Finally, we mention that the above proof applies to both sequential limit (N,T )seq → ∞ and joint

limit (N,T ) → ∞. This is because the preliminary results, including the convergences established in

Lemmas E.5 and E.6, and hence the established uniform results over j = 1, ..., N , remain valid for both

sequential and joint joints. For example, (C.9) holds with either (N,T )seq →∞ or (N,T )→∞ because

Lemma E.5 holds with either (N,T )seq → ∞ or (N,T ) → ∞ and (C.8) is a uniform result with respect

to j. Then (C.12) and (C.14) continue to hold for both (N,T )seq → ∞ or (N,T ) → ∞ and so does the

element-wise version of (C.15). The joint convergence of the term
∑N
i=1

∑T
t=1 x

′
∗,it1p+1uit in (C.18) can

be verified in the same way as that in Lemma E.6. Therefore, the element-wise version of (C.20) holds

for joint limits and this is also true for (C.21). Similarly, it can be verified that the first term in (C.6) is

asymptotically negligible under the joint limit (N,T ) → ∞. Therefore, result (C.33) is true with either

(N,T )seq →∞ or (N,T )→∞.

Part (c) Now consider the feasible estimator β̂∗,PLC(z). We have

β̂∗,PLC(z)− β∗(z) = [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)(Y −D∗α̂∗PLC)− β∗(z)

= [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)(Y −D∗α∗)− β∗(z) + [X ′∗Kn(z)X∗]

−1X ′∗Kn(z)D∗(α∗ − α̂∗PLC)

= β̂oracle∗,PLC(z)− β∗(z) + [X ′∗Kn(z)X∗]
−1X ′∗Kn(z)D∗(α∗ − α̂∗PLC). (C.34)

We look at the second term in (C.34). Lemma E.5 have shown that 1
NT |H|X

′
∗Kn(z)X∗

p−→ fz(z)Vxx,η as
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T →∞ with N either fixed or passing to infinity. Consider the term X ′∗Kn(z)D∗(α∗ − α̂∗PLC). We have

1

NT |H|
X ′∗Kn(z)D∗(α∗ − α̂∗PLC) =

(
0

1
N

∑N
j=2[ 1

T |H|
∑
t(xjt − x1t)KtH ](αj − α̂j,PLC)

)
. (C.35)

From standard kernel asymptotics we know that 1
T |H|

∑
t(xjt − x1t)KtH

p−→ fz(z)E(xjt − x1t) = 0, and

1√
T |H|

∑
t(xjt − x1t)KtH

d−→ N (0, νq0fz(z)E(xjt − x1t)(xjt − x1t)′) = N (0, 2νq0fz(z)Σxx). Thus

1

T |H|
∑
t

(xjt − x1t)KtH = Op(1/
√
T |H|) for all j = 2, · · · , N. (C.36)

Further, the term 1
T |H|

∑
t(xjt − x1t)KtH may be taken out of the summation over j in (C.35). Indeed,

by following the same argument as in (C.8), we have

lim sup
T→∞

±

√
2

T |H|
log2(T |H|)

1

T |H|
∑
t

(xjt − x1t)KtH ≤ C a.s., (C.37)

where C is a constant that is independent of j. We then have

1

N

N∑
j=2

[
1

T |H|
∑
t

(xjt − x1t)KtH

]
(αj − α̂j,PLC)

= Op

(√
log2(T |H|)
T |H|

)
× 1

N

N∑
j=2

(αj − α̂j,PLC)

= Op

(√
log2(T |H|)
T |H|

)
×Op

(√
log2(T |H|)
T |H|

||H||2 +
1

N

√
N√
T

)

= Op

(
log2(T |H|)
T |H|

||H||2
)

+Op

(√
log2(T |H|)
NT 2|H|

)
(C.38)

= op(||H||2) + op

(
1√

NT |H|

)
, (C.39)

where the second equality follows because (C.27) holds uniformly over j. Also note that the first term

in (C.38) comes from bias and the second term comes from variation. Consequently, the second term of

(C.34) is of the same order as (C.38), which is smaller than that of the first term in (C.34) (Op(||H||2 +
1√

NT |H|
)) as demonstrated in (C.39) because log2(T |H|)

T |H| → 0 and log2(T |H|)/T → 0 as T →∞. Therefore,

the feasible estimator β̂∗,PLC(z) is asymptotically equivalent to the oracle estimator β̂oracle∗,PLC(z) as long as

T →∞. And this conclusion holds without requiring q ≤ 3 and
√

log2(T |H|)
|H| ||H||2 → 0. The parameter N

may be fixed or may pass to infinity as T →∞. Further, (C.39) remains valid with either (N,T )seq →∞
or (N,T ) → ∞ jointly. This is easy to see because Lemma E.5 holds under both sequential and joint

limit, and both (C.27) and (C.37) are uniform results with respect to j. Therefore, the second term in

(C.34) is negligible compared to the first term and the asymptotic equivalence remains valid under both

sequential (N,T )seq →∞ and joint (N,T )→∞ limits. �
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D Proof of Theorem 3.2

For convenience, we first outline the estimation procedure under the null H0. Let β∗ = (β0, β
′)′. Under

H0, model (1.2) becomes

yit = αi + β0 + x′itβ + uit, i = 1, · · · , N, t = 1, · · · , T. (D.1)

Taking averages over t, we get

yiA = αi + β0 + x′iAβ + uiA, i = 1, · · · , N. (D.2)

Subtracting (D.2) from (D.1) gives

yit − yiA = (x′it − x′iA)β + uit − uiA, i = 1, · · · , N, t = 1, · · · , T, (D.3)

and then

β̂OLS =

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(yit − yiA)

 . (D.4)

Plugging β̂OLS into (D.1) and noting that
∑
i αi = 0 from the identification condition, we have

β̂0,OLS =
1

NT

∑
i,t

(yit − x′itβ̂OLS). (D.5)

Next we study the properties of β̂∗,OLS = (β̂0,OLS , β̂
′
OLS)′ under the alternative HL1 . Under HL1 , we

have

yit = αi + β0 + ρng0(zt) + x′it[β + ρng(zt)] + uit. (D.6)

Averaging (D.6) over t gives

yiA = αi + β0 + ρnT
−1
∑
t

g0(zt) + x′iAβ + ρnT
−1
∑
t

x′itg(zt) + uiA. (D.7)

Subtracting (D.7) from (D.6), we have

yit−yiA = ρn[g0(zt)−T−1
∑
t

g0(zt)]+(xit−xiA)′β+ρn

[
x′itg(zt)− T−1

∑
t

x′itg(zt)

]
+uit−uiA. (D.8)

Then, under the alternative HL1 the OLS estimator in (D.4) is

β̂OLS − β =

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(yit − yiA)

− β
= ρn

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)

(
g0(zt)− T−1

∑
t

g0(zt)

)
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+ρn

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)

(
x′itg(zt)− T−1

∑
t

x′itg(zt)

)
+

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(uit − uiA)

 . (D.9)

Next we analyze the orders of the three terms on the RHS of (D.9). First, the signal moment matrix∑
i,t(xit − xiA)(xit − xiA)′ = Op(n) and is positive definite uniformly for large enough N and T because

Σxx > 0 and the {xitx′it}i,t are uniformly integrable because E(||xit||2(2+λ)) < C < ∞ (with λ > 0)

by Assumption 2 (b). Let ξit = (xit − xiA)(g0(zt) − T−1
∑
t g0(zt)). We will show Eξitξ′it < ∞. For

notational ease suppose xit is univariate, in which case

Eξ2it = E(xit − xiA)2

(
g0(zt)− T−1

∑
t

g0(zt)

)2

≤

√√√√√E[(xit − xiA)4]E

(g0(zt)− T−1
∑
t

g0(zt)

)4
 <∞

uniformly in {i, t} because xit has finite fourth moment from Assumption 2 (b) and g0(z) is uniformly

bounded. Therefore, ξit = Op(1) uniformly in {i, t} and so
∑
i,t ξit = Op(n). The first term on the right

side of (D.9) is then Op(ρn). Analysis of the second term is similar. Let ηit = (xit − xiA)(x′itg(zt) −
T−1

∑
t x
′
itg(zt)). We can similarly show that Eηitη′it < ∞ since E[xitg(zt) − T−1

∑
t xitg(zt)]

4 ≤ C ×
E[xit−T−1

∑
t xit]

4 <∞ for univariate xit. Therefore ηit = Op(1) uniformly in {i, t} and the second term

on the right side of (D.9) is Op(ρn). Analysis of the third term is standard. By virtue of independence,

E(xit − xiA)(uit − uiA) = 0 and
∑
it(xit − xiA)(uit − uiA) = Op(

√
n). Consequently the third term is

Op(1/
√
n). Combining these results gives

β̂OLS − β = Op(1/
√
n+ ρn) (D.10)

under the local alternative HL1 .

Next consider the OLS estimator β̂0,OLS given in (D.5). We have

β̂0,OLS − β0 =
1

NT

∑
i,t

(yit − x′itβ̂OLS)− β0

=ρn
1

T

∑
t

g0(zt) +
1

n

∑
i,t

x′it[β − β̂OLS ] + ρn
1

n

∑
i,t

x′itg(zt) +
1

n

∑
it

uit. (D.11)

The first term on the RHS of (D.11) is Op(ρn) since g0(z) is uniformly bounded. The second term has

the same order as β̂OLS−β, which is Op(ρn+1/
√
n). The third term is Op(ρn) because g(z) is uniformly

bounded. The last term is Op(1/
√
n). It follows that

β̂0,OLS − β0 = Op(1/
√
n+ ρn) (D.12)

under the local alternative HL1 . Combining (D.10) and (D.12), we have

β̂∗,OLS − β∗ = Op(1/
√
n+ ρn), (D.13)
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under the local alternative HL1 .

Since

β̂∗,PLC(z)− β̂∗,OLS = β̂∗,PLC(z)− β∗(z) + β∗(z)− β̂∗,OLS
= β̂∗,PLC(z)− β∗(z) + β∗ − β̂∗,OLS + ρng∗(z), (D.14)

and since the nonparametric estimator β̂∗,PLC(z) is
√
NT |H| consistent under the alternative and g∗(z)

is bounded, we have

β̂∗,PLC(z)− β̂∗,OLS = Op(ρn||H||2) +Op

(
1√
n|H|

)
+Op

(
1√
n

+ ρn

)
+Op(ρn) = Op

(
1√
n|H|

+ ρn

)
.

(D.15)

Consequently, √
n|H|(β̂∗,PLC(z)− β̂∗,OLS) = Op(1) +Op(

√
n|H|ρn), (D.16)

where the Op(1) term is an asymptotically normal random variable.

If
√
n|H|ρn → 0, then in this case (3.2) continues to hold. For such local alternatives we therefore

have I∗m
d−→ χ2

(p+1)m and J
d−→ N (0, 1) under HL1 , and the tests have asymptotically trivial power equal

to size .

If
√
n|H|ρn = O(1), then

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) = Op(1) but is no longer asymptotically

normal. The test statistic I∗m = Op(1) but no longer follows a χ2
(p+1)m distribution and has non-trivial

local asymptotic power. Also, we no longer have E(δ(zt)
′δ(zt)) → p + 1 as n → ∞. It then follows that

m−1I∗m − (p+ 1) = Op(1) and J = Op(
√
m) in this case.

If
√
n|H|ρn → ∞, then

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) = Op(

√
n|H|ρn) diverges. It follows that

I∗m = Op(n|H|ρ2n) → ∞ and J = Op(n|H|ρ2n/
√
m) → ∞ if

√
n|H|ρn/

√
(m) → ∞. So the tests are

asymptotically powerful and consistent in this case, nesting the fixed alternative where ρn = ρ is a

constant. �

E Useful lemmas

Lemma E.1. Let PN = diag(1,
√
NIp). Under Assumptions 1-3, as T → ∞, we have the following

asymptotic forms for the signal matrix

(X∗A)′KT (z)X∗A =

( ∑
tKtH

∑
tKtHx

′
At∑

tKtHxAt
∑
tKtHxAtx

′
At

)
.

(i) if N is fixed,

1

T |H|
(X∗A)′KT (z)X∗A

p−→ fz(z)Vxx,η,N ,
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where

Vxx,η,N =

(
1 η′

η 1
NΣxx + ηη′

)
;

(ii) if (N,T )seq →∞ or (N,T )→∞ jointly with η = 0,

1

T |H|
PN (X∗A)′KT (z)X∗APN

p−→ fz(z)V
∗
xx

where

V ∗xx =

(
1 0

0 Vxx

)
=

(
1 0

0 Σxx

)
, when η = 0;

(iii) if (N,T )seq →∞ or (N,T )→∞ jointly with η 6= 0,

1

T |H|
(X∗A)′KT (z)X∗A

p−→ fz(z)Vη

where

Vη =

(
1 η′

η ηη′

)
.

Proof

(a) Part (i) N fixed:

Denote x̃t = xAt. Due to cross section independence and stationarity and α-mixing over t, x̃t is stationary

and α-mixing with the same mixing coefficient αk, so that results for α-mixing processes can be employed.

We have

1

T |H|
(X∗A)′KT (z)X∗A =

(
1

T |H|
∑
tKtH

1
T |H|

∑
tKtH x̃

′
t

1
T |H|

∑
tKtH x̃t

1
T |H|

∑
tKtH x̃tx̃

′
t

)
p−→ fz(z)

(
1 E(x̃′t)

E(x̃t) E(x̃tx̃
′
t)

)
. (E.1)

Further, note that E(x̃t) = η, Var(xit) = Σxx = Vxx − ηη′, and

E(x̃tx̃
′
t) =

1

N2

∑
i

∑
j

Exitx′jt =
1

N2

∑
i

Exitx′it +
∑
i 6=j

Exitx′jt

 =
1

N
Vxx +

(
1− 1

N

)
ηη′.

Then we have(
1 E(x̃′t)

E(x̃t) E(x̃tx̃
′
t)

)
=

(
1 η′

η 1
N Vxx + (1− 1

N )ηη′

)
=

(
1 η′

η 1
NΣxx + ηη′

)
=: Vxx,η,N ,

which is close to singular if η is large and the variance of xit is small. Note that (E.1) holds for all fixed

N and hence also for large N , in which case Vxx,η,N is close to singular.
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(b) Parts (ii) and (iii) (N,T )seq →∞ with η 6= 0 or η = 0:

Results for the sequential limit (N,T )seq →∞ can be deduced from the results with fixed N by letting N

pass to infinity. For the case where η 6= 0, we have limN→∞ Vxx,η,N = Vη, which yields the sequential limit

of part (iii). When η = 0, limN→∞ Vxx,η,N =

(
1 0

0 0

)
, which is singular. In this case we re-standardize

the matrix (X∗A)′KT (z)X∗A as 1
T |H|PN (X∗A)′KT (z)X∗APN . It then follows that

1

T |H|
PN (X∗A)′KT (z)X∗APN

p−→ fz(z)

(
1 0

0 Vxx

)
=: fz(z)V

∗
xx, (E.2)

which verifies the sequential limit result of part (ii).

(c) Parts (ii) and (iii) (N,T )→∞ with η 6= 0 or η = 0:

Next consider joint limits as (N,T ) → ∞ together. We take the (2,2) sub-block
∑
tKtHxAtx

′
At to

illustrate, treatment of the other elements being simpler. For the case η 6= 0 we have

1

T |H|
∑
t

KtHxAtx
′
At =

1

T |H|
∑
t

KtH
1

N

∑
i

xit
1

N

∑
j

x′jt

=
1

T |H|
∑
t

KtH

[
η +

1

N

∑
i

(xit − η)

]η′ + 1

N

∑
j

(xjt − η)′


= ηη′

1

T |H|
∑
t

KtH + η
1

T |H|
∑
t

KtH
1

N

∑
j

(xjt − η)′ +
1

T |H|
∑
t

KtH
1

N

∑
i

(xit − η)η′

+
1

T |H|
∑
t

KtH
1

N

∑
i

(xit − η)
1

N

∑
j

(xjt − η)′

= ηη′
1

T |H|
∑
t

KtH + η
1

T |H|
∑
t

KtH
1

N

∑
j

(xjt − η)′ +
1

T |H|
∑
t

KtH
1

N

∑
i

(xit − η)η′

+
1

T |H|
∑
t

KtH
1

N2

∑
i

(xit − η)(xit − η)′ +
1

T |H|
∑
t

KtH
1

N2

∑
i 6=j

∑
j

(xit − η)(xjt − η)′

=: ηη′M1T + ηM ′2NT +M2NT η
′ +M3NT +M4NT , (E.3)

with definitions of {M1T ,M2NT ,M3NT ,M4NT } implied in the final line above. For M1T we have the stan-

dard resultM1T
p−→ fz(z). In view of the joint weak convergence of

√
NT |H|M2NT = 1√

T |H|

∑
tKtH

1√
N

∑
i(xit−

η) to a normal distribution (established in the same way as S1NT in Lemma E.2), we obtain M2NT =

Op(1/
√
NT |H|) = op(1). For M3NT , we have NM3NT = 1

NT |H|
∑
t

∑
iKtH(xit − η)(xit − η)′

p−→
EKtH(xit − η)(xit − η)′ = fz(z)Σxx and hence M3NT = Op(1/N) = op(1) as N → ∞. After re-

standardizing the component M4NT , we have
√
N2T |H|M4NT = Op(1), similar to the analysis of the

joint weak convergence of S2NT,2 in Lemma E.2, which leads to M4NT = Op(1/
√
N2T |H|) = op(M3NT ).

Combining these results, it is evident that when η 6= 0, 1
T |H|

∑
tKtHxAtx

′
At is dominated by the compo-

nent ηη′M1T , thereby giving 1
T |H|

∑
tKtHxAtx

′
At

p−→ ηη′fz(z) and establishing joint convergence of the

(2,2) sub-block in part (iii) as (N,T )→∞ jointly.

Finally, when η = 0, we find that M3NT is the leading term of 1
T |H|

∑
tKtHxAtx

′
At and in this case
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we have N
T |H|

∑
tKtHxAtx

′
At

p−→ fz(z)Σxx = fz(z)Vxx as (N,T ) → ∞. This proves joint convergence

of the (2,2) sub-block when η = 0. Treatment of the remaining elements is straightforward and joint

convergence as (N,T )→∞ is established for case (ii). �

Lemma E.2. Under Assumptions 1-3, as T →∞, we have the following asymptotic forms for

(X∗A)′KT (z)UA =

( ∑
tKtHuAt∑

tKtHxAtuAt

)
, (E.4)

(i) if N is fixed,

√
N√
T |H|

(X∗A)′KT (z)UA
d−→ N (0, fz(z)σ

2
uν

q
0Vxx,η,N );

(ii) if (N,T )seq →∞ or (N,T )→∞ jointly with η = 0,

√
N√
T |H|

PN (X∗A)′KT (z)UA
d−→ N (0, fz(z)σ

2
uν

q
0V
∗
xx);

(iii) if (N,T )seq →∞ or (N,T )→∞ jointly with η 6= 0,

√
N√
T |H|

(X∗A)′KT (z)UA
d−→ N (0, fz(z)σ

2
uν

q
0Vη).

Proof

(a) Part (i) N fixed:

Note that (X∗A)′KT (z)UA has zero mean. Denote ũt = uAt and note that σ2
ũ = Var(ũt) = σ2

u/N . Then,

for the first element in (E.4), we have

Var

( √
N√
T |H|

∑
t

KtHuAt

)
=

N

T |H|
∑
t

E[K2
tHu

2
At] +

N

T |H|
∑
t 6=s

E[KtHuAtKsHuAs]→ fz(z)ν
q
0σ

2
u, (E.5)

because

N

T |H|
∑
t6=s

E[KtHuAtKsHuAs] =
2N

T |H|

T−1∑
`=1

(T − `)E[K1H ũ1K1+`,H ũ1+`]

∼a
CN

|H|

T−1∑
`=1

(1− `/T )γũ(`)|H|2

≤ C|H|
T−1∑
`=1

|γu(`)| = o(1), (E.6)

where the last argument in (E.6) follows from the bound |γu(`)| ≤ C|α`|λ/(2+λ) = O(`−τλ/(2+λ)), using

Davydov’s inequality, and the fact that
∑T−1
`=1 `

−τλ/(2+λ) < ∞ since τ > (2 + λ)/λ. For the second
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element in (E.4), we have

Var

( √
N√
T |H|

∑
t

KtHxAtuAt

)
=

N

T |H|
∑
t

E[K2
tHxAtx

′
Atu

2
At] +

N

T |H|
∑
t 6=s

E[KtHuAtxAtx
′
AsKsHuAs]

→ fz(z)ν
q
0σ

2
uE[x̃tx̃

′
t] = fz(z)ν

q
0σ

2
u(N−1Σxx + ηη′), (E.7)

because

N

T |H|
∑
t6=s

E[KtHuAtxAtx
′
AsKsHuAs] =

2N

T |H|

T−1∑
`=1

(T − `)E[K1H ũ1x̃1K1+`,H ũ1+`x̃
′
1+`]

≤C|H|N
T−1∑
`=1

|γũ(`)||γx̃(`)| = O(|H|/N) = o(1). (E.8)

Similarly, we can show that the covariance of the two elements in (E.4) satisfies

Cov

( √
N√
T |H|

∑
t

KtHuAt,

√
N√
T |H|

∑
t

KtHxAtuAt

)
→ fz(z)ν

q
0σ

2
uE[x̃t] = fz(z)ν

q
0σ

2
uη. (E.9)

Since x̃t and ũt remain stationary and α-mixing with the same mixing coefficient αk, we are able to

employ existing CLT results for α-mixing processes. In particular, combining (E.5), (E.7), (E.9) and

using a triangular array CLT (Theorem 2.2 of Peligrad and Utev (1997)) for weighted partial sums of the

α-mixing process {(x̃1, ũ1), · · · , (x̃T , ũT )} result (i) holds.

(b) Parts (ii) and (iii) (N,T )seq →∞ with η 6= 0 or η = 0:

We start with the case η 6= 0 and take the second component
∑
tKtHxAtuAt to illustrate. Treatment of

the first element
∑
tKtHuAt is included as a special case. We have

√
N√
T |H|

∑
t

KtHxAtuAt =

√
N√
T |H|

∑
t

KtH
1

N

∑
i

uit
1

N

∑
j

xjt

=

√
N√
T |H|

∑
t

KtH
1

N

∑
i

uit

η +
1

N

∑
j

(xjt − η)


= η

1√
N

∑
i

1√
T |H|

∑
t

KtHuit +
1

N

1√
N

∑
i

∑
j

1√
T |H|

∑
t

KtHuit(xjt − η)

= ηS1NT + S2NT . (E.10)

As T →∞, we have

1√
T |H|

∑
t

KtHuit
d−→ Ui = N (0, fz(z)σ

2
uν

q
0), (E.11)

by standard triangular array CLT arguments for kernel weighted mixing processes. Note that the

limit normal variates Ui are iid over i because of independence across section. Then 1√
N

∑
i Ui

d−→

N (0, fz(z)σ
2
uν

q
0) as N → ∞ and so S1NT

d−→ N (0, fz(z)σ
2
uν

q
0) as (N,T )seq → ∞. The analysis for
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S2NT is similar and takes account of the centering xjt − η in this expression. In particular, following

arguments as in (E.7) we find that Var(S2NT ) = O(1/N) by letting η = 0 on the right side of (E.7).

So when η 6= 0 in (E.10), it transpires that S1NT is the leading term in (E.10). In this case, we have
√
N√
T |H|

∑
tKtHxAtuAt

d−→ N (0, fz(z)σ
2
uν

q
0ηη
′). Note that S1NT is also the first element

√
N√
T |H|

∑
tKtHuAt

on the right side of (E.4), for which (E.5) and (E.9) continue to hold for large N . Combining these results

together yields the stated result (iii) under sequential asymptotics with (N,T )seq →∞.

Otherwise, when η = 0, S2NT is the only non-zero term and a different rate of convergence applies.

In this case we write

√
NS2NT =

1

N

∑
i

1√
T |H|

∑
t

KtHuit(xit − η) +
1

N

∑
i 6=j

∑
j

1√
T |H|

∑
t

KtHuit(xjt − η)

=: S2NT,1 + S2NT,2. (E.12)

By standard triangular array CLT arguments we have 1√
T |H|

∑
tKtHuit(xit−η)

d−→ N (0, fz(z)ν
q
0σ

2
uΣxx) =:

U∗i and 1√
T |H|

∑
tKtHuit(xjt − η)

d−→ N (0, fz(z)ν
q
0σ

2
uΣxx) =: Uij . Note that the U∗i are iid over i and

the Uij are iid over (i, j) due to cross section independence. Then as N → ∞ we have
√
NS2NT,1

d−→
N (0, fz(z)σ

2
uν

q
0Σxx) and S2NT,2

d−→ N (0, fz(z)ν
q
0σ

2
uΣxx). So S2NT,2 is the leading term of

√
NS2NT , and

thereby also the leading term of N√
T |H|

∑
tKtHxAtuAt when η = 0. Therefore in the case where η = 0,

we have N√
T |H|

∑
tKtHxAtuAt

d−→ N (0, fz(z)ν
q
0σ

2
uΣxx) = N (0, fz(z)ν

q
0σ

2
uVxx) as (N,T )seq → ∞. At the

same time, (E.9) becomes Cov
( √

N√
T |H|

∑
tKtHuAt,

N√
T |H|

∑
tKtHxAtuAt

)
→ 0. Combining this result

with
√
N√
T |H|

∑
tKtHuAt

d−→ N (0, fz(z)σ
2
uν

q
0) yields the stated result (ii) under sequential asymptotics with

(N,T )seq →∞.

(c) Parts (ii) and (iii) (N,T )→∞ with η 6= 0 or η = 0:

For the joint asymptotics case as (N,T ) → ∞, we proceed by application of the joint limit CLT for a

double indexed process based on Theorem 2 of Phillips and Moon (1999).

We start with S1NT . Let Ui,T = 1√
T |H|

∑
tKtHuit. Then the Ui,T are independent random variables

over index i with EUi,T = 0 and EU2
i,T = ΩT , given below in (E.13). From previous analysis and

(E.11), we have ΩT → Ω ≡ fz(z)σ
2
uν

q
0 and Ui,T

d−→ Ui, as T → ∞. Further, using (E.5), (E.6) and the

boundedness of |H| we have

ΩT = EU2
i,T =

1

T |H|
∑
t

E[K2
tHu

2
it] +

1

T |H|
∑
t6=s

E[KtHuitKsHuis] (E.13)

≤ Cσ2
u + C|H|

T−1∑
`=1

|γu(`)| ≤ C
∞∑
`=0

|γu(`)|, (E.14)

from which it follows that supi supT EU2
i,T = supT ΩT ≤ C < ∞ and the Ui,T are uniformly integrable

over both i and T. Let s2N,T = NΩT . Following Theorem 2 of Phillips and Moon (1999), the joint limit
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theory
∑N
i=1 Ui,T /sN,T

d−→ N (0, 1) follows once the Lindeberg condition is established. We have

lim
N,T→∞

N∑
i=1

E[U2
i,T /s

2
N,T 1{|Ui,T /sN,T | > ε}]

= lim
N,T→∞

Ω−1T E[U2
i,T 1{|Ui,T /sN,T | > ε}]

= lim
N,T→∞

Ω−1T E[U2
i,T 1{|Ui,T | > ε

√
NΩT }] = 0. (E.15)

The final line (E.15) follows by uniform integrability of the sequence {Ui,T }, the existence of the limit

ΩT → Ω = fz(z)σ
2
uν

q
0 > 0 and the fact that limN,T→∞ ε

√
NΩT → ∞. These results combine to

establish the CLT 1
sN,T

∑N
i=1 Ui,T

d−→ N (0, 1) under joint asymptotics as (N,T ) → ∞. Next note that

S1NT = 1√
N

∑N
i=1 Ui,T =

sN,T√
N

∑N
i=1 Ui,T /sN,T and limN,T→∞

sN,T√
N
→
√

Ω. The required joint limit

theory as (N,T )→∞,

S1NT
d−→ N (0,Ω), (E.16)

follows immediately, thereby confirming that the joint limit exists and is the same as the sequential limit

of (N,T )seq →∞.

The treatment of S2NT requires some extra effort. The component S2NT,1 can be dealt with in

the same way as S1NT and is omitted. The component S2NT,2 has a triple index. To apply the dou-

ble index CLT of Phillips and Moon (1999), we first re-index the sequence. Specifically, let Uij,T =
1√
T |H|

∑
tKtHuit(xjt − η) and set

{ξk,T , k = 1, 2, ..., N2 −N} = {U12,T , ..., U1N,T , U21,T , ..., U2N,T , ..., UN1,T , ..., UN(N−1),T }.

In view of cross section independence the ξk,T are independent random variables across k. We may then

rewrite S2NT,2 as a double indexed process S2NT,2 = 1
N

∑N2−N
k=1 ξk,T =

√
N2−N
N

1√
N2−N

∑N2−N
k=1 ξk,T . The

remaining treatment is analogous to that of S1NT and the joint limit result S2NT,2
d−→ N (0, fz(z)ν

q
0σ

2
uΣxx)

follows as (N,T )→∞.

When η = 0, the leading term in (E.10) is S2NT and in this case we have N√
T |H|

∑
tKtHxAtuAt =

S2NT,2 +op(1)
d−→ N (0, fz(z)ν

q
0σ

2
uVxx) as (N,T )→∞. Combined with the zero limiting covariance result

in (E.9) when η = 0 the joint limit theory as (N,T )→∞ holds for case (ii).

When η 6= 0, the leading term in (E.10) is S1NT as earlier and in this case we have

√
N√
T |H|

∑
t

KtHxAtuAt = η
1√
T |H|

∑
t

KtH(
√
NuAt) + op(1)

= η
1√
N

N∑
i=1

Ui,T + op(1)
d−→ N (0, fz(z)σ

2
uν

q
0ηη
′),

as (N,T ) → ∞ jointly, just as in (E.16). Combining this result with (E.16) for the standardized first

element of (E.4) and with the limiting covariance (E.9), the required joint limit theory for case (iii)

follows. �
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Lemma E.3. Under Assumptions 1-3, as T →∞, for the first term in the RHS of (A.3), the following

asymptotic form

[(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt ∼a µ2f
−1
z (z)

q∑
j=1

h2j [
∂β∗(z)

∂zj

∂fz(z)

∂zj
+ fz(z)

1

2

∂2β∗(z)

∂2zj
] =: B(z) (E.17)

remains valid with N either fixed or passing to infinity via sequential limit (N,T )seq →∞ or joint limit

(N,T )→∞ with η = 0 or η 6= 0.

Proof Component (X∗A)′KT (z)X∗A has been analyzed in Lemma E.1. The analysis of (X∗A)′X∗A is entirely

similar to that of (X∗A)′KT (z)X∗A. Similar to the results in Lemma E.1 we can get the following results:

(i) if N is fixed, T−1(X∗A)′X∗A
p−→ Vxx,η,N ; (ii) if N → ∞ and η = 0, T−1PN (X∗A)′X∗APN

p−→ V ∗xx; (iii) if

N →∞ and η 6= 0, T−1(X∗A)′X∗A
p−→ Vη. Standard calculations give Eξ∗βt = |H|µ2

∑q
j=1 h

2
j [
∂β∗(z)
∂zj

∂fz(z)
∂zj

+

fz(z)
1
2
∂2β∗(z)
∂2zj

] =: |H|µ2

∑q
j=1 h

2
jCj(z) =: |H|µ2C(z). Combining all these results, for the first component

in the RHS of (A.2), we have:

(i) if N is fixed: Following Lemma E.1 (i) we have

[(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt

=

[
1

T |H|
(X∗A)′KT (z)X∗A

]−1
T−1(X∗A)′X∗A|H|−1Eξ∗βt

∼a [fz(z)Vxx,η,N ]−1Vxx,η,Nµ2C(z) = µ2f
−1
z (z)C(z) =: B(z). (E.18)

(ii) if (N,T )seq →∞ or (N,T )→∞ jointly with η = 0: Following Lemma E.1 (ii) we have

[(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt

= PN

[
1

T |H|
PN (X∗A)′KT (z)X∗APN

]−1
T−1PN (X∗A)′X∗APNP

−1
N |H|

−1Eξ∗βt

∼a PN [fz(z)V
∗
xx]−1V ∗xxP

−1
N µ2C(z) = µ2f

−1
z (z)C(z) =: B(z).

(iii) if (N,T )seq →∞ or (N,T )→∞ jointly with η 6= 0: For the sequential limit case where (N,T )seq →
∞, we still have [(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt ∼a B(z) by letting N → ∞ in (E.18). In the joint

limit case where (N,T ) → ∞ jointly, we have the singularity problem arising from Vη. In this case, we

consider the transformed version as shown in (B.2) in the proof of Theorem 2.2. We have

[(X∗A)′KT (z)X∗A]−1(X∗A)′X∗AEξ∗βt

= CηPN

(
1

T |H|
PNC

′
η(X∗A)′KT (z)X∗ACηPN

)−1
T−1PNC

′
η(X∗A)′X∗ACηPNP

−1
N C−1η |H|−1Eξ∗βt

∼a CηPN (fz(z)Σxx,η)−1Σxx,ηP
−1
N C−1η µ2C(z) = µ2f

−1
z (z)C(z) =: B(z).

Therefore, we have shown that in all the cases considered (E.17) remains to hold. �

Lemma E.4. Under Assumptions 1-3 and assume N
∑q
j=1 h

2
j → 0, as T → ∞ with N either fixed or
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passing to infinity, we have ∑
t

x∗,Atx
′
∗,Atη

∗
βt = op((X

∗
A)′KT (z)UA) (E.19)

where η∗βt = ξ∗βt − Eξ∗βt, ξ∗βt = [β∗(zt)− β∗(z)]KtH .

Proof It is standard to show that Eξ∗βtξ∗′βt = O(|H|
∑q
j=1 h

2
j ) and hence η∗βt = Op(

√
|H|

∑q
j=1 h

2
j ).

(i)When N is fixed, we have
∑
t x∗,Atx

′
∗,Atη

∗
βt = Op(

√
T |H|

∑q
j=1 h

2
j ) following the invariance principle

for stationary mixing time series. In view of Lemma E.2 we have (X∗A)′KT (z)UA = Op(
√
T |H|/

√
N)

when N is fixed. Then (E.19) follows in a straightforward way.

(ii) When N →∞ and η = 0, we verify (E.19) element-wisely. Following Lemma E.2(ii) we have

(X∗A)′KT (z)UA =

( ∑
tKtHuAt∑

tKtHxAtuAt

)
=

Op(√T |H|
N )

Op(
√

T |H|
N2 )

 .

As in the proof of Lemma E.2, we can justify that the invariance principle continues to hold for∑
t x∗,Atx

′
∗,Atη

∗
βt upon appropriate standardization. Then it is easy to get

∑
t

x∗,Atx
′
∗,Atη

∗
βt =

∑
t

(
η0βt + x′Atη1βt

xAtη0βt + xAtx
′
Atη1βt

)
=

Op(√T |H|∑q
j=1 h

2
j ) +Op(

√
T |H|

∑q
j=1 h

2
j

N )

Op(

√
T |H|

∑q
j=1 h

2
j

N ) +Op(

√
T |H|

∑q
j=1 h

2
j

N2 )

 .

Given the bandwidth condition that N
∑q
j=1 h

2
j → 0, we can see the components of

∑
t x∗,Atx

′
∗,Atη

∗
βt are

of smaller order than that of (X∗A)′KT (z)UA. As a result, (E.19) holds.

(iii) If N →∞ and η 6= 0, the analysis is the same as that in the case of η = 0. Following Lemma E.2(iii)

we have

(X∗A)′KT (z)UA =

( ∑
tKtHuAt∑

tKtHxAtuAt

)
=

Op(√T |H|
N )

Op(
√

T |H|
N )

 .

Furthermore,

∑
t

x∗,Atx
′
∗,Atη

∗
βt =

∑
t

(
η0βt + x′Atη1βt

xAtη0βt + xAtx
′
Atη1βt

)
=

Op(√T |H|∑q
j=1 h

2
j )

Op(
√
T |H|

∑q
j=1 h

2
j )

 .

With N
∑q
j=1 h

2
j → 0 the elements of

∑
t x∗,Atx

′
∗,Atη

∗
βt are of smaller order than that of (X∗A)′KT (z)UA.

This completes the proof of (E.19). �

Lemma E.5. Under Assumptions 1-3, as T →∞, we have

1

NT |H|
X ′∗Kn(z)X∗

p−→ fz(z)Vxx,η, (E.20)
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where

Vxx,η =

(
1 η′

η Vxx

)
.

Proof Note that

1

NT |H|
X ′∗Kn(z)X∗ =

1

NT |H|
∑
i

∑
t

(
KtH x′itKtH

xitKtH xitKtHx
′
it

)
.

We only need to show element-wise convergence, which is entirely analogous to that of Lemma E.1, which

covers limits as T → ∞ under fixed N , sequential convergence (N,T )seq → ∞ and joint convergence

(N,T )→∞. Details are omitted. �

Lemma E.6. Under Assumptions 1-3, as T →∞, we have

1√
NT |H|

X ′∗Kn(z)U
d−→ N

(
0, fz(z)σ

2
uν

q
0Vxx,η

)
. (E.21)

Proof Note that
1√

NT |H|
X ′∗Kn(z)U =

1√
NT |H|

∑
i

∑
t

(
KtHuit
xitKtHuit

)
. (E.22)

Analysis of the two components on the RHS of (E.22) is included in the proof of Lemma E.2, which again

covers limits under fixed N as T → ∞, sequential convergence (N,T )seq → ∞ and joint convergence

(N,T )→∞. The first component 1√
NT |H|

∑
i

∑
tKtHuit is S1NT defined in (E.10). The second compo-

nent 1√
NT |H|

∑
i

∑
t xitKtHuit can be treated in the same way as S2NT,1 defined in (E.12). Details are

omitted. �

Lemma E.7. Under Assumptions 1-3, as T →∞, we have

[X ′∗Kn(z)X∗]
−1X ′∗X∗Eξ∗βt ∼a B(z). (E.23)

Proof This is a straightforward application of Lemma E.5 and the derivations in Lemma E.3. Details

are omitted. �

Lemma E.8. Under Assumptions 1-3, as T →∞, we have∑
i,t

x∗,itx
′
∗,itη

∗
βt = op(X

′
∗Kn(z)U). (E.24)

Proof Following Lemma E.6 we have X ′∗Kn(z)U = Op(
√
NT |H|). Similar to the derivations in Lemma

E.4, we can show
∑
i,t x∗,itx

′
∗,itη

∗
βt = Op(

√
NT |H|

∑q
j=1 h

2
j ). Then (E.24) follows in a straightforward

way. �

F Bootstrap Procedure

We describe the bootstrap procedure for implementing the I∗m test.
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Step (i). For the observed sample {yit, xit, zt}, i = 1, ..., N, t = 1, ..., T , obtain the PLC

estimates α̂PLC , β̂∗,PLC(z) at the observations {zt}Tt=1 and the selected grid points {z∗s}ms=1,

and the OLS estimator β̂∗,OLS . Compute the residual ûit = yit − α̂i,PLC − x′∗,itβ̂∗,PLC(zt),

σ̂2u = n−1
∑

i,t û
2
it, and the estimator Ω̂(z) at the grid points {z∗s}ms=1. With these estimates,

compute the statistic I∗m as in (3.4).

Step (ii). Generate ũit independently fromN(0, σ̂2u). Compute ỹit = α̂i,PLC+x′∗,itβ̂∗,OLS+ũit.

Compute the bootstrap statistic Ĩ∗m as in Step (i), using the bootstrap sample {ỹit, xit, zt},
i = 1, ..., N, t = 1, ..., T .

Step (iii). Repeat Step (ii) a large number of times, say B = 200, and use the upper δ-

percentile of the bootstrap statistic empirical distribution {Ĩ∗(b)m }Bb=1, cδ, to approximate the

upper δ-percentile critical value of the null distribution of I∗m.

Step (iv). Reject the null hypothesis if I∗m > cδ, or if the p-value= 1
B

∑B
b=1 1(Ĩ

∗(b)
m > I∗m) < δ.

Otherwise, the null is not rejected.

Supplementary Material A technical supplement, Phillips and Wang (2021), to this paper is available

online. This document deals with the case where a functional intercept term is not included in the model

and provides a full analysis of this case in parallel to the main paper. To view this supplementary material

please visit (DOI details and URL to be provided by typesetter.).
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Table 1: AMSE of the estimators of the intercept coefficient β0(z)

η β̂0,APLC(z) β̂oracle0,PLC(z) β̂0,PLC(z)

N = 5 T = 20 0 0.0431 0.0371 0.0373
1 0.1593 0.0524 0.0531
5 1.1456 0.0954 0.0969

T = 50 0 0.0181 0.0165 0.0165
1 0.0519 0.0237 0.0238
5 0.2881 0.0402 0.0405

T = 100 0 0.0106 0.0098 0.0098
1 0.0276 0.0132 0.0132
5 0.1264 0.0222 0.0224

N = 50 T = 20 0 0.0163 0.0064 0.0064
1 0.4648 0.0077 0.0078
5 9.1880 0.0112 0.0114

T = 50 0 0.0080 0.0031 0.0031
1 0.1077 0.0040 0.0041
5 2.0186 0.0055 0.0056

T = 100 0 0.0049 0.0017 0.0017
1 0.0450 0.0023 0.0023
5 0.8907 0.0031 0.0031

Table 2: AMSE of the estimators of the slope coefficient β1(z)

η β̂1,APLC(z) β̂oracle1,PLC(z) β̂1,PLC(z)

N = 5 T = 20 0 0.2038 0.0355 0.0375
1 0.1397 0.0252 0.0263
5 0.0699 0.0121 0.0123

T = 50 0 0.0715 0.0169 0.0171
1 0.0503 0.0125 0.0127
5 0.0284 0.0073 0.0074

T = 100 0 0.0384 0.0103 0.0104
1 0.0279 0.0076 0.0076
5 0.0164 0.0051 0.0051

N = 50 T = 20 0 0.4886 0.0066 0.0068
1 0.4571 0.0048 0.0049
5 0.3846 0.0032 0.0032

T = 50 0 0.1347 0.0035 0.0036
1 0.1140 0.0029 0.0029
5 0.0961 0.0021 0.0021

T = 100 0 0.0613 0.0022 0.0022
1 0.0499 0.0018 0.0018
5 0.0465 0.0014 0.0014
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Table 3: Size (in percentage) of the two tests I∗m and J with bandwidth formula h = σ̂zn
−1/4

and nominal size 5%

N = 5 N = 20
I∗m J I∗m J

m = 3 T = 20 5.00 5.50 2.00 3.50
50 2.50 3.00 2.00 2.50

100 2.00 2.50 3.50 5.50

m = 9 T = 20 6.50 8.00 2.50 3.00
50 2.00 3.50 2.50 2.50

100 1.50 2.50 1.50 2.00

m = 20 T = 20 12.50 12.50 5.50 6.50
50 10.50 11.00 6.50 6.50

100 3.50 5.00 4.00 4.50

Table 4: Size (in percentage) of the bootstrapped procedure with bandwidth formula h =
chσ̂zn

−1/4 and nominal size 5%

N = 5 N = 20
ch 0.5 1.0 1.5 0.5 1.0 1.5

m = 3 T = 20 2.0 6.0 5.5 5.0 7.5 1.5
50 4.5 6.5 4.5 4.5 3.5 4.0

100 6.0 3.0 2.0 5.0 6.0 4.0

m = 9 T = 20 4.0 5.0 6.5 3.0 5.5 6.0
50 5.0 4.5 7.0 7.0 4.0 6.0

100 2.5 4.0 3.0 2.5 4.0 3.0

m = 20 T = 20 4.5 6.0 4.0 5.5 5.5 6.0
50 7.0 7.5 6.5 3.5 5.5 5.5

100 4.5 3.0 6.0 6.5 4.0 7.5

Table 5: Out-of-sample forecasting MSE improvement (in percentage) of functional-coefficient
model (5.1) over fixed-coefficient linear model (5.2)

North East North West Yorkshire and The Humber East Midlands West Midlands East London South East South West All

2014 30.52 46.29 23.92 74.56 -34.45 70.98 51.98 83.60 75.89 48.21
2015 47.02 89.13 77.77 -35.02 82.58 -138.91 9.11 -253.80 96.02 50.26
2016 69.44 66.72 88.69 -26.96 15.77 -6.90 21.02 -80.88 45.00 5.03
2017 -29.36 -0.78 58.13 -7.51 29.07 -0.64 -6.22 -134.76 -69.46 -11.84
2018 50.22 -8.00 79.10 31.64 43.84 65.59 0.15 -244.22 57.47 16.40

All 40.69 66.54 59.84 6.82 44.21 2.55 8.79 -37.27 64.89 27.19
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